JP7307763B2 - 屈曲式カメラレンズ設計 - Google Patents

屈曲式カメラレンズ設計 Download PDF

Info

Publication number
JP7307763B2
JP7307763B2 JP2021070910A JP2021070910A JP7307763B2 JP 7307763 B2 JP7307763 B2 JP 7307763B2 JP 2021070910 A JP2021070910 A JP 2021070910A JP 2021070910 A JP2021070910 A JP 2021070910A JP 7307763 B2 JP7307763 B2 JP 7307763B2
Authority
JP
Japan
Prior art keywords
lens
lens element
cavity
digital camera
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021070910A
Other languages
English (en)
Other versions
JP2021119396A (ja
Inventor
シャブタイ,ガル
ロバート ゴールデンバーグ,エプライム
ドロアー,マイケル
イェディッド,イタイ
バチャール,ギル
Original Assignee
コアフォトニクス リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コアフォトニクス リミテッド filed Critical コアフォトニクス リミテッド
Publication of JP2021119396A publication Critical patent/JP2021119396A/ja
Priority to JP2022074175A priority Critical patent/JP7364737B2/ja
Application granted granted Critical
Publication of JP7307763B2 publication Critical patent/JP7307763B2/ja
Priority to JP2023173377A priority patent/JP2023171944A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/004Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/021Mountings, adjusting means, or light-tight connections, for optical elements for lenses for more than one lens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0055Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element
    • G02B13/0065Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras employing a special optical element having a beam-folding prism or mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/009Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras having zoom function
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/02Telephoto objectives, i.e. systems of the type + - in which the distance from the front vertex to the image plane is less than the equivalent focal length
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/12Bodies with means for supporting objectives, supplementary lenses, filters, masks, or turrets
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/02Bodies
    • G03B17/17Bodies with reflectors arranged in beam forming the photographic image, e.g. for reducing dimensions of camera
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/58Means for changing the camera field of view without moving the camera body, e.g. nutating or panning of optics or image sensors

Description

発明の詳細な説明
〔関連出願の参照〕
本出願は2017年2月23日に出願された米国仮特許出願第62/462,438号、2017年3月30日に出願された米国仮特許出願第62/478,783号、および2017年4月9日に出願された米国仮特許出願第62/483,422号の利益を主張するものであり、これらはすべて参照により本明細書に組み込まれる。
〔技術分野〕
本開示の主題は一般に、デジタルカメラの分野に関する。
〔背景技術〕
デュアルアパーチャズームカメラ(デュアルカメラとも呼ばれる)として、一方のカメラ(サブカメラとも呼ばれる)がワイドFOV(ワイドサブカメラ:Wide sub-camera)を有し、他方のカメラが狭いFOV(テレサブカメラ:Tele sub-camera)を有するタイプが知られている。
国際特許公開WO2016/024192はその全体が参照により本明細書に組み込まれるが、コンパクトカメラの高さを低減する「屈曲式カメラモジュール」(単に「屈曲式カメラ」とも呼ばれる)を開示している。屈曲式カメラでは、スマートフォン裏面に垂直な方向からスマートフォン裏面に平行な方向に光伝播方向を傾斜させるために、光路屈曲素子(以下、OPFE(optical path folding element)と呼ぶ)、例えばプリズムまたはミラー(以下、総称して反射素子と呼ぶ)が追加される。屈曲式カメラがデュアルアパーチャカメラの一部である場合、これは、1つのレンズアセンブリ(例えば、テレ(Tele)レンズ)を通る屈曲した光路を提供する。このようなカメラは、本明細書では「屈曲式レンズデュアルアパーチャカメラ」と呼ばれる。一般に、屈曲式カメラは、例えば、トリプルアパーチャカメラにおける2つの「屈曲していていない」(直立した)カメラモジュールと共に、マルチアパーチャカメラに含まれてもよい。
〔発明の概要〕
屈曲式カメラの小さな高さは、それを含むホスト装置(例えば、スマートフォン、タブレット、ラップトップ又はスマートテレビ)をできるだけ薄くすることを可能にするために重要である。カメラの高さは、工業デザインによって制限されることが多い。対照的に、レンズの光学的開口を増大させると、センサに到達する光の量が増大し、カメラの光学特性が改善される。
したがって、所与のカメラ高さおよび/またはレンズモジュール高さに対してレンズ光学開口の高さが最大である屈曲式カメラが必要であり、これを有することが有利であろう。
現在開示されている主題のいくつかの態様によれば、第1の光軸を有するN個(N≧3)のレンズエレメントLを含む光学レンズモジュール、イメージセンサ、および、被写体と前記レンズエレメントとの間に屈曲した光路を提供する光路屈曲素子(OPFE)とを備えたデジタルカメラであって、各レンズエレメントはそれぞれ前面S2i-1および後面S2iを含み、S(ただし1≦k≦2N)で表されるレンズエレメントの表面に関し、それぞれのレンズエレメントの表面Sはクリアな高さ値CH(S)を有し、表面Sのクリアな高さ値CH(S)は、表面S~Sのそれぞれのクリアな高さ値よりも大きい。
例示的な実施形態では、前記N個のレンズエレメントは、軸対称を有する。
例示的な実施形態では、CH(S)≧1.1×CH(S)である。
例示的な実施形態では、3≦k≦2Nにおいて、CH(S)≧1.2xCH(S)である。
例示的な実施形態では、前記デジタルカメラが全トラック長TTLおよび後焦点距離BFLに関し、BFL≧0.3×TTLである。
例示的な実施形態では、前記Lは、グラスからなる。
例示的な実施形態では、前記Lは、プラスチックからなる。
例示的な実施形態では、前記Lは、任意の2≦i≦Nにおいてプラスチックからなる。
例示的な実施形態では、前記光学レンズモジュールが前方開口レンズモジュールである。
例示的な実施形態では、CH(S)<7mmである。
いくつかの例示的な実施形態では、それぞれのレンズエレメントの表面Sは、クリアアパーチャ値CA(S)を有する。例示的な実施形態では、表面Sのクリアアパーチャ値CA(S)が表面S~S2Nのそれぞれのクリアアパーチャ値よりも大きい。また、例示的な実施形態では、CA(S)がクリアアパーチャ値CA(S2N)に等しく、CA(S)は2≦k≦2N-1においてCA(S)よりも大きい。
例示的な実施形態では、CA(S)がCH(S)に実質的に等しい。
例示的な実施形態では、CA(S)>=1.1xCA(S)。
例示的な実施形態では、3≦k≦2Nにおいて、CA(S)>=1.2xCH(S)である。
例示的な実施形態では、少なくとも2つのレンズエレメントがそれらの高さHよりも大きい幅Wを有する。
いくつかの例示的な実施形態では、前記光学レンズモジュールには、前記複数のレンズエレメントを保持するキャビティが設けられ、前記キャビティは、第1のレンズエレメントLが配置される第1の部分と、他のレンズエレメントの少なくとも1つが配置される第2の部分とを有し、前記第1の部分の高さは、前記第2の部分の高さよりも高い。
いくつかの例示的な実施形態では、前記光学レンズモジュールには、レンズエレメントL~Lの少なくとも2つを保持するキャビティが設けられ、前記第1のレンズエレメントLは、前記光学レンズモジュールの外に配設される。
いくつかの例示的な実施形態では、前記イメージセンサが矩形センサまたは円形センサである。
いくつかの例示的な実施形態では、N≦6である。
本開示の主題の一態様によれば、上述の実施形態のいずれかのカメラを備えるデジタルデュアルカメラであって、当該カメラが、テレ(Tele)画像を提供するように構成されたテレサブカメラ、およびワイド(Wide)画像を提供するように構成されたワイドサブカメラである、デジタルデュアルカメラが提供される。
本開示の主題のいくつかの態様によれば、第1の光軸を有するN個(N≧3)のレンズエレメントLを含む光学レンズモジュールと、イメージセンサと、被写体とレンズエレメントとの間において屈曲した光路を提供する、第1の光軸に対して傾斜した反射素子と、を備えるデジタルカメラが提供される。ここで、各レンズエレメントはそれぞれ前面S2i-1および後面S2iを含み、S(ただし1≦k≦2N)で表されるレンズエレメントの表面に関し、それぞれのレンズエレメントの表面はクリアアパーチャ値CA(S)を有し、2≦k≦2Nにおいて、クリアアパーチャ値CA(S)はCA(S)よりも大きい。
例示的な実施形態では、CA(S)≧1.1×CA(S)である。
例示的な実施形態では、CA(S)≧1.2×CH(S)である(ただし3≦k≦2N)。
いくつかの例示的な実施形態では、前記光学レンズモジュールが前記複数のレンズエレメントを保持するキャビティを含み、前記第1の光軸に直交する軸に沿って測定される前記キャビティの高さは、前記第1の光軸に沿って位置する複数の部分同士で異なっている
いくつかの例示的な実施形態では、前記キャビティには、前記第1のレンズエレメントLが位置する第1の部分と、他のレンズエレメントのうちの少なくとも1つが位置する第2の部分とが設けられており、前記第1の部分における前記高さは、前記第2の部分における前記高さよりも高い。
いくつかの例示的な実施形態では、前記光学レンズモジュールが、レンズエレメントL~Lのうちの少なくとも2つを保持するキャビティが設けられたレンズ鏡筒(単に「鏡筒」)を更に備え、レンズエレメントLは、前記鏡筒の外に配設される。
本開示の主題の別の態様によれば、上述のカメラはテレ画像を提供するように構成されたテレサブカメラであり、デュアルカメラにおいてワイド画像を提供するように構成されたワイドサブカメラと共に含まれる。
本開示の主題の別の態様によれば、第1の光軸に沿って対称性を有するN個(N≧3)のレンズエレメントと、イメージセンサと、被写体と前記イメージセンサとの間に屈曲光路を提供するように動作する反射素子と、複数のレンズエレメントが保持されるキャビティが設けられた鏡筒とを備えるデジタルカメラであって、第1の光軸に直交する軸に沿って測定されるキャビティの高さが、第1の光軸に沿って位置する複数の部分同士で異なっており、前記キャビティが、第1のレンズエレメントLが配置される第1の部分と、他のレンズエレメントの少なくとも1つが配置される第2の部分とを備え、の前記第1の部分の高さHが、前記第2の部分の高さHよりも高く、H>1.1×Hである、デジタルカメラが提供される。
本明細書に開示された主題の別の態様によれば、第1の光軸に沿った軸対称性を有するN(≧3)個のレンズエレメントL~Lと、イメージセンサと、被写体と前記イメージセンサとの間に屈曲光路を提供するように作動する反射素子と、L~Lの少なくとも2つのレンズエレメントLが保持されているキャビティが設けられた鏡筒とを備えたデジタルカメラであって、レンズエレメントLが前記鏡筒の外に配設されているデジタルカメラが提供される。
例示的な実施形態では、Lが前記鏡筒の外に配設されている。
本開示の主題のいくつかの態様によれば、壁に囲まれたキャビティが設けられた鏡筒と、N個のレンズエレメントL~Lと、を備え、N≧3であり、前記レンズエレメントLは、前記キャビティによって完全に囲まれていない部分を有し、前記キャビティの前記壁は、レンズエレメントLの中心を前記第1の光軸に位置合わせしている、光学レンズモジュールが提供される。
例示的な実施形態では、レンズエレメントLは、前記キャビティによって完全には取り囲まれていない部分を有しており、前記キャビティの壁は、前記レンズエレメントLの中心を前記第1の光軸に整列させる。
例示的な実施形態では、前記壁の端部および前記レンズエレメントLの端部の少なくとも一方が、前記壁の端部が当該レンズエレメントLの少なくとも一部のためのストップとして作用することによって、レンズエレメントLの中心を前記第1の光軸に実質的に位置合わせするように、成形される。
例示的な実施形態では、レンズエレメントLの第1の部分は前記壁の端部と端部の間のキャビティに位置しており、当該レンズエレメントLの第2の部分は、当該キャビティの外に位置しており、前記レンズエレメントLの前記第1の光軸に沿った前記第2の部分の厚さは、当該レンズエレメントLの前記第1の光軸に沿った前記第1の部分の厚さよりも大きい。
例示的な実施形態では、前記壁の前記端部の断面は階段形状を有する。
例示的な実施形態では、レンズエレメントLの前記端部の断面は階段形状を有する。
例示的な実施形態では、前記壁の前記端部の断面が傾斜した形状を有する。
例示的な実施形態では、前記壁の前記端部が面取り部を含む。
例示的な実施形態では、レンズモジュールがレンズを保護するためのカバーをさらに備え、カバーはレンズエレメントLを覆う。
例示的な実施形態では、前記カバーがレンズエレメントLを越えた端点を有する。
例示的な実施形態では、前記カバーがレンズエレメントLの機械的部分への光の侵入を阻止する。
本開示の主題のいくつかの態様によれば、複数N≧3のレンズエレメントLを備える光学レンズモジュールが提供され、ここで、1≦i≦Nであり、各レンズエレメントはそれぞれの前面S2i-1およびそれぞれの後面S2iを備え、S(ただし、1≦k≦2N)で表されるレンズエレメントの表面に関し、それぞれのレンズエレメントの表面Sはクリアアパーチャ値CA(S)を有し、CA(S)はCA(S2N)に実質的に等しく、2≦k≦2N-1において、CA(S)はCA(S)より大きい。
本開示の主題のいくつかの態様によれば、複数N≦3のレンズエレメントLを備える光学レンズモジュールが提供され、各レンズエレメントはそれぞれの前面S2i-1およびそれぞれの後面S2iを備え、レンズエレメント表面はS(ただし、1≦k≦2N)と記され、各レンズエレメント表面はクリアアパーチャ値CA(S)を有し、2≦k≦2NにおいてCA(S)はCA(S)より大きい。
本開示の主題のいくつかの態様によれば、イメージセンサと、被写体とイメージセンサとの間に屈曲光路を提供するように動作する反射素子と、上述の光学レンズモジュールとを備えるデジタルカメラが提供される。
本開示の主題の別の態様によれば、鏡筒高さHと、N個(N≧3)のレンズエレメントL~Lとを有する鏡筒を備え、レンズエレメントLの高さHL1は、HL1≧Hを満たすか、または満たす光学レンズモジュールが提供される。例示的な実施形態ではHLN≧Hである。また例示的な実施形態では、HLN=HL1である。
本開示の主題の別の態様によれば、N個(N≧3)のレンズエレメントL~Lを含み、それぞれのレンズエレメントLは1≦i≦Nの高さHLiを有し、HL1≧HLN>HL2である光学レンズモジュールが提供される。
例示的な実施形態では、3≦i≦N-1において、HL1>HLiである。
本開示の主題の別の態様によれば、N個のレンズエレメントのうちの第1のレンズエレメントLを、鏡筒の被写体側から当該鏡筒に挿入するステップと、前記第1のレンズエレメントLを前記鏡筒に固定するステップと、前記鏡筒の像側から、残りのレンズエレメントL~Lおよびレンズ同士を離隔するスペーサR~Rを、R,L,・・・,RN-1,Lの順に挿入するステップと、レンズエレメントLをレンズモジュールに固定するステップとを含む、光学レンズモジュールを組み立てるための一方法が提供される。
本開示の主題の別の態様によれば、携帯電子機器のハウジング内に内蔵された内部デジタルカメラを備える携帯電子機器が提供され、当該デジタルカメラは、上述の態様のいずれか1つによるか、または上述の光学レンズモジュールのいずれかを備える。
本開示の主題の別の態様によれば、少なくとも1つのワイドサブカメラと少なくとも1つのテレサブカメラとを備える複合式のアパーチャカメラが提供され、これは、上述の態様のいずれか1つに従うか、または上述の光学レンズモジュールのいずれかを備える。
本開示の主題の別の態様によれば、反射素子はデジタルカメラの視野(FOV)の位置を移動させ、複数の隣接する重なり合わないまたは部分的に重なり合う画像を複数のそれぞれの位置で取り込むために、1つまたは2つの軸の周りで回転させることができる回転反射素子であり、デジタルカメラは複数の画像から、デジタルカメラのFOVより大きい全体画像FOVを有する合成画像を生成するように構成される。
いくつかの例示的な実施形態では上記の態様によるデジタルカメラが1つまたは2つの軸の周りの回転運動を回転反射素子に適用するように構成されたアクチュエータをさらに備え、アクチュエータは要求されたズーム倍率に対応する領域をカメラに走査させるようにアクチュエータを制御するように構成されたコントローラに動作可能に接続され、この領域はデジタルカメラのFOVよりも大きく、各画像が走査された領域内の異なる位置で取り込まれる複数の画像を取り込む。
例示的な実施形態では、合成画像のサイズが4つのテレ(Tele)画像のステッチングによって生成される。
例示的な実施形態では、合成画像のサイズが6つのテレ画像のステッチングによって生成される。
例示的な実施形態では、合成画像のサイズが9つのテレ画像のステッチングによって生成される。
例示的な実施形態では、複数の画像の合成サイズが合成画像のサイズよりも大きい。
〔図面の簡単な説明〕
本明細書に開示される実施形態の非限定的な例は、この段落の後に列挙される、本明細書に添付される図面を参照して以下に記載される。図面および説明は本明細書に開示された実施形態を明確にし、明確にすることを意図しており、決して限定するものとみなされるべきではない。異なる図面における同様の要素は、同様の数字によって示されてもよい。図面中の要素は、必ずしも一定の縮尺で描かれていない。
図1Aは、公知の屈曲式カメラの一例の概略等角図である。
図1Bは、図1Aのカメラの側面図である。
図1Cは、屈曲したテレ(Tele)サブカメラおよびワイドサブカメラを備える既知のカメラの一例の概略等角図である。
図1Dは、図1Cのカメラの側面図である。
図2Aは、本開示の主題のいくつかの例によるレンズエレメントの一実施形態を、光線とともに模式的に示す模式図である。
図2Bは、図2Aのレンズエレメントの別の模式図である。
図3Aは、本開示の主題のいくつかの例による、レンズエレメントの凸面に衝突する光線のインパクトポイントの模式図、および平面P上のインパクトポイントの直交投影の模式図である。
図3Bは、本開示の主題のいくつかの例による、レンズエレメントの凹面に衝突する光線のインパクトポイントの模式図、および平面P上のインパクトポイントの直交投影の模式図である。
図4は、本開示の主題のいくつかの例による、平面P上のインパクトポイントの直交投影、およびクリアな高さ(clear hight)値(CH)の概略図である。
図5は、本開示の主題のいくつかの例による、平面P上のインパクトポイントの直交投影、およびクリアアパーチャ値(CA)の概略図である。
図6は、本開示の主題のいくつかの例による、レンズエレメントを保持するための光学レンズモジュールの側面図の概略図である。
図7は、本開示の主題の他の例による、レンズエレメントを保持するための光学レンズモジュールの側面図の概略図である。
図8は、本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの一例の概略図である。
図9Aは、本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの別の例の概略図である。
図9Bは、図9Aの例の変形を示す。
図10は、本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの別の例の概略図である。
図11Aは、本開示の主題による、鏡筒および鏡筒内への挿入前の複数のレンズエレメントの等角図の概略図である。
図11Bは、平面Y-Zに沿った、図11Aの例の断面図を示す。
図11Cは、平面X-Zに沿った図11Aの例の断面図を示す。
図11Dは、図11Aの例の正面図を示す。
図11Eは、鏡筒内にレンズエレメントを挿入した後の図11Aの例の別の等角図を示す。
図11Fは、レンズエレメントの正面図の概略図である。
図12は、図11A~図11Eの光学レンズモジュールの製造プロセスの概略図である。
図13Aは、複数のレンズエレメントの等角図の概略図である。
図13Bは、図13Aの複数のレンズエレメントと鏡筒とを備える光学レンズモジュールの等角図の概略図である。
図13Cは、図13Aの複数のレンズエレメントと鏡筒とを備える光学レンズモジュールのさらに別の概略図である。
図14は、本開示の主題のいくつかの例による、4つのテレ画像をまとめて取り込んでステッチングして生成されたステッチ画像の概略図である。
図15は、本開示の主題のいくつかの例による、6つのテレ画像をまとめて取り込んでステッチングして生成されたステッチ画像の概略図である。
図16は、本開示の主題のいくつかの例による、9つのテレ画像をまとめて取り込んでステッチングして生成されたステッチ画像の概略図である。
図17Aは、本開示の主題による、レンズエレメントを有する鏡筒の別の実施形態の等角図を示す。
図17Bは、図17Aの鏡筒およびレンズエレメントの側面図である。
図17Cは、図17Bのレンズエレメントの分解図を示す。
図17Dは、本開示の主題による、レンズエレメントを有する別の鏡筒の側面切断図を示す。
図18Aは、本開示の主題による、鏡筒およびレンズエレメントを有するレンズモジュールのさらに別の実施形態の等角図を示す。
図18Bは、図18Aのレンズモジュールの側面切断図を示す。
図18Cは、図18Bのレンズモジュールの分解図を示す。
図19Aは、本開示の主題による、バレルおよびレンズエレメントを有するレンズモジュールのさらに別の実施形態のサイドカット図を示す。
図19Bは、図19Aのレンズモジュールの分解図を示す。
図20は、本開示の主題による、レンズエレメントを有する鏡筒のさらに別の実施形態の側面切断図を示す。
図21Aは、本開示の主題の別の例による、光線を示すレンズエレメントの別の実施形態の模式図である。
図21Bは、図21Aのレンズエレメントの別の模式図である。
図22は、図21Aおよび図21Bのレンズエレメントを保持するための光学レンズモジュールの側面概略図である。
図23は、図21Aおよび図21Bのレンズエレメントを保持するための別の光学レンズモジュールの側面概略図である。
図24は、本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールのさらに別の例の概略図である。
図25Aは、本開示の主題による、別の光学レンズモジュールの等角図の概略図である。
図25Bは、平面Y-Zに沿った、図25Aのレンズモジュールの断面図を示す。
図25Cは、平面X-Zに沿った、図25Aのレンズモジュールの断面図を示す。
図25Dは、鏡筒内にレンズエレメントを挿入した後の、図25Aのレンズモジュールの別の等角図を示す。
図26Aは、本開示の主題による、鏡筒およびレンズエレメントを有するレンズモジュールのさらに別の実施形態の等角図を示す。
図26Bは、図26Aのレンズモジュールの側面切断図を示す。
図26Cは、図26Bのレンズモジュールの分解図を示す。
図27Aは、本開示の主題による、レンズモジュールのさらに別の実施形態の等角図を示す。
図27Bは、図27Aのレンズモジュールの分解図を示す。
〔発明を実施するための形態〕
以下の詳細な説明では、完全な理解を提供するために、多数の特定の詳細が記載される。しかしながら、ここに開示された主題は、これらの特定の詳細なしに実施されてもよいことが当業者によって理解されるのであろう。他の例では、本開示の主題を曖昧にしないように、周知の方法は詳細に説明されていない。
明確にするために、別個の実施形態の文脈で説明される、現在開示されている主題の特定の特徴は、単一の実施形態において組み合わせて提供されてもよいことが理解される。反対に、単一の実施形態の文脈で説明されている簡略化のために、現在開示されている主題事項の様々な特徴は別個に、または任意の適切な組み合わせで提供されてもよい。
本明細書で開示される「処理ユニット」というタームは例えば、様々なデータ処理動作を実行することができるコンピュータメモリ(例えば、デジタル信号プロセッサ(DSP)、マイクロコントローラ、フィールドプログラマブルゲートアレイ(FPGA)、特定用途向け集積回路(ASIC)など)に動作可能に接続されたコンピュータ処理装置を含む、データ処理回路を有する任意の種類の電子デバイスを含むように広く解釈されるべきである。
さらに、明確にするために、用語「実質的に」は、本明細書では許容範囲内の値の変動の可能性を暗示するために使用される。一例によれば、本明細書で使用される「実質的に」というタームは、任意の指定された値から10%までの範囲で上回るか下回る変動が可能なことを意味すると解釈されるべきである。別の例によれば、本明細書で使用される「実質的に」というタームは、任意の指定された値から5%までの範囲で上回るか下回る変動が可能なことを意味すると解釈されるべきである。さらなる例によれば、本明細書で使用される用語「実質的に」は、任意の指定された値から2.5%までの範囲で上回るか下回る変動が可能なことを意味すると解釈されるべきである。
図1Aおよび図1Bは、例えばテレ(Tele)カメラとして動作することができる公知のデジタル屈曲式カメラ100を示す。デジタルカメラ100は、第1の反射素子(例えば、ミラーまたはプリズム、および「光路屈曲素子」(OPFE)とも呼ばれる)101と、複数のレンズエレメント(この図では見えないが、例えば、図2Aおよび図2Bでは見える)と、イメージセンサ104とを備える。レンズエレメント(及び鏡筒、光学レンズモジュール)は、第1の光軸103に沿って軸対称であってもよい。レンズエレメントの少なくともいくつかは、「鏡筒」102と呼ばれる構造によって保持することができる。光学レンズモジュールは、レンズエレメントと鏡筒とを備える。鏡筒は、光軸103に沿って長手方向の対称性を有することができる。図1A~図1Dにおいて、この鏡筒の断面は円形である。しかし、これは必須ではなく、他の形状を使用することができる。
被写体(図示せず)からイメージセンサ104への光線の経路は、光路(光路の一部を表す光路105および106を参照)を定義する。
OPFE101は、プリズムまたはミラーであってもよい。図1Aに示すように、OPFE101は、光軸103に対して傾斜したミラーとすることができる。他の場合(図示せず、例えばPCT/IB2017/052383を参照)、OPFE101は、光軸103に対して傾斜した裏面を有するプリズムとすることができる。OPFEは、第1の光路105から第2の光路106への光路を屈曲させる。光路106は、光軸103に実質的に平行である。したがって、光路は「屈曲光路」(光路105および106によって示される)と呼ばれ、カメラ100は「屈曲式カメラ」と呼ばれる。レンズモジュールは、複数のレンズエレメントを備える。
特に、いくつかの例では、OPFE101が光軸103に対して実質的に45で傾斜することができる。図1Aにおいても、OPFE101は、光路105に対して実質的に45で傾斜している。
いくつかの既知の例では、イメージセンサ104が光軸103に実質的に垂直なX-Y平面内にある。しかしながら、これは限定的なものではなく、イメージセンサ104は異なる向きを有することができる。例えば、国際公開第2016/024192号パンフレットに記載されているように、イメージセンサ104は、XZ平面内にあることができる。この場合、追加のOPFEを使用して、光線をイメージセンサ104に向けて反射することができる。
いくつかの例によれば、イメージセンサ104は、長方形の形状を有する。いくつかの例によれば、イメージセンサ104は、円形の形状を有する。しかしながら、これらの実施例は限定的なものではない。
様々な例では、カメラ100が当技術分野で知られているように、基板109、例えばプリント回路基板(PCB)上に取り付けることができる。
2つのサブカメラ、例えば、通常のワイドサブカメラ130およびテレサブカメラ100は、デジタルカメラ170(デュアルカメラまたはデュアルアパーチャカメラとも呼ばれる)に含まれてもよい。可能な構成を、図1Cおよび図1Dを参照して説明する。この例では、テレサブカメラ1Aおよび図1Bを参照して説明したカメラによるものである。したがって、テレサブカメラ100の構成要素は図1Aおよび図1Bと同じ参照番号を有し、再び説明しない。
ワイドカメラ130は、開口132(カメラの物体側を示す)と、Y方向に対称(および光)軸134を有する光学レンズモジュール133(または「ワイドレンズモジュール」)と、ワイドイメージセンサ135とを含むことができる。ワイドサブカメラはワイド画像提供するように構成されたワイドレンズモジュールを備え、ワイドサブカメラはワイド視野(FOV)を有し、テレサブカメラはFOVよりも狭いテレ視野(FOV)を有する。特に、他の例では、複数の広いサブカメラおよび/または複数のテレサブカメラを、単一のデジタルカメラに組み込み、動作させることができる。
一例によれば、X-Z平面内にワイドイメージセンサがあり、イメージセンサ104(この例では、TeLeイメージセンサである)が光軸103に実質的に垂直なX-Y平面内にある。
図1A~図1Dの例では、カメラ100が様々な処理動作、例えばテレ画像およびワイド画像を融合出力画像に処理することを実行するための1つまたは複数の適切に構成されたプロセッサ(図示せず)を備える処理ユニットをさらに含む(または動作可能に接続される)ことができる。
処理ユニットは、デジタルカメラと共に動作する専用のハードウェア(HW)及びソフトウェア(SW)を含むことができる。あるいはカメラがインストールされる電子デバイス(例えば、そのネイティブCPU)のプロセッサはデジタルカメラに関連する様々な処理動作(テレ画像およびワイド画像を出力画像に処理することを含むが、これらに限定されない)を実行するように適合され得る。
ここで、本開示の主題のいくつかの例による光線で示されるレンズエレメントを有するレンズモジュール200の模式図を示す図2Aおよび図2Bに注目する。レンズモジュール200は、鏡筒なしで示されている。図2Aはレンズモジュール200の光線追跡を示し、図2Bは、より明確にするためにレンズエレメントのみを示す。さらに、両方の図は、イメージセンサ202および光学素子205を示す。
レンズモジュール200は、N個(複数)のレンズエレメントL(ここで、「i」は1~Nの整数)を含み、Lは被写体側に最も近いレンズエレメントであり、Lは画像側、すなわち、イメージセンサが配置されている側に最も近いレンズエレメントである。この順番は、本明細書に開示されるすべてのレンズおよびレンズエレメントに当てはまる。レンズエレメントLは例えば、図1Aおよび図1Bに示されるカメラ100のレンズエレメントとして、または図1Cおよび図1Dのテレサブカメラ100のレンズエレメントとして使用することができる。図示のように、N個のレンズエレメントは、光軸103に沿って軸対称である。
図2Aおよび図2Bの例では、Nは4に等しい。しかし、これは限定的なものではなく、異なる数のレンズエレメントを使用することができる。いくつかの例によれば、Nは3以上である。例えば、Nは、3、4、5、6または7に等しくてもよい。
図2Aおよび図2Bの例では、レンズエレメントの表面のいくつかは凸面として表され、いくつかは凹面として表される。しかしながら、図2Aおよび図2Bに図示したものに限定されるものではなく、用途、所望の光パワーなどの様々な要因に応じて、凸面および/または凹面の異なる組み合わせを使用することができる。
光線(OPFE101のような反射素子によって反射された後)は、レンズエレメントLを通過し、イメージセンサ202上に画像を形成する。図2Aおよび図2Bの例では、光線が光学素子205(前面205aおよび後面205bを含み、例えばカットオフフィルターであってもよい)を通過した後、イメージセンサ202に入射する。しかし、これに限定されるものではなく、いくつかの例では光学素子205は存在しない。光学素子205は、例えば、赤外線(IR)フィルタ、及び/又はガラス画像センサダストカバーであってもよい。
それぞれのレンズエレメントLはそれぞれの前面S2i-1(インデックス「2i-1」は前面の数である)と、それぞれの後面S2i(インデックス「2i」は後面の数である)とを含み、ここで「i」は1からNの間の整数である。この番号付け規則は、説明全体を通して使用される。あるいは本明細書を通して行われるように、レンズ表面は「S」としてマークされ、kは1~2Nの範囲内である。前面および後面は、場合によっては非球面であってもよい。しかし、これに限定されない。
本明細書で使用されるように、各レンズエレメントの「前面」というタームはカメラの入口(カメラ被写体側)により近くに位置するレンズエレメントの表面を指し、「後面」というタームは、イメージセンサ(カメラ像側)により近くに位置するレンズエレメントの表面を指す。
以下に説明するように、1≦k≦2Nにおいてクリアな高さ(clear height)値CH(S)およびクリアアパーチャ値CA(S)を、各レンズエレメントの各々の表面Sに対して規定することができる。
また、例えば図6に示すように、レンズエレメントL毎に高さ(HLi、1≦i≦N)が規定されている。HLiはそれぞれのレンズエレメントLについて、レンズエレメントの光軸に垂直な軸に沿って測定されたレンズエレメントLの最大高さに対応する(図6の例ではHLiが光軸103に垂直な光路105に沿って測定される)。所与のレンズエレメントについて、高さは、この所与のレンズエレメントの前面および後面の透明な高さ値CHおよびクリアアパーチャ値CAよりも大きいか、または等しい。典型的には、軸対称レンズエレメントの場合、HLiは図11Fに見られるように、レンズエレメントLの径である。典型的には、軸対称レンズエレメントの場合、HLi=max{CA(S2i-1)、CA(S2i)}+機械部分サイズとなる。機械部分およびその特性を以下に定義する(図11E、11Fおよび17A~D)。HLiに対する機械部分サイズの寄与は、典型的には200μm~1000μmである。
また、図6にも示すように、レンズ鏡筒には高さHが規定されている。レンズモジュールの光軸に垂直な任意の軸Aについて、径Dは、レンズモジュールの軸Aに沿って測定された最大間隔として定義される。HはすべてのDsの最小値として定義され、図6の例ではHはレンズモジュールの光軸103に対して垂直であり、光路105に対して平行である軸に沿って測定された鏡筒の最大高さに対応する。
また、図7にも示すように、鏡筒のキャビティには高さHが規定されている。Hは、レンズモジュールの光軸に垂直な軸に沿って測定されたキャビティ鏡筒の高さに対応する(図7ではHが光軸103に垂直な光路105に沿って測定される)。キャビティ鏡筒が軸対称であるいくつかの例では、Hはキャビティ鏡筒の内径である。
本開示の主題のいくつかの例によれば、被写体側に最も近いレンズエレメントLは、他のレンズエレメントの各々の高さよりも高い。非限定的な例が図6に示されており、ここで、HL1は、HL2、HL3、およびHL4よりも大きい。
本開示の主題のいくつかの例によれば、被写体側に最も近いレンズエレメントLおよびイメージセンサに最も近いレンズエレメントLは、実質的に高さが等しく、他のレンズエレメントのそれぞれの高さよりも高い。非限定的な例が図21Bに示されており、ここで、HL1はHL5に等しく、HL2、HL3、およびHL4より大きい。
図3A、図3B、図4に示すように、表面Sを通過する光線(1≦k≦2N)はそれぞれインパクトポイントIPに当たる。光線が表面Sからレンズモジュール200に入り、表面SからS2Nに連続的に通過する。一部の光線は任意の面Sに衝突するが、イメージセンサ202に到達することはできない/到達しない。所与の面Sについて、イメージセンサ202上に画像を形成することができる光線のみが、複数のインパクトポイントIPを形成すると考えられる。CH(S)は、平面P上のすべてのインパクトポイントIPの直交射影IPorthが2つの平行な線の間に位置するように、2つのできるだけ近い平行な線の間の間隔として規定される(図4の線400および401を参照)(図3Aおよび図3Bでは、平面Pは平面X-Yに平行であり、光軸103に直交する)。CH(S)は、表面S(前面および後面、1≦k≦2N)ごとに規定することができる。
CH(S)の規定は、イメージセンサ上に画像を「形成することができる」光線を指すので、現在撮像されている被写体に依存しない。したがって、現在撮像されている被写体が光を生成しない黒い背景に位置する場合であっても、画像を形成するためにイメージセンサに「到達することができる」任意の光線(例えば、黒い背景とは対照的に、光を放出する背景によって放出される光線)を指すので、定義は、この黒い背景を指さない。
例えば、図3Aは、光軸103に直交する平面P上の2つのインパクトポイントIPおよびIPの直交投影IPorth,1、IPorth,2を示す。例えば、図3Aでは、面Sは凸状である。
図3Bは、平面P上の2つのインパクトポイントIPおよびIPの直交投影IPorth,3、IPorth,4を示す。例えば、図3Bでは、面Sは凹状である。
図4において、平面P上の面Sの全てのインパクトポイントIPの直交射影IPのorthは、平行な線400と401との間に位置する。したがって、CH(S)は、線400と線401との間の距離である。
図5に注目する。本開示の主題によれば、クリアアパーチャCA(S)は円の径として、所与の面S(1≦k≦2N)ごとに定義され、ここで、円は光軸103に直交し、平面P上のすべてのインパクトポイントのすべての直交投影IPorthを取り囲む平面P内に位置する最小の円であり、CH(S)に関して上述したように、CA(S)の定義は、現在撮像されている被写体にも依存しないことに留意されたい。
図5に示すように、平面P上の全てのインパクトポイントIPの外接直交射影IPorthは、円500である。この円500の径がCA(S)を規定する。
詳細な光学データおよび表面データは図2Aおよび図2Bのレンズエレメントの例については表1および表2に、図6~図9のレンズエレメントの例については表3および表4に、図20のレンズエレメントの例については表5および表6に、図21A~21Bのレンズエレメントの例については表7および表8に示す(下記参照)。これらの実施例に提供される値は単なる例示であり、他の実施例によれば、他の値を使用することができる。
以下の表では曲率半径(「R」)、レンズエレメントの厚さ(「厚さ」)、およびクリアアパーチャ(「CA」)の単位はミリメートルで表される。
表1、表3および表5および表7の‘0’の行は、被写体(図では見えない)に関連するパラメータを記述し、被写体は、無限距離であると考えられる、システムから1kmに配置されている。
表1~表4の‘1’~‘8’の行は、表面S~Sのパラメータをそれぞれ記述している。表5~8の‘1’~‘10’の行は、表面S~S10のパラメータをそれぞれ記述している。
表1および表3の‘9’、‘10’および‘11’の行、ならびに表5および表7の‘11’、‘12’および‘13’の行は、それぞれ、光学素子205の表面205a、205bおよびイメージセンサ202の表面202aのパラメータを表す。
表1、表3および表5の‘i’(表1および表3における1と10の間のi、および表5における1と12の間のi)において、厚さは、光軸103に沿って測定される表面Sと表面Si+1との間の間隔(Z軸と一致する)に対応する。
表1および表3の‘11’の行(表5および表7の‘13’の行)では、これが最後の表面202aに対応するので、厚さはゼロに等しい。
「BK7」、「K26R」、「EP6000」および「H-ZK3」は当業者に公知であり、例として言及される従来の材料である。
「BK7」は、おおよその以下のパラメータによって特徴付けられる:
屈折率1.5168、アッベ数64.16733。
「K26R」はゼオン(株)製の材料であり、以下の近似パラメータを特徴とする:
屈折率1.534809、アッベ数55.663857。
「EP6000」は三菱製の材料であり、おおよその以下のパラメータによって特徴付けられる:
屈折率1.6397、アッベ数23.5288。
「H-ZK3」は、おおよその以下のパラメータによって特徴付けられるガラスの一種である:
屈折率1.5891、アッベ数61.25。
表7において、各表面材料の特性を、屈折率として「Nd」、アッベ数として「Vd」で示す。
各表面Sの表面形状の式(kが1~2Nの場合)は、次式で表される:
Figure 0007307763000001
ここで、上記の式中の「Z」は光軸103に沿って測定された表面Sのプロファイルの位置であり(z軸と一致し、Z=0は表面Sとz軸とのプロファイルの交点に対応する)、「R」は(光軸103に垂直な軸に沿って測定された)光軸103からの距離であり、「k」は円錐係数であり、c=1/Rであり、Rは曲率半径であり、A(nは1から7)は、表面Sごとに表2および表4に与えられる係数である。rの最大値「max r」はD/2に等しい。
図2Aおよび図2Bの例では、以下の光学特性が達成される:
TTL=13.6mm
BFL=4.93mm
EFL(有効焦点距離)=13.8mm
CA(S)=CH(S)=5mm
CA(S)=CH(S)=4.4mm
kが3~8の場合、CA(S)≦3.8mm、CH(S)≦CA(S)である
f/#=2.76
焦点距離L:f=5.57mm、f/EFL=0.4
センサ対角線(SD)5.86mm、最終面のクリアアパーチャCA(S2N)=3.8mm、CA(S2N)/SDL=0.65。
図6の例では、以下の光学特性が達成される:
TTL=11.1mm
BFL=4.3mm
EFL(有効焦点距離)=11.2mm
CA(S)=CH(S)=4.32mm
CA(S)=CH(S)=3.52mm
k=3~8の場合、CA(S)≦3.2mm、CH(S)≦CA(S)。
f/#=2.5
焦点距離L:f=4.54mm、f/EFL=0.4
センサ対角線(SD)5.24mm、最終面のクリアアパーチャCA(S2N)=3.2mm、CA(S2N)/SDL=0.61。
図20の例では、以下の光学特性が達成される:
TTL=15mm
BFL=6.9mm
EFL=16mm
CA(S)=CH(S)=5.92mm
CA(S)=CH(S)=5.1mm
kが3~10の場合、CA(S)≦4.0mm、CH(S)≦CA(S)である。
f/#=2.7
焦点距離L:f=8.1mm、f/EFL=0.506
センサ対角線(SD)mm、最終面のクリアアパーチャCA(S2N)=3.52mm、CA(S2N)/SDL=0.6。
図21Aおよび図21Bの例では、以下の光学特性が達成される:
TTL=7.78mm
BFL=3.23mm
EFL(有効焦点距離)=7.97mm
CA(S)=CH(S)=3.6mm
CA(S)=CH(S)=3.45mm
kが3~8の場合、CA(S)≦3.4mm、CH(S)≦CA(S)である。
CA(S2N-1)=3.36mm、CH(S2N-1)=2.842mm
CA(S2N)=3.6mm、CH(S2N-1)=3.064mm
f/#=2.2
焦点距離L:f=3.972mm、f/EFL=0.498
センサ対角線(SD)5.86mm、CA(S2N)/SD=0.615
本出願において、および上記の特性のために、以下の記号および略語が使用され、それらの全ては、当該技術分野において公知の用語である:
TTL: 「総トラック長」(total track length)はシステムが無限遠物体距離に合焦されたときに、第1のレンズエレメントLの前面Sの点とイメージセンサとの間の、光軸と並行する軸に沿って測定された最大距離として定義される。
BFL: 「焦点後方距離」(focal back length)はシステムが無限遠物体距離に合焦されたときに、最後のレンズエレメントLの後面S2Nの点とイメージセンサとの間の、第1の光軸と並行する軸に沿って測定された最小距離として定義される。
EFL: L~Lをアセンブリしたレンズモジュールの有効焦点距離。
f/#: f数、開口絞りの直径に対するEFLの比。
開口絞り: 光学システムを通過する光量を制限する開口。
Figure 0007307763000002
Figure 0007307763000003
Figure 0007307763000004
Figure 0007307763000005
Figure 0007307763000006
Figure 0007307763000007
Figure 0007307763000008
Figure 0007307763000009
図2Aおよび図2Bの例では、CA(S)=CH(S)のケースを示す。同様の場合、CA(S)は、例えば5%までの差異を伴って、CH(S)に実質的に等しくてもよい。
また、第1面Sの手前には、「開口絞り」206(レンズアパーチャを規定する)が配置されている。開口絞りは、例えば、機械部分であってもよい。第1面Sに、またはその前に配置された開口絞りを有するレンズモジュールは、当技術分野では「前方開口レンズ」として知られている。レンズモジュール200は、前方開口レンズである。
他の例では、当該開口絞りが異なる位置または表面に配置されてもよいことに留意されたい。このとき、第1面Sについては、この条件が成り立たなくてもよい。例えば(この例は限定ではない)、開口絞りは、第2の面Sに配置することができる。ここで、CA(S)=CH(S)である。同様の場合、CA(S)は、例えば5%までの差異を伴って、CH(S)に実質的に等しくてもよい。
本開示の主題のいくつかの例によれば、レンズエレメントL(被写体側に最も近い)の表面SのCH(S)が、複数のレンズエレメントの他のすべての表面Sの各CH(S)よりも大きく、2≦k≦2Nで複数のレンズエレメントを備える光学レンズモジュールが提供される。
例えば、N=4である場合(図2A、図2B、および図6)、CH(S)は、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、およびCH(S)よりも大きい。これは、Nが異なる値であっても適用される。
例えば、N=4である場合(図2A、図2B、および図6)、CH(S)は、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、およびCH(S)よりも大きい。これは、Nが異なる値であっても適用される。
例えば、N=5(図20)の場合、CH(S)がCH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)およびCH(S10)より大きい。これは、Nが異なる値であっても適用される。
例えば、N=5(図20)の場合、CH(S)は、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、CH(S)、およびCH(S10)よりも大きい。これは、Nが異なる値であっても適用される。
いくつかの例によれば、CH(S)≧X×CH(S)であり、ここで、Xは、範囲[1.01;2]内の任意の値(例えばX=1.1またはこの範囲内の任意の他の値)である。
いくつかの例によれば、以下の条件が満たされる:
CH(S)≧1.1×CH(S)、および
CH(S)≧1.2×CH(S)は、他のすべての表面Sのそれぞれについて、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
CH(S)≧1.45×CH(S)、全ての他の表面Sの各々について、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
CH(S)≧1.1×CH(S)、表面Sの各々について、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
CH(S)≧X×CH(S)、および
CH(S)≧Y×CH(S)は、他の全ての表面Sのそれぞれについて、3≦k≦2Nであり、Y>Xである。いくつかの例ではXは範囲[1.01;2]の任意の値とすることができ、Yは範囲[1.01;2]の任意の値とすることができる。
いくつかの例によれば、以下の条件が満たされる:
CH(S)≧Y×CH(S)は、他の全ての表面Sのそれぞれについて、3≦k≦2Nであり、Y>Xである。いくつかの例では、Yは、[1.01;2]の範囲の任意の値であり得る。
いくつかの例によれば、レンズエレメントLの表面SのCA(S)は、他のレンズエレメントの全ての面SそれぞれのCA(S)よりも大きく、2≦k≦2Nである。いくつかの例によれば、レンズエレメントLの表面SのCA(S)は、3≦k≦2NであるCA(S)よりも大きい。
例えば、N=4である場合(図2Aおよび図2B)、CA(S)は、CA(S)、CA(S)、CA(S)、CA(S)、CA(S)、CA(S)、およびCA(S)よりも大きい。これは、Nが異なる値であっても適用される。
いくつかの例によれば、CA(S)≧X×CA(S)であり、ここで、Xは、範囲[1.01;2]内の任意の値(X=1.1またはこの範囲内の任意の他の値など)である。
いくつかの例によれば、以下の条件が満たされる:
CA(S)≧1.1×CA(S)、および
CA(S)≧1.2×CA(S)は、他の全ての表面Sのそれぞれについて、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
CA(S)>=1.45×CA(S)、他の全ての表面Sのそれぞれについて、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
CA(S)>=1.1×CA(S)、表面Sの各々について、3≦k≦2Nである。
いくつかの例によれば、以下の条件が満たされる:
Y×CA(S)≧X×CA(S)、および
CA(S)≧Y×CA(S)は、他のすべての表面Skのそれぞれについて、3≦k≦2Nであり、Y>Xである。いくつかの例では、Xは、範囲[1.01;2]のうちの任意の値とすることができ、Yは、範囲[1.01;2]のうちの任意の値とすることができる。
いくつかの例によれば、CA(S)は実質的にCA(S2N)に等しく、複数のレンズエレメントの他のすべての表面SのそれぞれのCA(S)よりも大きく、2≦k≦2N-1である。例えば、N=5である場合(図21Aおよび図21B)、CA(S)=CA(S10)は、CA(S)、CA(S)、CA(S)、CA(S)、CA(S)、CA(S)、CA(S)およびCA(S)よりも大きい。同様の場合、CA(S)は、CA(S10)に実質的に等しく、例えば5%までの差があってもよい。
いくつかの例によれば、以下の条件が満たされる:
CA(S)≧1.05×CA(S)、および
CA(S)≧1.1×CA(S)は、他のすべての表面Sのそれぞれについて、3≦k≦2N-1である。
いくつかの例によれば、以下の条件が満たされる:
BFL≧X×TTL
上記の式では、Xは[0.2;0.5]の範囲内の任意の値である。いくつかの例によれば、X=0.3またはX=0.4であり、ここでTTLおよびBFLは上記で定義されている。
図2Aおよび図2Bにおいて、BFLは、面Sの中心とイメージセンサ202との間で測定される。
図2Aおよび図2Bにおいて、TTLは、面Sの中心とイメージセンサ202との間で測定される。
このようなBFLとTTLの相対値の構成により、イメージセンサ上に形成される画像の画質を向上させることができる。
他の表面に対してより大きいCH値またはCA値を有する前面を有するレンズエレメントLを使用することは、カメラまたはテレサブカメラのイメージセンサによって感知され得る入射光の量を増大させるのに役立ち得る。
有利には、f/#(f数)は、3未満であり得る。
有利には、Sおよび/またはSは、球形であり得る。
有利には、最後のレンズエレメントのクリアアパーチャCA(S2N)と、センサ対角線(SD)との間の比率が、0.8または0.7または0.65未満であってもよい。
有利には、TTLはEFLよりも小さくてもよい。
ここに開示される主題(表1~4)のいくつかの例によれば、全てのレンズエレメントL~Lは、プラスチック素材で作られてもよい。本開示の主題(表5~6)のいくつかの例によれば、レンズエレメントLはガラス材料から作製されてもよく、レンズエレメントL~Lはプラスチック材料から作製されてもよい。しかし、これに限定されるものではなく、レンズエレメントL~Lは、全て、プラスチック又はガラス材のいずれかで作ることができる。レンズエレメント材料(プラスチックまたはガラス)の選択は、様々な光学的および機械的要求によって影響される。例えば、当技術分野で知られているように、異なる材料(ガラスおよび/またはプラスチック)は異なる屈折率を有し、ガラスは、通常、プラスチックよりも高い屈折率選択範囲を有する。例えば、異なる材料は異なるアッベ数を有し、ガラスは、典型的にはプラスチックよりも高いアッベ数選択範囲を有する。3つの材料、屈折率、およびアッベ数についての例が上記に与えられており、数百の材料のうち、対応するアッベ数および屈折率が利用可能である。例えば、プラスチックレンズエレメントの表面形状は多くの係数を有する多項式(表1~表6の例では4~7)によって近似されても形状、一方、ガラスレンズエレメントの表面形状は成形されたときに同様の方法で近似されても形状、または研磨されたときに球形(表5~6の例では0係数)に限定されてもよい。この制限は、当技術分野で知られている製造限界から生じる。例えば、ガラスレンズエレメントの最小厚さは、当技術分野で知られているように、プラスチックエレメントの最小厚さよりも小さくすることができる。例えば、図13A~図13Cに示すように、ガラスレンズエレメントを非円形に切断(またはダイシングまたはスライス)することができる。
いくつかの例によれば、イメージセンサに当たる光を増大させるために、少なくとも第1のレンズエレメントの寸法を増大させることができるという事実に加えて、レンズエレメントを保持する鏡筒はモジュールの高さ(図中の軸Yに対応する、鏡筒の光軸に垂直な軸に沿った)を可能な限り低く維持できるようにしながらも、外部応力に対して機械的に弾性を有していなければならない。これは、例えば、スマートフォンのようなコンピュータ化された装置の限られた利用可能な空間(例えば、厚さ)内にカメラを適合させることが望まれる場合に有利である。
これらの矛盾する要件に対処するように設計された光学レンズモジュールの例を、図6~図11、図13、図17~図19および図22~図25を参照して説明する。光学レンズモジュールは、図6~図11、図13、図17~図19および図22~図25を参照して説明した例に限定されない。
図6に示す例では、光学レンズモジュール60の鏡筒64が、壁62によって囲まれたキャビティ61を含む。この例では、レンズエレメントの第1のサブセットはキャビティ内に保持され、レンズエレメントの第2のサブセットは鏡筒の外部に配置される。
特に、図6に示す実施形態によれば、レンズエレメントL~Lはキャビティ61内に保持され、レンズエレメントLは鏡筒64の外部に配置される(すなわち、レンズエレメントLはキャビティ61内にはない)。レンズエレメントLは、接着剤などの任意の適切な機械的連結によって、鏡筒64に取り付けることができる。
他の例では、レンズエレメントL~L(1<i<N)が(キャビティ61の外に)鏡筒64の外部に配置され、レンズエレメントL~Lはキャビティ61内に保持される。
図6の実施例ではレンズエレメントLがキャビティ61の外部に配置されているので、レンズエレメントLの高さHL1は鏡筒64の高さH(鏡筒64の対向する壁の外面間の軸Yに沿って測定される)に実質的に等しいか、またはそれよりも大きくすることができる。レンズエレメントL~LまでのHL2~HLNまでの高さは、鏡筒64の高さHよりも小さくすることができる。例えば、レンズ60の数値(非限定的)は、以下の値を有し得る:HL1=4.82mm、HL2=HL3=HL4=3.7mm。
次に、光学レンズモジュール70の別の例を示す図7に注目する。
この例では、光学レンズモジュール70が鏡筒74を備える。鏡筒74は、壁72によって取り囲まれたキャビティ71を備えている。図7に示す実施例によれば、レンズエレメントL~Lは、全てキャビティ71内に配置することができる。
いくつかの例によれば、(内側部分73の間の)光軸103に直交する軸に沿って測定されるキャビティ71の高さHは、光軸103に沿って位置する複数の部分同士で異なっている
図7ではキャビティ71の高さHが軸Yに沿って測定され、Z軸に沿った位置ごとに、高さHはこの例では軸Yに沿った壁72の内側部分73間の間隔に対応し、キャビティ筒軸対称である場合にはHがキャビティ鏡筒の内径である。図7の実施例では、キャビティ高さHはZ軸に沿って位置する複数の部分同士で異なっており、換言すれば、H(Z)は定数機能ではない。
いくつかの実施例によれば、キャビティ71は、第1のレンズエレメントLが配置される第1の部分76と、他のレンズエレメント(L~L)のうちの少なくとも一部が配置される第2の部分77とを含む。
この実施形態によれば、キャビティ71の第1の部分76の高さH(Z)は、キャビティ71の第2の部分77の高さH(Z)よりも大きい。その結果、第1レンズエレメントL(上述したように、概して大きな寸法である)はキャビティ71の第1部分76内に配置され、他のレンズエレメントの少なくともいくつかはキャビティ71の第2部分77内に配置される。
この例によれば、キャビティ77の第1の部分76の高さH(Z)は第1のレンズエレメントLの高さHL1に適合するように設計され、キャビティ71の第2の部分77の高さH(Z2)は他のレンズエレメントLの~Lの高さHL2、HL3、およびHL4に適合するように設計される(この例ではHL2=HL3=HL4)。
光軸103に沿ったキャビティ71の高さの変化は、例えば、異なる厚さを有する壁72を使用することによって得ることができる。図7に示すように、壁72は、第2の部分77よりも第1の部分76の方が薄い厚さを有する。他の例では壁72が一定の厚さを有するが、階段状の形状を有する。
ここで、複数のレンズエレメントL~Lを含む光学レンズモジュールの様々な例(図8~図13および図17~図19参照)について説明する。これらの光学レンズモジュールは、上述のカメラまたは光学設計の例のいずれにおいても使用することができる。これらの例(図8~図13および図17~図19参照)では、レンズエレメントの寸法間の関係が上述の例(例えば、図2A~図5および表1~表6参照)のいずれかに従うことができ、したがって、再び説明しない。
いくつかの例によれば、レンズエレメントLの高さは、レンズエレメントL~Lのそれぞれの高さよりも大きい(図8~図13および図17~19)。既に上述したように、他の関係を定義することができる(これらの定義は例えば、レンズエレメントのクリアアパーチャ及び/又はクリアな高さの間の関係に依存することができる)。
ここで、複数のレンズエレメントL~Lを含む光学レンズモジュール80の一例を示す図8に注目する。この例では、4つのレンズエレメントL~Lが描かれている。この例では、光学レンズモジュール80が鏡筒84を備える。鏡筒は、壁82によって取り囲まれたキャビティ81を有する。レンズエレメントL~Lの少なくとも幾つかは、キャビティ81内に配置されている。
キャビティ81内にあるレンズエレメントは、光軸103と実質的に整列した中心を有する。レンズエレメントの中心はレンズエレメント全体の物理的中心(レンズエレメントの光学部分および機械的部分を含む、例えば、物理的中心がレンズエレメントの全高Hの中心に位置することができる図11Fを参照されたい)として、またはレンズエレメントの光学部分のみの中心(例えば、光学中心がレンズエレメントの光学高Hoptの中心に位置することができる図11Fを参照されたい)として定義することができる。一般に、レンズエレメントの物理的中心は、レンズエレメントの光学部分の中心(光学中心)と一致する。軸対称レンズエレメントの場合、Hoptは、それぞれのレンズエレメントの正面および後面のクリアアパーチャの最大限として定義される。
この実施形態では、壁82の端部83がレンズエレメントLの少なくとも一部のためのストッパとして作用するように形成されている。
特に、レンズエレメントLは、機械的ストップとして作用する壁の先端83によって、Y-Z平面内で移動することが防止される。壁82の端部83に対して適切な形状および適切な寸法を選択し、同様に、端部83の形状に適合するようにレンズエレメントLの一部をに成形することによって、レンズエレメントLの中心を光軸103と実質的に整列させることができる。
図8の例では、壁82の先端83の断面は階段状である。
レンズエレメントLの極端部分85(この部分はレンズエレメントの厚さの一部である)は、キャビティ81内に配置されている。いくつかの例では、この極値部分85がレンズエレメントLの後面に対応する。
レンズエレメントLの主要部分86(この部分はレンズエレメントの厚さの一部である)は、キャビティ81の外部に配置されている。いくつかの例では、光軸103に沿って測定された極値部分85の厚さは光軸103に沿って測定された主要部分86の厚さ未満である。レンズエレメントLの端部85は、壁82の間でブロックされている。特に、壁82の端部83の階段形状は、レンズエレメントLの端部85の部分87に適合するか、または嵌合するように作られ、部分87はまた、断面において階段形状を有する。図8から明らかなように、端部83の段付き形状は、レンズエレメントLの部分87の段付き形状と嵌合する。したがって、レンズエレメントLがY-Z平面内を移動することが防止され、レンズエレメントLの中心を光軸103に合わせて維持することができる。
図9Aは、光学レンズモジュールの他の例を示す図である。この例では、壁92の先端93の断面は傾斜した形状を有する。具体的には、先端93は、面取り部として形成することができる。レンズエレメントLの極端部分95(この部分はレンズエレメントの幅内で考慮される)は、光学レンズモジュール90の鏡筒94のキャビティ91内に配置される。いくつかの例では、極値部分95がレンズエレメントLの後面に対応する。レンズエレメントLの主要部分96(この部分はレンズエレメントの厚さの一部である)は、キャビティ91の外部に配置される。レンズエレメントLの端部95は、壁92の端部93によってY-Z平面内で移動することが防止されている。
具体的には、壁92の先端93の傾斜形状は、レンズエレメントLの先端部分95の部分97に適合するか、または嵌合するように作られ、部分97はまた、断面において傾斜形状を有する。図9Aから明らかなように、端部93の傾斜形状は、部分97の傾斜形状と適合する。したがって、レンズエレメントLがY-Z平面内を移動することが防止され、レンズエレメントLの中心を光軸103に合わせて維持することができる。
図9Bは、図9Aの変形例を示す。この例では、レンズエレメントLの一部分98がキャビティ内に配置されている。この一部分98は、レンズエレメントLの主要部分またはレンズエレメントL全体に対応することができる。壁92の端部93は図9Aの例のように、断面が傾斜した形状を有するが、この例では傾斜がレンズエレメントLの側面に沿ってさらに延在する。部分98の部分97は壁92の端部93と接触しており、また、端部93の傾斜形状と一緒に嵌合する傾斜形状の断面を有している。したがって、レンズエレメントLの一部分98は、Y-Z平面内で移動することが防止される。
図10は、他の例を説明するための図である。この実施形態では、レンズエレメントLの極値部分1005(この部分はレンズエレメントの幅の一部である)はキャビティ1001内に位置し、レンズエレメントLの主要部分1006(この部分はレンズエレメントの幅の一部である)はキャビティ1001の外部に位置する。いくつかの例では、極値部分1005がレンズエレメントLの後面に対応する。
いくつかの例では、光軸103に沿って測定された極値部分1005の厚さは光軸103に沿って測定された主要部分1006の厚さ未満である。
レンズエレメントLの端部1005は、壁1002の間でブロックされている。具体的には、壁1002の先端1003と接触する先端部分1005の部分1007は、階段形状を有する。壁1002の端部1003は、部分1007が端部1003によってブロックされ、Y-Z平面内で移動するのを防止されるので、端部1005のストッパとして作用する。したがって、レンズエレメントLがY-Z平面内を移動することが防止され、レンズエレメントLの中心を光軸103に合わせて維持することができる。
この例では、壁1002の形状は均一であり得る。具体的には、壁1002の四肢の形状は図8、図9および図9Aに記載された例とは反対に、壁1002の他の部分の形状と同一であってもよく、レンズエレメントの一部のみが先端1003に適合するように成形される必要がある。
図10の例のいくつかの変形例によれば、レンズエレメントLの主要部分はキャビティ内に配置され(図10のような末端部分だけでなく)、壁の末端(図10の符号1009参照)は階段状を有するレンズエレメントLの一部に一致する。したがって、レンズエレメントLは、Y-Z平面内で移動することが防止される。
次に、図11A~図11Eに注目する。
いくつかの例によれば、光学レンズモジュール1100は、レンズエレメントL~Lと、鏡筒1114とを備えることができる。鏡筒1114は、壁1102によって囲まれたキャビティ1101を備える。N個のレンズエレメントL~Lがキャビティ1101内に配置されている。この例では、Nは4に等しい。光学レンズモジュールは、2つの隣接するレンズエレメントの各々の間に存在することができるストップ1115をさらに備えることができる。ストップ1115は、環状形状を有することができる。これらのストップ1115はレンズエレメントをそれらの必要な位置に維持し、レンズエレメント間の必要な距離を維持するために有用である。
例えば、鏡筒1114の対向する壁1104の外面1103の間(例えば、鏡筒1114の対称軸に直交する軸Yに沿って)で測定することができる鏡筒1114の高さはHに等しく、図11A~図11Eの例ではレンズエレメントLの高さHL1がHに実質的に等しいか、またはHよりも大きくすることができ、したがって、レンズエレメントLはレンズエレメントLの保護および機械的支持を提供する光学レンズモジュール内に配置されながら、大きな高さを有することができる(したがって、集光面の増大から利益を得る)。これにより、レンズエレメントLの中心を光軸103に合わせて維持することができる。
また、レンズエレメントは、光学部分と機械的部分とを有するのが一般的である。機械的部分は、光線を透過させるために使用されないレンズエレメントの部分である。これは、例えば、レンズエレメントLが光学部分1130及び機械的部分1131を含む図11Aに見られる。これは、図11Fにも示されている。
いくつかの例によれば、光学部分の高さ(図11FのHoptを参照)とレンズエレメントの高さ(図11FのHを参照)との比率は、レンズエレメントL~Lのそれぞれよりも、レンズエレメントLのほうが大きい。
図に示すように、鏡筒1114は、鏡筒1114の対向する壁1111のうちの2つにスロット1110を備えることができる。これは、レンズエレメントLが鏡筒と実質的に同じ高さであること、または鏡筒よりも高い高さを有すること、および他のレンズエレメントの高さよりも高い高さを有することを可能にする。特に、レンズエレメントLはスロット1110に接することができ、またはレンズエレメントLの少なくとも一部は、スロット1110を通って突出することができる。
ここで、図11A~図11Eの光学レンズモジュールの製造方法の一例を説明する図12に注目する。この方法は、キャビティを画定する壁を備える筒を提供するステップ1200を含むことができる。鏡筒は、少なくとも2つの対向する壁にすでにスロットを備えることができる。あるいは、この方法には、鏡筒の少なくとも2つの対向する壁にスロットを形成するステップを含むことができる。
該方法は、鏡筒のキャビティ内にレンズエレメントL~Lを挿入するステップ1201を含むことができる。一般に、像側に最も近いレンズエレメントLは、最初に挿入されるレンズエレメントである。レンズエレメントLは他のレンズエレメントのためのキャビティの片側のストップとして作用するように、接着剤のような締結材を使用して鏡筒に締結することができる。
いくつかの例によれば、図11Aにおいて先述したように、ストップが、レンズエレメント間のキャビティ内に挿入される。したがって、レンズエレメントは、キャビティ内に積み重ねられる。レンズエレメントがそれらの位置から移動するのを防止するために、該方法はレンズエレメントL~Lをキャビティ内に維持するために、少なくともレンズエレメントLを固定するステップ1202を含むことができる。これは、キャビティ内に、例えば、鏡筒の壁に存在する適合されたスルーホール1120を通して、締結材料(例えば、接着剤)を注入することによって実行され得る。したがって、接着剤は、レンズエレメントLを壁の内面に固定する。これらのステップの後、必要であれば、該スルーホールを塞ぐことができる。
したがって、図11A~図11Eに示すレンズモジュールの構造はレンズエレメントLが鏡筒の高さ(または鏡筒の高さよりも高い高さを有することができる)であり、依然として鏡筒の壁の内面に固定することができる(レンズエレメントLが鏡筒の外にあり、鏡筒の壁の端部のみに固定されている図6のようにではない)ので、製造プロセスに関しても好都合である。
次に、複数のレンズエレメント1381を備える光学レンズモジュール1380の一例を示す図13Aに注目する。光学レンズモジュール1380は、鏡筒1314を備える。レンズエレメントの少なくともいくつかは、鏡筒1314内に配置することができる。
いくつかの例によれば、レンズエレメントの少なくとも一部は断面(平面X-Yにおいて、光学レンズモジュールに直交し、一般に光軸と一致する)が円形でない形状(プロファイル)を有することができる。特に、例えば図13Aに示されるように、少なくともいくつかのレンズエレメントは、それらの高さH(軸Yに沿って測定される)よりも大きい幅W(軸Xに沿って測定される)を有する。高さHは、レンズエレメント(機械部分を含む)の全高に対応することができる。いくつかの実施形態では、レンズモジュール1380内のレンズエレメントが軸Yの周りおよび/または軸Xの周りに対称性を有することができる。
いくつかの例によれば、WはHよりも実質的に大きい(例えば少なくとも10%以上の割合で、ただしこれらの値に限らない)。
いくつかの例によれば、レンズエレメントの少なくとも一部は、断面におけるそれらの輪郭が直線部分を有する側面を含むように成形される。プロファイルの他の側面は例えば、湾曲していてもよい。これは例えば図13Aに見ることができ、断面におけるこれらのレンズエレメントの輪郭の一対の端部1350(この例では2つの端部)は軸Xに沿った実質的に直線である。結果として、これらのレンズエレメントの端部の少なくともいくつかは、(平面X-Zにおいて)平坦な表面である。図13Aでは、断面におけるこれらのレンズエレメントの輪郭の他の一対の端部1351が曲線である。
いくつかの例によれば、鏡筒1314は、レンズエレメントの形状に適合するように成形される。したがって、鏡筒1314は、断面が(鏡筒内に配置された)レンズエレメントのプロファイルと同様のプロファイルを有する壁を有することができる。
例えば楕円形の輪郭のような(しかし、それに限定されない)他の形状および輪郭を、レンズエレメント(鏡筒も)に使用することができることに留意されたい。
図13A~図13Cを参照して説明した構成は特に、鏡筒の所与の高さに対して、イメージセンサによって受け取られる光量を増加させることを可能にする。
図13Bに示す例では、物体側に最も近いレンズエレメントであるレンズエレメントLが鏡筒1314の外部に配置されている。レンズエレメントLが鏡筒の外側に配置される例は例えば図6に関連して説明されており、レンズエレメントLの主要部(レンズエレメントの厚さに沿って測定される)が鏡筒1314の外側に配置される例は、上述されている(例えば図8~図11Eを参照)。これらの例を参照して説明した特徴の少なくとも一部は図13Bの例で使用することができるため、説明を省略する。
図13Cに示されている実施形態では、被写体側に最も近いレンズエレメントであるレンズエレメントLも鏡筒1314内に配置されている。レンズエレメントLが鏡筒内に配置される例は例えば図7に関して説明されており、レンズエレメントLの主要部(レンズエレメントの厚さに沿って測定される)が鏡筒内に配置される例は上述されている(例えば、図8、図9A、および図10の記載を参照)。これらの例を参照して説明した特徴の少なくとも一部は図13Aおよび図13Cの例で使用することができるため、説明を省略する。
ここで、図17A~図17Dに注目する。図17Aは、レンズモジュール1700の等角図を示す。図17Bは、レンズモジュール1700の側面図を示す。図17Cは、レンズ1700の分解図を示す。レンズモジュール1700は、レンズ200と同様の光学設計を有することができる。レンズモジュール1700は、鏡筒1720を含む。レンズモジュール1700はさらに、レンズエレメントL~Lを含む。ここで、Nは、レンズモジュール200と同様に、通常3~7の範囲にある。レンズモジュール1700の非限定的な例では、N=4である。レンズモジュール1700は鏡筒1720の外部に部分的に配置または配置された第1のレンズエレメントLを有し、一方、レンズエレメントL~Lは、鏡筒の内部に完全に配置される。Lは図17Aに明確に示されているが、他のレンズエレメントはこの図には示されていないが、図17Bに示されている。レンズモジュール1700は、全てのレンズエレメントL~Lについて軸対称となる軸として機能する光軸103を有する。それぞれのレンズエレメントLは、Y軸に沿って規定された高さHLiを有する。レンズエレメントLは「階段形状」を有してもよく、すなわち、高さHL1を有する前部と、高さHL1Bを有する後部とが、HL1>HL1Bとなる。レンズモジュール1700はさらに、スペーサR~RN-1を含む。それぞれのスペーサRは、レンズエレメントLとLi+1との間に配置されている。いくつかの実施形態では、1つ以上のスペーサR~RN-1を、開口絞りとして使用することができる。
鏡筒1720は、当技術分野において知られているように、例えば、プラスチック射出成形を使用して不透明プラスチックから作製することができる。鏡筒1720は、光軸103に沿って軸対称であり得るキャビティ1740を有する。キャビティ1740は形態1700(図17B)におけるように、円筒の形状を有してよい。他の形態では、キャビティ1740が円錐、一連の円筒などの他の軸対称形状を有してよい(図17D参照)。キャビティ1740の軸対称精度は当技術分野で知られているように、組み立て精度にとって重要である。いくつかの形態では、軸対称歪みの公差が10μm、5μm、または1μmより小さくてもよい。
レンズエレメントLは、当技術分野で知られているように、プラスチック射出成形によって製造することができる。レンズエレメントLは当技術分野で知られているように、ガラスから作製することができる。それぞれのレンズエレメントLは形態200について上述したように、前面(S2i-1)および裏面(S2i)を有する。各面S(3≦k≦2N)は、光学的に活性な部分と非活性な部分である機械部分(図11Fで説明)とを有していてもよい。当該機械部分は、成形・組立段階でレンズエレメントを取り扱う際に用いてもよい。いくつかの例では機械部分の大きさは100μm~500μm程度であってもよい。例えば、Sの機械部分には符号1751が付されている。Lにおける被写体側に最も近い点は、符号1752で示されている。
図17Dは単一の違いを有するレンズモジュール1700に類似するレンズモジュール1701を示し、キャビティ1742を有する鏡筒2722が、キャビティ1740を有する鏡筒1720から代わって設けられている。キャビティ1742はレンズエレメントごとにサイズを増加させた一連の筒形状を有し、図17DのようにHL1B≦HL2≦HL3≦HL4<HL1となっている。この特徴は、鏡筒1720のより容易な成形、および/または、レンズエレメントL~LおよびスペーサR~Rのより容易な組立を可能にする。他の形態としては、レンズエレメントの数は、上述の4個とは異なってもよい。レンズモジュール1700の数値(非限定的)例は、以下の値を有し得る:HL1=4.9mm、HL1B=3.65mm、HL2=3.7mm、HL3=3.8mm、HL4=3.9mm。
レンズモジュール1700(または1701)の組み立ては、以下のステップで行うことができる:
(ステップ1) 鏡筒1720の被写体側からレンズエレメントLを挿入する。Lは、双方のエレメントの軸対称性のために、鏡筒1720に対して位置合わせされてもよい。
(ステップ2) Lを鏡筒1720に接着する。接着は、鏡筒1722の最前面である表面1722上の接着剤を使用して行うことができる。
(ステップ3) 鏡筒の像側から他のエレメントをR、L、…、RN-1、Lの順に差し込む。ここで、L~LおよびR~RN-1について、すべての素子の軸対称性のために、鏡筒1720に対して位置合わせされてもよい。
(ステップ4) 鏡筒1720にレンズエレメントLを接着する。例えば、鏡筒1722の内面である表面1724に接着することができるが、これに限定されない。
ここで、図18A~図18Cに注目する。図18Aは、追加のカバー1830を有することを除いて、レンズモジュール1700に類似するレンズモジュール1800の等角図を示す。他のすべての部品(鏡筒、レンズエレメント、光軸)はレンズモジュール1700と同様であり、同じ番号および名称を有する。図18Bは、レンズモジュール1800の断面を示す。図18Cは、レンズモジュール1800の分解図を示す。カバー1830は例えば、プラスチック射出成形によって、不透明なプラスチックから作製されてもよい。カバー1830は、レンズエレメントLの上部に配置されている。いくつかの実施形態では、OPFEから到達する光の光線が機械部分1751に到達することをカバー1830が防ぐように、カバー1830が機械部分1751を光学的に覆ってもよい。いくつかの実施形態では、カバー1830がL上の点1752よりも被写体に近い点1831を有することができる。これは、レンズモジュール1800を取り扱う際や組み立てる際に保護して、レンズエレメントLが偶発的に他の被写体に触れる危険性を最小限に抑えるために重要である。
レンズモジュール1800の組み立てプロセスは、第5のステップを追加した上記レンズモジュール1700の組み立てプロセスと同様であってもよい:
(ステップ5) カバー1830を位置決めし、それを鏡筒1720に対してあるいはLに対して接着する。一例では、接着が表面1724上で行われてもよい。
図19Aおよび図19Bは、鏡筒1920が鏡筒1720から代わることを除き、レンズモジュール1800と同様のレンズモジュール1900を示す。鏡筒1920への変更は、以下に詳述する(レンズモジュール1800に対する)異なる組立工程を可能にする。図19Aはレンズ1900の断面を示し、図19Bは、異なる組み立て方向による、分解図でのレンズモジュール1900を示す。
レンズモジュール1900の集合体は、以下のステップで行うことができる:
(ステップ1) 鏡筒1820の被写体側から、レンズエレメントLを挿入する。
(ステップ2) RN-1、LN-1、…、R、Lの順に鏡筒の被写体側から他のエレメントを差し込む。
(ステップ3) レンズエレメントLを、鏡筒1820に(非限定的な例として面1724上に)接着する。
(ステップ4) カバー1730を位置決めし、それを鏡筒1820に対してあるいはLに対して接着する。一例では、接着が表面1724上で行われてもよい。
本開示の主題はまた、上述の例のいずれかを使用して、イメージセンサ上に画像を形成する方法を企図する。
本開示の主題はまた、上記の実施例のいずれかによって記載されるような明細書に従う光学レンズモジュールを製造する方法を意図する。
いくつかの例によれば、デジタルカメラは、携帯電子機器(スマートフォン、ポータブルコンピュータ、時計、アイウェアなどであるが、これらに限定されない)のハウジング内に内蔵し得る。
いくつかの例によれば、(上記の様々な例で説明したように)レンズエレメントを伴う光学レンズモジュールは、デジタルカメラ、またはテレサブカメラ、またはデジタルカメラの複数のテレサブカメラに内蔵することができる。このデジタルカメラはさらに、1つ以上のワイドサブカメラを含むことができる。
屈曲式カメラを使用して、カメラの素子の高さを低減することができる。上述したように、これは、例えば、限られた空間のみが利用可能である場合にカメラの内蔵を容易にすることができる。
上述の例の少なくともいくつかによれば、提案された解決策は、カメラ開口を通る入射光を増加させることによって画質を向上させることができる。これは、(被写体側の)第1のレンズエレメントとイメージセンサとの間の(Z軸に沿った)距離の増加にもかかわらず、拡大されたズーム倍率を得るために使用されるより長いEFLが実現される結果として達成され得る。
さらに、上記の例の少なくともいくつかによれば、提案された解決策は、限られた利用可能な高さに適合しながらレンズエレメントをしっかりと保持することができる光学レンズモジュールを提供することができる。
また、上記の例の少なくとも一部によれば、光学レンズモジュールの鏡筒の所定の高さに対して、センサによって集光される光量が増加される。
上で説明したように、レンズモジュール(それぞれが前面および読取面を有する複数のレンズエレメントを備えるレンズモジュール)に組み込まれたレンズエレメントLを使用すると、他の面に対してより大きいCH(クリアな高さ)値またはより大きいCA(クリアアパーチャ)値を有する前面はレンズ鏡筒に入る入射光を増大させるのに役立ち、カメラのイメージセンサ(例えば、デュアルアパーチャカメラのテレサブカメラ)によって感知することができる。より多くの光がセンサに到達することができるので、このような構成は、レンズモジュールの焦点距離を増大させることを可能にする。
焦点距離とそれぞれの視野との間には負の相関が存在することが知られており、焦点距離が長くなるにつれて視野は小さくなる。したがって、所与のカメラにおける所与の焦点距離への増加は画像解像度を増加させることを可能にするが、より高い解像度の画像はカメラセンサのより小さい領域上に形成される。言い換えれば、2つのレンズ(一方は焦点距離が長い)を用いて同じ距離から同じ物体の画像を取り込むとき、長い焦点距離を有するレンズモジュールは、短い焦点距離を有するレンズモジュールと比較して、より高い空間解像度を有するより小さい画像をセンサ上に生成する。したがって、より大きな焦点距離の利点は、より小さなサイズの画像の欠点を伴う。
従って、現在開示されている主題のいくつかの例は、上記に開示されているようなデジタルカメラを含んでおり、:
第1の光軸に沿って対称性を有するN個のレンズエレメントL(レンズモジュール)であって、各レンズエレメントはそれぞれの前面S2i-1と、それぞれの後面S2iとを備え、ここで、iは1とNとの間であり、Nは3以上であり、表面Sまたは表面S1のクリアアパーチャ値のクリアな高さ値は表面SからS2Nの各表面のクリアな高さ値またはクリアアパーチャ値よりも大きい、レンズエレメントL(レンズモジュール)を備える。
デジタルカメラは、イメージセンサと、回転反射素子またはOPFE(ミラーまたはプリズムなど)とをさらに備える。回転反射素子は、被写体とレンズエレメントとの間に屈曲光路を提供するように第1の光軸に対して傾斜しており、1つまたは2つの軸の周りで回転することができる。
このような回転反射素子の例は例えば、共同所有の国際特許出願PCT/IB2017/052383に開示されており、これは、2つの軸の周りの反射素子の回転を可能にするように設計されたデジタルカメラのアクチュエータを記載している。例えば、図1A~図1F、図2および図3、ならびに1つまたは2つの軸の周りのプリズムの回転を可能にするアクチュエータの設計を示すPCT/IB2017/052383のそれぞれの説明を参照されたい。
1つまたは2つの軸の周りの反射素子の回転は、カメラFOVの位置を移動させ、各位置において、様々な部分において、デジタルカメラの解像度を有する画像においてシーンが捕捉される。このようにして、隣接する重なり合わない(または部分的に重なり合う)カメラFOVの複数の画像がキャプチャされ、互いにステッチされて、デジタルカメラFOVよりも大きいFOVの全体画像領域を有するステッチされた(「合成」とも呼ばれる)画像を形成する。
いくつかの例では、デジタルカメラが、テレ画像にテレ画像解像度を提供するように構成された屈曲式テレカメラとすることができ、屈曲式テレカメラはテレイメージセンサを備え、そのテレレンズアセンブリは、テレ視野(視野)を特徴とする。
いくつかの例によれば、屈曲式テレカメラは、テレ画像解像度よりも小さいワイド画像解像度を有するワイド画像を提供する少なくとも1つの追加の直立ワイドカメラを備えた複合式のアパーチャデジタルカメラに内蔵される。ワイドカメラは、ワイド画像センサと、ワイド視野(FOV)を有するワイドレンズモジュールとを備え、FOVはFOVよりも小さい。ここで、回転反射素子の回転は、FOVに対してFOVを移動させる。
共同所有の国際特許出願PCT/IB2016/056060およびPCT/IB2016/057366の説明は、調節可能テレ視野を有するテレカメラを含む。PCT/IB2016/056060およびPCT/IB2016/057366に記載されているように、1つまたは2つの軸を中心とする反射素子の回転は、ワイドFOV(FOV)に対するテレFOV(FOV)の位置を移動させ、それぞれの位置において、(FOV内での)シーンがより高い解像度で「テレイメージ」内にキャプチャされる。PCT/IB2016/056060およびPCT/IB2016/057366に開示されているいくつかの例によれば、隣接して重なり合わない(または部分的に重なり合う)テレFOVの複数のテレ画像が、キャプチャされ、ステッチされて(「合成」とも呼ばれる)、FOVよりも大きいFOVの全画像領域を有するテレ画像を形成する。いくつかの例によれば、このステッチされたテレ画像は、ワイドカメラによって生成されたワイド画像と融合される。
いくつかの例によれば、デジタルカメラは、デジタルカメラの動作を制御するように構成されたコンピュータ処理装置(例えば、カメラCPU)をさらに備えるか、またはコンピュータ処理装置に動作可能に接続される。デジタルカメラは、回転反射素子のアクチュエータに動作可能に接続されるコントローラを備えることができる。このコントローラは、回転反射素子を回転させるためのその動作を制御するように構成されている。
コンピュータ処理装置はあるズーム倍率を有する画像を要求するコマンドに応答し、要求されたズームを有する画像を提供するためにデジタルカメラの動作を制御することができる。PCT/IB2016/056060およびPCT/IB2016/057366に記載されているように、いくつかの例ではユーザインターフェース(例えば、コンピュータ処理装置によって実行される)は要求されたズーム倍率を示すユーザコマンドの入力を可能にするように構成することができる。コンピュータ処理装置はコマンドを処理し、要求されたズームを有する画像をキャプチャするための適切な命令をデジタルカメラに提供するように構成することができる。
場合によっては、要求されたズーム倍率がFOVとFOVとの間の値である場合、コンピュータ処理装置は要求されたズーム倍率に対応するシーンの部分領域がスキャンされ、各テレ解像度を有し、部分領域の一部を覆う複数の部分的に重なり合うまたは重なり合わないテレ画像がキャプチャされるように、反射素子のアクチュエータに反射素子を移動させるように(アクチュエータのコントローラに命令を与えることによって)構成することができる。コンピュータ処理装置はデジタルカメラのFOVよりも大きいFOV及びテレ解像度を有するステッチされた画像(合成画像)を形成するために、キャプチャされた複数の画像を一緒にステッチするように更に構成されることができる。任意選択的に、ステッチされた画像は、その後、ワイド画像と融合されることができる。
図14は、4枚のテレ画像をステッチして生成されるステッチ画像の一例を示す模式図である。図14において、1401はFOVを示し、1403はFOVの中心のFOVを示し、1405は要求ズーム倍率の大きさを示す。図示の例では、4つの部分的に重なり合うテレ画像(1407)が取り込まれる。
特に、キャプチャされたテレ画像(1407)の全体の面積は、要求されたズーム画像(1405)の面積よりも大きい。キャプチャされたテレ画像の中央部分はステッチ画像1405を生成するために(例えば、ステッチ画像の生成の一部としてコンピュータ処理装置によって)抽出される。これは、1つの画像によってカバーされる画像領域から異なる画像によってカバーされる画像領域への遷移に起因する画像の不自然さの影響を低減するのに役立つ。
図15は、6枚のテレ画像をステッチすることにより生成されるステッチ画像の一例を示す模式図である。図16は、9枚のテレ画像をステッチすることにより生成されるステッチ画像の一例を示す模式図である。図14を参照して説明したのと同じ原理が、図15および図16にも当てはまる。特に、ステッチして得られる出力画像は、単一の画像比率とは異なる幅対高さ比率を有することができる。例えば、図15に示すように、単一の画像は3:4の割合であるのに対して、ステッチされた出力画像は9:16の割合を有することができる。
画像のステッチ自体は当技術分野で周知であり、したがって、これ以上詳細には説明しないことに留意されたい。
図20は、N個のレンズエレメントL(ここで、「i」は1とNとの間の整数である)を含む、2000と符号付けしたレンズモジュールの別の例示的な実施形態を示す。図20の例では、Nは5である。例えば、Lはガラス製である。レンズモジュール200を参照した上記の説明はレンズモジュール2000についても当てはまり、Nを4から5に変更する必要がある。
場合によっては、センサに当たる光を増加させるために、最初と最後のレンズエレメントの両方の寸法を増加させることができる。このような場合に対処するように設計された光学レンズモジュールの例を図21~図26に示す。
図21A~図21Bは、N個のレンズエレメントLを含む2100と番号付けされたレンズモジュールの別の例示的な実施形態を示す。図21A~図21Bの例では、Nは5である。レンズモジュール2100は、HL1=HLNの特性を有する。図21A~図21Bでは、レンズモジュール2100が鏡筒なしで示されている。図21Aはレンズモジュール2100の光線追跡を示し、図21Bは、より明確にするためにレンズエレメントのみを示す。さらに、両方の図は、イメージセンサ202および光学素子205を示す。
図22は、レンズモジュール2100のレンズエレメントを保持するための、2200と符号付けされた例示的なレンズモジュールを側面図で概略的に示す。レンズモジュール2200は、壁2206によって囲まれたキャビティ2204を有する鏡筒2202を備える。レンズモジュール2200では、レンズエレメントの第1のサブセットがキャビティ内に保持され、レンズエレメントの第2のサブセットが鏡筒の外側(外側)に配置される。具体的には、レンズエレメントL~LN-1はキャビティ2204内に保持され、レンズエレメントLおよびLは鏡筒2202の外側に配置される(すなわち、レンズエレメントLおよびLはキャビティ2204内にはない)。レンズエレメントLおよびLは、接着剤などの任意の適切な機械的連結によって、外筒2202に取り付ける(固定して取り付ける)ことができる。
レンズモジュール2200ではレンズエレメントLおよびLがキャビティ2204の外部に配置されるので、レンズエレメントLおよびLの高さHL1およびHLNはそれぞれ、鏡筒2202の高さ(鏡筒2202の対向する壁の外面間の軸Yに沿って測定される)に実質的に等しくなり得る。レンズエレメントL~LN-1の高さHL2~HLN-1は、鏡筒2202の高さHよりも小さくすることができ、Hで表記される。例えば、レンズモジュール2200の数値(非限定的)は、HL1=HL5=4mm、HL2=HL3=HL4=3.6mmの値を有する。
図23は、図21A~図21Bのレンズエレメントを保持するための、2300と符号付けされた別の光学レンズモジュールの側面図の概略図である。レンズモジュール2300は、壁2306によって囲まれたキャビティ2304を有する鏡筒2302を備える。レンズモジュール2300では、全てのレンズエレメントL,Lがキャビティ内に保持(配置)されている。例示的に、レンズモジュール2300において、光軸103に直交する軸Yに沿って測定されたキャビティ2304の高さHは光軸103(すなわち、Z軸)に沿って位置する複数の部分同士で異なっている。Z軸に沿ったそれぞれの位置について、キャビティ高さHはこの実施形態では軸Yに沿った壁2306の内側部分2308間の間隔に対応し、換言すれば、H(Z)は定数機能ではない。
図示の実施形態によれば、キャビティ2304は、第1のレンズエレメントLが配置される第1の部分2310と、他のレンズエレメント(L~LN-1)が配置される第2の部分2312と、最後のレンズエレメントLが配置される第3の部分2314とを備える。この実施形態によれば、第1の部分2310の高さH(Z)および第3の部分2314のH(Z)は、第2(中央)部分2312の高さH(Z)よりも大きい。その結果、第1のレンズエレメントLおよび最後のレンズエレメントL(一般に、上述のように、より大きな寸法である)はキャビティ2304の第1の部分2310および第3の部分2314(それぞれ)内にそれぞれ配置され、他のレンズエレメントの少なくともいくつかはキャビティ2304の第2の部分2312内に配置される。
この例によれば、第1の部分2310の高さH(Z)は、第1のレンズエレメントLの高さHL1に適合するように設計され、第2の部分2312の高さH(Z)は、レンズエレメントL、L、Lの高さHL2、HL3、HL4(この例ではHL2=HL3=HL4)に適合するように設計され、第3の部分2314の高さH(Z)は最後のレンズエレメントLの高さHL5に適合するように設計される。
光軸103に沿ったキャビティ2304の高さの違いは、例えば、壁2306の厚さを変えることによって実現し得る。図23に示されるように、壁2306は、第2の部分2312よりも第1の部分2310および第3の部分2314においてより薄い厚さを有する。他の例では壁2306が一定の厚さを有する可能性があるが、階段状の形状を有してもよい。
図24は、図21Aおよび図21Bのレンズエレメントを保持するための、2400と符号付けされた別の例示的な光学レンズモジュールの側面図の概略図である。レンズモジュール2400は、壁2406によって囲まれたキャビティ2404を有する鏡筒2402を備える。この実施形態では、レンズエレメントL~LN-1がキャビティ2404内に配置されている。レンズエレメントLおよびLはキャビティ2404内に位置する第1の部分と、キャビティ2404外に位置する第2の部分とを有し、これは、図10AのレンズエレメントLと同様である。レンズエレメントLのエッジ2408およびレンズエレメントLのエッジ2410は階段状である。壁2406はレンズエレメントLおよびLの中心が光軸103と整列して維持され得るように、エッジ2408および2410を整列させる。
ここで、図25A~図25Dに注目する。
図25Aはレンズ鏡筒2502を有する別の例示的な光学レンズモジュール2500の分解等角図であり、鏡筒に挿入する前に複数のレンズエレメントL~L(本例ではN=4)を示す概略図である。図25Bは平面Y-Zに沿ったレンズモジュール2500の断面図を示し、図25Cは平面X-Zに沿ったレンズモジュール2500の断面図を示し、図25Dは、レンズエレメントを鏡筒に挿入した後のレンズモジュール2500の別の等角図を示す。
鏡筒2502は、壁2506によって囲まれたキャビティ2504を備える。レンズエレメントL~Lは、キャビティ2504内に配置される。レンズモジュール2500はさらに、スペーサR~RN-1を含む。それぞれのスペーサRは、レンズエレメントLとLi+1との間に配置されている。いくつかの実施形態では、1つ以上のスペーサR~RN-1を開口絞りとして使用することができる。スペーサR~RN-1は環状の形状を有することができる。
鏡筒2502の高さHは例えば、鏡筒2502の対向する壁2512の外面間で(例えば、光軸103に直交する軸Yに沿って)測定される。図25A~図25Dの例では、レンズエレメントLの高さHL1およびレンズエレメントLの高さHLNが実質的にH以上とすることができ、したがって、レンズエレメントLおよびLはレンズエレメントLおよびLのための保護および機械的支持を提供する光学レンズモジュール内に配置されながら、大きな高さを有することができる(したがって、集光面の増大から利益を得る)。これにより、レンズエレメントLおよびLの中心を光軸103に合わせて維持することができる。
上記の図11A~図11Fと同様に、各レンズエレメントは、光学部分および機械部分を有する。いくつかの例によれば、レンズエレメントLおよびLについては、光学部分の高さ(図11FのHoptを参照)とレンズエレメントの高さ(図11FのHを参照)との比率がレンズエレメントL~LN-1のそれぞれに比べ、大きい。
図に示すように、鏡筒2502はその2つの端部、すなわち被写体側に近く、像側に近い端部に、鏡筒2502の上壁および下壁にスロット2510を備えることができる。これにより、レンズエレメントLおよび/またはLは実質的に鏡筒の高さであるか、または鏡筒の高さよりも高い高さを有し、他のレンズエレメントの高さよりも高い高さを有することが可能になる。特に、レンズエレメントLおよび/またはLはスロット2510に接することができ、またはレンズエレメントLおよび/またはLの少なくとも一部は、スロット2510を通って突出することができる。
したがって、図25A~図25Dに示すレンズの構造は、レンズエレメントLおよびLが鏡筒の高さ(または鏡筒の高さよりも高い高さを有することができる)であってもよく、依然として鏡筒の壁の内面に固定することができるので、製造プロセスの観点からも好都合である。
レンズモジュール2500の組み立ては、以下のステップを用いて行うことができる:
(ステップ1) 鏡筒2502の像側からレンズエレメントLを挿入する。Lは双方のエレメントの軸対称性のために、鏡筒2502に位置合わせされてもよい。
(ステップ2) Lを鏡筒2502に固定的に取り付ける(例えば、接着する)。
(ステップ3) 鏡筒2502の被写体側から他のエレメントをRN-1、LN-1、…、R、Lの順に差し込む。L~LN-1およびR~RN-1は、すべてのエレメントの軸対称性のために、鏡筒2502に位置合わせされてもよい。
(ステップ4) Lを鏡筒2502に固定的に取り付ける(例えば、接着する)。
一形態としては、鏡筒2502の孔2514(図25D)を使用して、接着剤を挿入して、ステップ2およびステップ4でレンズエレメントLおよびLを固定することができる。
次に、図26A~図26Cに注目する。図26Aは、2600と符号付けされた別の例示的なレンズモジュールの等角図を示す。図26Bは、レンズモジュール2600の側面図を示す。レンズモジュール2600は、キャビティ2604を有する鏡筒2602と、複数のレンズエレメントL~Lとを備える。Nは、通常、3~7の範囲である。レンズ2600の非限定的な例では、N=4である。レンズモジュール2600は鏡筒2602の外部に部分的に配置または配置された第1のレンズエレメントLおよびLを有し、一方、レンズエレメントL~LN-1は、鏡筒内に完全に配置される。LおよびLは図26Aに明確に示されているが、他のレンズエレメントはこの図には示されていないが、図26Bに示されている。前の例と同様に、光軸103は、全てのレンズエレメントL~Lに対して軸対称軸として機能する。それぞれのレンズエレメントLは、Y軸に沿って規定された高さHLiを有する。レンズエレメントLおよびLは「階段形状」を有してもよく、すなわち、HL1>HL1BおよびHLN>HLNBとなるように、高さHL1(HLN)を有する前部および高さHL1B(HLNB)を有する後部を有してもよい。レンズモジュール2600はさらに、スペーサR~RN-1を含むことができる。それぞれのスペーサRは、レンズエレメントLとLi+1との間に配置されている。いくつかの実施形態では、1つ以上のスペーサR~RN-1を開口絞りとして使用することができる。いくつかの形態では、いくつかの隣接するレンズエレメントがそれらの間にスペーサを有さなくてもよい。
キャビティ2604は例えば、不透明なプラスチックから作製され得、図17A~図17Eのキャビティ1720のように、光軸103に沿って軸対称であり得る。例示的な実施形態では、キャビティ2604が形態1700(図17B)のような円筒の形状を有することができる。他の例示的な実施形態では、キャビティ2604が円錐、一連の円筒などの他の軸対称形状を有する可能性がある。
図26Cは単一の違いを有するレンズモジュール2600に類似するレンズモジュール2601を示し、キャビティ2624を有する鏡筒2622が、鏡筒2602をキャビティ2624から代わって設けられている。キャビティ2624はレンズエレメントごとにサイズを増加させる一連の円筒形状を有し、図17Dに見られるように、HL1B≦HL2≦HL3≦H<HLNB<HL1=HLNとなっている。この特徴は、鏡筒2620のより容易な成形、および/または、レンズエレメントL~LおよびスペーサR~Rのより容易な組立を可能にする。他の実施形態では、レンズエレメントの数が上述のように4つと異なってもよい。
レンズモジュール2400(または2401)の組み立て、特に、鏡筒内へのレンズエレメント挿入の順序は、上記のレンズモジュール1700の組み立てステップ(図17A~図17D)と同様であってもよい。
次に、図27に注目する。図27はレンズモジュール2500と同様のレンズモジュール2700の等角図を示すが、レンズモジュールはレンズ1800のカバー1830と同様の追加のカバー2730を有し、同様の組み立て工程を有する点が異なる。
特に明記しない限り、選択のための選択肢のリストの最後の2つのメンバー間の発現「および/または」の使用はリストされた選択肢のうちの1つまたは複数の選択が適切であり、行われ得ることを示す。
特許請求の範囲または明細書が「a」または「an」要素に言及する場合、そのような言及は、その要素のうちの1つのみが存在すると解釈されるべきではないことを理解されたい。
本明細書において言及される全ての特許および特許出願は、それぞれの個々の特許または特許出願が参照により本明細書に組み込まれるように具体的かつ個別に示されたのと同じ程度まで、参照によりその全体が本明細書に組み込まれる。さらに、本出願における任意の参考文献の引用または識別は、そのような参考文献が本開示の先行技術として利用可能であることを容認するものとして解釈されるべきではない。
公知の屈曲式カメラの一例の概略等角図である。 図1Aのカメラの側面図である。 屈曲式テレサブカメラおよびワイドサブカメラを備える既知のカメラの一例の概略等角図である。 図1Cのカメラの側面図である。 本開示の主題のいくつかの例によるレンズエレメントの一実施形態を、光線とともに模式的に示す模式図である。 図2Aのレンズエレメントの別の模式図である。 本開示の主題のいくつかの例による、レンズエレメントの凸面に衝突する光線のインパクトポイントの模式図、および平面P上のインパクトポイントの直交投影の模式図である。 本開示の主題のいくつかの例による、レンズエレメントの凹面に衝突する光線のインパクトポイントの模式図、および平面P上のインパクトポイントの直交投影の模式図である。 本開示の主題のいくつかの例による、平面P上のインパクトポイントの直交投影、およびクリアな高さ(clear hight)値(CH)の概略図である。 本開示の主題のいくつかの例による、平面P上のインパクトポイントの直交投影、およびクリアアパーチャ値(CA)の概略図である。 本開示の主題のいくつかの例による、レンズエレメントを保持するための光学レンズモジュールの側面図の概略図である。 本開示の主題の他の例による、レンズエレメントを保持するための光学レンズモジュールの側面図の概略図である。 本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの一例の概略図である。 本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの別の例の概略図である。 図9Aの例の変形を示す。 本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールの別の例の概略図である。 本開示の主題による、鏡筒および鏡筒内への挿入前の複数のレンズエレメントの等角図の概略図である。 平面Y-Zに沿った、図11Aの例の断面図を示す。 平面X-Zに沿った図11Aの例の断面図を示す。 図11Aの例の正面図を示す。 鏡筒内にレンズエレメントを挿入した後の図11Aの例の別の等角図を示す。 レンズエレメントの正面図の概略図である。 図11A~図11Eの光学レンズモジュールの製造プロセスの概略図である。 複数のレンズエレメントの等角図の概略図である。 図13Aの複数のレンズエレメントと鏡筒とを備える光学レンズモジュールの等角図の概略図である。 図13Aの複数のレンズエレメントと鏡筒とを備える光学レンズモジュールのさらに別の概略図である。 本開示の主題のいくつかの例による、4つのテレ画像をまとめて取り込んで繋ぎ合わせて生成されたステッチ画像の概略図である。 本開示の主題のいくつかの例による、6つのテレ画像をまとめて取り込んで繋ぎ合わせて生成されたステッチ画像の概略図である。 本開示の主題のいくつかの例による、9つのテレ画像をまとめて取り込んで繋ぎ合わせて生成されたステッチ画像の概略図である。 本開示の主題による、レンズエレメントを有する鏡筒の別の実施形態の等角図を示す。 図17Aの鏡筒およびレンズエレメントの側面図である。 図17Bのレンズエレメントの分解図を示す。 本開示の主題による、レンズエレメントを有する別の鏡筒の側面切断図を示す。 本開示の主題による、鏡筒およびレンズエレメントを有するレンズモジュールのさらに別の実施形態の等角図を示す。 図18Aのレンズモジュールの側面切断図を示す。 図18Bのレンズモジュールの分解図を示す。 本開示の主題による、バレルおよびレンズエレメントを有するレンズモジュールのさらに別の実施形態のサイドカット図を示す。 図19Aのレンズモジュールの分解図を示す。 本開示の主題による、レンズエレメントを有する鏡筒のさらに別の実施形態の側面切断図を示す。 本開示の主題の別の例による、光線を示すレンズエレメントの別の実施形態の模式図である。 図21Aのレンズエレメントの別の模式図である。 図21Aおよび図21Bのレンズエレメントを保持するための光学レンズモジュールの側面概略図である。 図21Aおよび図21Bのレンズエレメントを保持するための別の光学レンズモジュールの側面概略図である。 本開示の主題による、複数のレンズエレメントを備える光学レンズモジュールのさらに別の例の概略図である。 本開示の主題による、別の光学レンズモジュールの等角図の概略図である。 平面Y-Zに沿った、図25Aのレンズモジュールの断面図を示す。 平面X-Zに沿った、図25Aのレンズモジュールの断面図を示す。 鏡筒内にレンズエレメントを挿入した後の、図25Aのレンズモジュールの別の等角図を示す。 本開示の主題による、鏡筒およびレンズエレメントを有するレンズモジュールのさらに別の実施形態の等角図を示す。 図26Aのレンズモジュールの側面切断図を示す。 図26Bのレンズモジュールの分解図を示す。 本開示の主題によるレンズモジュールのさらに別の実施形態の等角図を示し、Bは該レンズモジュールの分解図を示す。

Claims (23)

  1. a) 第1の光軸に沿って対称性を有するN個(N≧3)のレンズエレメント;
    b) イメージセンサ;
    c) 第1の光路から第2の光路への屈曲した光路を提供するように動作する光路屈曲素子(OPFE);および
    d) 複数のレンズエレメントが保持されるキャビティが設けられた鏡筒;
    を備え、
    前記キャビティの前記第1の光路に沿った高さは、前記第1の光軸に沿って位置する複数の部分同士で異なっており、
    前記キャビティが、前記N個のレンズエレメントのうちの第1のレンズエレメントLが配置される第1の部分と、前記イメージセンサに近い位置にある残りの第2から第NのレンズエレメントL~Lが配置される第2の部分とを有し、
    前記キャビティの前記第1の部分の高さHは、当該キャビティの前記第2の部分の高さHよりも大きく、H>1.1×Hであり、レンズエレメントLは、前記キャビティによって完全には取り囲まれていない部分を有しており、レンズエレメントLにおける、前記キャビティによって完全には取り囲まれていない部分の高さは、前記鏡筒の高さと等しいか、あるいは前記鏡筒の高さよりも高く、
    前記N個のレンズエレメントの各レンズエレメントはそれぞれ前面S2i-1および後面S2i(ただしiは1からNの間の整数)を含み、S(ただし1≦k≦2N)で表されるレンズエレメントの表面に関し、それぞれのレンズエレメントの表面Sはクリアな高さ値CH(S)を有し、
    表面Sのクリアな高さ値CH(S)は、表面S~S 2N のそれぞれのクリアな高さ値よりも大きい、デジタルカメラ。
  2. 前記N個のレンズエレメントは、軸対称を有する、請求項1に記載のデジタルカメラ。
  3. 全トラック長TTLおよび後焦点距離BFLに関し、BFL≧0.3×TTLである、請求項1に記載のデジタルカメラ。
  4. 前記Lは、ガラスからなる、請求項1に記載のデジタルカメラ。
  5. 前記Lは、プラスチックからなる、請求項1に記載のデジタルカメラ。
  6. 前記Lは、任意の2≦i≦Nにおいてプラスチックからなる、請求項1に記載のデジタルカメラ。
  7. 前記N個(N≧3)のレンズエレメントは、前方開口レンズモジュールを形成している、請求項1に記載のデジタルカメラ。
  8. 前記レンズエレメントの少なくとも2つは、それらの高さHよりも大きい幅Wを有する、請求項1に記載のデジタルカメラ。
  9. 前記第1の光軸に対して直角である軸に沿った前記キャビティの高さは、当該第1の光軸に沿って変えられている、請求項1に記載のデジタルカメラ。
  10. 記キャビティの壁は、前記レンズエレメントLの中心を前記第1の光軸に整列させる、請求項1に記載のデジタルカメラ。
  11. レンズエレメントLは、前記キャビティによって完全には取り囲まれていない部分を有しており、
    前記キャビティの壁は、前記レンズエレメントLの中心を前記第1の光軸に整列させる、請求項10に記載のデジタルカメラ。
  12. 記壁の端部が前記レンズエレメントLの少なくとも一部のためのストップとして作用してレンズエレメントLの中心が前記第1の光軸に位置合わせされるように、前記壁の端部および前記レンズエレメントL の端部の少なくとも一方が構成されている、請求項10に記載のデジタルカメラ。
  13. レンズエレメントLの第1の部分は前記壁の端部と端部の間のキャビティに位置しており、当該レンズエレメントLの第2の部分は、当該キャビティの外に位置しており、前記レンズエレメントLの前記第1の光軸に沿った前記第2の部分の厚さは、当該レンズエレメントLの前記第1の光軸に沿った前記第1の部分の厚さよりも大きい、請求項11に記載のデジタルカメラ。
  14. 前記壁の端部の断面は階段形状を有する、請求項11に記載のデジタルカメラ。
  15. レンズエレメントLの端部の断面は階段形状を有する、請求項11に記載のデジタルカメラ。
  16. 前記壁の端部の断面が傾斜した形状を有する、請求項11に記載のデジタルカメラ。
  17. 前記壁の端部が面取り部を含む、請求項11に記載のデジタルカメラ。
  18. レンズエレメントLを覆って保護するカバーをさらに備える、請求項10に記載のデジタルカメラ。
  19. 前記カバーがレンズエレメントLを越えた端点を有する、請求項18に記載のデジタルカメラ。
  20. 前記カバーがレンズエレメントLの機械的部分への光の侵入を阻止する、請求項18に記載のデジタルカメラ。
  21. それぞれのレンズエレメントの表面Sは、クリアアパーチャ値CA(S)を有しており、2≦k≦2Nにおいて、CA(S)はCA(S)よりも大きく、
    CA(S2N)≦CA(S
    である、請求項1に記載のデジタルカメラ。
  22. CA(S)<7mmである、請求項1に記載のデジタルカメラ。
  23. CH(S)<7mmである、請求項21に記載のデジタルカメラ。
JP2021070910A 2017-02-23 2021-04-20 屈曲式カメラレンズ設計 Active JP7307763B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022074175A JP7364737B2 (ja) 2017-02-23 2022-04-28 屈曲式カメラレンズ設計
JP2023173377A JP2023171944A (ja) 2017-02-23 2023-10-05 屈曲式カメラレンズ設計

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
US201762462438P 2017-02-23 2017-02-23
US62/462,438 2017-02-23
US201762478783P 2017-03-30 2017-03-30
US62/478,783 2017-03-30
US201762483422P 2017-04-09 2017-04-09
US62/483,422 2017-04-09
JP2019546222A JP6898460B2 (ja) 2017-02-23 2018-02-18 屈曲式カメラレンズ設計

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019546222A Division JP6898460B2 (ja) 2017-02-23 2018-02-18 屈曲式カメラレンズ設計

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022074175A Division JP7364737B2 (ja) 2017-02-23 2022-04-28 屈曲式カメラレンズ設計

Publications (2)

Publication Number Publication Date
JP2021119396A JP2021119396A (ja) 2021-08-12
JP7307763B2 true JP7307763B2 (ja) 2023-07-12

Family

ID=63252479

Family Applications (4)

Application Number Title Priority Date Filing Date
JP2019546222A Active JP6898460B2 (ja) 2017-02-23 2018-02-18 屈曲式カメラレンズ設計
JP2021070910A Active JP7307763B2 (ja) 2017-02-23 2021-04-20 屈曲式カメラレンズ設計
JP2022074175A Active JP7364737B2 (ja) 2017-02-23 2022-04-28 屈曲式カメラレンズ設計
JP2023173377A Pending JP2023171944A (ja) 2017-02-23 2023-10-05 屈曲式カメラレンズ設計

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019546222A Active JP6898460B2 (ja) 2017-02-23 2018-02-18 屈曲式カメラレンズ設計

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2022074175A Active JP7364737B2 (ja) 2017-02-23 2022-04-28 屈曲式カメラレンズ設計
JP2023173377A Pending JP2023171944A (ja) 2017-02-23 2023-10-05 屈曲式カメラレンズ設計

Country Status (7)

Country Link
US (8) US11347016B2 (ja)
EP (3) EP3436861A4 (ja)
JP (4) JP6898460B2 (ja)
KR (6) KR20220013000A (ja)
CN (6) CN109313319B (ja)
IL (3) IL302577A (ja)
WO (1) WO2018154421A1 (ja)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6139713B2 (ja) 2013-06-13 2017-05-31 コアフォトニクス リミテッド デュアルアパーチャズームデジタルカメラ
US9857568B2 (en) 2013-07-04 2018-01-02 Corephotonics Ltd. Miniature telephoto lens assembly
CN107748432A (zh) 2013-07-04 2018-03-02 核心光电有限公司 小型长焦透镜套件
US9392188B2 (en) 2014-08-10 2016-07-12 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
CN112433331B (zh) 2015-01-03 2022-07-08 核心光电有限公司 微型长焦镜头模块和使用该镜头模块的相机
IL302577A (en) 2017-02-23 2023-07-01 Corephotonics Ltd Lens designs for a folded camera
GB201703356D0 (en) 2017-03-02 2017-04-19 Cambridge Mechatronics Ltd SMA actuator for zoom camera OIS
DE102017204035B3 (de) * 2017-03-10 2018-09-13 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Bereitstellen einer Multiaperturabbildungsvorrichtung
DE102017206429A1 (de) * 2017-04-13 2018-10-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Multiaperturabbildungsvorrichtung, Abbildungssystem und Verfahren zum Bereitstellen einer Multiaperturabbildungsvorrichtung
CN116908987A (zh) 2017-05-12 2023-10-20 台湾东电化股份有限公司 光学机构
EP3461284A4 (en) 2017-07-07 2019-07-03 Corephotonics Ltd. PRISM DESIGN OF FOLDED CAMERA FOR PREVENTING PARASITE LIGHT
IL300459A (en) 2017-07-23 2023-04-01 Corephotonics Ltd Compact folded lenses with a large entry key
US10462370B2 (en) 2017-10-03 2019-10-29 Google Llc Video stabilization
EP3759538A4 (en) 2018-03-02 2021-05-05 Corephotonics Ltd. SPACER DESIGN TO REDUCE SCATTERED LIGHT
US10171738B1 (en) 2018-05-04 2019-01-01 Google Llc Stabilizing video to reduce camera and face movement
WO2019220255A1 (en) * 2018-05-14 2019-11-21 Corephotonics Ltd. Folded camera lens designs
CN108957689B (zh) 2018-06-08 2020-12-15 玉晶光电(厦门)有限公司 光学成像镜头
WO2020073735A1 (zh) * 2018-10-09 2020-04-16 宁波舜宇光电信息有限公司 一体式镜筒、光学镜头、摄像模组及组装方法
CN114615399A (zh) * 2019-01-03 2022-06-10 核心光电有限公司 双重相机
KR20240046652A (ko) 2019-02-25 2024-04-09 코어포토닉스 리미티드 적어도 하나의 2 상태 줌 카메라를 갖는 멀티-애퍼처 카메라
KR102260376B1 (ko) * 2019-06-18 2021-06-03 삼성전기주식회사 폴디드 모듈 및 이를 포함하는 휴대용 전자기기
CN114578519A (zh) 2019-08-21 2022-06-03 核心光电有限公司 镜头组件
US11656538B2 (en) 2019-11-25 2023-05-23 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
KR102450923B1 (ko) * 2019-12-31 2022-10-06 삼성전기주식회사 렌즈 조립체
KR102494753B1 (ko) 2020-01-08 2023-01-31 코어포토닉스 리미티드 멀티-애퍼처 줌 디지털 카메라 및 그 사용 방법
TWI750615B (zh) 2020-01-16 2021-12-21 大立光電股份有限公司 取像用光學透鏡組、取像裝置及電子裝置
US20210255427A1 (en) * 2020-02-18 2021-08-19 Facebook Technologies, Llc Stop-in-front or stop-near-front lens assembly
EP4191332A1 (en) * 2020-05-30 2023-06-07 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US20230132659A1 (en) * 2020-07-22 2023-05-04 Corephotonics Ltd. Folded camera lens designs
US11190689B1 (en) 2020-07-29 2021-11-30 Google Llc Multi-camera video stabilization
WO2022023855A1 (en) 2020-07-31 2022-02-03 Corephotonics Ltd. Folded macro-tele camera lens designs
EP4182748A1 (en) * 2020-08-04 2023-05-24 Huawei Technologies Co., Ltd. Compact imaging apparatus comprising a folded wide angle imaging lens system
WO2022058807A1 (en) 2020-09-18 2022-03-24 Corephotonics Ltd. Pop-out zoom camera
US20240126158A1 (en) * 2020-11-05 2024-04-18 Corephotonics Ltd. Scanning tele camera based on two prism field of view scanning
EP4066036A4 (en) 2020-12-01 2023-01-25 Corephotonics Ltd. FOLDED CAMERA WITH CONTINUOUSLY ADAPTIVE ZOOM FACTOR
CN117376688A (zh) 2021-01-25 2024-01-09 核心光电有限公司 用于紧凑型数码相机的镜头系统
WO2022269486A1 (en) * 2021-06-23 2022-12-29 Corephotonics Ltd. Compact folded tele cameras
US20230400757A1 (en) * 2021-09-23 2023-12-14 Corephotonics Ltd. Large aperture continuous zoom folded tele cameras
KR20240009432A (ko) * 2021-11-02 2024-01-22 코어포토닉스 리미티드 컴팩트형 더블 폴디드 텔레 카메라

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173191A (ja) 2003-12-11 2005-06-30 Olympus Corp 光路折り曲げ光学系
JP2006195139A (ja) 2005-01-13 2006-07-27 Ricoh Co Ltd レンズ固定構造
JP2008191423A (ja) 2007-02-05 2008-08-21 Sharp Corp レンズユニット及びカメラモジュール、並びに該カメラモジュールを備えた撮像装置
JP2009216941A (ja) 2008-03-10 2009-09-24 Tamron Co Ltd 屈曲変倍光学系
JP2013105049A (ja) 2011-11-15 2013-05-30 Sharp Corp レンズホルダ及びそれを備えた撮像装置
JP2014142542A (ja) 2013-01-25 2014-08-07 Nidec Sankyo Corp レンズユニットおよびレンズユニットの製造方法
US20160291295A1 (en) 2014-08-10 2016-10-06 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
JP6370211B2 (ja) 2014-12-25 2018-08-08 帝国通信工業株式会社 重トルク型回転式電子部品

Family Cites Families (421)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2106752A (en) 1934-12-03 1938-02-01 Sheet Polarizer Company Inc Field divider
US2354503A (en) 1941-12-01 1944-07-25 Taylor Taylor & Hobson Ltd Optical objective of the telephoto type
US2378170A (en) 1943-06-25 1945-06-12 Eastman Kodak Co Telephoto lens
US2441093A (en) 1946-07-22 1948-05-04 Eastman Kodak Co Telephoto lens
US3388956A (en) 1963-04-10 1968-06-18 Voigtlaender Ag Photographic telephoto lenses of high telephoto power
DE1447278A1 (de) 1964-06-20 1968-12-19 Voigtlaender Ag Tele-Anastigmat mittlerer Lichtstaerke mit grossem Telephoto-Effekt
US3558218A (en) 1967-12-01 1971-01-26 Polaroid Corp Three-element telephoto objective lens
JPS5116135B2 (ja) 1972-05-10 1976-05-21
US3942876A (en) 1972-09-07 1976-03-09 Ponder & Best, Inc. Telephoto lens
JPS5327421A (en) 1976-08-26 1978-03-14 Asahi Optical Co Ltd Small telephotographic lens
DE2960776D1 (en) 1978-05-31 1981-11-26 Michael Stanley Bingley Method of making silicone-containing lubricating oils
JPS54157620A (en) 1978-06-01 1979-12-12 Konishiroku Photo Ind Co Ltd Photographic telephoto lens
US4199785A (en) 1979-01-05 1980-04-22 Honeywell Inc. Electronic zoom system
JPS55163510A (en) 1979-06-06 1980-12-19 Nippon Kogaku Kk <Nikon> Telephoto lens
JPS5850509A (ja) 1981-09-21 1983-03-25 Ricoh Co Ltd 小型望遠レンズ
JPS59121015A (ja) 1982-12-28 1984-07-12 Nippon Kogaku Kk <Nikon> 近距離補正された写真レンズ
JPS59191146A (ja) 1983-04-13 1984-10-30 Hitachi Ltd 光学走査装置
JPS6165212A (ja) 1984-09-07 1986-04-03 Fuji Xerox Co Ltd 複写機の結像レンズ
JPS6370211A (ja) * 1986-09-11 1988-03-30 Canon Inc プラスチツク製光学素子
DE58902538D1 (de) 1988-05-19 1992-12-03 Siemens Ag Verfahren zur beobachtung einer szene und einrichtung zur durchfuehrung des verfahrens.
US5000551A (en) 1989-06-05 1991-03-19 Nikon Corporation Zoom lens
DE3927334C1 (ja) 1989-08-18 1991-01-10 Messerschmitt-Boelkow-Blohm Gmbh, 8012 Ottobrunn, De
JP2703105B2 (ja) 1989-10-20 1998-01-26 富士写真フイルム株式会社 手振れ補正装置
US5032917A (en) 1990-03-12 1991-07-16 Rca Licensing Corporation Video signal blending apparatus
JPH0443773A (ja) 1990-06-11 1992-02-13 Matsushita Electric Ind Co Ltd 演算回路
JP3261152B2 (ja) 1991-03-13 2002-02-25 シャープ株式会社 複数の光学系を備えた撮像装置
US5394520A (en) 1991-09-26 1995-02-28 Hughes Aircraft Company Imaging apparatus for providing a composite digital representation of a scene within a field of regard
US5657402A (en) 1991-11-01 1997-08-12 Massachusetts Institute Of Technology Method of creating a high resolution still image using a plurality of images and apparatus for practice of the method
US5248971A (en) 1992-05-19 1993-09-28 Mandl William J Method and apparatus for multiplexed oversampled analog to digital modulation
JPH0659195A (ja) 1992-08-07 1994-03-04 Fuji Photo Optical Co Ltd 内視鏡用光学系装置
JPH06165212A (ja) 1992-11-26 1994-06-10 Sanyo Electric Co Ltd ビデオ信号処理用集積回路
JPH06177706A (ja) 1992-12-08 1994-06-24 Sony Corp 信号処理装置
DE69324224T2 (de) 1992-12-29 1999-10-28 Koninkl Philips Electronics Nv Bildverarbeitungsverfahren und -vorrichtung zum Erzeugen eines Bildes aus mehreren angrenzenden Bildern
US5682198A (en) 1993-06-28 1997-10-28 Canon Kabushiki Kaisha Double eye image pickup apparatus
US6128416A (en) 1993-09-10 2000-10-03 Olympus Optical Co., Ltd. Image composing technique for optimally composing a single image from a plurality of digital images
JP3355787B2 (ja) 1994-05-20 2002-12-09 ソニー株式会社 光軸補正機構
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
CA2155719C (en) 1994-11-22 2005-11-01 Terry Laurence Glatt Video surveillance system with pilot and slave cameras
JPH08271976A (ja) 1995-03-29 1996-10-18 Canon Inc カメラ
US6104432A (en) 1995-11-10 2000-08-15 Sony Corporation Compact image pickup lens system for a video camera
US5768443A (en) 1995-12-19 1998-06-16 Cognex Corporation Method for coordinating multiple fields of view in multi-camera
US5982951A (en) 1996-05-28 1999-11-09 Canon Kabushiki Kaisha Apparatus and method for combining a plurality of images
US5926190A (en) 1996-08-21 1999-07-20 Apple Computer, Inc. Method and system for simulating motion in a computer graphics application using image registration and view interpolation
JPH10126796A (ja) 1996-09-12 1998-05-15 Eastman Kodak Co デュアル・モード・ソフトウェア処理を用いた動画・静止画像用デジタル・カメラ
JP3676524B2 (ja) 1996-10-25 2005-07-27 ペンタックス株式会社 プリズム
US5960218A (en) 1997-02-18 1999-09-28 Mobi Corporation Dual focal length camera
US5940641A (en) 1997-07-10 1999-08-17 Eastman Kodak Company Extending panoramic images
US6148120A (en) 1997-10-30 2000-11-14 Cognex Corporation Warping of focal images to correct correspondence error
US6268611B1 (en) 1997-12-18 2001-07-31 Cellavision Ab Feature-free registration of dissimilar images using a robust similarity metric
JP3695119B2 (ja) 1998-03-05 2005-09-14 株式会社日立製作所 画像合成装置、及び画像合成方法を実現するプログラムを記録した記録媒体
US6147702A (en) 1998-04-17 2000-11-14 Intel Corporation Calibration of digital cameras
US6208765B1 (en) 1998-06-19 2001-03-27 Sarnoff Corporation Method and apparatus for improving image resolution
US6611289B1 (en) 1999-01-15 2003-08-26 Yanbin Yu Digital cameras using multiple sensors with multiple lenses
US6195209B1 (en) 1999-05-04 2001-02-27 U.S. Precision Lens Incorporated Projection lenses having reduced lateral color for use with pixelized panels
US6738073B2 (en) 1999-05-12 2004-05-18 Imove, Inc. Camera system with both a wide angle view and a high resolution view
US20020075258A1 (en) * 1999-05-12 2002-06-20 Imove Inc. Camera system with high resolution image inside a wide angle view
US20020063711A1 (en) 1999-05-12 2002-05-30 Imove Inc. Camera system with high resolution image inside a wide angle view
US6346950B1 (en) 1999-05-20 2002-02-12 Compaq Computer Corporation System and method for display images using anamorphic video
US7038716B2 (en) 1999-07-30 2006-05-02 Pixim, Inc. Mobile device equipped with digital image sensor
US7015954B1 (en) 1999-08-09 2006-03-21 Fuji Xerox Co., Ltd. Automatic video system using multiple cameras
US6650368B1 (en) 1999-10-26 2003-11-18 Hewlett-Packard Development Company, Lp. Digital camera and method of enhancing zoom effects
US6643416B1 (en) 1999-11-30 2003-11-04 Eastman Kodak Company Method for determining necessary resolution for zoom and crop images
US20020005902A1 (en) 2000-06-02 2002-01-17 Yuen Henry C. Automatic video recording system using wide-and narrow-field cameras
US7002583B2 (en) 2000-08-03 2006-02-21 Stono Technologies, Llc Display of images and image transitions
US6778207B1 (en) 2000-08-07 2004-08-17 Koninklijke Philips Electronics N.V. Fast digital pan tilt zoom video
US6741250B1 (en) 2001-02-09 2004-05-25 Be Here Corporation Method and system for generation of multiple viewpoints into a scene viewed by motionless cameras and for presentation of a view path
JP4278879B2 (ja) 2001-02-27 2009-06-17 株式会社オートネットワーク技術研究所 車両周辺視認装置
US7346217B1 (en) 2001-04-25 2008-03-18 Lockheed Martin Corporation Digital image enhancement using successive zoom images
GB0116877D0 (en) 2001-07-10 2001-09-05 Hewlett Packard Co Intelligent feature selection and pan zoom control
US6680748B1 (en) 2001-09-27 2004-01-20 Pixim, Inc., Multi-mode camera and method therefor
JP2003107370A (ja) * 2001-09-27 2003-04-09 Fuji Photo Optical Co Ltd 内視鏡の先端光学部品の製造方法
US20030093805A1 (en) 2001-11-15 2003-05-15 Gin J.M. Jack Dual camera surveillance and control system
US7339621B2 (en) 2001-12-13 2008-03-04 Psion Teklogix Systems, Inc. Imager output signal processing
JP3503941B2 (ja) 2002-02-04 2004-03-08 富士写真光機株式会社 3群ズームレンズ
JP4198449B2 (ja) 2002-02-22 2008-12-17 富士フイルム株式会社 デジタルカメラ
JP2003298920A (ja) 2002-03-29 2003-10-17 Fuji Photo Film Co Ltd デジタルカメラ
JP4657564B2 (ja) 2002-04-30 2011-03-23 イーストマン コダック カンパニー 電子スチルカメラ及び画像処理方法
GB2388265B (en) 2002-04-30 2005-10-12 Hewlett Packard Co Improvements in and relating to processing of images
CA2386560A1 (en) 2002-05-15 2003-11-15 Idelix Software Inc. Controlling optical hardware and dynamic data viewing systems with detail-in-context viewing tools
JP3870124B2 (ja) 2002-06-14 2007-01-17 キヤノン株式会社 画像処理装置及びその方法、並びにコンピュータプログラム及びコンピュータ可読記憶媒体
US6839067B2 (en) 2002-07-26 2005-01-04 Fuji Xerox Co., Ltd. Capturing and producing shared multi-resolution video
US20040061788A1 (en) 2002-09-26 2004-04-01 Logitech Europe S.A. Multiple mode capture button for a digital camera
JP4481560B2 (ja) 2002-10-08 2010-06-16 オリンパス株式会社 レンズ鏡筒
GB2394852B (en) 2002-10-31 2006-12-20 Hewlett Packard Co Image capture systems using motion detection
CN1574894A (zh) 2003-06-02 2005-02-02 宾得株式会社 多焦距成像装置和具有该多焦距成像装置的移动装置
US7596284B2 (en) 2003-07-16 2009-09-29 Hewlett-Packard Development Company, L.P. High resolution image reconstruction
US6924948B2 (en) 2003-08-21 2005-08-02 Arc Design, Inc. Multifocal lens system for digital cameras
US7619683B2 (en) 2003-08-29 2009-11-17 Aptina Imaging Corporation Apparatus including a dual camera module and method of using the same
JP4276914B2 (ja) * 2003-09-18 2009-06-10 オリンパス株式会社 振動波リニアモータ及びその駆動方法
JP2005099265A (ja) 2003-09-24 2005-04-14 Fujinon Corp 撮像装置および撮像方法、ならびに測距方法
JP2005134486A (ja) 2003-10-28 2005-05-26 Ricoh Co Ltd カラー画像読取レンズ、カラー画像読取レンズユニット、カラー画像読取装置および画像形成装置
EP1536633A1 (en) 2003-11-27 2005-06-01 Sony Corporation Photographing apparatus and method, supervising system, program and recording medium
JP2005208194A (ja) 2004-01-21 2005-08-04 Konica Minolta Photo Imaging Inc 撮影装置
US7221524B2 (en) * 2004-01-30 2007-05-22 Fujifilm Corporation Lens unit and compact image pickup module
JP2005215473A (ja) 2004-01-30 2005-08-11 Sekinosu Kk 投影レンズ装置
KR20050090780A (ko) 2004-03-10 2005-09-14 삼성전자주식회사 영상촬영장치
US6980379B1 (en) 2004-07-19 2005-12-27 Microalign Technologies, Inc. Flat wide-angle objective
WO2006040687A2 (en) 2004-07-19 2006-04-20 Grandeye, Ltd. Automatically expanding the zoom capability of a wide-angle video camera
US20060017834A1 (en) * 2004-07-23 2006-01-26 Konica Minolta Opto, Inc. Imaging optical system and imaging lens device
US7564019B2 (en) 2005-08-25 2009-07-21 Richard Ian Olsen Large dynamic range cameras
US7916180B2 (en) 2004-08-25 2011-03-29 Protarius Filo Ag, L.L.C. Simultaneous multiple field of view digital cameras
US20060054782A1 (en) 2004-08-25 2006-03-16 Olsen Richard I Apparatus for multiple camera devices and method of operating same
JP2006154702A (ja) * 2004-10-29 2006-06-15 Konica Minolta Opto Inc 変倍光学系、撮像レンズ装置及びデジタル機器
US9155483B2 (en) 2004-12-03 2015-10-13 The Invention Science Fund I, Llc Vision modification with reflected image
US7688364B2 (en) 2004-12-10 2010-03-30 Ambarella, Inc. Decimating and cropping based zoom factor for a digital camera
KR100636969B1 (ko) 2004-12-30 2006-10-19 매그나칩 반도체 유한회사 Isp 내장형 이미지 센서 및 듀얼 카메라 시스템
US7573514B2 (en) 2005-02-03 2009-08-11 Eastman Kodak Company Digital imaging system with digital zoom warning
US7663662B2 (en) 2005-02-09 2010-02-16 Flir Systems, Inc. High and low resolution camera systems and methods
US7256944B2 (en) 2005-02-18 2007-08-14 Eastman Kodak Company Compact image capture assembly using multiple lenses and image sensors to provide an extended zoom range
US7561191B2 (en) 2005-02-18 2009-07-14 Eastman Kodak Company Camera phone using multiple lenses and image sensors to provide an extended zoom range
US7206136B2 (en) 2005-02-18 2007-04-17 Eastman Kodak Company Digital camera using multiple lenses and image sensors to provide an extended zoom range
US20060187322A1 (en) 2005-02-18 2006-08-24 Janson Wilbert F Jr Digital camera using multiple fixed focal length lenses and multiple image sensors to provide an extended zoom range
US7236306B2 (en) 2005-02-18 2007-06-26 Eastman Kodak Company Digital camera using an express zooming mode to provide expedited operation over an extended zoom range
JP2006238325A (ja) 2005-02-28 2006-09-07 Canon Inc カメラシステム
JP4731977B2 (ja) 2005-04-22 2011-07-27 キヤノン株式会社 光学機器
JP4794912B2 (ja) 2005-06-02 2011-10-19 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP3934151B2 (ja) 2005-06-22 2007-06-20 松下電器産業株式会社 画像生成装置および画像生成方法
US7424218B2 (en) 2005-07-28 2008-09-09 Microsoft Corporation Real-time preview for panoramic images
JP4573725B2 (ja) 2005-08-01 2010-11-04 イーストマン コダック カンパニー 複数光学系を有する撮像装置
JP4573724B2 (ja) 2005-08-01 2010-11-04 イーストマン コダック カンパニー 複数光学系を有する撮像装置
US7964835B2 (en) 2005-08-25 2011-06-21 Protarius Filo Ag, L.L.C. Digital cameras with direct luminance and chrominance detection
JP2007133096A (ja) 2005-11-09 2007-05-31 Konica Minolta Opto Inc 撮像光学系、撮像レンズ装置及びデジタル機器
DE602006017102D1 (de) 2005-11-14 2010-11-04 Nippon Kogaku Kk Bildwackelkorrektureinrichtung und kamera
US8238695B1 (en) 2005-12-15 2012-08-07 Grandeye, Ltd. Data reduction techniques for processing wide-angle video
US20070177025A1 (en) 2006-02-01 2007-08-02 Micron Technology, Inc. Method and apparatus minimizing die area and module size for a dual-camera mobile device
JP2009526257A (ja) 2006-02-06 2009-07-16 ノキア コーポレイション ジンバルプリズムを用いた光学像スタビライザ
CN101401022B (zh) 2006-02-06 2010-07-21 诺基亚公司 在成像系统中进行位置检测的方法和设备
JP4579842B2 (ja) 2006-02-06 2010-11-10 イーストマン コダック カンパニー 撮像装置
JP2007212601A (ja) * 2006-02-08 2007-08-23 Ricoh Co Ltd レンズユニット、鏡筒、光学機器、画像読み取りユニット、スキャナ装置及び画像形成装置
US9182228B2 (en) 2006-02-13 2015-11-10 Sony Corporation Multi-lens array system and method
JP2007219199A (ja) 2006-02-17 2007-08-30 Konica Minolta Opto Inc レンズユニット、撮像装置及びレンズの製造方法
JP4622882B2 (ja) 2006-02-21 2011-02-02 カシオ計算機株式会社 デジタルカメラ
JP4905653B2 (ja) 2006-03-28 2012-03-28 ペンタックスリコーイメージング株式会社 中望遠レンズ系
JP2007279137A (ja) * 2006-04-03 2007-10-25 Matsushita Electric Ind Co Ltd 光学素子、それを備えた光学素子モジュール、及びそれを備えた光学装置
JPWO2007114024A1 (ja) * 2006-04-03 2009-08-13 株式会社ニコン 投影光学系、露光装置、およびデバイス製造方法
US7773121B1 (en) 2006-05-03 2010-08-10 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration High-resolution, continuous field-of-view (FOV), non-rotating imaging system
JP2007306282A (ja) 2006-05-11 2007-11-22 Citizen Electronics Co Ltd カメラモジュール
KR100749337B1 (ko) 2006-06-13 2007-08-14 삼성전자주식회사 복수의 카메라렌즈를 구비한 이동통신단말기를 이용한 촬영방법 및 장치
US7737379B2 (en) 2006-07-19 2010-06-15 Witdouck Calvin J System and method for sorting larvae cocoons
US8189100B2 (en) 2006-07-25 2012-05-29 Qualcomm Incorporated Mobile device with dual digital camera sensors and methods of using the same
US7756330B2 (en) 2006-07-27 2010-07-13 Eastman Kodak Company Producing an extended dynamic range digital image
US7667762B2 (en) 2006-08-01 2010-02-23 Lifesize Communications, Inc. Dual sensor video camera
US20080030592A1 (en) 2006-08-01 2008-02-07 Eastman Kodak Company Producing digital image with different resolution portions
KR100900486B1 (ko) * 2006-09-04 2009-06-03 삼성테크윈 주식회사 촬상 장치용 광학 모듈 및 이를 구비한 촬상 장치
JP2008076485A (ja) 2006-09-19 2008-04-03 Konica Minolta Opto Inc レンズ鏡胴、及び撮像装置
JP4956343B2 (ja) 2006-09-25 2012-06-20 富士フイルム株式会社 2焦点撮像光学系および撮像機器
JP2008096584A (ja) 2006-10-10 2008-04-24 Nikon Corp カメラ
KR20080032759A (ko) 2006-10-10 2008-04-16 삼성전기주식회사 카메라 모듈의 렌즈배럴 및 이를 조립하는 레이져장치
KR101278239B1 (ko) * 2006-10-17 2013-06-24 삼성전자주식회사 듀얼 렌즈 광학계 및 이를 구비하는 듀얼 렌즈 카메라
JP4448844B2 (ja) 2006-11-22 2010-04-14 富士フイルム株式会社 複眼撮像装置
US7533819B2 (en) 2007-01-31 2009-05-19 Symbol Technologies, Inc. Dual camera assembly for an imaging-based bar code reader
JP4917060B2 (ja) * 2007-02-26 2012-04-18 Hoya株式会社 撮像ユニット及び携帯用電子機器
US7978239B2 (en) 2007-03-01 2011-07-12 Eastman Kodak Company Digital camera using multiple image sensors to provide improved temporal sampling
US7729602B2 (en) 2007-03-09 2010-06-01 Eastman Kodak Company Camera using multiple lenses and image sensors operable in a default imaging mode
US7676146B2 (en) 2007-03-09 2010-03-09 Eastman Kodak Company Camera using multiple lenses and image sensors to provide improved focusing capability
US7859588B2 (en) 2007-03-09 2010-12-28 Eastman Kodak Company Method and apparatus for operating a dual lens camera to augment an image
US7683962B2 (en) 2007-03-09 2010-03-23 Eastman Kodak Company Camera using multiple lenses and image sensors in a rangefinder configuration to provide a range map
US8937651B2 (en) 2007-04-19 2015-01-20 Dvp Technologies Ltd. Imaging system and method for use in monitoring a field of regard
TWI332584B (en) 2007-04-25 2010-11-01 Largan Precision Co Ltd Optical lens system for taking image
US7918398B2 (en) 2007-06-04 2011-04-05 Hand Held Products, Inc. Indicia reading terminal having multiple setting imaging lens
JP2008304708A (ja) 2007-06-07 2008-12-18 Konica Minolta Opto Inc ズームレンズ及び撮像装置
TWI351530B (en) 2007-07-05 2011-11-01 Largan Precision Co Ltd Inverse telephoto with correction lenses
TWI354820B (en) 2007-08-14 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image
JP4947423B2 (ja) 2007-08-29 2012-06-06 コニカミノルタオプト株式会社 撮像レンズ
US8390729B2 (en) 2007-09-05 2013-03-05 International Business Machines Corporation Method and apparatus for providing a video image having multiple focal lengths
EP2037306A1 (en) 2007-09-12 2009-03-18 Fujinon Corporation Imaging lens and imaging apparatus
US20090086074A1 (en) 2007-09-27 2009-04-02 Omnivision Technologies, Inc. Dual mode camera solution apparatus, system, and method
US7710665B2 (en) 2007-11-08 2010-05-04 Samsung Electro-Mechanics Co., Ltd. Imaging optical system
US20090122195A1 (en) 2007-11-09 2009-05-14 Van Baar Jeroen System and Method for Combining Image Sequences
US20090128644A1 (en) 2007-11-15 2009-05-21 Camp Jr William O System and method for generating a photograph
TWI361914B (en) 2007-11-16 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
JP2009134175A (ja) 2007-11-30 2009-06-18 Olympus Imaging Corp 結像光学系
CN101821658B (zh) 2007-12-04 2014-02-26 黑眼睛光学有限公司 变焦透镜系统和照相机系统
US8310587B2 (en) 2007-12-04 2012-11-13 DigitalOptics Corporation International Compact camera optics
KR100956250B1 (ko) 2007-12-10 2010-05-06 삼성전기주식회사 웨이퍼 스케일 렌즈조립체 제조방법 및 이에 의해 제조된웨이퍼 스케일 렌즈조립체
TWI354821B (en) 2007-12-18 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image
US8184380B2 (en) 2007-12-28 2012-05-22 Panasonic Corporation Lens barrel
US8824833B2 (en) 2008-02-01 2014-09-02 Omnivision Technologies, Inc. Image data fusion systems and methods
TWI361915B (en) 2008-02-18 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
US8115825B2 (en) 2008-02-20 2012-02-14 Apple Inc. Electronic device with two image sensors
TWI361903B (en) 2008-02-27 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
TWI361913B (en) 2008-02-27 2012-04-11 Largan Precision Co Ltd Optical lens system for taking image
CN101276415A (zh) 2008-03-03 2008-10-01 北京航空航天大学 用多定焦摄像机实现多分辨率图像采集的装置和方法
JP2009258286A (ja) 2008-04-15 2009-11-05 Konica Minolta Opto Inc 撮像レンズ、撮像ユニット及び携帯端末
US8866920B2 (en) 2008-05-20 2014-10-21 Pelican Imaging Corporation Capturing and processing of images using monolithic camera array with heterogeneous imagers
FI20085510L (fi) 2008-05-28 2009-11-29 Valtion Teknillinen Zoom-kamera -järjestely, joka käsittää useita alikameroita
KR100962970B1 (ko) 2008-06-19 2010-06-10 엘지이노텍 주식회사 촬상 렌즈
CN101620307A (zh) * 2008-07-02 2010-01-06 鸿富锦精密工业(深圳)有限公司 镜头模组及相机模组
KR101477178B1 (ko) 2008-07-17 2014-12-29 삼성전자주식회사 듀얼 카메라를 구비하는 휴대 단말기 및 이를 이용한 촬영방법
US8134589B2 (en) 2008-07-17 2012-03-13 Eastman Kodak Company Zoom by multiple image capture
GB2462095A (en) 2008-07-23 2010-01-27 Snell & Wilcox Ltd Processing of images to represent a transition in viewpoint
US8237807B2 (en) 2008-07-24 2012-08-07 Apple Inc. Image capturing device with touch screen for adjusting camera settings
TWI395992B (zh) 2008-07-25 2013-05-11 Largan Precision Co 四片式攝影光學鏡組
JP5304117B2 (ja) 2008-09-05 2013-10-02 コニカミノルタ株式会社 撮像レンズ及び撮像装置並びに携帯端末
CN102150078B (zh) 2008-09-10 2013-09-04 松下电器产业株式会社 相机机身及摄像装置
US8823859B2 (en) * 2008-10-08 2014-09-02 Olympus Corporation Image pickup unit, optical unit, and manufacturing method for the image pickup unit
TWI384254B (zh) 2008-10-16 2013-02-01 Largan Precision Co Ltd 取像透鏡組
CN101394487B (zh) 2008-10-27 2011-09-14 华为技术有限公司 一种合成图像的方法与系统
TWI379102B (en) 2008-11-20 2012-12-11 Largan Precision Co Ltd Optical lens system for taking image
JP5230376B2 (ja) 2008-11-28 2013-07-10 三星電子株式会社 撮像装置及び撮像方法
TWI388878B (zh) 2008-12-01 2013-03-11 Largan Precision Co Ltd 取像光學鏡片組
TWI382199B (zh) 2008-12-16 2013-01-11 Largan Precision Co Ltd 攝像用透鏡組
JP5201679B2 (ja) 2008-12-25 2013-06-05 株式会社オプトロジック 撮像レンズ
JP5300467B2 (ja) 2008-12-26 2013-09-25 キヤノン株式会社 光学系及びそれを有する光学機器
US7826149B2 (en) 2008-12-27 2010-11-02 Largan Precision Co., Ltd. Optical lens system for taking image
JP2010164841A (ja) 2009-01-16 2010-07-29 Sharp Corp 撮像モジュール、撮像装置及び光学機器
TWI394979B (zh) 2009-01-22 2013-05-01 Largan Precision Co Ltd 薄型攝影光學鏡組
TWI406004B (zh) 2009-02-19 2013-08-21 Largan Precision Co Ltd 成像光學透鏡組
CN101833157A (zh) 2009-03-13 2010-09-15 鸿富锦精密工业(深圳)有限公司 相机模组
US8542287B2 (en) 2009-03-19 2013-09-24 Digitaloptics Corporation Dual sensor camera
WO2010116368A1 (en) 2009-04-07 2010-10-14 Nextvision Stabilized Systems Ltd Methods for compensating for light distortions related noise in a camera system having multiple image sensors
US8553106B2 (en) 2009-05-04 2013-10-08 Digitaloptics Corporation Dual lens digital zoom
TWI395990B (zh) 2009-05-11 2013-05-11 Largan Precision Co Ltd 攝影用透鏡組
CN102404510B (zh) 2009-06-16 2015-07-01 英特尔公司 手持装置中的摄像机应用
TWI404972B (zh) 2009-06-19 2013-08-11 Largan Precision Co 成像光學鏡組
TWI401466B (zh) 2009-06-19 2013-07-11 Largan Precision Co 二片式攝影光學鏡組
WO2011005413A2 (en) 2009-06-22 2011-01-13 Omnivision Technologies, Inc. System and method for an image sensor operable in multiple video standards
KR20110002630A (ko) 2009-07-02 2011-01-10 삼성전자주식회사 휴대 단말기의 카메라 운용 방법 및 장치
TWI421557B (zh) 2009-07-14 2014-01-01 Largan Precision Co Ltd 攝像透鏡系統
JP2011027926A (ja) * 2009-07-23 2011-02-10 Hitachi Maxell Ltd 駆動装置、画像取得装置、及び電子機器
JP4873054B2 (ja) * 2009-07-27 2012-02-08 コニカミノルタホールディングス株式会社 成形レンズ
DE102009028861B4 (de) 2009-08-25 2015-03-05 Trimble Jena Gmbh Messvorrichtung mit verringertem Anteil an Störlicht und Herstellungsverfahren für diese
JP5671684B2 (ja) 2009-08-31 2015-02-18 パナソニックIpマネジメント株式会社 レンズ鏡筒、撮像装置および携帯端末装置
KR101617289B1 (ko) 2009-09-30 2016-05-02 엘지전자 주식회사 휴대 단말기 및 그 동작 제어방법
US8320051B2 (en) * 2009-10-13 2012-11-27 Panasonic Corporation Zoom lens system, imaging device and camera
JP5515643B2 (ja) * 2009-11-04 2014-06-11 コニカミノルタ株式会社 レンズユニットおよびそれを用いる撮像装置ならびにレンズユニットの組立て方法
US8559118B2 (en) 2009-11-18 2013-10-15 DigitalOptics Corporation Europe Limited Fixed focal length optical lens architecture providing a customized depth of focus optical system
EP3611555A1 (en) 2009-11-19 2020-02-19 eSight Corporation Image magnification on a head mounted display
EP2502115A4 (en) 2009-11-20 2013-11-06 Pelican Imaging Corp RECORDING AND PROCESSING IMAGES THROUGH A MONOLITHIC CAMERA ARRAY WITH HETEROGENIC IMAGE CONVERTER
KR20110058094A (ko) 2009-11-25 2011-06-01 삼성전기주식회사 렌즈조립체 및 이를 이용한 카메라 모듈
US8400555B1 (en) 2009-12-01 2013-03-19 Adobe Systems Incorporated Focused plenoptic camera employing microlenses with different focal lengths
US20110128288A1 (en) 2009-12-02 2011-06-02 David Petrou Region of Interest Selector for Visual Queries
JP2011128445A (ja) 2009-12-18 2011-06-30 Sony Corp ズームレンズ及び撮像装置
JP2011138047A (ja) * 2009-12-28 2011-07-14 Olympus Imaging Corp 光路反射型のズームレンズを備えた撮像装置
JP2011141396A (ja) 2010-01-06 2011-07-21 Tamron Co Ltd 撮影レンズ、カメラモジュール、および撮像装置
EP2529333A4 (en) 2010-01-28 2013-10-23 Pathway Innovations And Technologies Inc DOCUMENT IMAGING SYSTEM WITH A CAMERA SCANNER DEVICE AND A PC-BASED PROCESSING SOFTWARE
JP5445235B2 (ja) 2010-03-09 2014-03-19 ソニー株式会社 画像処理装置、画像処理方法およびプログラム
CN102193162A (zh) 2010-03-16 2011-09-21 大立光电股份有限公司 可变焦摄影模块
JP2011205374A (ja) 2010-03-25 2011-10-13 Fujifilm Corp 表示装置
JP4783465B1 (ja) 2010-03-26 2011-09-28 富士フイルム株式会社 撮像装置及び表示装置
US8456518B2 (en) 2010-03-31 2013-06-04 James Cameron & Vincent Pace Stereoscopic camera with automatic obstruction removal
US20110242342A1 (en) 2010-04-05 2011-10-06 Qualcomm Incorporated Combining data from multiple image sensors
US8547389B2 (en) 2010-04-05 2013-10-01 Microsoft Corporation Capturing image structure detail from a first image and color from a second image
TWI406027B (zh) 2010-04-08 2013-08-21 Largan Precision Co Ltd 取像用光學鏡頭
US8446484B2 (en) 2010-04-21 2013-05-21 Nokia Corporation Image processing architecture with pre-scaler
WO2011159401A1 (en) 2010-05-03 2011-12-22 Invisage Technologies, Inc. Devices and methods for high-resolution image and video capture
US20130250150A1 (en) 2010-05-03 2013-09-26 Michael R. Malone Devices and methods for high-resolution image and video capture
JP5498259B2 (ja) 2010-05-24 2014-05-21 株式会社タムロン 高変倍率ズームレンズ
TWI401485B (zh) 2010-06-10 2013-07-11 Largan Precision Co Ltd 成像光學鏡片組
US8896655B2 (en) 2010-08-31 2014-11-25 Cisco Technology, Inc. System and method for providing depth adaptive video conferencing
JP5609467B2 (ja) 2010-09-15 2014-10-22 株式会社リコー 撮像装置及び撮像方法
TWI434096B (zh) 2010-09-16 2014-04-11 Largan Precision Co Ltd 光學攝像透鏡組
US8780251B2 (en) 2010-09-20 2014-07-15 Canon Kabushiki Kaisha Image capture with focus adjustment
US20120075489A1 (en) 2010-09-24 2012-03-29 Nishihara H Keith Zoom camera image blending technique
JP2012068510A (ja) 2010-09-24 2012-04-05 Hoya Corp 撮影光学系、及び撮影装置
US9354424B2 (en) * 2010-09-28 2016-05-31 AO Ether Corporation Lens module for image capture
US20120075518A1 (en) 2010-09-29 2012-03-29 Hoya Corporation Imaging unit
TWI435135B (zh) 2010-10-06 2014-04-21 Largan Precision Co Ltd 光學透鏡系統
US8339714B2 (en) 2010-10-13 2012-12-25 Olympus Imaging Corp. Zoom lens and imaging apparatus incorporating the same
US20140192238A1 (en) 2010-10-24 2014-07-10 Linx Computational Imaging Ltd. System and Method for Imaging and Image Processing
US10663714B2 (en) * 2010-10-28 2020-05-26 Endochoice, Inc. Optical system for an endoscope
US9204026B2 (en) 2010-11-01 2015-12-01 Lg Electronics Inc. Mobile terminal and method of controlling an image photographing therein
JP5804878B2 (ja) 2010-11-01 2015-11-04 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP5719148B2 (ja) 2010-11-10 2015-05-13 キヤノン株式会社 撮像装置及びその制御方法、プログラム
WO2012075250A1 (en) 2010-12-01 2012-06-07 Magna Electronics Inc. System and method of establishing a multi-camera image using pixel remapping
TWI418877B (zh) 2010-12-15 2013-12-11 Largan Precision Co 成像用光學系統
US8274552B2 (en) 2010-12-27 2012-09-25 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
US10200671B2 (en) 2010-12-27 2019-02-05 3Dmedia Corporation Primary and auxiliary image capture devices for image processing and related methods
JP2012141442A (ja) 2010-12-28 2012-07-26 Sony Corp レンズ保護装置、レンズユニット及び撮像装置
US8803990B2 (en) 2011-01-25 2014-08-12 Aptina Imaging Corporation Imaging system with multiple sensors for producing high-dynamic-range images
US8520080B2 (en) 2011-01-31 2013-08-27 Hand Held Products, Inc. Apparatus, system, and method of use of imaging assembly on mobile terminal
JP5802401B2 (ja) * 2011-02-22 2015-10-28 オリンパス株式会社 レンズ鏡枠およびレンズ組立体
JP5814566B2 (ja) 2011-02-28 2015-11-17 オリンパス株式会社 撮像装置、撮像方法及び撮像装置の制御プログラム
US20120229663A1 (en) 2011-03-08 2012-09-13 Spectral Instruments Imaging , Llc Imaging system having primary and auxiliary camera systems
US8976466B2 (en) 2011-03-11 2015-03-10 Olympus Corporation Imaging optical system and imaging apparatus using the same
JP5708097B2 (ja) 2011-03-18 2015-04-30 株式会社リコー 撮像装置、撮像方法、及び撮像プログラム
JP2012203234A (ja) 2011-03-25 2012-10-22 Konica Minolta Advanced Layers Inc 撮像光学系、撮像装置およびデジタル機器
US9172856B2 (en) 2011-03-29 2015-10-27 Microsoft Technology Licensing, Llc Folded imaging path camera
CN102739949A (zh) 2011-04-01 2012-10-17 张可伦 多镜头相机和多镜头装置的控制方法
TWI429979B (zh) 2011-04-13 2014-03-11 Largan Precision Co Ltd 光學影像透鏡組
CN102147519B (zh) 2011-04-20 2013-01-09 中国科学院光电技术研究所 一种宽角和长后工作距离的航测相机全色物镜
EP2523450B1 (en) 2011-05-10 2014-05-14 HTC Corporation Handheld electronic device with dual image capturing method and computer program product
US8553129B2 (en) 2011-05-10 2013-10-08 Htc Corporation Handheld electronic device with two lens modules, dual image capturing method applying for the handheld electronic device, and computer program product for load into the handheld electronic device
KR101224790B1 (ko) 2011-06-14 2013-01-21 삼성전기주식회사 영상 촬상 장치
US8605199B2 (en) 2011-06-28 2013-12-10 Canon Kabushiki Kaisha Adjustment of imaging properties for an imaging assembly having light-field optics
JP5821356B2 (ja) 2011-07-15 2015-11-24 ミツミ電機株式会社 レンズ駆動装置
US9270875B2 (en) 2011-07-20 2016-02-23 Broadcom Corporation Dual image capture processing
WO2013014850A1 (ja) 2011-07-25 2013-01-31 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
KR20130025137A (ko) 2011-09-01 2013-03-11 삼성전자주식회사 파노라마 촬상 렌즈 및 이를 이용한 파노라마 촬상 시스템
KR101653846B1 (ko) * 2011-10-07 2016-09-02 이선구 단일렌즈로 전방위를 촬영하는 동기식 카메라 렌즈모듈
KR101301314B1 (ko) 2011-10-10 2013-08-29 삼성전기주식회사 촬상렌즈 유닛
EP2582128A3 (en) 2011-10-12 2013-06-19 Canon Kabushiki Kaisha Image-capturing device
WO2013058111A1 (ja) 2011-10-20 2013-04-25 コニカミノルタアドバンストレイヤー株式会社 撮像レンズ
CN104105991B (zh) 2011-10-24 2017-06-30 数位光学Mems有限公司 具有五个附前向聚焦的透镜的光学物镜
JP2013096853A (ja) * 2011-11-01 2013-05-20 Omron Corp 変位センサ
JP5884421B2 (ja) 2011-11-14 2016-03-15 ソニー株式会社 画像処理装置、画像処理装置の制御方法およびプログラム
JP5741395B2 (ja) 2011-11-16 2015-07-01 コニカミノルタ株式会社 撮像装置
US8619148B1 (en) 2012-01-04 2013-12-31 Audience, Inc. Image correction after combining images from multiple cameras
JP5871623B2 (ja) 2012-01-11 2016-03-01 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
JP2013143753A (ja) 2012-01-12 2013-07-22 Olympus Corp 撮像装置
US9348120B2 (en) * 2012-01-23 2016-05-24 Flir Systems Trading Belgium Bvba LWIR imaging lens, image capturing system having the same, and associated method
KR20130090225A (ko) 2012-02-03 2013-08-13 삼성전자주식회사 카메라 이미지 센서의 동작 모드 변경 방법
GB2499200B (en) 2012-02-07 2014-12-17 Canon Kk Method and device for transitioning between an image of a first video sequence and an image for a second video sequence
KR101932717B1 (ko) 2012-02-13 2018-12-26 삼성전자주식회사 결상렌즈 시스템
KR101964297B1 (ko) 2012-02-16 2019-04-01 엘지이노텍 주식회사 촬상 렌즈
US8866943B2 (en) 2012-03-09 2014-10-21 Apple Inc. Video camera providing a composite video sequence
US9459430B2 (en) * 2012-03-20 2016-10-04 Microsoft Technology Licensing, Llc Wide-angle depth imaging lens construction
US20130258044A1 (en) 2012-03-30 2013-10-03 Zetta Research And Development Llc - Forc Series Multi-lens camera
TWI460465B (zh) 2012-04-20 2014-11-11 Largan Precision Co Ltd 光學影像鏡頭系統組
KR101422910B1 (ko) 2012-04-30 2014-07-23 삼성전기주식회사 카메라용 광학계
CN102722321A (zh) 2012-05-22 2012-10-10 中兴通讯股份有限公司 双摄像头切换的方法及装置
US8953084B2 (en) 2012-05-30 2015-02-10 Digimarc Corporation Plural focal-plane imaging
WO2013186804A1 (ja) 2012-06-11 2013-12-19 株式会社ソニー・コンピュータエンタテインメント 画像生成装置および画像生成方法
WO2013190918A1 (ja) * 2012-06-18 2013-12-27 シャープ株式会社 カメラモジュール、および当該カメラモジュールを搭載した電子機器、ならびに当該カメラモジュールの製造方法
TWI443399B (zh) * 2012-06-20 2014-07-01 Young Optics Inc 投影裝置及鏡頭模組
WO2014010303A1 (ja) 2012-07-12 2014-01-16 ソニー株式会社 像振れ補正装置と像振れ補正方法および撮像装置
KR101941248B1 (ko) 2012-07-23 2019-04-10 삼성전자주식회사 줌 렌즈 및 이를 구비한 촬상장치
KR102051501B1 (ko) 2012-07-26 2019-12-03 엘지이노텍 주식회사 카메라 모듈
KR102012749B1 (ko) 2012-08-16 2019-08-21 엘지이노텍 주식회사 광학계
TWI438520B (zh) 2012-10-02 2014-05-21 Largan Precision Co Ltd 攝像系統鏡頭組
WO2014070927A2 (en) 2012-10-31 2014-05-08 Invisage Technologies, Inc. Expanded-field-of-view image and video capture
JP6152386B2 (ja) 2012-11-16 2017-06-21 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America カメラ駆動装置
JP5808311B2 (ja) 2012-11-28 2015-11-10 キヤノン株式会社 ズームレンズ及びそれを有する撮像装置
TWI449948B (zh) * 2012-11-30 2014-08-21 Largan Precision Co Ltd 影像擷取光學鏡組
CN103024272A (zh) 2012-12-14 2013-04-03 广东欧珀移动通信有限公司 移动终端的双摄像头控制装置、方法、系统以及移动终端
US9568713B2 (en) 2013-01-05 2017-02-14 Light Labs Inc. Methods and apparatus for using multiple optical chains in parallel to support separate color-capture
KR101452084B1 (ko) 2013-01-22 2014-10-16 삼성전기주식회사 초소형 광학계 및 이를 구비하는 휴대용 기기
JP6116261B2 (ja) * 2013-01-28 2017-04-19 キヤノン株式会社 バリア装置、レンズ鏡筒およびそれを備える撮像装置
US20140313316A1 (en) 2013-01-30 2014-10-23 SeeScan, Inc. Adjustable variable resolution inspection systems and methods using multiple image sensors
US9413930B2 (en) 2013-03-14 2016-08-09 Joergen Geerds Camera system
US10268276B2 (en) 2013-03-15 2019-04-23 Eyecam, LLC Autonomous computing and telecommunications head-up displays glasses
TWI476435B (zh) 2013-03-20 2015-03-11 Largan Precision Co Ltd 結像鏡頭系統組
CN205281004U (zh) 2013-03-25 2016-06-01 富士胶片株式会社 摄像镜头及具备摄像镜头的摄像装置
JP6000179B2 (ja) 2013-03-29 2016-09-28 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP2014209163A (ja) 2013-03-29 2014-11-06 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
JP5886230B2 (ja) 2013-03-29 2016-03-16 富士フイルム株式会社 撮像レンズおよび撮像レンズを備えた撮像装置
TWI461779B (zh) 2013-04-25 2014-11-21 Largan Precision Co Ltd 結像鏡組
JP6214206B2 (ja) 2013-05-13 2017-10-18 キヤノン株式会社 撮像装置、制御方法及びプログラム
KR20140135909A (ko) * 2013-05-16 2014-11-27 주식회사 테크웍스플러스 카메라모듈 조립체
JP6100089B2 (ja) 2013-05-17 2017-03-22 キヤノン株式会社 画像処理装置、画像処理方法およびプログラム
DE102013209829B4 (de) 2013-05-27 2016-04-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Optische Struktur mit daran angeordneten Stegen und Verfahren zur Herstellung derselben
JP6136588B2 (ja) 2013-05-31 2017-05-31 ソニー株式会社 ズームレンズ及び撮像装置
US10168882B2 (en) 2013-06-09 2019-01-01 Apple Inc. Device, method, and graphical user interface for switching between camera interfaces
JP6139713B2 (ja) 2013-06-13 2017-05-31 コアフォトニクス リミテッド デュアルアパーチャズームデジタルカメラ
TWI546570B (zh) 2013-07-01 2016-08-21 台灣東電化股份有限公司 可切換光路徑之光學防震機構
CN107748432A (zh) * 2013-07-04 2018-03-02 核心光电有限公司 小型长焦透镜套件
JP6103503B2 (ja) 2013-07-31 2017-03-29 パナソニックIpマネジメント株式会社 撮像装置
US9285566B2 (en) 2013-08-08 2016-03-15 Apple Inc. Mirror tilt actuation
JP2016528559A (ja) * 2013-08-20 2016-09-15 オプトチューン アクチェンゲゼルシャフト 2つの液体レンズを有する光学ズームレンズ
US10151859B2 (en) 2013-09-23 2018-12-11 Lg Innotek Co., Ltd. Camera module and manufacturing method for same
US9615012B2 (en) 2013-09-30 2017-04-04 Google Inc. Using a second camera to adjust settings of first camera
CN105830425A (zh) * 2013-10-18 2016-08-03 泽莱特科股份有限公司 用于捕获和/或组合图像的方法和装置
US9736365B2 (en) 2013-10-26 2017-08-15 Light Labs Inc. Zoom related methods and apparatus
CN103576290B (zh) * 2013-10-30 2016-01-06 宁波舜宇车载光学技术有限公司 一种广角镜头
US9223118B2 (en) 2013-10-31 2015-12-29 Apple Inc. Small form factor telephoto camera
US9344626B2 (en) 2013-11-18 2016-05-17 Apple Inc. Modeless video and still frame capture using interleaved frames of video and still resolutions
CN104680501B (zh) 2013-12-03 2018-12-07 华为技术有限公司 图像拼接的方法及装置
US9215377B2 (en) 2013-12-04 2015-12-15 Nokia Technologies Oy Digital zoom with sensor mode change
WO2015081556A1 (zh) 2013-12-06 2015-06-11 华为终端有限公司 双镜头设备的拍照方法及双镜头设备
US9973672B2 (en) 2013-12-06 2018-05-15 Huawei Device (Dongguan) Co., Ltd. Photographing for dual-lens device using photographing environment determined using depth estimation
EP3073733A4 (en) 2013-12-06 2017-04-05 Huawei Device Co., Ltd. Method for generating picture and twin-lens device
CN104937921B (zh) 2013-12-06 2019-04-26 华为终端(东莞)有限公司 一种终端及图像处理方法、图像采集方法
JP6214379B2 (ja) 2013-12-17 2017-10-18 キヤノン株式会社 光学機器
CN103760656B (zh) * 2014-01-23 2015-08-05 苏州久易光电科技有限公司 透镜驱动装置的光轴度测试方法
US9538096B2 (en) 2014-01-27 2017-01-03 Raytheon Company Imaging system and methods with variable lateral magnification
KR102128468B1 (ko) 2014-02-19 2020-06-30 삼성전자주식회사 복수의 이미지 신호 프로세서들을 포함하는 이미지 처리 장치 및 이미지 처리 방법
US9946047B2 (en) 2014-03-04 2018-04-17 Largan Precision Co., Ltd. Annual optical spacer, image lens system, and mobile terminal
US9316810B2 (en) 2014-03-07 2016-04-19 Apple Inc. Folded telephoto camera lens system
US9557627B2 (en) 2014-03-07 2017-01-31 Apple Inc. Folded camera lens systems
CN103841404A (zh) 2014-03-18 2014-06-04 江西省一元数码科技有限公司 一种新型三维影像拍摄模组
US20150271471A1 (en) 2014-03-19 2015-09-24 Htc Corporation Blocking detection method for camera and electronic apparatus with cameras
US9383550B2 (en) 2014-04-04 2016-07-05 Qualcomm Incorporated Auto-focus in low-profile folded optics multi-camera system
KR101771778B1 (ko) 2014-04-11 2017-08-25 삼성전기주식회사 카메라 모듈
CN105024516B (zh) 2014-04-30 2017-12-01 光宝电子(广州)有限公司 音圈马达阵列模块
EP3099044B1 (en) 2014-05-15 2018-12-26 Huawei Technologies Co. Ltd. Multi-frame noise reduction method and terminal
US20150334309A1 (en) 2014-05-16 2015-11-19 Htc Corporation Handheld electronic apparatus, image capturing apparatus and image capturing method thereof
US9360671B1 (en) 2014-06-09 2016-06-07 Google Inc. Systems and methods for image zoom
US9386222B2 (en) 2014-06-20 2016-07-05 Qualcomm Incorporated Multi-camera system using folded optics free from parallax artifacts
US9549107B2 (en) * 2014-06-20 2017-01-17 Qualcomm Incorporated Autofocus for folded optic array cameras
TWI518360B (zh) 2014-08-26 2016-01-21 大立光電股份有限公司 取像光學透鏡組、取像裝置以及電子裝置
JP2016057468A (ja) 2014-09-10 2016-04-21 Hoya株式会社 屈曲撮像装置
CN105467563B (zh) 2014-09-11 2019-02-22 玉晶光电(厦门)有限公司 便携设备之小型窄视场光学成像镜头
WO2016049889A1 (zh) 2014-09-30 2016-04-07 华为技术有限公司 一种自动对焦方法、装置及电子设备
KR101659167B1 (ko) 2014-10-16 2016-09-22 삼성전기주식회사 촬상 광학계
CN104297906A (zh) 2014-10-20 2015-01-21 宁波舜宇车载光学技术有限公司 一种光学镜头
CN105589182B (zh) * 2014-10-24 2018-02-02 玉晶光电(厦门)有限公司 光学成像镜头及应用此镜头的电子装置
KR102287013B1 (ko) 2014-11-25 2021-08-06 삼성디스플레이 주식회사 박막 트랜지스터, 이를 포함하는 유기 발광 표시 장치 및 그 제조 방법
US10634867B2 (en) 2014-11-28 2020-04-28 Samsung Electro-Mechanics Co., Ltd. Camera module
EP3235243A4 (en) * 2014-12-17 2018-06-20 Light Labs Inc. Methods and apparatus for implementing and using camera devices
CN104407432A (zh) * 2014-12-19 2015-03-11 中山联合光电科技有限公司 一种耐高低温、高分辨率、日夜共用的光学系统
US9286680B1 (en) 2014-12-23 2016-03-15 Futurewei Technologies, Inc. Computational multi-camera adjustment for smooth view switching and zooming
KR101544792B1 (ko) 2014-12-30 2015-08-18 주식회사 세코닉스 홍채 인식 렌즈 시스템
US9800798B2 (en) 2015-02-13 2017-10-24 Qualcomm Incorporated Systems and methods for power optimization for imaging devices with dual cameras
EP3540492B1 (en) 2015-04-16 2021-12-15 Corephotonics Ltd. Auto focus and optical image stabilization in a compact folded camera
JP6401103B2 (ja) * 2015-04-20 2018-10-03 富士フイルム株式会社 内視鏡用対物レンズおよび内視鏡
US9817213B2 (en) 2015-04-23 2017-11-14 Apple Inc. Camera lens system with five lens components
US9485432B1 (en) 2015-04-29 2016-11-01 Uurmi Systems Private Limited Methods, systems and apparatuses for dual-camera based zooming
TWI585485B (zh) 2015-05-19 2017-06-01 先進光電科技股份有限公司 光學成像系統
US20160353012A1 (en) 2015-05-25 2016-12-01 Htc Corporation Zooming control method for camera and electronic apparatus with camera
KR101992040B1 (ko) 2015-06-24 2019-06-21 코어포토닉스 리미티드 접이식 렌즈 카메라용 저-프로파일 3-축 액추에이터
US10873686B2 (en) * 2015-06-30 2020-12-22 Rosmeount Inc. Explosion-proof thermal imaging system
TWI583989B (zh) * 2015-07-02 2017-05-21 先進光電科技股份有限公司 光學成像系統
TWI585451B (zh) * 2015-07-02 2017-06-01 先進光電科技股份有限公司 光學成像系統
CN106709899B (zh) 2015-07-15 2020-06-02 华为终端有限公司 双摄像头相对位置计算方法、装置和设备
KR102494776B1 (ko) 2015-08-04 2023-02-02 엘지이노텍 주식회사 촬상렌즈
CN110531498A (zh) * 2015-08-10 2019-12-03 玉晶光电(厦门)有限公司 光学成像镜头
KR101993077B1 (ko) 2015-09-06 2019-06-25 코어포토닉스 리미티드 소형의 접이식 카메라의 롤 보정에 의한 자동 초점 및 광학식 손떨림 방지
KR101813329B1 (ko) 2015-10-13 2017-12-28 삼성전기주식회사 촬상 광학계
US10185123B2 (en) 2015-10-22 2019-01-22 Apple Inc. Lens system
CN105487191B (zh) * 2015-12-29 2019-10-18 宁波舜宇光电信息有限公司 摄像模组镜头和摄像模组及其组装方法
KR102570101B1 (ko) 2015-12-04 2023-08-23 삼성전자주식회사 렌즈 어셈블리 및 그를 포함하는 전자 장치
KR20170112491A (ko) 2016-03-31 2017-10-12 엘지전자 주식회사 이동 단말기 및 그 제어방법
CN106526788B (zh) 2016-08-25 2020-05-01 玉晶光电(厦门)有限公司 光学成像镜头
TWM533229U (en) * 2016-08-26 2016-12-01 Largan Precision Co Ltd Optical path folding element, imaging lens module and electronic device
TWI616677B (zh) * 2016-09-13 2018-03-01 先進光電科技股份有限公司 光學成像系統
KR20180032058A (ko) * 2016-09-21 2018-03-29 삼성전자주식회사 옵티칼 렌즈 어셈블리 및 이를 포함한 전자 장치
TWI628461B (zh) * 2016-10-19 2018-07-01 先進光電科技股份有限公司 光學成像系統
TWI639863B (zh) * 2017-01-04 2018-11-01 先進光電科技股份有限公司 光學成像系統
US10334149B2 (en) 2017-02-23 2019-06-25 Qualcomm Incorporated Adjustment for cameras for low power mode operation
IL302577A (en) 2017-02-23 2023-07-01 Corephotonics Ltd Lens designs for a folded camera
KR102426728B1 (ko) 2017-04-10 2022-07-29 삼성전자주식회사 포커스 제어 방법 및 이를 지원하는 전자 장치

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005173191A (ja) 2003-12-11 2005-06-30 Olympus Corp 光路折り曲げ光学系
JP2006195139A (ja) 2005-01-13 2006-07-27 Ricoh Co Ltd レンズ固定構造
JP2008191423A (ja) 2007-02-05 2008-08-21 Sharp Corp レンズユニット及びカメラモジュール、並びに該カメラモジュールを備えた撮像装置
JP2009216941A (ja) 2008-03-10 2009-09-24 Tamron Co Ltd 屈曲変倍光学系
JP2013105049A (ja) 2011-11-15 2013-05-30 Sharp Corp レンズホルダ及びそれを備えた撮像装置
JP2014142542A (ja) 2013-01-25 2014-08-07 Nidec Sankyo Corp レンズユニットおよびレンズユニットの製造方法
US20160291295A1 (en) 2014-08-10 2016-10-06 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
JP6370211B2 (ja) 2014-12-25 2018-08-08 帝国通信工業株式会社 重トルク型回転式電子部品

Also Published As

Publication number Publication date
US20220171153A1 (en) 2022-06-02
US10534153B2 (en) 2020-01-14
KR102211711B1 (ko) 2021-02-03
EP3579040B1 (en) 2021-06-23
JP2022106873A (ja) 2022-07-20
JP7364737B2 (ja) 2023-10-18
CN113341528A (zh) 2021-09-03
KR20190026782A (ko) 2019-03-13
KR101963547B1 (ko) 2019-03-28
CN110058372B (zh) 2022-02-08
KR20190067191A (ko) 2019-06-14
US20190155002A1 (en) 2019-05-23
IL290630B2 (en) 2023-10-01
CN113341529A (zh) 2021-09-03
CN115857135A (zh) 2023-03-28
KR102354134B1 (ko) 2022-01-21
KR20190025636A (ko) 2019-03-11
JP2023171944A (ja) 2023-12-05
US20230350153A1 (en) 2023-11-02
KR102211704B1 (ko) 2021-02-03
CN110058372A (zh) 2019-07-26
IL259033A (en) 2019-02-28
JP6898460B2 (ja) 2021-07-07
IL290630A (en) 2022-04-01
KR20210013667A (ko) 2021-02-04
US20190369369A1 (en) 2019-12-05
EP3436861A1 (en) 2019-02-06
CN110161648A (zh) 2019-08-23
US20190170965A1 (en) 2019-06-06
WO2018154421A1 (en) 2018-08-30
IL302577A (en) 2023-07-01
CN109313319B (zh) 2021-08-31
US11347016B2 (en) 2022-05-31
KR20180107187A (ko) 2018-10-01
EP3579040A1 (en) 2019-12-11
US20230273393A1 (en) 2023-08-31
CN113341529B (zh) 2023-09-19
KR20220013000A (ko) 2022-02-04
KR102212611B1 (ko) 2021-02-05
IL259033B (en) 2022-03-01
US10670827B2 (en) 2020-06-02
CN109313319A (zh) 2019-02-05
JP2020509411A (ja) 2020-03-26
EP3436861A4 (en) 2019-03-27
US10571644B2 (en) 2020-02-25
US20190250362A1 (en) 2019-08-15
CN113341528B (zh) 2023-01-31
IL290630B1 (en) 2023-06-01
US11347020B2 (en) 2022-05-31
US20200241233A1 (en) 2020-07-30
JP2021119396A (ja) 2021-08-12
US11668894B2 (en) 2023-06-06
CN110161648B (zh) 2022-06-24
EP3553580A1 (en) 2019-10-16

Similar Documents

Publication Publication Date Title
JP7307763B2 (ja) 屈曲式カメラレンズ設計
JP2021173788A (ja) 光学系および撮像装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210507

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20210507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220428

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20220428

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220712

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220719

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220826

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220830

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20230131

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20230404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230424

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230630

R150 Certificate of patent or registration of utility model

Ref document number: 7307763

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150