JP2007133096A - 撮像光学系、撮像レンズ装置及びデジタル機器 - Google Patents

撮像光学系、撮像レンズ装置及びデジタル機器 Download PDF

Info

Publication number
JP2007133096A
JP2007133096A JP2005325219A JP2005325219A JP2007133096A JP 2007133096 A JP2007133096 A JP 2007133096A JP 2005325219 A JP2005325219 A JP 2005325219A JP 2005325219 A JP2005325219 A JP 2005325219A JP 2007133096 A JP2007133096 A JP 2007133096A
Authority
JP
Japan
Prior art keywords
prism
optical system
image
imaging optical
imaging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005325219A
Other languages
English (en)
Inventor
Keiko Ikuno
恵子 生野
Kenji Konno
賢治 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Konica Minolta Opto Inc
Original Assignee
Konica Minolta Opto Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Konica Minolta Opto Inc filed Critical Konica Minolta Opto Inc
Priority to JP2005325219A priority Critical patent/JP2007133096A/ja
Publication of JP2007133096A publication Critical patent/JP2007133096A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】像面に近接した位置に備えられるプリズムの形状を最適化することで、コンパクト化を図りつつゴーストによる画質劣化を抑止する。
【解決手段】撮像光学系10は、入射光を略90度屈曲して反射する入射側プリズム11と像面側プリズム12とを備える。像面側プリズム12の入射面12aには、遮光板3が配置されている。また、像面側プリズム12の形状が、撮像光学系10の光軸AXと像面側プリズム12の反射面12cとが交わる点からプリズム射出面12bまでの距離をa、撮像光学系の光路折り曲げ面内における像の最大幅をcとするとき、下記の関係式を満たすように構成される。これにより、画角外光線が像面に入射することによるゴースト等の発生が抑止されるようになる。
0.53<a/c<2.0
【選択図】図1

Description

本発明は、撮像光学系と、その撮像光学系を備える撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器に関する。
近年、デジタルスチルカメラ、デジタルビデオカメラあるいは、カメラ付き携帯電話機や携帯情報端末(PDA:Personal Digital Assistant)等のデジタル機器の普及が目覚しく、これらに搭載される撮像素子の高画素化・高機能化が急速に進んでいる。このため、高画素化等がなされた撮像素子の性能を十分に活かすため、該撮像素子に被写体の光像を導く撮像光学系にも高い光学性能が要求されている。
また、前記各デジタル機器は、携帯性も要求されるものであり、該デジタル機器の小型化の一手段として撮像光学系のコンパクト化が考えられる。従来では、撮像光学系のコンパクト化の手段として、例えば撮像光学系の沈胴構造が採用されている。しかしながら、沈胴構造の撮像光学系にあっては、最もコンパクトに光学系を収納した場合であっても、光学系内に含まれるレンズの厚さの総計よりも、光学系の厚さを薄くすることはできない。また、鏡胴の構成が複雑化し、コストアップを招来するという問題もある。
撮像光学系のコンパクト化を図る他の手段として、撮像光学系の光路上に反射面を設ける技術が知られており、その一つとして撮像光学系の撮像素子の近傍に、光線の進行方向を略直角に屈曲させる反射面を設ける技術が知られている。この種の撮像光学系につき、例えば下記特許文献1〜3において種々の提案がなされている。
特許文献1には、撮像光学系内に、被写体光の進行方向を変更する2つのプリズムを設置し、撮像素子を光路上下流側のプリズムの射出面に設置すると共に、フォーカスレンズ等を2つのプリズムの間に設置することにより、撮像光学系を小型化する技術が開示されている。また、特許文献2には、撮像光学系内に、被写体光の進行方向を変更する2枚のミラーを設置し、撮像素子を2枚目のミラーの下流に設置することにより、撮像光学系を小型化する技術が開示されている。さらに、特許文献3には、入射面、射出面及び2枚の反射面からなる4つの光学面を有するプリズムの下流に像面が設置されており、プリズム内部において主光線が交差するように反射面が設置され、プリズムに入射した被写体光の進行方向をほぼ直角に屈曲させることにより、結像系を小型化する技術が開示されている。
特開2004−247887号公報 特表2000−515255号公報 特開2002−196243号公報
しかしながら、上記特許文献1〜3に開示されている撮像光学系おいては、それぞれ次のような改善すべき点がある。先ず、特許文献1の撮像光学系においては、像面直前のプリズムで発生するゴーストへの対策が不十分であり、像品質が低下するという問題がある。後記で詳述するが、像面に対する被写体平面外からの光線が、プリズムに入射しその射出面及び反射面で反射された上で、若しくは反射面及び入射面で反射された上で、光軸上の光束に混ざって像面方向へ向かってしまい、これが撮像素子に入射してゴースト等を発生させ画質を劣化させる要因となる場合があるが、かかる問題に関して特許文献1の撮像光学系では特段対策が施されていない。
一方、特許文献2の撮像光学系では、屈曲部材としてミラーを用いているため、プリズムを用いた場合と比較して、屈曲部材を設置することによる光学系の負担が大きく、収差の補正が困難となるため、像性能が低下する。また、特許文献3の撮像光学系では、プリズム内で2回反射させて被写体光の進行方向を変更しているため、反射回数を1回としている場合に比べてプリズムの大型化が避けられない。また、4面の光学面を有するプリズムを用いるため、加工コストが高くなるという問題がある。このように、特許文献1〜3の撮像光学系は、いずれも像品質が低下する、コンパクト化が十分でない、コスト高となるといった問題を有している。
本発明は、上記事情に鑑みてなされたもので、コストアップを抑制しつつ、厚さがコンパクトで、高い像品質を有する撮像光学系、撮像レンズ装置及びその撮像レンズ装置を搭載したデジタル機器を提供することを目的とする。
本発明の請求項1に係る撮像光学系は、反射面を一面有するプリズムが像面に近接した位置に備えられ、前記反射面において被写体光の進行方向が略直角に屈曲される撮像光学系であって、前記プリズムの形状が、下記条件式(1)を満足することを特徴とする。
0.53<a/c<2.0 ・・・(1)
但し、a;撮像光学系の光軸とプリズムの反射面とが交わる点から、プリズム射出面までの距離
c;撮像光学系の光路折り曲げ面内における像の最大幅
この構成によれば、反射面を一面有するプリズムを像面に近接して配置しているので、沈胴構造等に比べてコンパクトな撮像光学系が実現される。なお、撮像光学系の物体側にのみプリズムを配置することでもある程度のコンパクト化を図り得るが、大型の撮像素子を像面に配置する場合、その撮像素子の幅員分に相当する厚さを要することとなり、例えば携帯電話機のような薄型デジタル機器への組み込みに適さなくなる。本発明のように、プリズムを像面に近接して配置して光線の進行方向を略直角に屈曲させることにより、レンズの厚さの総計よりも、撮像光学系の厚さを小さくすることができる。また、大型の撮像素子を使用した場合であっても、コンパクト化を図ることができる。
因みに、ミラー等を用いることでも光線を屈曲させ得るが、プリズムを用いると、そのレンズと像面との実質的な間隔を短くできるため、収差の補正が容易となり、より光学性能の高い撮像光学系が実現できる。また、反射面を一面有するプリズムを用いているので、当該プリズム中の光学面の枚数は入射面、反射面、射出面の3枚となり、屈曲部材内で光線を複数回反射する場合と比較して、低コストで加工を行うことが可能である。
ところで、反射面を一面有するプリズムを像面の直前に設置した撮像光学系では、像を構成する光線は、プリズムの入射面に入射し、反射面で反射した後、射出面を経て、像面に到達する。しかしながら、このような通常の経路とは異なる異経路を経て、像面に到達する光線(画角外光線)も存在する。後記図4に基づき詳述するが、例えばプリズムに入射した後、射出面で反射し、反射面で再び反射した後に、像面に到達する光線がある(ここでは、「第1の画角外光線」という)。かかる第1の画角外光線は、像面に対応する被写体平面の外からの光線であるため、像面に到達するとゴーストとなり、像品質が低下する原因となる。このように、プリズムを撮像面の直前に配置することに起因して、特有のゴースト問題が惹起され、像品質が低下するという問題がある。
このような問題を解決すべく、請求項1に係る発明では、プリズム形状が上記条件式(1)を満足することを要件としている。すなわち、条件式(1)は、上述のような第1の画角外光線が像面に入射し、ゴーストとなって像品質を低下させることを防ぐために、プリズムの形状を規定したものである。プリズムの形状が条件式(1)を満たすことで、射出面で反射した第1の画角外光線の、反射面上の被写体光が反射する領域(有効径内)への入射が規制され、ゴーストの発生を抑止できるようになる。なお、条件式(1)の下限を下回ると、プリズムの射出面で反射する第1の画角外光線が、プリズムの反射有効径内に入射するようになるため、プリズムの射出面で反射した第1の画角外光線が像面に到達することを十分に防止できなくなる。一方、条件式(1)の上限を上回ると、プリズムの形状が大きくなり、撮像光学系の厚みのコンパクト化が図れなくなる傾向が顕著となる。
請求項2に係る撮像光学系は、反射面を一面有するプリズムが像面に近接した位置に備えられ、前記反射面において被写体光の進行方向が略直角に屈曲される撮像光学系であって、前記プリズムの入射面側には光線遮光部材が設置されてなり、下記条件式(2)を満足することを特徴とする。
0.54<b/c<2.0 ・・・(2)
但し、b;光線遮光部材のプリズム反射面側の面から、撮像光学系の光軸とプリズムの反射面とが交わる点までの距離
c;撮像光学系の光路折り曲げ面内における像の最大幅
後記図6に基づき詳述するが、ゴースト発生要因のもう一つの要因として、プリズムに入射した後、反射面で反射した後に、入射面で再び反射して像面に到達する光線がある(ここでは、「第2の画角外光線」という)。請求項2に係る発明は、このような第2の画角外光線が像面に入射し、ゴーストとなって像品質を低下させることを防ぐために、プリズム入射面側に光線遮光部材を配置すると共に、該光線遮光部材のプリズム反射面側の面から、プリズムの反射面が撮像系の光軸と交わる点までの距離を条件式(2)の通りに規定したものである。これにより、プリズムに入射した第2の画角外光線のうち、プリズム反射面上の有効径内で反射する光線は、プリズム入射面の有効径内には入射が規制されるようになり、ゴーストの発生を抑止できるようになる。
なお、条件式(2)の下限を下回ると、プリズムの反射面で反射する第2の画角外光線が、プリズム入射面の有効径内に入射するようになるため、プリズムの入射面での光線の反射を防ぐことができず、プリズムの入射面で反射する光線が像面に到達して、ゴーストが発生するようになる。一方、条件式(2)の上限を上回ると、プリズムの形状が大きくなり、撮像光学系系の全長コンパクト化が図れなくなる傾向が顕著となる。
請求項3に係る撮像光学系は、請求項1において、前記プリズムの入射面側には光線遮光部材が設置されてなり、下記条件式(3)及び(4)を満足することを特徴とする。
−0.1<d/c<0.4 ・・・(3)
0.3<φy/c<2.0 ・・・(4)
但し、d;画角0度で撮像光学系に入射する主光線の進行方向をプラスとしたときの、光線遮光部材のプリズム反射面側の面から、プリズム入射面までの光軸上の距離
φy;光線遮蔽部材の開口幅
このようにプリズムの入射面側に光線遮光部材を配置すると共に、条件式(3)、(4)の要件を満たすことで、プリズムの入射面および反射面で反射して像面に入射し、ゴーストの原因となる光線を規制することができ、ゴーストの少ない像を得ることが可能となる。なお、条件式(3)において、下限値がマイナス値となっているのは、プリズムの入射面が凸形状を有し、光線遮光部材のプリズム反射面側の面が、プリズム入射面の面頂点よりも、プリズム反射面側にある場合を想定しているからである。上記条件式(3)の下限を下回ると、プリズム入射面の曲率が大きくなり、プリズムの製造が困難となる傾向が顕著となる。また、条件式(3)の上限を上回ると、遮光面において、被写体光像を形成する光線と、ゴーストの原因となる光線とが重なるようになるため、ゴーストの原因となる光線のみを遮ることが困難となる。一方、条件式(4)の下限を下回ると、被写体光像を構成する光線が遮光部材によって制限されるため、像が暗くなる傾向が顕著となる。また、条件式(4)の上限を上回ると、プリズムの射出面で反射する光線が像面に入射するため、画角外の光線が像面に入射し、ゴーストが発生する傾向がある。
請求項4に係る撮像光学系は、請求項1又は3のいずれかにおいて、前記プリズムの反射面において、被写体光が反射されるべき領域以外の周囲領域に対し、被写体平面外からの光線に対する反射防止措置が施されていることを特徴とする。
この構成によれば、被写体光が反射されるべき領域以外の周囲領域、つまりプリズム反射面の有効径外に到達した光線の反射が防止される。従って、被写体平面外からの光線が有効径外で反射された上で像面に届いてしまうことが確実に防止され、より一層ゴーストの発生を抑制できるようになる。
請求項5に係る撮像光学系は、請求項2において、前記プリズムの入射面において、被写体光が入射される領域以外の周囲領域に対し、被写体平面外からの光線に対する反射防止措置が施されていることを特徴とする。
この構成によれば、反射面で反射されて入射面へ向かう光線のうち、被写体光が入射される領域以外の周囲領域に到達した光線の反射が防止される。従って、被写体平面外からの光線が反射面で反射され、再び入射面で反射された上で像面に届いてしまうことが確実に防止され、より一層ゴーストの発生を抑制できるようになる。
請求項6に係る撮像光学系は、請求項4又は5において、前記反射防止措置が、前記周囲領域に形成された光吸収層又は光散乱層からなることを特徴とする。この構成によれば、被写体平面外からの光線が光吸収層により吸収され、又は光散乱層により発散されるので、前記光線が像面に至らないようにすることができる。
請求項7に係る撮像光学系は、請求項4又は5において、前記反射防止措置が、前記周囲領域において実質的に反射面として機能しないようにする形状変形部からなることを特徴とする。この構成によれば、形状変形部に到達した光線は像面に向けて反射されなくなるので、被写体平面外からの光線が像面に至らないようにすることができる。
請求項8に係る撮像光学系は、請求項4又は5において、前記反射防止措置が、前記周囲領域を除去した除去部からなることを特徴とする。この構成によれば、除去部に到達した光線は像面に向けて反射されなくなるので、被写体平面外からの光線が像面に至らないようにすることができる。
請求項9に係る撮像光学系は、請求項1〜8のいずれかにおいて、下記条件式(5)を満足することを特徴とする。
0.01<e/c<0.4 ・・・(5)
但し、e;プリズム射出面から像面までの光軸上の距離
この構成によれば、撮像光学系の組み立てを容易とし、かつ厚みがコンパクトなものとすることが可能となる。条件式(5)の下限を下回ると、プリズムの射出面と像面との間隔が小さくなり、組み立てが困難となる傾向が顕著となる。一方、上限を超えると、プリズムの射出面から像面までの距離が大きくなり、撮像光学系の厚みをコンパクト化が図れない傾向が顕著となる。
請求項10に係る撮像光学系は、請求項1〜9のいずれかにおいて、前記プリズムの入射面及び射出面の少なくとも一面が、光学的パワーを有することを特徴とする。この構成によれば、プリズムの少なくとも一面に光学的パワーが付与されているので、プリズムに光線反射機能とレンズ機能との双方が具備されるようになり、これらの機能を別個の光学素子で実現する構成に比して、部品点数を少なくし、よりコンパクトな撮像光学系を実現することが可能となる。
請求項11に係る撮像レンズ装置は、請求項1〜10のいずれかに記載の撮像光学系を用い、該撮像光学系が、所定の結像面上に被写体の光学像を形成可能な構成とされていることを特徴とする。この構成によれば、例えば携帯電話機や携帯情報端末等に搭載可能なコンパクトで、高精細な撮像レンズ装置を提供することが可能となる。
請求項12に係るデジタル機器は、請求項11に記載の撮像レンズ装置と、光学像を電気的な信号に変換する撮像素子と、前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、前記撮像レンズ装置の撮像光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とする。この構成によれば、コンパクトで、高精細な携帯電話機や携帯情報端末等のデジタル機器を実現し得る。
本発明によれば、反射面を一面有するプリズムを像面に近接した位置に設けた撮像光学系としたのでコンパクト化が確保できる一方で、被写体平面外からの光線が像面に入射することが防止され、ゴーストの発生を抑制できるようになるので、コンパクトで、且つ高精細な撮像光学系、撮像レンズ装置及びデジタル機器を提供することができる。
以下、図面に基づいて、本発明の実施形態につき説明する。
<撮像光学系の構成の説明>
図1は、本発明の一実施形態に係る撮像光学系10の構成を模式的に示す図である。この撮像光学系10は、光学像を電気的な信号に変換する撮像素子15の受光面上に被写体Hの光学像を形成するものであって、入射光をそれぞれ所定の角度(略90度)だけ屈曲して反射する2個の反射プリズム、すなわち光路上被写体H側に配置された被写体側の反射プリズム11(ここでの説明において「入射側プリズム11」という)と、光路上撮像素子15側に近接した位置に配置された撮像素子側のプリズム12(像面に近接した位置に備えられたプリズム;ここでの説明において「像面側プリズム12」という)とが備えられている。
図1に示す撮像光学系10は、物体側(被写体H側)から順に、前記入射側プリズム11、光量を調節するための光学絞り14、フォーカシング等を行うためのレンズ群13、被写体平面外からの光線を遮断するための遮光板3(光線遮光部材)、及び前記像面側プリズム12が配置されてなる。
入射側プリズム11及び像面側プリズム12は、いずれも反射面11c,12cを一面有するプリズムである。そして、入射側プリズム11の入射面11aと、像面側プリズム12の射出面12bとが、略平行となるように配置されている。つまり、被写体Hから撮像素子15までの光軸AXは、入射側プリズム11及び像面側プリズム12が備える反射面11c、12cによりそれぞれ略90度屈曲されている。このような撮像光学系10は、各種デジタル機器(例えば携帯電話機等)の筐体BD内に収容される。なお、当該撮像光学系10は、撮像素子15に近接して像面側プリズム12を配置し、その反射面12cにより被写体光が略90度屈曲される構成としていることから、図中矢印Aで示す方向の厚さ(例えば携帯電話機等の厚さに相当する)が撮像素子15のサイズに依存しなくなり、たとえ大サイズ(高画素数)の撮像素子15を用いたとしても、矢印A方向の厚さが増加しないという利点がある。
また、図2に示す撮像光学系10Aのように、像面側プリズム12のみを撮像素子15の受光面に近接した位置に配置する構成としても良い。このような撮像光学系10Aにおいては、被写体Hから撮像素子15までの光軸AXは、入射レンズ17を経て、像面側プリズム12の反射面12cにて略90度折り曲げられたものとなる。このように本発明においては、種々の光学構成が採用可能であるが、以下の実施形態の説明では、図1に示した撮像光学系10を中心にして説明する。
撮像素子15は、撮像光学系10により結像された被写体Hの光像の光量に応じて、R、G、B各成分の画像信号に光電変換して所定の画像処理回路へ出力するものである。例えば撮像素子15としては、CCD(Charge Coupled Device)が2次元状に配置されたエリアセンサの各CCDの表面に、R(赤)、G(緑)、B(青)のカラーフィルタが市松模様状に貼り付けられた、いわゆるベイヤー方式と呼ばれる単板式カラーエリアセンサで構成されたものを用いることができる。このようなCCDイメージセンサの他、CMOSイメージセンサ、VMISイメージセンサ等も用いることができる。
ここで、撮像素子15が長辺と短辺とを有する矩形状のものである場合、被写体光線の屈曲方向としては、撮像素子15の短辺方向に光線を屈曲させるようにすることが好ましい。撮像素子15の長辺方向に光線を屈曲することでも相応に撮像光学系10の薄型化を達成することができるが、撮像素子15の短辺方向に光線を屈曲する方がより撮像光学系10の薄型化を達成することができるからである。
このような撮像光学系10において、本発明では、像面側プリズム12の形状に特徴を有している。すなわち、図3を参照して、撮像光学系10の光軸AXと像面側プリズム12の反射面12cとが交わる点Qからプリズム射出面12bまでの距離をa、撮像光学系の光路折り曲げ面内における像の最大幅をcとするとき、上記条件式(1)で示したように、a/cが
0.53<a/c<2.0
の関係を満たすように構成される。像面側プリズム12をこのような形状に設定することで、被写体平面外からの光線(画角外光線)が撮像素子15の受光面に入射することを規制でき、ゴーストの発生が抑止されるようになる。
この点について、図4及び図5に基づいて詳述する。図4及び図5は、撮像光学系の光軸を縦断した断面図であって、画角外光線P11、P12の撮像素子15への入射状況を説明するための図である。撮像素子15の受光面(像面)に像をつくる光線は、先ず入射側プリズム101の受光面101aに入射し、反射面101cで反射され、射出面101b、レンズ群103を経て像面側プリズム102の入射面102aへ入射する。そして、像面側プリズム102の反射面102cで反射された後、射出面102bを経て、像面に到達する。しかしながら、このような通常の経路とは異なる経路を経て、像面に到達する光線(画角外光線P11)も存在する。
すなわち、図4に示すように、像面に対応する被写体平面の外からの光線である画角外光線P11は、像面側プリズム102の入射面102aへ入射した後、射出面102bで反射され、反射面102cで再び反射された後に、像面に到達する。これは、画角外光線P11が射出面102bで反射された後に、本来の被写体光が反射される反射面102cの反射有効径内に向かうことが要因である。つまり、被写体光と共に画角外光線P11も反射面102cの有効径内で反射されてしまうことから、画角外光線P11が像面に入射されてしまうものである。このような画角外光線P11が像面に到達するとゴーストとなり、像品質が低下する原因となる。
一方、上記条件式(1)の通りにa/cを設定すると、画角外光線の像面への到達を防止することができる。すなわち、図5に示すように、像面側プリズム102の入射面102aへ入射した画角外光線P12は、射出面102bで反射された後、反射面102cの反射有効径内に向かわずに周囲領域面102dへ向かうことになる。つまり、画角外光線P12を、被写体光が反射される領域から離隔することができる。このため、画角外光線P12と被写体光とが分離されるようになり、画角外光線P12が像面に到達し難くすることができる。とりわけ、前記周囲領域面102dに適宜な反射防止措置を施しておくことにより、画角外光線P12の像面への到達を確実に防止することができる。
ここで、上記条件式(1)におけるa/cの関係を、下記(1)’の条件式を満たすようにすることが望ましい。
0.55<a/c<1.0 ・・・(1)’
さらに、下記(1)’’の条件式を満たすようにすることがより望ましい。
0.56<a/c<1.0 ・・・(1)’ ’
上記(1)’の条件式、特に上記(1)’ ’の条件式を満たす形状とすることで、画角外光線P12を反射面102cの反射有効径内からより遠ざけることができるので、一層ゴーストの発生を抑制できるようになる。
また、撮像光学系10は、像面側プリズム12の入射面12aの側についても、形状的な特徴を有している。すなわち、図3を参照して、入射面12aの全面には遮光板3(光線遮光部材)が設置されていると共に、遮光板3の像側面3a(プリズム反射面側の面)から、撮像光学系の光軸AXと反射面12cとが交わる点Qまでの距離をbとするとき、上記条件式(2)で示したように、b/cが
0.54<b/c<2.0
の関係を満たすように構成される。このような条件式(2)を満足する構成とすることでも、被写体平面外からの光線(画角外光線)が撮像素子15の受光面に入射することを規制でき、ゴーストの発生が抑止されるようになる。
この点について、図6及び図7に基づいて詳述する。図6及び図7は、撮像光学系の光軸を縦断した断面図であって、画角外光線P21、P22の撮像素子15への入射状況を説明するための図である。通常の経路とは異なる経路を経て像面に到達する光線としては、上述した画角外光線P11のほか、図6に示すような画角外光線P21も存在する。すなわち、像面に対応する被写体平面の外からの光線である画角外光線P21(画角外光線P11とは軸対称の方向から入射する光線)は、入射側プリズム111の入射面111a、反射面111c、射出面111b及びレンズ群113を経た後、像面側プリズム112の入射面112aへ入射する。その後、画角外光線P21は、反射面112cで反射され、入射面112aで再び反射された後に、像面に到達する。これは、画角外光線P21が反射面112cの有効径内で反射された後に、入射面112aの有効径内に向かうことが要因である。つまり、画角外光線P21が入射面112aの有効径内で反射されてしまうことから、画角外光線P21が像面に入射されてしまうものである。このような画角外光線P21が像面に到達するとゴーストとなり、像品質が低下する原因となる。
一方、上記条件式(2)の通りにb/cを設定すると、画角外光線の像面への到達を防止することができる。すなわち、図7に示すように、像面側プリズム112の入射面112aへ入射した画角外光線P22は、反射面112cで反射された後、入射面112aの有効径内に向かわずに周囲領域面112dへ向かうことになる。つまり、画角外光線P22を、入射面112aの有効径内から離隔することができる。これにより、反射面112cで反射されて入射面112aに向かう画角外光線P12を像面に到達し難くすることができる。とりわけ、前記周囲領域面112dに適宜な反射防止措置を施しておくことにより、画角外光線P22の像面への到達を確実に防止することができる。
ここで、上記条件式(2)におけるb/cの関係を、下記(2)’の条件式を満たすようにすることが望ましい。
0.55<b/c<2.0 ・・・(2)’
さらに、下記(2)’’の条件式を満たすようにすることがより望ましい。
0.56<b/c<2.0 ・・・(2)’ ’
上記(2)’の条件式、特に上記(2)’ ’の条件式を満たす形状とすることで、画角外光線P22を入射面112aの有効径内からより遠ざけることができるので、一層ゴーストの発生を抑制できるようになる。
図8(a)は、遮光板3の一例を示す平面図である。遮光板3は、遮光性を有するプレートに、開口部31が形成されてなる。この開口部31は、撮像素子15のサイズにマッチさせたものであり、ここでは撮像素子15の長辺に対応する長辺方向開口幅φxと、短辺に対応する短辺方向開口幅φyを有する長方形の開口部とされている例を示している。このような遮光板3は、図1、図2において、上記b/cの関係を満たすように像面側プリズム12の入射面12aに配置される。
このように像面側プリズム12の入射面12aに遮光板3を配置する場合において、画角0度で撮像光学系10に入射する主光線の進行方向をプラスとしたときの、遮光板の像側面3aから前記入射面12aまでの光軸上の距離をd(図3参照)、遮光板3の開口幅(光路折り曲げ面内における開口幅;この場合、短辺方向開口幅)をφyとするとき、上記条件式(3)、(4)で示したように、d/c及びφy/cが、
−0.1<d/c<0.4
0.3<φy/c<2.0
の関係を満たすようにすることが望ましい。かかる構成とすることで、ゴーストの原因となる光線の像面への入射を規制できるだけでなく、製造難度や光学特性に優れた撮像光学系を提供できる。なお、条件式(3)において、図8(b)に示す像面側プリズム12’のように、入射面12aが凸形状を有し、遮光板3の像側面3aが、入射面12aの面頂点よりも像面側にある場合に、d/cはマイナス値となる。
上記条件式(3)、(4)に加えて、下記(6)の条件式を満たすようにすることが望ましい。
0.01<d/a<0.15 ・・・(6)
かかる構成とすることで、像面側プリズム12の入射面12aに対してより近い位置でゴーストの原因となる光線の像面への入射を規制できるので、一層ゴーストを抑制することが可能となる。
上述の通り、図5に示した周囲領域面102d、つまり反射面101cの反射有効径の周囲、また、図7に示した周囲領域面112d、つまり入射面112aの有効径の周囲には、適宜な反射防止措置を施すことが望ましい。図9は、このような反射防止措置の具体例を示す説明図である。ここでは、図9(a)に示す通りに、像面側プリズム120の入射面120a、射出面120b及び反射面120cを定めるものとする。
図9(b)は、反射面120cの周囲領域面と入射面120aの周囲領域面とに、それぞれ光吸収層121、122を設けた例を示している。このような光吸収層121、122は、例えば光吸収性を有する黒塗り層にて構成することができる。かかる光吸収層121、122を設けることで、反射面120c及び入射面120aの有効径外に到達した画角外光線を吸収することができ、像面に入射させないようにすることができる。なお、光吸収層121、122を、光散乱層に置き換えるようにしても良い。かかる光散乱層としては、例えばすりガラス加工層のような粗面加工層を例示することができる。
次に、図9(c)は、像面側プリズム120の上側角部(入射面120aと反射面120cとが交わる面)に、実質的に反射面として機能しないようにする形状変形部123を設けた例を示している。この形状変形部123は、反射面120cの有効径外の部位を、入射面120aと平行な面とすることで、反射面120cの有効径外に到達した画角外光線を像面向けて反射させない(像面側プリズム120の外へ放出させる)ようにするものである。なお、形状変形部123に、図9(b)に示した光吸収層(光散乱層)121を設けるようにしても良い。
また、図9(d)は、像面側プリズム120の上側角部(入射面120aと反射面120cとが交わる面)と、右下角部(射出面120bと反射面120cとが交わる面)とに、各々切断部124、125を設けた例を示している。これら切断部124、125は、反射面120cの有効径外の部位を除去して形成されたものである。このような切断部124、125の形成によっても、反射面120cの有効径外に到達した画角外光線を像面向けて反射させないようにすることができる。また、像面側プリズム120をコンパクトにすることができるという利点もある。
図1、図3に戻って、撮像光学系10は、像面側プリズム12の射出面12bから撮像素子15の受光面(像面)までの光軸上の距離をeとするとき、上記(5)式で示したように、e/cが、
0.01<e/c<0.4
の関係を満たしていることが望ましい。これにより、撮像光学系10の組み立てを容易とし、かつ厚みをコンパクトなものとすることができる。なお、上記条件式(5)におけるe/cの関係を、下記(5)’の条件式を満たすようにすることがより望ましい。
0.01<e/c<0.35 ・・・(5)’
さらに、下記(5)’’の条件式を満たすようにすることがより一層望ましい。
0.01<e/c<0.30 ・・・(5)’’
撮像光学系10の入射側プリズム11の入射面11a及び射出面11b、また像面側プリズム12の入射面12a及び射出面12bの少なくとも一面が、光学的パワーを有する構成とすることが好ましい。これらの構成によれば、前記入射面11a、12a又は射出面11b、12bがレンズ機能面として活用されるので、その分だけ別個の光学素子の使用を省くことができ、撮像光学系10のコンパクト化を図ることができるようになる。
また、図1に示す撮像光学系10のように、入射側プリズム11の入射面11aより光路上被写体H側や、像面側プリズム12の射出面12bより光路上像側(撮像素子15側)には、屈折力(光学的パワー)を有する光学素子を配置せず、入射側プリズム11の入射面11aと像面側プリズム12の射出面12bとの間の光路上にのみ屈折力を有する光学素子を配置する構成とすることが望ましい。これにより、撮像光学系10の厚み(矢印A方向のサイズ)を薄くすることができ、撮像光学系10の大型化を抑制することができる。
さらに、入射側プリズム11及び像面側プリズム12の間に、レンズ又はレンズ群(レンズ群13)を配置することが望ましい。これは、該レンズにより像面湾曲や収差等の補正を行うことができ、撮像光学系10の光学性能を向上することができるからである。なお、前記のようなレンズ等を配置する場合に、このレンズとして反射プリズムより矢印Aの方向に小さいレンズを採用することで、該レンズの搭載による矢印A方向のサイズが大型化する問題は発生しない。
そして、このレンズ又はレンズ群を光軸方向(入射側プリズム11の入射面11aと略平行な方向)に駆動してフォーカシングを行うように構成するのが好ましい。これは、反射プリズムを含む撮像光学系全体を光軸方向に駆動するように構成した場合、駆動対象物の重量増加によりモータの大型化を招来したり、前記駆動による光軸のずれが発生したり、撮像光学系の各光学素子の保持機構が複雑となるからであり、2つの反射プリズムの間にレンズ又はレンズ群を配置することで、反射プリズムや光学絞りを固定することができるとともに、このレンズ又はレンズ群を光軸方向に駆動するようにすることで、モータの大型化、光軸のずれの発生、前記保持機構の複雑化の問題を解消することができる。
なお、撮像光学系10において、入射側プリズム11及び像面側プリズム12、並びにレンズ群13の製造容易性の点から、撮像光学系10の各光学面は、光軸AXを中心に軸対称な面(回転対称面)とすることが好ましい。軸非対称な光学系は、製造難易度を上げるばかりでなく、組み込み時の評価や、調整に対しても難易度を押し上げるために、コストが高くなるために望ましくない。逆に、コストが高くなることを許容するならば、軸非対称な面を反射面に用いることも可能である。
図3に例示しているように、像面側プリズム12の射出面12bと撮像素子15との間には、ローパスフィルタ16を介在させることが望ましい。ローパスフィルタ16は、ノイズ成分を除去する平行平板状の光学部品であって、例えば所定の結晶軸方向が調整された水晶等を材料とする複屈折型ローパスフィルタや、必要とされる光学的な遮断周波数特性を回折効果により実現する位相型ローパスフィルタ等が適用可能である。なお、ローパスフィルタ16は必ずしも備える必要はなく、代わりに撮像素子15の画像信号に含まれるノイズを低減する赤外線カットフィルタを用いるようにしてもよい。さらに、光学的ローパスフィルタ16の表面に赤外線反射コートを施して、両方のフィルター機能を一つで実現してもよい。
続いて、入射側プリズム11及び像面側プリズム12の材質並びに製法について説明する。これらプリズムの材質については特に制限はなく、所定の光透過率や屈折率などを備えている光学材料であれば良く、各種ガラス材料や樹脂(プラスチック)材料を用いることができる。しかし、プラスチック材料を用いれば、軽量で、且つインジェクションモールド等により大量生産が可能であることから、ガラス材料で作製する場合に比して、コストの抑制や撮像光学系10の軽量化の面で有利である。特に、入射面及び/又は射出面に屈折力を具備する反射プリズムを作成する場合、ガラス材料によれば研磨工程を経て作製する必要があるが、プラスチック材料の場合は型枠等を用いて容易に作製することができるという利点もある。
但し、インジェクションモールドによると、成型後に若干の熱収縮が避けられないため、高い精度が要求される光学部品の場合は、かえって製造難易度が高くなる場合がある。ところで、高い精度を要求される度合いは、像面側プリズム12よりも入射側プリズム11の方が高い。これは、像面側プリズム12の方が撮像素子15に近く、比較的誤差感度が小さいからである。従って、少なくとも像面側プリズム12をプラスチック材料で構成し、要求される精度に応じて入射側プリズム11をプラスチック材料とするか或いはガラス材料とするかの選択を行うことが望ましい。なお、ガラスモールドレンズを用いる場合は、成形金型の消耗をできるだけ防ぐために、ガラス転移点(Tg)が400℃以下のガラス材料を使用するのが望ましい。
ここで、入射側プリズム11及び/又は像面側プリズム12をプラスチック材料で構成する場合、そのプラスチック材料として、例えばポリカーボネイトやPMMA等の各種光学プラスチック材料を用いることができる。この中でも、吸水率が0.01%以下のプラスチック材料を選択することが望ましい。プラスチック材料には、空気中の水分と結合する吸湿作用があり、このような吸湿が生じると、設計値通りにプリズムを製作しても吸湿により屈折率等の光学特性が変化する場合がある。従って、吸水率が0.01%以下のプラスチック材料を用いることで、吸湿の影響を受けない撮像光学系10を構築できるようになる。このようなプラスチック材料としては、例えばZEONEX(日本ゼオン株式会社商品名)を用いることができる。
ところで、プラスチック材料は温度変化時の屈折率変化が大きいため、撮像光学系10を構成するプリズム及びレンズの全てをプラスチックレンズで構成すると、周囲温度が変化した際に、撮像光学系10の像点位置が変動してしまうという懸念がある。このような像点位置変動が無視できない仕様の撮像ユニットにおいては、ガラス材料にて形成されるレンズ(例えばガラスモールドレンズ)とプラスチックレンズとを混在させ、且つ複数のプリズム及びレンズ間で温度変化時の像点位置変動をある程度相殺するような屈折力配分とすることで、この温度特性の問題を軽減することができる。
或いは、温度変化時の屈折率変化が小さいプラスチック複合部材にて、入射側プリズム11、像面側プリズム12及びその他の光学レンズを構成することが望ましい。このようなプラスチック複合部材として、プラスチック材料中に無機微粒子を分散配合してなる部材を用いることができる。
一般に、透明なプラスチック材料に微粒子を混合させると、光の散乱が生じ透過率が低下するため、光学材料として使用することは困難であったが、微粒子の大きさを透過光束の波長より小さくすることにより、散乱が実質的に発生しないようにできる。プラスチック材料は温度が上昇することにより屈折率が低下してしまうが、無機粒子は温度が上昇すると屈折率が上昇する。そこで、これらの温度依存性を利用して互いに打ち消しあうように作用させることにより、屈折率変化がほとんど生じないようにすることができる。具体的には、母材となるプラスチック材料に最大長が30ナノメートル以下の無機粒子を分散させることにより、屈折率の温度依存性のきわめて低いプラスチック材料となる。例えばアクリルに酸化ニオブ(Nb)の微粒子を分散させることで、温度変化による屈折率変化を小さくすることができる。上記撮像光学系10において、入射側プリズム11、像面側プリズム12及びレンズ群13として、このような無機粒子を分散配合させたプラスチック複合部材を用いることにより、撮像レンズ全系の温度変化時の像点位置変動を小さく抑えることが可能となる。
ここで、屈折率の温度変化について詳細に説明する。屈折率の温度変化Aは、ローレンツ・ローレンツの式に基づいて、屈折率nを温度tで微分することにより、下記(7)式にて表される。但し、(7)式においてαは線膨張係数、[R]は分子屈折である。
Figure 2007133096
プラスチック素材の場合は、一般に上記(7)式中第1項に比べ第2項の寄与が小さく、ほぼ無視できる。例えば、PMMA樹脂の場合、線膨張係数αは7×10−5であり、上記式に代入すると、A=−1.2×10−4[/℃]となり、実測値と概ね一致する。 具体的には、従来は−1.2×10−4[/℃]程度であった屈折率の温度変化Aを、絶対値で8×10−5[/℃]未満に抑えることが好ましく、特に絶対値で6×10−5[/℃]未満にすることが好ましい。
本実施形態で適用可能なプラスチック材料の屈折率の温度変化A(=dn/dT)を表1に示す。
Figure 2007133096
また、本実施形態で適用可能な無機材料の屈折率の温度変化A ( = d n / d T ) は、プラスチック材料と符号の向きが変わる。これを表2 に示す。
Figure 2007133096
上述の通り、入射側プリズム11及び/又は像面側プリズム12は、インジェクションモールド法(或いはガラスモールド法)により製造することが望ましい。この場合、次の点に留意することが望ましい。すなわち、インジェクションモールドを行う場合、樹脂を金型に注入するためのゲートが必要となる。そのようなゲートはプリズムのどの面に対向させても良いが、プリズムにおいて光の入射、出射及び反射が行われない面に配置することが望ましい。これは、一般にゲート付近は樹脂流の痕跡が残留するなどして複屈折が発生し易く、光学特性に影響を与える可能性があることから、仮に複屈折が発生してもその影響を低減できるからである。
図10は、図1に示した撮像光学系10を立体的に描いた斜視図である。図10に基づいて、上記の望ましい構成を説明すると、入射側プリズム11をインジェクションモールドで形成する場合においては、金型注入用のゲートを、入射面11a、射出面11b及び反射面11cには配置せず、これらの面の側面である不使用面11mに配置する。この場合、通常ゲートは断面長方形の角柱状を呈していることから、そのような角柱状のゲート痕Ge1(入射面11aと広幅面が平行なゲート痕Ge1)が前記不使用面11mに残存するようになる(このゲート痕Ge1は誇張して描いている)。このようにゲートを配置すると、当該ゲート近傍で複屈折が発生したとしても、入射側プリズム11の有効使用領域pw1(図中のハッチング部位;光線が通過可能な領域)に与える影響を低減することができる。
像面側プリズム12も同様に、金型注入用のゲートを、入射面12a、射出面12b及び反射面12cには配置せず、これらの面の側面である不使用面12mに配置する。この場合、角柱状のゲート痕Ge2(反射面12cと広幅面が平行なゲート痕Ge2)が前記不使用面12mに残存するようになるが、同様に当該ゲート近傍で複屈折が発生したとしても、像面側プリズム12の有効使用領域pw2(図中のハッチング部位)に与える影響を低減することができる。
インジェクションモールドを行った後、その成型品(この場合はプリズム)を金型から取り出すときに、イジェクトピンで当該成型品を押圧する手法が汎用されている。このようなイジェクトピンの当接部位には、やはり痕跡が残り、この部分においても光学特性が乱れる場合がある。そこで図10に示す例では、入射側プリズム11については、その入射面11aにおける不使用領域に対応する部位にイジェクトピンを配置し、前記不使用領域にピン痕跡ep1が現れるようにしている。また像面側プリズム12については、その反射面12cにおける不使用領域に対応する部位にイジェクトピンを配置し、前記不使用領域にピン痕跡ep2が現れるようにしている。なお、前記ピン痕跡ep1、ep2が、それぞれ不使用面11m、12mと対向する反対側の不使用面11n、12nに現れるよう、イジェクトピンを配置するようにしても勿論良い。
さらに、この撮像光学系10のように、光学絞り14が入射側プリズム11と像面側プリズム12との間に配置されている場合(図1参照)、組み付け時において、図10に示すように、入射側プリズム11及び像面側プリズム12のゲート痕Ge1、Ge2が同じ方向に存在するように、ゲート方向を調整することが望ましい。この点を、図11に基づいて説明する。
図11は、図10に示した撮像光学系10についての、模式的な光路図である。図示するように、入射側プリズム11及び像面側プリズム12についてのゲート痕Ge1、Ge2は、同方向に存在するそれぞれの不使用面11m、12mに形成されている。なお、この不使用面11m、12mに対向するもう一方の不使用面11n、12nは、ゲート痕Ge1、Ge2が存在しないフラット面(形状的に安定した面)でもあることから、入射側プリズム11及び像面側プリズム12共通のプリズム保持部材18(筐体BDのフレーム部材等に相当)に固定されている。これにより、プリズムの高精度な組み付けが行えるようになる。
ゲート痕Ge1、Ge2をそれぞれの不使用面11m、12mに設けることで、複屈折等の影響を低減できるとはいえ、完全にその影響を取り除くことは難しい。このような、ゲート痕Ge1、Ge2近傍の光学特性に影響を与えるような領域を、図11においてそれぞれゲート影響領域Ge1m、Ge2mとして示している(図中のハッチング部位が相当する)。
ところで、光学絞り14が入射側プリズム11と像面側プリズム12との間に配置されている場合、該光学絞り14の前後で光像が反転するようになる。いま、入射側プリズム11の入射面11aのゲート痕Ge1側から入射する光線opの光路を考える。入射側プリズム11内において、光線opはゲート影響領域Ge1mを通過することから複屈折率等の影響を受けてしまう。しかし、光学絞り14を通過すると光線opはゲート痕Ge1側から離間する方向に屈折する。そして、像面側プリズム12に入射すると、ゲート影響領域Ge2mから離れた領域を通過するようになる。従って、光線opは、入射側プリズム11及び像面側プリズム12のゲート影響領域Ge1m、Ge2mを重畳的に通過するようなことはなく、残存複屈折の影響は分散され、画面の片側だけ複屈折等の影響が偏在するような不具合は発生しなくなる。
上述したような樹脂材料を用いたインジェクションモールド法は、量産化に適し、また反射プリズムの入射面や射出面に高精度な凹面等を形成できるという利点があるが、樹脂材料を用いる関係上、高い屈折率を有する反射プリズムを製作することはできない。そこで、高精度で高屈折率のプリズムが求められる場合は、高屈折率のガラス素材をプリズム形状の金型を用いて加熱加圧するガラスモールド法により製作することが望ましい。高屈折率のプリズムを適用すると、光路長の短縮化や屈折面における収差の発生の低減化を図ることができ、これにより撮像光学系10の小型化、レンズ枚数の削減が可能となり、コンパクト化に有利となる。
図12は、本発明に係る撮像光学系の、他の実施形態の構成を模式的に示す図である。この撮像光学系は、ズーミング(変倍)動作が可能とされた変倍光学系10Bについてのものである。この変倍光学系10Bは、先に図1に示した撮像光学系10と同様に、光学像を電気的な信号に変換する撮像素子15の受光面上に被写体Hの光学像を形成するものであって、同様に2個の反射プリズム、すなわち光路上被写体H側に配置された入射側プリズム11と、光路上撮像素子15側に配置された像面側プリズム12とが備えられている。そして、入射側プリズム11と像面側プリズム12との間には、光学絞り14、遮光板3に加え、変倍動作並びにフォーカシング動作を行うためのレンズ群113が配置されている点で、先の撮像光学系10と相違している。
前記レンズ群113は、それぞれ図中の矢印B1,B2方向へ移動自在とされた変倍レンズ1131、1132から構成されている。つまり、前記変倍レンズ1131、1132は、これらレンズ群の光軸方向(入射側プリズム11の入射面11aと略平行な方向)に駆動してズーミングが行われる。これは、反射プリズムを含む変倍光学系全体を光軸方向に駆動するように構成した場合、光学系全体の厚みが変化することになり薄型化に課題が出たり、駆動対象物の重量増加により駆動用モータの大型化を招来したりするからである。さらに、前記駆動による光軸のずれが発生したり、変倍光学系の各光学素子の保持機構が複雑になったりする課題もある。2つの反射プリズムの間にレンズ群を配置し、このレンズ群を光軸方向に駆動するようにすることで、反射プリズムや光学絞りを固定できるとともに、駆動用モータの大型化、光軸のずれの発生、前記保持機構の複雑化の問題を解消することができる。
一般にズーミングには、バリエータとコンペンセータとの2つのレンズ群の移動が必要である。したがって、良好な変倍を行うためには、2つのプリズム間に少なくとも2つのレンズ群が必要で、さらに2つとも光軸方向に移動することが望ましい。光軸方向に移動させることで、変倍に際して光学系の厚みを変化させないので、携帯電話機や携帯情報端末への搭載が可能な薄型で、コンパクトな変倍光学系が実現できる。また2つのレンズ群を移動させることにより、1つのレンズ群を移動させる構成に比べ各レンズ群の移動距離を抑えることが可能となり、光学系をコンパクト化することができる。しかし、光学式ズーム光学系のようにズーム解を適切に調整すれば、変倍時に移動するレンズ群を1つにすることも可能である。
図12に示す変倍光学系10Bにおいては、上述のような要請を満たすため、入射側プリズム11及び像面側プリズム12の間に変倍レンズ1131、1132が配置されているものである。すなわち、これら変倍レンズ1131、1132が、入射側プリズム11の入射面11aと平行な方向(図中の矢印B1,B2方向)にそれぞれ移動されることで、ズーミングが行われる構成とされている。このような変倍光学系10Bに対しても、上記で説明した各種実施態様の構成を適用することができる。
<撮像光学系を組み込んだデジタル機器の説明>
次に、以上説明したような撮像光学系10(変倍光学系10B)が組み込まれたデジタル機器について説明する。図13は、本発明に係るデジタル機器の一実施形態を示す、カメラ付携帯電話機20の外観構成図である。なお、本発明において、デジタル機器としては、デジタルスチルカメラ、ビデオカメラ、デジタルビデオユニット、携帯情報端末(PDA:Personal Digital Assistant)、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器(マウス、スキャナ、プリンタ等)を含むものとする。デジタルスチルカメラ、デジタルビデオカメラは、被写体の映像を光学的に取り込んだ後、その映像につき半導体素子を使って電気信号に変換し、デジタルデータとしてフラッシュメモリ等の記憶媒体に記憶する撮像レンズ装置である。更に本発明では、被写体の静止又は動きのある映像を光学的に取り込む、コンパクトな撮像レンズ装置を内蔵する仕様を備えた携帯電話機、携帯情報端末、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器も含んでいる。
図13(a)は、携帯電話機20の操作面を、図13(b)は、操作面の裏面、つまり背面を示している。携帯電話機20には、上部にアンテナ21、操作面には図の上下方向に長辺Lt1を有する長方形のディスプレイ22、画像撮影モードの起動及び静止画と動画撮影の切り替えを行う画像切替ボタン23、シャッターボタン24及びダイヤルボタン25が備えられている。
なお、図13(c)に示すように、変倍光学系が組み込まれる携帯電話機20Aの場合は、その操作面に変倍(ズーミング)を制御する変倍ボタン28が備えられている。変倍ボタン28は、その上端部分に望遠を表す「T」の印字が、下端部分に広角を表す「W」の印字がされ、印字位置が押下されることで、それぞれの変倍動作が指示可能な2接点式のスイッチ等で構成されている。
携帯電話機20には、本発明に係る撮像光学系10によって構成された撮像レンズ装置(カメラ)26及びCCD等の撮像素子15が内装され、その撮像レンズ装置26の被写体光が入射される撮影レンズ27が背面に露出している。なお、該撮影レンズ27の裏面には、入射側プリズム11の入射面11aが配置されている。つまり、撮像レンズ装置26の被写体光入射面とディスプレイ22とは、携帯電話機20の表裏面(背面と操作面)にそれぞれ配置されている。これにより、撮像レンズ装置26により取得される画像をディスプレイ22で表示させながら撮像を行うことができるようになる。
ここで、撮像素子15は、撮像エリアの縦横比が例えば4:3の長方形を呈するものが用いられている。汎用型の撮像素子は、一般的にこのような長方形であるが、このような撮像素子15を備える撮像レンズ装置26の携帯電話機20への組み込み形態は、前記長方形のディスプレイ22との関係において、図12に示すような態様とすることが望ましい。すなわち、ディスプレイ22が図13(a)の上下方向に長辺Lt1を有している場合、撮像素子15もまた、図13(b)の上下方向にその長辺Lt2を有する組み込み構成とすることが望ましい。換言すると、ディスプレイ22の長辺Lt1と撮像素子15の長辺Lt2とが平行方向(同一方向)になるように組み付けられることが望ましい。これにより、撮影時に、撮影レンズ27から入射され長方形の撮像エリアを持つ撮像素子15上に結像された被写体光像は、長方形のディスプレイ22上に有効に表示されるようになる。
つまり、ディスプレイ22の長辺Lt1と撮像素子15の長辺Lt2とが平行方向に配置されていると、撮像素子15により取得された画像の長辺方向と、表示画像の長辺方向とが一致することから、ディスプレイ22の表示エリアを有効に活用した表示が行え、画像を大きく表示させることができる。すなわち、ディスプレイ22の面積を最大に生かした表示が可能となり、撮影時の構図の確認等に有利である。図13(c)に示す、変倍光学系が組み込まれた携帯電話機20Aの場合でも同じである。
以上の通り構成された携帯電話機20の撮像動作について説明する。静止画を撮影するときは、まず、画像切替ボタン23を押すことで、静止画撮影モードを起動する。ここでは、画像切替ボタン23を一度押すことで、動画撮影モードに切り替わる。静止画撮影モードが起動されると、撮像レンズ装置26を通して被写体の像がCCD等の撮像素子15で周期的に繰り返し撮像され、表示用メモリに転送された後に、ディスプレイ22に導かれる。ユーザは、ディスプレイ22を覗くことで、主被写体をその画面中の所望の位置に収まるように調整することができる。この状態でシャッターボタン24を押すことで、静止画像を得ることができる。すなわち、静止画用のメモリに画像データが格納される。
また、動画撮影を行う場合には、画像切替ボタン23を一度押すことで静止画撮影モードを起動した後、もう一度画像切替ボタン23を押して動画撮影モードに切り替える。後は静止画撮影のときと同様にして、ディスプレイ22を覗き、撮像レンズ装置26を通して得た被写体の像が、その画面中の所望の位置に収まるように調整する。この状態でシャッターボタン24を押すことで、動画撮影が開始される。そして、もう一度シャッターボタン24を押すことで、動画撮影は終了する。動画像は、ディスプレイ22のための表示メモリに導かれると共に、動画像用のメモリに導かれて格納される。
一方、図13(c)に示す変倍光学系が組み込まれた携帯電話機20Aの場合、上記の動作に加えて、例えば被写体が撮影者から離れた位置にある、あるいは近くの被写体を拡大したいためズーム撮影を行うときには、変倍ボタン28の上端「T」の印字部分を押すと、その状態が検出され、押している時間に応じて変倍のためのレンズ駆動が実行されて、連続的にズーミングが行われる。また、ズーミングし過ぎた場合など、被写体の拡大率を下げたい場合には、変倍ボタン28の下端「W」の印字部分を押すことで、その状態が検出され、押している時間に応じて連続的に変倍が行われる。このようにして、撮影者から離れた被写体であっても、変倍ボタン28を用いてその拡大率を調節することができる。そして、通常の等倍撮影と同様、主被写体がその画面中の所望の位置に収まるように調整し、シャッターボタン24を押すことで、拡大された静止画像を得ることができる。また、動画撮影を行う場合にも、変倍ボタン28を用いて被写体像の拡大率を調節することができる。すなわち、シャッターボタン24を押すことで動画撮影が開始されるが、この撮影中、変倍ボタン28により、被写体の拡大率を随時変えることも可能である。ここで、もう一度シャッターボタン24を押すことで、動画撮影は終了する。
以上の動作は、上記のような携帯電話機20(20A)のほか、同様に表示素子としてのディスプレイを備える各種デジタル機器においても同様であり、例えば折り畳み式の携帯電話機や、デジタルスチルカメラ、デジタルビデオカメラ、携帯情報端末、パーソナルコンピュータ、モバイルコンピュータ、又はこれらの周辺機器においても同様である。
<撮像光学系のより具体的な実施形態の説明>
以下、図1に示したような撮像光学系10、すなわち図13に示したようなカメラ付携帯電話機20に搭載される撮像レンズ装置26を構成する撮像光学系10の具体的構成を、図面を参照しつつ説明する。なお、以下の説明、図表において使用されている用語は、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(486.13nm)、C線(656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
νd=(nd−1)/(nF−nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。
(d)レンズについて、「凹」、「凸」又は「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているもの(近軸曲率に基づいた表記)とする。
図14は、実施例1の撮像光学系51の構成を示す、光軸(AX)を縦断した断面図である。この図14(及び図15〜図23)には、物体側から入射した光の進む経路(光路)の概略も示してあり、その光路の中心線が光軸(AX)である。この撮像光学系51は、光路上物体側から順に、全体として負の光学的パワーを有する第1反射プリズム(PR1;図1における入射側プリズム11が相当)、物体側に凸の正メニスカスレンズからなる第1レンズ(L1)にて構成される第1レンズ群、両凹の負レンズからなる第2レンズ(L2)と両凸の正レンズからなる第3レンズ(L3)との接合レンズにて構成され、全体として正の光学的パワーを有するる第2レンズ群、及び全体として負の光学的パワーを有する第2反射プリズム(PR2;図1における像面側プリズム12が相当)を有して構成されている。なお、第2反射プリズム(PR2)の射出面(S6)側には、撮像素子(SR)が配置されている。この撮像素子(SR)は、縦横比が例えば3:4の撮像素子である。
そして、前記第1レンズ(L1)と第2レンズ(L2)との間には光学絞り(ST)が配置され、また第2反射プリズム(PR2)の入射面(S4)側には遮光板(SH)が配置されている。
第1反射プリズム(PR1)は、入射面(S1)が負の光学的パワーを、射出面(S3)が正の光学的パワーを有しており、入射面(S1)と射出面(S3)との間の光路上に平面状の反射面(S2)を備えている。より詳しくは、入射面(S1)は光軸から離れるに従って屈折力が弱くなる負の光学的パワーを有し、また射出面(S3)は、光軸から離れるに従って屈折力が弱くなる正の光学的パワーを有している。また、第2反射プリズム(PR2)は、入射面(S4)が負の光学的パワーを、射出面(S6)も負の光学的パワーを有しており、入射面(S4)と射出面(S6)との間の光路上に平面状の反射面(S5)を備えている。より詳しくは、入射面(S4)は光軸から離れるに従って屈折力が弱くなる負の光学的パワーを有し、また射出面(S6)は、有効径の範囲内で、光軸から周辺へ向かうに従い物体側に凸の形状から物体側に凹の形状に変曲する面を備えている。
図15は、図14における第1反射プリズム(PR1)及び第2反射プリズム(PR2)を、それぞれ当該反射プリズムと略等価な機能を有するレンズ(LP1及びLP2)に置換して構成した撮像光学系51の構成を示す図である。また、図15に示した番号ri(i=1,2,3,・・・)は、物体側から数えたときのi番目のレンズ面であり、riに*が付された面は非球面である。なお、接合レンズにおけるレンズ面は、接合レンズの両面のみをレンズ面として扱うのではなく、その接合面も1面として扱っている。例えば、2枚の単レンズで構成される接合レンズの場合は、3面のレンズ面が数えられる。
このような構成の下で、図15の物体側(被写体側)から入射した光線は、第1反射プリズム(PR1)の入射面(S1)に入射して反射面(S2)で略90度に屈曲して反射された後、射出面(S3)から射出される。そして、第1レンズ(L1)、光学絞り(ST)、第2レンズ(L2)及び第3レンズ(L3)を順次通過して第2反射プリズム(PR2)の入射面(S4)へ入射される。この際、遮光板(SH)により、画角外光線が遮光される。その後、第2反射プリズム(PR2)の反射面(S5)で再び略90度に屈曲して反射された後、射出面S6から射出し、撮像素子(SR)の撮像面に光学像を形成するものである。
そして、撮像素子(SR)において、前記光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理や画像圧縮処理等が施されて、デジタル映像信号として図13に示すような携帯電話機20のメモリに記録されたり、有線あるいは無線により他のデジタル機器に伝送されたりする。なお、撮像光学系、特に第1反射プリズム(PR1)の汚損を防止するため、第1反射プリズム(PR1)の入射面より被写体側の位置にカバーガラスを設けるようにしても良い。
実施例1の撮像光学系51における、各レンズのコンストラクションデータを表3、表4に示す。また、上述した条件式(1)〜(5)を、実施例1に係る撮像光学系51に当てはめた場合のそれぞれの数値を、後掲の表14に示す。
Figure 2007133096
Figure 2007133096
表3に示したものは、左から順に、各光学面の番号、各面の曲率半径(単位はmm)、光軸上での各光学面の間隔(軸上面間隔、単位はmm)、各レンズの屈折率、そしてアッベ数である。軸上面間隔は、対向する一対の面(光学面、撮像面を含む)間の領域に存在する媒質が空気であるとして換算した距離である。ここで、各光学面の番号ri(i=1,2,3,…)は、図15に示したように、図14の光路図と略等価な光路図において、光路上の物体側から数えてi番目の光学面であり、riに*が付された面は非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)である。なお、光学絞り(ST)、遮光板(SH)及び平行平面板(PL)の両面、そして撮像素子(SR)の受光面の各面は平面であるために、それらの曲率半径は∞である。このような扱いは、後述する他の実施例についての光路図(図16〜図23)でも同様で、図中の符号の意味は、基本的に図14、図15と同様である。但し、全く同一のものであるという意味ではなく、例えば、各図を通じて、最も物体側のレンズ面には同じ符号(r1)が付けられているが、これらの曲率等が実施形態を通じて同一であるという意味ではない。なお表3において、面r2,r3及び面r14,r15は、それぞれ撮像光学系内に第1反射プリズム(PR1)及び第2反射プリズム(PR2)を設置するための仮想面である。面r2,r3の中央及び面r14,r15の中央で光軸は略直角に折れ曲がる。図15では、便宜上、かかる仮想面を加えて表示している(以下の実施例でも同様)。
光学面の非球面形状は、面頂点を原点とし、物体から撮像素子に向かう向きをz軸の正の向きとするローカルな直交座標系(x,y,z)を用いた下記(8)式で定義する。
Figure 2007133096
但し、z:高さhの位置でのz軸方向の変位量(面頂点基準)
h:z軸に対して垂直な方向の高さ(h2=x2+y2
c:近軸曲率(=1/曲率半径)
A,B,C,D:それぞれ4,6,8,10次の非球面係数
k:円錐係数
である。上記(8)式から分かるように、表3に示した非球面レンズに対する曲率半径は、レンズの面頂点付近の値を示している。
以上のようなレンズ配置、構成のもとでの、実施例1における撮像光学系51の球面収差(LONGITUDINAL SPHERICAL ABERRATION)、非点収差(ASTIGMATISM)そして歪曲収差(DISTORTION)を、図24の左側から順に示す。この図において、球面収差と非点収差の横軸は焦点位置のずれをmm単位で表しており、歪曲収差の横軸は歪量を全体に対する割合(%)で表している。球面収差の縦軸は、入射高で規格化した値で示してあるが、非点収差と歪曲収差の縦軸は像の高さ(像高)(単位mm)で表してある。
さらに球面収差の図には、破線で赤色(波長656.28nm)、実線で黄色(いわゆるd線;波長587.56nm)、そして二点鎖線で青色(波長435.84nm)と、波長の異なる3つの光を用いた場合の収差をそれぞれ示してある。また、非点収差の図中、破線(T)は、タンジェンシャル(メリディオナル)像面を近軸像面からの光軸(AX)方向のずれ量(横軸、単位mm)で表したものであり、実線(S)は、サジタル(ラディアル)像面を近軸像面からの光軸(AX)方向のずれ量(横軸、単位mm)で表したものである。さらに、非点収差及び歪曲収差の図は、上記黄線(d線)を用いた場合の結果である。
この図24から分かるように、実施例1の撮像光学系51は、球面収差、非点収差及び歪曲収差が十分に抑えられており、優れた光学特性を示している。また、この実施例1における無限遠合焦状態でのF値及び焦点距離(単位mm)を、後掲の表15にそれぞれ示す。これらの表から、本発明では、明るい光学系が実現できていることがわかる。
図16は、実施例2の撮像光学系52の構成を示す、光軸(AX)を縦断した断面図である。この実施例2の撮像光学系52は、光路上物体側から順に、全体として正の光学的パワーを持つ第1反射プリズム(PR1)、光量を調節するための光学絞り(ST)、物体側に凹の負メニスカスレンズからなる第1レンズ(L1)、同様に物体側に凹の負メニスカスレンズからなる第2レンズ(L2)、遮光板(SH)、全体として負の光学的パワーを持つ第2反射プリズム(PR2)、及び平行平面板(PL)を有して構成されている。この平行平面板(PL)は、光学的ローパスフィルタ、赤外カットフィルタ、撮像素子(SR)のカバーガラス等に相当するものである(以下の実施例でも同じ)。第1レンズ(L1)と第2レンズ(L2)とは、互いに接合された接合レンズである。そして、第2反射プリズム(PR2)の射出面(S6)側には、撮像素子(SR)が配置されている。
第1反射プリズム(PR1)は、入射面(S1)が正の光学的パワーを、また射出面(S3)も正の光学的パワーを有しており、入射面(S1)と射出面(S3)との間の光路上に平面状の反射面(S2)を備えている。また、第2反射プリズム(PR2)は、入射面S4が負の光学的パワーを、射出面S6も負の光学的パワーを有しており、入射面S4と射出面S6との間の光路上に平面状の反射面S5が備えられている。第1反射プリズム(PR1)及び第2反射プリズム(PR2)に設けられた反射面S2、S5は、それぞれ入射光を略90度に屈曲して、第1レンズ(L1)又は平行平面板(PL)に向かって反射する。図17に、図16における第1、第2反射プリズム(PR1、PR2)を、これら反射プリズムと略等価な機能を有するレンズ(LP1、LP2)に置換して構成した撮像光学系52の構成を示す。また、当該撮像光学系52における、各レンズのコンストラクションデータを表5、表6に示す。
Figure 2007133096
Figure 2007133096
図18は、実施例3の撮像光学系53の構成を示す、光軸(AX)を縦断した断面図である。この実施例3の撮像光学系53は、光路上物体側から順に、全体として正の光学的パワーを持つ第1反射プリズム(PR1)、光量を調節するための光学絞り(ST)、物体側に凹の負メニスカスレンズからなる第1レンズ(L1)、同様に物体側に凹の負メニスカスレンズからなる第2レンズ(L2)、遮光板(SH)、全体として負の光学的パワーを持つ第2反射プリズム(PR2)、及び平行平面板(PL)を有して構成されている。第1レンズ(L1)と第2レンズ(L2)とは、互いに接合された接合レンズである。そして、第2反射プリズム(PR2)の射出面(S6)側には、撮像素子(SR)が配置されている。
第1反射プリズム(PR1)は、入射面(S1)が正の光学的パワーを、また射出面(S3)も正の光学的パワーを有しており、入射面(S1)と射出面(S3)との間の光路上に平面状の反射面(S2)を備えている。また、第2反射プリズム(PR2)は、入射面S4が負の光学的パワーを、射出面S6は正の光学的パワーを有しており、入射面S4と射出面S6との間の光路上に平面状の反射面S5が備えられている。第1反射プリズム(PR1)及び第2反射プリズム(PR2)に設けられた反射面S2、S5は、それぞれ入射光を略90度に屈曲して、第1レンズ(L1)又は平行平面板(PL)に向かって反射する。図19に、図18における第1、第2反射プリズム(PR1、PR2)を、これら反射プリズムと略等価な機能を有するレンズ(LP1、LP2)に置換して構成した撮像光学系53の構成を示す。また、当該撮像光学系53における、各レンズのコンストラクションデータを表7、表8に示す。
Figure 2007133096
Figure 2007133096
図20は、実施例4の撮像光学系54の構成を示す、光軸(AX)を縦断した断面図である。この実施例4の撮像光学系54は、光路上物体側から順に、全体として正の光学的パワーを持つ第1反射プリズム(PR1)、光量を調節するための光学絞り(ST)、物体側に凹の負メニスカスレンズからなる第1レンズ(L1)、同様に物体側に凹の負メニスカスレンズからなる第2レンズ(L2)、遮光板(SH)、全体として負の光学的パワーを持つ第2反射プリズム(PR2)、及び平行平面板(PL)を有して構成されている。第1レンズ(L1)と第2レンズ(L2)とは、互いに接合された接合レンズである。そして、第2反射プリズム(PR2)の射出面(S6)側には、撮像素子(SR)が配置されている。
第1反射プリズム(PR1)は、入射面(S1)が正の光学的パワーを、また射出面(S3)も正の光学的パワーを有しており、入射面(S1)と射出面(S3)との間の光路上に平面状の反射面(S2)を備えている。また、第2反射プリズム(PR2)は、入射面S4が負の光学的パワーを、射出面S6は正の光学的パワーを有しており、入射面S4と射出面S6との間の光路上に平面状の反射面S5が備えられている。第1反射プリズム(PR1)及び第2反射プリズム(PR2)に設けられた反射面S2、S5は、それぞれ入射光を略90度に屈曲して、第1レンズ(L1)又は平行平面板(PL)に向かって反射する。図21に、図20における第1、第2反射プリズム(PR1、PR2)を、これら反射プリズムと略等価な機能を有するレンズ(LP1、LP2)に置換して構成した撮像光学系54の構成を示す。また、当該撮像光学系54における、各レンズのコンストラクションデータを表9、表10に示す。
Figure 2007133096
Figure 2007133096
図22は、実施例5の撮像光学系55の構成を示す、光軸(AX)を縦断した断面図である。この実施例5の撮像光学系55は、変倍動作を行うことが可能とされた撮像光学系である。なお図22は、無限遠に合焦させた状態における光学素子の配置を示している。撮像光学系55は、光路上物体側から順に、像側に凹の負メニスカスレンズからなる第1レンズ(L1)と物体側に凸の正メニスカスレンズからなる第2レンズ(L2)との接合レンズで構成された第1レンズ群(Gr1)、像側に凹の負メニスカスレンズからなる第3レンズ(L3)と、像側に凸の正メニスカスレンズからなる第4レンズ(L4)と両凹の負レンズからなる第5レンズ(L5)との接合レンズとで構成された第2レンズ群(Gr2)、像側に凸の正メニスカスレンズからなる第6レンズ(L6)の一枚で構成された第3レンズ群(Gr3)、光学絞り(ST)、両凸の正レンズからなる第7レンズ(L7)と両凹の負レンズからなる第8レンズ(L8)との接合レンズとで構成された第4レンズ群(Gr4)、遮光板(SH)、全体として正の光学的パワーを持つ第1反射プリズム(PR1)、及び平行平面板(PL)を有して構成されている。そして、第1反射プリズム(PR1)の射出面(S3)側には、撮像素子(SR)が配置されている。
第1反射プリズム(PR1)は、入射面(S1)が正の光学的パワーを、また射出面(S3)も正の光学的パワーを有しており、入射面(S1)と射出面(S3)との間の光路上に平面状の反射面(S2)を備えている。第1反射プリズム(PR1)に設けられた反射面S2は、入射光を略90度に屈曲して、平行平面板(PL)に向かって反射する。図23に、図22における第1反射プリズム(PR1)を、これら反射プリズムと略等価な機能を有するレンズ(LP1)に置換して構成した撮像光学系55の構成を示す。
図23には、上記第1レンズ群(Gr1)〜第4レンズ群(Gr4)の変倍時における移動方向を付記している。すなわち、第2レンズ群(Gr2)及び第4レンズ群(Gr4)が変倍時可動とされ、第1レンズ群(Gr2)及び光学絞り(ST)を伴った第3レンズ群(Gr3)が変倍時固定とされている。具体的には、広角端(W)から望遠端(T)への変倍時に、第2レンズ群(Gr2)の位置は像側に近付く方向に直線的に移動され、一方第4レンズ群(Gr4)は、物体側に凸の軌道を描くように移動される。
当該撮像光学系55における、各レンズのコンストラクションデータを表11〜表13に示す。表11において、変倍動作時に可変となる軸上面間隔についてはDiの記号で表記しており、その広角端(W)、中間点(M)及び望遠端(T)における光軸上の各レンズ面の間隔(軸上面間隔mm)を表12に示している。
Figure 2007133096
Figure 2007133096
Figure 2007133096
以上のようなレンズ配置、構成のもとでの、実施例2〜5における撮像光学系の球面収差、非点収差そして歪曲収差を、図25〜図28の左側から順に示す。これらの図において、球面収差の図には、図14と同様に、一点鎖線で赤色、実線で黄色、そして破線で青色と、波長の異なる3つの光を用いた場合の収差がそれぞれ示してある。なお、実施例5については、上段から順に広角端(W)、中間点(M)、望遠端(T)における各収差を表している。これらの図から明らかな通り、上掲の撮像光学系52〜55のいずれも、球面収差、非点収差及び歪曲収差が十分に抑えられており、優れた光学特性を示している。
上記条件式(1)〜(5)を、実施例2〜5に係る撮像光学系52〜55に当てはめた場合のそれぞれの数値を、表14に示す。また、実施例2〜4に係る撮像光学系52〜54の焦点距離(単位mm)及びF値を表15に示す。なお、実施例5の焦点距離(単位mm)及びF値については、表12に広角端(W)、中間点(M)、望遠端(T)別に表記している。これらの表から明らかな通り、実施例2〜5に係る撮像光学系52〜55も実施例1同様、明るい光学系が実現できていることがわかる。
Figure 2007133096
Figure 2007133096
以上説明したように、上記実施例1〜5に係る撮像光学系51〜55は、いずれも像面に近接した位置に配置された反射プリズムの入射面に遮光板を配置すると共に、当該反射プリズムの形状が、画角外光線が像面に入射しないように設定されているので、ゴーストが発生せず、画角外光線による画質劣化を抑止することができる。
本発明にかかる撮像光学系の構成を模式的に示す図であり、2個の反射プリズムを用いた撮像光学系を示す図である。 本発明にかかる撮像光学系の構成を模式的に示す図であり、1個の反射プリズムを像側に配置した撮像光学系を示す図である。 像側のプリズムの詳細を示す説明図である。 撮像光学系の光軸を縦断した断面図であって、画角外光線P11の撮像素子への入射状況を説明するための図である。 撮像光学系の光軸を縦断した断面図であって、画角外光線P12の撮像素子への入射状況を説明するための図である。 撮像光学系の光軸を縦断した断面図であって、画角外光線P21の撮像素子への入射状況を説明するための図である。 撮像光学系の光軸を縦断した断面図であって、画角外光線P22の撮像素子への入射状況を説明するための図である。 (a)は本発明で用いられる遮光板の一例を示す平面図、(b)は遮光板の設置状態の一例を示す断面図である。 (a)〜(d)は、像側の反射プリズムに対する反射防止措置の具体例を示す断面図である。 図1に示した撮像光学系を立体的に描いた斜視図である。 図10に示した撮像光学系についての、模式的な光路図である。 本発明にかかる撮像光学系の他の実施形態である変倍光学系の構成を模式的に示す図である。 本発明に係る撮像光学系(変倍光学系)を搭載したカメラ付携帯電話機の外観構成図であって、(a)は、その操作面を示す外観構成図、(b)は、操作面の裏面を示す外観構成図、(c)は変倍光学系を備える場合の外観構成図である。 実施例1の撮像光学系の構成を示す、光軸を縦断した断面図である。 図14における反射プリズムを、該反射プリズムと略等価な機能を有するレンズに置換して構成した撮像光学系の構成を示す断面図である。 実施例2の撮像光学系の構成を示す、光軸を縦断した断面図である。 図16における反射プリズムを、該反射プリズムと略等価な機能を有するレンズに置換して構成した撮像光学系の構成を示す断面図である。 実施例3の撮像光学系の構成を示す、光軸を縦断した断面図である。 図18における反射プリズムを、該反射プリズムと略等価な機能を有するレンズに置換して構成した撮像光学系の構成を示す断面図である。 実施例4の撮像光学系の構成を示す、光軸を縦断した断面図である。 図20における反射プリズムを、該反射プリズムと略等価な機能を有するレンズに置換して構成した撮像光学系の構成を示す断面図である。 実施例5の撮像光学系の構成を示す、光軸を縦断した断面図である。 図22における反射プリズムを、該反射プリズムと略等価な機能を有するレンズに置換して構成した撮像光学系の構成を示す断面図である。 実施例1の撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。 実施例2の撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。 実施例3の撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。 実施例4の撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。 実施例5の撮像光学系の球面収差、非点収差及び歪曲収差を示す収差図である。
符号の説明
10、10A、51〜55 撮像光学系
11 入射側プリズム
11a 入射側プリズムの入射面
11b 入射側プリズムの射出面
11c 入射側プリズムの反射面
12 像面側プリズム(像面に近接した位置に備えられるプリズム)
12a 像面側プリズムの入射面
12b 像面側プリズムの射出面
12c 像面側プリズムの反射面
13 レンズ群
14、ST 光学絞り
15、SR 撮像素子
16 ローパスフィルタ
20 携帯電話機
26 撮像レンズ装置
3、SH 遮光板(光線遮光部材)
PR1 第1反射プリズム
PR2 第2反射プリズム
PL 平行平面板
AX 光軸
H 被写体

Claims (12)

  1. 反射面を一面有するプリズムが像面に近接した位置に備えられ、前記反射面において被写体光の進行方向が略直角に屈曲される撮像光学系であって、
    前記プリズムの形状が、下記条件式(1)を満足することを特徴とする撮像光学系。
    0.53<a/c<2.0 ・・・(1)
    但し、a;撮像光学系の光軸とプリズムの反射面とが交わる点から、プリズム射出面までの距離
    c;撮像光学系の光路折り曲げ面内における像の最大幅
  2. 反射面を一面有するプリズムが像面に近接した位置に備えられ、前記反射面において被写体光の進行方向が略直角に屈曲される撮像光学系であって、
    前記プリズムの入射面側には光線遮光部材が設置されてなり、下記条件式(2)を満足することを特徴とする撮像光学系。
    0.54<b/c<2.0 ・・・(2)
    但し、b;光線遮光部材のプリズム反射面側の面から、撮像光学系の光軸とプリズムの反射面とが交わる点までの距離
    c;撮像光学系の光路折り曲げ面内における像の最大幅
  3. 請求項1に記載の撮像光学系において、
    前記プリズムの入射面側には光線遮光部材が設置されてなり、下記条件式(3)及び(4)を満足することを特徴とする撮像光学系。
    −0.1<d/c<0.4 ・・・(3)
    0.3<φy/c<2.0 ・・・(4)
    但し、d;画角0度で撮像光学系に入射する主光線の進行方向をプラスとしたときの、光線遮光部材のプリズム反射面側の面から、プリズム入射面までの光軸上の距離
    φy;光線遮蔽部材の開口幅
  4. 前記プリズムの反射面において、被写体光が反射されるべき領域以外の周囲領域に対し、被写体平面外からの光線に対する反射防止措置が施されていることを特徴とする請求項1又は3に記載の撮像光学系。
  5. 前記プリズムの入射面において、被写体光が入射される領域以外の周囲領域に対し、被写体平面外からの光線に対する反射防止措置が施されていることを特徴とする請求項2に記載の撮像光学系。
  6. 前記反射防止措置が、前記周囲領域に形成された光吸収層又は光散乱層からなることを特徴とする請求項4又は5に記載の撮像光学系。
  7. 前記反射防止措置が、前記周囲領域において実質的に反射面として機能しないようにする形状変形部からなることを特徴とする請求項4又は5に記載の撮像光学系。
  8. 前記反射防止措置が、前記周囲領域を除去した除去部からなることを特徴とする請求項4又は5に記載の撮像光学系。
  9. 下記条件式(5)を満足することを特徴とする請求項1〜8のいずれかに記載の撮像光学系。
    0.01<e/c<0.4 ・・・(5)
    但し、e;プリズム射出面から像面までの光軸上の距離
  10. 前記プリズムの入射面及び射出面の少なくとも一面が、光学的パワーを有することを特徴とする請求項1〜9のいずれかに記載の撮像光学系。
  11. 請求項1〜10のいずれかに記載の撮像光学系を用い、該撮像光学系が、所定の結像面上に被写体の光学像を形成可能な構成とされていることを特徴とする撮像レンズ装置。
  12. 請求項11に記載の撮像レンズ装置と、光学像を電気的な信号に変換する撮像素子と、前記撮像レンズ装置及び撮像素子に被写体の静止画撮影及び動画撮影の少なくとも一方の撮影を行わせる制御部とを具備し、
    前記撮像レンズ装置の撮像光学系が、前記撮像素子の受光面上に被写体の光学像を形成可能に組み付けられていることを特徴とするデジタル機器。
JP2005325219A 2005-11-09 2005-11-09 撮像光学系、撮像レンズ装置及びデジタル機器 Pending JP2007133096A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005325219A JP2007133096A (ja) 2005-11-09 2005-11-09 撮像光学系、撮像レンズ装置及びデジタル機器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005325219A JP2007133096A (ja) 2005-11-09 2005-11-09 撮像光学系、撮像レンズ装置及びデジタル機器

Publications (1)

Publication Number Publication Date
JP2007133096A true JP2007133096A (ja) 2007-05-31

Family

ID=38154825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005325219A Pending JP2007133096A (ja) 2005-11-09 2005-11-09 撮像光学系、撮像レンズ装置及びデジタル機器

Country Status (1)

Country Link
JP (1) JP2007133096A (ja)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103948A1 (ja) * 2009-03-10 2010-09-16 コニカミノルタオプト株式会社 撮像光学系,撮像光学装置及びデジタル機器
JP2011209677A (ja) * 2009-10-20 2011-10-20 Fujifilm Corp 撮像レンズおよび撮像装置
JP2012068508A (ja) * 2010-09-24 2012-04-05 Hoya Corp 撮影光学系、及び撮影装置
JP2012093730A (ja) * 2010-09-30 2012-05-17 Hoya Corp 撮像装置
JP2014059561A (ja) * 2012-09-14 2014-04-03 Samsung Electro-Mechanics Co Ltd 撮像レンズ
JP2020509417A (ja) * 2017-07-23 2020-03-26 コアフォトニクス リミテッド 大きな絞りを有するコンパクト屈曲レンズ
CN111565268A (zh) * 2019-02-13 2020-08-21 唯光世株式会社 拍摄装置及拍摄光学系统
US10795134B2 (en) 2013-07-04 2020-10-06 Corephotonics Ltd. Miniature telephoto lens assembly
US10904444B2 (en) 2013-06-13 2021-01-26 Corephotonics Ltd. Dual aperture zoom digital camera
US10962745B2 (en) 2013-07-04 2021-03-30 Corephotonics Ltd Miniature telephoto lens assembly
US10976527B2 (en) 2014-08-10 2021-04-13 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11106018B2 (en) 2017-07-07 2021-08-31 Corephotonics Ltd. Folded camera prism design for preventing stray light
US11125975B2 (en) 2015-01-03 2021-09-21 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
KR20220036688A (ko) * 2020-09-16 2022-03-23 삼성전기주식회사 반사부재 및 이를 포함하는 반사모듈
US11333845B2 (en) 2018-03-02 2022-05-17 Corephotonics Ltd. Spacer design for mitigating stray light
US11336830B2 (en) 2019-01-03 2022-05-17 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11347020B2 (en) 2017-02-23 2022-05-31 Corephotonics Ltd. Folded camera lens designs
CN114706195A (zh) * 2020-08-18 2022-07-05 三星电机株式会社 相机模块及便携式终端
US11668910B2 (en) 2019-08-21 2023-06-06 Corephotonics Ltd. Low total track length for large sensor format including seven lenses of +−+−++− refractive powers
US11689708B2 (en) 2020-01-08 2023-06-27 Corephotonics Ltd. Multi-aperture zoom digital cameras and methods of using same
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11803106B2 (en) 2020-12-01 2023-10-31 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US11914117B2 (en) 2020-07-31 2024-02-27 Corephotonics Ltd. Folded macro-tele camera lens designs including six lenses of ++−+−+ or +−++−+, seven lenses of ++−++−+, or eight lenses of ++−++−++ refractive powers
US11930263B2 (en) 2021-01-25 2024-03-12 Corephotonics Ltd. Slim pop-out wide camera lenses
US11966147B2 (en) 2020-09-18 2024-04-23 Corephotonics Ltd. Pop-out zoom camera

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010103948A1 (ja) * 2009-03-10 2010-09-16 コニカミノルタオプト株式会社 撮像光学系,撮像光学装置及びデジタル機器
CN102341737A (zh) * 2009-03-10 2012-02-01 柯尼卡美能达精密光学株式会社 摄像光学系统、摄像光学装置及数码设备
US8427761B2 (en) 2009-03-10 2013-04-23 Konica Minolta Opto, Inc. Image pickup optical system, image pickup optical device, and digital equipment
JP5482785B2 (ja) * 2009-03-10 2014-05-07 コニカミノルタ株式会社 撮像光学系,撮像光学装置及びデジタル機器
JP2011209677A (ja) * 2009-10-20 2011-10-20 Fujifilm Corp 撮像レンズおよび撮像装置
JP2012068508A (ja) * 2010-09-24 2012-04-05 Hoya Corp 撮影光学系、及び撮影装置
CN102419470A (zh) * 2010-09-24 2012-04-18 Hoya株式会社 成像光学系统和成像装置
JP2012093730A (ja) * 2010-09-30 2012-05-17 Hoya Corp 撮像装置
JP2014059561A (ja) * 2012-09-14 2014-04-03 Samsung Electro-Mechanics Co Ltd 撮像レンズ
US9046672B2 (en) 2012-09-14 2015-06-02 Samsung Electro-Mechanics Co., Ltd. Imaging lens
US11838635B2 (en) 2013-06-13 2023-12-05 Corephotonics Ltd. Dual aperture zoom digital camera
US10904444B2 (en) 2013-06-13 2021-01-26 Corephotonics Ltd. Dual aperture zoom digital camera
US11470257B2 (en) 2013-06-13 2022-10-11 Corephotonics Ltd. Dual aperture zoom digital camera
US11835694B2 (en) 2013-07-04 2023-12-05 Corephotonics Ltd. Miniature telephoto lens assembly
US11125980B2 (en) 2013-07-04 2021-09-21 Corephotonics Ltd. Miniature telephoto lens assembly
US10962745B2 (en) 2013-07-04 2021-03-30 Corephotonics Ltd Miniature telephoto lens assembly
US10795134B2 (en) 2013-07-04 2020-10-06 Corephotonics Ltd. Miniature telephoto lens assembly
US11614635B2 (en) 2013-07-04 2023-03-28 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11287668B2 (en) 2013-07-04 2022-03-29 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11852845B2 (en) 2013-07-04 2023-12-26 Corephotonics Ltd. Thin dual-aperture zoom digital camera
US11953659B2 (en) 2013-07-04 2024-04-09 Corephotonics Ltd. Miniature telephoto lens assembly
US11703668B2 (en) 2014-08-10 2023-07-18 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11262559B2 (en) 2014-08-10 2022-03-01 Corephotonics Ltd Zoom dual-aperture camera with folded lens
US11042011B2 (en) 2014-08-10 2021-06-22 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11002947B2 (en) 2014-08-10 2021-05-11 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11543633B2 (en) 2014-08-10 2023-01-03 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US10976527B2 (en) 2014-08-10 2021-04-13 Corephotonics Ltd. Zoom dual-aperture camera with folded lens
US11125975B2 (en) 2015-01-03 2021-09-21 Corephotonics Ltd. Miniature telephoto lens module and a camera utilizing such a lens module
US11347016B2 (en) 2017-02-23 2022-05-31 Corephotonics Ltd. Folded camera lens designs
US11347020B2 (en) 2017-02-23 2022-05-31 Corephotonics Ltd. Folded camera lens designs
US11668894B2 (en) 2017-02-23 2023-06-06 Corephotonics Ltd. Folded camera lens designs
US11106018B2 (en) 2017-07-07 2021-08-31 Corephotonics Ltd. Folded camera prism design for preventing stray light
US10948696B2 (en) 2017-07-23 2021-03-16 Corephotonics Ltd. Compact folded lenses with large apertures
JP2020509417A (ja) * 2017-07-23 2020-03-26 コアフォトニクス リミテッド 大きな絞りを有するコンパクト屈曲レンズ
US11333845B2 (en) 2018-03-02 2022-05-17 Corephotonics Ltd. Spacer design for mitigating stray light
US11675155B2 (en) 2018-03-02 2023-06-13 Corephotonics Ltd. Spacer design for mitigating stray light
US11336830B2 (en) 2019-01-03 2022-05-17 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11477386B2 (en) 2019-01-03 2022-10-18 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11611706B2 (en) 2019-01-03 2023-03-21 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
US11743587B2 (en) 2019-01-03 2023-08-29 Corephotonics Ltd. Multi-aperture cameras with at least one two state zoom camera
CN111565268A (zh) * 2019-02-13 2020-08-21 唯光世株式会社 拍摄装置及拍摄光学系统
CN111565268B (zh) * 2019-02-13 2024-04-19 株式会社理光 拍摄装置及拍摄光学系统
US11668910B2 (en) 2019-08-21 2023-06-06 Corephotonics Ltd. Low total track length for large sensor format including seven lenses of +−+−++− refractive powers
US11860515B2 (en) 2019-11-25 2024-01-02 Corephotonics Ltd. Folded zoom camera module with adaptive aperture
US11689708B2 (en) 2020-01-08 2023-06-27 Corephotonics Ltd. Multi-aperture zoom digital cameras and methods of using same
US11770609B2 (en) 2020-05-30 2023-09-26 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11962901B2 (en) 2020-05-30 2024-04-16 Corephotonics Ltd. Systems and methods for obtaining a super macro image
US11914117B2 (en) 2020-07-31 2024-02-27 Corephotonics Ltd. Folded macro-tele camera lens designs including six lenses of ++−+−+ or +−++−+, seven lenses of ++−++−+, or eight lenses of ++−++−++ refractive powers
CN114706195A (zh) * 2020-08-18 2022-07-05 三星电机株式会社 相机模块及便携式终端
US11822060B2 (en) 2020-08-18 2023-11-21 Samsung Electro-Mechanics Co., Ltd. Camera module and portable terminal
CN114265270A (zh) * 2020-09-16 2022-04-01 三星电机株式会社 反射构件和包括反射构件的反射模块
KR102539638B1 (ko) * 2020-09-16 2023-06-02 삼성전기주식회사 반사부재 및 이를 포함하는 반사모듈
US11953660B2 (en) 2020-09-16 2024-04-09 Samsung Electro-Mechanics Co., Ltd. Reflective member and reflection module including reflective member
KR20220036688A (ko) * 2020-09-16 2022-03-23 삼성전기주식회사 반사부재 및 이를 포함하는 반사모듈
TWI821640B (zh) * 2020-09-16 2023-11-11 南韓商三星電機股份有限公司 反射構件以及包括反射構件之反射模組
US11966147B2 (en) 2020-09-18 2024-04-23 Corephotonics Ltd. Pop-out zoom camera
US11947247B2 (en) 2020-12-01 2024-04-02 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11803106B2 (en) 2020-12-01 2023-10-31 Corephotonics Ltd. Folded camera with continuously adaptive zoom factor
US11930263B2 (en) 2021-01-25 2024-03-12 Corephotonics Ltd. Slim pop-out wide camera lenses

Similar Documents

Publication Publication Date Title
JP2007133096A (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
JP5364965B2 (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
KR100933061B1 (ko) 촬상 광학 시스템
JP6237106B2 (ja) ズームレンズ及び撮像装置
JP4466713B2 (ja) 撮像レンズ及び撮像装置
US7458735B2 (en) Image-taking lens unit
JP2006154702A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
US7724445B2 (en) Bifocal imaging optical system and imaging apparatus
JP4840719B2 (ja) ズームレンズ及び撮像装置
JP5062173B2 (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
US6515805B2 (en) Taking lens device
US7907350B2 (en) Zoom lens system, imaging apparatus, method for zooming, and method for vibration reduction
JP6025048B2 (ja) 撮像光学系、カメラ装置および携帯情報端末装置
JP4869704B2 (ja) ズームレンズ
US20140118840A1 (en) Zoom lens system
JP2008164724A (ja) ズームレンズ及び撮像装置
JP2007121459A (ja) 変倍光学系、撮像レンズ装置及びデジタル機器
JP2006058840A (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
US8982477B2 (en) Zoom lens, optical apparatus and method for manufacturing zoom lens
US8873157B2 (en) Inner-focus zoom lens system
JP2006154705A (ja) 撮像光学系、撮像レンズ装置及びデジタル機器
KR20160075235A (ko) 렌즈계 및 이를 포함하는 광학 기기
KR20170073883A (ko) 렌즈계 및 이를 포함하는 광학 기기
JP2004163477A (ja) 撮像レンズ装置
JP2006227322A (ja) 撮像光学系、撮像レンズ装置及びデジタル機器