JP7124700B2 - 移動体制御装置、移動体制御方法、及び、移動体 - Google Patents

移動体制御装置、移動体制御方法、及び、移動体 Download PDF

Info

Publication number
JP7124700B2
JP7124700B2 JP2018535608A JP2018535608A JP7124700B2 JP 7124700 B2 JP7124700 B2 JP 7124700B2 JP 2018535608 A JP2018535608 A JP 2018535608A JP 2018535608 A JP2018535608 A JP 2018535608A JP 7124700 B2 JP7124700 B2 JP 7124700B2
Authority
JP
Japan
Prior art keywords
candidate
boarding
vehicle
stop
moving body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018535608A
Other languages
English (en)
Other versions
JPWO2018037954A1 (ja
Inventor
至 清水
法子 田中
和幸 丸川
麻子 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Sony Group Corp
Original Assignee
Sony Corp
Sony Group Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp, Sony Group Corp filed Critical Sony Corp
Publication of JPWO2018037954A1 publication Critical patent/JPWO2018037954A1/ja
Application granted granted Critical
Publication of JP7124700B2 publication Critical patent/JP7124700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/40Business processes related to the transportation industry
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/50Context or environment of the image
    • G06V20/56Context or environment of the image exterior to a vehicle by using sensors mounted on the vehicle
    • G06V20/58Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads
    • G06V20/582Recognition of moving objects or obstacles, e.g. vehicles or pedestrians; Recognition of traffic objects, e.g. traffic signs, traffic lights or roads of traffic signs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/103Static body considered as a whole, e.g. static pedestrian or occupant recognition
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/107Static hand or arm
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0968Systems involving transmission of navigation instructions to the vehicle
    • G08G1/096855Systems involving transmission of navigation instructions to the vehicle where the output is provided in a suitable form to the driver
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/20Monitoring the location of vehicles belonging to a group, e.g. fleet of vehicles, countable or determined number of vehicles
    • G08G1/202Dispatching vehicles on the basis of a location, e.g. taxi dispatching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Business, Economics & Management (AREA)
  • Multimedia (AREA)
  • Remote Sensing (AREA)
  • Tourism & Hospitality (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Human Computer Interaction (AREA)
  • General Business, Economics & Management (AREA)
  • Traffic Control Systems (AREA)
  • Operations Research (AREA)

Description

本技術は、移動体制御装置、移動体制御方法、及び、移動体に関し、特に、自動運転又は半自動運転を行う場合に用いて好適な移動体制御装置、移動体制御方法、及び、移動体に関する。
従来、自動運転で隊列走行可能な車両の運行支援を行うシステムが提案されている(例えば、特許文献1参照)。
特開2000-285363号公報
しかしながら、特許文献1に記載の発明は、隊列走行が可能な車両が対象であり、しかも管制制御システム、専用路、押しボタン装置を有する乗降場等のインフラストラクチャの整備が必要である。従って、バスやタクシー等の車両を含む移動体が単独で自動運転又は半自動運転を行う場合は検討されていない。
本技術はこのような状況に鑑みてなされたものであり、移動体に乗る人又はその候補者、及び、移動体から降りる人又はその候補者に応じて、移動体の運転を適切に行うことができるようにするものである。
本技術の第1の側面の移動体制御装置は、移動体の周囲を撮像した画像である移動体外画像に基づいて、前記移動体の停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、前記移動体への乗車候補者の認識を行う監視部と、前記乗車候補者認識に基づいて、前記移動体の加減速制御を行う運転制御部を備える。
前記監視部には、さらに前記移動体内を撮像した画像である移動体内画像に基づいて、前記移動体からの降車候補者の認識を行わせ、前記運転制御部には、さらに前記降車候補者の認識に基づいて、前記移動体の加減速制御を行わせることができる。
前記運転制御部には、前記乗車候補者の認識及び前記降車候補者の認識のうち少なくとも一方に基づいて、前記移動体の停止制御を行わせることができる。
前記運転制御部には、前記乗車候補者の前記移動体への搭乗の認識、及び、前記降車候補者の前記移動体からの降車の認識のうち少なくとも一方に基づいて、前記移動体の発進制御を行わせることができる。
前記監視部には、事前に取得した前記乗車候補者又は前記降車候補者の顔画像又は顔の特徴量を示すデータを用いた顔認証に基づいて、前記乗車候補者又は前記降車候補者の認識を行わせることができる。
前記乗車候補者または降車候補者の認識を行うための撮像部を、前記移動体における異なる方向または異なる位置に複数設け、前記移動体の移動時と停止時とで、前記乗車候補者又は前記降車候補者の認識処理に用いる前記撮像部を変更させることができる。
前記監視部には、前記移動体内画像における、前記移動体の搭乗者の位置及び行動のうち少なくとも1つに基づいて、前記降車候補者の認識を行わせることができる。
前記監視部には、前記停止候補地点における所定の基準位置に基づいて、前記乗車候補者の認識を優先的に行う優先認識領域設定させることができる。
前記基準位置は、前記停止候補地点を示す標識、前記停止候補地点における所定の構造物、及び、前記停止候補地点における所定の搭乗位置のうち少なくとも1つとすることができる。
前記監視部には、さらに前記停止候補地点の構成及び前記停止候補地点の周囲の状況のうち少なくとも1つに基づいて、前記優先認識領域を設定させることができる。
前記監視部には、前記停止候補地点の周囲の状況に応じて、前記基準位置を変更させることができる。
前記監視部には、前記移動体に対する所定の方向における所定の領域を前記近傍領域に設定させることができる。
前記監視部には、前記移動体画像により認識される人の顔、視線の向き、位置、及び、行動のうち少なくとも1つに基づいて、前記乗車候補者の認識を行わせることができる。
前記監視部には、さらに前記移動体の外部撮像装置による撮像画像に基づいて、前記乗車候補者の認識を行わせることができる。
前記乗車候補者の認識結果の通知を制御するユーザインタフェース制御部をさらに設けることができる。
前記ユーザインタフェース制御部には、前記移動体が備える撮像部による撮像画像に、前記乗車候補者の認識結果を示す情報を重畳して表示させることができる。
前記ユーザインタフェース制御部には、前記乗車候補者の認識結果を示す情報を、前記移動体の搭乗者における視界に対して重畳して表示させることができる。
本技術の第1の側面の移動体制御方法は、移動体制御装置が、移動体の周囲を撮像した画像である移動体外画像に基づいて、前記移動体の停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、前記移動体への乗車候補者の認識を行う監視ステップと、前記乗車候補者認識に基づいて、前記移動体の加減速制御を行う運転制御ステップを含む。
本技術の第2の側面の移動体は、周囲を撮像した画像である移動体外画像に基づいて、停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、乗車候補者の認識を行う監視部と、前記乗車候補者認識に基づいて、加減速制御を行う運転制御部を備える。
本技術の第1の側面又は第2の側面においては、周囲を撮像した画像である移動体外画像に基づいて、停止候補地点が検出され、前記停止候補地点の近傍領域を対象として、乗車候補者の認識が行われ、前記乗車候補者認識に基づいて、加減速制御が行われる。
本技術によれば、移動体に乗る人又はその候補者、及び、移動体から降りる人又はその候補者に応じて、移動体の運転を適切に行うことができる。
なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
本技術を適用した車両の一実施の形態の構成例を示す図である。 車両の各部の接続状態の例を示す図である。 合成画像の生成方法について説明するための図である。 車両制御部の機能の構成例の一部を示す図である。 バスにおけるカメラの配置例を示す図である。 自動停発車処理の第1の実施の形態を説明するためのフローチャートである。 自動停発車処理の第1の実施の形態を説明するためのフローチャートである。 停留所の類型を示す図である。 待合室が設置されている停留所の例を示す図である。 複数の標識が設置されている停留所の例を示す図である。 優先認識領域の第1の例を示す図である。 優先認識領域の第2の例を示す図である。 優先認識領域の第3の例を示す図である。 優先認識領域の第4の例を示す図である。 優先認識領域の第5の例を示す図である。 乗車候補者の認識処理の第1の例について説明するための図である。 乗車候補者の認識処理の第2の例について説明するための図である。 乗車候補者の認識処理に用いる画像の切り替え方法の例について説明するための図である。 自動停発車処理の第2の実施の形態を説明するためのフローチャートである。 自動停発車処理の第3の実施の形態を説明するためのフローチャートである。 アシスト画面の第1の例を示す図である。 アシスト画面の第2の例を示す図である。 アシスト画面の第3の例を示す図である。 アシスト画面の第4の例を示す図である。
以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
1.車両の基本的な構成例
2.第1の実施の形態(自動運転を行うバスに適用した例)
3.第2の実施の形態(自動運転を行うタクシーに適用した第1の例)
4.第3の実施の形態(自動運転を行うタクシーに適用した第2の例)
5.第4の実施の形態(半自動運転を行う車両のユーザインタフェースに適用した例)
6.変形例
7.その他
<<1.車両の基本的な構成例>>
図1は、本技術を適用した車両の基本的な構成例を示す図である。
図1に示す車両11は、フロントセンシングカメラ21、フロントカメラECU(Electronic Control Unit)22、位置情報取得部23、表示部24、通信部25、ステアリング機構26、レーダ27、ライダ28、サイドビューカメラ29、サイドビューカメラECU30、統合ECU31、フロントビューカメラ32、フロントビューカメラECU33、制動装置34、エンジン35、発電機36、駆動用モータ37、バッテリ38、リアビューカメラ39、リアビューカメラECU40、車速検出部41、車内カメラ42、および車内カメラECU43を有している。
車両11に設けられた各ユニットは、CAN(Controller Area Network)通信用のバスや他の接続線などにより相互に接続されているが、ここでは図を見やすくするため、それらのバスや接続線が特に区別されずに描かれている。
フロントセンシングカメラ21は、例えば車室内のルームミラー近傍に配置されたセンシング専用のカメラからなり、車両11の前方を被写体として撮像し、その結果得られたセンシング画像をフロントカメラECU22に出力する。
フロントカメラECU22は、フロントセンシングカメラ21から供給されたセンシング画像に対して適宜、画質を向上させる処理等を施した後、センシング画像に対して画像認識を行って、センシング画像から白線や歩行者などの任意の物体を検出する。フロントカメラECU22は、画像認識の結果をCAN通信用のバスに出力する。
位置情報取得部23は、例えばGPS(Global Positioning System)などの位置情報計測システムからなり、車両11の位置を検出して、その検出結果を示す位置情報をCAN通信用のバスに出力する。
表示部24は、例えば液晶表示パネルなどからなり、インストルメントパネルの中央部分、ルームミラー内部などの車室内の所定位置に配置されている。また、表示部24はウィンドシールド(フロントガラス)部分に重畳して設けられた透過型ディスプレイであってもよいし、カーナビゲーションシステムのディスプレイであってもよい。表示部24は、統合ECU31の制御に従って各種の画像を表示する。
通信部25は、車車間通信や車歩間通信、路車間通信等の各種の無線通信により、周辺車両や、歩行者が所持する携帯型端末装置、路側機、外部のサーバ等との間で情報の送受信を行う。例えば通信部25は周辺車両と車車間通信を行って、周辺車両から乗員数や走行状態を示す情報を含む周辺車両情報を受信し、統合ECU31に供給する。
ステアリング機構26は、運転者によるハンドル操作、または統合ECU31から供給された制御信号に応じて車両11の走行方向の制御、すなわち舵角制御を行う。レーダ27は、ミリ波等の電磁波を用いて前方や後方などの各方向にある車両や歩行者といった対象物までの距離を測定する測距センサであり、対象物までの距離の測定結果を統合ECU31等に出力する。ライダ28は、光波を用いて前方や後方などの各方向にある車両や歩行者といった対象物までの距離を測定する測距センサであり、対象物までの距離の測定結果を統合ECU31等に出力する。
サイドビューカメラ29は、例えばサイドミラーの筐体内やサイドミラー近傍に配置されたカメラであり、運転者の死角となる領域を含む車両11の側方の画像(以下、側方画像とも称する)を撮像し、サイドビューカメラECU30に供給する。
サイドビューカメラECU30は、サイドビューカメラ29から供給された側方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた側方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
統合ECU31は、運転制御ECU51やバッテリECU52などの車両11の中央に配置された複数のECUからなり、車両11全体の動作を制御する。
例えば運転制御ECU51は、ADAS(Advanced Driving Assistant System)機能や自動運転(Self driving)機能を実現するECUであり、フロントカメラECU22からの画像認識結果、位置情報取得部23からの位置情報、通信部25から供給された周辺車両情報等の各種の情報、レーダ27やライダ28からの測定結果、車速検出部41からの車速の検出結果などに基づいて、車両11の運転(走行)を制御する。すなわち、運転制御ECU51は、ステアリング機構26や、制動装置34、エンジン35、駆動用モータ37等を制御して車両11の運転を制御する。
なお、統合ECU31では、ADAS機能や自動運転機能などの機能ごとに専用のECUを設けるようにしてもよい。
また、バッテリECU52は、バッテリ38による電力の供給等を制御する。
フロントビューカメラ32は、例えばフロントグリル近傍に配置されたカメラからなり、運転者の死角となる領域を含む車両11の前方の画像(以下、前方画像とも称する)を撮像し、フロントビューカメラECU33に供給する。
フロントビューカメラECU33は、フロントビューカメラ32から供給された前方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた前方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
制動装置34は、運転者によるブレーキ操作、または統合ECU31から供給された制御信号に応じて動作し、車両11を停車させたり減速させたりする。エンジン35は、車両11の動力源であり、統合ECU31から供給された制御信号に応じて駆動する。
発電機36は、統合ECU31により制御され、エンジン35の駆動に応じて発電する。駆動用モータ37は、車両11の動力源であり、発電機36やバッテリ38から電力の供給を受け、統合ECU31から供給された制御信号に応じて駆動する。なお、車両11の走行時にエンジン35を駆動させるか、または駆動用モータ37を駆動させるかは、適宜、統合ECU31により切り替えられる。
バッテリ38は、例えば12Vのバッテリや200Vのバッテリなどを有しており、バッテリECU52の制御に従って車両11の各部に電力を供給する。
リアビューカメラ39は、例えばテールゲートのナンバープレート近傍に配置されるカメラからなり、運転者の死角となる領域を含む車両11の後方の画像(以下、後方画像とも称する)を撮像し、リアビューカメラECU40に供給する。例えばリアビューカメラ39は、図示せぬシフトレバーがリバース(R)の位置に移動されると起動される。
リアビューカメラECU40は、リアビューカメラ39から供給された後方画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた後方画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
車速検出部41は、車両11の車速を検出するセンサであり、車速の検出結果を統合ECU31に供給する。なお、車速検出部41において、車速の検出結果から加速度や加速度の微分が算出されるようにしてもよい。例えば算出された加速度は、車両11の物体との衝突までの時間の推定などに用いられる。
車内カメラ42は、例えば、車両11の車室内に配置されるカメラからなり、車両11の車室内の画像(以下、車内画像とも称する)を撮像し、車内カメラECU43に供給する。
車内カメラECU43は、車内カメラ42から供給された車内画像に対して、ホワイトバランス調整などの画質を向上させる画像処理を施すとともに、得られた車内画像をCAN通信用のバスとは異なるケーブルを介して統合ECU31に供給する。
なお、以下、センシング画像、側方画像、前方画像、後方画像等の車両11の外部を撮像した画像を、車内画像に対して車外画像とも称する。
また、車両11では、図2に示すようにフロントカメラモジュール71、通信部25、運転制御ECU51、ステアリング機構26、制動装置34、エンジン35、および駆動用モータ37を含む複数のユニットがCAN通信用のバス72により相互に接続されている。なお、図2において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
この例では、フロントカメラモジュール71はレンズ81、イメージセンサ82、フロントカメラECU22、およびMCU(Module Control Unit)83を有している。
また、レンズ81およびイメージセンサ82によってフロントセンシングカメラ21が構成されており、イメージセンサ82は例えばCMOS(Complementary Metal Oxide Semiconductor)イメージセンサなどからなる。
フロントカメラモジュール71では、被写体からの光がレンズ81によってイメージセンサ82の撮像面上に集光される。イメージセンサ82は、レンズ81から入射した光を光電変換することでセンシング画像を撮像し、フロントカメラECU22に供給する。
フロントカメラECU22は、イメージセンサ82から供給されたセンシング画像に対して、例えばゲイン調整やホワイトバランス調整、HDR(High Dynamic Range)処理などを施した後、センシング画像に対して画像認識を行う。
画像認識では、例えば白線や縁石、歩行者、車両、ヘッドライト、ブレーキライト、道路標識、前方車両との衝突時間などの認識(検出)が行われる。これらの画像認識の認識結果は、MCU83でCAN通信用の形式の信号に変換され、バス72へと出力される。
また、バス72から供給された情報は、MCU83でフロントカメラモジュール71用に定められた形式の信号に変換され、フロントカメラECU22へと供給される。
運転制御ECU51は、MCU83からバス72に出力された画像認識の結果と、レーダ27やライダ28等の他のユニットから供給された情報とに基づいて、適宜、ステアリング機構26や制動装置34、エンジン35、駆動用モータ37、図示せぬヘッドライトなどを制御する。これにより走行方向の変更、ブレーキ、加速、発進等の運転制御や、警告通知制御、ヘッドライトの切り替え制御などが実現される。
また、運転制御ECU51が自動運転機能等を実現する場合には、例えばフロントカメラECU22で得られた各時刻の画像認識結果から、運転制御ECU51において、さらに対象物体の位置の軌跡が認識され、その認識結果が通信部25を介して外部のサーバに送信されるようにしてもよい。そのような場合、例えばサーバではディープニューラルネット等の学習が行われて必要な辞書等が生成され、車両11へと送信される。車両11では、このようにして得られた辞書等が通信部25により受信され、受信された辞書等が運転制御ECU51での各種の予測などに用いられる。
なお、運転制御ECU51により行われる制御のうち、センシング画像に対する画像認識の結果のみから実現できる制御については、運転制御ECU51ではなくフロントカメラECU22により行われるようにしてもよい。
さらに、車両11では、例えば駐車時などにおいて表示部24に合成画像を表示することでアラウンドビューモニタ機能が実現される。
すなわち、例えば図3に示すように各部で得られた前方画像、後方画像、および側方画像がCAN通信用のバスとは異なるケーブルを介して、統合ECU31に設けられた画像合成ECU101に供給され、それらの画像から合成画像が生成される。なお、図3において図1における場合と対応する部分には同一の符号を付してあり、その説明は適宜省略する。
図3では、図1に示したサイドビューカメラ29として、車両11の左側に配置されたサイドビューカメラ29Lと、車両11の右側に配置されたサイドビューカメラ29Rとが設けられている。また、サイドビューカメラECU30として、車両11の左側に配置されたサイドビューカメラECU30Lと、車両11の右側に配置されたサイドビューカメラECU30Rとが設けられている。
画像合成ECU101には、フロントビューカメラ32で得られた前方画像がフロントビューカメラECU33から供給され、リアビューカメラ39で得られた後方画像がリアビューカメラECU40から供給される。また、画像合成ECU101には、サイドビューカメラ29Lで得られた側方画像(以下、特に左側方画像とも称する)がサイドビューカメラECU30Lから供給され、サイドビューカメラ29Rで得られた側方画像(以下、特に右側方画像とも称する)がサイドビューカメラECU30Rから供給される。
画像合成ECU101は、供給されたこれらの画像に基づいて前方画像、後方画像、左側方画像、および右側方画像を対応する領域に配置した合成画像を生成するとともに、得られた合成画像を表示部24に供給し、表示させる。運転者は、このようにして表示された合成画像を確認しながら車両11を運転することで、安全かつ容易に駐車を行うことができる。なお、統合ECU31が合成画像に基づいて車両11の駆動を制御し、駐車を行うようにしてもよい。
なお、サイドビューカメラECU30、フロントビューカメラECU33、及び、リアビューカメラECU40が、フロントカメラECU22と同様に、側方画像、前方画像、又は、後方画像から白線や歩行者などの車外の任意の物体の検出を行うようにしてもよい。また、車内カメラECU43が、車内画像から搭乗者などの車内の任意の物体の検出を行うようにしてもよい。
また、以上に示した車両11に設けられるカメラの数や配置は、その一例であり、車両11の大きさや形状等により適宜変更される。
図4は、車両11の車両制御部151の機能の構成例の一部を示している。車両制御部151は、例えば、フロントカメラECU22、サイドビューカメラECU30、統合ECU31、フロントビューカメラECU33、リアビューカメラECU40、車内カメラECU43等により実現される。車両制御部151は、監視部161、状況認識部162、運転制御部163、停車位置設定部164、撮像制御部165、及び、UI(ユーザインタフェース)制御部166を備える。
監視部161は、車両11の周囲及び内部の監視を行う。監視部161は、車外監視部171及び車内監視部172を備える。
車外監視部171は、車外画像、位置情報取得部23からの位置情報、通信部25を介して外部から取得した各種の情報、レーダ27からの測定結果、ライダ28からの測定結果、車両11に設けられている図示せぬ各種のセンサの検出結果等に基づいて、車両11の外部の監視を行う。例えば、車外監視部171は、他の車両、人、白線等の車両11の周囲の任意の物体の検出を行う。また、例えば、車両11がバスやタクシー等の乗客を乗せる車両である場合、車外監視部171は、車両11に乗ると予測される乗車候補者の認識処理を行う。
車内監視部172は、車内画像、車両11に設けられている図示せぬ各種のセンサの検出結果等に基づいて、車両11の内部の監視を行う。例えば、車内監視部172は、車内の搭乗者等の任意の物体の検出を行う。また、例えば、車両11がバスやタクシー等の乗客を乗せる車両である場合、車内監視部172は、車両11から降りると予測される降車候補者の認識処理を行う。
状況認識部162は、位置情報取得部23からの位置情報、通信部25を介して外部から取得した情報、監視部161からの監視結果、車両11に設けられている図示せぬ各種のセンサの検出結果等に基づいて、車両11が置かれている状況の認識を行う。状況認識部162により認識される状況には、例えば、現在位置、現在時刻、天候、気温、風速、周囲の明るさ、路面の状態、時刻等が含まれる。
運転制御部163は、通信部25を介して外部から取得した情報、車速検出部41からの車速の検出結果、監視部161からの監視結果、状況認識部162からの状況認識結果、運転者による操作等に基づいて、車両11の運転の制御を行う。例えば、運転制御部163は、車両11の発進制御、停止制御、加減速制御、ブレーキ制御、方向制御等を行う。
また、例えば、運転制御部163は、車両11の自動運転又は半自動運転の制御を行う。ここで、自動運転とは、車両11の運転の全てを自動化し、運転者の操作なしに車両11が自律的に移動することである。半自動運転とは、車両11の運転の一部を自動化することである。半自動運転の自動化の範囲は、例えば、ほぼ運転者が運転を行い、ブレーキ制御等の一部の機能のみを自動化し、運転者を支援するものから、車両11がほぼ自律的に運転を行い、運転者が補助的に一部の操作を行うものまで様々である。さらに、例えば、運転制御部163は、車両11が決められたルートやスケジュールで走行するための制御、及び、決められた目的地に到達するための制御を行う。
また、例えば、運転制御部163は、車両11のドアや窓の開閉制御、ドアロックの開閉制御、ヘッドライトの点灯制御、車体の傾斜制御、電源制御等を行う。
停車位置設定部164は、監視部161からの監視結果、状況認識部162からの状況認識結果等に基づいて、車両11の停車位置を設定する。
撮像制御部165は、監視部161からの監視結果、状況認識部162からの状況認識結果、運転制御部163からの運転制御情報等に基づいて、フロントセンシングカメラ21、サイドビューカメラ29、フロントビューカメラ32、リアビューカメラ39、車内カメラ42の撮像の制御を行う。
UI制御部166は、監視部161からの監視結果、状況認識部162からの状況認識結果、運転制御部163からの運転制御情報等に基づいて、表示部24、及び、図示せぬ音声出力部等を制御して、運転者等の搭乗者に対するユーザインタフェースを制御する。
<<2.第1の実施の形態>>
次に、図5乃至図18を参照して、本技術の第1の実施の形態について説明する。本技術の第1の実施の形態は、車両11が自動運転を行うバスにより構成される場合の実施の形態である。
<2-1.カメラの配置例>
図5は、図1の車両11としてのバス201におけるカメラの配置例を模式的に示している。
バス201には、撮像部としてカメラ221F1乃至カメラ221Bが配置されている。カメラ221F1乃至カメラ221Bは、そのいずれかが2以上のカメラで構成されるステレオカメラであって、当該2以上のカメラの視差により撮像された被写体の距離を測定できるものであってもよい。またカメラ221F1乃至カメラ221Bは、そのいずれかが視野角120度以上、特に好ましくは視野角180度以上の広角カメラで構成されていてもよい。
カメラ221F1及びカメラ221F2は、図1のフロントセンシングカメラ21又はフロントビューカメラ32に対応する。カメラ221F1は、例えば、バス201のルームミラー(不図示)の近傍であって、ウィンドシールド211の左右方向の中央、かつ、上下方向の上端付近に配置され、主にバス201の前方の撮像に用いられる。カメラ221F2は、例えば、バス201のダッシュボード(不図示)の上であって、ウィンドシールド211の左右方向の中央、かつ、上下方向の下端付近に配置され、主にバス201の前方の撮像に用いられる。なお、カメラ221F1は、バス201の前方のうち、カメラ221F2より遠い位置の撮像に用いられ、カメラ221F2は、バス201の前方のうち、カメラ221F1より近い位置の撮像に用いられる。
カメラ221L1乃至カメラ221L4は、図3のサイドビューカメラ29Lに対応し、カメラ221Rは、図3のサイドビューカメラ29Rに対応する。カメラ221L1は例えば、バス201の左のサイドミラー212L近傍に配置され、主にバス201の左側方の撮像に用いられる。カメラ221L2は、例えば、バス201の乗車ドア213付近に配置され、主に乗車ドア213付近の撮像に用いられる。カメラ221L3は、例えば、バス201の降車ドア214付近に配置され、主に降車ドア214付近の撮像に用いられる。カメラ221L4は、例えば、バス201の左側面の後端付近に配置され、主にバス201の左側方の撮像に用いられる。なお、カメラ221L1は、バス201の左側方のうち、カメラ221L4より前方の撮像に用いられ、カメラ221L4は、バス201の左側方のうち、カメラ221L4より後方の撮像に用いられる。カメラ221Rは、例えば、バス201の右のサイドミラー212R近傍に配置され、主にバス201の右側方の撮像に用いられる。
カメラ221Bは、図1のリアビューカメラ39に対応する。カメラ221Bは、例えば、バス201の背面の左右方向の中央、かつ、上下方向の上端付近に配置され、主にバス201の後方の撮像に用いられる。
カメラ221INは、図1の車内カメラ42に対応する。カメラ221INは、例えば、バス201のルームミラー(不図示)の近傍に配置され、主に車内の撮像に用いられる。なお、バス201の車内に死角が生じないように、カメラ221INを車内に複数配置するようにしてもよい。
カメラ221F1、カメラ221F2、カメラ221L1乃至カメラ221L4、カメラ221R、及び、カメラ221Bにより撮像された画像(車外画像)は、白線や歩行者などの車外の任意の物体の検出に用いられる。カメラ221INにより撮像された画像(車内画像)は、車内の乗客等の任意の物体の検出に用いられる。
<2-2.自動停発車処理>
次に、図6及び図7のフローチャートを参照して、バス201により実行される自動停発車処理について説明する。なお、この処理は、例えば、バス201のACC(アクセサリ)電源がオンされたとき開始され、ACC電源がオフされたとき終了する。
ステップS1において、運転制御部163は、停車候補地点に接近したか否かを判定する。停車候補地点とは、例えば、次にバス201が停車する予定のバス停留所(以下、単に停留所と称する)のことである。
車両制御部151は、まず次の停留所までの距離を検出する。次の停留所までの距離の検出方法には、任意の方法を採用することができる。
例えば、状況認識部162は、位置情報取得部23により検出された車両11の現在位置、及び、予め保有している地図情報における次の停留所の位置に基づいて、次の停留所までの距離を検出する。
或いは、例えば、車外監視部171は、車外画像、並びに、レーダ27及びライダ28の検出結果に基づいて、バス201の進行方向にある停留所を検出し、さらに停留所までの距離を検出する。
或いは、例えば、状況認識部162は、通信部25が次の停留所に備えられている通信装置から発せられる電波を受信した強度に基づいて、次の停留所までの距離を検出する。
或いは、例えば、状況認識部162は、通信部25が次の停留所に備えられている通信装置から受信した、次の停留所の位置や次の停留所までの距離に関する情報に基づいて、次の停留所までの距離を検出する。
運転制御部163は、次の停留所までの距離が所定の閾値以上である場合、又は、次の停留所までの距離の検出に失敗した場合、停車候補地点に接近していないと判定する。この判定処理は、停車候補地点に接近したと判定されるまで、所定のタイミングで繰り返し実行される。そして、運転制御部163は、次の停留所までの距離が所定の閾値未満である場合、停車候補地点に接近したと判定し、処理はステップS2に進む。
ステップS2において、バス201は、運転制御部163の制御の下に、停車レーンに進入する。ここで、停車レーンとは、バス201が次の停留所で停車する車線のことである。例えば、バス専用レーンが設けられている場合、そのバス専用レーンが停車レーンとなる。一方、バス専用レーンが設けられていない場合、次の停留所の手前の車線、例えば左側走行の道路の場合、左端の車線が停車レーンとなる。
また、バス201は、運転制御部163の制御の下に、停車レーン内の停留所側の端部に移動する。さらに、UI制御部166は、図示せぬ音声出力装置等を制御して、次の停留場を案内するアナウンスを出力させる。
ステップS3において、車外監視部171は、停車基準位置を設定する。
具体的には、車外監視部171は、まず車外画像に基づいて、停留所の検出を行う。
図8及び図9は、停留所の類型を示している。
例えば、停留所の名前や時刻表等が示された標識のみが設置されている停留所がある。図8の標識301乃至標識303は、停留所の標識の一例である。この例に示されるように、標識の形状は様々である。
また、例えば、風、雨、日差し等を防ぐための屋根を備えるバスシェルタが設置されている停留所がある。図8のバスシェルタ304は、その一例である。バスシェルタの中には、壁面が設けられているものもある。また、バスシェルタとともに標識が設置されている停留所もある。或いは、バスシェルタに停留所の名前や時刻表等が示されており、標識が設置されていない停留所もある。
さらに、例えば、待合室が設置されている停留所がある。図9は、待合室が設置されている停留所の例を示している。この例では、歩道313の車道314側の端部に、標識311が設置されている。また、車道314と反対側において歩道313に面するように待合室312が設置されている。待合室312は、屋根と壁で囲まれており、出入りするためのドア321を備えている。
例えば、車外監視部171は、標識、バスシェルタ、待合室等の停留所に設置される設備の形状のパターンを予め保持しておき、そのパターンを用いたパターン認識により、車外画像内の停留所の検出を行う。或いは、例えば、車外監視部171は、標識、バスシェルタ等に示される標章(例えば、停留所やバス会社のマーク等)のパターンを予め保持しておき、そのパターンを用いたパターン認識により、車外画像内の停留所の検出を行う。或いは、例えば、車外監視部171は、文字認識等により次の停留所の名称を示す文字を車外画像の中から認識することにより、停留所の検出を行う。
また、複数の路線のバスが発着するバスターミナル等においては、路線毎にバスの停車位置が異なり、例えば、図10に示されるように、複数の標識331乃至標識333が設置されている場合がある。この場合、車外監視部171は、標識331乃至標識333の中から、バス201の路線に対応する標識を認識する。例えば、車外監視部171は、予め設定されている情報(例えば、バスターミナルにおける標識の位置)に基づいて、バス201の路線に対応する標識を認識したり、文字認識等により、バス201の路線に対応する標識を認識したりする。
なお、停留所の検出方法は、上述した例に限定されるものではなく、任意の方法を採用することができる。例えば、バス201の位置情報と地図情報を補助的に用いて、停留所を検出するようにしてもよい。或いは、例えば、停留所に設置されている通信装置と通信を行うことにより、停留所を検出するようにしてもよい。
次に、車外監視部171は、停留所の検出結果に基づいて、停車基準位置を設定する。停車基準位置とは、バス201が次の停留所に停車する際の基準となる位置であり、後述するように、停車基準位置の周囲の人を対象に乗車候補者の認識処理が行われる。
例えば、停留所に標識が設置されている場合、標識の設置位置が停車基準位置に設定される。また、例えば、停留所にバスシェルタや待合室等のバスを待つ乗客のための構造物(以下、停留所構造物と称する)が設置されている場合、その停留所構造物を基準にして停車基準位置が設定される。例えば、バスシェルタが設置されている場合、バスシェルタの屋根の下の領域が停車基準位置に設定される。さらに、例えば、停留所に乗車位置(搭乗位置)が示されている場合、その乗車位置が停車基準位置に設定される。
なお、停留場が標識、停留所構造物、及び、乗車位置(の表示)のうち2つ以上を備える場合、例えば、そのうちの1つを基準にして停車基準位置を設定するようにしてもよいし、2つ以上の位置関係により停車基準位置を設定するようにしてもよい。そのうち1つを基準にして設定する場合には、標識、停留所構造物よりも乗車位置(の表示)を優先して設定してもよい。
ステップS4において、車外監視部171は、乗車候補者の認識処理を開始する。ここで、車外監視部171は、停車候補地点の近傍領域を対象として乗車候補者の認識処理を行う。例えば、車外監視部171は、ステップS3の処理で設定した停車基準位置を基準にして、バスを待つ乗客がいる可能性が高い領域を、乗車候補者の認識処理を優先的に行う領域(以下、優先認識領域と称する)に設定する。
図11は、優先認識領域の1つの典型例を示している。この例では、歩道401と車道402の境界付近に停車基準位置Paが設置されている。例えば、停車基準位置Paは、停留所の標識(不図示)の設置位置とされる。なお、車道402には、車道外側線403及び車線境界線404が示されている。
例えば、停車基準位置Paを中心とする所定の半径内の領域が、優先認識領域に設定される。このとき、段階的に複数の優先認識領域を設定することも可能である。図11の例では、優先認識領域A1a及び優先認識領域A2aの2段階の優先認識領域が設定されている。例えば、優先認識領域A1aは、停車基準位置Paを中心とする半径r1a内の円形の領域に設定される。優先認識領域A2aは、停車基準位置Paを中心とする半径r2a(>半径r1a)内の領域であって、優先認識領域A1aを除く円環型の領域に設定される。
乗車候補者の認識処理を行う優先順位は、優先認識領域A1aが最も高くなり、優先認識領域A2aが次に高くなり、優先認識領域A2aより外の領域が最も低くなる。例えば、認識処理に割り当てられるマシンパワーや時間等が、優先認識領域A1a内で最も大きくなり、優先認識領域A2a内で次に大きくなり、優先認識領域A2aの外で最も小さくなる。これにより、認識精度は、優先認識領域A1a内で最も高くなり、優先認識領域A2a内で次に高くなり、優先認識領域A2aの外で最も低くなる。
なお、優先認識領域A1bより外の領域を、乗車候補者の認識処理の対象外としてもよい。すなわち、優先認識領域A1a及び優先認識領域A1b内においてのみ、乗車候補者の認識処理を行うようにしてもよい。この場合、優先認識領域A1bより外にいる人は、乗車候補者として認識されない。
また、例えば、乗車候補者であるか否かの判定にスコアを用いる場合、優先認識領域A1a内にいる人に、優先認識領域A1b内にいる人よりも高いスコアを付与し、優先認識領域A1b内にいる人に、優先認識領域A1bの外にいる人より高いスコアを付与するようにしてもよい。
なお、優先認識領域は、必ずしも同心円状に設定する必要はない。例えば、図12に示されるように、外周が停車基準位置Paを中心とする楕円形の優先認識領域A1b及び優先認識領域A2bを設定するようにしてもよい。
また、乗客がバスを待つ位置は、停留場の構成、停留所の周囲の状況等により変化する。ここで、停留所の構成には、例えば、標識の有無及び位置、バスシェルタや待合室等の停留所構造物の有無、形状及び位置、並びに、バスの停止位置の表示の有無及び位置等が含まれる。停留所の周囲の状況には、例えば、停留所の周囲の道路の位置、構成及び付属物、停留所の周囲の建造物や移動体の位置、種類及び形状、並びに、天候等が含まれる。道路の構成には、例えば、歩道の有無や幅、路側帯の有無や幅、車線の幅、道路の区画線の数や位置等が含まれる。道路の付属物には、例えば、ガードレール、柵、縁石、道路標識等が含まれる。周囲の建造物には、例えば、ビル、家屋、壁、塀、駐車場等が含まれる。周囲の移動体には、例えば、駐車中の車両等が含まれる。
そこで、車外監視部171は、さらに停留場の構成、及び、停留所(停車基準位置)の周囲の状況等のうち少なくとも1つに基づいて、優先認識領域を設定するようにしてもよい。
例えば、図13のAに示される停留所においては、歩道422と車道423の境界付近に標識421が設置されている。車道423に面するように、歩道422の端部にガードレール426が設置されている。車道423には、車道外側線424及び車線境界線425が示されている。ビル427が、歩道422に面している。
この場合、図13のBに示されるように、標識421の位置が停車基準位置Pcに設定される。また、基本的に、停車基準位置Pcを中心とする半径r1cの領域が優先認識領域A1cに設定され、停車基準位置Pcを中心とする半径r2c(>半径r1c)の領域のうち優先認識領域A1cの除く領域が優先認識領域A2cに設定される。ただし、ガードレール426によりバスを待つ乗客が車道423に入る可能性が低いと想定されるため、車道423内の領域は優先認識領域から除外される。また、ビル427の敷地内の領域は、優先認識領域から除外される。
図14は、歩道が設けられておらず、路側帯441に標識(不図示)が設置されている停留所における優先認識領域の例を示している。具体的には、車道外側線443により、路側帯441と車道442が分離されている。車道442には車線境界線444が示されている。塀445が路側帯441に面するように設置されている。路側帯441の塀445側の端部に標識(不図示)が設置されており、その位置に停車基準位置Pdが設定されている。
この場合、例えば、基本的に、停車基準位置Pdを中心とする半径r1dの領域が優先認識領域A1dに設定され、停車基準位置Pdを中心とする半径r2d(>半径r1d)の領域のうち優先認識領域A1dを除く領域が優先認識領域A2dに設定される。ただし、塀445の内側(路側帯441と反対側)は、優先認識領域から除外される。また、路側帯441が狭く、乗客が車道442内でバスを待つ可能性が高いため、車道442内の領域が優先認識領域から除外されずに含まれる。
図15のAに示される停留所においては、標識461及びバスシェルタ462が設置されている。具体的には、歩道463の車道464側の端部にバスシェルタ462が設置されている。バスシェルタ462の手前側の端部に、標識461が設置されている。車道464には、車道外側線465及び車線境界線466が示されている。ビル467が、歩道463に面している。
この場合、図15のBに示されるように、標識461の位置が停車基準位置Peに設定される。また、バスシェルタ462内の矩形の領域が、優先認識領域A1eに設定される。さらに、優先認識領域A1eを囲む矩形の枠状の領域が、優先認識領域A2eに設定される。
この例では、歩道463の幅が広いため、優先認識領域A2eは、歩道463のビル467側の端までは設定されない。また、ガードレール等が設けられておらず、バスを待つ乗客が車道464に入る可能性があるため、車道464内の領域が優先認識領域から除外されずに含まれる。
次に、車外監視部171は、車外画像に基づいて、顔認識等により、停留所付近の人の認識を行う。また、車外監視部171は、認識した人の位置、視線の向き、行動等の認識を行う。そして、車外監視部171は、停留所付近の人の位置、視線の向き、行動等の認識結果のうち少なくとも1つに基づいて、認識した人の中から乗車候補者を抽出する。
なお、車外監視部171の認識処理には、任意の手法を採用することができる。
ここで、図16を参照して、乗車候補者の認識処理の具体例について説明する。
図16は、図13のAに示される停留所付近の人の認識結果の例を示している。この例では、人501a乃至人501hが認識されている。なお、図内において、認識された人の顔を囲むように枠が示されている。
人501a乃至人501cは、優先認識領域A1b内において標識421の近くに立っている。人501d及び人501eは、優先認識領域A2c内において停留所から離れる方向に歩いている。人501fは、優先認識領域A2c内において自転車に乗っている。人501gは、優先認識領域A2c外の歩道422を停留所に近づく方向に歩いている。人501hは、優先認識領域A2c外の車道423内において、バス201の方向を見て手を挙げている。
例えば、車外監視部171は、認識した人の中から、明らかにバスを待っていないと推定される人を除外する。例えば、停留所から遠ざかる方向に歩いている人501d及び人501e、並びに、自転車に乗っている人501fが除外される。
次に、車外監視部171は、残った人それぞれに対して、位置、視線の向き、行動等を基準とするスコアを付与する。例えば、優先認識領域A1b内にいる人に高いスコアが付与され、優先認識領域A2b内にいる人に次に高いスコアが付与される。また、例えば、停留所に向かって走っている人に高いスコアが付与され、停留所に向かって歩いている人に次に高いスコアが付与される。さらに、例えば、バス201の方向を見ている人に高いスコアが付与される。また、バス201の方に向かって手を挙げている人に高いスコアが付与される。
なお、例えば、車外監視部171は、状況認識部162により認識される停留所の周囲の状況に応じて、付与するスコアを変動させてもよい。例えば、バスシェルタを備える停留所では、日差しが強い時や、雨や雪等の悪天候の時は、それ以外の時と比較して、乗客がバスシェルタ内で待つ可能性が高くなると想定される。そこで、車外監視部171は、日差しが強い時や悪天候の時は、バスシェルタ内の人に付与するスコアを通常より上げたり、或いは、バスシェルタの外にいる人に付与するスコアを通常より下げたりしてもよい。
そして、車外監視部171は、スコアの合計が所定の閾値以上の人を乗車候補者として抽出する。例えば、図16の例では、人501a乃至人501c、及び、人501hが、乗車候補者として認識される。
なお、例えば、車外監視部171は、状況認識部162により認識される停留所の周囲の状況に応じて、乗車候補者を認識する基準を変更するようにしてもよい。例えば、車外監視部171は、乗車候補者の認識精度の低下が想定される状況において、通常より閾値を下げるようにしてもよい。すなわち、乗車候補者を認識する基準を下げるようにしてもよい。例えば、夜間で周囲が暗い場合、雨、霧、雪等で停留所の周囲の見通しが悪い場合、他の車両等の障害物により停留所の周囲の見通しが悪い場合に、車外監視部171は、通常より閾値を下げるようにしてもよい。
また、例えば、上述した図9の停留所のように待合室を備える停留所では、待合室の中がバス201から死角になり、待合室で待っている乗客を認識できないおそれがある。そこで、待合室にカメラを設け、そのカメラで撮像した画像を用いて、待合室内の乗車候補者の認識処理を行うようにしてもよい。
例えば、図17は、図9の待合室312の室内を上から見た図を模式的に示している。待合室312のドア321側の壁312Aのドア321と反対側の端部の天井付近に、室内全体を撮影できるようにカメラ521が設置されている。また、壁312Aと対向する壁312B付近にベンチ522が置かれている。
例えば、バス201の通信部25は、待合室312に接近すると、カメラ521と通信を行い、カメラ521が撮影した画像を取得する。そして、車外監視部171は、通信部25を介して待合室312から受信した画像に基づいて、ベンチ522に座っている人523a及び人523bを乗車候補者として認識する。
さらに、車外監視部171は、全ての車外画像を用いて、乗車候補者の認識処理を行うようにしてもよいし、一部の車外画像を用いて、乗車候補者の認識処理を行うようにしてもよい。
また、車外監視部171は、バス201の停車前(移動時)と停車後(停止時)で、使用する車外画像を変更するようにしてもよい。例えば、図18のAに示されるように、バス201が、歩道542と車道543の境界に設定された停車基準位置541に接近している場合、車外監視部171は、カメラ221F1、カメラ221F2(不図示)、及び、カメラ221L1により撮像した画像を用いて、バス201の前方、並びに、左斜め前方向を対象に、乗車候補者の認識処理を行う。すなわち、バス201が停留所に接近しているときには、バス201の進行方向にある停留所付近を中心に乗車候補者の認識処理が行われる。
一方、図18のBに示されるように、バス201が停留所で停車した後は、車外監視部171は、さらにカメラ221L2乃至カメラ221L4、及び、カメラ221Bにより撮像した画像を追加して、バス201の左側方、及び、バス201の後方を、乗車候補者を認識する対象に追加する。すなわち、バス201の停車後は、バス201の周囲にいる乗車候補者をより確実に認識するとともに、バス201に乗り込む乗客、及び、バス201から降りる乗客を確実に認識できるように、認識対象とする領域が広げられる。
これにより、乗車候補者の認識処理を効率的に行うことができ、認識処理の負荷が軽減されるとともに、認識精度が向上する。
なお、この場合、撮像制御部165は、認識処理に用いる画像を撮像するカメラのみ撮像を行い、他のカメラの撮像を停止するように制御してもよい。すなわち、撮像制御部165は、バス201の停車前と停車後で、撮像を行うカメラを変更するようにしてもよい。これにより、消費電力を低減することができる。
また、例えば、バス201の停車前において、バス201と停留場の相対位置により、乗車候補者の認識処理に使用する車外画像を切り替えたり、撮像を行うカメラを切り替えたりするようにしてもよい。
図6に戻り、ステップS5において、状況認識部162は、定刻を過ぎているか否かを判定する。ここで、定刻とは、例えば、バス201の運行スケジュールにおいて、次の停留所を発車する予定の時刻のことである。定刻を過ぎていると判定された場合、処理はステップS6に進む。
ステップS6において、車内監視部172は、降りる乗客がいるか否かを判定する。例えば、車内監視部172は、バス201の中に設けられている降車ボタンが押下されている場合、降りる乗客がいると判定し、押下されていない場合、降りる乗客がいないと判定する。そして、降りる乗客がいないと判定された場合、処理はステップS7に進む。
なお、車内監視部172は、例えば、後述する降車候補者の認識処理を行い、その認識結果に基づいて、降りる乗客がいるか否かを判定するようにしてもよい。
ステップS7において、車外監視部171は、乗車候補者の認識処理の結果に基づいて、乗車候補者がいるか否かを判定する。乗車候補者がいないと判定された場合、処理はステップS8に進む。
ステップS8において、バス201は、運転制御部163の制御の下に、停車候補地点を通過する。すなわち、降りる乗客及び乗車候補者がおらず、かつ、定刻を過ぎている場合、バス201は、停車候補地点(次の停留所)で停車することなく通過する。
このとき、例えば、運転制御部163は、停留所付近においてバス201を徐行させる。また、UI制御部166は、図示せぬ音声出力装置等を制御して、停留所を通過する旨のアナウンスを出力させる。これにより、自分が降りる停留所への接近に気付いていないバス201内の乗客が、停留所への接近に気付きやすくなる。そして、例えば、その乗客が降車ボタンを押下した場合、後述するステップS6において降りる乗客がいると判定された場合と同様の処理が行われる。
また、停留所付近をバス201が徐行することにより、車外監視部171による乗車候補者の認識精度が向上する。さらに、例えば、停留所から少し離れた場所にいる乗客が、バス201の接近に気付いていない場合に、バス201の接近に気付きやすくなる。そして、その乗客が乗車するための行動を起こすことにより、車外監視部171により乗車候補者が新たに認識される場合がある。この時点で、乗車候補者の存在が認識された場合、例えば、後述するステップS7において乗車候補者がいると判定された場合と同様の処理が行われる。
一方、運転制御部163は、乗車候補者及び降りる乗客の存在が認識されずに、そのまま停留所を通過した場合、その後、通常の走行速度までバス201を加速する。
ステップS9において、車外監視部171は、乗車候補者の認識処理を停止する。このとき、撮像制御部165は、乗車候補者の認識処理以外の用途に用いられないカメラの撮像を停止するようにしてもよい。
その後、処理はステップS1に戻り、ステップS1以降の処理が実行される。
一方、ステップS5において、定刻を過ぎていないと判定された場合、ステップS6において、降りる乗客がいると判定された場合、又は、ステップS7において、乗車候補者がいると判定された場合、処理はステップS10に進む。
ステップS10において、車両制御部151は、停車候補位置を設定する。例えば、車外監視部171は、車外画像に基づいて、停留所付近において、バスの停車位置の表示の検出処理を行う。例えば、バスの停車位置は、停留所の前の車線(停車レーン)の路面に、矩形の枠等で表示されている。そして、停車位置の表示が検出された場合、停車位置設定部164は、その停車位置を停車候補位置に設定する。
また、例えば、車外監視部171は、バスの停車位置の表示を検出できなかった場合、乗客の乗車位置の表示の検出を行う。そして、乗客の乗車位置の表示が検出された場合、停車位置設定部164は、その乗車位置付近にバス201の乗車ドア213が位置するように、停車候補位置を設定する。
さらに、例えば、停車位置設定部164は、バスの停車位置及び乗車位置の表示が検出されなかった場合、停車基準位置を基準にして停車候補位置を設定する。例えば、停車位置設定部164は、停車基準位置付近にバス201の乗車ドア213が位置するように、停車候補位置を設定する。
ステップS11において、車外監視部171は、停車候補位置に停車可能であるか否かを判定する。例えば、車外監視部171は、車外画像に基づいて、停車候補位置付近の障害物の有無を検出する。ここで、障害物とは、バス201の停車を妨げるものであり、例えば、他の車両、人等が想定される。車外監視部171は、停車候補位置付近に障害物が検出されなかった場合、停車候補位置に停車可能であると判定し、処理はステップS12に進む。
ステップS12において、バス201は、停車候補位置に停車する。具体的には、停車位置設定部164は、現在の停車候補位置を停車位置に設定する。バス201は、運転制御部163の制御の下に、停車位置に近づくにつれて徐々に減速し、停車位置で停車する。また、バス201は、運転制御部163の制御の下に、乗車ドア213及び降車ドア214を開ける。なお、乗車候補者が認識されていない場合、必ずしも乗車ドア213を開ける必要はない。また、降りる人がいない場合、必ずしも降車ドア214を開ける必要はない。さらに、バス201が乗降支援のために車体を傾斜させることができる場合、運転制御部163は、バス201の車体を傾斜させる。また、UI制御部166は、図示せぬ音声出力装置等を制御して、停留所に停止した旨のアナウンスを出力させる。
その後、処理はステップS14に進む。
一方、ステップS11において、車外監視部171は、停車候補位置付近に障害物が検出された場合、停車候補位置に停車不可であると判定し、処理はステップS13に進む。このとき、例えば、車外監視部171は、停車候補位置の周辺の車両や人等の移動体の動きを検出し、停車候補位置付近に移動体が進入する可能性がある場合、停車候補位置に停車不可であると判定するようにしてもよい。
ステップS13において、バス201は、停車候補位置の近くに停車する。例えば、停車位置設定部164は、停車レーン内において、停車候補位置の近くで障害物を避けることが可能な場所を停車位置に設定する。バス201は、運転制御部163の制御の下に、停車位置に近づくにつれて徐々に減速し、停車位置で停車する。そして、ステップS12の処理と同様に、運転制御部163は、乗車ドア213及び降車ドア214を開けたり、車体を傾斜させたりする。また、UI制御部166は、図示せぬ音声出力装置等を制御して、停留所に停止した旨のアナウンスを出力させる。
その後、処理はステップS14に進む。
ステップS14において、車内監視部172は、降車候補者の認識処理を開始する。具体的には、車内監視部172は、車内画像を用いて、車内の人(乗客)の認識を行う。また、車内監視部172は、認識した乗客の位置、行動等の認識等を行う。そして、車内監視部172は、認識した乗客の位置、行動等の認識結果のうち少なくとも1つに基づいて、認識した乗客の中から降車候補者を抽出する。例えば、車内監視部172は、座席から立ち上がった乗客、降車ドア214の方向に移動している乗客等を降車候補者として認識する。
なお、車内監視部172の認識処理には、任意の手法を採用することができる。
ステップS15において、監視部161は、乗車候補者の乗車(搭乗)及び降車候補者の降車の認識処理を開始する。
例えば、車外監視部171は、各乗車候補者の顔画像又は顔の特徴量を記憶する。また、車外監視部171は、記憶した各乗車候補者の顔画像又は顔の特徴量、乗車ドア213付近のカメラ221L2の画像、及び、車内のカメラ221INの画像を用いて、バス201に新たに乗車した乗客の顔認証を行う。そして、車外監視部171は、新たに乗車した乗客の顔と類似する顔を持つ乗車候補者が存在する場合、その乗客を乗車候補者から削除する。
また、例えば、車内監視部172は、各降車候補者の顔画像又は顔の特徴量を記憶する。また、車内監視部172は、記憶した各降車候補者の顔画像又は顔の特徴量、降車ドア214付近のカメラ221L3の画像、及び、車内のカメラ221INの画像を用いて、バス201から降りた乗客の顔認証を行う。そして、車内監視部172は、降車した乗客の顔と類似する顔を持つ降車候補者が存在する場合、その乗客を降車候補者から削除する。
なお、車外監視部171は、乗車候補者の乗車の認識処理を開始した後、乗車候補者の認識処理を停止し、いったん乗車候補者を確定するようにしてもよい。
或いは、車外監視部171は、乗車候補者の乗車の認識処理を開始した後も、乗車候補者の認識処理を継続し、乗車候補者の更新を行うようにしてもよい。これにより、例えば、車外監視部171は、遅れてバス201の乗車ドア213に近づいて来る人を乗車候補者として新たに認識したり、誤認識した乗車候補者を削除したりすることができる。
同様に、車内監視部172は、降車候補者の降車の認識処理を開始した後、降車候補者の認識処理を停止し、いったん降車候補者を確定するようにしてもよい。
或いは、車内監視部172は、降車候補者の降車の認識処理を開始した後も、降車候補者の認識処理を継続し、降車候補者の更新を行うようにしてもよい。これにより、例えば、車内監視部172は、遅れてバス201の降車ドア214の方向に移動する人を降車候補者として新たに認識したり、誤認識した降車候補者を削除したりすることができる。
ステップS16において、状況認識部162は、定刻前であるか否かを判定する。ステップS16の判定処理は、定刻である、又は、定刻を過ぎていると判定されるまで繰り返し実行される。そして、定刻である、又は、定刻を過ぎていると判定された場合、処理はステップS17に進む。
ステップS17において、監視部161は、乗車候補者又は降車候補者が残っているか否かを判定する。ステップS17の判定処理は、乗車候補者及び降車候補者が残っていないと判定されるまで繰り返し実行される。そして、乗車候補者及び降車候補者が残っていないと判定された場合、処理はステップS18に進む。
なお、車外監視部171は、乗車候補者の乗車の認識処理の開始後に乗車候補者の認識処理を停止している場合、乗車候補者が残っていないと判定した後、念のために乗車候補者の認識処理を再度行うようにしてもよい。また、車外監視部171は、乗車候補者の乗車の認識処理の開始後に乗車候補者の認識処理を停止している場合、乗車候補者の誤認識により乗車候補者の乗車を認識できないときに備えて、所定の時間が経過しても乗車候補者が残っているとき、乗車候補者の認識処理を再度行うようにしてもよい。
さらに、車内監視部172は、降車候補者の降車の認識処理の開始後に降車候補者の認識処理を停止している場合、降車候補者が残っていないと判定した後、念のために降車候補者の認識処理を再度行うようにしてもよい。また、車内監視部172は、降車候補者の降車の認識処理の開始後に降車候補者の認識処理を停止している場合、降車候補者の誤認識により降車候補者の降車を認識できないときに備えて、所定の時間が経過しても降車候補者が残っているとき、降車候補者の認識処理を再度行うようにしてもよい。
また、例えば、車外監視部171は、乗車候補者の乗車の認識処理を行わずに、乗車候補者の認識処理を繰り返し、認識される乗車候補者がいなくなったときに、乗車候補者が残っていないと判定するようにしてもよい。同様に、車内監視部172は、降車候補者の降車の認識処理を行わずに、降車候補者の認識処理を繰り返し、認識される降車候補者がいなくなったときに、降車候補者が残っていないと判定するようにしてもよい。
ステップS18において、車両制御部151は、発車可能であるか否かを判定する。例えば、車内監視部172は、車内画像に基づいて、着席していない乗客の有無を検出する。運転制御部163は、着席していない乗客が検出された場合、発車不可であると判定し、着席していない乗客が検出されなかった場合、発車可能であると判定する。ただし、運転制御部163は、満席の場合や、座らずに立っている乗客がいる場合も想定して、例えば、乗車候補者及び降車候補者がいなくなってから所定の時間(例えば、30秒)が経過した後、立っている乗客の有無に関わらず、発車可能であると判定する。
そして、発車不可であると判定された場合、処理はステップS17に戻り、ステップS18において、発車可能であると判定されるまで、ステップS17及びステップS18の処理が繰り返し実行される。これにより、発車可能になるまでの間に新たな乗客の乗車又は降車が可能になる。
一方、ステップS18において、発車可能であると判定された場合、処理はステップS19に進む。
ステップS19において、バス201は、発車する。具体的には、運転制御部163は、バス201の車体を傾斜させている場合、車体の傾斜を元に戻す。また、運転制御部163は、乗車ドア213及び降車ドア214を閉める。さらに、UI制御部166は、図示せぬ音声出力装置等を制御して、発車する旨のアナウンスを出力させる。そして、車外監視部171が、車外画像に基づいて周囲の安全を確認した後、バス201は、運転制御部163の制御の下に、発車し、徐々に加速する。
なお、車外監視部171は、バス201の発車直前又は発車直後に、乗り遅れた乗客の認識処理を行うようにしてもよい。例えば、車外監視部171は、バス201の後方の画像内において、バス201に向かって走ってきたり、バス201を追いかけてきたり、出発を待ってほしいと訴えかけるような動作をしたりする人がいる場合、乗り遅れた乗客であると認識する。乗り遅れた乗客が認識された場合、運転制御部163は、すでにバス201が発車している場合、停車可能であれば、バス201を停車させる。そして、運転制御部163は、乗り遅れた乗客の乗車が完了するまで、バス201の発車を遅らせる。
ステップS20において、監視部161は、乗車候補者及び降車候補者の認識処理を停止する。このとき、撮像制御部165は、乗車候補者又は降車候補者の認識処理以外の用途に用いないカメラの撮像を停止するようにしてもよい。
その後、処理はステップS1に戻り、ステップS1以降の処理が実行される。
このようにして、バス201に乗る人又はバス201から降りる人に応じて、バス201の自動運転を適切に行うことができる。すなわち、自動運転を行うバス201が、乗車する乗客及び降車する乗客の有無に応じて、確実に停留所に停車することが可能になる。これにより、確実に乗客がバス201に乗車し、所望の停留所で降車することが可能になる。
また、自動運転を行うバス201の乗客の利便性が向上する。すなわち、乗客は、停留所で待っているだけで、他に特別な動作等をすることなく、確実にバス201に乗ることができる。
<2-3.第1の実施の形態の変形例>
例えば、ステップS5において、定刻を過ぎていないと判定されるか、ステップS6において、降りる乗客がいると判定された場合、すなわち、乗車候補者の有無に関わらずバス201が停車する場合、例えば、車外監視部171は、乗車候補者の認識処理を、バス201の停車直前又は停車後に開始するようにしてもよい。
また、例えば、状況認識部162により、乗車候補者の認識精度が非常に低い状況(例えば、濃霧等)が認識されている場合、バス201が、乗車候補者や降りる乗客の有無に関わらず、次の停留所で停車するようにしてもよい。
さらに、例えば、最も優先度が高い優先認識領域内に人がいることが認識された場合、バス201が、その人の視線の向きや行動等に関わらず、その停留所で停車するようにしてもよい。
また、優先認識領域は、上述した2段階ではなく、1段階又は3段階以上に設定することも可能である。
さらに、次の停留場が終点である場合、車外監視部171は、乗車候補者の認識処理を行う必要はない。また、例えば、車内監視部172により車内に乗客がいないことが認識された場合、バス201が、終点で停車せずに、車庫等の次の目的地に向かうようにしてもよい。
<<3.第2の実施の形態>>
次に、本技術の第2の実施の形態について説明する。本技術の第2の実施の形態は、車両11が自動運転を行うタクシーである場合に、車両11が、自動的に乗客を見つけて停車し、乗客を乗せて発車するときの実施の形態である。
ここで、図19のフローチャートを参照して、車両11により実行される自動停発車処理について説明する。なお、この処理は、例えば、車両11のACC(アクセサリ)電源がオンされたとき開始され、ACC電源がオフされたとき終了する。
ステップS101において、車外監視部171は、優先認識領域を設定する。ここで、優先認識領域とは、上述したように乗車候補者の認識処理を優先的に行う領域であり、例えば、車両11に対する所定の方向における所定の領域であって、タクシーに乗りそうな人がいる領域が優先認識領域に設定される。
例えば、車外監視部171は、車外画像に基づいて、車両11の進行方向において、車両11が走行している車線側の歩道等を検出する。ここで、歩道等とは、例えば、歩道又は路側帯のことである。なお、厳密に言えば、歩道が設けられている車道の車道外側線と歩道の間の領域(例えば、図11の歩道401と車道外側線403の間の領域)は車道に含まれる。しかし、その領域は、歩行者が通行する場合もあるため、歩道と見なすようにしてもよい。そして、車外監視部171は、検出した歩道等を優先認識領域に設定する。
ステップS102において、車外監視部171は、乗車候補者の認識処理を行う。例えば、車外監視部171は、車外画像に基づいて、顔認識等により、優先認識領域内の人の認識を行う。ここで、車外監視部171は、優先認識領域の周囲の領域を認識対象に加えてもよいし、認識対象を優先認識領域のみに限定するようにしてもよい。また、車外監視部171は、認識した人の位置、視線の向き、行動等の認識を行う。そして、車外監視部171は、認識した人の位置、視線の向き、行動等の認識結果のうち少なくとも1つに基づいて、認識した人の中から乗車候補者を抽出する。
例えば、車外監視部171は、認識した人の中から、明らかにタクシーを待っていないと推定される人を除外する。例えば、歩いている人や自転車に乗っている人等が除外される。
次に、車外監視部171は、残った人それぞれに対して、位置、視線の向き、行動等を基準とするスコアを付与する。例えば、優先認識領域内にいる人、手を挙げている人、車両11の方向に視線を向けている人等に高いスコアが付与される。そして、車外監視部171は、スコアの合計が所定の閾値以上の人を乗車候補者に設定する。このとき、乗車候補者が複数いてもよい。
なお、例えば、車外監視部171は、上述したバスの乗車候補者の認識処理を行い、バスの乗車候補者を除外して、タクシーの乗車候補者を認識するようにしてもよい。
ステップS103において、車外監視部171は、ステップS102の処理の結果に基づいて、乗車候補者がいるか否かを判定する。乗車候補者がいないと判定された場合、処理はステップS101に戻る。
その後、ステップS103において乗車候補者がいると判定されるまで、ステップS101乃至ステップS103の処理が繰り返し実行される。
一方、ステップS103において、乗車候補者がいると判定された場合、処理はステップS104に進む。
ステップS104において、車両11は、運転制御部163の制御の下に、乗車候補者に接近する。このとき、車両11は、必要に応じて徐行する。また、車両11は、複数の乗車候補者が存在する場合、その中のいずれかの乗車候補者に接近する。例えば、車両11は、最も近くにいる乗車候補者、又は、最もスコアが高い乗車候補者に接近する。
ステップS105において、車外監視部171は、乗車候補者を特定する。例えば、車外監視部171は、再度乗車候補者の認識処理を行う。そして、車外監視部171は、スコアの合計が所定の閾値以上の人の中から1人を乗車候補者に特定する。例えば、車外監視部171は、スコアの合計が所定の閾値以上の人のうち最も近くにいる人、又は、最もスコアが高い人を乗車候補者に特定する。また、車外監視部171は、特定した乗車候補者の傍に乗車候補者と同行していると推定される人がいる場合、その人も乗車候補者に追加する。
ステップS106において、車外監視部171は、ステップS105の処理の結果に基づいて、乗車候補者を特定できたか否かを判定する。乗車候補者を特定できなかったと判定された場合、例えば、スコアの合計が所定の閾値以上の人がいなかった場合、処理はステップS1に戻る。なお、このとき、車両11は、徐行している場合、通常の走行速度まで加速する。
その後、ステップS106において、乗車候補者を特定できたと判定されるまで、ステップS101乃至ステップS106の処理が繰り返し実行される。
一方、ステップS106において、乗車候補者を特定できたと判定された場合、処理はステップS107に進む。
ステップS107において、車両11は、運転制御部163の制御の下に、乗車候補者に合図を送る。例えば、車両11は、乗車候補者に向けてヘッドライトをパッシングしたり、カーホーン(クラクション)を鳴らしたりする。
なお、ステップS107の処理は、省略することも可能である。
ステップS108において、車外監視部171は、乗車候補者の傍に停車可能であるか否かを判定する。例えば、車外監視部171は、車外画像に基づいて、乗車候補者の周囲において、障害物の有無を検出する。ここで、障害物とは、車両11の停車を妨げるものであり、例えば、他の車両、人等が想定される。また、例えば、車外監視部171は、乗車候補者の周囲において、停車できない領域の有無を検出する。ここで、停車できない領域とは、例えば、明示的に停車が禁止されている領域(例えば、駐停車禁止領域、バス専用レーン等)、交差点付近、横断歩道等である。
車外監視部171は、乗車候補者の周囲に、障害物及び停車できない領域がない場合、乗車候補者の傍に停車可能であると判定し、処理はステップS109に進む。
ステップS109において、車両11は、乗車候補者の傍に停車する。例えば、停車位置設定部164は、乗車候補者の傍に停車位置を設定する。車両11は、運転制御部163の制御の下に、停車位置に近づくにつれて徐々に減速し、停車位置で停車する。その後、車外監視部171が、車外画像に基づいて周囲の安全を確認した後、運転制御部163は、車両11の後部座席のドアを開く。また、運転制御部163は、必要に応じて、車両11の助手席のドア及びトランクのドアを開く。
その後、処理はステップS111に進む。
一方、ステップS108において、車外監視部171は、乗車候補者の周囲に、障害物又は停車できない領域がある場合、乗車候補者の傍に停車できないと判定し、処理はステップS110に進む。
ステップS110において、車両11は、乗車候補者から少し離れた場所に停車する。例えば、車外監視部171は、車両11が停車可能な場所であって、乗車候補者に最も近い場所を検出し、停車位置設定部164は、その場所を停車位置に設定する。車両11は、運転制御部163の制御の下に、停車位置に近づくにつれて徐々に減速し、停車位置で停車する。その後、車外監視部171が、車外画像に基づいて周囲の安全を確認した後、運転制御部163は、車両11の後部座席のドアを開く。また、運転制御部163は、必要に応じて、車両11の助手席のドア及びトランクのドアを開く。
なお、このとき、例えば、設定された停車位置が乗車候補者から離れすぎている場合、例えば、設定された停車位置と乗車候補者との間の距離が所定の閾値以上である場合、車両11は、停車せずにそのまま通過するようにしてもよい。
その後、処理はステップS111に進む。
なお、ステップS109及びステップS110において、車両11が、周囲の車両(例えば、後続車両)との関係等により、設定された停車位置での停車が困難な場合、停車せずにそのまま通過するようにしてもよい。
ステップS111において、車外監視部171は、乗車候補者の乗車の認識処理を開始する。例えば、車外監視部171は、各乗車候補者の顔画像又は顔の特徴量を記憶する。また、車外監視部171は、記憶した各乗車候補者の顔画像又は顔の特徴量、車外画像及び車内画像を用いて、車両11に新たに乗車した乗客の顔認証を行う。そして、車外監視部171は、新たに乗車した乗客の顔と類似する顔を持つ乗車候補者が存在する場合、その乗客を乗車候補者から削除する。
ステップS112において、運転制御部163は、発車可能であるか否かを判定する。例えば、運転制御部163は、車外監視部171により乗車候補者全員の乗車がまだ認識されていない場合、発車不可であると判定し、処理はステップS113に進む。
ステップS113において、車外監視部171は、乗車候補者の誤認識が発生しているか否かを判定する。乗車候補者の誤認識が発生していないと判定された場合、処理はステップS112に戻る。
その後、ステップS112において、発車可能であると判定されるか、ステップS113において、乗車候補者の誤認識が発生していると判定されるまで、ステップS112及びステップS113の処理が繰り返し実行される。
一方、ステップS112において、運転制御部163は、車外監視部171により乗車候補者全員の乗車が認識された場合、発車可能であると判定し、処理はステップS114に進む。
また、ステップS113において、例えば、車外監視部171は、停車後に所定の時間T1が経過しても乗車候補者が乗車を開始しない場合、乗車候補者の誤認識が発生していると判定し、処理はステップS114に進む。
また、例えば、車外監視部171は、停車後に所定の時間T2(>時間T1)が経過しても全ての乗車候補者の乗車を認識できない場合、乗車候補者の誤認識が発生していると判定し、処理はステップS114に進む。なお、時間T2は、乗客がトランクに荷物を収納する時間等を考慮して、乗車に要する標準的な時間より長めに設定される。
ステップS114において、車両11は、発車する。具体的には、運転制御部163は、車両11のドアやトランクを閉める。そして、車外監視部171が、車外画像に基づいて周囲の安全を確認した後、車両11は、運転制御部163の制御の下に、発車し、徐々に加速する。
その後、自動停発車処理は終了する。
このようにして、タクシー(車両11)に乗る乗客に応じて、タクシーの自動運転を適切に行うことができる。すなわち、自動運転を行うタクシーが、乗客を自動的に見つけて停車し、その乗客を乗せて発車することができる。
また、自動運転を行うタクシーの乗客の利便性が向上する。すなわち、乗客は、自動運転を行わないタクシーに乗る場合と同じ動作を行うだけで、自動運転を行うタクシーに乗ることができる。
なお、この自動停発車処理は、例えば、タクシー以外にも、任意の場所で乗車可能な交通機関において自動運転を行う移動体に適用することができる。例えば、自動運転を行う乗り合いバス等が想定される。
<<4.第3の実施の形態>>
次に、本技術の第3の実施の形態について説明する。本技術の第3の実施の形態は、車両11が自動運転を行うタクシーである場合に、例えば、乗車候補者が、タクシーの配車を行うアプリケーションソフトウエア(以下、配車APPと称する)を用いて配車の予約を行ったとき、車両11が、自動的に乗車候補者を見つけて停車し、乗車候補者を乗せて発車するときの実施の形態である。
ここで、図20のフローチャートを参照して、車両11により実行される自動停発車処理について説明する。なお、この処理は、例えば、乗車候補者が、スマートフォン、タブレット、携帯電話機等の携帯型端末装置において配車APPを用いてタクシーの配車の予約を行い、その予約内容を示す情報(以下、配車予約情報と称する)を送信し、ネットワークやサーバ等を介して、車両11の通信部25が、配車予約情報を受信したとき開始される。
配車予約情報は、例えば、乗車候補者の現在位置、乗車予定位置、乗車予定時刻、乗車予定人数を含む。なお、乗車候補者の現在位置は、乗車候補者の携帯型端末装置に設けられているGPS(Global Positioning System)受信機により受信されたGPS情報で代用してもよい。また、配車予約情報に乗車予定位置が含まれない場合、乗車候補者の現在位置を乗車予定位置とみなすようにしてもよい。また、配車予約情報に、例えば、乗車候補者の顔画像又は乗車候補者の顔の特徴量を示す顔特徴量データを含めるようにしてもよい。
ステップS151において、車両11は、運転制御部163の制御の下に、乗車予定位置に移動する。このとき、乗車予定時刻が指定されている場合、車両11は、乗車予定時刻に間に合うように乗車予定位置に移動する。
ステップS152において、車外監視部171は、乗車候補者の認識処理を行う。例えば、配車予約情報に乗車候補者の顔画像又は顔特徴量データが含まれない場合、車外監視部171は、図19のステップS102と同様の処理により、乗車候補者の認識処理を行う。
一方、配車予約情報に乗車候補者の顔画像又は顔特徴量データが含まれる場合、車外監視部171は、車外画像内の人の認識を行う。そして、車外監視部171は、認識した人の顔画像又は顔特徴量と、配車予約情報に含まれる乗車候補者の顔画像又は顔特徴量との照合(顔認証)を行うことにより、乗車候補者の認識を行う。
なお、乗車候補者の認識処理は、乗車候補者の認識に失敗しても、所定の回数又は所定の時間繰り返し実行される。また、配車予約情報に乗車予定時刻が設定されている場合、乗車候補者の認識処理は、乗車候補者の認識に失敗しても、乗車予定時刻まで、又は、乗車予定時刻の所定の時間後まで、繰り返し実行される。
ステップS153において、車外監視部171は、ステップS152の処理の結果に基づいて、乗車候補者を特定できたか否かを判定する。乗車候補者を特定できたと判定された場合、処理はステップS154に進む。
ステップS154において、車両11は、乗車候補者への通知を行う。例えば、車両11は、図19のステップS107の処理と同様に、乗車候補者に合図を送ることにより、乗車候補者への通知を行う。或いは、例えば、通信部25は、乗車予定位置に到着したことを通知するメッセージを、ネットワークやサーバ等を介して、乗車候補者の携帯型端末装置に送信する。
その後、ステップS155乃至ステップS161において、図19のステップS108乃至ステップS114と同様の処理が実行され、自動停発車処理は終了する。
なお、ステップS157において、上述した図19のステップS110の処理と異なり、車両11は、乗車候補者から離れた場所であっても必ず停車する。
また、ステップS158において、車外監視部171は、配車予約情報に乗車予定人数が含まれる場合、乗車した人数と乗車予定人数を比較することにより、乗車候補者の乗車の認識処理を行うようにしてもよい。
一方、ステップS153において、乗車候補者を特定できなかったと判定された場合、ステップS154乃至ステップS161の処理は省略され、自動停発車処理は終了する。すなわち、車両11の停車及び発車は行われない。
なお、乗車候補者を特定できなかった場合、例えば、通信部25は、乗車候補者を見つけられなかったことを通知するメッセージを、ネットワークやサーバ等を介して、乗車候補者の携帯型端末装置に送信するようにしてもよい。その後、車両11は、乗車候補者と通信を行いながら、乗車候補者を特定するようにしてもよい。
この自動停発車処理は、タクシー以外においても、予約又は登録した乗車候補者を自動的にピックアップする場合に適用することができる。
例えば、自動運転を行う自家用車において、予約又は登録した乗車候補者を自動的にピックアップする場合に適用することができる。例えば、自家用車のオーナー等が、ピックアップする対象となる乗車候補者の顔画像又は顔特徴量データを、事前に車両11又は車両11と通信可能なサーバに登録する。なお、乗車候補者としては、例えば、車両11のオーナー、オーナーの家族、親せき、知人、友人等が想定される。そして、車両11は、上述した処理により、顔画像又は顔特徴量データを用いて、登録された乗車候補者を認識し、認識した乗車候補者をピックアップする。
また、例えば、路線バスにおいても、事前に乗車予約を行い、顔画像又は顔特徴量データをバス又はバスと通信可能なサーバ等に送信し、バスが、顔認証を用いて乗車候補者の認識処理を行うようにしてもよい。
<<5.第4の実施の形態>>
次に、本技術の第4の実施の形態について説明する。
なお、以下の説明では、特に区別しない限り、車両11には、上述したバス201が含まれるものとする。
以上の説明では、車両11が、自動運転を行う場合に本技術を適用する場合を例に挙げたが、本技術は、車両11が半自動運転を行う場合にも適用することが可能である。
例えば、車両11の停車は上述したように自動で行い、発車は運転者の操作により行うようにしてもよい。
また、例えば、乗車候補者が認識された場合、車両11が自動的に減速した後、徐行し、最終的な停車判断は運転者が行うようにしてもよい。
さらに、例えば、車両11が、半自動運転を行う場合に、乗車候補者の認識結果等を通知する画面(以下、アシスト画面と称する)を運転者に提示し、運転の支援を行うようにしてもよい。アシスト画面は、例えば、UI制御部166の制御の下に、車両11の表示部24に表示される。
図21乃至図24は、アシスト画面の例を模式的に示している。
図21は、バスが停留所に接近している場合に運転者に対して提示されるアシスト画面の例を示している。
図21のアシスト画面では、バスの前方の画像にいくつかの情報が重畳されている。具体的には、停留所の標識の位置を示す枠601が表示されている。優先認識領域を示す枠602が表示されている。停車位置を示す枠603が表示されている。認識した人の顔を囲む枠604a乃至604dが表示されている。なお、乗車候補者とそれ以外の人で、枠604a乃至604dのデザインや色等を変えることにより、乗車候補者とそれ以外の人が区別されてもよい。
また、画面の下部において、乗車候補者がいることを示すメッセージ605が表示されている。画面の左上隅にバスのルートマップ606が表示されている。画面の中央上端に、現在時刻607が表示されている。現在時刻607の右隣に、停留所に到着すべき時刻までの残り時間608がカウントダウン表示されている。画面の右上隅に、停留場の周辺で認識された人の人数を示す数字609が表示されている。数字609の下に、認識された乗車候補者の人数を示す数字610が表示されている。数字609の下に、降りる乗客の有無を示すメッセージ611が表示されている。メッセージ611の下に空席数を示す数字612が表示されている。
このアシスト画面により、運転者は、停留所及び停車位置を確実に認識することができる。また、運転者は、乗車候補者の有無、人数、位置を確実に認識することができる。さらに、運転者は、降りる人の有無、及び、空席数を確実に認識することができる。
図22は、バスが停留所を発車した直後に運転者に対して提示されるアシスト画面の例を示している。
図22のアシスト画面には、バスの後方の画像が表示されるとともに、表示された画像にいくつかの情報が重畳されている。具体的には、バスに向かって走っていることにより乗り遅れた乗客として認識された乗車候補者を囲む枠631が表示されている。画面の右上隅に、運転者に注意を促すマーク632が表示されている。画面の中央下方に、乗り遅れた乗客がいることを示すメッセージ633が表示されている。
これにより、運転者は、乗り遅れた乗客がいることを確実に認識することができる。
なお、例えば、図22のアシスト画面とともに、アラーム等の音声により、乗り遅れた乗客がいることを通知するようにしてもよい。また、例えば、車両11が、運転制御部163の制御の下に自動的に徐行し、運転者に停車を促すようにしてもよい。
図23は、任意の場所で乗車が可能なバスやタクシーにおいて運転者に対して提示されるアシスト画面の例を示している。
図23のアシスト画面には、車両の前方の画像が表示されるとともに、表示された画像にいくつかの情報が重畳されている。具体的には、車両の方を向いて手を挙げていることにより認識された乗車候補者を囲む枠651が表示されている。画面の右上隅に運転者に注意を促すマーク652が表示されている。画面の中央下方に、乗車候補者を認識したことを示すメッセージ653が表示されている。
これにより、運転者は、乗車候補者がいることを確実に認識することができる。
なお、例えば、図23のアシスト画面とともに、アラーム等の音声により、乗車候補者がいることを通知するようにしてもよい。また、例えば、車両11が、運転制御部163の制御の下に自動的に徐行し、運転者に停車を促すようにしてもよい。
図24は、タクシーの運転者に対して提示されるアシスト画面の例を示している。
図24のアシスト画面では、タクシーの前方の画像にいくつかの情報が重畳されている。具体的には、優先認識領域において認識された人のうち、乗車候補者の全身を囲む枠671a及び枠671bが表示されている。また、優先認識領域において認識された人のうち、乗車候補者以外の人の顔を囲む枠672a及び枠672bが表示されている。また、乗車候補者の位置を示す矢印673が表示されている。これにより、アシスト画面の中から、乗車候補者を容易に認識することができる。
なお、横断歩道を歩行中の人は、優先認識領域から離れた位置におり認識されていないため、枠は表示されていない。
また、乗車候補者の手前の路面に停車位置を示す枠674が表示されている。これにより、運転者は、乗車候補者をピックアップするのに適した位置に車両11を停車させることができる。
さらに、画面の右上隅に地図675が表示されている。地図675の下に乗車候補者の人数を示す数字676が表示されている。
このアシスト画面により、運転者は、乗車候補者の存在を確実に認識することができる。また、運転者は、乗車候補者の人数、位置を確実に認識することができる。
なお、例えば、表示部24がウィンドシールド部分に重畳して設けられた透過型ディスプレイである場合、例えば、図23及び図24のアシスト画面は、車両11の搭乗者の視界(例えば、ウィンドシールドから見える車両11の外の現実の世界)に対して、AR(拡張現実)等により情報を重畳することにより実現することが可能である。
また、図21乃至図24のアシスト画面は、自動運転及び半自動運転を行わない車両にも適用することができる。
<<6.変形例>>
以下、上述した本開示に係る技術の実施の形態の変形例について説明する。
乗車候補者の認識処理には、上述した停留所の待合室のカメラにより撮像された画像のように、車両11以外の場所から撮像された画像を用いることが可能である。例えば、停留場の標識に設けられているカメラ、市街地等に設けられている監視カメラ等により撮像された画像が想定される。また、例えば、車両11の外部のカメラ又はカメラを備えるシステムにおいて、乗車候補者の認識処理を行い、その認識処理の結果を車両11が取得するようにしてもよい。
さらに、車両11で用いられた乗客の顔画像又は顔特徴量データは、プライバシー保護のために削除することが望ましい。例えば、乗客の乗車又は降車が認識された後すぐに、その乗客の顔画像又は顔特徴量データを削除するようにしてもよい。
或いは、例えば、乗客の乗車又は降車が認識されてから所定の期間が経過した後に、その乗客の顔画像又は顔特徴量データを削除するようにしてもよい。これにより、例えば、乗客が忘れ物等を取りに来た場合等に、実際にその乗客が乗車していたか否かの確認が容易になる。
また、以上の説明では、バス201が、乗車候補者の認識処理及び降車候補者の認識処理の両方を行う例を示したが、一方のみを行うようにしてもよい。同様に、バス201が、乗車候補者の乗車の認識処理、及び、降車候補者の降車の認識処理のうち一方のみを行うようにしてもよい。
さらに、以上の説明では、タクシーである車両11において、降車候補者の認識処理、及び、降車候補者の認識処理を行う例を示さなかったが、それらの処理を行うようにしてもよい。これは、例えば乗り合いタクシーのように、乗客により降車位置が異なる場合に有効である。
また、車両11から乗客が降車した場合に、車両11が、一時的な降車か否かを判定し、一時的な降車であると判定した場合、乗客が再乗車するまで発車せずに待機するようにしてもよい。
なお、一時的な降車か否かの判定には、任意の方法を採用することができる。例えば、各乗客が、アプリケーションプログラム等を用いて予め目的地を登録しておく。そして、監視部161は、降車した乗客の顔認証を行い、降車した乗客の目的地を認識する。そして、例えば、監視部161は、降車した場所が降車した乗客の目的地と異なる場合、一時的な降車であると判定するようにしてもよい。或いは、例えば、監視部161は、目的地が一時的に立ち寄るような場所である場合(例えば、高速道路のサービスエリア又はパーキングエリア、コンビニエンスストア等)、一時的な降車であると判定するようにしてもよい。
さらに、例えば、車外監視部171が車両11の進行方向に障害物を検出し、車両11が停車した後に乗客が降車した場合、その乗客は障害物を撤去するために降車したと想定される。そこで、運転制御部163は、車外監視部171が、障害物が撤去されたことを認識し、乗客が再乗車するまで、再発車しないようにしてもよい。
なお、本技術は、車両以外の自動運転又は半自動運転を行う移動体にも適用することが可能である。
例えば、本技術は、乗客が乗降するための停止地点が定められている交通機関に用いられる移動体に適用することができる。特に、本技術は、バスのように停止地点で待っている乗客の有無、及び、停止地点で降りる乗客の有無により、停止地点を通過する場合がある交通機関に用いられる移動体に適用することができる。例えば、そのような移動体として、列車、水上バス等が想定される。
また、例えば、本技術は、タクシーのように任意の場所で乗ることが可能な交通機関に用いられる移動体に適用することができる。さらに、例えば、本技術は、上述した自家用車のように、搭乗者を任意の場所でピックアップ可能な自家用の移動体にも適用することが可能である。
<<7.その他>>
<7-1.コンピュータの構成例>
上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、専用のハードウェアに組み込まれているコンピュータ(例えば、各種のECUのプロセッサ等)にインストールされる。
なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。また、複数のコンピュータが連携して上述した処理が行われるようにしてもよい。上述した処理を行う単数または複数のコンピュータから、コンピュータシステムが構成される。
なお、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
また、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
さらに、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
また、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
<7-2.構成の組み合わせ例>
本技術は、以下のような構成をとることもできる。
(1)
移動体への乗車候補者、及び、前記移動体からの降車候補者のうち少なくとも一方の認識に基づいて、前記移動体の加減速制御を行う運転制御部を
備える移動体制御装置。
(2)
前記運転制御部は、前記乗車候補者の認識及び前記降車候補者の認識のうち少なくとも一方に基づいて、前記移動体の停止制御を行う
前記(1)に記載の移動体制御装置。
(3)
前記運転制御部は、前記乗車候補者の前記移動体への搭乗の認識、及び、前記降車候補者の前記移動体からの降車の認識のうち少なくとも一方に基づいて、前記移動体の発進制御を行う
前記(1)又は(2)に記載の移動体制御装置。
(4)
前記乗車候補者の認識は、前記移動体の所定の停止候補地点の近傍領域を対象として行われる
前記(3)に記載の移動体制御装置。
(5)
前記停止候補地点における所定の基準位置に基づいて、前記乗車候補者の認識を優先的に行う優先認識領域が設定される
前記(4)に記載の移動体制御装置。
(6)
前記基準位置は、前記停止候補地点を示す標識、前記停止候補地点における所定の構造物、及び、前記停止候補地点における所定の搭乗位置のうち少なくとも1つである
前記(5)に記載の移動体制御装置。
(7)
前記優先認識領域は、さらに前記停止候補地点の構成及び前記停止候補地点の周囲の状況のうち少なくとも1つに基づいて設定される
前記(5)又は(6)に記載の移動体制御装置。
(8)
前記基準位置は、前記停止候補地点の周囲の状況に応じて変更される
前記(5)乃至(7)のいずれかに記載の移動体制御装置。
(9)
認識の対象となる近傍領域は、前記移動体に対する所定の方向における所定の領域に設定される
前記(4)乃至(8)のいずれかに記載の移動体制御装置。
(10)
前記乗車候補者の認識は、前記移動体の撮像部による撮像画像により認識される人の顔、視線の向き、位置、及び、行動のうち少なくとも1つに基づいて行われる
前記(1)乃至(9)のいずれかに記載の移動体制御装置。
(11)
前記乗車候補者の認識は、さらに前記移動体の外部撮像装置による撮像画像に基づいて行われる
前記(10)に記載の移動体制御装置。
(12)
前記乗車候補者又は前記降車候補者の認識は、事前に取得した前記乗車候補者又は前記降車候補者の顔画像又は顔の特徴量を示すデータを用いた顔認証に基づき行われる
前記(1)乃至(11)のいずれかに記載の移動体制御装置。
(13)
前記乗車候補者または降車候補者の認識を行うための撮像部を、前記移動体における異なる方向または異なる位置に複数備え、
前記移動体の移動時と停止時とで、前記乗車候補者又は前記降車候補者の認識処理に用いる前記撮像部を変更する
前記(1)乃至(12)のいずれかに記載の移動体制御装置。
(14)
前記降車候補者の認識は、前記移動体内を撮像した画像における、前記移動体の搭乗者の位置及び行動のうち少なくとも1つに基づいて行われる
前記(1)乃至(13)のいずれか記載の移動体制御装置。
(15)
前記乗車候補者の認識結果の通知を制御するユーザインタフェース制御部を
さらに備える前記(1)乃至(14)のいずれかに記載の移動体制御装置。
(16)
前記ユーザインタフェース制御部は、前記移動体が備える撮像部による撮像画像に、前記乗車候補者の認識結果を示す情報を重畳して表示する
前記(15)に記載の移動体制御装置。
(17)
前記ユーザインタフェース制御部は、前記乗車候補者の認識結果を示す情報を、前記移動体の搭乗者における視界に対して重畳して表示する
前記(15)又は(16)に記載の移動体制御装置。
(18)
移動体への乗車候補者、及び、前記移動体からの降車候補者のうち少なくとも一方の認識に基づいて、前記移動体の加減速制御を行う運転制御ステップを
含む移動体制御方法。
(19)
乗車候補者及び降車候補者のうち少なくとも一方の認識に基づいて、加減速制御を行う運転制御部を
備える移動体。
11 車両, 21 フロントセンシングカメラ, 22 フロントカメラECU, 23 位置情報取得部, 24 表示部, 25 通信部, 27 レーダ, 28 ライダ, 29,29L,29R サイドビューカメラ, 30,30L,30R サイドビューカメラECU, 31 統合ECU, 32 フロントビューカメラ, 33 フロントビューカメラECU, 34 制動装置, 39 リアビューカメラ, 40 リアビューカメラECU, 42 車内カメラ, 43 車内カメラECU, 51 運転制御ECU, 101 画像合成ECU, 151 車両制御部, 161 監視部, 162 状況認識部, 163 走行制御部, 164 停車位置認識部, 165 撮像制御部, 166 UI制御部, 171 車外監視部, 172 車内監視部, 201 バス, 221F1乃至221B カメラ, Pa乃至Pe 停車基準位置, A1a乃至A2e 優先認識領域, 521 カメラ

Claims (19)

  1. 移動体の周囲を撮像した画像である移動体外画像に基づいて、前記移動体の停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、前記移動体への乗車候補者の認識を行う監視部と、
    前記乗車候補者認識に基づいて、前記移動体の加減速制御を行う運転制御部
    を備え移動体制御装置。
  2. 前記監視部は、さらに前記移動体内を撮像した画像である移動体内画像に基づいて、前記移動体からの降車候補者の認識を行い、
    前記運転制御部は、さらに前記降車候補者の認識に基づいて、前記移動体の加減速制御を行う
    請求項1に記載の移動体制御装置。
  3. 前記運転制御部は、前記乗車候補者の認識及び前記降車候補者の認識のうち少なくとも一方に基づいて、前記移動体の停止制御を行う
    請求項に記載の移動体制御装置。
  4. 前記運転制御部は、前記乗車候補者の前記移動体への搭乗の認識、及び、前記降車候補者の前記移動体からの降車の認識のうち少なくとも一方に基づいて、前記移動体の発進制御を行う
    請求項に記載の移動体制御装置。
  5. 前記監視部は、事前に取得した前記乗車候補者又は前記降車候補者の顔画像又は顔の特徴量を示すデータを用いた顔認証に基づいて、前記乗車候補者又は前記降車候補者の認識を行う
    請求項に記載の移動体制御装置。
  6. 前記乗車候補者または前記降車候補者の認識を行うための撮像部を、前記移動体における異なる方向または異なる位置に複数備え、
    前記移動体の移動時と停止時とで、前記乗車候補者又は前記降車候補者の認識処理に用いる前記撮像部を変更する
    請求項に記載の移動体制御装置。
  7. 前記監視部は、前記移動体内画像における、前記移動体の搭乗者の位置及び行動のうち少なくとも1つに基づいて、前記降車候補者の認識を行う
    請求項に記載の移動体制御装置。
  8. 前記監視部は、前記停止候補地点における所定の基準位置に基づいて、前記乗車候補者の認識を優先的に行う優先認識領域設定する
    請求項に記載の移動体制御装置。
  9. 前記基準位置は、前記停止候補地点を示す標識、前記停止候補地点における所定の構造物、及び、前記停止候補地点における所定の搭乗位置のうち少なくとも1つである
    請求項に記載の移動体制御装置。
  10. 前記監視部は、さらに前記停止候補地点の構成及び前記停止候補地点の周囲の状況のうち少なくとも1つに基づいて、前記優先認識領域を設定する
    請求項に記載の移動体制御装置。
  11. 前記監視部は、前記停止候補地点の周囲の状況に応じて、前記基準位置を変更する
    請求項に記載の移動体制御装置。
  12. 前記監視部は、前記移動体に対する所定の方向における所定の領域を前記近傍領域に設定する
    請求項に記載の移動体制御装置。
  13. 前記監視部は、前記移動体画像により認識される人の顔、視線の向き、位置、及び、行動のうち少なくとも1つに基づいて、前記乗車候補者の認識を行う
    請求項1に記載の移動体制御装置。
  14. 前記監視部は、さらに前記移動体の外部撮像装置による撮像画像に基づいて、前記乗車候補者の認識を行う
    請求項に記載の移動体制御装置。
  15. 前記乗車候補者の認識結果の通知を制御するユーザインタフェース制御部を
    さらに備える請求項1に記載の移動体制御装置。
  16. 前記ユーザインタフェース制御部は、前記移動体が備える撮像部による撮像画像に、前記乗車候補者の認識結果を示す情報を重畳して表示する
    請求項15に記載の移動体制御装置。
  17. 前記ユーザインタフェース制御部は、前記乗車候補者の認識結果を示す情報を、前記移動体の搭乗者における視界に対して重畳して表示する
    請求項15に記載の移動体制御装置。
  18. 移動体制御装置が、
    移動体の周囲を撮像した画像である移動体外画像に基づいて、前記移動体の停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、前記移動体への乗車候補者の認識を行う監視ステップと、
    前記乗車候補者認識に基づいて、前記移動体の加減速制御を行う運転制御ステップ
    を含移動体制御方法。
  19. 周囲を撮像した画像である移動体外画像に基づいて、停止候補地点を検出し、前記停止候補地点の近傍領域を対象として、乗車候補者の認識を行う監視部と、
    前記乗車候補者認識に基づいて、加減速制御を行う運転制御部
    を備え移動体。
JP2018535608A 2016-08-26 2017-08-14 移動体制御装置、移動体制御方法、及び、移動体 Active JP7124700B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016165709 2016-08-26
JP2016165709 2016-08-26
PCT/JP2017/029253 WO2018037954A1 (ja) 2016-08-26 2017-08-14 移動体制御装置、移動体制御方法、及び、移動体

Publications (2)

Publication Number Publication Date
JPWO2018037954A1 JPWO2018037954A1 (ja) 2019-06-20
JP7124700B2 true JP7124700B2 (ja) 2022-08-24

Family

ID=61244879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018535608A Active JP7124700B2 (ja) 2016-08-26 2017-08-14 移動体制御装置、移動体制御方法、及び、移動体

Country Status (7)

Country Link
US (1) US11250708B2 (ja)
EP (1) EP3506233A4 (ja)
JP (1) JP7124700B2 (ja)
CN (1) CN109564723B (ja)
CA (1) CA3034350A1 (ja)
MX (1) MX2019002003A (ja)
WO (1) WO2018037954A1 (ja)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190204845A1 (en) * 2017-12-29 2019-07-04 Waymo Llc Sensor integration for large autonomous vehicles
JP6607266B2 (ja) * 2018-01-12 2019-11-20 日本電気株式会社 顔認証装置
JP7071847B2 (ja) * 2018-03-05 2022-05-19 株式会社 ディー・エヌ・エー 自動運転車両を制御するためのシステム、方法、及びプログラム
JP7043909B2 (ja) * 2018-03-19 2022-03-30 スズキ株式会社 運転支援装置
JP6971187B2 (ja) * 2018-03-28 2021-11-24 京セラ株式会社 画像処理装置、撮像装置、および移動体
JP6967664B2 (ja) * 2018-04-23 2021-11-17 日立Astemo株式会社 ゲートウェイ装置
JP7184533B2 (ja) * 2018-04-27 2022-12-06 いすゞ自動車株式会社 報知装置
WO2019243860A1 (ja) * 2018-06-20 2019-12-26 日産自動車株式会社 配車システムのためのコミュニケーション方法、配車システム及びコミュ二ケーシヨン装置
US10876853B2 (en) * 2018-07-06 2020-12-29 Honda Motor Co., Ltd. Information presentation device, information presentation method, and storage medium
EP3617941A1 (en) * 2018-08-30 2020-03-04 Panasonic Intellectual Property Corporation of America Information processing apparatus and information processing method
JP7265404B2 (ja) * 2018-08-30 2023-04-26 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ 情報処理装置及び情報処理方法
CN109345855A (zh) * 2018-09-19 2019-02-15 北京智行者科技有限公司 一种用户管理方法
US11120277B2 (en) * 2018-10-10 2021-09-14 Denso Corporation Apparatus and method for recognizing road shapes
JP7166355B2 (ja) * 2018-10-24 2022-11-07 ヤマハ発動機株式会社 自動運転車両
WO2020084719A1 (ja) * 2018-10-24 2020-04-30 ヤマハ発動機株式会社 複数のシートベルト無しシートを備えている自動運転車両
WO2020085442A1 (ja) * 2018-10-24 2020-04-30 ヤマハ発動機株式会社 自動運転ビークル
WO2020090285A1 (ja) * 2018-10-31 2020-05-07 日本電気株式会社 通信装置、通信制御方法、及び非一時的なコンピュータ可読媒体
CN111144179A (zh) * 2018-11-06 2020-05-12 富士通株式会社 场景检测装置及方法
JP2020095354A (ja) * 2018-12-10 2020-06-18 トヨタ自動車株式会社 運行支援装置、運行支援システム、及び運行支援プログラム
JP7329925B2 (ja) * 2019-01-08 2023-08-21 清水建設株式会社 乗り物情報提供装置
JP2020126390A (ja) * 2019-02-04 2020-08-20 株式会社 ディー・エヌ・エー 車両の配車システム及び配車プログラム
JP7220587B2 (ja) * 2019-02-28 2023-02-10 本田技研工業株式会社 車両制御システム、車両制御方法、及びプログラム
JP7169522B2 (ja) * 2019-03-05 2022-11-11 トヨタ自動車株式会社 移動体及びその制御方法、制御装置、並びに、プログラム
JP7013407B2 (ja) * 2019-03-07 2022-01-31 矢崎総業株式会社 車両管理システム
JP7236307B2 (ja) * 2019-03-28 2023-03-09 本田技研工業株式会社 車両制御装置、車両制御方法、及びプログラム
JP7020586B2 (ja) * 2019-04-03 2022-02-18 日産自動車株式会社 配車サービス乗車地決定方法及び配車サービス乗車地決定装置
KR102048357B1 (ko) * 2019-07-11 2020-01-08 주식회사 트윅스정보통신 정류장에 대기자가 존재함을 알리는 버스 운행 정보 제공 방법 및 버스 운행 정보 시스템
JP7221823B2 (ja) * 2019-07-19 2023-02-14 株式会社Soken 自動運転バスに用いられる制御装置
JP7259685B2 (ja) * 2019-09-30 2023-04-18 トヨタ自動車株式会社 自動運転車両用の運転制御装置、停車用物標、運転制御システム
US20220368860A1 (en) * 2019-10-07 2022-11-17 Nec Corporation Transmission method, transmission system, and system control device
EP3859372A1 (en) * 2020-01-31 2021-08-04 Bayerische Motoren Werke Aktiengesellschaft Apparatus, method and computer program for a vehicle
JP2021149541A (ja) * 2020-03-19 2021-09-27 本田技研工業株式会社 車両管理装置、車両管理方法、及び車両管理プログラム
JP7243669B2 (ja) * 2020-03-30 2023-03-22 トヨタ自動車株式会社 自動運転システム
JP7473768B2 (ja) * 2020-04-20 2024-04-24 artience株式会社 車両運行管理システム、及び車両運行管理方法
JP7399790B2 (ja) * 2020-05-27 2023-12-18 本田技研工業株式会社 エントリー支援システム、エントリー支援方法、及びエントリー支援プログラム
JP7354056B2 (ja) * 2020-05-27 2023-10-02 本田技研工業株式会社 車両制御システム、及び車両制御方法
CN113805824B (zh) * 2020-06-16 2024-02-09 京东方科技集团股份有限公司 电子装置以及在显示设备上显示图像的方法
JP7468322B2 (ja) * 2020-12-04 2024-04-16 株式会社デンソー 情報処理装置、情報処理プログラム、及び監視システム
JP7491241B2 (ja) 2021-03-08 2024-05-28 トヨタ自動車株式会社 制御装置、システム、車両、及び制御方法
JP7548108B2 (ja) 2021-04-06 2024-09-10 トヨタ自動車株式会社 情報処理装置、プログラム及び情報処理方法
JP7548885B2 (ja) * 2021-09-08 2024-09-10 Necプラットフォームズ株式会社 情報処理装置、情報処理システム、情報処理方法、及び情報処理プログラム
JP7448509B2 (ja) * 2021-09-08 2024-03-12 Necプラットフォームズ株式会社 情報処理装置、情報処理方法、および情報処理プログラム
WO2023047535A1 (ja) * 2021-09-24 2023-03-30 日本電気株式会社 利用者検出装置、利用者検出システム、利用者検出方法、及び非一時的なコンピュータ可読媒体
US20230160703A1 (en) * 2021-11-24 2023-05-25 Here Global B.V. Systems and methods for determining a vehicle boarding score
US20230180018A1 (en) * 2021-12-03 2023-06-08 Hewlett Packard Enterprise Development Lp Radio frequency plan generation for network deployments
WO2023105626A1 (ja) * 2021-12-07 2023-06-15 合同会社O&O 位置情報提供システムおよび位置情報提供方法
JP7226597B1 (ja) * 2022-01-17 2023-02-21 いすゞ自動車株式会社 ドア開閉制御装置
WO2023170747A1 (ja) * 2022-03-07 2023-09-14 日本電気株式会社 測位装置、測位システム、測位方法及び非一時的なコンピュータ可読媒体
JP7565994B2 (ja) 2022-10-20 2024-10-11 株式会社Jr西日本テクシア Od記録システム
JP2023061984A (ja) * 2022-11-29 2023-05-02 株式会社ユピテル システム及びプログラム等

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119889A (ja) 2004-10-21 2006-05-11 Sharp Corp 通信装置および通信システム
JP2010176221A (ja) 2009-01-27 2010-08-12 Chugoku Electric Power Co Inc:The 車両乗降支援システム、基地局及びユーザ端末
JP2011227550A (ja) 2010-04-15 2011-11-10 Clarion Co Ltd 停留所装置、車載装置、運行管理装置、及び運行管理システム
WO2016002527A1 (ja) 2014-06-30 2016-01-07 みこらった株式会社 移動体呼び寄せシステム、呼び寄せ装置及び無線通信装置

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6008841A (en) * 1994-12-05 1999-12-28 Charlson; Reginald T. Vehicle surveillance camera system actuated upon passenger entry
JP2000285363A (ja) 1999-03-31 2000-10-13 Toshiba Corp 交通支援システム
ATE488817T1 (de) * 1999-09-17 2010-12-15 Silverbrook Res Pty Ltd Verfahren und system zur instruktion eines computers
JP2001357486A (ja) * 2000-06-09 2001-12-26 Calsonic Kansei Corp 車両管理システム
JP3981735B2 (ja) * 2004-01-15 2007-09-26 国土交通省北陸地方整備局長 バス接近情報通知システム
JP2008152736A (ja) 2006-12-20 2008-07-03 Sony Corp 監視システム、監視装置及び監視方法
JP5050934B2 (ja) * 2008-03-05 2012-10-17 住友電気工業株式会社 位置特定装置、コンピュータプログラム及び位置特定方法
KR20110108861A (ko) * 2010-03-30 2011-10-06 신민호 버스 제어 방법 및 버스 단말 장치
JP2013012820A (ja) * 2011-06-28 2013-01-17 Sony Corp 画像処理装置、および、画像処理装置の制御方法ならびに当該方法をコンピュータに実行させるプログラム
CN202359940U (zh) * 2011-11-23 2012-08-01 长安大学 一种公交站停车提示装置
CN202472939U (zh) * 2012-02-21 2012-10-03 成都理工大学 基于Zigbee与RFID的无人驾驶车辆行驶控制系统
US20130334307A1 (en) * 2012-06-15 2013-12-19 Yat Wai Edwin Kwong Systems and methods for maintaining order of individuals in a public transportation queue
US20150166009A1 (en) 2013-11-11 2015-06-18 Chris Outwater System and Method for Wirelessly Rostering a Vehicle
US9739226B2 (en) * 2014-02-07 2017-08-22 Ford Global Technologies, Llc Walk-away vehicle shutdown
US9205805B2 (en) * 2014-02-14 2015-12-08 International Business Machines Corporation Limitations on the use of an autonomous vehicle
DE102014003550A1 (de) * 2014-03-12 2014-09-18 Daimler Ag Verfahren und Vorrichtung zur Unterstützung eines Fahrers beim Führen eines Fahrzeugs
CN103927521A (zh) * 2014-04-17 2014-07-16 国通道路交通管理工程技术研究中心有限公司 一种基于人脸识别的驾驶员资格确认系统及方法
KR101637670B1 (ko) * 2014-08-25 2016-07-07 현대자동차주식회사 차량 탑승자 및 탑승 위치 인식 시스템
US9823081B2 (en) * 2014-12-03 2017-11-21 Ford Global Technologies, Llc Vehicle passenger identification
TWI549069B (zh) * 2014-12-15 2016-09-11 Sheng Hui Meng Method and device for passenger barge
CN105989467A (zh) * 2015-02-03 2016-10-05 阿里巴巴集团控股有限公司 无线支付方法与装置及交通工具乘坐费检验方法与系统
US9459623B1 (en) * 2015-04-29 2016-10-04 Volkswagen Ag Stop sign intersection decision system
CN204614081U (zh) * 2015-05-22 2015-09-02 南京信息工程大学 一种公交车自动排队系统
CN204680322U (zh) * 2015-06-08 2015-09-30 张樵鹤 一种信息快速识别公交站牌
CN105185105B (zh) * 2015-06-26 2017-05-03 东南大学 基于车辆gps和公交ic卡数据的公交换乘识别方法
US9804599B2 (en) * 2015-11-04 2017-10-31 Zoox, Inc. Active lighting control for communicating a state of an autonomous vehicle to entities in a surrounding environment
US9836057B2 (en) * 2016-03-24 2017-12-05 Waymo Llc Arranging passenger pickups for autonomous vehicles

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006119889A (ja) 2004-10-21 2006-05-11 Sharp Corp 通信装置および通信システム
JP2010176221A (ja) 2009-01-27 2010-08-12 Chugoku Electric Power Co Inc:The 車両乗降支援システム、基地局及びユーザ端末
JP2011227550A (ja) 2010-04-15 2011-11-10 Clarion Co Ltd 停留所装置、車載装置、運行管理装置、及び運行管理システム
WO2016002527A1 (ja) 2014-06-30 2016-01-07 みこらった株式会社 移動体呼び寄せシステム、呼び寄せ装置及び無線通信装置

Also Published As

Publication number Publication date
MX2019002003A (es) 2019-06-20
US11250708B2 (en) 2022-02-15
WO2018037954A1 (ja) 2018-03-01
EP3506233A1 (en) 2019-07-03
CN109564723B (zh) 2022-11-08
US20200043344A1 (en) 2020-02-06
CA3034350A1 (en) 2018-03-01
JPWO2018037954A1 (ja) 2019-06-20
EP3506233A4 (en) 2019-10-16
CN109564723A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
JP7124700B2 (ja) 移動体制御装置、移動体制御方法、及び、移動体
US20230311749A1 (en) Communication between autonomous vehicle and external observers
KR101741433B1 (ko) 운전자 보조 장치 및 그 제어방법
EP3112810B1 (en) Advanced driver assistance apparatus, display apparatus for vehicle and vehicle
US9747800B2 (en) Vehicle recognition notification apparatus and vehicle recognition notification system
JP6798906B2 (ja) 基地局装置及び通信システム
KR20190106845A (ko) 자율 주행 차량의 탑승자 인식 및 승하차 지원 장치 및 방법
US20200086889A1 (en) Vehicle control apparatus, vehicle control method, and movable object
JP2001101566A (ja) 交通安全確認システム
CN113544757B (zh) 信息处理装置、信息处理方法,以及移动体装置
JP6772428B2 (ja) 自動運転車及び自動運転車用プログラム
WO2022239672A1 (ja) 情報提示装置
CN112298024B (zh) 一种避让提醒系统、方法、车辆及计算机存储介质
KR20170035238A (ko) 차량 및 그 제어방법
KR101822896B1 (ko) 운전자 보조 장치 및 그 제어방법
JP2008046761A (ja) 移動体画像処理システム、装置及び方法
CN112298017A (zh) 一种互动系统、方法及计算机存储介质
KR101702950B1 (ko) 차량용 디스플레이 장치 및 그 제어방법
JP7324537B2 (ja) 自動運転車及び自動運転車用プログラム
JP2020203681A (ja) 自動運転車及び自動運転車用プログラム
KR102658916B1 (ko) 자율주행 차량 안전 지원 및 확장 시스템
KR102718382B1 (ko) 정보 처리 장치 및 정보 처리 방법, 컴퓨터 프로그램, 그리고 이동체 장치
JP2024115215A (ja) 情報処理装置、情報処理方法およびプログラム
CN117441350A (zh) 信息处理方法及装置、电子设备及存储介质

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220725

R151 Written notification of patent or utility model registration

Ref document number: 7124700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151