JP6703098B2 - 半導体製造用処理液、及び、パターン形成方法 - Google Patents

半導体製造用処理液、及び、パターン形成方法 Download PDF

Info

Publication number
JP6703098B2
JP6703098B2 JP2018509013A JP2018509013A JP6703098B2 JP 6703098 B2 JP6703098 B2 JP 6703098B2 JP 2018509013 A JP2018509013 A JP 2018509013A JP 2018509013 A JP2018509013 A JP 2018509013A JP 6703098 B2 JP6703098 B2 JP 6703098B2
Authority
JP
Japan
Prior art keywords
group
mass
treatment liquid
acid
examples
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018509013A
Other languages
English (en)
Other versions
JPWO2017169834A1 (ja
Inventor
上村 哲也
上村  哲也
清水 哲也
哲也 清水
哲 村山
哲 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Corp
Original Assignee
Fujifilm Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujifilm Corp filed Critical Fujifilm Corp
Publication of JPWO2017169834A1 publication Critical patent/JPWO2017169834A1/ja
Priority to JP2020081733A priority Critical patent/JP6938715B2/ja
Application granted granted Critical
Publication of JP6703098B2 publication Critical patent/JP6703098B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/38Cationic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/66Non-ionic compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/02Inorganic compounds ; Elemental compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/26Organic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/322Aqueous alkaline compositions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • G03F7/32Liquid compositions therefor, e.g. developers
    • G03F7/325Non-aqueous compositions
    • G03F7/327Non-aqueous alkaline compositions, e.g. anhydrous quaternary ammonium salts
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/40Treatment after imagewise removal, e.g. baking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70925Cleaning, i.e. actively freeing apparatus from pollutants, e.g. using plasma cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • C11D2111/22

Description

本発明は、半導体製造用処理液、及び、パターン形成方法に関する。
より詳細には、本発明は、IC(Integrated Circuit)等の半導体製造工程、液晶及びサーマルヘッド等の回路基板の製造、更にはその他のフォトファブリケーションのリソグラフィ工程などに使用される処理液、及び、パターン形成方法に関する。
従来、IC(Integrated Circuit、集積回路)やLSI(Large Scale Integrated circuit、大規模集積回路)などの半導体デバイスの製造プロセスにおいては、フォトレジスト組成物(感活性光線又は感放射線性樹脂組成物)を用いたリソグラフィーによる微細加工が行われている。近年、集積回路の高集積化に伴い、サブミクロン領域やクオーターミクロン領域の超微細パターン形成が要求されるようになってきている。それに伴い、露光波長もg線からi線に、更にKrFエキシマレーザー光に、というように短波長化の傾向が見られる。そして、露光光源の短波長化及び投影レンズの高開口数(高NA)化が進み、現在では、193nmの波長を有するArFエキシマレーザーを光源とする露光機が開発されている。また、エキシマレーザー光以外にも、電子線やX線、あるいはEUV光(Extreme Ultra Violet、極紫外線)を用いたリソグラフィーも開発が進んでいる。
このようなリソグラフィーにおいては、次のような工程によりパターンを形成する。すなわち、フォトレジスト組成物(「感活性光線又は感放射線性樹脂組成物」、又は、「化学増幅型レジスト組成物」とも呼ばれる。)を用いて膜を形成した後、得られた膜を得られた膜を露光し、現像液により現像する。更に、現像後の膜をリンス液で洗浄(リンス)することも行われている。
例えば、特許第5055453号公報には、現像液としてアルカリ現像液を用いること、及び、リンス液として純水を用いることが開示されている。
近年では、コンタクトホールやトレンチパターンの形成で、更なる微細化(例えば、30nmノード以下)のニーズが急激に高まっている。
しかし、上記のようなフォトレジスト組成物(感活性光線又は感放射線性樹脂組成物)を用いたパターン形成方法では、現像処理及びリンス処理といった工程でパーティクルが発生することがある。このようなパーティクルには、金属原子を含有するものがある。近年求められている微細パターンを形成する場合、このような金属原子を含有したパーティクルの存在は、良好なパターンの形成に大きな影響を与えやすい。
本発明は、上記を鑑みてなされたものであり、その目的は、金属原子を含有したパーティクルの発生を低減し、良好なパターンを形成することができる半導体製造用処理液、及び、パターン形成方法を提供することにある。
本発明は、例えば、以下のとおりである。
[1] 下記一般式(N)で表される第4級アンモニウム化合物と、アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、及び、キレート剤からなる群より選択される少なくとも1種の添加剤と、水とを含む半導体製造用処理液であって、半導体製造用処理液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子を含み、金属原子の全質量は、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppt〜1質量ppmである半導体製造用処理液。
一般式(N)中、RN1〜RN4は、各々独立に、アルキル基、フェニル基、ベンジル基又はシクロヘキシル基を表し、これらの基は置換基を有していてもよい。
[2] 金属原子の全質量は、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppb〜1質量ppmである[1]に記載の半導体製造用処理液。
[3] 上記金属原子のSP−ICP−MS法により測定される粒子性金属の全質量は、上記添加剤の全質量と上記粒子性金属の全質量との合計に対して、0.1質量ppt〜0.1質量ppmである[1]又は[2]に記載の半導体製造用処理液。
[4]
上記金属原子のSP−ICP−MS法により測定される粒子性金属の全質量は、上記添加剤の全質量と上記粒子性金属の全質量との合計に対して、0.1質量ppt〜1質量ppbである[1]〜[3]のいずれかに記載の半導体製造用処理液。
[5] 半導体製造用処理液に対して、上記第4級アンモニウム化合物を25質量%以下含み、添加剤を1質量%以下含む[1]〜[4]のいずれかに記載の半導体製造用処理液。
[6] 半導体製造用処理液に対して、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子を、各々1質量ppq〜1000質量ppt含む[1]〜[5]のいずれかに記載の半導体製造用処理液。
[7] 半導体製造用処理液に対して、Na、K、及び、Caからなる群より選択される1種又は2種以上の金属原子を、各々1質量ppq〜1000質量ppt含む[1]〜[6]のいずれかに記載の半導体製造用処理液。
[8] 添加剤として、ノニオン界面活性剤を少なくとも含み、さらに、過酸化物を、半導体製造用処理液に対して、1質量ppq〜1000質量ppt含む[1]〜[7]のいずれかに記載の半導体製造用処理液。
[9] 添加剤として、ノニオン界面活性剤を少なくとも含み、さらに、エステル化合物を、半導体製造用処理液に対して、1質量ppq〜1000質量ppt含む[1]〜[8]のいずれかに記載の半導体製造用処理液。
[10] 添加剤として、ノニオン界面活性剤を少なくとも含み、さらに、アミン化合物を、半導体製造用処理液に対して、1質量ppq〜1000質量ppt含む[1]〜[9]のいずれかに記載の半導体製造用処理液。
[11] 添加剤として、ノニオン界面活性剤を少なくとも含み、ノニオン界面活性剤のHLBは、8以上である[1]〜[10]のいずれかに記載の半導体製造用処理液。
[12] 添加剤として、ノニオン界面活性剤を少なくとも含み、ノニオン界面活性剤として、下記一般式(A1)で表される化合物を少なくとも含む[1]〜[11]のいずれかに記載の半導体製造用処理液。
一般式(A1)中、
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
a1及びLa2は、それぞれ独立に、単結合又は2価の連結基を表す。
[13] 添加剤として、アニオン界面活性剤を少なくとも含み、さらに、無機塩を、半導体製造用処理液に対して、1質量ppq〜1000質量ppt含む[1]〜[12]のいずれかに記載の半導体製造用処理液。
[14] 添加剤として、カチオン界面活性剤を少なくとも含み、さらに、無機塩を、半導体製造用処理液に対して、1質量ppq〜1000質量ppt含む[1]〜[13]のいずれかに記載の半導体製造用処理液。
[15] 添加剤として、下記一般式(K1)又は(K2)で表されるキレート剤を少なくとも含み、キレート剤の一部は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子とキレート錯体を形成し、キレート錯体の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptである[1]〜[14]のいずれかに記載の半導体製造用処理液。
一般式(K1)中、
K1及びRK2は、それぞれ独立に、単結合又はアルキレン基を表す。
K3は、2価の有機基を表す。
は、CH基又は窒素原子を表す。
K1及びYK2は、それぞれ独立に、金属吸着性基を表す。
は、水素原子又は親水性基を表す。
一般式(K2)中、
K4、RK5、RK6及びRK7は、それぞれ独立に、単結合又はアルキレン基を表す。
K8は、3価の有機基を表す。
及びXは、それぞれ独立に、CH基又は窒素原子を表す。
K3、YK4、YK5及びYK6は、それぞれ独立に、金属吸着性基を表す。
は、水素原子又は親水性基を表す。
[16] 添加剤を2種以上含む[1]〜[7]のいずれかに記載の半導体製造用処理液。
[17] 添加剤として、2種以上のノニオン界面活性剤を含む[1]〜[5]及び[16]のいずれかに記載の半導体製造用処理液。
[18] 2種以上のノニオン界面活性剤として、HLBが12以上のノニオン界面活性剤を少なくとも1種と、HLBが10以下であるノニオン界面活性剤を少なくとも1種とを含む[17]に記載の半導体製造用処理液。
[19] HLBが12以上のノニオン界面活性剤の全質量は、HLBが10以下のノニオン界面活性剤の全質量に対し、0.5〜4である[18]に記載の半導体製造用処理液。
[20] 添加剤として、ノニオン界面活性剤を少なくとも含み、ノニオン界面活性剤として、下記一般式(A1)で表される化合物を少なくとも含む[1]〜[11]及び[16]〜[19]のいずれかに記載の半導体製造用処理液。
一般式(A1)中、
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
a1及びLa2は、それぞれ独立に、単結合又は2価の連結基を表す。
[21] 添加剤として、少なくとも2種の上記ノニオン界面活性剤を含み、少なくとも2種のノニオン界面活性剤は、一般式(A1)で表される化合物である[20]に記載の半導体製造用処理液。
[22] 一般式(A1)で表される化合物は、下記一般式(A2)で表される化合物である[20]又は[21]に記載の半導体製造用処理液。
一般式(A2)中、
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
m及びnは、それぞれ独立に0.5〜80の正数を表し、m+n≧1を満たす。
[23] 感活性光線性又は感放射線性樹脂組成物、又は、着色硬化性樹脂組成物を用いて膜を形成することと、膜を露光することと、露光された膜を[1]〜[22]のいずれかに記載の半導体製造用処理液を用いて処理することとを含むパターン形成方法。
[24] 処理は、現像することである[23]に記載のパターン形成方法。
[25] 処理は、現像すること及びリンスすることである[23]に記載のパターン形成方法。
[26] 更に、有機溶剤を含むリンス液、又は、水を用いて洗浄することを含む[23]〜[25]のいずれかに記載のパターン形成方法。
[27] 有機溶剤を含むリンス液は、有機溶剤として、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤である[26]に記載のパターン形成方法。
[28] 有機溶剤を含むリンス液は、有機溶剤として、少なくともアルコール系溶剤を含有するリンス液である[26]又は[27]に記載のパターン形成方法。
[29] 有機溶剤を含むリンス液は、有機溶剤として、炭素数6〜8の直鎖状、分岐状又は環状の1価のアルコールを含有するリンス液である[26]〜[28]のいずれかに記載のパターン形成方法。
[30] 有機溶剤を含むリンス液の含水率は、30質量%以下である[26]〜[29]のいずれかに記載のパターン形成方法。
本発明によれば、金属原子を含有したパーティクルの発生を低減することができる半導体製造用処理液及びパターン形成方法を提供することが可能となる。
実施形態
以下、本発明の好適態様について詳細に説明する。
本明細書における基及び原子団の表記において、置換又は無置換を明示していない場合は、置換基を有さないものと置換基を有するものの双方が含まれるものとする。例えば、置換又は無置換を明示していない「アルキル基」は、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含することとする。
また、本発明において「活性光線」又は「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、電子線、イオンビーム等の粒子線等を意味する。また、本発明において「光」とは、活性光線又は放射線を意味する。
また、本明細書中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線、極紫外線(EUV光)などによる露光のみならず、電子線、イオンビーム等の粒子線による描画も含まれるものとする。
本明細書では、「(メタ)アクリレート」とは、「アクリレート及びメタクリレートの少なくとも1種」を意味する。また、「(メタ)アクリル酸」とは、「アクリル酸及びメタクリル酸の少なくとも1種」を意味する。
本明細書において「〜」を用いて表される数値範囲は、「〜」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
<半導体製造用処理液>
まず、本発明に係る半導体製造用処理液について説明する。この半導体製造用処理液は、現像工程において、現像液として用いられてもよく、また、リンス工程において、リンス液として用いられてもよい。現像工程及びリンス工程の両工程において、本発明に係る半導体製造用洗処理液を用いて、現像処理及びリンス処理することが好ましい。
本発明に係る半導体製造用処理液は、一般式(N)で表される第4級アンモニウム化合物と、アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、及び、キレート剤からなる群より選択される少なくとも1種の添加剤(以下、単に「添加剤」ともいう。)と、水とを含む半導体製造用処理液であって、この半導体製造用処理液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znのからなる群より選択される少なくとも1種又は2種以上の金属原子(以下、単に「金属原子」ともいう。)を含み、この金属原子の全質量は、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppt(parts per trillion)〜1質量ppm(parts per million)である。
本発明者らは、半導体製造用処理液に含まれる添加剤の全質量と金属原子の全質量との合計に対する、金属原子の全質量の比率(以下、「金属原子の比率T」ともいう。)を制御することにより、半導体製造用処理液を特に現像液として使用した場合、金属原子を含有したパーティクルの発生を低減することができることを見出した。この理由の詳細は未だ明らかではないが、以下のように推測される。
半導体製造用処理液に含まれる金属原子の全質量が、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppmよりも多い場合、この金属原子を基に添加剤が凝集することが考えられる。このように凝集した添加剤は、金属原子を含有したパーティクルとなる。そのため、半導体製造用処理液に含まれる添加剤の全質量と金属原子の全質量との合計に対する金属原子の含有率を制御することにより、金属原子を含有したパーティクルの発生を低減することができると推測される。
また、半導体製造用処理液中の金属原子の全質量を、添加剤の全質量と金属原子の全質量との合計に対して、1質量pptよりも小さくするためには、濾過処理、イオン交換処理、及び、蒸留処理などの精製工程に大きな負荷がかかる。これは、上記数値よりも小さくするために、濾過等の処理回数を増やす、及び、各処理を組み合わせる等、精製工程での処理を多数行なわなければならないからである。本発明のように、半導体製造用処理液中の金属原子の全質量が、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppt以上であると、金属原子の大部分が金属酸化物の水和物が縮合した水酸化金属コロイドとなって分散しており、イオン状態の金属原子がほとんどない状態であると推定される。そのため、半導体製造用処理液中の金属原子の全質量を、添加剤の全質量と金属原子の全質量との合計に対して、1質量ppt以上とすることにより、除去しにくい易溶性の金属イオンがほとんど含まれず、その結果、デバイスに欠陥などの影響が現れにくくなることが推測される。
また、本発明の一形態において、金属原子の粒子性金属の全質量は、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対して、0.1質量ppt(parts per trillion)〜0.1質量ppm(parts per million)であることが好ましい。
ここで、「金属原子の粒子性金属」とは、溶液中に存在する金属原子のうち、溶液中で溶解せず固体として存在しているメタル成分を意味する。最近開発されたSP−ICP−MS(Single Particle Inductively Coupled Plasma − Mass Spectrometry)法によれば、溶液中に存在する全金属原子から、粒子性金属(非イオン性金属)を選択的に測定することができる。このSP−ICP−MS法による粒子性金属の測定は、具体的には、ICP−MS法にて検出される信号の経過時間ごとにおける強度を計測し、一定の強度を超えた信号ピークを粒子性金属由来として識別する方法である。本明細においては、全金属原子量はICP−MS法により計測し、粒子性金属量(非イオン性金属量)はSP−ICP−MS法により計測し、イオン性金属量は全金属原子量と粒子性金属量との差分により求めた。
これまで、半導体製造用処理液などに含まれる金属原子の量は、ICP−MS法等により分析されるのが通常であった。ICP−MS法等の従来法によっては、金属原子に由来するイオン性金属と粒子性金属(非イオン性金属)の識別ができないため、金属原子の総質量、すなわち、イオン性金属と粒子性金属(非イオン性金属)の合計質量として定量されていた。
本発明者らは、半導体製造用処理液に含まれる添加剤の全質量と、SP−ICP−MS法により定量することが可能となった粒子性金属の全質量との合計に対する、粒子性金属の全質量の比率(以下、「粒子性金属の比率T」ともいう。)を制御することにより、以下を見出した。すなわち、半導体製造用処理液を特に現像液として使用した場合、金属原子を含有したパーティクルの発生を更に低減することができることを見出した。この理由の詳細は未だ明らかではないが、以下のように推測される。
半導体製造用処理液に含まれる金属原子の粒子性金属の全質量が、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対して、0.1質量ppmよりも多い場合、この金属粒子そのものが半導体基板上に凝集することが考えられる。このように凝集した金属粒子は、半導体基板上でパーティクルとなる。そのため、半導体製造用処理液に含まれる添加剤の全質量と金属原子の粒子性金属の全質量との合計に対する金属原子の粒子性金属の含有率を制御することにより、金属原子を含有したパーティクルの発生を更に低減することができると推測される。
また、半導体製造用処理液中の金属原子の粒子性金属の全質量を、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対して、0.1質量pptよりも小さくするためには、濾過処理、イオン交換処理、及び、蒸留処理などの精製工程に大きな負荷がかかる。これは、上記数値よりも小さくするために、濾過等の処理回数を増やす、及び、各処理を組み合わせる等、精製工程での処理を多数行なわなければならないからである。半導体製造用処理液中の金属原子の粒子性金属の全質量が、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対して、0.1質量ppt以上であると、金属原子の大部分が金属酸化物の水和物が縮合した水酸化金属コロイドとなって分散しており、欠陥の起因となる粒子状態の金属原子、およびイオン状態の金属原子がほとんどない状態であると推定される。そのため、半導体製造用処理液中の金属原子の粒子性金属の全質量を、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対して、0.1質量ppt以上とすることにより、除去しにくい易溶性の金属イオンがほとんど含まれず、その結果、デバイスに欠陥などの影響が現れにくくなることが推測される。
本発明では、このような金属原子を含有したパーティクルの発生を「欠陥」ともいう。
以下、各構成成分について詳細に説明する。
〔1〕第4級アンモニウム化合物
本発明に係る半導体製造用処理液は、下記一般式(N)で表される第4級アンモニウム化合物を含んでいる。
一般式(N)中、RN1〜RN4は、各々独立に、アルキル基、フェニル基、ベンジル基又はシクロヘキシル基を表し、これらの基は置換基を有していてもよい。
N1〜RN4のアルキル基は、炭素数1〜8が好ましく、炭素数1〜4がより好ましい。
N1〜RN4のアルキル基、フェニル基、ベンジル基又はシクロヘキシル基が有していてもよい置換基は、例えば、ヒドロキシ基が挙げられる。
第4級アンモニウム化合物は、例えば、テトラメチルアンモニウムヒドロキシド(TMAH:Tetramethylammonium hydroxide)、テトラエチルアンモニウムヒドロキシド(TEAH:Tetraethylammonium hydroxide)、テトラプロピルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド(TBAH:Tetrabuthylammonium hydroxide)、テトラペンチルアンモニウムヒドロキシド、テトラヘキシルアンモニウムヒドロキシド、テトラオクチルアンモニウムヒドロキシド、エチルトリメチルアンモニウムヒドロキシド、ブチルトリメチルアンモニウムヒドロキシド、メチルトリアミルアンモニウムヒドロキシド、ジブチルジペンチルアンモニウムヒドロキシド、トリエチルフェニルアンモニウムヒドロキシド、トリメチルベンジルアンモニウムヒドロキシド、トリエチルベンジルアンモニウムヒドロキシド、トリベンジルメチルアンモニウムヒドロキシド、テトラベンジルアンモニウムヒドロキシド、トリメチルシクロヘキシルアンモニウムヒドロキシド、トリブチルシクロヘキシルアンモニウムヒドロキシド、モノヒドロキシエチルトリメチルアンモニウムヒドロキシド、ジヒドロキシエチルジメチルアンモニウムヒドロキシド(ジメチルビス(2−ヒドロキシエチル)アンモニウムヒドロキシド)、トリヒドロキシエチルモノメチルアンモニウムヒドロキシド、モノヒドロキシエチルトリエチルアンモニウムヒドロキシド、ジヒドロキシエチルジエチルアンモニウムヒドロキシド、トリヒドロキシエチルモノエチルアンモニウムヒドロキシド、モノヒドロキシプロピルトリメチルアンモニウムヒドロキシド、ジヒドロキシプロピルジメチルアンモニウムヒドロキシド、トリヒドロキシプロピルモノメチルアンモニウムヒドロキシド、モノヒドロキシプロピルトリエチルアンモニウムヒドロキシド、ジヒドロキシプロピルジエチルアンモニウムヒドロキシド、トリヒドロキシプロピルモノエチルアンモニウムヒドロキシド等が挙げられる。
好ましい第4級アンモニウム化合物は、テトラメチルアンモニウムヒドロキシド、テトラエチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシド、ジメチルビス(2−ヒドロキシエチル)アンモニウムヒドロキシドである。第4級アンモニウム化合物は、特に限定されないが、テトラメチルアンモニウムヒドロキシド若しくはジメチルビス(2−ヒドロキシエチル)アンモニウムヒドロキシドであることが特に好ましい。
第4級アンモニウム化合物は、半導体製造用処理液に対して、25質量%以下含むことが好ましく、20質量%以下含むことがより好ましい。また、第4級アンモニウム化合物は、半導体製造用処理液に対して、1質量%以上含むことが好ましく、2質量%以上含むことがより好ましい。
第4級アンモニウム化合物は2種以上含んでいてもよい。
また、第4級アンモニウム化合物は、公知の方法により精製することができる。例えば、国際公開第WO12/043496号公報に記載されている、炭化ケイ素を用いた吸着精製に加えて、フィルター濾過を繰り返すことで精製を行うことができる。
〔2〕添加剤
本発明に係る半導体製造用処理液は、アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、及び、キレート剤からなる群より選択される少なくとも1種の添加剤を含んでいる。ただし、この添加剤には、上述した第4級アンモニウム化合物は含まれない。
添加剤は、アニオン界面活性剤、ノニオン界面活性剤、及び、カチオン界面活性剤が好ましく、ノニオン界面活性剤がより好ましい。
本発明に係る半導体製造用処理液は、添加剤として、アニオン界面活性剤、ノニオン界面活性剤及びカチオン界面活性剤からなる群より選択される少なくとも1種の界面活性剤を含有することにより、レジスト膜に対する濡れ性が向上して、現像及び/又はリンスがより効果的に進行する。
添加剤は、2種以上を組み合わせて含んでもよい。添加剤の2種以上の組み合わせは、アニオン界面活性剤、ノニオン界面活性剤、及び、カチオン界面活性剤から選択される少なくとも1種と、キレート剤との組み合わせが好ましく、ノニオン界面活性剤とキレート剤との組み合わせがより好ましい。
また、添加剤は、2種以上のノニオン界面活性剤を含むことが好ましい。
添加剤は、半導体製造用処理液に対して、1質量%以下含むことが好ましく、0.75質量%以下含むことがより好ましい。また、添加剤は、半導体製造用処理液に対して、0.5質量%以上であることが好ましく、0.2質量%以上であることがより好ましい。
添加剤は、後述する無機塩に由来する、硫酸イオン、塩化物イオン、又は硝酸イオンなどの無機イオン、及び、本発明に係る半導体製造用処理液が含有する特定の金属原子の含有量が低減されたグレードのものを用いるか、さらに精製して用いることが好ましい。
以下に、各添加剤について詳細に説明する。
〔2−1〕アニオン界面活性剤
アニオン界面活性剤は、例えば、アルキル硫酸エステル、アルキルスルホン酸、アルキルベンゼンスルホン酸、アルキルナフタレンスルホン酸、アルキルジフェニルエーテルスルホン酸、ポリオキシエチレンアルキルエーテルカルボン酸、ポリオキシエチレンアルキルエーテル酢酸、ポリオキシエチレンアルキルエーテルプロピオン酸、ポリオキシエチレンアルキルエーテル硫酸、ポリオキシエチレンアリールエーテル酢酸、ポリオキシエチレンアリールエーテルプロピオン酸、ポリオキシエチレンアリールエーテル硫酸、及び、それらの塩等が挙げられる。
アニオン界面活性剤は、特に限定されないが、アルキル硫酸エステル、ポリオキシエチレンアリールエーテル硫酸、ポリオキシエチレンアルキルエーテル硫酸が好ましく、ポリオキシエチレンアリールエーテル硫酸がより好ましい。
上記のアニオン界面活性剤である硫酸化物は、例えば、生成した脂肪族系アルコールアルキレンオキサイド付加物をそのまま硫酸化し、水酸化ナトリウムなどのアルカリを用いて中和することによって得られる。硫酸化の方法としては、例えば硫酸を用いる方法が挙げられる。この場合、反応温度は、通常50〜150℃、好ましくは60〜130℃である。反応形態は、連続反応およびバッチ式反応の両方が可能である。
アニオン界面活性剤は、半導体製造用処理液に対して、100000質量ppm(parts per million)以下含むことが好ましく、50000質量ppm以下含むことがより好ましい。また、アニオン界面活性剤は、半導体製造用処理液に対して、50質量ppm以上含むことが好ましく、100質量ppm以上含むことがより好ましい。
〔2−2〕ノニオン界面活性剤
ノニオン性界面活性剤は、例えば、ポリアルキレンオキサイドアルキルフェニルエーテル系界面活性剤、ポリアルキレンオキサイドアルキルエーテル系界面活性剤、ポリエチレンオキサイドとポリプロピレンオキサイドからなるブロックポリマー系界面活性剤、ポリオキシアルキレンジスチレン化フェニルエーテル系界面活性剤、ポリアルキレントリベンジルフェニルエーテル系界面活性剤、及び、アセチレンポリアルキレンオキサイド系界面活性剤等が挙げられる。
ノニオン性界面活性剤は、下記一般式(A1)で表される化合物が好ましい。
一般式(A1)中、
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
a1及びLa2は、それぞれ独立に、単結合又は2価の連結基を表す。
以下に一般式(A1)について説明する。
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
a1、Ra2、Ra3及びRa4のアルキル基は、直鎖状であっても、分岐鎖状であってもよく、置換基を有していてもよい。
a1、Ra2、Ra3及びRa4のアルキル基は、炭素数1〜5であることが好ましい。炭素数1〜5のアルキル基は、例えば、メチル基、エチル基、イソプロピル基及びブチル基等が挙げられる。
a1及びLa2は、それぞれ独立に、単結合又は2価の有機基を表す。
a1及びLa2の2価の連結基は、アルキレン基、−ORa5−基及びこれらの組み合わせが好ましい。Ra5は、アルキレン基を表す。
ノニオン性界面活性剤は、例えば、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール、3,5−ジメチル−1−ヘキシン−3オールなどが挙げられる。
一般式(A2)で表される化合物は、例えば、下記一般式(A2)で表される化合物が挙げられる。
一般式(A2)中、
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
m及びnは、それぞれ独立に0.5〜80の正数を表し、m+n≧1を満たす。
以下に一般式(A2)について説明する。
a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
a1、Ra2、Ra3及びRa4のアルキル基は、一般式(A1)中のRa1、Ra2、Ra3及びRa4のアルキル基と同様である。
m及びnは、エチレンオキシドの付加モル数を表し、それぞれ独立に0.5〜80の正数を表し、m+n≧1を満たす。m+n≧1を満たす範囲であれば、任意の値を選択することができる。m及びnは、1≦m+n≦100を満たすことが好ましく、3≦m+n≦80であることがより好ましい。
一般式(A2)で表される化合物は、例えば、2,5,8,11−テトラメチル−6−ドデシン−5,8−ジオール、5,8−ジメチル−6−ドデシン−5,8−ジオール、2,4,7,9−テトラメチル−5−デシン−4,7−ジオール、4,7−ジメチル−5−デシン−4,7−ジオール8−ヘキサデシン−7,10−ジオール、7−テトラデシン−6,9−ジオール、2,3,6,7−テトラメチル−4−オクチン−3,6−ジオール、3,6−ジエチル−4−オクチン−3,6−ジオール、3,6−ジメチル−4−オクチン−3,6−ジオール、2,5−ジメチル−3−ヘキシン−2,5−ジオール等が挙げられる。
また、ノニオン界面活性剤は、市販品を用いることができる。具体的には、例えば、AirProducts&Chemicals社製のSURFYNOL82、465、485、DYNOL604、607、日信化学工業社製のオルフィンSTG、オルフィンE1010等が挙げられる。
ノニオン界面活性剤のHLB(Hydrophile−Lipophile Balance)値は、8以上であることが好ましく、10以上であることがより好ましい。また、ノニオン界面活性剤のHLB値は、16以下であることが好ましく、14以下であることがより好ましい。ここで、HLB値はグリフィン式(20Mw/M;Mw=親水性部位の分子量、M=非イオン界面活性剤の分子量)より算出した値で規定され、場合によりカタログ値や他の方法で算出した値を使用してもよい。
ノニオン界面活性剤は、2種以上を組み合わせて用いてもよい。2種以上のノニオン界面活性剤は、少なくとも2種のノニオン界面活性剤が一般式(A1)で表される化合物であることが好ましい。
2種以上のノニオン界面活性剤は、HLBが12以上であるノニオン界面活性剤を少なくとも1種と、HLBが10以下であるノニオン界面活性剤を少なくとも1種であることも好ましい。本発明者らは、このような組み合わせにより、本発明の半導体製造用処理液を現像液として用いた場合に、矩形性に優れたパターンを得ることができることを見出した。この理由の詳細は未だ明らかではないが、以下のように推測される。
フォトレジスト組成物を用いて形成されたレジスト膜は、露光された部分が化学的に変化する。この化学的変化により、露光された部分は、親水性又は疎水性を示すようになる。親水性が高いノニオン界面活性剤と疎水性が高いノニオン界面活性剤とを併用することにより、各ノニオン界面活性剤は、レジスト膜の親水性又は疎水性を示す部分に選択的に各々吸着する。これにより、矩形性のよいパターン形状を作成することができると推測される。
HLBが12以上であるノニオン界面活性剤の全質量は、HLBが10以下であるノニオン界面活性剤の全質量に対し、0.5〜4であることが好ましく、0.7〜3.5であることがより好ましく、1.0〜3.0であることがさらに好ましい。本発明者らは、HLBが12以上であるノニオン界面活性剤の全質量が、HLBが10以下であるノニオン界面活性剤の全質量よりも多いことにより、本発明の半導体製造用処理液を現像液として用いた場合に、矩形性に優れたパターンを得ることができることを見出した。この理由は、このような配合とすることにより、各ノニオン界面活性剤は、より効果的に、レジスト膜の親水性又は疎水性を示す部分に選択的に各々吸着するためと推測される。
ノニオン界面活性剤は、半導体製造用処理液に対して、10000質量ppm以下含むことが好ましく、5000質量ppm以下含むことがより好ましい。また、ノニオン界面活性剤は、半導体製造用処理液に対して、50質量ppm以上含むことが好ましく、100質量ppm以上含むことがより好ましい。
〔2−3〕カチオン界面活性剤
カチオン性界面活性剤は、例えば、第4級アンモニウム塩系界面活性剤、及び、アルキルピリジウム系界面活性剤等が挙げられる。
第4級アンモニウム塩系界面活性剤は、例えば、塩化テトラメチルアンモニウム、塩化テトラブチルアンモニウム、塩化ドデシルジメチルベンジルアンモニウム、塩化アルキルトリメチルアンモニウム、塩化オクチルトリメチルアンモニウム、塩化デシルトリメチルアンモニウム、塩化ドデシルトリメチルアンモニウム、塩化テトラデシルトリメチルアンモニウム、塩化セチルトリメチルアンモニウム、及び、塩化ステアリルトリメチルアンモニウム等が挙げられる。第4級アンモニウム塩系界面活性剤は、特に限定されないが、塩化ドデシルジメチルベンジルアンモニウムが好ましい。
アルキルピリジウム系界面活性剤は、例えば、塩化ブチルピリジニウム、塩化ドデシルピリジニウム、及び、塩化セチルピリジウム等が挙げられる。アルキルピリジウム系界面活性剤は、特に限定されないが、塩化ブチルピリジニウムが好ましい。
カチオン性界面活性剤は、例えば、まず、トリエタノールアミン、メチルジエタノールアミン、及び3−(N,N−ジメチルアミノ)−1,2−プロピレングリコ−ル等を、長鎖脂肪酸或いは脂肪酸メチルによりアシル化し、中間体のアルカノ−ルアミンエステルを合成する。その後、塩化メチル、ジメチル硫酸、及びジエチル硫酸等の4級化剤によりカチオン化合物へ転換する等により得られる。
カチオン界面活性剤は、半導体製造用処理液に対して、10000質量ppm以下含むことが好ましく、5000質量ppm以下含むことがより好ましい。
〔2−4〕キレート剤
本発明の処理液に含有されてもよいキレート剤は、特に限定されないが、1分子中の2つ以上の官能基により金属原子と配位結合する化合物であることが好ましい。この官能基は、金属吸着性基であることが好ましい。本発明の処理液に含有されてもよいキレート剤は、1分子中に2つ以上の金属吸着性基を含有することがより好ましい。
金属吸着性基としては、酸基またはカチオン性基が好ましい。
酸基は、酸解離定数(pKa)が7以下であることが好ましい。酸基は、例えば、フェノール性ヒドロキシル基、−COOH、−SOH、−OSOH、−PO、−OPO、およびCOCHCOCHが挙げられる。酸基は、−COOHが特に好ましい。
また、これら酸基は、酸基の塩であってもよい。酸基の塩としては、金属塩および含窒素カチオンの塩が挙げられる。
金属塩は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znのからなる群より選択されるいずれかの金属原子の塩が好ましい。
含窒素カチオンとしては、第4級アンモニウムカチオンおよびアミンの水素付加体であるカチオンであれば特には限定されない。
第4級アンモニウムカチオンとしては、例えば、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオン、メチルトリブチルアンモニウムカチオン、テトラブチルアンモニウムカチオン、コリン型カチオン(ヒドロキシエチルトリメチルアンモニウムカチオン)、等が好ましく、なかでも、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオン、テトラブチルアンモニウムカチオンおよびコリン型カチオンがより好ましく、その中でも、テトラメチルアンモニウムカチオン、テトラエチルアンモニウムカチオン、テトラプロピルアンモニウムカチオンおよびコリン型カチオンが特に好ましい。
また、カチオン性ポリマーが対イオンであっても良い。
金属吸着性基としてのカチオン性基は、オニウム基であることが好ましい。オニウム基は、例えば、アンモニウム基、ホスホニウム基、アルソニウム基、スチボニウム基、オキソニウム基、スルホニウム基、セレノニウム基、スタンノニウム基、ヨードニウム基が挙げられる。オニウム基は、アンモニウム基、ホスホニウム基およびスルホニウム基が好ましく、アンモニウム基およびホスホニウム基がさらに好ましく、アンモニウム基が最も好ましい。
本発明のキレート剤の具体例として、カルボキシル基を有する化合物(以下、適宜「カルボン酸化合物」とも称する。)が挙げられる。カルボン酸化合物は、1分子中に少なくとも1個のカルボキシル基を有するが、1分子中に2個以上のカルボキシル基を有するものがより好ましい。
1個のカルボキシル基を有するカルボン酸化合物は、カルボキシル基の他に、別の金属吸着性基か、アルコール性ヒドロキシル基、メルカプト基、アミノ基、カルボニル基など、カルボキシル基よりは弱いが金属への配位性のある官能基を有することが好ましい。具体例としては、グリコール酸、チオグリコール酸、乳酸、β−ヒドロキシプロピオン酸、グルコン酸、ピルビン酸、アセト酢酸、サリチル酸、5−スルホサリチル酸、β−アラニン、フェニルアラニン、N−エチルグリシン等を挙げることができる。
2個のカルボキシル基を有するカルボン酸化合物の具体例としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、マレイン酸、フタル酸、3−スルホフタル酸、4−スルホフタル酸、2−スルホテレフタル酸、3−ヒドロキシフタル酸、4−ヒドロキシフタル酸、酒石酸、リンゴ酸、ジピコリン酸、クエン酸、等が挙げられる。
これらの中でも、3−スルホフタル酸、4−スルホフタル酸、2−スルホテレフタル酸等の芳香族環に2つ以上のカルボキシル基と1つのスルホ基を有する化合物、5−スルホサリチル酸のように芳香族環にヒドロキシル基、カルボキシル基、スルホ基を有する化合物、4−ヒドロキシフタル酸、シュウ酸、酒石酸、リンゴ酸、およびジピコリン酸がより好ましく、特に好ましくは、3−スルホフタル酸、4−スルホフタル酸等のスルホフタル酸、5−スルホサリチル酸、および4−ヒドロキシフタル酸である。
また、下記具体例で例示されるような3個以上のカルボキシル基を有し、炭素、水素以外の元素を含む他の官能基を有さない低分子の有機化合物も、カルボン酸化合物として好ましい。
これらの具体例としては例えば、プロパン−1,2,3−トリカルボン酸、ブタン−1,2,3−トリカルボン酸、ブタン−1,2,4−トリカルボン酸、ブタン−1,2,3,4−テトラカルボン酸、2−カルボキシメチルプロパン−1,3−ジカルボン酸、ペンタン−1,2,3−トリカルボン酸、ペンタン−1,2,4−トリカルボン酸、ペンタン−1,2,5−トリカルボン酸、ペンタン−1,3,4−トリカルボン酸、ペンタン−2,3,4−トリカルボン酸、ペンタン−1,2,3,4−テトラカルボン酸、ペンタン−1,2,3,5−テトラカルボン酸、2−カルボキシメチルブタン−1,3−ジカルボン酸、2−カルボキシメチルブタン−1,4−ジカルボン酸、3−カルボキシメチルブタン−1,2−ジカルボン酸、3−カルボキシメチルブタン−1,2,4−トリカルボン酸、2,2−ジカルボキシメチルプロパン−1,3−ジカルボン酸、1,2,3,4−シクロペンタンテトラカルボン酸、ヘミメリット酸、トリメリット酸、ピロメリット酸、ナフタレン−1,4,5,8−テトラカルボン酸等が挙げられる。
これらの中でも、特に好ましいものは、炭素数が5以下のアルキル基に3個以上のカルボキシル基が置換したものであり、最も好ましいものはプロパン−1,2,3−トリカルボン酸である。
この他に、2−ホスホノブタン−1,2,3−トリカルボン酸のような3個以上のカルボキシル基を有し、ヘテロ元素を含む他の官能基を有する化合物も好ましいものとして挙げられる。
また、キレート剤は、下記一般式(K1)及び(K2)で表されるキレート剤であることが好ましい。
一般式(K1)中、
K1及びRK2は、それぞれ独立に、単結合又はアルキレン基を表す。
K3は、2価の有機基を表す。
は、CH基又は窒素原子を表す。
K1及びYK2は、それぞれ独立に、金属吸着性基を表す。
は、水素原子又は親水性基を表す。
一般式(K2)中、
K4、RK5、RK6及びRK7は、それぞれ独立に、単結合又はアルキレン基を表す。
K8は、3価の有機基を表す。
及びXは、CH基又は窒素原子を表す。
K3、YK4、YK5及びYK6は、それぞれ独立に、金属吸着性基を表す。
は、水素原子又は親水性基を表す。
以下に一般式(K1)について説明する。
K1及びRK2は、それぞれ独立に、単結合又はアルキレン基を表す。
K1及びRK2のアルキレン基は、例えば、炭素数1〜6が好ましく、炭素数1〜3がより好ましい。
K1及びRK2のアルキレン基は、直鎖状であっても分岐鎖状であってもよく、直鎖状であることが好ましい。
K1及びRK2のアルキレン基は、具体的には、メチレン基がより好ましい。
K3は、2価の有機基を表す。有機基は、少なくとも1つの炭素原子を有する基をいう。
K3の2価の有機基は、例えば、アルキレン基及びアリーレン基等が挙げられる。
K3のアルキレン基は、直鎖状であっても分岐鎖状であってもよく、直鎖状であることが好ましい。
K3のアルキレン基及びアリーレン基は、炭素数1〜10が好ましく、炭素数1〜8
がより好ましく、炭素数1〜6が最も好ましい。
K3の2価の有機基は、メチレン基、エチレン基及びフェニル基が好ましい。
は、CH基又は窒素原子を表す。Xは、窒素原子であることが好ましい。
K1及びYK2は、それぞれ独立に、金属吸着性基を表す。
金属吸着性基としては、酸基またはカチオン性基が好ましい。具体例としては、カルボン酸化合物の金属吸着基について前述した酸基またはカチオン性基の具体例と同じものが挙げられる。またカチオン性ポリマーが対イオンであるものであっても良い。
は、水素原子または親水性基を表す。
の親水性基としては、例えば、ヒドロキシル基、カルボキシル基、カルボキシレート基、ヒドロキシエチル基、ポリオキシエチル基、ヒドロキシプロピル基、ポリオキシプロピル基、アミノ基、アミノエチル基、アミノプロピル基、アンモニウム基、アミド基、カルボキシメチル基、スルホ基、リン酸基等が好適に挙げられる。
の親水性基は、ヒドロキシル基が最も好ましい。
以下に、一般式(K2)について説明する。
K4、RK5、RK6及びRK7は、それぞれ独立に、単結合又はアルキレン基を表す。
K4、RK5、RK6及びRK7のアルキレン基は、一般式(K1)中のRK1及びRK2と同義である。RK4、RK5、RK6及びRK7の好ましい態様は、一般式(K1)中のRK1及びRK2の好ましい態様と同じである。
K8は、3価の有機基を表す。有機基は、少なくとも1つの炭素原子を有する基をいう。
K8の3価の有機基は、炭素数としては1〜10が好ましく、1〜8がより好ましく、1〜6が最も好ましい。また、3価の有機基は置換基を有してもよく、置換基同士が結合して環状構造を形成していてもよく、有機鎖中にヘテロ原子を有してもよい。置換基同士が結合して形成する環状構造としては、シクロアルキル基が好ましい。また、有機基の主鎖中に有してもよいヘテロ原子としては、酸素原子又は窒素原子が好ましい。
及びXは、CH基又は窒素原子を表す。Xは、窒素原子であることが好ましい。Xは、窒素原子であることが好ましい。
K3、YK4、YK5及びYK6は、それぞれ独立に、金属吸着性基を表す。
K3、YK4、YK5及びYK6の金属吸着性基は、一般式(K1)中のYK1及びYK2の金属吸着性基と同義である。YK3、YK4、YK5及びYK6の金属吸着性基の好ましい態様は、一般式(K1)中のYK1及びYK2の金属吸着性基の好ましい態様と同じである。
は、水素原子又は親水性基を表す。
の親水性基は、一般式(K1)中のAと同義である。Aの好ましい態様は、一般式(K1)中のAの好ましい態様と同じである。
以下に、一般式(K1)及び(K2)で表されるキレート剤の具体例を示す。
キレート剤は、本発明の半導体製造用処理液を現像液として用いる場合、2価金属に対するキレート剤であることが好ましい。
2価金属に対するキレート剤は、例えば、Na、Na、Na、NaP(NaOP)PONa、カルゴン(ポリメタリン酸ナトリウム)などのポリリン酸塩、例えばエチレンジアミンテトラ酢酸、そのカリウム塩、そのナトリウム塩、そのアミン塩;ジエチレントリアミンペンタ酢酸、そのカリウム塩、ナトリウム塩;トリエチレンテトラミンヘキサ酢酸、そのカリウム塩、そのナトリウム塩;ヒドロキシエチルエチレンジアミントリ酢酸、そのカリウム塩、そのナトリウム塩;ニトリロトリ酢酸、そのカリウム塩、そのナトリウム塩;1,2−ジアミノシクロヘキサンテトラ酢酸、そのカリウム塩、そのナトリウム塩;1,3−ジアミノ−2−プロパノールテトラ酢酸、そのカリウム塩、そのナトリウム塩などのようなアミノポリカルボン酸類の他2−ホスホノブタントリカルボン酸−1,2,4、そのカリウム塩、そのナトリウム塩;2−ホスホノブタノントリカルボン酸−2,3,4、そのカリウム塩、そのナトリウム塩;1−ホスホノエタントリカルボン酸−1,2、2、そのカリウム塩、そのナトリウム塩;1−ヒドロキシエタン−1,1−ジホスホン酸、そのカリウム塩、そのナトリウム塩;アミノトリ(メチレンホスホン酸)、そのカリウム塩、そのナトリウム塩などのような有機ホスホン酸類を挙げることができる。
これらの中でも、エチレンジアミンテトラ酢酸、そのカリウム塩、そのナトリウム塩、そのアミン塩;エチレンジアミンテトラ(メチレンホスホン酸)、そのアンモニウム塩、そのカリウム塩、;ヘキサメチレンジアミンテトラ(メチレンホスホン酸)、そのアンモニウム塩、そのカリウム塩が好ましい。
このような2価の金属に対するキレート剤の最適量は、一般的には、使用時の現像液中に0.01〜5質量%で含有させることが好ましく、0.01〜0.5質量%の範囲で含有させることがより好ましい。
なお、本発明の添加剤は、通常市販されている形態において1〜数千質量ppm程度のNa、K、Fe等の金属不純物を含有している場合があり、この場合には、添加剤が金属汚染源となる。そのため、添加剤に金属不純物が含まれる場合には、各々の金属不純物の含有量が、好ましくは500ppt以下、更に好ましくは100質量ppt以下となるように、添加剤を精製して使用することが好ましい。この精製方法としては、例えば、添加剤を水に溶解した後、得られた溶液をイオン交換樹脂で濾過し、イオン交換樹脂に金属不純物を捕捉させる方法が好適である。このようにして精製された界面活性剤を使用することで、金属不純物含有量が極めて低減された半導体製造用処理液を得ることができる。
〔3〕水
本発明に係る半導体製造用処理液は、水を含んでいる。
水は、特に限定されないが、半導体製造に使用される超純水を用いることが好ましく、その超純水をさらに精製し、無機陰イオン及び金属イオンなどを低減させた水を用いることがより好ましい。精製方法は特に限定されないが、ろ過膜又はイオン交換膜を用いた精製、並びに、蒸留による精製が好ましい。また、例えば、特開2007―254168号公報に記載されている方法により精製を行なうことが好ましい。
水は、金属含有量が0.001質量ppt(parts per trillion)未満であることが好ましい。
なお、本発明の実施形態に使用される水は、上記のようにして得られる水であることが好ましい。本発明に係る半導体製造用処理液として所望の効果が顕著に得られる観点から、上述した水は、本発明の処理液のみでなく収容容器の洗浄や、後述するキットなどに使用する水として用いることが特に好ましい。
〔4〕金属原子
本発明に係る半導体製造用処理液は、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子を含んでいる。1種又は2種以上の金属原子の全質量の、添加剤の全質量と金属原子の全質量との合計に対する比率Tは、1質量ppt(parts per trillion)〜1質量ppm(parts per million)である。この金属原子の比率Tは、1質量ppb(parts per brillion)〜1質量ppmであることが好ましく、2質量ppb〜1質量ppmあることがより好ましく、10質量ppb〜1質量ppmであることがさらに好ましい。
Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子の各々の含有率は、半導体製造用処理液に対して、1質量ppq(parts per quadrillion)〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。
特に、Na、K及びCaからなる群より選択される1種又は2種以上の金属原子の各々の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。
また、1種又は2種以上の金属原子の粒子性金属の全質量の、添加剤の全質量と金属原子の粒子性金属の全質量との合計に対する比率Tは、0.1質量ppt(parts per trillion)〜0.1質量ppm(parts per million)であることが好ましい。この粒子性金属の比率Tは、0.1質量ppt〜0.01質量ppmあることがより好ましく、0.1質量ppt〜1質量ppbであることが更に好ましく、1質量ppt〜1質量ppbであることが特に好ましい。
Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子各々の粒子性金属の含有率は、半導体製造用処理液に対して、1質量ppq(parts per quadrillion)〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。
特に、Na、K及びCaからなる群より選択される1種又は2種以上の金属原子各々の粒子性金属の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。
金属原子は、後述するICP−MS(Inductively Coupled Plasma − Mass Spectrometry:誘導結合プラズマ質量分析装置)を用いて測定することができる。金属原子は塩の状態であっても良い。また、粒子性金属は、上述した通り、SP−ICP−MS(Single Particle Inductively Coupled Plasma − Mass Spectrometry)を用いて測定することができる。SNP−ICP−MS法を用いた測定において使用し得る装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP−MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)を用いて、実施例に記載した方法により測定することができる。上記の他に、後継機であるアジレントテクノロジー社製Agilent 8900や、実施例で使用しているPerkinElmer社製のNexION350Sも挙げられる。
〔5〕無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体
本発明に係る半導体製造用処理液は、不純物として、無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体からなる群より選択されるいずれか1種を含んでもよい。
以下に、各不純物について説明する。
〔5−1〕無機塩
本発明に係る半導体製造用処理液は、添加剤として上述のアニオン界面活性剤又は上述のカチオン界面活性剤を含有する場合、不純物として、例えば、無機塩を含有してもよい。
無機塩は、例えば、硫酸塩、硝酸塩、酢酸塩、及び、リン酸塩等が挙げられる。
無機塩の含有率は、半導体製造用処理液に対し、例えば、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500質量pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが特に好ましい。理由は、以下のとおりである。
無機塩は、半導体製造用処理液に含まれる金属原子と反応し、金属塩を析出する。これにより、パターンに欠陥が発生する。そのため、無機塩の含有率は、半導体製造用処理液に対し、上述の範囲とすることが好ましい。
〔5−2〕過酸化物
本発明に係る半導体製造用処理液は、添加剤として上述のノニオン界面活性剤を含有する場合、不純物として、例えば、過酸化物を含有してもよい。
過酸化物は、例えば、過酸化カルシウム又は過酸化マグネシウム、過酸化カリウム、過酸化ナトリウム等が挙げられる。
ノニオン界面活性剤中の過酸化物の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500質量pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。理由は、以下のとおりである。
過酸化物は、電子デバイスの電気的特性を劣化させ、また、パターン欠陥を引き起こす原因である。そのため、過酸化物の含有率は、半導体製造用処理液に対して、上述の範囲であることが好ましい。
〔5−3〕エステル化合物
本発明に係る半導体製造用処理液は、添加剤として上述のノニオン界面活性剤を含有する場合、不純物として、例えば、エステル化合物を含有してもよい。
エステル化合物は、例えば、ステアリン酸メチルエステル、ステアリン酸オクチルエステル、オレイン酸ブチルエステル、ラウリン酸オレイルエステル、パルミチン酸ステアリルエステル、ベヘニン酸ステアリルエステル、ミリスチン酸ミリスチルエステル、アクリル酸ヘキシルエステル、メタアクリル酸オクチルエステル、カプロン酸ビニルエステル、及び、オレイル酢酸エステル等が挙げられる。
ノニオン界面活性剤中のエステル化合物の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。理由は、以下のとおりである。
エステル化合物は、金属原子に吸着し、凝集する。凝集したエステル化合物は、半導体製造用処理液を用いた処理中に基板上に吸着し、そのまま残存する。これにより、欠陥を引き起こす。そのため、エステル化合物の含有率は、半導体製造用処理液に対して、上述の範囲であることが好ましい。
〔5−4〕アミン化合物
本発明に係る半導体製造用処理液は、添加剤として上述のノニオン界面活性剤を含有する場合、不純物として、例えば、アミン化合物を含有してもよい。
アミン化合物は、例えば、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、及び、トリエチルアミン等が挙げられる。
ノニオン界面活性剤中のアミン化合物の含有率は、半導体製造用処理液に対して、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500質量pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。理由は、以下のとおりである。
アミン化合物は、金属原子に吸着し、凝集する。凝集したアミン化合物は、半導体製造用処理液を用いた処理中に基板上に吸着し、そのまま残存する。これにより、欠陥を引き起こす。そのため、無機塩の含有率は、半導体製造用処理液に対して、上述の範囲であることが好ましい。
〔5−5〕キレート錯体
本発明に係る半導体製造用処理液は、添加剤として上述のキレート剤を含有する場合、不純物として、キレート錯体を含有してもよい。キレート錯体は、上述のキレート剤の全てではなく、その一部と、半導体製造用処理液が含有しているNa、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子とにより形成される。
キレート錯体は、例えば、エチレンジアミン四酢酸モノカルシウム、エチレンジアミン四酢酸−銅(II)等が挙げられる。
キレート錯体の含有率は、半導体製造用処理液に対して、例えば、1質量ppq〜1000質量pptとすることが好ましく、5質量ppq〜500質量pptとすることがより好ましく、10質量ppq〜500質量pptとすることが更に好ましく、100質量ppq〜100質量pptとすることが最も好ましい。理由は以下のとおりである。
キレート錯体は、半導体製造用処理液を使用した処理中に、ウェハ表面上に付着して蓄積する。これにより、現像及びリンス等の洗浄による負荷を高める。さらに、現像及びリンス等の洗浄により除去できなかったキレート錯体は、欠陥となる。そのため、キレート錯体の含有率は、半導体製造用処理液に対して、上述の範囲であることが好ましい。
〔5−6〕測定方法
上述した無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体は、公知の方法を用いて測定することができる。これらの測定方法としては、例えば、公開特許公報の特開2010−1000048号公報、及び、特開2014−209578号公報に記載の方法が挙げられ、後述する実施例に記載の方法で上述した無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体の含有量を測定することができる。
(粗大粒子)
本発明の実施形態に係る半導体製造用処理液において、粗大粒子は実質的に含まないことが好ましい。ここで、処理液に含まれる粗大粒子とは、原材料中に不純物として含まれる塵、埃、有機固形物、無機固形物などの粒子、処理液の調製中に汚染物として持ち込まれる塵、埃、有機固形物、無機固形物などの粒子などであり、最終的に処理液中で溶解せずに粒子として存在するものが該当する。処理液中に存在する粗大粒子の量は、レーザを光源とした光散乱式液中粒子測定方式における市販の測定装置を利用して液相で測定することができる。
(キット及び濃縮液)
本発明の実施形態に係る半導体製造用処理液は、各構成成分に分割したキット、としてもよい。特に、半導体製造用処理液を濃縮液として準備してもよい。この場合、半導体製造用処理液を使用する時に、水で希釈して使用することができる。希釈に用いられる水は、本発明の実施形態に係る半導体製造用処理液の効果が顕著に得られる観点から、上述した精製した水であることが好ましい。
(半導体製造用処理液の調製方法)
本発明に係る半導体製造用処理液は、公知の方法を用いて調整することができる。
本発明に係る半導体製造用処理液が含有する、特定の金属原子、並びに、無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体を所望の含有率に調整する方法は、例えば、処理液を製造する際に使用する各原材料の段階、及び、処理液を調製した後の段階、の少なくとも一方の段階において、処理液を精製することが挙げられる。処理液の精製は、本発明に係る半導体製造用処理液に所望の効果を得る観点から、処理液を製造する際に使用する原材料の段階で行われることが好ましい。原材料は、本願特定の金属原子、若しくは硫酸イオン、塩化物イオン、又は硝酸イオンなどの無機イオン、及び上述した金属原子に由来する金属イオンが低減されたグレードのものを用いることが好ましい。
処理液を精製する方法は、特に限定されないが、例えば、国際公開第WO12/043496号公報に記載されている、炭化ケイ素を用いた吸着精製、蒸留、フィルター濾過、及び、イオン交換樹脂を用いた濾過などが挙げられる。処理液の精製は、これらの精製方法を組み合わせて、精製を繰り返すことが好ましい。
本発明に係る半導体製造用処理液は、異物の除去又は欠陥の低減などの目的で、フィルターで濾過することが好ましい。従来から濾過用途等に用いられているものであれば特に限定されることなく用いることができる。例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、ポリエチレン、ポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)、ポリサルフォン樹脂等によるフィルターが挙げられる。これら素材の中でもポリプロピレン(高密度ポリプロピレンを含む)及びナイロンが好ましい。フィルターの孔径は、0.001〜1.0μm程度が適しており、好ましくは0.02〜0.5μm程度、より好ましくは0.01〜0.1μm程度である。この範囲とすることにより、ろ過詰まりを抑えつつ、処理液に含まれる不純物又は凝集物など、微細な異物を確実に除去することが可能となる。
フィルターを使用する際、異なるフィルターを組み合わせてもよい。その際、第1のフィルターでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルターを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は、大きい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルターを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルターとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルターの中から選択できる。
第2のフィルターは、上述した第1のフィルターと同様の材料等で形成されたフィルターを使用できる。第2のフィルターの孔径は、0.01〜1.0μm程度が適しており、好ましくは0.1〜0.5μm程度である。この範囲とすることにより、処理液に成分粒子が含有されている場合には、この成分粒子を残存させたまま、処理液に混入している異物を除去できる。
例えば、第1のフィルターでのフィルタリングは、処理液の一部の成分が含まれる混合液で行い、これに残りの成分を混合して処理液を調製した後で、第2のフィルタリングを行ってもよい。
また、本発明において、処理液に対して、Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子の粒子性金属の含有率が特に低い場合(例えば、処理液に対して、上述の金属原子の粒子性金属の含有率が各々1000質量ppt以下の場合)、これらの金属原子を含有する不純物がコロイド化しやすい傾向がある。そのため、イオン吸着膜ではコロイド化した不純物の除去が困難になりやすい。そこで、本発明者らは、孔径が20nm以下の精密濾過膜を用いて精製することにより、コロイド化した不純物の除去が可能であることを見出した。
また、処理液中に、コロイド化した不純物、特に鉄又はアルミニウムのような金属原子を含有する、コロイド化した不純物以外にも微粒子が存在する場合には、孔径が20nm以下の精密濾過膜を用いて濾過する前に、孔径が50nm以上の微粒子除去用の精密濾過膜を用いて濾過することにより精製することが好ましい。
本発明の処理液は、上記のようなフィルターの他、イオン吸着手段を用いて精製することが好ましい。イオン吸着手段は、セルロース、ケイソウ土、ナイロン、ポリエチレン、ポリプロピレン、ポリスチレン、又はフッ素樹脂などの表面が、スルホ基又はカルボキシル基などのアニオン性基、カチオン性基、又は、その両者で変性されているイオン吸着手段であることが好ましい。アニオン性基で変性されたイオン吸着手段は、Naイオン及びCaイオン等の陽イオンを除去することができ、カチオン性基で変性されたイオン吸着手段は、Clイオン等の陰イオン及び酸成分を除去することができる。イオン吸着手段は、目的に応じて、アニオン性基、カチオン性基又はその両者を組み合わせて使用しても良い。イオン吸着手段はフィルターであっても良い。
上記の濾過工程は目的に応じて複数回繰り返しても良い。
また、使用されるフィルターは、処理液を濾過する前に処理することが好ましい。この処理に使用される液体は、特に限定されないが、金属含有量が1質量ppt(parts per trillion)未満であることが好ましく、金属含有量が0.001質量ppt(parts per trillion)未満であることがより好ましく、上述した水の他、他の有機溶剤を精製して、金属含有量が上記の範囲にしたもの、もしくは本発明の処理液そのもの、処理液を希釈したもの、若しくは処理液に添加している化合物を含む液体であると、本発明に係る半導体製造用処理液に所望の効果が顕著に得られる。
本発明に係る半導体製造用処理液が含有する、特定の金属原子、並びに、無機塩、過酸化物、エステル化合物、アミン化合物、及び、キレート錯体を所望の含有率に調整する他の方法は、例えば、処理液の製造に使用する原材料を収容する容器に、特定の金属原子及び不純物の溶出が少ない容器を用いることが挙げられる。不純物等の溶出が少ない容器としては、例えば、後述する収容容器が挙げられる。また、処理液の調製時に使用される配管から特定の金属原子が溶出しないように、配管の内壁にフッ素系樹脂のライニングを施すなどの方法も挙げられる。
(収容容器)
本発明の実施形態に係る半導体製造用処理液は、上述したキットであるか否かに関わらず、腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、そして使用することができる。容器としては、半導体製造用途向けに、上述した金属原子及び不純物の持ち込みが少なく、不純物等の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、コダマ樹脂工業(株)製の「ピュアボトル」などが挙げられるが、これらに限定されない。この容器の内壁は、ポリエチレン樹脂、ポリプロピレン樹脂、及び、ポリエチレン−ポリプロピレン樹脂からなる群より選択される1種以上の樹脂とは異なる樹脂、又は、ステンレス、ハステロイ、インコネル及びモネルなど、防錆・金属溶出防止処理が施された金属から形成されることが好ましい。
上記の異なる樹脂としては、フッ素系樹脂(パーフルオロ樹脂)を好ましく用いることができる。このように、内壁がフッ素系樹脂である容器を用いることで、内壁が、ポリエチレン樹脂、ポリプロピレン樹脂、又は、ポリエチレン−ポリプロピレン樹脂である容器を用いる場合と比べて、エチレンやプロピレンのオリゴマーの溶出という不具合の発生を抑制できる。
このような内壁がフッ素系樹脂である容器の具体例としては、例えば、Entegris社製 FluoroPurePFA複合ドラム等が挙げられる。また、特表平3−502677号公報の第4頁等、国際公開第2004/016526号公報の第3頁等、国際公開第99/46309号公報の第9及び16頁等、などに記載の容器も用いることができる。
これらの容器は、充填前に容器内部を洗浄することが好ましい。洗浄に使用される液体は、特に限定されないが、金属含有量が1質量ppt(parts per trillion)未満であることが好ましく、金属含有量が0.001質量ppt(parts per trillion)未満であることがより好ましく、上述した水の他、他の有機溶剤を精製して、金属含有量が上記の範囲にしたもの、もしくは本発明の処理液そのもの、処理液を希釈したもの、若しくは処理液に添加している化合物を含む液体であると、本願所望の効果が顕著に得られる。
本発明に係る半導体製造用処理液の調整、収容容器の開封及び/又は洗浄、並びに半導体製造用処理液の充填などを含めた取り扱い、処理分析、及び測定は、全てクリーンルームで行うことが好ましい。クリーンルームは、14644−1クリーンルーム基準を満たすことが好ましい。ISOクラス1、ISOクラス2、ISOクラス3、ISOクラス4のいずれかを満たすことが好ましく、ISOクラス1、ISOクラス2を満たすことが好ましく、ISOクラス1であることが特に好ましい。
<パターン形成方法>
本発明のパターン形成方法は、感活性光線性又は感放射線性樹脂組成物、又は、着色硬化性樹脂組成物(以下、「レジスト組成物」ともいう。)を用いて膜を形成することと、形成された膜を露光することと、露光された膜を、上述した半導体製造用処理液を用いて処理することとを含む。
以下に、本発明のパターン形成方法に含まれる工程について、説明する。
〔膜形成工程〕
膜形成工程は、後述する感活性光線性又は感放射線性樹脂組成物、又は、後述する着色硬化性樹脂組成物を用いて膜を形成する工程であり、例えば次の方法により行うことができる。
(1)レジスト膜
後述する感活性光線性又は感放射線性樹脂組成物を用いて基板上にレジスト膜(感活性光線性又は感放射線性膜)を形成するために、後述する各成分を溶剤に溶解して感活性光線性又は感放射線性樹脂組成物を調製し、必要に応じてフィルター濾過した後、基板上に塗布する。フィルターとしては、ポアサイズ0.1ミクロン以下、より好ましくは0.05ミクロン以下、更に好ましくは0.03ミクロン以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。
感活性光線性又は感放射線性樹脂組成物は、集積回路素子の製造に使用されるような基板(例:シリコン、二酸化シリコン被覆)上に、スピナー等の適当な塗布方法により塗布される。その後、乾燥し、レジスト膜を形成する。必要により、レジスト膜の下層に、各種下地膜(無機膜、有機膜、反射防止膜)を形成してもよい。
乾燥方法としては、加熱して乾燥する方法が一般的に用いられる。加熱は通常の露光・現像機に備わっている手段で行うことができ、ホットプレート等を用いて行ってもよい。

加熱温度は80〜180℃で行うことが好ましく、80〜150℃で行うことがより好ましく、80〜140℃で行うことが更に好ましく、80〜130℃で行うことが特に好ましい。加熱時間は30〜1000秒が好ましく、60〜800秒がより好ましく、60〜600秒が更に好ましい。
レジスト膜の膜厚は、一般的には200nm以下であり、好ましくは100nm以下である。
例えば30nm以下のサイズの1:1ラインアンドスペースパターンを解像させるためには、形成されるレジスト膜の膜厚が50nm以下であることが好ましい。膜厚が50nm以下であれば、後述する現像工程を適用した際に、パターン倒れがより起こりにくくなり、より優れた解像性能が得られる。
膜厚の範囲としてより好ましくは、15nmから45nmの範囲である。膜厚が15nm以上であれば、十分なエッチング耐性が得られる。膜厚の範囲として更に好ましくは、15nmから40nmである。膜厚がこの範囲にあると、エッチング耐性とより優れた解像性能とを同時に満足させることができる。
なお、本発明のパターン形成方法は、レジスト膜の上層に上層膜(トップコート膜)を形成してもよい。上層膜は、例えば、疎水性樹脂、酸発生剤、塩基性化合物を含有する上層膜形成用組成物を用いて形成することができる。上層膜及び上層膜形成用組成物については、後述のとおりである。
(2)着色硬化性膜
後述する着色硬化性樹脂組成物を用いてカラーフィルタ(着色硬化性膜)を形成する場合の支持体としては、例えば、基板(例えば、シリコン基板)上にCCD(Charge
Coupled Device)やCMOS(Complementary Metal−Oxide Semiconductor)等の撮像素子(受光素子)が設けられた固体撮像素子用基板などの基板を用いることができる。
着色パターンは、固体撮像素子用基板の撮像素子形成面側(おもて面)に形成されてもよいし、撮像素子非形成面側(裏面)に形成されてもよい。
固体撮像素子用基板における各撮像素子間や、固体撮像素子用基板の裏面には、遮光膜が設けられていてもよい。また、支持体上には、上部の層との密着改良、物質の拡散防止又は基板表面の平坦化のために、部分的に下塗り層を設けてもよい。下塗り層を設けた部分及び設けなかった部分のいずれにもカラーフィルタを形成することで、親水性の層上のカラーフィルタと、疎水性の層上のカラーフィルタと、を1つの基板上に併存させることができる。
ここで、下塗り層には、後述するオーバーコート層を用いることができる。
支持体上への着色硬化性樹脂組成物の塗布方法としては、スリット塗布、インクジェット法、回転塗布、流延塗布、ロール塗布、スクリーン印刷法等の各種の塗布方法を適用することができる。
支持体上に塗布された着色硬化性膜の乾燥(プリベーク)は、ホットプレート、オーブン等で50℃〜140℃の温度で10秒〜300秒で行うことができる。
硬化性膜(カラーフィルター)の膜厚は、0.05μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上が特に好ましい。上限としては、10μm以下が好ましく、5μm以下がより好ましく、4μm以下がさらに好ましく、3μm以下がさらに好ましい。
着色パターン(着色画素)のサイズ(パターン幅)としては、5μm以下が好ましく、4μm以下がより好ましく、3μm以下が特に好ましい。下限としては、0.1μm以上が実際的である。
上記のカラーフィルタ(着色硬化性膜)を永久膜として用いる場合において、着色硬化性膜の形成工程の前に、基板(支持体)上にオーバーコート層を形成する工程を有してもよい。
オーバーコート層の形成には、例えば、国際公開第2010/010899号、特許第4269480号公報、特開2005−227525号公報、特開2000−250217号公報、特開平9−221602号公報、特開2001−343748号公報に基づいて、エポキシ系感放射線性樹脂組成物(オーバーコート形成用組成物)を用いて行うことができる。
〔露光工程〕
露光工程は、上記で得られた膜を露光する工程であり、例えば次の方法により行うことができる。
(1)レジスト膜
上記で形成したレジスト膜に、所定のマスクを通して活性光線又は放射線を照射する。なお、電子ビームの照射では、マスクを介さない描画(直描)が一般的である。
活性光線又は放射線としては特に限定されないが、例えばKrFエキシマレーザー、ArFエキシマレーザー、EUV光(Extreme Ultra Violet)、電子線(EB、Electron Beam)等である。露光は液浸露光であってもよい。
(2)着色硬化性膜
上記で形成された着色硬化性膜を、例えば、ステッパー等の露光装置を用い、所定のマスクパターンを有するマスクを介してパターン露光する。露光に用いることができる放射線(光)としては、特に、g線、i線等の紫外線が好ましく(特に好ましくはi線)用いられる。照射量(露光量)は30〜1500mJ/cmが好ましく、50〜1000mJ/cmがより好ましく、80〜500mJ/cmが最も好ましい。
〔ベーク工程〕
(1)レジスト膜
本発明のパターン形成方法においては、感活性光線性又は感放射線性樹脂組成物を用いてレジスト膜を形成した場合、露光後、現像を行う前にベーク(加熱)を行うことが好ましい。ベークにより露光部の反応が促進され、感度やパターン形状がより良好となる。
加熱温度は80〜150℃が好ましく、80〜140℃がより好ましく、80〜130℃が更に好ましい。
加熱時間は30〜1000秒が好ましく、60〜800秒がより好ましく、60〜600秒が更に好ましい。
加熱は通常の露光・現像機に備わっている手段で行うことができ、また、ホットプレート等を用いて行ってもよい。
(2)着色硬化性膜
着色硬化性樹脂組成物を用いて着色硬化性膜を形成した場合は、後述の現像後、着色硬化性膜を乾燥させた後に加熱処理(ポストベーク)を行うことが好ましい。このとき、多色の着色パターンを形成することが好ましく、各色に各工程を順次繰り返して着色硬化性膜を製造することができる。これによりカラーフィルタが得られる。ポストベークは、硬化を完全なものとするための現像後の加熱処理である。その加熱温度は、250℃以下が好ましく、240℃以下がより好ましく、230℃以下がさらに好ましく、220℃以下が特に好ましい。下限は特にないが、効率的かつ効果的な処理を考慮すると、50℃以上の熱硬化処理を行うことが好ましく、100℃以上がより好ましい。上記の加熱によるポストベークに変え、UV(紫外線)照射によってカラーフィルタの画素を硬化させてもよい。
〔現像工程〕
現像工程は、露光された上記レジスト膜又は着色硬化性膜を現像液によって現像する工程である。
現像方法としては、たとえば、現像液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面に現像液を表面張力によって盛り上げて一定時間静止することで現像する方法(パドル法)、基板表面に現像液を噴霧する方法(スプレー法)、一定速度で回転している基板上に一定速度で現像液吐出ノズルをスキャンしながら現像液を吐出しつづける方法(ダイナミックディスペンス法)などを適用することができる。
また、現像を行う工程の後に、他の溶媒に置換しながら、現像を停止する工程を実施してもよい。
現像時間は未露光部の樹脂が十分に溶解する時間であれば特に制限はなく、通常は10〜300秒であり、好ましくは20〜120秒である。
現像液の温度は0〜50℃が好ましく、15〜35℃がより好ましい。
着色硬化性膜を現像する場合、現像温度としては通常20℃〜30℃であり、現像時間は、例えば、20秒〜90秒である。より残渣を除去するため、近年では120秒〜180秒実施する場合もある。さらには、より残渣除去性を向上するため、現像液を60秒ごとに振り切り、さらに新たに現像液を供給する工程を数回繰り返す場合もある。
現像工程で用いられる現像液としては、上述した半導体製造用処理液を用いることが好ましい。レジスト膜の場合、半導体製造用処理液を用いた現像に加えて、有機溶剤現像液による現像を行ってもよい(いわゆる二重現像)。
〔リンス工程〕
リンス工程は、上記現像工程の後にリンス液によって洗浄(リンス)する工程である。
リンス工程においては、現像を行ったウエハをリンス液を用いて洗浄処理する。
洗浄処理の方法は特に限定されないが、たとえば、一定速度で回転している基板上にリンス液を吐出しつづける方法(回転吐出法)、リンス液が満たされた槽中に基板を一定時間浸漬する方法(ディップ法)、基板表面にリンス液を噴霧する方法(スプレー法)、などを適用することができ、この中でも回転吐出方法で洗浄処理を行い、洗浄後に基板を2000rpm〜4000rpmの回転数で回転させ、リンス液を基板上から除去することが好ましい。
リンス時間には特に制限はないが、通常は10秒〜300秒であり。好ましくは10秒〜180秒であり、最も好ましくは20秒〜120秒である。
リンス液の温度は0〜50℃が好ましく、15〜35℃が更に好ましい。
リンス液の蒸気圧(混合溶媒である場合は全体としての蒸気圧)は、20℃に於いて0.05kPa以上、5kPa以下が好ましく、0.1kPa以上、5kPa以下が更に好ましく、0.12kPa以上、3kPa以下が最も好ましい。リンス液の蒸気圧を0.05kPa以上、5kPa以下にすることにより、ウエハ面内の温度均一性が向上し、更にはリンス液の浸透に起因した膨潤が抑制され、ウエハ面内の寸法均一性が良化する。
リンス液は、例えば、上述した半導体製造用処理液、有機溶剤を含んだリンス液、又は、水を使用することができる。リンス液は、上述した半導体製造用処理液を用いることが好ましい。
水は、超純水を用いることが好ましい。
リンス液に含まれる有機溶剤は、種々の有機溶剤が用いられるが、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤を用いることが好ましい。
炭化水素系溶剤としては、例えば、ペンタン、ヘキサン、オクタン、ノナン、デカン、ドデカン、ウンデカン、ヘキサデカン、2,2,4−トリメチルペンタン、2,2,3−トリメチルヘキサン、パーフルオロヘキサン、パーフルオロヘプタン等の脂肪族炭化水素系溶剤、トルエン、キシレン、エチルベンゼン、プロピルベンゼン、1−メチルプロピルベンゼン、2−メチルプロピルベンゼン、ジメチルベンゼン、ジエチルベンゼン、エチルメチルベンゼン、トリメチルベンゼン、エチルジメチルベンゼン、ジプロピルベンゼンなどの芳香族炭化水素系溶剤が挙げられる。
また、炭化水素系溶剤としては、不飽和炭化水素系溶剤も用いることができ、例えば、オクテン、ノネン、デセン、ウンデセン、ドデセン、ヘキサデセン等の不飽和炭化水素系溶剤が挙げられる。不飽和炭化水素溶剤が有する二重結合、三重結合の数は特に限定されず、また、炭化水素鎖のどの位置に有してもよい。また、不飽和炭化水素溶剤が二重結合を有する場合には、cis体及びtrans体が混在していてもよい。
なお、炭化水素系溶剤である脂肪族炭化水素系溶剤においては、同じ炭素数で異なる構造の化合物の混合物であってもよい。例えば、脂肪族炭化水素系溶媒としてデカンを使用した場合、同じ炭素数で異なる構造の化合物である2−メチルノナン、2,2−ジメチルオクタン、4−エチルオクタン、イソオクタンなどが脂肪族炭化水素系溶媒に含まれていてもよい。
また、上記同じ炭素数で異なる構造の化合物は、1種のみが含まれていてもよいし、上記のように複数種含まれていてもよい。
ケトン系溶剤としては、例えば、1−オクタノン、2−オクタノン、1−ノナノン、2−ノナノン、アセトン、2−ヘプタノン、4−ヘプタノン、1−ヘキサノン、2−ヘキサノン、ジイソブチルケトン、シクロヘキサノン、メチルシクロヘキサノン、フェニルアセトン、メチルエチルケトン、メチルイソブチルケトン、アセチルアセトン、アセトニルアセトン、イオノン、ジアセトニルアルコール、アセチルカービノール、アセトフェノン、メチルナフチルケトン、イソホロン、プロピレンカーボネート、γ−ブチロラクトン等を挙げることができ、中でも2−ヘプタノンが好ましい。
エステル系溶剤としては、例えば、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、酢酸ペンチル、酢酸プロピル、酢酸イソプロピル、酢酸アミル(酢酸ペンチル)、酢酸イソアミル(酢酸イソペンチル、酢酸3−メチルブチル)、酢酸2−メチルブチル、酢酸1−メチルブチル、酢酸ヘキシル、酢酸イソヘキシル、酢酸ヘプチル、酢酸オクチル、メトキシ酢酸エチル、エトキシ酢酸エチル、プロピレングリコールモノメチルエーテルアセテート(PGMEA;別名1−メトキシ−2−アセトキシプロパン)、エチレングリコールモノエチルエーテルアセテート、エチレングリコールモノプロピルエーテルアセテート、エチレングリコールモノブチルエーテルアセテート、エチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノプロピルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノフェニルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、2−メトキシブチルアセテート、3−メトキシブチルアセテート、4−メトキシブチルアセテート、3−メチル−3−メトキシブチルアセテート、3−エチル−3−メトキシブチルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、2−エトキシブチルアセテート、4−エトキシブチルアセテート、4−プロポキシブチルアセテート、2−メトキシペンチルアセテート、3−メトキシペンチルアセテート、4−メトキシペンチルアセテート、2−メチル−3−メトキシペンチルアセテート、3−メチル−3−メトキシペンチルアセテート、3−メチル−4−メトキシペンチルアセテート、4−メチル−4−メトキシペンチルアセテート、プロピレングリコールジアセテート、蟻酸メチル、蟻酸エチル、蟻酸ブチル、蟻酸プロピル、乳酸エチル、乳酸ブチル、乳酸プロピル、炭酸エチル、炭酸プロピル、炭酸ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピル、ピルビン酸ブチル、アセト酢酸メチル、アセト酢酸エチル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、プロピオン酸イソプロピル、プロピオン酸ブチル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ヘプチル、ブタン酸ブチル、ブタン酸イソブチル、ブタン酸ペンチル、ブタン酸ヘキシル、イソブタン酸イソブチル、ペンタン酸プロピル、ペンタン酸イソプロピル、ペンタン酸ブチル、ペンタン酸ペンチル、ヘキサン酸エチル、ヘキサン酸プロピル、ヘキサン酸ブチル、ヘキサン酸イソブチル、ヘプタン酸メチル、ヘプタン酸エチル、ヘプタン酸プロピル、酢酸シクロヘキシル、酢酸シクロヘプチル、酢酸2−エチルヘキシル、プロピオン酸シクロペンチル、2−ヒドロキシプロピオン酸メチル、2−ヒドロキシプロピオン酸エチル、メチル−3−メトキシプロピオネート、エチル−3−メトキシプロピオネート、エチル−3−エトキシプロピオネート、プロピル−3−メトキシプロピオネート等を挙げることができる。これらの中でも、酢酸ブチル、酢酸アミル、酢酸イソアミル、酢酸2−メチルブチル、酢酸1−メチルブチル、酢酸ヘキシル、プロピオン酸ペンチル、プロピオン酸ヘキシル、プロピオン酸ヘプチル、ブタン酸ブチルが好ましく用いられ、酢酸イソアミルが特に好ましく用いられる。
アルコール系溶剤としては、例えば、メタノール、エタノール、1−プロパノール、イソプロパノール、1−ブタノール、2−ブタノール、3−メチル−1−ブタノール、tert―ブチルアルコール、1−ペンタノール、2−ペンタノール、1−ヘキサノール、1−ヘプタノール、1−オクタノール、1−デカノール、2−ヘキサノール、2−ヘプタノール、2−オクタノール、3−ヘキサノール、3−ヘプタノール、3−オクタノール、4−オクタノール、3−メチル−3−ペンタノール、シクロペンタノール、2,3−ジメチル−2−ブタノール、3,3−ジメチル−2−ブタノール、2−メチル−2−ペンタノール、2−メチル−3−ペンタノール、3−メチル−2−ペンタノール、3−メチル−3−ペンタノール、4−メチル−2−ペンタノール、4−メチル−3−ペンタノール、シクロヘキサノール、5−メチル−2−ヘキサノール、4−メチル−2−ヘキサノール、4,5−ジチル−2−ヘキサール、6−メチル−2−ヘプタノール、7−メチル−2−オクタノール、8−メチル−2−ノナール、9−メチル−2−デカノール、3−メトキシ−1−ブタノール等のアルコール(1価のアルコール)や、エチレングリコール、ジエチレングリコール、トリエチレングリコール等のグリコール系溶剤や、エチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル(PGME;別名1−メトキシ−2−プロパノール)、ジエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、メトキシメチルブタノール、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノフェニルエーテル等の水酸基を含有するグリコールエーテル系溶剤等を挙げることができる。これらの中でも、1価のアルコール、又は、グリコールエーテル系溶剤を用いることが好ましい。さらに、1価のアルコールは、炭素数6〜8の直鎖状、分岐状又は環状の1価のアルコールであることが好ましい。
アミド系溶剤としては、例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、ヘキサメチルホスホリックトリアミド、1,3−ジメチル−2−イミダゾリジノン等が使用できる。
エーテル系溶剤としては、例えば、上記水酸基を含有するグリコールエーテル系溶剤の他、プロピレングリコールジメチルエーテル、プロピレングリコールジエチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル等の水酸基を含有しないグリコールエーテル系溶剤、アニソール、フェネトール等の芳香族エーテル溶剤、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、パーフルオロ−2−ブチルテトラヒドロフラン、パーフルオロテトラヒドロフラン、1,4−ジオキサン、イソプロピルエーテル等が挙げられる。好ましくは、グリコールエーテル系溶剤、又はアニソールなどの芳香族エーテル溶剤を用いる。
リンス液に含まれる有機溶剤としては、後述する露光工程においてEUV光(Extreme Ultra Violet)又はEB(Electron Beam)を用いる場合において、上記の有機溶剤の中でも炭化水素系溶剤を用いることが好ましく、脂肪族炭化水素系溶剤を用いることがより好ましい。リンス液に用いられる脂肪族炭化水素系溶剤としては、その効果がより向上するという観点から、炭素数5以上の脂肪族炭化水素系溶剤(例えば、ペンタン、ヘキサン、オクタン、デカン、ウンデカン、ドデカン、ヘキサデカン等)が好ましく、炭素数が8以上の脂肪族炭化水素系溶剤が好ましく、炭素数が10以上の脂肪族炭化水素系溶剤がより好ましい。
なお、上記脂肪族炭化水素系溶剤の炭素数の上限値は特に限定されないが、例えば、16以下が挙げられ、14以下が好ましく、12以下がより好ましい。
上記脂肪族炭化水素系溶剤の中でも、特に好ましくは、デカン、ウンデカン、ドデカンであり、最も好ましくはウンデカンである。
なお、リンス液に含まれる炭化水素系溶剤として不飽和炭化水素系溶剤も用いることができ、例えば、オクテン、ノネン、デセン、ウンデセン、ドデセン、ヘキサデセン等の不飽和炭化水素系溶剤が挙げられる。不飽和炭化水素溶剤が有する二重結合、三重結合の数は特に限定されず、また、炭化水素鎖のどの位置に有してもよい。また、不飽和炭化水素溶剤が二重結合を有する場合には、cis体及びtrans体が混在していてもよい。
このようにリンス液に含まれる有機溶剤として炭化水素系溶剤(特に脂肪族炭化水素系溶剤)を用いることで、現像後にわずかにレジスト膜に染み込んでいた現像液が洗い流されて、膨潤がより抑制され、パターン倒れが抑制されるという効果が一層発揮される。
また、リンス液に含まれる有機溶剤として、上記エステル系溶剤及び上記炭化水素系溶剤の混合溶剤、又は、上記ケトン系溶剤及び上記炭化水素溶剤の混合溶剤を用いてもよい。上記のような混合溶剤とする場合には、炭化水素溶剤を主成分とすることが好ましい。
さらに、リンス液に含まれる有機溶剤としては、現像後の残渣低減に特に有効であるという観点から、上記エステル系溶剤及び上記ケトン系溶剤からなる群より選択される少なくとも1種を用いる態様であってもよい。
リンス液が、エステル系溶剤及びケトン系溶剤からなる群より選択される少なくとも1種を含有する場合、酢酸ブチル、酢酸イソペンチル(酢酸イソアミル)、酢酸n−ペンチル、3−エトキシプロピオン酸エチル(EEP、エチル−3−エトキシプロピオネート)、及び2−ヘプタノンからなる群より選択される少なくとも1種の溶剤を主成分として含有することが好ましく、酢酸ブチル及び2−ヘプタノンからなる群より選択される少なくとも1種の溶剤を主成分として含有することが特に好ましい。
また、リンス液が、エステル系溶剤及びケトン系溶剤からなる群より選択される少なくとも1種を含有する場合、エステル系溶剤、グリコールエーテル系溶剤、ケトン系溶剤、アルコール系溶剤からなる群より選択される溶剤を副成分として含有することが好ましく、中でも、プロピレングリコールモノメチルエーテルアセテート(PGMEA)、プロピレングリコールモノメチルエーテル(PGME)、酢酸エチル、乳酸エチル、3−メトキシプロピオン酸メチル、シクロヘキサノン、メチルエチルケトン、γ−ブチロラクトン、プロパノール、3−メトキシ−1−ブタノール、N−メチルピロリドン、プロピレンカーボネートからなる群より選択される溶剤が好ましい。
この中でも、有機溶剤としてエステル系溶剤を用いる場合には、上記効果が一層発揮されるという点から、2種以上のエステル系溶剤を用いることが好ましい。この場合の具体例としては、エステル系溶剤(好ましくは酢酸ブチル)を主成分として、これとは化学構造が異なるエステル系溶剤(好ましくは、プロピレングリコールモノメチルエーテルアセテート(PGMEA))を副成分として用いることが挙げられる。
また、有機溶剤としてエステル系溶剤を用いる場合には、上記効果が一層発揮されるという点から、エステル系溶剤(1種又は2種以上)に加えて、グリコールエーテル系溶剤を用いてもよい。この場合の具体例としては、エステル系溶剤(好ましくは、酢酸ブチル)を主成分として、グリコールエーテル系溶剤(好ましくはプロピレングリコールモノメチルエーテル(PGME))を副成分として用いることが挙げられる。
有機溶剤としてケトン系溶剤を用いる場合には、上記効果が一層発揮されるという点から、ケトン系溶剤(1種又は2種以上)に加えて、エステル系溶剤及び/又はグリコールエーテル系溶剤を用いてもよい。この場合の具体例としては、ケトン系溶剤(好ましくは2−ヘプタノン)を主成分として、エステル系溶剤(好ましくは、プロピレングリコールモノメチルエーテルアセテート(PGMEA))及び/又はグリコールエーテル系溶剤(好ましくはプロピレングリコールモノメチルエーテル(PGME))を副成分として用いることが挙げられる。
ここで、上記の「主成分」とは、有機溶剤の全質量に対する含有量が、50〜100質量%であることをいい、好ましくは70〜100質量%、より好ましくは80〜100質量%、更に好ましくは90〜100質量%、特に好ましくは95〜100質量%であることをいう。
また、副成分を含有する場合には、副成分の含有量は、主成分の全質量(100質量%)に対して、0.1〜20質量%であることが好ましく、0.5〜10質量%であることがより好ましく、1〜5質量%であることが更に好ましい。
有機溶剤は、複数混合してもよいし、上記以外の有機溶剤と混合し使用してもよい。上記溶剤は水と混合してもよいが、リンス液中の含水率は通常60質量%以下であり、好ましくは30質量%以下、更に好ましくは10質量%以下、最も好ましくは5質量%以下である。含水率を60質量%以下にすることで、良好なリンス特性を得ることができる。
また、現像処理又はリンス処理の後に、パターン上に付着している現像液又はリンス液を超臨界流体により除去する処理を行うことができる。
さらに、現像処理又はリンス処理又は超臨界流体による処理の後、パターン中に残存する溶剤を除去するために加熱処理を行うことができる。加熱温度は、良好なレジストパターン又が得られる限り特に限定されるものではなく、通常40〜160℃である。加熱温度は50〜150℃が好ましく、50〜110℃が最も好ましい。加熱時間に関しては良好なレジストパターンが得られる限り特に限定されないが、通常15〜300秒であり、好ましくは、15〜180秒である。
<感活性光線性又は感放射線性樹脂組成物>
次に、本発明のパターン形成方法で用いる感活性光線性又は感放射線性樹脂組成物(以下、「レジスト組成物」ともいう。)について、詳細に説明する。この組成物は、ポジ型の現像に用いてもよく、ネガ型の現像に用いてもよい。また、この組成物は、アルカリ現像液を用いた現像に用いてもよく、有機溶剤を含んだ現像液を用いた現像に用いてもよい。
感活性光線性又は感放射線性樹脂組成物は、例えば、樹脂(A)、活性光線又は放射線により酸を発生する化合物(B)及び溶剤(C)を含んでもよい。さらに、感活性光線性又は感放射線性樹脂組成物は、塩基性化合物(D)、樹脂(A)とは異なる疎水性樹脂(A’)及び添加剤等を含むことができる。
〔1〕樹脂(A)
本発明の処理液と組み合わせて用いることが好ましい感活性光線性又は感放射線性樹脂組成物としては、樹脂(A)を含有することが好ましい。樹脂(A)は、少なくとも(i)酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位(更に、フェノール性水酸基を有する繰り返し単位を有してもよい)、又は、少なくとも(ii)フェノール系水酸基を有する繰り返し単位を有する。
なお、酸の作用により分解してカルボキシル基を有する繰り返し単位を有すると、酸の作用によりアルカリ現像液に対する溶解度が増大し、有機溶剤に対する溶解度が減少する。
〔1−1〕酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位
樹脂(A)が有する酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位は、カルボキシル基の水素原子が酸の作用により分解して脱離する基で置換された基を有する繰り返し単位である。
酸で脱離する基としては、例えば、−C(R36)(R37)(R38)、−C(R36)(R37)(OR39)、−C(R01)(R02)(OR39)等を挙げることができる。
式中、R36〜R39は、各々独立に、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。R36とR37とは、互いに結合して環を形成してもよい。
01及びR02は、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基又はアルケニル基を表す。
樹脂(A)が有する、酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位としては、下記一般式(AI)で表される繰り返し単位が好ましい。
一般式(AI)において、
Xaは、水素原子、置換基を有していてもよいアルキル基を表す。
Tは、単結合又は2価の連結基を表す。
Rx〜Rxは、各々独立に、アルキル基(直鎖若しくは分岐)又はシクロアルキル基(単環若しくは多環)を表す。ただし、Rx〜Rxの全てがアルキル基(直鎖若しくは分岐)である場合、Rx〜Rxのうち少なくとも2つはメチル基であることが好ましい。
Rx〜Rxの2つが結合して、シクロアルキル基(単環若しくは多環)を形成してもよい。
Xaにより表される、置換基を有していてもよいアルキル基としては、例えば、メチル基又は−CH−R11で表される基が挙げられる。R11は、ハロゲン原子(フッ素原子など)、ヒドロキシル基又は1価の有機基を表し、例えば、炭素数5以下のアルキル基、炭素数5以下のアシル基が挙げられ、好ましくは炭素数3以下のアルキル基であり、更に好ましくはメチル基である。Xaは、一態様において、好ましくは水素原子、メチル基、トリフルオロメチル基又はヒドロキシメチル基等である。
Tの2価の連結基としては、アルキレン基、−COO−Rt−基、−O−Rt−基等が挙げられる。式中、Rtは、アルキレン基又はシクロアルキレン基を表す。
Tは、単結合又は−COO−Rt−基が好ましい。Rtは、炭素数1〜5のアルキレン基が好ましく、−CH−基、−(CH−基、−(CH−基がより好ましい。
Rx〜Rxのアルキル基としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、t−ブチル基などの炭素数1〜4のものが好ましい。
Rx〜Rxのシクロアルキル基としては、シクロペンチル基、シクロヘキシル基などの単環のシクロアルキル基、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基としては、シクロペンチル基、シクロヘキシル基などの単環のシクロアルキル基、ノルボルニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。炭素数5〜6の単環のシクロアルキル基が特に好ましい。
Rx〜Rxの2つが結合して形成されるシクロアルキル基は、例えば、環を構成するメチレン基の1つが、酸素原子等のヘテロ原子、又は、カルボニル基等のヘテロ原子を有する基で置き換わっていてもよい。
一般式(AI)で表される繰り返し単位は、例えば、Rxがメチル基又はエチル基であり、RxとRxとが結合して上述のシクロアルキル基を形成している態様が好ましい。
上記各基は置換基を有していてもよく、置換基としては、例えば、アルキル基(炭素数1〜4)、ハロゲン原子、水酸基、アルコキシ基(炭素数1〜4)、カルボキシル基、アルコキシカルボニル基(炭素数2〜6)などが挙げられ、炭素数8以下が好ましい。
一般式(AI)で表される繰り返し単位としては、好ましくは、酸分解性(メタ)アクリル酸3級アルキルエステル系繰り返し単位(Xaが水素原子又はメチル基を表し、かつ、Tが単結合を表す繰り返し単位)である。より好ましくは、Rx〜Rxが各々独立に、直鎖又は分岐のアルキル基を表す繰り返し単位であり、更に好ましくは、Rx〜Rxが各々独立に、直鎖のアルキル基を表す繰り返し単位である。
樹脂(A)が有する、酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位の具体例を以下に示すが、本発明は、これに限定されるものではない。
具体例中、Rx、Xaは、水素原子、CH、CF、又はCHOHを表す。Rxa、Rxbは各々炭素数1〜4のアルキル基を表す。Zは、極性基を含む置換基を表し、複数存在する場合は各々独立である。pは0又は正の整数を表す。Zにより表される極性基を含む置換基としては、例えば、水酸基、シアノ基、アミノ基、アルキルアミド基又はスルホンアミド基を有する、直鎖又は分岐のアルキル基、シクロアルキル基が挙げられ、好ましくは、水酸基を有するアルキル基である。分岐状アルキル基としてはイソプロピル基が特に好ましい。
酸の作用により分解してカルボキシル基を生じる基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、15〜90モル%が好ましく、20〜90モル%がより好ましく、25〜80モル%が更に好ましく、30〜70モル%が更により好ましい。
〔1−2〕フェノール系水酸基を有する繰り返し単位
樹脂(A)が有するフェノール性水酸基を有する繰り返し単位としては、例えば、下記一般式(I)で表される繰り返し単位が挙げられる。
式中、
41、R42及びR43は、各々独立に、水素原子、アルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。但し、R42はArと結合して環を形成していてもよく、その場合のR42は単結合又はアルキレン基を表す。
は、単結合、−COO−、又は−CONR64−を表し、R64は、水素原子又はアルキル基を表す。
は、単結合又はアルキレン基を表す。
Arは、(n+1)価の芳香環基を表し、R42と結合して環を形成する場合には(n+2)価の芳香環基を表す。
nは、1〜5の整数を表す。
一般式(I)におけるR41、R42、R43のアルキル基としては、好ましくは置換基を有していてもよいメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、ドデシル基など炭素数20以下のアルキル基が挙げられ、より好ましくは炭素数8以下のアルキル基、特に好ましくは炭素数3以下のアルキル基が挙げられる。
一般式(I)におけるR41、R42、R43のシクロアルキル基としては、単環型でも、多環型でもよい。好ましくは置換基を有していてもよいシクロプロピル基、シクロペンチル基、シクロヘキシル基などの炭素数3〜8個で単環型のシクロアルキル基が挙げられる。
一般式(I)におけるR41、R42、R43のハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられ、フッ素原子が特に好ましい。
一般式(I)におけるR41、R42、R43のアルコキシカルボニル基に含まれるアルキル基としては、上記R41、R42、R43におけるアルキル基と同様のものが好ましい。
上記各基における好ましい置換基としては、例えば、アルキル基、シクロアルキル基、アリール基、アミノ基、アミド基、ウレイド基、ウレタン基、ヒドロキシル基、カルボキシル基、ハロゲン原子、アルコキシ基、チオエーテル基、アシル基、アシロキシ基、アルコキシカルボニル基、シアノ基、ニトロ基等を挙げることができ、置換基の炭素数は8以下が好ましい。
Arは、(n+1)価の芳香環基を表す。nが1である場合における2価の芳香環基は、置換基を有していてもよく、例えば、フェニレン基、トリレン基、ナフチレン基、アントラセニレン基などの炭素数6〜18のアリーレン基、あるいは、例えば、チオフェン、フラン、ピロール、ベンゾチオフェン、ベンゾフラン、ベンゾピロール、トリアジン、イミダゾール、ベンゾイミダゾール、トリアゾール、チアジアゾール、チアゾール等のヘテロ環を含む芳香環基を好ましい例として挙げることができる。
nが2以上の整数である場合における(n+1)価の芳香環基の具体例としては、2価の芳香環基の上記した具体例から、(n−1)個の任意の水素原子を除してなる基を好適に挙げることができる。
(n+1)価の芳香環基は、更に置換基を有していてもよい。
上述したアルキル基、シクロアルキル基、アルコキシカルボニル基、アルキレン基及び(n+1)価の芳香環基が有し得る置換基としては、例えば、一般式(I)におけるR41、R42、R43で挙げたアルキル基、メトキシ基、エトキシ基、ヒドロキシエトキシ基、プロポキシ基、ヒドロキシプロポキシ基、ブトキシ基などのアルコキシ基;フェニル基などのアリール基;等が挙げられる。
により表わされる−CONR64−(R64は、水素原子、アルキル基を表す)におけるR64のアルキル基としては、好ましくは置換基を有していてもよいメチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、sec−ブチル基、ヘキシル基、2−エチルヘキシル基、オクチル基、ドデシル基など炭素数20以下のアルキル基が挙げられ、より好ましくは炭素数8以下のアルキル基が挙げられる。
としては、単結合、−COO−、−CONH−が好ましく、単結合、−COO−がより好ましい。
におけるアルキレン基としては、好ましくは置換基を有していてもよいメチレン基、エチレン基、プロピレン基、ブチレン基、ヘキシレン基、オクチレン基等の炭素数1〜8個のものが挙げられる。
Arとしては、置換基を有していてもよい炭素数6〜18の芳香環基がより好ましく、ベンゼン環基、ナフタレン環基、ビフェニレン環基が特に好ましい。
一般式(I)で表される繰り返し単位は、ヒドロキシスチレン構造を備えていることが好ましい。即ち、Arは、ベンゼン環基であることが好ましい。
樹脂(A)が有するフェノール性水酸基を有する繰り返し単位としては、好ましくは、下記一般式(p1)で表される繰り返し単位が挙げられる。
一般式(p1)におけるRは、水素原子、ハロゲン原子又は1〜4個の炭素原子を有する直鎖もしくは分岐のアルキル基を表す。複数のRは、各々同じでも異なっていてもよい。一般式(p1)中のRとしては水素原子が特に好ましい。
一般式(p1)におけるArは芳香族環を表し、例えば、ベンゼン環、ナフタレン環、
アントラセン環、フルオレン環、フェナントレン環などの炭素数6〜18の置換基を有していてもよい芳香族炭化水素環、又は、例えば、チオフェン環、フラン環、ピロール環、ベンゾチオフェン環、ベンゾフラン環、ベンゾピロール環、トリアジン環、イミダゾール環、ベンゾイミダゾール環、トリアゾール環、チアジアゾール環、チアゾール環等のヘテロ環を含む芳香環ヘテロ環を挙げることができる。中でも、ベンゼン環が最も好ましい。
一般式(p1)におけるmは、1〜5の整数を表し、好ましくは1である。
以下、樹脂(A)が有するフェノール性水酸基を有する繰り返し単位の具体例を示すが、本発明は、これに限定されるものではない。式中、aは1又は2を表す。
フェノール性水酸基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、0〜50モル%が好ましく、より好ましくは0〜45モル%、更に好ましくは0〜40モル%である。
〔1−3〕ラクトン基又はスルトン基を有する繰り返し単位
樹脂(A)は、ラクトン基又はスルトン(環状スルホン酸エステル)基を有する繰り返し単位を含有することも好ましい。ラクトン基又はスルトン基としては、ラクトン構造又はスルトン構造を含有していればいずれの基でも用いることができるが、好ましくは5〜7員環ラクトン構造又はスルトン構造を含有する基であり、5〜7員環ラクトン構造又はスルトン構造にビシクロ構造、スピロ構造を形成する形で他の環構造が縮環しているものが好ましい。
下記一般式(LC1−1)〜(LC1−17)のいずれかで表されるラクトン構造又は下記一般式(SL1−1)〜(SL1−3)のいずれかで表されるスルトン構造を有する基を有する繰り返し単位を有することがより好ましい。また、ラクトン構造又はスルトン構造を有する基が主鎖に直接結合していてもよい。好ましいラクトン構造又はスルトン構造としては一般式(LC1−1)、(LC1−4)、(LC1−5)、(LC1−6)、(LC1−13)、(LC1−14)で表される基である。
ラクトン構造部分又はスルトン構造部分は、置換基(Rb2)を有していても有していなくてもよい。好ましい置換基(Rb2)としては、炭素数1〜8のアルキル基、炭素数
4〜7のシクロアルキル基、炭素数1〜8のアルコキシ基、炭素数1〜8のアルコキシカルボニル基、カルボキシル基、ハロゲン原子、水酸基、シアノ基、酸分解性基などが挙げられる。nは、0〜4の整数を表す。n2が2以上の時、複数存在するRb2は、同一でも異なっていてもよく、また、複数存在するRb2同士が結合して環を形成してもよい。
一般式(LC1−1)〜(LC1−17)のいずれかで表されるラクトン構造又は一般式(SL1−1)〜(SL1−3)のいずれかで表されるスルトン構造を有する基を有する繰り返し単位としては、例えば、下記一般式(AII)で表される繰り返し単位等を挙げることができる。
一般式(AII)中、Rb0は、水素原子、ハロゲン原子、又は炭素数1〜4のアルキル基を表す。
Rb0のアルキル基が有していてもよい好ましい置換基としては、水酸基、ハロゲン原子が挙げられる。
Rb0のハロゲン原子としては、フッ素原子、塩素原子、臭素原子、沃素原子を挙げることができる。Rb0は、水素原子又はメチル基が好ましい。
Abは、単結合、アルキレン基、単環又は多環の脂環炭化水素構造を有する2価の連結基、エーテル基、エステル基、カルボニル基、カルボキシル基、又はこれらを組み合わせた2価の基を表す。好ましくは、単結合、−Ab1−CO2−で表される連結基である。Ab1は、直鎖、分岐アルキレン基、単環又は多環のシクロアルキレン基であり、好ましくは、メチレン基、エチレン基、シクロヘキシレン基、アダマンチレン基、ノルボルニレン基である。
Vは、一般式(LC1−1)〜(LC1−17)及び(SL1−1)〜(SL1−3)のうちのいずれかで示される基を表す。
ラクトン基又はスルトン基を有する繰り返し単位は、通常、光学異性体が存在するが、いずれの光学異性体を用いてもよい。また、1種の光学異性体を単独で用いても、複数の光学異性体を混合して用いてもよい。1種の光学異性体を主に用いる場合、その光学純度(ee)が90%以上のものが好ましく、より好ましくは95%以上である。
ラクトン基又はスルトン基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
ラクトン基又はスルトン基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、1〜30モル%が好ましく、より好ましくは5〜25モル%、更に好ましくは5〜20モル%である。
〔1−4〕極性基で置換された脂環炭化水素構造を有する繰り返し単位
樹脂(A)は、極性基を有する有機基を含有する繰り返し単位、特に、極性基で置換された脂環炭化水素構造を有する繰り返し単位を更に有することができる。これにより基板密着性、現像液親和性が向上する。
極性基で置換された脂環炭化水素構造の脂環炭化水素構造としてはアダマンチル基、ジアマンチル基、ノルボルナン基が好ましい。極性基としては水酸基、シアノ基が好ましい。
極性基を有する繰り返し単位の具体例を以下に挙げるが、本発明はこれらに限定されない。
樹脂(A)が、極性基を有する有機基を含有する繰り返し単位を有する場合、その含有量は、樹脂(A)中の全繰り返し単位に対し、1〜50モル%が好ましく、1〜30モル%がより好ましく、5〜25モル%が更に好ましくは、5〜20モル%が更により好ましい。
〔1−5〕活性光線又は放射線の照射により酸を発生する基を有する繰り返し単位
更に、上記以外の繰り返し単位として、活性光線又は放射線の照射により酸を発生する基(光酸発生基)を有する繰り返し単位を含むこともできる。この場合、この光酸発生基を有する繰り返し単位が、後述する活性光線又は放射線の照射により酸を発生する化合物(B)にあたると考えることができる。
このような繰り返し単位としては、例えば、下記一般式(4)で表される繰り返し単位が挙げられる。
41は、水素原子又はメチル基を表す。L41は、単結合又は2価の連結基を表す。L42は、2価の連結基を表す。Wは、活性光線又は放射線の照射により分解して側鎖に酸を発生させる構造部位を表す。
以下に、一般式(4)で表される繰り返し単位の具体例を示すが、本発明がこれに限定されるものではない。
そのほか、一般式(4)で表される繰り返し単位としては、例えば、特開2014−041327号公報の段落[0094]〜[0105]に記載された繰り返し単位が挙げられる。
樹脂(A)が光酸発生基を有する繰り返し単位を含有する場合、光酸発生基を有する繰り返し単位の含有量は、樹脂(A)中の全繰り返し単位に対し、1〜40モル%が好ましく、より好ましくは5〜35モル%、更に好ましくは5〜30モル%である。
〔1−6〕その他の繰り返し単位
また、樹脂(A)は、下記一般式(VI)で表される繰り返し単位を含んでいてもよい。
一般式(VI)中、
61、R62及びR63は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基、又はアルコキシカルボニル基を表す。但し、R62はArと結合して環を形成していてもよく、その場合のR62は単結合又はアルキレン基を表す。
は、単結合、−COO−、又は−CONR64−を表す。R64は、水素原子又はアルキル基を表す。
は、単結合又はアルキレン基を表す。
Arは、(n+1)価の芳香環基を表し、R62と結合して環を形成する場合には(n+2)価の芳香環基を表す。
は、n≧2の場合には各々独立に、水素原子又は酸の作用により脱離する基を表す。但し、Yの少なくとも1つは、酸の作用により脱離する基を表す。
nは、1〜4の整数を表す。
酸の作用により脱離する基Yとしては、下記一般式(VI−A)で表される構造がより好ましい。
ここで、L及びLは、各々独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はアルキレン基とアリール基とを組み合わせた基を表す。
Mは、単結合又は2価の連結基を表す。
Qは、アルキル基、ヘテロ原子を含んでいてもよいシクロアルキル基、ヘテロ原子を含んでいてもよいアリール基、アミノ基、アンモニウム基、メルカプト基、シアノ基又はアルデヒド基を表す。
Q、M、Lの少なくとも2つが結合して環(好ましくは、5員若しくは6員環)を形成してもよい。
上記一般式(VI)で表される繰り返し単位は、下記一般式(3)で表される繰り返し単位であることが好ましい。
一般式(3)において、
Arは、芳香環基を表す。
は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
は、単結合又は2価の連結基を表す。
は、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
、M及びRの少なくとも二つが結合して環を形成してもよい。
Arが表す芳香環基は、上記一般式(VI)におけるnが1である場合の、上記一般式(VI)におけるArと同様であり、より好ましくはフェニレン基、ナフチレン基であり、更に好ましくはフェニレン基である。
以下に一般式(VI)で表される繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
樹脂(A)は、下記一般式(4)で表される繰り返し単位を含むことも好ましい。
一般式(4)中、
41、R42及びR43は、各々独立に、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルコキシカルボニル基を表す。R42はLと結合して環を形成していてもよく、その場合のR42はアルキレン基を表す。
は、単結合又は2価の連結基を表し、R42と環を形成する場合には3価の連結基を表す。
44及びR45は、水素原子、アルキル基、シクロアルキル基、アリール基、アラルキル基、アルコキシ基、アシル基又はヘテロ環基を表す。
は、単結合又は2価の連結基を表す。
は、アルキル基、シクロアルキル基、アリール基又はヘテロ環基を表す。
、M及びR44の少なくとも二つが結合して環を形成してもよい。
41、R42及びR43は、前述の一般式(V)中のR51、R52、R53と同義であり、また好ましい範囲も同様である。
は、前述の一般式(V)中のLと同義であり、また好ましい範囲も同様である。
44及びR45は、前述の一般式(3)中のRと同義であり、また好ましい範囲も同様である。
は、前述の一般式(3)中のMと同義であり、また好ましい範囲も同様である。
は、前述の一般式(3)中のQと同義であり、また好ましい範囲も同様である。
、M及びR44の少なくとも二つが結合して形成される環としては、Q、M及びRの少なくとも二つが結合して形成される環があげられ、また好ましい範囲も同様である。
以下に一般式(4)で表される繰り返し単位の具体例を示すが、本発明はこれに限定されるものではない。
また、樹脂(A)は、下記一般式(BZ)で表される繰り返し単位を含んでいてもよい。
一般式(BZ)中、ARは、アリール基を表す。Rnは、アルキル基、シクロアルキル基又はアリール基を表す。RnとARとは互いに結合して非芳香族環を形成してもよい。
は、水素原子、アルキル基、シクロアルキル基、ハロゲン原子、シアノ基又はアルキルオキシカルボニル基を表す。
以下に、一般式(BZ)により表される繰り返し単位の具体例を示すが、これらに限定されるものではない。
上記酸分解性基を有する繰り返し単位は、1種類であってもよいし、2種以上を併用してもよい。
樹脂(A)における酸分解性基を有する繰り返し単位の含有量(複数種類含有する場合はその合計)は、上記樹脂(A)中の全繰り返し単位に対して5モル%以上80モル%以下であることが好ましく、5モル%以上75モル%以下であることがより好ましく、10モル%以上65モル%以下であることが更に好ましい。
樹脂(A)は、下記一般式(V)又は下記一般式(VI)で表される繰り返し単位を含有してもよい。
式中、
及びR7は、それぞれ独立に、水素原子、ヒドロキシ基、炭素数1〜10の直鎖状、分岐状又は環状のアルキル基、アルコキシ基又はアシロキシ基、シアノ基、ニトロ基、アミノ基、ハロゲン原子、エステル基(−OCOR又は−COOR:Rは炭素数1〜6のアルキル基又はフッ素化アルキル基)、又はカルボキシル基を表す。
は0〜6の整数を表す。
は0〜4の整数を表す。
はメチレン基、酸素原子又は硫黄原子である。
一般式(V)又は一般式(VI)で表される繰り返し単位の具体例を下記に示すが、これらに限定されない。
樹脂(A)は、更に、側鎖に珪素原子を有する繰り返し単位を更に有していても良い。側鎖に珪素原子を有する繰り返し単位としては、例えば、珪素原子を有する(メタ)アクリレート系繰り返し単位、珪素原子を有するビニル系繰り返し単位などが挙げられる。側鎖に珪素原子を有する繰り返し単位は、典型的には、側鎖に珪素原子を有する基を有する繰り返し単位であり、珪素原子を有する基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、トリシクロヘキシルシリル基、トリストリメチルシロキシシリル基、トリストリメチルシリルシリル基、メチルビストリメチルシリルシリル基、メチルビストリメチルシロキシシリル基、ジメチルトリメチルシリルシリル基、ジメチルトリメチルシロキシシリル基、または下記のような環状もしくは直鎖状ポリシロキサン、またはカゴ型あるいははしご型もしくはランダム型シルセスキオキサン構造などが挙げられる。式中、R、及び、R1は各々独立に、1価の置換基を表す。*は、結合手を表す。
上記の基を有する繰り返し単位は、例えば、上記の基を有するアクリレート又はメタクリレート化合物に由来する繰り返し単位や、上記の基とビニル基とを有する化合物に由来する繰り返し単位を好適に挙げることができる。
珪素原子を有する繰り返し単位は、シルセスキオキサン構造を有する繰り返し単位であることが好ましく、これにより、超微細(例えば、線幅50nm以下)であり、かつ、断面形状が高アスペクト比(例えば、膜厚/線幅が3以上)のパターンの形成において、非常に優れた倒れ性能を発現することができる。
シルセスキオキサン構造としては、例えば、カゴ型シルセスキオキサン構造、はしご型シルセスキオキサン構造(ラダー型シルセスキオキサン構造)、ランダム型シルセスキオキサン構造などが挙げられる。なかでも、カゴ型シルセスキオキサン構造が好ましい。
ここで、カゴ型シルセスキオキサン構造とは、カゴ状骨格を有するシルセスキオキサン構造である。カゴ型シルセスキオキサン構造は、完全カゴ型シルセスキオキサン構造であっても、不完全カゴ型シルセスキオキサン構造であってもよいが、完全カゴ型シルセスキオキサン構造であることが好ましい。
また、はしご型シルセスキオキサン構造とは、はしご状骨格を有するシルセスキオキサン構造である。
また、ランダム型シルセスキオキサン構造とは、骨格がランダムのシルセスキオキサン構造である。
上記カゴ型シルセスキオキサン構造は、下記式(S)で表されるシロキサン構造であることが好ましい。
上記式(S)中、Rは、1価の有機基を表す。複数あるRは、同一であっても、異なってもよい。
上記有機基は特に制限されないが、具体例としては、 ヒドロキシ基、ニトロ基、カルボキシ基、アルコキシ基、アミノ基、メルカプト基、ブロック化メルカプト基(例えば、アシル基でブロック(保護)されたメルカプト基)、アシル基、イミド基、ホスフィノ基、ホスフィニル基、シリル基、ビニル基、ヘテロ原子を有していてもよい炭化水素基、(メタ)アクリル基含有基およびエポキシ基含有基などが挙げられる。
上記ヘテロ原子を有していてもよい炭化水素基のヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、リン原子などが挙げられる。
上記ヘテロ原子を有していてもよい炭化水素基の炭化水素基としては、例えば、脂肪族炭化水素基、芳香族炭化水素基、またはこれらを組み合わせた基などが挙げられる。
上記脂肪族炭化水素基は、直鎖状、分岐鎖状、環状のいずれであってもよい。上記脂肪族炭化水素基の具体例としては、直鎖状または分岐状のアルキル基(特に、炭素数1〜30)、直鎖状または分岐状のアルケニル基(特に、炭素数2〜30)、直鎖状または分岐状のアルキニル基(特に、炭素数2〜30)などが挙げられる。
上記芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基などの炭素数6〜18の芳香族炭化水素基などが挙げられる。
樹脂(A)が、上記側鎖に珪素原子を有する繰り返し単位を有する場合、その含有量は、樹脂(A)中の全繰り返し単位に対し、1〜30モル%が好ましく、5〜25モル%が更に好ましくは、5〜20モル%が更により好ましい。
〔1−7〕樹脂(A)の合成
樹脂(A)は、常法に従って(例えばラジカル重合)合成することができる。例えば、一般的合成方法としては、モノマー種及び開始剤を溶剤に溶解させ、加熱することにより重合を行う一括重合法、加熱溶剤にモノマー種と開始剤の溶液を1〜10時間かけて滴下して加える滴下重合法などが挙げられ、滴下重合法が好ましい。
反応溶媒としては、例えば、テトラヒドロフラン、1,4−ジオキサン、ジイソプロピルエーテルなどのエーテル類;メチルエチルケトン、メチルイソブチルケトンなどのケトン類;酢酸エチルなどのエステル溶媒;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド溶剤;後述のプロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノメチルエーテル、シクロヘキサノンなどの感活性光線性又は感放射線性樹脂組成物を溶解する溶媒;等が挙げられる。より好ましくは感活性光線性又は感放射線性樹脂組成物に用いられる溶剤と同一の溶剤を用いて重合することが好ましい。これにより保存時のパーティクルの発生が抑制できる。
重合反応は窒素やアルゴンなど不活性ガス雰囲気下で行われることが好ましい。重合開始剤としては市販のラジカル開始剤(アゾ系開始剤、パーオキサイドなど)を用いて重合を開始させる。ラジカル開始剤としてはアゾ系開始剤が好ましく、エステル基、シアノ基、カルボキシル基を有するアゾ系開始剤が好ましい。好ましい開始剤としては、アゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル、ジメチル2,2’−アゾビス(2−メチルプロピオネート)などが挙げられる。所望により開始剤を追加、あるいは分割で添加し、反応終了後、溶剤に投入して粉体あるいは固形回収等の方法で所望のポリマーを回収する。反応の濃度は5〜50質量%であり、好ましくは10〜30質量%である。
反応温度は、通常10℃〜150℃であり、好ましくは30℃〜120℃、更に好ましくは60〜100℃である。
精製は、水洗や適切な溶媒を組み合わせることにより残留単量体やオリゴマー成分を除去する液液抽出法、特定の分子量以下のもののみを抽出除去する限外ろ過等の溶液状態での精製方法や、樹脂溶液を貧溶媒へ滴下することで樹脂を貧溶媒中に凝固させることにより残留単量体等を除去する再沈殿法や、濾別した樹脂スラリーを貧溶媒で洗浄する等の固体状態での精製方法等の通常の方法を適用できる。
樹脂(A)の重量平均分子量は、GPC法によりポリスチレン換算値として、好ましくは1,000〜200,000であり、更に好ましくは3,000〜20,000、最も好ましくは5,000〜15,000である。重量平均分子量を、1,000〜200,000とすることにより、耐熱性やドライエッチング耐性の劣化を防ぐことができ、且つ現像性が劣化したり、粘度が高くなって製膜性が劣化したりすることを防ぐことができる。
樹脂(A)の重量平均分子量の特に好ましい別の形態は、GPC法によるポリスチレン換算値で3,000〜9,500である。重量平均分子量を3,000〜9,500にすることにより、特にレジスト残渣(以降、「スカム」ともいう)が抑制され、より良好なパターンを形成することができる。
分散度(分子量分布)は、通常1〜5であり、好ましくは1〜3、更に好ましくは1.2〜3.0、特に好ましくは1.2〜2.0の範囲のものが使用される。分散度の小さいものほど、解像度、レジスト形状が優れ、且つレジストパターンの側壁がスムーズであり、ラフネス性に優れる。
感活性光線性又は感放射線性樹脂組成物において、樹脂(A)の含有量は、全固形分中50〜99.9質量%が好ましく、より好ましくは60〜99.0質量%である。
また、感活性光線性又は感放射線性樹脂組成物において、樹脂(A)は、1種で使用してもよいし、複数併用してもよい。
〔2〕活性光線又は放射線により酸を発生する化合物(B)
感活性光線性又は感放射線性樹脂組成物は、活性光線又は放射線により酸を発生する化合物(以下、「光酸発生剤(PAG:Photo Acid Generator)」ともいう)を含有することが好ましい。
光酸発生剤は、低分子化合物の形態であっても良く、重合体の一部に組み込まれた形態であってもよい。また、低分子化合物の形態と重合体の一部に組み込まれた形態を併用してもよい。
光酸発生剤が、低分子化合物の形態である場合、分子量が3000以下であることが好ましく、2000以下であることがより好ましく、1000以下であることが更に好ましい。
光酸発生剤が、重合体の一部に組み込まれた形態である場合、樹脂(A)の一部に組み込まれても良く、樹脂(A)とは異なる樹脂に組み込まれてもよい。
本発明において、光酸発生剤が、低分子化合物の形態であることが好ましい。
光酸発生剤としては、公知のものであれば特に限定されないが、活性光線又は放射線、好ましくは電子線又は極紫外線の照射により、有機酸、例えば、スルホン酸、ビス(アルキルスルホニル)イミド、又はトリス(アルキルスルホニル)メチドの少なくともいずれかを発生する化合物が好ましい。
より好ましくは下記一般式(ZI)、(ZII)、(ZIII)で表される化合物を挙げることができる。
上記一般式(ZI)において、
201、R202及びR203は、各々独立に、有機基を表す。
201、R202及びR203としての有機基の炭素数は、一般的に1〜30、好ましくは1〜20である。
また、R201〜R203のうち2つが結合して環構造を形成してもよく、環内に酸素原子、硫黄原子、エステル結合、アミド結合、カルボニル基を含んでいてもよい。R201〜R203の内の2つが結合して形成する基としては、アルキレン基(例えば、ブチレン基、ペンチレン基)を挙げることができる。
は、非求核性アニオン(求核反応を起こす能力が著しく低いアニオン)を表す。
非求核性アニオンとしては、例えば、スルホン酸アニオン(脂肪族スルホン酸アニオン、芳香族スルホン酸アニオン、カンファースルホン酸アニオンなど)、カルボン酸アニオン(脂肪族カルボン酸アニオン、芳香族カルボン酸アニオン、アラルキルカルボン酸アニオンなど)、スルホニルイミドアニオン、ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオン等を挙げられる。
脂肪族スルホン酸アニオン及び脂肪族カルボン酸アニオンにおける脂肪族部位は、アルキル基であってもシクロアルキル基であってもよく、好ましくは炭素数1〜30の直鎖又は分岐のアルキル基及び炭素数3〜30のシクロアルキル基が挙げられる。
芳香族スルホン酸アニオン及び芳香族カルボン酸アニオンにおける芳香族基としては、好ましくは炭素数6〜14のアリール基、例えば、フェニル基、トリル基、ナフチル基等を挙げることができる。
上記で挙げたアルキル基、シクロアルキル基及びアリール基は、置換基を有していてもよい。この具体例としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)、アルキルチオ基(好ましくは炭素数1〜15)、アルキルスルホニル基(好ましくは炭素数1〜15)、アルキルイミノスルホニル基(好ましくは炭素数1〜15)、アリールオキシスルホニル基(好ましくは炭素数6〜20)、アルキルアリールオキシスルホニル基(好ましくは炭素数7〜20)、シクロアルキルアリールオキシスルホニル基(好ましくは炭素数10〜20)、アルキルオキシアルキルオキシ基(好ましくは炭素数5〜20)、シクロアルキルアルキルオキシアルキルオキシ基(好ましくは炭素数8〜20)等を挙げることができる。
各基が有するアリール基及び環構造については、置換基として更にアルキル基(好ましくは炭素数1〜15)を挙げることができる。
アラルキルカルボン酸アニオンにおけるアラルキル基としては、好ましくは炭素数7〜12のアラルキル基、例えば、ベンジル基、フェネチル基、ナフチルメチル基、ナフチルエチル基、ナフチルブチル基等を挙げることができる。
スルホニルイミドアニオンとしては、例えば、サッカリンアニオンを挙げることができる。
ビス(アルキルスルホニル)イミドアニオン、トリス(アルキルスルホニル)メチドアニオンにおけるアルキル基は、炭素数1〜5のアルキル基が好ましい。これらのアルキル基の置換基としてはハロゲン原子、ハロゲン原子で置換されたアルキル基、アルコキシ基、アルキルチオ基、アルキルオキシスルホニル基、アリールオキシスルホニル基、シクロアルキルアリールオキシスルホニル基等を挙げることができ、フッ素原子又はフッ素原子で置換されたアルキル基が好ましい。
また、ビス(アルキルスルホニル)イミドアニオンにおけるアルキル基は、互いに結合して環構造を形成してもよい。これにより、酸強度が増加する。
その他の非求核性アニオンとしては、例えば、弗素化燐(例えば、PF )、弗素化硼素(例えば、BF )、弗素化アンチモン(例えば、SbF )等を挙げることができる。
非求核性アニオンとしては、スルホン酸の少なくともα位がフッ素原子で置換された脂肪族スルホン酸アニオン、フッ素原子又はフッ素原子を有する基で置換された芳香族スルホン酸アニオン、アルキル基がフッ素原子で置換されたビス(アルキルスルホニル)イミドアニオン、アルキル基がフッ素原子で置換されたトリス(アルキルスルホニル)メチドアニオンが好ましい。非求核性アニオンとして、より好ましくはパーフロロ脂肪族スルホン酸アニオン(更に好ましくは炭素数4〜8)、フッ素原子を有するベンゼンスルホン酸アニオン、更により好ましくはノナフロロブタンスルホン酸アニオン、パーフロロオクタンスルホン酸アニオン、ペンタフロロベンゼンスルホン酸アニオン、3,5−ビス(トリフロロメチル)ベンゼンスルホン酸アニオンである。
酸強度の観点からは、発生酸のpKaが−1以下であることが、感度向上のために好ましい。
また、非求核性アニオンとしては、以下の一般式(AN1)で表されるアニオンも好ましい態様として挙げられる。
式中、
Xfは、それぞれ独立に、フッ素原子、又は少なくとも1つのフッ素原子で置換されたアルキル基を表す。
、Rは、それぞれ独立に、水素原子、フッ素原子、又は、アルキル基を表し、複数存在する場合のR、Rは、それぞれ同一でも異なっていてもよい。
Lは、二価の連結基を表し、複数存在する場合のLは同一でも異なっていてもよい。
Aは、環状の有機基を表す。
xは1〜20の整数を表し、yは0〜10の整数を表し、zは0〜10の整数を表す。
一般式(AN1)について、更に詳細に説明する。
Xfのフッ素原子で置換されたアルキル基におけるアルキル基としては、好ましくは炭素数1〜10であり、より好ましくは炭素数1〜4である。また、Xfのフッ素原子で置換されたアルキル基は、パーフルオロアルキル基であることが好ましい。
Xfとして好ましくは、フッ素原子又は炭素数1〜4のパーフルオロアルキル基である。Xfの具体的としては、フッ素原子、CF、C、C、C、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、CHCHが挙げられ、中でもフッ素原子、CFが好ましい。
特に、双方のXfがフッ素原子であることが好ましい。
、Rのアルキル基は、置換基(好ましくはフッ素原子)を有していてもよく、炭素数1〜4のものが好ましい。更に好ましくは炭素数1〜4のパーフルオロアルキル基である。R、Rの置換基を有するアルキル基の具体例としては、CF、C、C、C、C11、C13、C15、C17、CHCF、CHCHCF、CH、CHCH、CH、CHCH、CH、CHCHが挙げられ、中でもCFが好ましい。
、Rとしては、好ましくはフッ素原子又はCFである。
xは1〜10が好ましく、1〜5がより好ましい。
yは0〜4が好ましく、0がより好ましい。
zは0〜5が好ましく、0〜3がより好ましい。
Lの2価の連結基としては特に限定されず、―COO−、−OCO−、−CO−、−O−、−S―、−SO―、―SO−、アルキレン基、シクロアルキレン基、アルケニレン基又はこれらの複数が連結した連結基などを挙げることができ、総炭素数12以下の連結基が好ましい。このなかでも―COO−、−OCO−、−CO−、−O−が好ましく、―COO−、−OCO−がより好ましい。
上記一般式(ANI)において、A以外の部分構造の組み合わせとして、SO3−−CF−CH−OCO−、SO3−−CF−CHF−CH−OCO−、SO3−−C
−COO−、SO3−−CF−CF−CH−、SO3−−CF−CH(CF)−OCO−が好ましいものとして挙げられる。
Aの環状の有機基としては、環状構造を有するものであれば特に限定されず、脂環基、アリール基、複素環基(芳香族性を有するものだけでなく、芳香族性を有さないものも含む)等が挙げられる。
脂環基としては、単環でも多環でもよく、シクロペンチル基、シクロヘキシル基、シクロオクチル基などの単環のシクロアルキル基、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基などの多環のシクロアルキル基が好ましい。中でも、ノルボルニル基、トリシクロデカニル基、テトラシクロデカニル基、テトラシクロドデカニル基、アダマンチル基等の炭素数7以上のかさ高い構造を有する脂環基が、露光後加熱工程での膜中拡散性を抑制でき、MEEF(mask error enhancement factor)向上の観点から好ましい。
アリール基としては、ベンゼン環、ナフタレン環、フェナンスレン環、アントラセン環が挙げられる。
複素環基としては、フラン環、チオフェン環、ベンゾフラン環、ベンゾチオフェン環、ジベンゾフラン環、ジベンゾチオフェン環、ピリジン環由来のものが挙げられる。中でもフラン環、チオフェン環、ピリジン環由来のものが好ましい。
また、環状の有機基としては、ラクトン構造も挙げることができ、具体例としては、下記一般式(LC1−1)〜(LC1−17)で表されるラクトン構造を挙げることができる。
上記環状の有機基は、置換基を有していてもよく、上記置換基としては、アルキル基(直鎖、分岐、環状のいずれであっても良く、炭素数1〜12が好ましい)、シクロアルキル基(単環、多環、スピロ環のいずれであっても良く、炭素数3〜20が好ましい)、アリール基(炭素数6〜14が好ましい)、ヒドロキシ基、アルコキシ基、エステル基、アミド基、ウレタン基、ウレイド基、チオエーテル基、スルホンアミド基、スルホン酸エステル基等が挙げられる。なお、環状の有機基を構成する炭素(環形成に寄与する炭素)はカルボニル炭素であってもよい。
なお、上記置換基は、上記(LC1−1)〜(LC1−17)においてはRb2に相当する。また、上記(LC1−1)〜(LC1−17)において、n2は0〜4の整数を表す。n2が2以上の時、複数存在するRb2は、同一でも異なっていてもよく、また、複数存在するRb2同士が結合して環を形成してもよい。
一般式(ZI)において、R201、R202及びR203の有機基としては、アリール基、アルキル基、シクロアルキル基などが挙げられる。
201、R202及びR203のうち、少なくとも1つがアリール基であることが好ましく、三つ全てがアリール基であることがより好ましい。アリール基としては、フェニル基、ナフチル基などの他に、インドール残基、ピロール残基などのヘテロアリール基も可能である。R201〜R203のアルキル基及びシクロアルキル基としては、好ましくは、炭素数1〜10の直鎖又は分岐アルキル基、炭素数3〜10のシクロアルキル基を挙げることができる。アルキル基として、より好ましくはメチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基等を挙げることができる。シクロアルキル基として、より好ましくは、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロへプチル基等を挙げることができる。
これらの基は更に置換基を有していてもよい。その置換基としては、ニトロ基、フッ素原子などのハロゲン原子、カルボキシル基、水酸基、アミノ基、シアノ基、アルコキシ基(好ましくは炭素数1〜15)、シクロアルキル基(好ましくは炭素数3〜15)、アリール基(好ましくは炭素数6〜14)、アルコキシカルボニル基(好ましくは炭素数2〜7)、アシル基(好ましくは炭素数2〜12)、アルコキシカルボニルオキシ基(好ましくは炭素数2〜7)等が挙げられるが、これらに限定されるものではない。
次に、一般式(ZII)、(ZIII)について説明する。
一般式(ZII)、(ZIII)中、R204〜R207は、各々独立に、アリール基、アルキル基又はシクロアルキル基を表す。
204〜R207のアリール基としてはフェニル基、ナフチル基が好ましく、更に好ましくはフェニル基である。R204〜R207のアリール基は、酸素原子、窒素原子、硫黄原子等を有する複素環構造を有するアリール基であってもよい。複素環構造を有するアリール基の骨格としては、例えば、ピロール、フラン、チオフェン、インドール、ベンゾフラン、ベンゾチオフェン等を挙げることができる。
204〜R207におけるアルキル基及びシクロアルキル基としては、好ましくは、炭素数1〜10の直鎖又は分岐アルキル基(例えば、メチル基、エチル基、プロピル基、ブチル基、ペンチル基)、炭素数3〜10のシクロアルキル基(シクロペンチル基、シクロヘキシル基、ノルボニル基)を挙げることができる。
204〜R207のアリール基、アルキル基、シクロアルキル基は、置換基を有していてもよい。R204〜R207のアリール基、アルキル基、シクロアルキル基が有していてもよい置換基としては、例えば、アルキル基(例えば炭素数1〜15)、シクロアルキル基(例えば炭素数3〜15)、アリール基(例えば炭素数6〜15)、アルコキシ基
(例えば炭素数1〜15)、ハロゲン原子、水酸基、フェニルチオ基等を挙げることができる。
また、一般式(ZII)において、Zは非求核性アニオンを表す。具体的には、一般式(ZI)においてZとして説明したものと同じであり、好ましい形態も同じである。
以下、一般式(ZI)〜(ZIII)の具体例を示すが、これに限定されない。
本発明においては、上記光酸発生剤は、露光で発生した酸の非露光部への拡散を抑制し解像性を良好にする観点から、電子線又は極紫外線の照射により、体積130Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であってもよく、体積190Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることがより好ましく、体積270Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることが更に好ましく、体積400Å以上の大きさの酸(より好ましくはスルホン酸)を発生する化合物であることが特に好ましい。ただし、感度や塗布溶剤溶解性の観点から、上記体積は、2000Å以下であることが好ましく、1500Å以下であることが更に好ましい。
上記体積の値は、富士通株式会社製の「WinMOPAC」を用いて求めた。すなわち、まず、各例に係る酸の化学構造を入力し、次に、この構造を初期構造としてMM3法を用いた分子力場計算により、各酸の最安定立体配座を決定し、その後、これら最安定立体配座についてPM3法を用いた分子軌道計算を行うことにより、各酸の「accessible volume」を計算することができる。
本発明においては、活性光線又は放射線の照射により以下に例示する酸を発生する光酸発生剤が好ましい。なお、例の一部には、体積の計算値を付記している(単位Å)。なお、ここで求めた計算値は、アニオン部にプロトンが結合した酸の体積値である。
光酸発生剤としては、特開2014−41328号公報段落[0368]〜[0377]、特開2013−228681号公報段落[0240]〜[0262](対応する米国特許出願公開第2015/004533号明細書の[0339])が援用でき、これらの内容は本願明細書に組み込まれる。また、好ましい具体例として以下の化合物が挙げられるが、これらに限定されるものではない。
光酸発生剤は、1種類単独で又は2種類以上を組み合わせて使用することができる。
光酸発生剤の感活性光線性又は感放射線性樹脂組成物中の含有量は、組成物の全固形分を基準として、0.1〜50質量%が好ましく、より好ましくは5〜50質量%、更に好ましくは8〜40質量%である。特に、電子線や極紫外線露光の際に高感度化、高解像性を両立するには光酸発生剤の含有率は高いほうが好ましく、更に好ましくは10〜40質量%、最も好ましくは10〜35質量%である。
〔3〕溶剤(C)
上述した各成分を溶解させて感活性光線性又は感放射線性樹脂組成物を調製する際には、溶剤を使用できる。使用できる溶剤としては、例えば、アルキレングリコールモノアルキルエーテルカルボキシレート、アルキレングリコールモノアルキルエーテル、乳酸アルキルエステル、アルコキシプロピオン酸アルキル、炭素数4〜10の環状ラクトン、炭素数4〜10の、環を含有してもよいモノケトン化合物、アルキレンカーボネート、アルコキシ酢酸アルキル、ピルビン酸アルキル等の有機溶剤を挙げることができる。
アルキレングリコールモノアルキルエーテルカルボキシレートとしては、例えば、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルアセテート、プロピレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルプロピオネート、プロピレングリコールモノエチルエーテルプロピオネート、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテートが好ましく挙げられる。
アルキレングリコールモノアルキルエーテルとしては、例えば、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテルを好ましく挙げられる。
乳酸アルキルエステルとしては、例えば、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチルを好ましく挙げられる。
アルコキシプロピオン酸アルキルとしては、例えば、3−エトキシプロピオン酸エチル、3−メトキシプロピオン酸メチル、3−エトキシプロピオン酸メチル、3−メトキシプロピオン酸エチルを好ましく挙げられる。
炭素数4〜10の環状ラクトンとしては、例えば、β−プロピオラクトン、β−ブチロラクトン、γ−ブチロラクトン、α−メチル−γ−ブチロラクトン、β−メチル−γ−ブチロラクトン、γ−バレロラクトン、γ−カプロラクトン、γ−オクタノイックラクトン、α−ヒドロキシ−γ−ブチロラクトンが好ましく挙げられる。
炭素数4〜10の、環を含有してもよいモノケトン化合物としては、例えば、2−ブタノン、3−メチルブタノン、ピナコロン、2−ペンタノン、3−ペンタノン、3−メチル−2−ペンタノン、4−メチル−2−ペンタノン、2−メチル−3−ペンタノン、4,4−ジメチル−2−ペンタノン、2,4−ジメチル−3−ペンタノン、2,2,4,4−テトラメチル−3−ペンタノン、2−ヘキサノン、3−ヘキサノン、5−メチル−3−ヘキサノン、2−ヘプタノン、3−ヘプタノン、4−ヘプタノン、2−メチル−3−ヘプタノン、5−メチル−3−ヘプタノン、2,6−ジメチル−4−ヘプタノン、2−オクタノン、3−オクタノン、2−ノナノン、3−ノナノン、5−ノナノン、2−デカノン、3−デカノン、4−デカノン、5−ヘキセン−2−オン、3−ペンテン−2−オン、シクロペンタノン、2−メチルシクロペンタノン、3−メチルシクロペンタノン、2,2−ジメチルシクロペンタノン、2,4,4−トリメチルシクロペンタノン、シクロヘキサノン、3−メチルシクロヘキサノン、4−メチルシクロヘキサノン、4−エチルシクロヘキサノン、2,2−ジメチルシクロヘキサノン、2,6−ジメチルシクロヘキサノン、2,2,6−トリメチルシクロヘキサノン、シクロヘプタノン、2−メチルシクロヘプタノン、3−メチルシクロヘプタノンが好ましく挙げられる。
アルキレンカーボネートとしては、例えば、プロピレンカーボネート、ビニレンカーボネート、エチレンカーボネート、ブチレンカーボネートが好ましく挙げられる。
アルコキシ酢酸アルキルとしては、例えば、酢酸−2−メトキシエチル、酢酸−2−エトキシエチル、酢酸−2−(2−エトキシエトキシ)エチル、酢酸−3−メトキシ−3−メチルブチル、酢酸−1−メトキシ−2−プロピルが好ましく挙げられる。
ピルビン酸アルキルとしては、例えば、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸プロピルが好ましく挙げられる。
好ましく使用できる溶剤としては、常温常圧下で、沸点130℃以上の溶剤が挙げられる。具体的には、シクロペンタノン、γ−ブチロラクトン、シクロヘキサノン、乳酸エチル、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3−エトキシプロピオン酸エチル、ピルビン酸エチル、酢酸−2−エトキシエチル、酢酸−2−(2−エトキシエトキシ)エチル、プロピレンカーボネートが挙げられる。
本発明に於いては、上記溶剤を単独で使用してもよいし、2種類以上を併用してもよい。
本発明においては、有機溶剤として構造中に水酸基を含有する溶剤と、水酸基を含有しない溶剤とを混合した混合溶剤を使用してもよい。
水酸基を含有する溶剤としては、例えば、エチレングリコール、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、乳酸エチル等を挙げることができ、これらの内でプロピレングリコールモノメチルエーテル、乳酸エチルが特に好ましい。
水酸基を含有しない溶剤としては、例えば、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、2−ヘプタノン、γ−ブチロラクトン、シクロヘキサノン、酢酸ブチル、N−メチルピロリドン、N,N−ジメチルアセトアミド、ジメチルスルホキシド等を挙げることができ、これらの内で、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、2−ヘプタノン、γ−ブチロラクトン、シクロヘキサノン、酢酸ブチルが特に好ましく、プロピレングリコールモノメチルエーテルアセテート、エチルエトキシプロピオネート、2−ヘプタノンが最も好ましい。
水酸基を含有する溶剤と水酸基を含有しない溶剤との混合比(質量)は、好ましくは1/99〜99/1、より好ましくは10/90〜90/10、更に好ましくは20/80〜60/40である。水酸基を含有しない溶剤を50質量%以上含有する混合溶剤が塗布均一性の点で特に好ましい。
溶剤は、プロピレングリコールモノメチルエーテルアセテートを含有する2種類以上の混合溶剤であることが好ましい。
溶剤としては、例えば特開2014−219664号公報の段落0013〜0029に記載の溶媒も使用できる。
〔4〕塩基性化合物(D)
感活性光線性又は感放射線性樹脂組成物は、露光から加熱までの経時による性能変化を低減するために、塩基性化合物(D)を含有することが好ましい。
塩基性化合物としては、好ましくは、下記式(A)〜(E)で示される構造を有する化合物を挙げることができる。
一般式(A)及び(E)中、 R200 、R201及びR202 は、同一でも異なってもよく、水素原子、アルキル基(好ましくは炭素数1〜20)、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜20)を表し、ここで、R201
202は、互いに結合して環を形成してもよい。
上記アルキル基について、置換基を有するアルキル基としては、炭素数1〜20のアミノアルキル基、炭素数1〜20のヒドロキシアルキル基、又は炭素数1〜20のシアノアルキル基が好ましい。
203、R204、R205及びR206 は、同一でも異なってもよく、炭素数1〜20個のアルキル基を表す。
これら一般式(A)及び(E)中のアルキル基は、無置換であることがより好ましい。
好ましい化合物として、グアニジン、アミノピロリジン、ピラゾール、ピラゾリン、ピペラジン、アミノモルホリン、アミノアルキルモルフォリン、ピペリジン等を挙げることができ、更に好ましい化合物として、イミダゾール構造、ジアザビシクロ構造、オニウムヒドロキシド構造、オニウムカルボキシレート構造、トリアルキルアミン構造、アニリン構造又はピリジン構造を有する化合物、水酸基及び/又はエーテル結合を有するアルキルアミン誘導体、水酸基及び/又はエーテル結合を有するアニリン誘導体等を挙げることができる。
イミダゾール構造を有する化合物としてはイミダゾール、2、4、5−トリフェニルイミダゾール、ベンズイミダゾール等が挙げられる。
ジアザビシクロ構造を有する化合物としては1、4−ジアザビシクロ[2,2,2]オクタン、1、5−ジアザビシクロ[4,3,0]ノナ−5−エン、1、8−ジアザビシクロ[5,4,0]ウンデカ−7−エン等が挙げられる。
オニウムヒドロキシド構造を有する化合物としてはトリアリールスルホニウムヒドロキシド、フェナシルスルホニウムヒドロキシド、2−オキソアルキル基を有するスルホニウムヒドロキシド、具体的にはトリフェニルスルホニウムヒドロキシド、トリス(t−ブチルフェニル)スルホニウムヒドロキシド、ビス(t−ブチルフェニル)ヨードニウムヒドロキシド、フェナシルチオフェニウムヒドロキシド、2−オキソプロピルチオフェニウムヒドロキシド等が挙げられる。
オニウムカルボキシレート構造を有する化合物としてはオニウムヒドロキシド構造を有する化合物のアニオン部がカルボキシレートになったものであり、例えばアセテート、アダマンタン−1−カルボキシレート、パーフロロアルキルカルボキシレート等が挙げられる。
トリアルキルアミン構造を有する化合物としては、トリ(n−ブチル)アミン、トリ(n−オクチル)アミン等を挙げることができる。
アニリン化合物としては、2,6−ジイソプロピルアニリン、N,N−ジメチルアニリン、N,N−ジブチルアニリン、N,N−ジヘキシルアニリン等を挙げることができる。
水酸基及び/又はエーテル結合を有するアルキルアミン誘導体としては、エタノールアミン、ジエタノールアミン、トリエタノールアミン、トリス(メトキシエトキシエチル)アミン等を挙げることができる。
水酸基及び/又はエーテル結合を有するアニリン誘導体としては、N,N−ビス(ヒドロキシエチル)アニリン等を挙げることができる。
好ましい塩基性化合物として、更に、フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物を挙げることができる。
アミン化合物は、1級、2級、3級のアミン化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアミン化合物が好ましい。アミン化合物は、3級アミン化合物であることがより好ましい。アミン化合物は、少なくとも1つのアルキル基(好ましくは炭素数1〜20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜12)が窒素原子に結合していてもよい。
また、アミン化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3〜9個、更に好ましくは4〜6個である。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)もしくはオキシプロピレン基(−CH(CH)CHO−もしくは−CHCHCHO−)が好ましく、更に好ましくはオキシエチレン基である。
アンモニウム塩化合物は、1級、2級、3級、4級のアンモニウム塩化合物を使用することができ、少なくとも1つのアルキル基が窒素原子に結合しているアンモニウム塩化合物が好ましい。アンモニウム塩化合物は、少なくとも1つのアルキル基(好ましくは炭素数1〜20)が窒素原子に結合していれば、アルキル基の他に、シクロアルキル基(好ましくは炭素数3〜20)又はアリール基(好ましくは炭素数6〜12)が窒素原子に結合していてもよい。
アンモニウム塩化合物は、アルキル鎖中に、酸素原子を有し、オキシアルキレン基が形成されていることが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3〜9個、更に好ましくは4〜6個である。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)もしくはオキシプロピレン基(−CH(CH)CHO−もしくは−CHCHCHO−)が好ましく、更に好ましくはオキシエチレン基である。
アンモニウム塩化合物のアニオンとしては、ハロゲン原子、スルホネート、ボレート、フォスフェート等が挙げられるが、中でもハロゲン原子、スルホネートが好ましい。
ハロゲン原子としてはクロライド、ブロマイド、アイオダイドが特に好ましく、スルホネートとしては、炭素数1〜20の有機スルホネートが特に好ましい。
有機スルホネートとしては、炭素数1〜20のアルキルスルホネート、アリールスルホネートが挙げられる。アルキルスルホネートのアルキル基は置換基を有していてもよく、置換基としては例えばフッ素、塩素、臭素、アルコキシ基、アシル基、アリール基等が挙げられる。
アルキルスルホネートとして、具体的にはメタンスルホネート、エタンスルホネート、ブタンスルホネート、ヘキサンスルホネート、オクタンスルホネート、ベンジルスルホネート、トリフルオロメタンスルホネート、ペンタフルオロエタンスルホネート、ノナフルオロブタンスルホネート等が挙げられる。
アリールスルホネートのアリール基としてはベンゼン環、ナフタレン環、アントラセン環が挙げられる。
ベンゼン環、ナフタレン環、アントラセン環は置換基を有していてもよく、置換基としては炭素数1〜6の直鎖若しくは分岐アルキル基、炭素数3〜6のシクロアルキル基が好ましい。
直鎖若しくは分岐アルキル基、シクロアルキル基として、具体的には、メチル、エチル、n−プロピル、イソプロピル、n−ブチル、i−ブチル、t−ブチル、n−ヘキシル、シクロヘキシル等が挙げられる。
他の置換基としては炭素数1〜6のアルコキシ基、ハロゲン原子、シアノ、ニトロ、アシル基、アシルオキシ基等が挙げられる。
フェノキシ基を有するアミン化合物、フェノキシ基を有するアンモニウム塩化合物とは、アミン化合物又はアンモニウム塩化合物のアルキル基の窒素原子と反対側の末端にフェノキシ基を有するものである。フェノキシ基は、置換基を有していてもよい。フェノキシ基の置換基としては、例えば、アルキル基、アルコキシ基、ハロゲン原子、シアノ基、ニトロ基、カルボキシル基、カルボン酸エステル基、スルホン酸エステル基、アリール基、アラルキル基、アシルオキシ基、アリールオキシ基等が挙げられる。置換基の置換位は、2〜6位のいずれであってもよい。置換基の数は、1〜5の範囲で何れであってもよい。
フェノキシ基と窒素原子との間に、少なくとも1つのオキシアルキレン基を有することが好ましい。オキシアルキレン基の数は、分子内に1つ以上、好ましくは3〜9個、更に好ましくは4〜6個である。オキシアルキレン基の中でもオキシエチレン基(−CHCHO−)もしくはオキシプロピレン基(−CH(CH)CHO−もしくは−CHCHCHO−)が好ましく、更に好ましくはオキシエチレン基である。
フェノキシ基を有するアミン化合物は、フェノキシ基を有する1又は2級アミンとハロアルキルエーテルを加熱して反応させた後、水酸化ナトリウム、水酸化カリウム、テトラアルキルアンモニウム等の強塩基の水溶液を添加した後、酢酸エチル、クロロホルム等の有機溶剤で抽出することにより得ることができる。又は、1又は2級アミンと末端にフェノキシ基を有するハロアルキルエーテルを加熱して反応させた後、水酸化ナトリウム、水酸化カリウム、テトラアルキルアンモニウム等の強塩基の水溶液を添加した後、酢酸エチル、クロロホルム等の有機溶剤で抽出することにより得ることができる。
(プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する化合物(PA))
本発明に係る組成物は、塩基性化合物として、プロトンアクセプター性官能基を有し、かつ、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する化合物〔以下、化合物(PA)ともいう〕を更に含んでいてもよい。
プロトンアクセプター性官能基とは、プロトンと静電的に相互作用し得る基或いは電子を有する官能基であって、例えば、環状ポリエーテル等のマクロサイクリック構造を有する官能基や、π共役に寄与しない非共有電子対をもった窒素原子を有する官能基を意味する。π共役に寄与しない非共有電子対を有する窒素原子とは、例えば、下記一般式に示す部分構造を有する窒素原子である。
プロトンアクセプター性官能基の好ましい部分構造として、例えば、クラウンエーテル、アザクラウンエーテル、1〜3級アミン、ピリジン、イミダゾール、ピラジン構造などを挙げることができる。
化合物(PA)は、活性光線又は放射線の照射により分解してプロトンアクセプター性が低下、消失、又はプロトンアクセプター性から酸性に変化した化合物を発生する。ここで、プロトンアクセプター性の低下、消失、又はプロトンアクセプター性から酸性への変化とは、プロトンアクセプター性官能基にプロトンが付加することに起因するプロトンアクセプター性の変化であり、具体的には、プロトンアクセプター性官能基を有する化合物(PA)とプロトンからプロトン付加体が生成する時、その化学平衡に於ける平衡定数が減少することを意味する。
化合物(PA)の具体例としては、例えば、下記化合物を挙げることができる。更に、化合物(PA)の具体例としては、例えば、特開2014−41328号公報の段落0421〜0428、特開2014−134686号公報の段落0108〜0116に記載されたものを援用することができ、これらの内容は本明細書に組み込まれる。
これらの塩基性化合物は、単独であるいは2種以上一緒に用いられる。
塩基性化合物の使用量は、感活性光線性又は感放射線性樹脂組成物の固形分を基準として、通常、0.001〜10質量%、好ましくは0.01〜5質量%である。
光酸発生剤と塩基性化合物の組成物中の使用割合は、光酸発生剤/塩基性化合物(モル比)=2.5〜300であることが好ましい。即ち、感度、解像度の点からモル比が2.5以上が好ましく、露光後加熱処理までの経時でのレジストパターンの太りによる解像度の低下抑制の点から300以下が好ましい。光酸発生剤/塩基性化合物(モル比)は、より好ましくは5.0〜200、更に好ましくは7.0〜150である。
塩基性化合物としては、例えば、特開2013−11833号公報の段落0140〜0144に記載の化合物(アミン化合物、アミド基含有化合物、ウレア化合物、含窒素複素環化合物等)を用いることができる。
〔5〕疎水性樹脂(A’)
感活性光線性又は感放射線性樹脂組成物は、上記樹脂(A)とは別に疎水性樹脂(A’)を有していてもよい。
疎水性樹脂はレジスト膜の表面に偏在するように設計されることが好ましいが、界面活性剤とは異なり、必ずしも分子内に親水基を有する必要はなく、極性/非極性物質を均一に混合することに寄与しなくてもよい。
疎水性樹脂を添加することの効果として、水に対するレジスト膜表面の静的/動的な接触角の制御、アウトガスの抑制などを挙げることができる。
疎水性樹脂は、膜表層への偏在化の観点から、“フッ素原子”、“珪素原子”、及び、
“樹脂の側鎖部分に含有されたCH部分構造”のいずれか1種以上を有することが好ましく、2種以上を有することが更に好ましい。また、上記疎水性樹脂は、炭素数5以上の炭化水素基を含有することが好ましい。これらの基は樹脂の主鎖中に有していても、側鎖に置換していてもよい。
疎水性樹脂が、フッ素原子及び/又は珪素原子を含む場合、疎水性樹脂に於ける上記フッ素原子及び/又は珪素原子は、樹脂の主鎖中に含まれていてもよく、側鎖中に含まれていてもよい。
疎水性樹脂がフッ素原子を含んでいる場合、フッ素原子を有する部分構造として、フッ素原子を有するアルキル基、フッ素原子を有するシクロアルキル基、又は、フッ素原子を有するアリール基を有する樹脂であることが好ましい。
フッ素原子を有するアルキル基(好ましくは炭素数1〜10、より好ましくは炭素数1〜4)は、少なくとも1つの水素原子がフッ素原子で置換された直鎖又は分岐アルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するシクロアルキル基は、少なくとも1つの水素原子がフッ素原子で置換された単環又は多環のシクロアルキル基であり、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子を有するアリール基としては、フェニル基、ナフチル基などのアリール基の少なくとも1つの水素原子がフッ素原子で置換されたものが挙げられ、更にフッ素原子以外の置換基を有していてもよい。
フッ素原子又は珪素原子を有する繰り返し単位の例としては、US2012/0251948A1の段落0519に例示されたものを挙げることが出来る。
また、上記したように、疎水性樹脂は、側鎖部分にCH部分構造を含むことも好ましい。
ここで、疎水性樹脂中の側鎖部分が有するCH部分構造には、エチル基、プロピル基等が有するCH部分構造を包含するものである。
一方、疎水性樹脂の主鎖に直接結合しているメチル基(例えば、メタクリル酸構造を有する繰り返し単位のα−メチル基)は、主鎖の影響により疎水性樹脂の表面偏在化への寄与が小さいため、本発明におけるCH部分構造に包含されないものとする。
疎水性樹脂に関しては、特開2014−010245号公報の[0348]〜[0415]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
なお、疎水性樹脂としてはこの他にも特開2011−248019号公報、特開2010−175859号公報、特開2012−032544号公報記載のものも好ましく用いることができる。
〔6〕界面活性剤(F)
感活性光線性又は感放射線性樹脂組成物は、界面活性剤(F)を更に含んでいてもよい。界面活性剤を含有することにより、波長が250nm以下、特には220nm以下の露光光源を使用した場合に、良好な感度及び解像度で、密着性及び現像欠陥のより少ないパターンを形成することが可能となる。
界面活性剤としては、フッ素系及び/又はシリコン系界面活性剤を用いることが特に好ましい。
フッ素系及び/又はシリコン系界面活性剤としては、例えば、米国特許出願公開第2008/0248425号明細書の[0276]に記載の界面活性剤が挙げられる。また、エフトップEF301若しくはEF303(新秋田化成(株)製);フロラードFC430、431若しくは4430(住友スリーエム(株)製);メガファックF171、F173、F176、F189、F113、F110、F177、F120若しくはR08(DIC(株)製);サーフロンS−382、SC101、102、103、104、105若しくは106(旭硝子(株)製);トロイゾルS−366(トロイケミカル(株)製);GF−300若しくはGF−150(東亜合成化学(株)製)、サーフロンS−393(セイミケミカル(株)製);エフトップEF121、EF122A、EF122B、RF122C、EF125M、EF135M、EF351、EF352、EF801、EF802若しくはEF601((株)ジェムコ製);PF636、PF656、PF6320若しくはPF6520(OMNOVA社製);又は、FTX−204G、208G、218G、230G、204D、208D、212D、218D若しくは222D((株)ネオス製)を用いてもよい。なお、ポリシロキサンポリマーKP−341(信越化学工業(株)製)も、シリコン系界面活性剤として用いることができる。
また、界面活性剤は、上記に示すような公知のものの他に、テロメリゼーション法(テロマー法ともいわれる)又はオリゴメリゼーション法(オリゴマー法ともいわれる)により製造されたフルオロ脂肪族化合物を用いて合成してもよい。具体的には、このフルオロ脂肪族化合物から導かれたフルオロ脂肪族基を備えた重合体を、界面活性剤として用いてもよい。このフルオロ脂肪族化合物は、例えば、特開2002−90991号公報に記載された方法によって合成することができる。
また、米国特許出願公開第2008/0248425号明細書の[0280]に記載されているフッ素系及び/又はシリコン系以外の界面活性剤を使用してもよい。
これら界面活性剤は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。
感活性光線性又は感放射線性樹脂組成物が界面活性剤を含んでいる場合、その含有量は、組成物の全固形分を基準として、好ましくは0〜2質量%、より好ましくは0.0001〜2質量%、更に好ましくは0.0005〜1質量%である。
〔7〕その他の添加剤
感活性光線性又は感放射線性樹脂組成物は、溶解阻止化合物、染料、可塑剤、光増感剤、光吸収剤、及び/又は現像液に対する溶解性を促進させる化合物(例えば、分子量1000以下のフェノール化合物、又はカルボキシ基を含んだ脂環族若しくは脂肪族化合物)を更に含んでいてもよい。
感活性光線性又は感放射線性樹脂組成物は、溶解阻止化合物を更に含んでいてもよい。ここで「溶解阻止化合物」とは、酸の作用により分解して有機系現像液中での溶解度が減少する、分子量3000以下の化合物である。
<上層膜(トップコート膜)>
本発明のパターン形成方法では、レジスト膜の上層に上層膜(トップコート膜)を形成してもよい。
上層膜は、レジスト膜と混合せず、更にレジスト膜上層に均一に塗布できることが好ましい。
上層膜については、特に限定されず、従来公知の上層膜を、従来公知の方法によって形成でき、例えば、特開2014−059543号公報の段落0072〜0082の記載に基づいて上層膜を形成できる。
上層膜は、上層膜形成用組成物を用いて形成してもよい。上層膜形成用組成物は、樹脂として、特開2014−059543号公報の段落0072に記載されるポリマーの他に、疎水性樹脂等も用いることができる。
上層膜形成用組成物が含有してもよい疎水性樹脂は、感活性光線性又は感放射線性樹脂組成物に含まれ得る疎水性樹脂(例えば、上述した疎水性樹脂(A’))と同様の樹脂であってもよい。
疎水性樹脂は、特開2013−61647号公報の[0017]〜[0023](対応する米国公開特許公報2013/244438号の[0017]〜[0023])、及び特開2014−56194号公報の[0016]〜[0165]の記載を参酌でき、これらの内容は本願明細書に組み込まれる。
上層膜形成用組成物は、芳香環を有する繰り返し単位を含有する樹脂を含むことが好ましい。芳香環を有する繰り返し単位を含有することで、特に電子線またはEUV露光の際に、二次電子の発生効率、及び活性光線又は放射線により酸を発生する化合物からの酸発生効率が高くなり、パターン形成時に高感度化、高解像化の効果が期待できる。
上層膜形成用組成物に含まれ得る樹脂の重量平均分子量は好ましくは3000〜100000であり、更に好ましくは3000〜30000であり、最も好ましくは5000〜20000である。上層膜形成用組成物中のこの樹脂の配合量は、全固形分中、50〜99.9質量%が好ましく、60〜99.0質量%がより好ましく、70〜99.7質量%が更に好ましく、80〜99.5質量%が更により好ましい。
上層膜形成用組成物(トップコート組成物)が複数の樹脂を含む場合、フッ素原子及び/又は珪素原子を有する樹脂(XA)を少なくとも1種含むことが好ましい。
樹脂(XA)に含有されるフッ素原子及び珪素原子の含有量の好ましい範囲は、フッ素原子及び又はケイ素原子を含む繰り返し単位が、樹脂(XA)中10〜100質量%であることが好ましく、10〜99モル%であることが好ましく、20〜80モル%であることがより好ましい。
また、フッ素原子及び/又は珪素原子を有する樹脂(XA)を少なくとも1種、及び、フッ素原子及び/又は珪素原子の含有率が樹脂(XA)より小さい樹脂(XB)を上層膜形成用組成物が含むことがより好ましい。これにより、上層膜を形成した際に、樹脂(XA)が上層膜の表面に偏在するため、現像特性や液浸液追随性などの性能を改良させることができる。
樹脂(XA)の含有量は、上層膜形成用組成物に含まれる全固形分を基準として、0.01〜30質量%が好ましく、0.1〜10質量%がより好ましく、0.1〜8質量%が更に好ましく、0.1〜5質量%が特に好ましい。樹脂(XB)の含有量は、上層膜形成用組成物に含まれる全固形分を基準として、50.0〜99.9質量%が好ましく、60〜99.9質量%がより好ましく、70〜99.9質量%が更に好ましく、80〜99.9質量%が特に好ましい。
樹脂(XB)としては、フッ素原子及び珪素原子を実質的に含有しない形態が好ましく、この場合、具体的には、フッ素原子を有する繰り返し単位及び珪素原子を有する繰り返し単位の合計の含有量が、樹脂(XB)中の全繰り返し単位に対して0〜20モル%が好ましく、0〜10モル%がより好ましく、0〜5モル%が更に好ましく、0〜3モル%が特に好ましく、理想的には0モル%、すなわち、フッ素原子及び珪素原子を含有しない。
また、上層膜形成用組成物は、エーテル結合、チオエーテル結合、ヒドロキシル基、チオール基、カルボニル結合及びエステル結合からなる群より選択される基又は結合を少なくとも一つ含む化合物を含むことが好ましい。
更に、上層膜形成用組成物は、光酸発生剤を含んでいてもよい。光酸発生剤としては、感活性光線性又は感放射線性樹脂組成物に含まれ得る光酸発生剤(例えば、上述した光酸発生剤(B))と同様のものを使用することができる。
上層膜形成用組成物は、各成分を溶剤に溶解し、フィルター濾過することが好ましい。フィルターとしては、ポアサイズ0.1μm以下、より好ましくは0.05μm以下、更に好ましくは0.03μm以下のポリテトラフロロエチレン製、ポリエチレン製、ナイロン製のものが好ましい。なお、フィルターは、複数種類を直列又は並列に接続して用いてもよい。また、組成物を複数回濾過してもよく、複数回濾過する工程が循環濾過工程であっても良い。さらに、フィルター濾過の前後で、組成物に対して脱気処理などを行ってもよい。上層膜形成用組成物は、金属等の不純物を含まないことが好ましい。これら材料に含まれる金属成分の含有量としては、10ppm以下が好ましく、5ppm以下がより好ましく、1ppm以下が更に好ましく、実質的に含まないこと(測定装置の検出限界以下であること)が特に好ましい。
上述の露光工程で、露光を液浸露光とする場合、上層膜は、感活性光線性又は感放射線性膜と液浸液との間に配置され、感活性光線性又は感放射線性膜を直接、液浸液に接触させない層としても機能する。この場合、上層膜(上層膜形成用組成物)が有することが好ましい特性としては、感活性光線性又は感放射線性膜への塗布適性、放射線、特に193nmに対する透明性、液浸液(好ましくは水)に対する難溶性である。また、上層膜は、感活性光線性又は感放射線性膜と混合せず、さらに感活性光線性又は感放射線性膜の表面に均一に塗布できることが好ましい。
なお、上層膜形成用組成物を、感活性光線性又は感放射線性膜の表面に、感活性光線性又は感放射線性膜を溶解せずに均一に塗布するために、上層膜形成用組成物は、感活性光線性又は感放射線性膜を溶解しない溶剤を含有することが好ましい。感活性光線性又は感放射線性膜を溶解しない溶剤としては、有機溶剤を含有する現像液(有機系現像液)とは異なる成分の溶剤を用いることがさらに好ましい。
上層膜形成用組成物の塗布方法は、特に限定されず、従来公知のスピンコート法、スプレー法、ローラーコート法、浸漬法などを用いることができる。
上層膜の膜厚は特に制限されないが、露光光源に対する透明性の観点から、通常5nm〜300nm、好ましくは10nm〜300nm、より好ましくは20nm〜200nm、更に好ましくは30nm〜100nmの厚みで形成される。
上層膜を形成後、必要に応じて基板を加熱(PB)する。
上層膜の屈折率は、解像性の観点から、感活性光線性又は感放射線性膜の屈折率に近いことが好ましい。
上層膜は液浸液に不溶であることが好ましく、水に不溶であることがより好ましい。
上層膜の後退接触角は、液浸液追随性の観点から、上層膜に対する液浸液の後退接触角
(23℃)が50〜100度であることが好ましく、80〜100度であることがより好ましい。
液浸露光においては、露光ヘッドが高速でウエハ上をスキャンし露光パターンを形成していく動きに追随して、液浸液がウエハ上を動く必要があることから、動的な状態における感活性光線性又は感放射線性膜に対する液浸液の接触角が重要になり、より良好なレジスト性能を得るためには、上記範囲の後退接触角を有することが好ましい。
<着色硬化性樹脂組成物>
次に、本発明のパターン形成方法で用いる着色硬化性樹脂組成物について、詳細に説明する。着色硬化性樹脂組成物は、カラーフィルタ用のレジスト(以下、「カラーレジスト」ともいう。)に用いられる。
カラーレジストとして具体的には、富士フイルム株式会社製、RGB 5000 series/6000 series(商品名)、CMY 3000series(商品名)を好適に用いることができる。また、特許5274680号、特許5283747号、特許05334624号、特許05339781号、特許05340102号、特許05344843号、特許5355069号、特許5367060号、特許5371313号、特許5371449号、特許5374189号、特許5398586号、特許5448352号、特許5448416号の各公報に開示されたものを参照することができ、本明細書に引用して取り込む。
以下に、カラーフィルタの形成材料と形成方法との一例ついて、詳細に説明する。
カラーフィルタの各画素は、下記の着色硬化性樹脂組成物を硬化して形成することができる。着色硬化性樹脂組成物としては、アルカリ可溶性樹脂、重合性化合物、重合開始剤、及び着色剤を含有するものが挙げられる。
〔1〕アルカリ可溶性樹脂
アルカリ可溶性樹脂としては、分子中に少なくとも1つのアルカリ可溶性を促進する基を有するものが好ましい。耐熱性の観点からは、ポリヒドロキシスチレン系樹脂、ポリシロキサン系樹脂、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。現像性制御の観点からは、アクリル系樹脂、アクリルアミド系樹脂、アクリル/アクリルアミド共重合体樹脂が好ましい。アルカリ可溶性を促進する基(以下、酸性基ともいう)としては、例えば、カルボキシ基、リン酸基、スルホン酸基、フェノール性水酸基などが挙げられる。溶媒に可溶で弱アルカリ水溶液により現像可能なものが好ましく、(メタ)アクリル酸が特に好ましいものとして挙げられる。これら酸性基は、1種のみであってもよいし、2種以上であってもよい。
アルカリ可溶性樹脂としては、主鎖もしくは側鎖にカルボキシ基を有するポリマーが好ましい。具体的には、メタクリル酸共重合体、アクリル酸共重合体、イタコン酸共重合体、クロトン酸共重合体、マレイン酸共重合体、部分エステル化マレイン酸共重合体、ノボラック型樹脂などのアルカリ可溶性フェノール樹脂等、並びに側鎖にカルボン酸を有する酸性セルロース誘導体、水酸基を有するポリマーに酸無水物を付加させたもの挙げられる。特に、(メタ)アクリル酸と、これと共重合可能な他の単量体との共重合体が好適である。(メタ)アクリル酸と共重合可能な他の単量体としては、アルキル(メタ)アクリレート、アリール(メタ)アクリレート、ビニル化合物などが挙げられる。アルキル(メタ)アクリレート及びアリール(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n−ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、(イソ)ペンチル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、ヘキシル(メタ)アクリレート、オクチル(メタ)アクリレート、フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、トリル(メタ)アクリレート、ナフチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等、ビニル化合物としては、スチレン、α−メチルスチレン、ビニルトルエン、グリシジルメタクリレート、アクリロニトリル、ビニルアセテート、N−ビニルピロリドン、テトラヒドロフルフリルメタクリレート、ポリスチレンマクロモノマー、ポリメチルメタクリレートマクロモノマー等、特開平10−300922号公報に記載のN位置換マレイミドモノマーとして、N−フェニルマレイミド、N−シクロヘキシルマレイミド等を挙げることができる。
アルカリ可溶性樹脂としては、重合性基を有することも好ましい。重合性基としては、エチレン性不飽和結合性基が例示される。具体的には、(メタ)アクリロイル基及びビニル基が好ましく、(メタ)アクリロイル基がさらに好ましい。アクリル系ポリマーは、(メタ)アクリル酸、(メタ)アクリル酸エステル、(メタ)アクリルアミドのいずれか1種以上由来の繰り返し単位を有するビニル重合体が好ましい。
重合性のアルカリ可溶性樹脂の合成は、特開2003−262958号公報の段落番号0027〜0057に記載の合成方法に基づいて行なうことができる。この中では、同公報中の合成方法1によるのが好ましい。その例示化合物としては、上記特開2003−262958号公報の段落番号0058〜0061に記載の化合物を参照することができ、本明細書に取り込む。具体的な化合物例としては、下記化合物(樹脂P−1)(重量平均分子量:14000)を挙げることができる。
アルカリ可溶性樹脂は、下記式の重合体であることも好ましい。
X1は、単結合又は連結基を表す。連結基の例としては上記の連結基Lが挙げられる。なかでも単結合が好ましい。
X1、RY1は、水素原子、メチル基、エチル基、プロピル基、又はシアノ基であり、水素原子又はメチル基が好ましい。
は、酸性基である。その好ましいものは、上記と同義である。
Y2は、置換基を表し、中でも、アルキル基(炭素数1〜12が好ましく、1〜6がより好ましく、1〜3が特に好ましい)、アリール基(炭素数6〜22が好ましく、6〜14がより好ましく、6〜10が特に好ましい)、アラルキル基(炭素数7〜23が好ましく、7〜15がより好ましく、7〜11が特に好ましい)が好ましい。これらの基はさらに置換基を有してもよく、さらなる置換基としては、ヒドロキシル基、カルボキシ基等が挙げられる。
nx、nyはモル分率であり、nx+nyは1未満でもよいが(他の繰り返し単位を有してよいという意味)、1であることが好ましい。nxは下限としては、0.05以上が好ましく、0.1以上がより好ましく、0.2以上が特に好ましい。上限としては、0.7以下が好ましく、0.6以下がより好ましく、0.5以下が特に好ましい。nyは下限としては0.3以上が好ましく、0.4以上がより好ましく、0.6以上が特に好ましい。上限としては、0.9以下が好ましく、0.8以下がより好ましい。
アルカリ可溶性樹脂は、23℃で0.1質量%以上の濃度の水酸化テトラメチルアンモニウム(TMAH)水溶液に可溶であるものが好ましい。さらに、1質量%以上のTMAH水溶液に可溶であること、さらに2質量%以上のTMAH水溶液に可溶であることが好ましい。
アルカリ可溶性樹脂の酸価としては、好ましくは30〜200mgKOH/g、さらに好ましくは70〜120mgKOH/gである。このような範囲とすることにより、未露光部の現像残渣を効果的に低減できる。
アルカリ可溶性樹脂の重量平均分子量(Mw)としては、2000〜50000が好ましく、7000〜20000が特に好ましい。
アルカリ可溶性樹脂の含有量としては、着色硬化性樹脂組成物の全固形分に対して、10〜50質量%が好ましく、より好ましくは15〜40質量%であり、特に好ましくは20〜35質量%である。
アルカリ可溶性樹脂は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
〔2〕重合性化合物
重合性化合物は、分子内に重合性基を有する化合物であればよいが、なかでもエチレン性不飽和二重結合を有するモノマー(以下、「特定モノマー」ということがある)が好ましい。特定モノマーは、多官能のモノマーであることが好ましい。
特定モノマーは、1種単独で用いてもよいし、2種以上を併用してもよい。
特定モノマーは、(メタ)アクリレートモノマーが好ましい。これらの具体的な化合物としては、特開2009−288705号公報の段落番号0095〜0108に記載されている化合物を本実施形態においても好適に用いることができる。特定モノマーは、さらに、下記式(MO−1)〜(MO−6)で表されるものであることが好ましい。
式中、nは、それぞれ、0〜14であり、mは、それぞれ、1〜8である。1分子内に複数存在するR、T及びZは、それぞれ、同一であっても、異なっていてもよい。Tがオキシアルキレン基の場合には、炭素原子側の末端がRに結合する。Rのうち少なくとも1つは、重合性基である。
nは、0〜5が好ましく、1〜3がより好ましい。
mは、1〜5が好ましく、1〜3がより好ましい。
上記式(MO−1)〜(MO−6)で表される重合性化合物の具体例としては、特開2007−269779号公報の段落番号0248〜0251に記載されている化合物を、
本実施形態においても好適に用いることができる。
中でも、重合性化合物としては、ジペンタエリスリトールトリアクリレート(市販品としては KAYARAD D−330;日本化薬株式会社製)、ジペンタエリスリトールテトラアクリレート(市販品としては KAYARAD D−320;日本化薬株式会社製)ジペンタエリスリトールペンタ(メタ)アクリレート(市販品としては KAYARAD D−310;日本化薬株式会社製)、ジペンタエリスリトールヘキサ(メタ)アクリレート(市販品としては KAYARAD DPHA;日本化薬株式会社製)、及びこれらの(メタ)アクリロイル基がエチレングリコール、プロピレングリコール残基を介している構造や、ジグリセリンEO(エチレンオキシド)変性(メタ)アクリレート(市販品としては M−460;東亜合成製)が好ましい。これらのオリゴマータイプも使用できる。
重合性化合物の分子量は、特に限定されないが、300以上1500以下であることが好ましく、400以上700以下であることがより好ましい。
組成物中の全固形分に対して、重合性化合物の含有率は、1質量%〜50質量%の範囲であることが好ましく、3質量%〜40質量%の範囲であることがより好ましく、5質量%〜30質量%の範囲であることがさらに好ましい。この範囲内であると、屈折率や透明性を過度に低下させることなく、硬化性が良好で好ましい。重合性化合物は、1種を単独で用いても2種以上を組み合わせて用いてもよい。
〔3〕重合開始剤
光重合開始剤としては、特に制限はなく、公知の光重合開始剤の中から適宜選択することができる。例えば、紫外領域から可視領域の光線に対して感光性を有する化合物が好ましい。光重合開始剤は、光ラジカル重合開始剤が好ましい。また、光重合開始剤は、約300nm〜800nm(330nm〜500nmがより好ましい。)の範囲内に少なくとも約50のモル吸光係数を有する化合物を少なくとも1種含有していることが好ましい。
光重合開始剤としては、例えば、ハロゲン化炭化水素誘導体(例えば、トリアジン骨格を有するもの、オキサジアゾール骨格を有するものなど)、アシルホスフィンオキサイド等のアシルホスフィン化合物、ヘキサアリールビイミダゾール、オキシム誘導体等のオキシム化合物、有機過酸化物、チオ化合物、ケトン化合物、芳香族オニウム塩、ケトオキシムエーテル、アミノアセトフェノン化合物、ヒドロキシアセトフェノンなどが挙げられる。トリアジン骨格を有するハロゲン化炭化水素化合物としては、例えば、若林ら著、Bull.Chem.Soc.Japan,42、2924(1969)記載の化合物、英国特許1388492号明細書記載の化合物、特開昭53−133428号公報に記載の化合物、独国特許3337024号明細書記載の化合物、F.C.Schaefer著のJ.Org.Chem.;29、1527(1964)記載の化合物、特開昭62−58241号公報に記載の化合物、特開平5−281728号公報に記載の化合物、特開平5−34920号公報に記載の化合物、米国特許第4212976号明細書に記載されている化合物などが挙げられる。
光重合開始剤は、露光感度の観点から、トリハロメチルトリアジン化合物、ベンジルジメチルケタール化合物、α−ヒドロキシケトン化合物、α−アミノケトン化合物、アシルホスフィン化合物、フォスフィンオキサイド化合物、メタロセン化合物、オキシム化合物、トリアリルイミダゾールダイマー、オニウム化合物、ベンゾチアゾール化合物、ベンゾフェノン化合物、アセトフェノン化合物、シクロペンタジエン−ベンゼン−鉄錯体、ハロメチルオキサジアゾール化合物および3−アリール置換クマリン化合物からなる群より選択される化合物が好ましい。α−アミノケトン化合物の例としては、2−メチル−1−フェニル−2−モルフォリノプロパン−1−オン、2−メチル−1−[4−(ヘキシル)フェニル]−2−モルフォリノプロパン−1−オン、2−エチル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−ベンジル−2−ジメチルアミノ−1−(4−モルフォリノフェニル)−ブタノン−1、2−(ジメチルアミノ)−2−[(4−メチルフェニル)メチル]−1−[4−(4−モルホリニル)フェニル]−1−ブタノン等が挙げられる。α−アミノケトン化合物の市販品としては、IRGACURE 907、IRGACURE 369、及び、IRGACURE 379(商品名:いずれもBASF社製)などが挙げられる。α−ヒドロキシケトン化合物の市販品としては、IRGACURE 184、DAROCUR 1173、IRGACURE 500、IRGACURE 2959,IRGACURE 127(商品名:いずれもBASF社製)などが挙げられる。アシルホスフィン化合物の市販品としては、IRGACURE 819やIRGACURE TPO(商品名:いずれもBASF社製)が挙げられる。
光重合開始剤は、オキシム化合物を用いることも好ましい。オキシム化合物の具体例としては、特開2001−233842号公報に記載の化合物、特開2000−80068号公報に記載の化合物、特開2006−342166号公報に記載の化合物、特開2016−21012号公報に記載の化合物を用いることができる。
好適に用いることのできるオキシム化合物としては、例えば、3−ベンゾイルオキシイミノブタン−2−オン、3−アセトキシイミノブタン−2−オン、3−プロピオニルオキシイミノブタン−2−オン、2−アセトキシイミノペンタン−3−オン、2−アセトキシイミノ−1−フェニルプロパン−1−オン、2−ベンゾイルオキシイミノ−1−フェニルプロパン−1−オン、3−(4−トルエンスルホニルオキシ)イミノブタン−2−オン、及び2−エトキシカルボニルオキシイミノ−1−フェニルプロパン−1−オンなどが挙げられる。また、J.C.S.Perkin II(1979年)pp.1653−1660、J.C.S.Perkin II(1979年)pp.156−162、Journal of Photopolymer Science and Technology(1995年)pp.202−232、特開2000−66385号公報に記載の化合物、特開2000−80068号公報、特表2004−534797号公報、特開2006−342166号公報の各公報に記載の化合物等も挙げられる。市販品ではIRGACURE OXE01、IRGACURE OXE02、IRGACURE−OXE03、IRGACURE−OXE04(以上、BASF社製)も好適に用いられる。また、TR−PBG−304(常州強力電子新材料有限公司社製)、アデカアークルズNCI−930((株)ADEKA製)、アデカオプトマーN−1919((株)ADEKA製、特開2012−14052号公報に記載の光重合開始剤2)を用いることができる。
また上記記載以外のオキシム化合物として、カルバゾールN位にオキシムが連結した特表2009−519904号公報に記載の化合物、ベンゾフェノン部位にヘテロ置換基が導入された米国特許第7626957号公報に記載の化合物、色素部位にニトロ基が導入された特開2010−15025号公報及び米国特許公開2009−292039号記載の化合物、国際公開WO2009−131189号公報に記載のケトオキシム化合物、トリアジン骨格とオキシム骨格を同一分子内に含有する米国特許7556910号公報に記載の化合物、405nmに吸収極大を有し、g線光源に対して良好な感度を有する特開2009−221114号公報に記載の化合物、特開2014−137466号公報の段落番号0076〜0079に記載された化合物などを用いてもよい。
好ましくは、例えば、特開2013−29760号公報の段落番号0274〜0275を参酌することができ、この内容は本明細書に組み込まれる。
具体的には、オキシム化合物としては、下記式(OX−1)で表される化合物が好ましい。オキシム化合物は、オキシムのN−O結合が(E)体のオキシム化合物であってもよく、オキシムのN−O結合が(Z)体のオキシム化合物であってもよく、(E)体と(Z)体との混合物であってもよい。
式(OX−1)中、RおよびBは各々独立に一価の置換基を表し、Aは二価の有機基を表し、Arはアリール基を表す。
式(OX−1)中、Rで表される一価の置換基としては、一価の非金属原子団であることが好ましい。
一価の非金属原子団としては、アルキル基、アリール基、アシル基、アルコキシカルボニル基、アリールオキシカルボニル基、複素環基、アルキルチオカルボニル基、アリールチオカルボニル基等が挙げられる。また、これらの基は、1以上の置換基を有していてもよい。また、前述した置換基は、更に他の置換基で置換されていてもよい。
置換基としてはハロゲン原子、アリールオキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基、アシルオキシ基、アシル基、アルキル基、アリール基等が挙げられる。
式(OX−1)中、Bで表される一価の置換基としては、アリール基、複素環基、アリールカルボニル基、又は、複素環カルボニル基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
式(OX−1)中、Aで表される二価の有機基としては、炭素数1〜12のアルキレン基、シクロアルキレン基、アルキニレン基が好ましい。これらの基は1以上の置換基を有していてもよい。置換基としては、前述した置換基が例示できる。
光重合開始剤は、例えば、フルオレン環を有するオキシム化合物を用いることもできる。フルオレン環を有するオキシム化合物の具体例としては、特開2014−137466号公報に記載の化合物が挙げられる。この内容は本明細書に組み込まれることとする。
光重合開始剤は、例えば、フッ素原子を有するオキシム化合物を用いることもできる。フッ素原子を有するオキシム化合物の具体例としては、特開2010−262028号公報に記載の化合物、特表2014−500852号公報に記載の化合物24、36〜40、特開2013−164471号公報に記載の化合物(C−3)などが挙げられる。この内容は本明細書に組み込まれることとする。
光重合開始剤は、例えば、ニトロ基を有するオキシム化合物を用いることができる。ニトロ基を有するオキシム化合物は、二量体とすることも好ましい。ニトロ基を有するオキシム化合物の具体例としては、特開2013−114249号公報の段落番号0031〜0047、特開2014−137466号公報の段落番号0008〜0012、0070〜0079に記載されている化合物、特許4223071号公報の段落番号0007〜0025に記載されている化合物、アデカアークルズNCI−831((株)ADEKA製)が挙げられる。
光重合開始剤は、例えば、ベンゾフラン骨格を有するオキシム化合物を用いることもできる。具体例としては、国際公開WO2015/036910公報に記載されるOE−01〜OE−75が挙げられる。
好ましく使用されるオキシム化合物の具体例を以下に示すが、これらに限定されるものではない。
オキシム化合物は、350〜500nmの波長領域に極大吸収波長を有する化合物が好ましく、360〜480nmの波長領域に極大吸収波長を有する化合物がより好ましく、365nm及び405nmの吸光度が高い化合物が特に好ましい。
オキシム化合物の365nm又は405nmにおけるモル吸光係数は、感度の観点から、1,000〜300,000であることが好ましく、2,000〜300,000であることがより好ましく、5,000〜200,000であることが特に好ましい。化合物のモル吸光係数の測定は、公知の方法を用いることができるが、具体的には、例えば、紫外可視分光光度計(Varian社製Cary−5 spectrophotometer)にて、酢酸エチル溶媒を用い、0.01g/Lの濃度で測定することが好ましい。
光重合開始剤は、オキシム化合物とα−アミノケトン化合物とを含むことも好ましい。両者を併用することで、現像性が向上し、矩形性に優れたパターンを形成しやすい。オキシム化合物とα−アミノケトン化合物とを併用する場合、オキシム化合物100質量部に対して、α−アミノケトン化合物が50〜600質量部が好ましく、150〜400質量部がより好ましい。
光重合開始剤の含有量は、着色硬化性樹脂組成物の全固形分に対し0.1〜50質量%が好ましく、より好ましくは0.5〜30質量%であり、更に好ましくは1〜20質量%である。この範囲で、より良好な感度とパターン形成性が得られる。着色硬化性樹脂組成物は、光重合開始剤を、1種のみを含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合は、その合計量が上記範囲となることが好ましい。
〔4〕着色剤
着色剤は、特に限定されるものではなく、種々の染料や顔料を用いることができる。例えば、カラーフィルタの色画素を形成する赤色、マゼンタ色、黄色、青色、シアン色及び緑色等の有彩色系の着色剤(有彩色着色剤)、及びブラックマトリクス形成用に一般に用いられている黒色系の着色剤(黒色着色剤)のいずれをも用いることができる。本実施形態では、着色剤が、赤色、マゼンタ色、黄色、青色、シアン色及び緑色から選択される少なくとも1種であることが好ましい。
無機顔料としては、金属酸化物、金属錯塩等で示される金属化合物を挙げることができ、具体的には、鉄、コバルト、アルミニウム、カドミウム、鉛、銅、チタン、マグネシウム、クロム、亜鉛、アンチモン、銀等の金属酸化物、及び上記金属の複合酸化物を挙げることができる。チタンの窒化物、銀錫化合物、銀化合物なども使用することができる。
有機顔料としては、ペリレン顔料、ペリノン顔料、キナクリドン顔料、キナクリドンキノン顔料、アントラキノン顔料、アントアントロン顔料、ベンズイミダゾロン顔料、ジスアゾ顔料、アゾ顔料、インダントロン顔料、フタロシアニン顔料、トリアリールカルボニウム顔料、ジオキサジン顔料、アミノアントラキノン顔料、ジケトピロロピロール顔料、インジゴ顔料、チオインジゴ顔料、イソインドリン顔料、イソインドリノン顔料、ピラントロン顔料、又はイソビオラントロン顔料が挙げられる。
染料としては、例えば、トリアリールメタン系、ピラゾールアゾ系、アニリノアゾ系、トリフェニルメタン系、アントラキノン系、アンスラピリドン系、ベンジリデン系、オキソノール系、ピラゾロトリアゾールアゾ系、ピリドンアゾ系、シアニン系、フェノチアジン系、アゾメチン系、ピロロピラゾールアゾメチン系、キサテン系、フタロシアニン系、ベンゾピラン系、インジゴ系、ピロメテン系等の染料が使用できる。また、これらの染料の多量体を用いてもよい。
上記着色剤が粒子状の場合、その平均一次粒子径は、5nm以上が好ましく、30nm以上が特に好ましい。上限としては、1μm以下が好ましく、500nm以下がより好ましく、100nm以下が特に好ましい。
上記粒径の測定は、動的光散乱式粒径分布測定装置(日機装製 ナノトラック(Nanotrac)Wave−EX150[商品名])、株式会社堀場製作所社製 LB−500[商品名])を用いて行う。手順は以下のとおりである。試料分散物を20mlサンプル瓶に分取し、不溶性の溶媒(例えば水)により固形成分濃度が0.2質量%になるように希釈する。温度25℃で2mlの測定用石英セルを使用してデータ取り込みを50回行い、得られた「数平均」を平均粒子径とした。その他の詳細な条件等は必要によりJISZ8828:2013「粒子径解析−動的光散乱法」の記載を参照することができる。
着色剤の含有量としては、着色硬化性樹脂組成物の固形分中、10質量%以上であることが好ましく、20質量%以上がより好ましく、30質量%以上がさらに好ましい。上限については特に制限はないが、好ましくは80質量%以下であり、より好ましくは60質量%以下である。本発明の処理液によれば、このように多量に着色剤を含有していても、十分にカラーレジストを除去することができる。
〔5〕分散剤
着色硬化性樹脂組成物には分散剤を含有させてもよい。分散剤としては、高分子分散剤(例えば、ポリアミドアミンとその塩、ポリカルボン酸とその塩、高分子量不飽和酸エステル、変性ポリウレタン、変性ポリエステル、変性ポリ(メタ)アクリレート、(メタ)
アクリル系共重合体、ナフタレンスルホン酸ホルマリン縮合物)、及び、ポリオキシエチレンアルキルリン酸エステル、ポリオキシエチレンアルキルアミン、アルカノールアミン、顔料分散剤等を挙げることができる。
高分子分散剤は、その構造からさらに直鎖状高分子、末端変性型高分子、グラフト型高分子、ブロック型高分子に分類することができる。
顔料分散剤の具体例としては、BYK Chemie社製「Disperbyk−101(ポリアミドアミン燐酸塩)、107(カルボン酸エステル)、110(酸基を含む共重合物)、130(ポリアミド)、161、162、163、164、165、166、170(高分子共重合物)」、「BYK−P104、P105(高分子量不飽和ポリカルボン酸)、BYK2001」、EFKA社製「EFKA4047、4050、4010、4165(ポリウレタン系)、EFKA4330、4340(ブロック共重合体)、4400、4402(変性ポリアクリレート)、5010(ポリエステルアミド)、5765(高分子量ポリカルボン酸塩)、6220(脂肪酸ポリエステル)、6745(フタロシアニン誘導体)、6750(アゾ顔料誘導体)」、味の素ファンテクノ社製「アジスパーPB821、PB822」、共栄社化学社製「フローレンTG−710(ウレタンオリゴマー)」、「ポリフローNo.50E、No.300(アクリル系共重合体)」、楠本化成社製「ディスパロンKS−860、873SN、874、#2150(脂肪族多価カルボン酸)、#7004(ポリエーテルエステル)、DA−703−50、DA−705、DA−725」、花王社製「デモールRN、N(ナフタレンスルホン酸ホルマリン重縮合物)、MS、C、SN−B(芳香族スルホン酸ホルマリン重縮合物)」、「ホモゲノールL−18(高分子ポリカルボン酸)」、「エマルゲン920、930、935、985(ポリオキシエチレンノニルフェニルエーテル)」、「アセタミン86(ステアリルアミンアセテート)」、ルーブリゾール社製「ソルスパース5000(フタロシアニン誘導体)、22000(アゾ顔料誘導体)、13240(ポリエステルアミン)、3000、17000、27000(末端部に機能部を有する高分子)、24000、28000、32000、38500(グラフト型高分子)」、日光ケミカル社製「ニッコールT106(ポリオキシエチレンソルビタンモノオレート)、MYS−IEX(ポリオキシエチレンモノステアレート)」等が挙げられる。
分散剤の濃度としては、着色剤1質量部に対して、1〜100質量部であることが好ましく、3〜100質量部がより好ましく、5〜80質量部がさらに好ましい。また、着色硬化性樹脂組成物の全固形分に対し、5〜30質量%であることが好ましい。
分散剤は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。
〔6〕界面活性剤
着色硬化性樹脂組成物には、塗布性をより向上させる観点から、各種の界面活性剤を添加してもよい。界面活性剤としては、フッ素系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、アニオン系界面活性剤、シリコーン系界面活性剤などの各種界面活性剤を使用できる。
界面活性剤の含有する場合の含有量は、着色硬化性樹脂組成物の固形分全質量に対して、1質量%〜40質量%の範囲であることが好ましく、5質量%〜20質量%がより好ましい。
着色硬化性樹脂組成物は、その他の成分を適宜含有させることもできる。その他の成分としては、例えば、有機溶媒、紫外線吸収剤、密着向上剤、増感色素、共増感剤、希釈剤、可塑剤、感脂化剤などが挙げられる。
また、本発明は、上記した本発明のパターン形成方法を含む、電子デバイスの製造方法にも関する。
本発明のパターン形成方法を含む、電子デバイスの製造方法により製造された電子デバイスは、電気電子機器(家電、OA(Office Automation)・メディア関連機器、光学用機器及び通信機器等)に、好適に、搭載されるものである。
以下に、本発明を実施例により詳細に説明するが、本発明の内容がこれにより限定されるものではない。なお、特に断りのない限り、「部」、「%」は質量基準である。
<A−1.半導体製造用処理液:実施例1〜39、比較例1〜15>
〔第4級アンモニウム化合物〕
以下を第4級アンモニウム化合物として用いた。これらの第4級アンモニウム化合物を国際公開第WO12/043496号公報に記載されている、炭化ケイ素を用いた吸着精製に加え、フィルター濾過を繰り返すことで精製を行った。
S−1:TMAH(Tetramethylammonium hydroxide)
S−2:AH−212(ジメチルビス(2−ヒドロキシエチル)アンモニウムヒドロキシド)
〔添加剤〕
以下を添加剤として用いた。
AA−1:ニューコールB4−SN(日本乳化剤(株))(アニオン界面活性剤)
AN−1:Surfynol 465(Air Products社製)(ノニオン界面活性剤)
AN−2:DKS NL−15(第一工業製薬(株))(ノニオン界面活性剤)
AN−3:ニューコール610(日本乳化剤(株))(ノニオン界面活性剤)
AC−1:テクスノールR2(日本乳化剤(株))(カチオン界面活性剤)
AH−1:エチレンジアミン4酢酸(キレート剤)
AH−2:ジエチレントリアミンペンタ酢酸(キレート剤)
〔水〕
水は、特開2007―254168号公報に記載されている方法により精製を行い、液中のメタル含有量が0.001質量ppt未満であることを確認した後、半導体製造用処理液の調整に用いた。
<A−2.現像液の調製:実施例1〜39、比較例1〜15>
表1−1〜表1−3は、半導体製造用処理液に対する第4級アンモニウム化合物及び添加剤の仕込み量の比率を示す。残部は水として、表1−1〜表1−3に示す比率で混合液を各々1,000g調製した。得られた混合液を、フィルター濾過を繰り返すことにより精製し、金属原子の調整を行った。このようにして得られた半導体製造用処理液を現像液とした。
上述した半導体製造用処理液(現像液)の調製、充填及び保管などは全てISOクラス2以下を満たすレベルのクリーンルームで行った。また、使用した容器は、上記の水及び/又は本発明の半導体製造用処理液を用いて洗浄した後に使用した。
〔金属原子の測定〕
現像液中のNa、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子を以下のとおり測定した。
(1)標準物質と各金属原子の検量線の準備
清浄なガラス容器内に、超純水を計量して投入し、メディアン径60nmの測定対象の金属原子を10000個/mlの濃度となるように添加した。その後、超音波洗浄機で30分間処理して分散液を得た。得られた分散液を輸送効率測定用の標準物質として用いた。ICP(Inductively Coupled Plasma)標準液を用いて、各金属原子の検量線を作成した。
また、SP−ICP−MS法における輸送効率測定用の標準物質液として、清浄なガラス容器内へ超純水を計量投入し、メディアン径50nmの金粒子を10000個/mlの濃度となるように添加した後、超音波洗浄機で30分間処理した分散液を用いた。
(2)測定
ICP−MS装置(Inductively Coupled Plasma − Mass Spectrometry:誘導結合プラズマ質量分析装置)は、PFA製同軸型ネブライザ、石英製サイクロン型スプレーチャンバ、及び、石英製内径1mmトーチインジェクタを用いて、測定対象液を約0.2mL/minで吸引した。酸素添加量を0.1L/minとし、プラズマ出力を1600Wとして、アンモニアガスによりセル内をパージした。時間分解能は50μsにて解析を行った。
メーカー:PerkinElmer
型式:NexION350S。
また、粒子性金属の測定には、上述のICP-MS装置のSyngistix for ICP−MS ソフトウエアを使用した、SP−ICP−MSを用いた。
時間分解能は50μsにて解析を行った。上記した輸送効率測定用の標準物質液の測定結果及びその解析により定められた輸送効率、並びに、上記ICP標準液の測定結果及びその解析により定められた各金属原子における検量線に基づき、測定対象液の、対象原子を含む粒子性金属の濃度(Mp)を、上記分析ソフトウエアを用いて測定した。
上記の分析及び測定は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。測定結果を表2−1〜表2−6に示す。
〔金属原子の比率Tおよび粒子性金属の比率T
添加剤の全質量と金属原子の全質量との合計に対する、上記で得られた金属原子の全質量の比率Tを算出した。
=[金属原子の全質量]/[添加剤の全質量+金属原子の全質量]
また、添加剤の全質量と粒子性金属の全質量との合計に対する、上記で得られた粒子性金属の全質量の比率Tを算出した。
=[粒子性金属の全質量]/[添加剤の全質量+粒子性金属の全質量]
算出結果を表1−1〜表1−3及び表2−1〜表2−6に示す。
〔不純物の測定〕
現像液中の過酸化物、エステル化合物、アミン化合物、及び、キレート錯体の各質量の現像液に対する比率は、高速液体クロマトグラフィー(HPLC:(検出器RI))(日本分光株式会社社製、LC−2000)を用いて分析した。
現像液中の無機塩の全質量の現像液に対する比率は、イオンクロマトグラフ法(日本ダイオネクス株式会社製、DX―500)を用いて分析した。
上記の分析及び測定は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。結果を表2−1〜表2−3に示す。
<A−3.実施例1〜39、比較例1〜15>
〔欠陥の評価〕
ウェハ上表面検査装置(SP−5、KLA−Tencor社製)により、直径300mmのシリコン基板表面に存在する直径32nm以上の異物数及び各異物のアドレスを計測した。スピン回転ウェハ処理装置(イーケーシーテクノロジーズ社製)に、シリコン基板表面に存在する異物数を計測したウェハをセットした。セットされたウェハの表面、上述の半導体製造用処理液を1.5L/minの流量で1分間吐出した。その後、スピン乾燥を行った。ウェハ上表面検査装置を用いて、ウェハ上の異物数及びアドレスを計測した。上述の半導体製造用処理液をスピン乾燥した後に、新たに増加した異物に対して、欠陥解析装置 (SEM VISION G6、APPLIED MATERIALS社製)を用いてEDX(Energy dispersive X−ray spectrometry:エネルギー分散型X線分析)
による元素解析を行った。Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znを対象金属元素として、対象金属元素を含む異物をパーティクルとしてカウントした。得られたパーティクルの数を以下の評価基準に従って評価した。結果を表2−4〜表2−6に示す。
A:対象金属原子を含有した直径32nm以上のパーティクルの数が0個以上〜10
0個未満である。
B:対象金属原子を含有した直径32nm以上のパーティクルの数が100個以上〜300個未満である。
C:対象金属原子を含有した直径32nm以上のパーティクルの数が300個以上〜500個未満である。
D:対象金属原子を含有した直径32nm以上のパーティクルの数が500個以上〜700個未満である。
E:対象金属原子を含有した直径32nm以上のパーティクルの数が700個以上である。
<A−4.感活性光線性又は感放射線性樹脂組成物:実施例1〜39、比較例1〜15>
[合成例1:樹脂(1)の合成]
窒素気流下でシクロヘキサノン8.6gを3つ口フラスコに入れ、これを80℃に加熱した。その後、2−アダマンチルイソプロピルメタクリレート9.8gと、ジヒドロキシアダマンチルメタクリレート4.4gと、ノルボルナンラクトンメタクリレート8.9gと、重合開始剤V−601(和光純薬工業(株)製)をモノマーに対し8mol%とを、シクロヘキサノン79gに溶解し、モノマー溶液を調製した。得られたモノマー溶液を上記の80℃に加熱したフラスコ中に6時間かけて滴下した。滴下終了後、さらに80℃で2時間反応させた。得られた反応溶液を室温まで冷却した後、ヘキサン800ml/酢酸エチル200mlの混合溶液に20分かけて滴下した。析出した粉体を濾取した後、乾燥して、樹脂(1)を19g得た。得られた樹脂(1)は、ゲルパーミエーションクロマトグラフィー(GPC)(溶媒:THF(tetrahydrofuran))による標準ポリスチレン換算の重量平均分子量(Mw)が9800であり、分子量分散度(Mw/Mn)は1.9であった。得られた樹脂(1)の組成比(モル比)は、H−NMR(核磁気共鳴)測定により算出した。下記繰り返し単位の左から順に、39/20/41であった。
[合成例2:疎水性樹脂(C−1)の合成]
2−トリフルオロメチルメタクリル酸(3,5−ビス(1,1,1,3,3,3−ヘキサフルオロ−2−ヒドロキシプロパン−2−イル)シクロヘキシル)を0.06モル、(5−ノルボルネン−2−メチル)−1,1,1,3,3,3−ヘキサフルオロプロパン−2−オールを0.04モル調製した。この混合物を窒素雰囲気下、80℃にて攪拌しているところに、重合開始剤V−59(和光純薬工業(株)製)を1.5mol%加えて、3時間攪拌した。その後、3時間ごとに重合開始剤V−59を1.5mol%加えながら12時間攪拌し、反応させた。反応溶液をTHF(テトラヒドロフラン)20mLに溶解した後、室温まで冷却した。ヘキサン800mLを添加し、に晶析、析出した白色粉体を濾取し、疎水性樹脂(C−1)を得た。
H−NMRから求めたポリマー組成比は60/40(構造式左から順)であった。また、GPC測定により求めた標準ポリスチレン換算の重量平均分子量は8800、分散度は1.5であった。
〔感活性光線性又は感放射線性樹脂組成物の構成〕
以下を感活性光線性又は感放射線性樹脂組成物の成分として用意した。
樹脂(1) 2g
光酸発生剤(z2) 80mg
塩基性化合物(N,N−ジヒドロキシエチルアニリン) 7mg
疎水性樹脂(C−1) 2mg
溶剤(シクロヘキサノン/プロピレングリコールモノメチルエーテルアセテート)
60/40(質量比)
界面活性剤(メガファックF176(大日本インキ化学工業(株)製)(フッ素系))
3mg
<A−5.レジスト溶液の調製>
上記に示す成分を上記溶剤に溶解して、固形分濃度7質量%の溶液を調製した。この混合溶液を0.1μmのポリエチレンフィルターで濾過してポジ型レジスト溶液を調整した。
<A−6.着色硬化性樹脂組成物>
〔Green顔料分散液(顔料分散液1)〕
顔料としてC.I.ピグメント・グリーン36とC.I.ピグメント・イエロー139との100/55(質量比)混合物12.6部と、分散剤としてBYK2001(Disperbyk:ビックケミー(BYK)社製、固形分濃度45.1質量%)5.2部と、分散樹脂としてベンジルメタクリレート/メタクリル酸共重合体(酸価134mgKOH/g、Mw=30,000)2.7部と、溶媒としてプロピレングリコールモノメチルエーテルアセテート78.3部とからなる混合液を、ビーズミルにより15時間混合して、Green顔料分散液を調製した。
〔Red顔料分散液(顔料分散液2)〕
顔料としてC.I.ピグメントレッド254 12.1部と、分散剤としてBYK2001(Disperbyk:ビックケミー(BYK)社製、固形分濃度45.1質量%)10.4部と、分散樹脂としてベンジルメタクリレート/メタクリル酸共重合体(酸価1
34mgKOH/g、Mw=30,000)3.8部と、溶媒としてプロピレングリコールモノメチルエーテルアセテート73.7部とからなる混合液を、ビーズミルにより15時間混合して、Red顔料分散液を調製した。
〔Blue顔料分散液(顔料分散液3)〕
顔料としてC.I.ピグメント・ブルー15:6とC.I.ピグメント・バイオレット23との100/25(質量比)混合物14部と、分散剤としてBYK2001(Disperbyk:ビックケミー(BYK)社製、固形分濃度45.1質量%)4.7部と、分散樹脂としてベンジルメタクリレート/メタクリル酸共重合体(酸価134mgKOH/g、Mw=30,000)3.5部と、溶媒としてプロピレングリコールモノメチルエーテルアセテート77.8部とからなる混合液を、ビーズミルにより15時間混合して、Blue顔料分散液を調製した。
<A−7.カラーレジスト溶液の調製:実施例1〜39、比較例1〜15>
上記の顔料分散液1〜3のいずれかを用い、下記組成Aとなるように混合及び撹拌して着色硬化性樹脂組成物を調製した。
〔組成A〕
顔料分散液(上記顔料分散液1〜3のいずれか) 82.35部
アルカリ可溶性樹脂 2.05部
重合開始剤 1.2部
DPHA (重合性化合物) 1.4部
M−305 (重合性化合物) 1.4部
p−メトキシフェノール 0.001部
PEGMEA 7.4部
F781 4.2部
上記組成Aに含まれる各成分は下記の通りである。
重合開始剤:BASF社製 IRGACURE OXE01[商品名]
DPHA:日本化薬社製 KARAYAD DPHA[商品名]
ジペンタエリスリトールヘキサアクリレート
M−305:東亞合成社製 トリアクリレート及び
ペンタエリスリトールテトラアクリレートの混合物[商品名]
PEGMEA:プロピレングリコールモノメチルエーテルアセテート
F781:DIC(株)製 メガファックF−781[商品名]
アルカリ可溶性樹脂:(メタクリル酸ベンジル/メタクリル酸/メタクリル酸−2−ヒドロキシエチル共重合体(=60/22/18[モル比])、重量平均分子量:15,000、数平均分子量:8,000)
なお、重量平均分子量は、GPC(ゲル浸透クロマトグラフィー)法によるポリスチレン換算値として、測定した。
GPC法は、HLC−8020GPC(東ソー(株)製)を用い、カラムとしてTSKgel SuperHZM−H、TSKgel SuperHZ4000、TSKgel
SuperHZ2000(東ソー(株)製、4.6mmID×15cm)を、溶離液としてTHF(テトラヒドロフラン)を用いる方法に基づく。
<A−8.実施例1〜39、比較例1〜15:レジストパターン>
シリコンウエハ上に有機反射防止膜ARC29A(日産化学社製)を塗布し、205℃で、60秒間ベークを行い、78nmの反射防止膜を形成した。その上に調製したポジ型レジスト組成物を塗布し、130℃で、60秒間ベークを行い、250nmのレジスト膜
を形成した。得られたウエハーをArFエキシマレーザースキャナー(ASML社製 PAS5500/1100、NA0.75、σo/σi=0.85/0.55)を用いてパターン露光した。その後120℃で、90秒間加熱した後、上記表1−1〜表1−3に示す現像液で30秒間現像し、超純水でリンスした後、スピン乾燥してレジストパターンが形成されたシリコンウェハを得た。
〔レジストのパターン形状の評価〕
得られたパターンの形状を、走査型電子顕微鏡((株)日立製作所製S−4800)にて観察して評価した。また、パターンの(a)パターントップ部、(b)パターン中腹部、(c)パターン−基板界面の3点におけるパターン断面の線幅を測定し、(a)〜(c)の線幅差が5%未満のものを「矩形」、(a)の線幅が(b)よりも5%以上小さく、かつ(b)の線幅が(c)よりも5%以上小さいものを「順テーパー」、(a)の線幅が(b)よりも5%以上大きく、かつ(b)の線幅が(c)よりも5%以上大きいものを「逆テーパー」、(a)と(b)の線幅差が5%未満であり、かつ(b)の線が(c)よりも5%以上大きいものを「フッティング」、(b)と(c)の線幅差が5%未満であり、かつ(a)の線幅が(b)よりも5%以上大きいものを「T−Top」とそれぞれ定義した。評価結果を表2−4〜表2−6に示す。
〔パターン欠陥の評価〕
上記で作成したパターンを、ウェハ上表面検査装置(PUMA9850;KLA Tencor製)により、基板表面に存在する直径20nm以上の欠陥数を計測した。得られた欠陥数を下記基準に基づき評価した結果を表に示す。下記基準において、評価Cは、半導体製造用処理液として要求される欠陥の抑制能を達成している。
A:欠陥数が0〜500以下
B:欠陥数が500超〜1000以下
C:欠陥数が1000超〜3000個以下
D:欠陥数が3000超〜5000以下
E:欠陥数が5000超
<A−9.実施例1〜39、比較例1〜15:カラーフィルタ>
上記において調製された各色の着色硬化性樹脂組成物を、あらかじめヘキサメチルジシラザンを噴霧した8インチのシリコンウェハの上に塗布し、光硬化性の塗布膜を形成した。この塗布膜の乾燥膜厚が1.0μmになるように、100℃のホットプレートを用いて180秒間加熱処理(プリベーク)を行った。次いで、ステッパー露光装置FPA−3000i5+(Canon(株)製)を使用して、i線を、365nmの波長で1.0μm四方のベイヤーパターンマスクを通して50〜1000mJ/cmにて塗布膜に照射した(50mJ/cmずつ露光量を変化)。その後、照射された塗布膜が配置されているシリコンウェハをスピン・シャワー現像機(DW−30型;(株)ケミトロニクス製)の水平回転テーブル上に載置した。上記表1−1〜表1−3に示す現像液を用いて23℃で180秒間パドル現像を行い、シリコンウェハ上に着色パターンを形成した。
着色パターンが形成されたシリコンウェハを真空チャック方式で上記水平回転テーブルに固定した。その後、回転装置によってシリコンウェハを回転数50rpmで回転させつつ、その回転中心の上方より超純水を噴出ノズルからシャワー状にシリコンウェハ上に供給してリンス処理を行い、その後スプレー乾燥した。次に、得られたシリコンウェハを200℃のホットプレートにて5分間加熱し、カラーフィルタを配置したシリコンウェハを得た。
〔カラーレジストの直線性の評価〕
作製したカラーフィルタをガラス切りにて切り出し、その断面を、走査式電子顕微鏡(S−4800、日立株式会社製)を用いて、倍率15,000倍にて観察し、下記評価基準に従って評価した。評価結果を添加剤に対する金属原子の含有率とともに表2−4〜表2−6に示す。
A:パターンの線幅1.2μmに対して、線幅が1.08μm以上1.32μm以下であり、直線性よく形成されている。
B:パターンの線幅1.2μmに対して、線幅が1.02μm以上1.08μm未満の範囲、又は、1.32μmより大きく1.38μm以下の範囲である。
C:パターンの線幅1.2μmに対して、0.96μm以上1.02μm未満の範囲、又は、1.38μmより大きく1.44μm以下の範囲であり、実用上問題が生じない程度である。
D:パターンの線幅1.2μmに対して、0.9μm以上0.96μm未満の範囲、又は、1.44μmより大きく1.5μm以下の範囲であり、直線性が悪いが、実用上問題が生じない程度である。
E:パターンの線幅1.2μmに対して、0.9μm未満、又は、1.5μmより大きく、直線性が著しく悪い。
<B−1.半導体製造用処理液:実施例101〜152、比較例101〜102>
〔第4級アンモニウム化合物〕
上述の実施例1〜39及び比較例1〜15と同様にして、以下の第4級アンモニウム化合物を用いた。
S−1:TMAH(Tetramethylammonium hydroxide)
〔添加剤〕
以下を添加剤として用いた。
AA−2:ニューカルゲン FS−3(竹本油脂(株))(アニオン界面活性剤:アミン塩)
AA−3:ニューカルゲン FS−7(竹本油脂(株))(アニオン界面活性剤:アミン塩)
AA−4:エマール 20C(竹本油脂(株))(アニオン界面活性剤:エーテル系)
AN−4:Surfynol S420(Air Products社製)(ノニオン界面活性剤:アセチレン系)
AN−5:Surfynol S440(Air Products社製)(ノニオン界面活性剤:アセチレン系)
AN−1:Surfynol S465(Air Products社製)(ノニオン界面活性剤:アセチレン系)
AN−6:Surfynol S485(Air Products社製)(ノニオン界面活性剤:アセチレン系)
AN−7:オルフィン E1004(日信化学工業(株))(ノニオン界面活性剤:アセチレン系)
AN−8:オルフィン E1010(日信化学工業(株))(ノニオン界面活性剤:アセチレン系)
AN−9:オルフィン E1020(日信化学工業(株))(ノニオン界面活性剤:アセチレン系)
AN−10:ブラウノン EL−1502.2(青木油脂(株))(ノニオン界面活性剤:エーテル系)
AN−11:ブラウノン EL−1505(青木油脂(株))(ノニオン界面活性剤:エーテル系)
AN−12:ブラウノン EL−1507.5(青木油脂(株))(ノニオン界面活性剤:エーテル系)
AN−13:ブラウノン EL−1509.5(青木油脂(株))(ノニオン界面活性剤:エーテル系)
AN−14:ブラウノン L−207(青木油脂(株))(ノニオン界面活性剤:アミン系)
AN−15:ブラウノン L−220(青木油脂(株))(ノニオン界面活性剤:アミン系)
AN−16:レオドール TW−L120(花王(株))(ノニオン界面活性剤:脂肪酸エステル系)
AN−17:レオドール SP−L10(花王(株))(ノニオン界面活性剤:脂肪酸エステル系)
AN−18:レオドール 430V(花王(株))(ノニオン界面活性剤:脂肪酸エステル系)
AC−2:パイオニン B−251(竹本油脂(株))(カチオン界面活性剤:ピリジニウム塩系)
AC−3:パイオニン B−111(竹本油脂(株))(カチオン界面活性剤:ピリジニウム塩系)
AC−4:アンヒトール 24B(花王(株))(カチオン界面活性剤:ベタイン系)
AH−2:ジエチレントリアミンペンタ酢酸(キレート剤)
〔水〕
水は、上述の実施例1〜39及び比較例1〜15と同様である。
<B−2.現像液の調製:実施例101〜152、比較例101〜102>
表3−1〜表3−4は、半導体製造用処理液に対する第4級アンモニウム化合物及び添加剤の仕込み量の比率を示す。残部は水として、表3−1〜表3−4に示す比率で混合液を各々1,000g調製した。得られた混合液を、上述の実施例1〜39及び比較例1〜15と同様にして得られた半導体製造用処理液を現像液とした。
上述の半導体製造用処理液(現像液)の調製、充填、保管及び使用した容器などは全て、上述の実施例1〜39及び比較例1〜15と同様である。
〔金属原子の測定〕
現像液中のNa、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群より選択される1種又は2種以上の金属原子の測定は、上述の実施例1〜39及び比較例1〜15と同様である。
〔金属原子の比率T及び粒子性金属の比率T
金属原子の比率T及び粒子性金属の比率Tは、上述の実施例1〜39及び比較例1〜15と同様にして算出した。算出結果を表3−1〜表3−4及び表4−1〜表4−8に示す。


<B−3.実施例101〜152、比較例101〜102>
〔欠陥の評価〕
上述の実施例1〜39及び比較例1〜15と同様にして評価した。結果を表4−5〜表4−8に示す。
<B−4.感活性光線性又は感放射線性樹脂組成物:実施例101〜152、比較例101〜102>
感活性光線性又は感放射線性樹脂組成物の成分は、上述の実施例1〜39及び比較例1〜15と同様である。
<B−5.レジスト溶液の調製:実施例101〜152、比較例101〜102>
レジスト溶液の調製は、上述の実施例1〜39及び比較例1〜16と同様である。
<B−6.実施例101〜152、比較例101:レジストパターン>
実施例1〜39及び比較例1〜16のレジストパターンと同様の方法で、レジストパターンが形成されたシリコンウェハを得た。
<B−7.パターン欠陥性能の評価:実施例101〜152、比較例101〜102>
上述した実施例101〜152及び比較例101〜102で得られたパターンについて、ウェハ上表面検査装置(PUMA9850;KLA Tencor製)により、基板表面に存在する直径20nm以上の欠陥数を計測した。得られた欠陥数を下記基準に基づき評価した結果を表4−5〜表4−8に示す。下記基準において、評価Cは、半導体製造用処理液として要求される欠陥の抑制能を達成している。
A:欠陥数が0〜500以下
B:欠陥数が500超〜1000以下
C:欠陥数が1000超〜3000個以下
D:欠陥数が3000超〜5000以下
E:欠陥数が5000超
<B−8.パターン倒れの評価:実施例101〜152、比較例101>
上述のパターン欠陥性能の評価で計測した欠陥に対し、パターン倒れが占める割合を下記基準に基づき評価した。その結果を表4−5〜表4−8に示す。
A:0.5%以下
B:0.5〜0.8%以下
C:0.8〜0.1%以下
D:1.0〜2.0%以下
E:2.0%以上
<C.実施例153>
実施例148の処理液を、さらに高密度ポリエチレン製ろ過機にセットされたナイロンフィルター5A(ポール社製ウルチプリーツ−Pナイロン、20インチ、孔径20nm)を用いてフィルタリングした。欠陥性能の評価を実施例101〜152及び比較例101〜102と同様に行った。さらに、実施例101〜152及び比較例101〜102と同様にレジスト溶液を調製し、実施例101〜152及び比較例101〜102と同様に、欠陥性能、パターン欠陥性能及びパターン倒れの評価を行なった。欠陥性能、パターン欠陥性能及びパターン倒れの評価結果を表4−8に表す。
<D.実施例154>
実施例153で使用したフィルターを、孔径が10nmであり、母体がナイロン製である精密濾過膜(日本インテグリス株式会社製)に変更し、さらに、ろ過温度を15℃とした他は実施例153と同様にして、欠陥性能、パターン欠陥性能及びパターン倒れの評価を行った。実施例153と同様の結果が得られた。
<E.実施例155>
実施例1で、着色硬化性樹脂組成物中のF781を下記F−1に変更した他は実施例1と同様にして、着色硬化性樹脂組成物を準備し、カラーレジスト溶液を調製した。調製したカラーレジスト溶液を使用して、実施例1と同様の方法で、パターン直線性の評価を行ったところ、同様の結果が得られた。
F−1:下記構造式で表される樹脂の混合物(Mw=14000)をPEGMEAの0.2%溶液で溶解した。

Claims (24)

  1. 下記一般式(N)で表される第4級アンモニウム化合物と、
    アニオン界面活性剤、ノニオン界面活性剤、カチオン界面活性剤、及び、キレート剤からなる群より選択される少なくとも1種の添加剤と、
    水と
    を含む半導体製造用処理液であって、
    前記半導体製造用処理液は現像液であり、
    Na、K、Ca、Fe、Cu、Mg、Mn、Li、Al、Cr、Ni、及び、Znからなる群に属する1種又は2種以上の金属原子を含み、当該金属原子はすべて、前記半導体製造用処理液に対する含有率が各々1質量ppq〜1000質量pptであり
    前記金属原子の全質量は、前記添加剤の全質量と前記金属原子の全質量との合計に対して、1質量ppt〜1質量ppmである半導体製造用処理液。
    一般式(N)中、RN1〜RN4は、各々独立に、アルキル基、フェニル基、ベンジル基又はシクロヘキシル基を表し、これらの基は置換基を有していてもよい。
  2. 前記金属原子の全質量は、前記添加剤の全質量と前記金属原子の全質量との合計に対して、1質量ppb〜1質量ppmである請求項1に記載の半導体製造用処理液。
  3. 前記金属原子のSP−ICP−MS法により測定される粒子性金属の全質量は、前記添加剤の全質量と前記粒子性金属の全質量との合計に対して、0.1質量ppt〜0.1質量ppmである請求項1又は2に記載の半導体製造用処理液。
  4. 前記金属原子のSP−ICP−MS法により測定される粒子性金属の全質量は、前記添加剤の全質量と前記粒子性金属の全質量との合計に対して、0.1質量ppt〜1質量ppbである請求項1〜3のいずれか1項に記載の半導体製造用処理液。
  5. 前記半導体製造用処理液に対して、前記第4級アンモニウム化合物を25質量%以下含み、前記添加剤を1質量%以下含む請求項1〜4のいずれか1項に記載の半導体製造用処理液。
  6. Na、K、及び、Caからなる群に属する1種又は2種以上の金属原子を含み当該金属原子はすべて、前記半導体製造用処理液に対する含有率が各々1質量ppq〜1000質量pptである、請求項1〜5のいずれか1項に記載の半導体製造用処理液。
  7. Naを含み、前記半導体製造用処理液に対するNaの含有率が1質量ppq〜123質量pptである、請求項1〜6のいずれか1項に記載の半導体製造用処理液。
  8. Kを含み、前記半導体製造用処理液に対するKの含有率が1質量ppq〜4.5質量pptである、請求項1〜6のいずれか1項に記載の半導体製造用処理液。
  9. Caを含み、前記半導体製造用処理液に対するCaの含有率が1質量ppq〜215質量pptである、請求項1〜6のいずれか1項に記載の半導体製造用処理液。
  10. 前記添加剤として、前記ノニオン界面活性剤を少なくとも含み、
    前記ノニオン界面活性剤のグリフィン式により算出されたHLBは、8以上である請求項1〜9のいずれか1項に記載の半導体製造用処理液。
  11. 前記添加剤として、前記ノニオン界面活性剤を少なくとも含み、
    前記ノニオン界面活性剤として、下記一般式(A1)で表される化合物を少なくとも含む請求項1〜10のいずれか1項に記載の半導体製造用処理液。
    一般式(A1)中、
    a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
    a1及びLa2は、それぞれ独立に、単結合又は2価の連結基を表す。
  12. 前記添加剤を2種以上含む請求項1〜のいずれか1項に記載の半導体製造用処理液。
  13. 前記添加剤として、2種以上の前記ノニオン界面活性剤を含む請求項1〜及び12のいずれか1項に記載の半導体製造用処理液。
  14. 前記2種以上のノニオン界面活性剤として、グリフィン式により算出されたHLBが12以上のノニオン界面活性剤を少なくとも1種と、グリフィン式により算出されたHLBが10以下であるノニオン界面活性剤を少なくとも1種とを含む請求項13に記載の半導体製造用処理液。
  15. グリフィン式により算出されたHLBが12以上の前記ノニオン界面活性剤の全質量は、グリフィン式により算出されたHLBが10以下の前記ノニオン界面活性剤の全質量に対し、0.5〜4である請求項14に記載の半導体製造用処理液。
  16. 前記添加剤として、前記ノニオン界面活性剤を少なくとも含み、
    前記ノニオン界面活性剤として、下記一般式(A1)で表される化合物を少なくとも含む請求項1〜10及び1215のいずれか1項に記載の半導体製造用処理液。
    一般式(A1)中、
    a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
    a1及びLa2は、それぞれ独立に、単結合又は2価の連結基を表す。
  17. 前記添加剤として、少なくとも2種の前記ノニオン界面活性剤を含み、
    少なくとも2種の前記ノニオン界面活性剤は、前記一般式(A1)で表される化合物である請求項16に記載の半導体製造用処理液。
  18. 前記一般式(A1)で表される化合物は、下記一般式(A2)で表される化合物である請求項16又は17に記載の半導体製造用処理液。
    一般式(A2)中、
    a1、Ra2、Ra3及びRa4は、それぞれ独立に、アルキル基を表す。
    m及びnは、それぞれ独立に0.5〜80の正数を表し、m+n≧1を満たす。
  19. 感活性光線性又は感放射線性樹脂組成物、又は、着色硬化性樹脂組成物を用いて膜を形成することと、
    前記膜を露光することと、
    露光された前記膜を請求項1〜18のいずれか1項に記載の半導体製造用処理液を用いて現像することと
    を含むパターン形成方法。
  20. 更に、有機溶剤を含むリンス液、又は、水を用いて洗浄することを含む請求項19に記載のパターン形成方法。
  21. 有機溶剤を含む前記リンス液は、前記有機溶剤として、炭化水素系溶剤、ケトン系溶剤、エステル系溶剤、アルコール系溶剤、アミド系溶剤、及び、エーテル系溶剤からなる群より選択される少なくとも1種の有機溶剤である請求項20に記載のパターン形成方法。
  22. 有機溶剤を含む前記リンス液は、前記有機溶剤として、少なくともアルコール系溶剤を含有するリンス液である請求項20又は21に記載のパターン形成方法。
  23. 有機溶剤を含む前記リンス液は、前記有機溶剤として、炭素数6〜8の直鎖状、分岐状又は環状の1価のアルコールを含有するリンス液である請求項2022のいずれか1項に記載のパターン形成方法。
  24. 有機溶剤を含む前記リンス液の含水率は、30質量%以下である請求項2023のいずれか1項に記載のパターン形成方法。
JP2018509013A 2016-03-31 2017-03-16 半導体製造用処理液、及び、パターン形成方法 Active JP6703098B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020081733A JP6938715B2 (ja) 2016-03-31 2020-05-07 半導体製造用処理液、及び、パターン形成方法

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
JP2016073255 2016-03-31
JP2016073255 2016-03-31
JP2016150624 2016-07-29
JP2016150624 2016-07-29
JP2017045323 2017-03-09
JP2017045323 2017-03-09
PCT/JP2017/010620 WO2017169834A1 (ja) 2016-03-31 2017-03-16 半導体製造用処理液、及び、パターン形成方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020081733A Division JP6938715B2 (ja) 2016-03-31 2020-05-07 半導体製造用処理液、及び、パターン形成方法

Publications (2)

Publication Number Publication Date
JPWO2017169834A1 JPWO2017169834A1 (ja) 2019-01-31
JP6703098B2 true JP6703098B2 (ja) 2020-06-03

Family

ID=59964391

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018509013A Active JP6703098B2 (ja) 2016-03-31 2017-03-16 半導体製造用処理液、及び、パターン形成方法
JP2020081733A Active JP6938715B2 (ja) 2016-03-31 2020-05-07 半導体製造用処理液、及び、パターン形成方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2020081733A Active JP6938715B2 (ja) 2016-03-31 2020-05-07 半導体製造用処理液、及び、パターン形成方法

Country Status (6)

Country Link
US (2) US11256173B2 (ja)
JP (2) JP6703098B2 (ja)
KR (1) KR102152665B1 (ja)
CN (2) CN108885412B (ja)
TW (3) TWI820641B (ja)
WO (1) WO2017169834A1 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6732777B2 (ja) * 2015-10-16 2020-07-29 東京エレクトロン株式会社 基板液処理方法、基板液処理装置及び記憶媒体
CN108885412B (zh) * 2016-03-31 2022-04-05 富士胶片株式会社 半导体制造用处理液及图案形成方法
KR101957875B1 (ko) * 2018-06-14 2019-03-13 영창케미칼 주식회사 극자외선 리소그래피용 공정액 조성물 및 이를 이용하는 패턴 형성 방법
KR102011879B1 (ko) * 2018-12-28 2019-08-20 영창케미칼 주식회사 극자외선 리소그래피용 공정액 및 이를 사용한 패턴 형성 방법
KR102444014B1 (ko) 2019-02-05 2022-09-15 가부시키가이샤 도쿠야마 실리콘 에칭액 및 상기 에칭액을 이용한 실리콘 디바이스의 제조방법
JPWO2020179648A1 (ja) 2019-03-07 2021-12-09 富士フイルム株式会社 構造体の製造方法、カラーフィルタの製造方法、固体撮像素子の製造方法および画像表示装置の製造方法
KR102080780B1 (ko) * 2019-07-18 2020-02-24 영창케미칼 주식회사 리소그래피용 공정액 조성물 및 이를 사용한 패턴 형성 방법
JP2021043401A (ja) * 2019-09-13 2021-03-18 旭化成株式会社 感光性樹脂用水性現像液組成物、及び製版方法
JP7371124B2 (ja) 2019-12-27 2023-10-30 富士フイルム株式会社 管理方法、測定方法、測定装置、水晶振動子センサ、および、セット
JP2021152585A (ja) * 2020-03-24 2021-09-30 株式会社Screenホールディングス 基板処理方法および基板処理装置
CN115989561A (zh) 2020-08-31 2023-04-18 富士胶片株式会社 半导体器件的制造方法、半导体制造装置的清洗方法及清洗液的清洁度的测量方法
KR20230122597A (ko) 2020-12-24 2023-08-22 가부시끼가이샤 도꾸야마 실리콘 에칭액, 그 에칭액을 사용한 실리콘 디바이스의 제조 방법 및 기판 처리 방법
US20220365427A1 (en) * 2021-04-30 2022-11-17 Taiwan Semiconductor Manufacturing Company, Ltd. Photoresist composition and method for manufacturing a semiconductor device

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232453A (ja) * 1985-08-06 1987-02-12 Tokyo Ohka Kogyo Co Ltd ポジ型ホトレジスト用現像液
JP2532173B2 (ja) * 1990-06-29 1996-09-11 株式会社トクヤマ ポジタイプフォトレジスト用現像液
DE4210073A1 (de) * 1992-03-27 1993-09-30 Henkel Kgaa Verfahren zur Verminderung des Gehaltes an freiem Formaldehyd und Ameisensäure in nichtionischen und anionischen Tensiden
US5286606A (en) 1992-12-29 1994-02-15 Hoechst Celanese Corporation Process for producing a developer having a low metal ion level
DE4419166A1 (de) * 1994-06-01 1995-12-07 Hoechst Ag Entwickler für Photoresistschichten
JPH08286386A (ja) * 1995-04-11 1996-11-01 Fuji Photo Film Co Ltd 化学増幅型ポジレジストの現像方法
US5750031A (en) * 1995-09-26 1998-05-12 Clariant Finance (Bvi) Limited Process for producing surfactant having a low metal ion level and developer produced therefrom
JP4565741B2 (ja) * 1998-05-18 2010-10-20 マリンクロッド・ベイカー・インコーポレイテッド マイクロエレクトロニクス基板洗浄用珪酸塩含有アルカリ組成物
US7129199B2 (en) 2002-08-12 2006-10-31 Air Products And Chemicals, Inc. Process solutions containing surfactants
JP4342655B2 (ja) * 1999-10-21 2009-10-14 多摩化学工業株式会社 感光性樹脂組成物用アルカリ現像液
JP3868686B2 (ja) * 1999-12-03 2007-01-17 東京応化工業株式会社 ディフェクトの発生を抑えたホトレジストパターンの形成方法およびディフェクト低減用現像液
JP2002005799A (ja) * 2000-06-20 2002-01-09 Tokuyama Corp 微量金属不純物の分析方法
US20020187427A1 (en) 2001-05-18 2002-12-12 Ulrich Fiebag Additive composition for both rinse water recycling in water recycling systems and simultaneous surface treatment of lithographic printing plates
RS50930B (sr) 2002-06-07 2010-08-31 Avantor Performance Materials Inc. Kompozicije za mikroelektronsko čišćenje koje sadrže oksidatore i organske rastvarače
JP3970740B2 (ja) * 2002-10-03 2007-09-05 奇美實業股▲分▼有限公司 現像液組成物
DK1664935T3 (da) * 2003-08-19 2008-01-28 Mallinckrodt Baker Inc Rensesammensætninger til mikroelektronik
JP4166167B2 (ja) * 2004-02-05 2008-10-15 富士フイルム株式会社 感光性平版印刷版用現像液及び平版印刷版の製版方法
US8338087B2 (en) 2004-03-03 2012-12-25 Advanced Technology Materials, Inc Composition and process for post-etch removal of photoresist and/or sacrificial anti-reflective material deposited on a substrate
JP2006011054A (ja) 2004-06-25 2006-01-12 Shin Etsu Chem Co Ltd リンス液及びこれを用いたレジストパターン形成方法
JP5216892B2 (ja) 2005-07-26 2013-06-19 富士フイルム株式会社 ポジ型レジスト組成物を用いたパターン形成方法
JP5053592B2 (ja) * 2006-08-10 2012-10-17 関東化学株式会社 ポジ型レジスト処理液組成物及び現像液
JP4499751B2 (ja) 2006-11-21 2010-07-07 エア プロダクツ アンド ケミカルズ インコーポレイテッド フォトレジスト、エッチ残留物及びbarcを除去するための配合物及び同配合物を含む方法
JP4680944B2 (ja) 2007-01-24 2011-05-11 信越化学工業株式会社 パターン形成方法
KR101084454B1 (ko) * 2007-05-16 2011-11-21 가부시끼가이샤 도꾸야마 포토레지스트 현상액
KR20090017129A (ko) 2007-08-14 2009-02-18 주식회사 이엔에프테크놀로지 포토레지스트 린스용 조성물 및 이를 이용한 포토레지스트패턴 형성방법
US7968506B2 (en) * 2008-09-03 2011-06-28 Taiwan Semiconductor Manufacturing Co., Ltd. Wet cleaning stripping of etch residue after trench and via opening formation in dual damascene process
US20100068210A1 (en) 2008-09-10 2010-03-18 Ji Junyan A Compositions and methods for the prevention of oxidative degradation of proteins
US20100075117A1 (en) 2008-09-24 2010-03-25 Fujifilm Corporation Relief printing plate precursor for laser engraving, method of producing the same, relief printing plate obtainable therefrom, and method of producing relief printing plate
JP5613011B2 (ja) * 2009-12-25 2014-10-22 東京応化工業株式会社 フォトリソグラフィ用濃縮現像液
JP5513196B2 (ja) * 2010-03-25 2014-06-04 富士フイルム株式会社 洗浄組成物及び半導体装置の製造方法
JP5925685B2 (ja) 2010-09-27 2016-05-25 多摩化学工業株式会社 半導体基板用アルカリ性処理液の精製方法及び精製装置
KR101972620B1 (ko) * 2011-10-27 2019-04-25 라이온 가부시키가이샤 액체 세정제, 액체 표백성 조성물, 및 살균성 조성물
JP5764589B2 (ja) * 2012-10-31 2015-08-19 富士フイルム株式会社 化学増幅型レジスト膜のパターニング用有機系処理液の収容容器、並びに、これらを使用したパターン形成方法及び電子デバイスの製造方法
JP6005678B2 (ja) * 2013-03-25 2016-10-12 富士フイルム株式会社 金属錯体色素、光電変換素子、色素増感太陽電池および金属錯体色素を含有する色素溶液
JP6213296B2 (ja) 2013-04-10 2017-10-18 信越化学工業株式会社 現像液を用いたパターン形成方法
JP6099266B2 (ja) * 2013-06-27 2017-03-22 竹本油脂株式会社 非イオン型界面活性剤の処理方法及び金属イオン濃度を低減した非イオン型界面活性剤の製造方法
JP6134619B2 (ja) 2013-09-13 2017-05-24 富士フイルム株式会社 パターン形成方法、及び、電子デバイスの製造方法
JP6233779B2 (ja) * 2013-11-18 2017-11-22 富士フイルム株式会社 変性レジストの剥離方法、これに用いる変性レジストの剥離液および半導体基板製品の製造方法
JP6159746B2 (ja) 2014-02-28 2017-07-05 富士フイルム株式会社 パターン形成方法、処理剤、電子デバイス及びその製造方法
JP6363431B2 (ja) * 2014-08-27 2018-07-25 ルネサスエレクトロニクス株式会社 半導体装置の製造方法
US10400167B2 (en) * 2015-11-25 2019-09-03 Versum Materials Us, Llc Etching compositions and methods for using same
CN108885412B (zh) * 2016-03-31 2022-04-05 富士胶片株式会社 半导体制造用处理液及图案形成方法

Also Published As

Publication number Publication date
TW202232250A (zh) 2022-08-16
JP2020122983A (ja) 2020-08-13
TWI820641B (zh) 2023-11-01
CN108885412B (zh) 2022-04-05
TWI761338B (zh) 2022-04-21
JP6938715B2 (ja) 2021-09-22
CN108885412A (zh) 2018-11-23
TW201807511A (zh) 2018-03-01
KR20180126555A (ko) 2018-11-27
JPWO2017169834A1 (ja) 2019-01-31
US20220121123A1 (en) 2022-04-21
US11256173B2 (en) 2022-02-22
WO2017169834A1 (ja) 2017-10-05
CN114706271A (zh) 2022-07-05
TW202403474A (zh) 2024-01-16
US20190025702A1 (en) 2019-01-24
KR102152665B1 (ko) 2020-09-07

Similar Documents

Publication Publication Date Title
JP6703098B2 (ja) 半導体製造用処理液、及び、パターン形成方法
KR101707879B1 (ko) 화학증폭형 레지스트막의 패터닝용 유기계 처리액, 화학증폭형 레지스트막의 패터닝용 유기계 처리액의 수용 용기, 및 이들을 사용한 패턴형성방법, 전자 디바이스의 제조방법 및 전자 디바이스
CN103827750B (zh) 图案形成方法、电子束敏感或极紫外线辐射敏感树脂组合物、抗蚀剂膜、使用其的电子器件的制造方法和电子器件
TWI763703B (zh) 感光化射線性或感放射線性樹脂組成物、圖案形成方法及電子元件的製造方法
KR102126215B1 (ko) 처리액, 그 제조 방법, 패턴 형성 방법 및 전자 디바이스의 제조 방법
TWI608310B (zh) 化學增幅型抗蝕劑膜的圖案化用有機系處理液的製造方法、化學增幅型抗蝕劑膜的圖案化用有機系處理液、圖案形成方法、電子元件的製造方法及電子元件
CN106796405B (zh) 抗蚀剂膜的图案化用有机系处理液的制造方法
TWI829414B (zh) 半導體製造用處理液、其製造方法、圖案形成方法及電子裝置的製造方法
JP6743158B2 (ja) レジスト組成物、パターン形成方法及び電子デバイスの製造方法
WO2018084302A1 (ja) 処理液及びパターン形成方法
CN105051610A (zh) 图案形成方法、用于其的有机溶剂显影用的感光化射线性或感放射线性树脂组合物及其制造方法、电子元件的制造方法及电子元件
TWI703413B (zh) 圖案形成方法、電子元件的製造方法及積層體
TWI766074B (zh) 感光化射線性或感放射線性樹脂組成物、抗蝕劑膜、圖案形成方法、電子元件的製造方法
TW201740204A (zh) 圖案形成方法、電子元件的製造方法
KR20180042352A (ko) 레지스트 조성물과, 이를 이용한 레지스트막, 패턴 형성 방법 및 전자 디바이스의 제조 방법
TW202311314A (zh) 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜、圖案形成方法及電子器件之製造方法
TWI804673B (zh) 感光化射線性或感放射線性樹脂組成物、感光化射線性或感放射線性膜、圖案形成方法、光罩、電子器件之製造方法及化合物
TW201627766A (zh) 圖案形成方法、保護膜形成用組成物及電子元件的製造方法
TWI838312B (zh) 半導體製造用處理液、及半導體裝置的製造方法
TW202147397A (zh) 沖洗液、圖案形成方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190716

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200507

R150 Certificate of patent or registration of utility model

Ref document number: 6703098

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250