JP6183113B2 - 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 - Google Patents

電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Download PDF

Info

Publication number
JP6183113B2
JP6183113B2 JP2013204247A JP2013204247A JP6183113B2 JP 6183113 B2 JP6183113 B2 JP 6183113B2 JP 2013204247 A JP2013204247 A JP 2013204247A JP 2013204247 A JP2013204247 A JP 2013204247A JP 6183113 B2 JP6183113 B2 JP 6183113B2
Authority
JP
Japan
Prior art keywords
photosensitive member
electrophotographic photosensitive
resin
phthalocyanine
charge transport
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013204247A
Other languages
English (en)
Other versions
JP2015069062A5 (ja
JP2015069062A (ja
Inventor
直 水島
直 水島
宏恵 渕上
宏恵 渕上
光央 和田
光央 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2013204247A priority Critical patent/JP6183113B2/ja
Publication of JP2015069062A publication Critical patent/JP2015069062A/ja
Publication of JP2015069062A5 publication Critical patent/JP2015069062A5/ja
Application granted granted Critical
Publication of JP6183113B2 publication Critical patent/JP6183113B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、優れた電気特性及び機械特性を有する電子写真感光体、該電子写真感光体を用いて作製した電子写真感光体カートリッジ、及び、画像形成装置に関する。
電子写真技術は、即時性、高品質の画像が得られることなどから、近年では複写機の分野にとどまらず、各種プリンターの分野でも広く使われ応用されている。電子写真技術の中核となる感光体については、近年ではその光導電材料として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体が開発されている。
有機系の光導電材料を使用した感光体としては、光導電性微粉末をバインダー樹脂中に分散させたいわゆる分散型感光体、電荷発生層及び電荷輸送層を積層した積層型感光体が知られている。また、積層型感光体では電荷発生層及び電荷輸送層を導電性基体上にこの順で積層した順積層型感光体と、電荷輸送層及び電荷発生層をこの順に積層した逆積層型感光体が知られている。積層型感光体は、それぞれ効率の高い電荷発生物質、及び電荷輸送物質を組み合わせることにより高感度な感光体が得られること、材料選択範囲が広く安全性の高い感光体が得られること、また塗布の生産性が高く比較的コスト面でも有利なことから感光体の主流として鋭意開発され実用化されている。
ところで、近年、複写機、プリンターは共にモノクロからフルカラー化に向かっている。このフルカラー画像形成方法には主としてタンデム方式、4サイクル方式があり、また印刷媒体への転写方式としては、直接転写方式、転写ドラム方式、中間転写方式、多重現像一括転写方式などがある。フルカラーの画像形成装置では、モノクロの画像形成装置と異なり、画質への要求レベルが非常に高く、画像形成装置の置かれた環境(例えば温湿度)が変動することによる画質の変動に関しても、非常に厳しい。
電子写真感光体が高感度となるためには電荷発生能力の高い電荷発生材料が必要である。そのなかでも現在主流となっているLD露光に高感度を示すオキシチタニウムフタロシ
アニンに関して盛んに研究が行われている。前記オキシチタニウムフタロシアニンは結晶多型を有することが知られていが、その中でも、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)27.2°に主たる回折ピークを有する結晶型が高い量子効率を示し、高感度を示すことが知られている(非特許文献1参照)。
この結晶型は主として、アモルファス、又は低結晶性オキシチタニウムフタロシアニンから結晶変換することによって製造される。これら結晶型は準安定型の結晶型であり、製造方法の違いにより様々な結晶型、粒子形状を示し、電荷発生能力、帯電性、暗減衰などの電子写真感光体としての特性の面も製造方法に依存して異なることが知られている。例えば、アシッドペースト法などの化学的処理による製造方法が知られている(特許文献1参照)が、製造条件によっては結晶中に取り込まれる溶媒や、混合物の組成が異なるため、感光体を作製して、実際のマシンへ感光体を搭載した場合に得られる画質も異なり、様々な性能を製造方法から予測することは困難であった。
また、感光体の画質を決めるのに電荷輸送物質の寄与も大きい。電荷輸送物質としては、カルバゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体等、各種のものが実用化されている。例えば、高感度のトリアリールアミン−スチルベンハイブリッド型の化合物が電子写真感光体用の電荷輸送物質として使用するこ
とが提案されている(特許文献2)。上記電荷輸送物質と共にオキシチタニウムフタロシアニンを電荷発生材料として使用する組成も開示されているが、フタロシアニンと電荷輸送物質との電気的相互作用は物質ごとに異なるためその性能を予測することは困難であった。
特開2008−19417号公報 特開平9−292724号公報
電子写真学会誌 1990年 第29巻 第3号 p.250〜258
上記のように、近年、画質への要求が高くなっており、そのような画質の項目として、低温低湿環境下において、繰り返し使用した場合に、発生するフィルミングやドット再現性がある。特許文献2には、高感度の化合物を用いた感光体が開示されているが、ドット再現性が不十分であった。本発明は、上記問題に鑑みてされたものであり、その目的はフルカラー画像形成装置においても低温低湿環境下において、繰り返し使用した場合に、発生するフィルミング及びドット再現性に優れる電子写真感光体を提供することにある。
本発明者は、鋭意検討を行った結果、特定の製造方法で作製されたオキシチタニウムフタロシアニン又は特定硫黄含有量のオキシチタニウムフタロシアニンと特定の電荷輸送物質を組み合わせて用いた場合に、低温低湿下で繰り返し用いた場合においても、フィルミング、ドット再現性が良好な電子写真感光体を提供することが可能であることを見出し、以下の本発明の完成に至った。
本発明の要旨は下記の<1>〜<6>に存する。
<1>導電性支持体上に少なくとも感光層を有する感光体において、該感光層中に、フタロシアニン結晶前駆体を化学的処理後、有機溶媒に接触して得られ、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)が9.6°、24.2±0.2°、27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニンと、下記式(1)で表される電荷輸送物質を含有することを特徴とする電子写真感光体。
Figure 0006183113
(式(1)Ar〜Arはそれぞれ独立して置換基を有していても良いアリール基を表し、Ar〜Arはそれぞれ独立して置換基を有していても良いアリーレン基を表す。
m、nはそれぞれ独立して1以上3以下の整数を表す。)
<2>前記化学的処理が、アシッドペースト法であることを特徴とする<1>に記載の電子写真感光体。
<3>導電性支持体上に少なくとも感光層を有する感光体において、該感光層が、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)が9.6°、24.2±0.2°、27.2°に主たる回折ピークを有し、イオンクロマトグラフィーによる硫黄含有量が10ppm以上100ppm以下であるオキシチタニウムフタロシアニンと、下記式(1)で表される電荷輸送物質とを含有することを特徴とする電子写真感光体。
Figure 0006183113
(式(1)Ar〜Arはそれぞれ独立して置換基を有していても良いアリール基を表し、Ar〜Arはそれぞれ独立して置換基を有していても良いアリーレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
<4>前記導電性支持体が陽極酸化処理を施されていることを特徴とする<1>〜<3>のいずれかに記載の電子写真感光体。
<5><1>〜<4>のいずれか1つに記載の電子写真感光体、ならびに、該電子写真感光体を帯電させる帯電装置、該帯電した電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つ、を備えたことを特徴とする電子写真感光体カートリッジ。
<6><1>〜<4>のいずれか1つに記載の電子写真感光体、該電子写真感光体を帯電させる帯電装置と、該帯電した電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置、を備えたことを特徴とする画像形成装置。
本発明は、特定の製造方法で作製されたオキシチタニウムフタロシアニンと特定の電荷輸送物質を組み合わせて用いることにより、フィルミング、ドット再現性が良好な電子写真感光体を提供することが可能となる。
本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 本発明の合成例1で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 本発明の合成例3で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 本発明の合成例4で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 本発明の合成例5で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 本発明の比較合成例1で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。 本発明の比較合成例1で用いたオキシチタニウムフタロシアニン化合物の粉末X線回折図である。
以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
本発明は、フタロシアニン結晶前駆体を、化学的処理後、有機溶媒に接触して得られる特定のオキシチタニウムフタロシアニンと、特定の電荷輸送物質を併用することにより、高性能の電子写真感光体を得る。
≪オキシチタニウムフタロシアニン≫
本発明に係る電子写真感光体の感光層は、特定のオキシチタニウムフタロシアニンを含有するが、当該オキシチタニウムフタロシアニンは、フタロシアニン結晶前駆体を、化学的処理後に有機溶媒に接触して得られるか、イオンクロマトグラフィーによる硫黄含有量が10ppm以上100ppm以下である。
本発明において、「フタロシアニン結晶」とは、一種又は二種以上のフタロシアニン化合物を含有する結晶をいう。即ち、一種のフタロシアニン化合物のみで構成される結晶のみならず、複数種のフタロシアニン化合物からなる混晶や、一種又は二種以上のフタロシアニン化合物と他の分子とからなる混晶をも含めて、本発明では「フタロシアニン結晶」というものとする。
フタロシアニン結晶前駆体とは、結晶型を変換する処理( 以下「結晶型変換処理」と
いう場合がある。) を施すことにより、フタロシアニン結晶が得られる物質をいう。よ
って、フタロシアニン結晶前駆体は、一種のフタロシアニン化合物、二種以上のフタロシアニン化合物の混合物、一種又は二種以上のフタロシアニン化合物と一種又は二種以上の他の化合物との混合物の何れであってもよい( 以下の記載ではフタロシアニン化合物又
はフタロシアニン化合物を含有する混合物を総称して「フタロシアニン類」と呼ぶ場合がある)。また、その存在状態も特に制限されないが、結晶変換時の結晶型の制御性を考慮すると、フタロシアニン結晶前駆体としては、通常はアモルファス性フタロシアニン類又は低結晶性フタロシアニン類が好ましい。本発明において「低結晶性フタロシアニン類」とは、粉末X 線回折( X-raydiffraction: 以下「XRD」と省略する場合がある。) スペクトルにおいて、CuKα特性X 線(波長1.541Å)に対するブラッグ角(2
θ±0.2 °)0 °〜40°の範囲内に半値幅が0.30°以下のピークを有さないフタロシアニン類をいう。この半値幅が小さ過ぎると、固体中でフタロシアニン分子がある程度一定の規則性や長期的秩序を有している状態になっており、結晶型を変換させる際に結晶型の制御性が低下することから、本発明においてフタロシアニン結晶前駆体として用いる低結晶性フタロシアニン類は、その半値幅が通常0.35°以下、更には0.40°以下、特に0.45°以下のピークを有さないものであることが好ましい。粉末X 線回
折は、特開2013-037375に記載の条件によって測定することが可能である。
なお、低結晶性フタロシアニン類とアモルファス性フタロシアニン類との境界は明確ではないが、本発明では何れも好ましいフタロシアニン結晶前駆体として使用することが可能である。以下の記載では、低結晶性フタロシアニン類とアモルファス性フタロシアニン類とを特に区別せずに呼ぶ場合、「低結晶性/ アモルファス性フタロシアニン類」と総
称することにする。
本発明において化学的処理とは、アモルファスオキシチタニウムフタロシアニン及び/
又は低結晶性オキシチタニウムフタロシアニンを調整する段階で用いられる処理である。
化学的処理とは、単に物理的な力(例えば、機械的磨砕等)を用いてアモルファスオキシチタニウムフタロシアニン、又は低結晶性オキシチタニウムフタロシアニンを得る方法ではなく、溶解、反応等の化学的現象を用いてアモルファス、もしくは低結晶性オキシチタニウムフタロシアニンを得る処理方法のことである。
化学的処理の具体的な例としては、フタロシアニン前駆体を濃硫酸中に溶解して行なうアシッドペースティング法、又は硫酸中で分散状態を経るアシッドスラリー法(硫酸塩法)、ジクロロチタニルフタロシアニンにフェノール、アルコールを付加させた後に脱離させてオキシチタニウムフタロシアニンを得る方法等の化学的処理方法があげられ、より安定的なアモルファス、低結晶性オキシチタニウムフタロシアニンを得るにはアシッドペースト法がより好ましい。
アシッドペースト法、アシッドスラリー法とは、顔料を強酸に溶解もしくは、懸濁、分散させた溶液を調整し、その調整した溶液を、強酸と均一に混じり、顔料がほとんど溶解しない媒体中(例えば、オキシチタニウムフタロシアニンの場合は水、メタノール、エタノール、プロパノール等のアルコール類、エチレングリコール、エチレングリコールモノメチエーテル、エチレングリコールジエチルエーテル、テトラヒドロフラン等のエーテル類など)に放出し、再顔料化させることにより顔料を改質する方法である。
アシッドスラリー法、アシッドペースト法には濃硫酸、有機スルホン酸、有機ホスホン酸、トリハロゲン化酢酸等の強酸が使用される。これら強酸は、強酸単独、もしくは強酸同士の混合使用、又は強酸と有機溶媒の組み合わせ等で用いることが可能である。強酸の種類はフタロシアニン前駆体の溶解性を考慮すると、トリハロゲン化酢酸、濃硫酸が好ましく、生産コストを考慮すると、濃硫酸がより好ましい。
濃硫酸の含有量は、フタロシアニン前駆体の溶解性を考慮すると、90%以上の濃硫酸が好ましく、更に濃硫酸の含有量が低いと生産効率が低下することから、より好ましくは95%以上の濃硫酸である。
強酸にフタロシアニン前駆体を溶解させる温度は、公知文献に掲載されている温度条件で溶解させることが可能であるが、温度が高すぎると前駆体のフタロシアニン環が開環し、分解してしまうことから、5℃以下が好ましく、得られる電子写真感光体に及ぼす影響を考慮すると0℃以下がより好ましい。
用いる強酸の量は、任意の量で用いることが可能であるが、少なすぎるとフタロシアニン前駆体の溶解性が悪くなることから、フタロシアニン前駆体1質量部に対して5質量部以上、溶液中の固形分濃度が高すぎると撹拌効率が低下することから15質量部以上が好ましく、より好ましくは20質量部以上である。また、強酸使用量が多すぎると、廃棄酸量が増えることから、100質量部以下が好ましく、また生産効率を考慮すると50質量部以下がより好ましい。
得られたフタロシアニン前駆体の酸溶液を放出する媒体の種類としては、水、メタノール、エタノール、1−プロパノール、2−プロパノール等のアルコール、エチレングリコール、グリセリン等の多価アルコール、テトラヒドロフラン、ジオキサン、ジオキソラン、テトラヒドロピラン等の環状エーテル、エチレングリコールモノメチルエーテル、エチレングリコールジエチルエーテル等の鎖状―エーテルなどが挙げられ、公知の方法同様に、放出媒体は単一種で用いても、2種類以上を混合して使用してもよい。用いる媒体種により再顔料化された際の粒子形状、結晶状態等が変化し、この履歴が後に得られる最終結晶の電子写真感光体特性に影響を与えることから、好ましくは、水、メタノール、エタノール、1−プロパノール、2−プロパノール等の低級アルコール類が好ましく、生産性、
コストの面から水がより好ましい。
フタロシアニン前駆体の濃硫酸溶液を放出媒体に放出し、再顔料化されたオキシチタニウムフタロシアニンは濾別によりウエットケーキとして濾別されるが、このウエットケーキは放出媒体中に存在した、濃硫酸の硫酸イオン等の不純物を多く含むことから、再顔料化された後に、洗浄媒体で洗浄を行なう。洗浄を行なう媒体は、水酸化ナトリウム水溶液、水酸化カリウム水溶液、炭酸水素ナトリウム水溶液、炭酸ナトリウム水溶液、炭酸カリウム水溶液、酢酸ナトリウム水溶液、アンモニア水溶液等のアルカリ性水溶液、希塩酸、希硝酸、希酢酸等の酸性水溶液、イオン交換水等の水などが挙げられるが、顔料中に残存したイオン性物質は電子写真感光体特性に悪影響を与える場合が多いことから、イオン交換水等のイオン性の物質を取り除いた水が好ましい。
通常、アシッドペースト法、アシッドスラリー法より得られるオキシチタニウムフタロシアニンは明確な回折ピークを有さないアモルファスか、ピークは有するが、その強度が非常に弱く、半価幅の非常に大きいピークを有する低結晶性のものである。
アシッドペースト法、アシッドスラリー法により得られたアモルファスオキシチタニウムフタロシアニン、又は低結晶性のオキシチタニウムフタロシアニンを有機溶媒に接触させることにより、本発明の電子写真感光体に用いることが出来るCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.6°、24.1°、27.2°又は、9.5°、9.7°、24.1°、27.2に主たる回折ピークを有するオキシチタニウムフタロシアニンを得ることが出来る。
本発明のオキシチタニウムフタロシアニンは、イオンクロマトグラフィーによる硫黄含有量が10ppm以上100ppm以下である。電気特性における残留電位の観点から、下限は15ppm以上が好ましく、20ppm以上が特に好ましい。電気特性における帯電性の観点から上限は80ppm以下が好ましく、70ppm以下がより好ましい。硫黄含有量は例えば、アシッドスラリー法、アシッドペースト法に濃硫酸、有機スルホン酸、有機ホスホン酸を用い、酸に添加する際の温度を制御することで調節できる。例えば、濃硫酸によるアシッドペースト法において、フタロシアニン前駆体を酸に添加する際の溶液内部全体にわたって温度を−5℃以下に保持することが挙げられる。具体的方法としては、(a)フタロシアニン前駆体をほぐす方法、(b)フタロシアニン前駆体を濃硫酸に添加する際撹拌する方法、(c) フタロシアニン前駆体を少量ずつ添加する方法が挙げられ、大きなかたまりが局部的に溶解熱を発生し温度が上昇してしまうことを抑制できる。硫黄含有溶媒を使用しない場合は、10ppmより少なくなる。一方、フタロシアニン前駆体を酸に添加する際、溶液内部が5℃以上の場合や局部的に高温となる場合には100ppmより多くなる。硫黄含有量は、スルホン化フタロシアニンをどの程度含有するかの指標となり、スルホン化フタロシアニンを少なくすることにより、電荷のトラップを減らし、ある程度存在することにより電荷分離を促進すると考えられる。
上記硫黄含有量の分析方法としては、三菱化学社製昇温型電気炉QF−02にて完全燃焼し、燃焼ガスを0.1%過酸化水素液に捕集し、定溶した。その捕集液をイオンクロマトグラフィー(横河アナリティカルシステムズ社製「IC−7000」)で分析し、得られたSO 2-値よりS値を算出できる。
通常有機溶媒との接触は水の存在下で行われる。有機溶媒と接触することにより、化学的処理で副生した有機物由来の不純物を溶解させることができる。この結果、オキシチタニウムフタロシアニン結晶が該不純物を取り込みにくく、生成したオキシチタニウムフタロシアニン結晶は、電荷が不純物にトラップされること無くスムーズに移動できるため、感度に優れると考えられる。また、該有機溶媒が結晶中に取り込まれて結晶を安定化する効果も考えられる。水はアシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれたものを用いても、アシッドペースト法、アシッドスラリー法後に得られ
た含水ケーキをいったん乾燥させ、結晶変換時に新たに水を追加して用いてもよいが、乾燥させてしまうと顔料と水との親和性が低下することから、乾燥させずにアシッドペースト法、アシッドスラリー法により得られた含水ケーキ中に含まれたものを用いて行なうのが好ましい。
結晶変換に用いることが出来る溶媒としては、水と相溶性のある溶媒、水と非相溶の溶媒のいずれでも可能である。水と相溶性のある溶媒の好適な例としてはテトラヒドロフラン、1,4−ジオキサン、1,3−ジオキソラン等の環状エーテルが挙げられる。また、水と非相溶の溶媒の好適な例としては、トルエン、ナフタレン、メチルナフタレン等の芳香族炭化水素系溶媒、クロロトルエン、o−ジクロロトルエン、ジクロロフルオロベンゼン、1,2−ジクロロエタン等のハロゲン系溶媒、ニトロベンゼン、1,2−メチレンジオキシベンゼン、アセトフェノン等の置換芳香族系溶媒が挙げられ、中でも環状エーテル、ハロゲン系溶媒、芳香族炭化水素系溶媒が得られた結晶の電子写真特性の観点から好ましい。環状エーテルは、水と相溶性が高く、塩などの水溶性の不純物及び高極性のカルボキシル基を有するような不純物を除去でき、乾燥が容易なため好ましい。ハロゲン系溶媒は、一般に溶解能が高く多種の有機物由来の不純物を溶解でき、該溶媒は結晶格子内部に取り込まれ、顔料中の電荷分離を促進するため好ましい。芳香族炭化水素系溶媒は、水に溶けないフタロシアニン由来の芳香族系の不純物を除去できるため好ましい。
この中でも、テトラヒドロフラン、o−ジクロロベンゼン、1,2−ジクロロトルエン、ジクロロフルオロベンゼン、トルエン、ナフタレンが、得られた結晶の分散時の安定性という点でより好ましい。結晶変換後得られた結晶は、乾燥工程を行なうことになるが、乾燥方法は送風乾燥、加熱乾燥、真空乾燥、凍結乾燥等の公知の方法で乾燥することが可能である。
前記製造法により得られたオキシチタニウムフタロシアニン結晶は、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)9.6°、24.1°、27.2°又は、9.5°、9.7°、24.1°、27.2°に主たる回折ピークを有する結晶である。他の回折ピークとしては26.2°付近にピークを有する結晶は分散時の結晶安定性に劣ることから、26.2°付近にはピークを有さないことが好ましい。なかでも、7.3°、9.6°、11.6°、14.2°、18.0°、24.1°及び27.2°、又は7.3°、9.5°、9.7°、11.6°、14.2°、18.0°、24.2°及び27.2°に主たる回折ピークを有する結晶が電子写真感光体として用いた場合の暗減衰、残留電位の観点からより好ましい。
これらオキシチタニウムフタロシアニンの粒子径は製法、結晶変換方法によって大きく異なるが、分散性を考慮すると、1次粒子径として、500nm以下が好ましく、塗布成膜性の面からは250nm以下であることが好ましい。
本発明に係るフタロシアニン結晶中の塩素含有量、塩素化オキシチタニウムフタロシアニンと無置換オキシチタニウムフタロシアニンのマススペクトルの強度比は特開2013-037375に記載の条件によって測定することが可能である。元素分析手法に基づいて測定され
る塩素含有率について、0.4質量%以下であることが好ましい。この理由は明確ではないが、不純物として、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン結晶は、準安定型の結晶型であり、物理的力等の外的な衝撃に弱く、安定結晶型への結晶型の転位が起こってしまう。塩素原子を有する化合物等の大きな分子団が結晶中に存在すると、結晶中の分子配列の歪みが大きくなり、物理的な力による影響を受けやすくなり、結晶安定性が低下するため、塩素含有量0.3質量%であることが好ましい。また、塩素原子を有する化合物等が存在すると結晶中の分子間距離が離れ、分子面間のπ電子系の相互作用が低下し、電荷発生能力に対して悪影響を与えることから、塩素含有率は0.2質量
%以下であることがより好ましい。
フタロシアニン環が塩素化オキシチタニウムフタロシアニンの量については、先述したマススペクトルのサンプル調整方法、測定方法、スペクトル強度比算出方法にもとづいて求めることが可能である。前記同様に、塩素化オキシチタニウムフタロシアニンが結晶中に含有されると、その塩素基が置換されている分だけ単分子の体積が大きくなり、結晶中の分子配列に影響を与え、結晶の安定性が低下することから、前記マススペクトル測定によるピーク強度比が、0.050以下が好ましく、クロロオキシチタニウムフタロシアニンの含有量が多くなると、感度が悪化する傾向にあることから、0.030以下がより好ましい。
オキシチタニウムフタロシアニン中に含有される塩素分の種類としては、反応に用いた溶媒の残存物、原料として用いる四塩化チタンから由来したイオン種として含有されるものや、四塩化チタンを中心金属源として用いた場合に反応系中でフタロシアニン環に塩素化が起こり、塩素化フタロシアニンとして結晶中に含有されるものなどがある。これら不純物のうち、反応溶媒や、イオン種のものについては、ほとんどのものが反応後の洗浄操作で洗い出されるのに対して、塩素化フタロシアニンについては、反応系中でフタロシアニン結晶を形成する際に、その結晶中に取り込まれてしまうことから、容易に除去出来ず、これが最終段階まで残り、塩素分として残存することになる。これら残存した塩素化フタロシアニンが画像のメモリ現象にどの様なメカニズムで影響を与えているかは明確ではないが、塩素化フタロシアニンを含有することにより、結晶格子に歪みが生じたり、また結晶粒子の表面電荷状態に影響が現れ、この影響が電荷輸送材料と電荷発生材料が接している界面近傍での電荷のトラップに関与しているのではないかと推測される。
≪本発明の電荷輸送物質≫
<電荷輸送物質の構造>
本発明の電荷輸送物質は下記式(1)で表される化合物であればいかなるものであってもよい。
本発明の電荷輸送物質は下記式(1)で表される。
Figure 0006183113
(式(1)Ar〜Arはそれぞれ独立して置換基を有していても良いアリール基を表し、Ar〜Arはそれぞれ独立して置換基を有していても良いアリーレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
上記式(1)においてAr〜Arは、それぞれ独立して置換基を有していても良いアリール基を表す。アリール基の炭素数としては、30以下、好ましくは20以下、更に好ましくは15以下である。具体的にはフェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等があげられる。中でも、電子写真感光体の特性を考慮すると、フェニル基、ナフチル基、アントリル基が好ましく、電荷輸送能力の観点からは、フェニル基、ナフチル基がより好ましく、フェニル基が更に好ましい。Ar〜Arが有し
ていてもよい置換基としてはアルキル基、アルコキシ基、ハロゲン原子等が挙げられ、具体的にはアルキル基としては、メチル基、エチル基、n−プロピル基、n−ブチル基等の直鎖状アルキル基、イソプロピル基、エチルヘキシル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基が挙げられ、アリール基としては、置換基を有していてもよいフェニル基、ナフチル基等が挙げられ、アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、n−ブトキシ基等の直鎖状アルコキシ基、イソプロポキシ基、エチルヘキシロキシ基等の分岐状アルコキシ基、シクロヘキシロキシ基等の環状アルコキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,1−トリフルオロエトキシ基等のフッ素原子を有するアルコキシ基が挙げられ、ハロゲン原子としてはフッ素原子、塩素原子、臭素原子等があげられる。これらの中でも、製造原料の汎用性から炭素数1〜20のアルキル基、炭素数1〜20のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1〜12のアルキル基、炭素数1〜12のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基が更に好ましい。Ar〜Arがフェニル基である場合、電荷輸送能力の観点から置換基を有することが好ましく、置換基の数としては1〜5個が可能であるが、製造原料の汎用性からは1〜3個が好ましく、電子写真感光体の特性の面からは、1〜2個がより好ましく、また、Ar〜Arがナフチル基である場合は、製造原料の汎用性から置換基の数が2以下、もしくは置換基を有さないことが好ましく、より好ましくは置換基の数が1、もしくは置換基を有さないことである。Arは、窒素原子に対してオルト位又はパラ位に少なくとも1つの置換基を有することが好ましく、置換基としては、溶解性の観点から炭素数1〜6のアルコキシ基又は炭素数5〜12のアルキル基が好ましい。
上記式(1)においてAr〜Arは、それぞれ独立して置換基を有していても良いアリーレン基を表す。アリーレン基の炭素数としては、30以下、好ましくは20以下、更に好ましくは15以下である。具体的にはフェニレン基、ビフェニレン基、ナフチレン基、アントリレン基、フェナントリレン基が例として挙げられ、この中でも電子写真感光体の特性を考慮すると、フェニレン基、ナフチレン基が好ましく、より好ましくはフェニレン基である。Ar〜Arが有していてもよい置換基としては、Ar〜Arが有していてもよい置換基として挙げたものが適用できる。これらの中でも、製造原料の汎用性から炭素数1〜6のアルキル基、炭素数1〜6のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1〜4のアルキル基、炭素数1〜4のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、メチル基、エチル基、メトキシ基、エトキシ基が更に好ましい。Ar〜Arが置換基を有すると、分子構造にねじれが生じ、分子内でのπ共役拡張を妨げ、電子輸送能力が低下する可能性があることから、Ar〜Arは置換基を有さないことが好ましく、電子写真感光体特性の面からは1,3−フェニレン基、1,4−フェニレン基、1,4−ナフチレン基、2,6−ナフチレン基、2,8−ナフチレン基がより好ましく、1,4−フェニレン基が更に好ましい。
m、nはそれぞれ独立して1以上3以下の整数を表す。m、nが大きくなると塗布溶媒への溶解性が低下する傾向にあることから、好ましくは2以下であり、電荷輸送物質としての電荷輸送能力の面から、より好ましくは1である。m、nが1の場合、エテニル基を表し、幾何異性体を有するが、電子写真感光体特性の面から、好ましくはトランス体構造が好ましいである。m、nが2の場合、ブタジエニル基を表し、この場合も幾何異性体を有するが、塗布液保管安定性の面から、2種以上の幾何異性体混合物であることが好ましい。
本発明の電子写真感光体は、感光層に、式(1)で表される化合物を単一成分として含有するものでもよいし、式(1)で表される化合物の混合物として含有することも可能である。
また、下記式(1a)で表される化合物が特に好ましい。式(1a)は、式(1)においてArはアルキル基、アルコキシ基、アリールオキシ基、又はアラルキルオキシ基を有する、フェニル基であり、Ar〜Arはそれぞれ独立して、置換基として炭素数1〜6のアルキル基を有していてもよい、フェニル基であり、Ar〜Arはいずれも無置換の1,4−フェニレン基であり、R〜Rはいずれも水素原子であり、m及びnは共に1である。フィルミング及びドット再現性の観点から、Arはアルコキシ基、アリールオキシ基、又はアラルキルオキシ基を有するフェニル基であることが特に好ましい。
Figure 0006183113
(式(1a)中、Rはアルキル基、アルコキシ基、アリールオキシ基、又はアラルキルオキシ基、R〜Rはそれぞれ独立して炭素数1〜6のアルキル基、又は水素原子を表す。)
製造方法としては、下記のようなハロゲン原子を有するトリフェニルアミン誘導体とアニリン化合物とをカップリング反応を行うことによっても製造することが可能である。
Figure 0006183113
ハロゲン原子を有するトリフェニルアミン誘導体とアニリン化合物とをPdを用いてカップリング反応を行うことによって得られる化合物が好ましい。電荷輸送に影響するリン化合物をほとんど使用することなく合成でき、収率が高いため電気特性の劣る本願のフタロシアニンと共に用いることにより高い電気特性を維持できる。
感光層中のバインダー樹脂と式(1)で表される化合物との割合は、同一層中のバインダー樹脂100質量部に対して、通常、電荷輸送物質を5質量部以上で使用する。中でも、残留電位低減の観点から10質量部以上が好ましく、繰り返し使用した際の安定性や電荷移動度の観点から15質量部以上がより好ましい。一方、感光層の熱安定性の観点から、通常、電荷輸送物質を120質量部以下で使用する。中でも、式(1)で表される化合物とバインダー樹脂との相溶性の観点から100質量部以下が好ましく、耐熱性の観点から90質量部以下がより好ましく、耐傷性の観点から80質量部以下が更に好ましく、耐摩耗性の観点から50質量部以下が特に好ましい。
以下に本発明に好適な電荷輸送物質の構造を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。
Figure 0006183113
Figure 0006183113
Figure 0006183113
Figure 0006183113
≪電子写真感光体≫
以下、本発明の電子写真感光体について説明する。
電子写真感光体の感光層は、導電性支持体上に設けられ、下引き層を有する場合は下引き層上に設けられる。感光層の型式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、バインダー樹脂中に分散された、いわゆる単層型感光体、電荷発生物質がバインダー樹脂中に分散された電荷発生層及び電荷輸送物質がバインダー樹脂中に分散された電荷輸送層の二つに機能分離された複層構造の、いわゆる積層型感光体があげられるが、何れの構成であってもよい。また、感光層上に、帯電性の改善や、耐摩耗性改善を目的としてオーバーコート層を設けてもよい。
積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に電荷輸送層、電荷発生層の順に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、最もバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
本発明の電子写真感光体で使用されるオキシチタニウムフタロシアニン及び式(1)で表される電荷輸送物質は、導電性支持体上に形成される何れの層に含有されていても構わないが、オキシチタニウムフタロシアニンは通常、単層型感光層又は積層型感光層の電荷発生層に、式(1)で表される電荷輸送物質は通常、単層型感光層又は積層型感光層の電荷輸送層に含有される。特に、電気特性において高い効果が得られることから、積層型感光層の各層中に含有されるのが好ましい。
<導電性支持体>
感光体に用いる導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫などの導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。形態としては、ドラム状、シート状、ベルト状などのものが用いられる。金属材料の導電性支持体に、導電性・表面性などの制御のためや欠陥被覆のために。適当な抵抗値をもつ導電性材料を塗布したものでもよい。
導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すのが望ましい。
例えば、クロム酸、硫酸、シュウ酸、ホウ酸、スルファミン酸等の酸性浴中で、陽極酸化処理することにより陽極酸化被膜が形成されるが、硫酸中での陽極酸化処理がより良好な結果を与える。硫酸中での陽極酸化の場合、硫酸濃度は100〜300g/l、溶存アルミニウム濃度は2〜15g/l、液温は15〜30℃、電解電圧は10〜20V、電流密度は0.5〜2A/dm2の範囲内に設定されるのが好ましいが、前記条件に限定され
るものではない。
このようにして形成された陽極酸化被膜に対して、封孔処理を行なうことが好ましい。封孔処理は、公知の方法で行われればよいが、例えば、主成分としてフッ化ニッケルを含有する水溶液中に浸漬させる低温封孔処理、あるいは主成分として酢酸ニッケルを含有する水溶液中に浸漬させる高温封孔処理が施されるのが好ましい。
上記低温封孔処理の場合に使用されるフッ化ニッケル水溶液濃度は、適宜選べるが、3〜6g/lの範囲で使用された場合、より好ましい結果が得られる。また、封孔処理をスムーズに進めるために、処理温度としては、25〜40℃、好ましくは30〜35℃で、また、フッ化ニッケル水溶液pHは、4.5〜6.5、好ましくは5.5〜6.0の範囲で処理するのがよい。pH調節剤としては、シュウ酸、ホウ酸、ギ酸、酢酸、水酸化ナトリウム、酢酸ナトリウム、アンモニア水等を用いることが出来る。処理時間は、被膜の膜厚1μmあたり1〜3分の範囲で処理することが好ましい。なお、被膜物性を更に改良するためにフッ化コバルト、酢酸コバルト、硫酸ニッケル、界面活性剤等をフッ化ニッケル水溶液に添加しておいてもよい。次いで水洗、乾燥して低温封孔処理を終える。前記高温封孔処理の場合の封孔剤としては、酢酸ニッケル、酢酸コバルト、酢酸鉛、酢酸ニッケル−コバルト、硝酸バリウム等の金属塩水溶液を用いることが出来るが、特に酢酸ニッケルを用いるのが好ましい。酢酸ニッケル水溶液を用いる場合の濃度は5〜20g/lの範囲内で使用するのが好ましい。処理温度は80〜100℃、好ましくは90〜98℃で、また、酢酸ニッケル水溶液のpHは5.0〜6.0の範囲で処理するのが好ましい。ここで
pH調節剤としてはアンモニア水、酢酸ナトリウム等を用いることが出来る。処理時間は10分以上、好ましくは20分以上処理するのが好ましい。なお、この場合も被膜物性を改良するために酢酸ナトリウム、有機カルボン酸、アニオン系、ノニオン系界面活性剤等を酢酸ニッケル水溶液に添加してもよい。次いで水洗、乾燥して高温封孔処理を終える。平均膜厚が厚い場合には、封孔液の高濃度化、高温・長時間処理により強い封孔条件を必要とする。従って生産性が悪くなると共に、被膜表面にシミ、汚れ、粉ふきといった表面欠陥を生じやすくなる。このような点から、陽極酸化被膜の平均膜厚は通常20μm以下、特に7μm以下で形成されることが好ましい。
支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム支持体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な支持体が得られるので好ましい。
<下引き層>
導電性支持体と後述する感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したものなどが用いられる。
下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子などがあげられる。これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。
また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも電気特性及び下引き層形成要の塗布液の安定性の面から、平均一次粒径として通常1nm以上、好ましくは10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。
下引き層は、金属酸化物粒子をバインダ樹脂に分散した形で形成するのが望ましい。下引き層に用いられるバインダ樹脂としては、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル−酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤などの公知のバインダ樹脂があげられる。これらは単独で用いても良く、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤と
ともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。
下引き層に用いられるバインダ樹脂に対する無機粒子の使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性を向上させる観点から、通常は0.1μm以上、20μm以下の範囲が好ましい。
下引き層には、公知の酸化防止剤等を混合してもよい。画像欠陥防止などを目的として、顔料粒子、樹脂粒子等を含有させ用いてもよい。
<電荷発生層>
機能分離型感光体においての電荷発生層は、電荷発生層は前記オキシチタニウムフタロシアニンを電荷発生物質の少なくとも1種として含有する電荷発生物質と結着樹脂からなる。結着樹脂を有機溶剤に溶解した溶液に前記オキシチタニウムフタロシアニンを少なくとも1種含有する電荷発生物質とを分散させることにより塗布液を調整し、これを導電性支持体上に塗布し、電荷発生物質の微粒子と各種バインダー樹脂とを結着することにより形成される。
電荷発生物質はオキシチタニウムフタロシアニンを単独として用いてもよいし、又はいくつかの染顔料との混合状態で用いてもよい。オキシチタニウムフタロシアニンと混合状態としてもちいる染顔料としては、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム顔料)、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。混合状態として用いる染顔料としては、光感度の面から、フタロシアニン顔料、アゾ顔料が好ましい。
機能分離型感光体における電荷発生層に用いられる結着樹脂の例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコーン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル−酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル−酢酸ビニル共重合体、カルボキシル変性塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸ビニル−無水マレイン酸共重合体等の塩化ビニル−酢酸ビニル系共重合体、スチレン−ブタジエン共重合体、塩化ビニリデン−アクリロニトリル共重合体、スチレン−アルキッド樹脂、シリコン−アルキッド樹脂、フェノール−ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ−N−ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマーの中から選択し、用いることが出来るが、これらポリマーに限定されるものではない。また、これら結着樹脂は単独で用いても、2種類以上を混合して用いてもよい。
結着樹脂を溶解させ、塗布液の作製に用いられる溶媒、分散媒としては例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒、トルエン、キシレン、アニソール等の芳香族系溶媒、クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒、ジメチルホルムアミド、N−メチル−2−ピロリドン等のアミド系溶媒、メタノール、エタノール、イソプロパノール、n−ブタノール、ベンジルアルコール
等のアルコール系溶媒、グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類、アセトン、シクロヘキサノン、メチルエチルケトン等の鎖状、及び環状ケトン系溶媒、ギ酸メチル、酢酸エチル、酢酸n−ブチル等のエステル系溶媒、塩化メチレン、クロロホルム、1,2―ジクロロエタン等のハロゲン化炭化水素系溶媒、ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4−ジオキサン、メチルセルソルブ、エチルセルソルブ等の鎖状、及び環状エーテル系溶媒、アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒、n−ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物、リグロイン等の鉱油、水などが挙げられ、後述する下引き層を溶解しないものが好ましく用いられる。またこれらは単独、又は2種以上を併用しても用いることが可能である。
機能分離型感光体の電荷発生層において、前記結着樹脂と電荷発生物質との配合比(質量)は、バインダー樹脂100質量部に対して10から1000質量部、好ましくは30から500質量部の範囲であり、その膜厚は通常0.1μmから4μm、好ましくは0.15μmから0.6μmである。電荷発生物質の比率が高すぎる場合は電荷発生物質の凝集等の問題により塗布液の安定性が低下し、一方低すぎる場合は感光体としての感度の低下をまねくことから、前記範囲で使用する事が好ましい。前記電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法等の公知の分散方法を用いることが出来る。この際粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の粒子サイズに微細化することが有効である。
<電荷輸送層>
積層型感光体の電荷輸送層は、電荷輸送物質を含有するとともに、通常はバインダー樹脂と、必要に応じて使用されるその他の成分とを含有する。このような電荷輸送層は、具体的には、例えば電荷輸送物質等とバインダー樹脂とを溶剤に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることができる。本発明では式(1)で表される電荷輸送物質を用いることが必須であるが、その他の電荷輸送物質を混合して用いてもよい。
混合して用いてもよい電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。公知の電荷輸送物質の例としては、2,4,7−トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましい。
前記電荷輸送物質の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の電荷輸送物質を用いてもよい。これらの電荷輸送物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせで併用しても良い。
Figure 0006183113
Figure 0006183113
Figure 0006183113
<バインダー樹脂>
感光層は、蒸着膜であっても構わないが、通常、前記の電荷発生物質や電荷輸送物質などの原料をバインダー樹脂により結着することにより形成され、本発明のポリカーボネートはバインダー樹脂として用いられる。
バインダー樹脂としては、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、及びその共重合体、ポリカーボネート、ポリエステル、ポリエステルポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂などが挙げられる。これら樹脂の中でもポリカーボネート樹脂又はポリエステル樹脂が好ましい。
前記バインダー樹脂の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知のバインダー樹脂を混合して用いてもよい。
Figure 0006183113
バインダー樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、好ましくは10,000以上、より好ましくは20,000以上、また、その上限は、好ましくは150,000以下、より好ましくは120,000以下、更に好ましくは100,000以下であることが望ましい。粘度平均分子量の値が小さすぎる場合、感光体の機械的強度が不足する可能性があり、大き過ぎる場合、感光層形成のための塗布液の粘度が高すぎて生産性が低下する可能性がある。
単層型感光体の感光層の膜厚は、通常5〜100μm、好ましくは10〜50μmの範囲で使用され、順積層型感光体の電荷輸送層の膜厚は、通常5〜50μmの範囲で用いられるが、長寿命、画像安定性の観点からは、好ましくは10〜45μm、高解像度の観点からは10〜30μmがより好ましい。
なお、感光層には成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性などを向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤などの添加物を含有させてもよい。また感光層には必要に応じて塗布性を改善するためのレベリング剤や酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物などが挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物などが挙げられ、界面活性剤の例としては、シリコ−ンオイル、フッ素系オイルなどが挙げられる。
感光体の最表面層には、感光層の損耗を防止したり、帯電器等からの発生する放電物質等による感光層の劣化を防止・軽減する目的で保護層を設けてもよい。保護層は導電性材料を適当な結着樹脂中に含有させて形成するか、特開平9−190004号公報、特開平10−252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることが出来る。導電性材料としては、TPD(N,N'−ジフェニル−N,N'−ビス−(m−トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫−酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物などを用いることが可能であるが、これに限定されるものではない。保護層に用いる結着樹脂としてはポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、特開平9−190004号公報、特開平10−252377号公報の記載のようなトリフェニルアミン骨格等のを電荷輸送能を有する骨格と上記樹脂の共重合体を用いることも出来る。上記保護層は電気抵抗が109〜1014Ω・cmとなる
ように構成することが好ましく。電気抵抗が1014Ω・cmより高くなると残留電位が上昇しカブリの多い画像となってしまい、一方109Ω・cmより低くなると画像のボケ、
解像度の低下が生じてしまう。また、保護層は像露光に照射される光の透過を実質上妨げないように構成される。
また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子やシリカやアルミナ等の無機化合物の粒子を含んでいてもよい。
<層形成方法>
感光体を構成する各層は、各層を構成する材料を含有する塗布液を、支持体上に公知の塗布方法を用い、各層ごとに塗布・乾燥工程を繰り返し、順次塗布していくことにより形成される。
層形成用の塗布液は、単層型感光体及び積層型感光体の電荷輸送層の場合には、固形分濃度を、通常5〜40質量%の範囲で用いられるが、10〜35質量%の範囲で使用するのが好ましい。また、該塗布液の粘度は、通常10〜500mPa・sの範囲で用いられるが、50〜400mPa・sの範囲とするのが好ましい。
積層型感光体の電荷発生層の場合には、固形分濃度を、通常0.1〜15質量%の範囲で使用されるが、1〜10%の範囲で使用することがより好ましい。塗布液の粘度は、通常0.01〜20mPa・sの範囲で使用されるが、0.1〜10mPa・sの範囲で使用されることがより好ましい。
塗布液の塗布方法としては、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等があげられるが、他の公知のコーティング法を用いることも可能である。
塗布液の乾燥は室温における指触乾燥後、30〜200℃の温度範囲で、1分から2時間の間、無風、又は送風下で加熱乾燥させることが好ましい。また加熱温度は一定であっても、乾燥時に変更させながら行なってもよい。
<カートリッジ、画像形成装置>
次に、本発明の電子写真感光体を用いたドラムカートリッジ、画像形成装置について、装置の一例を示す図1に基づいて説明する。
図1において、1はドラム状感光体であり、矢印方向に所定の周速度で回転駆動される
。感光体1はその回転過程で帯電手段2により、その表面に正又は負の所定電位の均一帯電を受け、ついで露光部3において像露光手段により潜像形成のための露光が行われる。
形成された静電潜像は、次に現像手段4でトナー現像され、そのトナー現像像がコロナ転写手段5により給紙部から給送された転写体(紙など)Pに順次転写されていく。図1では、現像手段4は、現像槽41、アジテータ42、供給ローラ43、現像ローラー44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像手段4に付帯させてもよい。この補給装置は、ボトル、カートリッジなどの容器からトナーTを補給することが可能に構成される。像転写された転写体はついで定着手段7に送られ、像定着され、機外へプリントアウトされる。定着手段7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。上部及び下部の各定着部材71,72は、ステンレス、アルミニウムなどの金属素管にシリコンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シートなどが公知の熱定着部材を使用することができる。更に、各定着部材71,72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
像転写後の感光体1の表面はクリーニング手段6により転写残りのトナーが除去され、除電手段により除電されて次の画像形成のために清浄化される。
本発明の電子写真感光体を使用するにあたって、帯電器としては、コロトロン、スコロトロンなどのコロナ帯電器の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。直接帯電手段の例としては、帯電ローラー、帯電ブラシ等の接触帯電器などが挙げられる。直接帯電手段として、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
露光はハロゲンランプ、蛍光灯、レーザー(半導体、He−Ne)、LED、感光体内部露光方式等が用いられるが、デジタル式電子写真方式として、レーザー、LED、光シャッターアレイ等を用いることが好ましい。波長としては780nmの単色光の他、600〜700nm領域のやや短波長寄りの単色光を用いることができる。
現像行程はカスケード現像、1成分絶縁トナー現像、1成分導電トナー現像、二成分磁気ブラシ現像などの乾式現像方式や湿式現像方式などが用いられる。
トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4〜8μm程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化には好適に用いられる。
転写行程はコロナ転写、ローラー転写、ベルト転写などの静電転写法、圧力転写法、粘着転写法が用いられる。定着は熱ローラー定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着などが用いられ、これら定着方式は単独で用いても良く、複数の定着方式を組み合わせた形で使用してもよい。
クリーニングにはブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、
磁気ローラークリーナー、ブレードクリーナー、などが用いられる。
除電工程は、省略される場合も多いが、使用される場合には、蛍光灯、LED等が使用され、強度としては露光光の3倍以上の露光エネルギーが使用される場合が多い。これらのプロセスのほかに、前露光工程、補助帯電工程のプロセスを有してもよい。
本発明においては、上記ドラム状感光体1、帯電手段2、現像手段4及びクリーニング手段6等の構成要素の内の複数のものをドラムカートリッジとして一体に結合して構成し、このドラムカートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電手段2、現像手段4及びクリーニング手段6の内、少なくとも1つをドラム状感光体1と共に一体に支持してカートリッジ化とすることが出来る。
以下、実施例を示して本発明の実施の形態を更に具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」あるいは「質量部」を示す。
[実施例1]
<下引き層形成用塗布液の製造>
[塗布液A1]
平均一次粒子径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタン50部と、メタノール120部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM−015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
前記酸化チタン分散液と、メタノール/1−プロパノール/トルエンの混合溶媒、及び、ε−カプロラクタム[下記式(A)で表わされる化合物]/ビス(4−アミノ−3−メチルシクロヘキシル)メタン[下記式(B)で表わされる化合物]/ヘキサメチレンジアミン[下記式(C)で表わされる化合物]/デカメチレンジカルボン酸[下記式(D)で表わされる化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表わされる化合物]の組成モル比率が、75%/9.5%/3%/9.5%/3%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを質量比が3/1であり、メタノール/1−プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18.0質量%の下引き層形成用塗布液A1を得た。
Figure 0006183113
<電荷発生層形成用塗布液の製造>
[合成例1]
特開平10−7925号報中に記載の「粗TiOPcの製造例」、「実施例1」の順に従ってβ型オキシチタニウムフタロシアニンを調製した。
得られたオキシチタニウムフタロシアニンの粉末XRDスペクトルを図2に示す。TiOPc結晶中に含有される塩素含有量を前記元素分析手法を用いて分析した結果、塩素含有量は検出下限以下の0.20質量%以下であった。また前記<マススペクトル測定条件>に従ってオキシチタニウムフタロシアニンと塩素化オキシチタニウムフタロシアニンピーク強度比を測定すると、0.002であった。このオキシチタニウムフタロシアニン顔料をほぐし、粒径の大きい粒子がないようにした。
[合成例2]
特開昭62−67094号公報中に記載の製造例1の方法に基づきオキシチタニウムフタロシアニンを調製した。TiOPc結晶中に含有される塩素含有量を前記元素分析手法を用いて分析した結果、塩素含有量は0.51質量%であった。また、前記<マススペクトル測定条件>に従ってオキシチタニウムフタロシアニンと塩素化オキシチタニウムフタロシアニンピーク強度比を測定すると、0.055%であった。このオキシチタニウムフタロシアニン顔料をほぐし、粒径の大きい粒子がないようにした。
[合成例3]
合成例1で得られたオキシチタニウムフタロシアニン18部を−10℃以下に冷却した95%濃硫酸720部中に添加した。このとき硫酸溶液の内温が−5℃を超えないように少量ずつ撹拌しながら添加した。添加終了後、濃硫酸溶液を−5℃以下で2時間撹拌した。撹拌後、濃硫酸溶液をガラスフィルターで濾過し、不溶分を濾別後、濃硫酸溶液を氷水10800部中に放出することにより、オキシチタニウムフタロシアニンを析出させ、放出後1時間撹拌した。撹拌後、溶液を濾別し、得られたウエットケーキを再度水900部中で1時間洗浄し、濾過を行った。この洗浄操作を濾液のイオン伝導度が0.5mS/mになるまで繰り返すことにより、低結晶性オキシチタニウムフタロシアニンのウエットケーキを185部得た。(オキシチタニウムフタロシアニン含有率9.5%)
得られた低結晶性オキシチタニウムフタロシアニンのウエットケーキ93部を水190部中に添加し、室温で30分撹拌した。その後、o−ジクロロベンゼン39部を添加し、更に室温で1h撹拌した。撹拌後、水を分離し、メタノール134部を添加し、室温で1時間撹拌洗浄した。洗浄後、濾別し、再度メタノール134部を用いて1時間撹拌洗浄後、濾別し、真空乾燥機で加熱乾燥することにより、図3に示すようなCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)7.3°、9.5°、11.6°、14.2°、18.0°、24.3°及び27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(CG1)を7.8量部得た。
[合成例4]
低結晶性オキシチタニウムフタロシアニンのウエットケーキを得るまでは合成例3と同様の操作を行なった。低結晶性オキシチタニウムフタロシアニンのウエットケーキの46部をテトラヒドロフラン400部中に添加し、室温で5時間撹拌した。撹拌後、濾別し、真空乾燥機で加熱乾燥することにより、図4に示すようなCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)7.3°、9.5°、9.7°、11.6°、14.2°、18.0°、24.2°及び27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(CG2)を3.9部得た。
[合成例5]
合成例2で得られたオキシチタニウムフタロシアニンを用いる以外は、合成例3の低結晶性オキシチタニウムフタロシアニンのウエットケーキを得るまでの工程と同様の操作を行なうことにより、低結晶性オキシチタニウムフタロシアニンのウエットケーキを142部得た。(オキシチタニウムフタロシアニン含有率12.8%)。
得られた低結晶性オキシチタニウムフタロシアニンのウエットケーキ24.8部を水100部中に添加し、室温で30分撹拌した。その後、o−ジクロロベンゼン6.2部を添加し、更に室温で1h撹拌した。撹拌後、水を分離し、メタノール79部を添加し、室温で1時間撹拌洗浄した。洗浄後、濾別し、再度メタノール79部を用いて1時間撹拌洗浄、濾別し、真空乾燥機で加熱乾燥することにより、図5に示すようなCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)7.3°、9.5°、11.6°、14.2°、18.0°、24.0°及び27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(CG3)を2.5部得た。
[比較合成例1]
特開平2−289658号公報中に記載の実施例2に基づき、オキシチタニウムフタロシアニンを調製した。得られたオキシチタニウムフタロシアニンの粉末XRDスペクトルを図6に示す。結晶変換前のオキシチタニウムフタロシアニン結晶中に含有される塩素含有量を前記分析手法を用いて測定した結果、塩素含有量は0.55質量%であった。また、前記<マススペクトル測定条件>に従ってオキシチタニウムフタロシアニンとクロロオキシチタニウムフタロシアニンピーク強度比を測定すると、0.058であった。
この得られたオキシチタニウムフタロシアニン15部とφ1.0〜1.4mmガラスビーズ170部と共にポリビン中に充填し、染料分散試験機(ペイントシェーカー)で20時間処理した(機械的摩砕処理)。摩砕処理後のオキシチタニウムフタロシアニンをガラスビーズから剥離し、剥離後水250部中に添加し、室温で30分撹拌した。その後、o−ジクロロベンゼン31部を添加し、更に室温で1h撹拌した。撹拌後、水を分離し、メタノール250部を添加し、室温で1時間撹拌洗浄した。洗浄後、濾別し、再度メタノール250部を用いて1時間撹拌洗浄後、濾別し、真空乾燥機で加熱乾燥することにより、図7に示すようなCuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)7.3°、9.5°、11.6°、14.2°、18.0°、24.3°及び27.2°に主たる回折ピークを有するオキシチタニウムフタロシアニン(CG4)を14.3部得た。
<硫黄含有量の測定>
オキシチタニウムフタロシアニン約100mgを精秤し、石英ボードにとり、三菱化学社製昇温型電気炉QF−02にて完全燃焼し、燃焼ガスを0.1%過酸化水素液に捕集し、定溶した。その捕集液をイオンクロマトグラフィー(横河アナリティカルシステムズ社製「IC−7000」)で分析し、得られたSO42-値よりS値を算出した。
Figure 0006183113
[塗布液B1]
電荷発生物質として、合成例3で製造したオキシチタニウムフタロシアニン(CG1)20部と1,2−ジメトキシエタン280部を混合し、サンドグラインドミルで2時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)とポリビニルアセタール(積水化学社製、商品名「エスレック」KS−1)を1,2−ジメトキシエタン253部と4−メトキシ−4−メチル−2−ペンタノンを85部の混合液に溶解させて得られたバインダー液、及び230部の1,2−ジメトキシエタンを混合して電荷発生層形成用塗布液B1を得た。
[塗布液B2]
電荷発生物質として、CG1の代わりにCG2を用いる以外は、塗布液B1と同様にして、電荷発生層形成用塗布液B2を調製した。
[塗布液B3]
電荷発生物質として、CG1の代わりにCG3を用いる以外は、塗布液B1と同様にして、電荷発生層形成用塗布液B3を調製した。
[塗布液B4]
電荷発生物質として、CG1の代わりにCG4を用いる以外は、塗布液B1と同様にして、電荷発生層形成用塗布液B4を調製した。
<電荷輸送層形成用塗布液の製造>
[塗布液C1]
下記の繰り返し構造で表されるポリアリレート樹脂100部(樹脂X、粘度平均分子量70,000)、電荷輸送物質としてCT8を40部、下記式で表される化合物AD1を2部、AD2を1部、AD3を0.1部、ジメチルポリシロキサン(信越化学社製KF96−10CS)0.03部をテトラヒドロフラン/トルエン(8/2(質量比))混合溶媒880部に溶解させて電荷輸送層形成用塗布液C1を調製した。
Figure 0006183113
[塗布液C2]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8を40部から60部に変更した以外は、C1と同様にして電荷輸送層形成用塗布液C2を調製した。
[塗布液C3]
電荷輸送層形成用塗布液C1に用いたAD1の代わりに、下記式で表されるAD4を4部とし、AD3を1部に変更した以外は、C1と同様にして電荷輸送層形成用塗布液C3を調製した。
Figure 0006183113
[塗布液C4]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8の代わりに、CT5を用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
[塗布液C5]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8の代わりに、CT1を用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
[塗布液C6]
電荷輸送層形成用塗布液C1に用いたポリアリレート樹脂Xの代わりに、下記の繰り返し構造で表されるポリアリレート樹脂100部(樹脂Y、粘度平均分子量70,000)を用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
Figure 0006183113
[塗布液C7]
電荷輸送層形成用塗布液C1に用いたポリアリレート樹脂Xの代わりに、下記の繰り返し構造で表されるポリカーボネート樹脂100部(樹脂Z、粘度平均分子量50,000)を用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
Figure 0006183113
[塗布液C8]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8の代わりに、CTAを用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
Figure 0006183113
[塗布液C9]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8の代わりに、CTBを用いた以外は、C1と同様にして電荷輸送層形成用塗布液Cを調製した。
Figure 0006183113
[塗布液C10]
電荷輸送層形成用塗布液C1に用いた電荷輸送物質CT8の代わりに、CTCを用いた以外は、C1と同様にして電荷輸送層形成用塗布液C10を調製した。
Figure 0006183113
<感光体ドラムの製造>
[下引き層の場合]
表面が切削加工された外径30mm、長さ246mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーに、塗布液の製造例で作製した下引き層形成用塗布液、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、1.5μm、0.5μm、18μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、100℃で20分、及び135℃で20分間行なった。
[陽極酸化の場合]
表面が切削加工された外径30mm、長さ246mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーの表面に、陽極酸化処理を行い、その後酢酸ニッケルを主成分
とする封孔剤によって封孔処理を行なうことにより、約6μmの陽極酸化被膜(アルマイト被膜)を形成した。次に、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、0.5μm、18μmとなるように、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、100℃で20分、及び135℃で20分間行なった。
<画像試験>
得られた感光体を、沖データ社製タンデムフルカラープリンタ C711dn(DCローラー帯電、LED露光、接触非磁性一成分現像)のシアン色の感光体カートリッジに搭載して、気温10℃、相対湿度15%下において、印字率1%で、12500枚の一枚間欠印字を行った。12500枚印刷後に、ハーフトーン画像を印刷し、以下の通り、フィルミング(トナー成分の付着)及び、ドット再現性の判定を行った。また、印字前後の膜厚を測定し、10,000枚換算の膜減り量を計算した。結果を表1に示した。
フィルミング
◎:ドラム上にトナー付着はなく、画像にも問題は見られない
○:ドラム上に少量のトナー付着が存在するが、画像には問題は見られない
△:ドラム上に多量のトナー付着が存在するが、画像には問題は見られない
×:ドラム上に多量のトナー付着が存在し、画像にも対応する欠陥が見られる
ドット再現性
◎:ドットの抜けは全く存在せず、遠目にも良好な画像である
○:ドットの抜けが微量に存在するが、遠目には良好な画像である
△:ドットの抜けが少量存在するが、遠目には良好な画像である
×:ドットの抜けが存在し、遠目にも画像にむらが見られる
[実施例1〜10、比較例1〜7]
表−2に示す下引き層形成用塗布液又は陽極酸化処理、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を用いて感光体ドラムを作製し、評価を行った。結果を表−2に示す。
Figure 0006183113
表−2から分かるように、本発明のオキシチタニウムフタロシアニンを用い、且つ電荷輸送物質として式(1)で表される化合物を用いた場合、フィルミング、ドット再現性ともに良好な結果が得られた。
比較例1〜3から分かるように本発明以外のオキシチタニウムフタロシアニンを用いた場合、式(1)で表される電荷輸送物質を用いても、十分なドット再現性得られない。ま
た、比較例4〜6から分かるように本発明のオキシチタニウムフタロシアニンを用いても、式(1)以外の電荷輸送物質を用いた場合には、十分なドット再現性が得られない。従って、本発明のオキシチタニウムフタロシアニンと式(1)で表される電荷輸送物質を同時に用いた場合にのみ、ドット再現性の効果を奏する。
実施例1、5、6の比較により、式(1)で表される電荷輸送物質の中でも、Arの置換基がアルコキシ基である場合に、フィルミング及びドット再現性の両方が特に良好であった。また、実施例1、8、9の比較から、ポリアリレート樹脂を用いた場合に、より良好なフィルミングの結果が得られた。更に、実施例1と10の比較から、下引き層を有する感光体よりも、陽極酸化処理をした感光体がより良好なドット再現性が得られた。
1 感光体(電子写真感光体)
2 帯電装置(帯電ローラ;帯電部)
3 露光装置(露光部)
4 現像装置(現像部)
5 転写装置
6 クリーニング装置
7 定着装置
41 現像槽
42 アジテータ
43 供給ローラ
44 現像ローラ
45 規制部材
71 上部定着部材(定着ローラ)
72 下部定着部材(定着ローラ)
73 加熱装置
T トナー
P 記録紙(用紙,媒体)

Claims (4)

  1. 導電性支持体上に少なくとも感光層を有する感光体において、該感光層が、CuKα特性X線(波長1.541Å)に対するブラッグ角(2θ±0.2°)が9.6°、24.2±0.2°、27.2°に主たる回折ピークを有し、イオンクロマトグラフィーによる硫黄含有量が10ppm以上100ppm以下であるオキシチタニウムフタロシアニンと、下記式(1)で表される電荷輸送物質とを含有することを特徴とする電子写真感光体。
    Figure 0006183113
    (式(1)Ar1〜Ar5はそれぞれ独立して置換基を有していても良いアリール基を表し、Ar6〜Ar9はそれぞれ独立して置換基を有していても良いアリーレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
  2. 前記導電性支持体が陽極酸化処理を施されていることを特徴とする請求項1に記載の電子写真感光体。
  3. 請求項1または2に記載の電子写真感光体、ならびに、該電子写真感光体を帯電させる帯電装置、該帯電した電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つ、を備えたことを特徴とする電子写真感光体カートリッジ。
  4. 請求項1または2に記載の電子写真感光体、該電子写真感光体を帯電させる帯電装置と、該帯電した電子写真感光体を露光させて静電潜像を形成する露光装置、及び、該電子写真感光体上に形成された静電潜像を現像する現像装置、を備えたことを特徴とする画像形成装置。
JP2013204247A 2013-09-30 2013-09-30 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置 Active JP6183113B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013204247A JP6183113B2 (ja) 2013-09-30 2013-09-30 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013204247A JP6183113B2 (ja) 2013-09-30 2013-09-30 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Publications (3)

Publication Number Publication Date
JP2015069062A JP2015069062A (ja) 2015-04-13
JP2015069062A5 JP2015069062A5 (ja) 2016-10-20
JP6183113B2 true JP6183113B2 (ja) 2017-08-23

Family

ID=52835756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013204247A Active JP6183113B2 (ja) 2013-09-30 2013-09-30 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Country Status (1)

Country Link
JP (1) JP6183113B2 (ja)

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2636254B2 (ja) * 1987-08-27 1997-07-30 富士ゼロックス株式会社 電子写真感光体
JPH06179834A (ja) * 1992-12-11 1994-06-28 Mitsubishi Paper Mills Ltd 電子写真特性の優れた無金属フタロシアニン顔料粉体、およびそれを使用した電子写真感光体
US5482811A (en) * 1994-10-31 1996-01-09 Xerox Corporation Method of making hydroxygallium phthalocyanine type V photoconductive imaging members
JP2940502B2 (ja) * 1996-02-28 1999-08-25 日本電気株式会社 電子写真感光体
JP3824801B2 (ja) * 1999-02-17 2006-09-20 三菱製紙株式会社 チタニルオキシフタロシアニンの製造方法、並びにそれを用いた電子写真感光体
JP2000162791A (ja) * 1998-11-25 2000-06-16 Fuji Electric Co Ltd 電子写真用感光体および電子写真装置
JP3879294B2 (ja) * 1999-01-13 2007-02-07 コニカミノルタホールディングス株式会社 電子写真感光体、画像形成方法、画像形成装置及び装置ユニット
JP2000267323A (ja) * 1999-03-18 2000-09-29 Fuji Electric Co Ltd 電子写真用感光体
JP4423433B2 (ja) * 1999-10-07 2010-03-03 富士電機システムズ株式会社 電子写真用感光体材料を製造する方法
JP2002182411A (ja) * 2000-12-18 2002-06-26 Konica Corp 電子写真感光体、電荷発生顔料の製造方法、画像形成装置、及びプロセスカートリッジ
JP4607027B2 (ja) * 2006-02-10 2011-01-05 株式会社リコー 静電潜像担持体及びその製造方法、並びに画像形成方法、画像形成装置及びプロセスカートリッジ
JP5671195B2 (ja) * 2006-03-20 2015-02-18 三菱化学株式会社 フタロシアニン結晶、電子写真感光体、並びにそれを用いた電子写真感光体カートリッジ及び画像形成装置
JP4957136B2 (ja) * 2006-09-14 2012-06-20 三菱化学株式会社 電子写真感光体及び画像形成装置
JP2009104124A (ja) * 2007-10-03 2009-05-14 Mitsubishi Chemicals Corp 画像形成装置及びカートリッジ
JP2009186969A (ja) * 2008-01-10 2009-08-20 Ricoh Co Ltd 画像形成装置、プロセスカートリッジ及び画像形成方法

Also Published As

Publication number Publication date
JP2015069062A (ja) 2015-04-13

Similar Documents

Publication Publication Date Title
KR101052449B1 (ko) 전자 사진 감광체, 전자 사진 감광체 카트리지 및 화상형성 장치
JP6146188B2 (ja) 電子写真感光体、電子写真プロセスカートリッジ及び画像形成装置
JP5663831B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、および、画像形成装置
JP6307850B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
WO2015111589A1 (ja) 電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質
JP4983066B2 (ja) アミン化合物、電子写真感光体、画像形成方法及び画像形成装置
JP6183113B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5332401B2 (ja) 電子写真感光体、電子写真感光体カートリッジおよび画像形成装置
JP4661617B2 (ja) 電子写真感光体、画像形成方法および画像形成装置
JP5332402B2 (ja) 電子写真感光体、電子写真感光体カートリッジおよび画像形成装置
JP4967590B2 (ja) フタロシアニン結晶並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP2010096881A (ja) 電子写真感光体製造用塗布液、電子写真感光体、画像形成装置、および、電子写真感光体カートリッジ
JP5553125B2 (ja) 電子写真感光体、該感光体を用いるプロセスカートリッジ、及び画像形成装置
JP5239130B2 (ja) 電子写真感光体、画像形成方法、画像形成装置、及びアミン化合物
JP5168822B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置、並びにフタロシアニン結晶
JP2007148387A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP4661616B2 (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP2014010337A (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP4720527B2 (ja) 電子写真感光体、画像形成方法及び画像形成装置
JP4973018B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置、並びにフタロシアニン結晶
JP4379227B2 (ja) フタロシアニン化合物の製造方法、並びに電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6387649B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP4661241B2 (ja) フッ素置換インジウムフタロシアニン、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2007161619A (ja) 有機化合物の製造方法、その製造方法により得られた電子材料、並びに、それを用いた電子デバイス、電子写真感光体及び画像形成装置
JP2006008877A (ja) フタロシアニン化合物の製造方法、並びに電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160831

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160831

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170627

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170710

R151 Written notification of patent or utility model registration

Ref document number: 6183113

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151