WO2015111589A1 - 電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質 - Google Patents

電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質 Download PDF

Info

Publication number
WO2015111589A1
WO2015111589A1 PCT/JP2015/051425 JP2015051425W WO2015111589A1 WO 2015111589 A1 WO2015111589 A1 WO 2015111589A1 JP 2015051425 W JP2015051425 W JP 2015051425W WO 2015111589 A1 WO2015111589 A1 WO 2015111589A1
Authority
WO
WIPO (PCT)
Prior art keywords
charge transport
photosensitive member
electrophotographic photosensitive
electrophotographic
resin
Prior art date
Application number
PCT/JP2015/051425
Other languages
English (en)
French (fr)
Inventor
直 水島
光央 和田
由香 長尾
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to KR1020167019295A priority Critical patent/KR20160107196A/ko
Priority to CN201580005140.0A priority patent/CN106415398B/zh
Publication of WO2015111589A1 publication Critical patent/WO2015111589A1/ja
Priority to US15/211,386 priority patent/US9791791B2/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/043Photoconductive layers characterised by having two or more layers or characterised by their composite structure
    • G03G5/0433Photoconductive layers characterised by having two or more layers or characterised by their composite structure all layers being inorganic
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/75Details relating to xerographic drum, band or plate, e.g. replacing, testing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0557Macromolecular bonding materials obtained otherwise than by reactions only involving carbon-to-carbon unsatured bonds
    • G03G5/0564Polycarbonates
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/05Organic bonding materials; Methods for coating a substrate with a photoconductive layer; Inert supplements for use in photoconductive layers
    • G03G5/0528Macromolecular bonding materials
    • G03G5/0596Macromolecular compounds characterised by their physical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06144Amines arylamine diamine
    • G03G5/061446Amines arylamine diamine terphenyl-diamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0601Acyclic or carbocyclic compounds
    • G03G5/0612Acyclic or carbocyclic compounds containing nitrogen
    • G03G5/0614Amines
    • G03G5/06142Amines arylamine
    • G03G5/06147Amines arylamine alkenylarylamine
    • G03G5/061473Amines arylamine alkenylarylamine plural alkenyl groups linked directly to the same aryl group
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G5/00Recording members for original recording by exposure, e.g. to light, to heat, to electrons; Manufacture thereof; Selection of materials therefor
    • G03G5/02Charge-receiving layers
    • G03G5/04Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor
    • G03G5/06Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic
    • G03G5/0662Photoconductive layers; Charge-generation layers or charge-transporting layers; Additives therefor; Binders therefor characterised by the photoconductive material being organic containing metal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G2215/00Apparatus for electrophotographic processes
    • G03G2215/00953Electrographic recording members
    • G03G2215/00957Compositions

Definitions

  • the present invention relates to an electrophotographic photosensitive member, an electrophotographic cartridge, an image forming apparatus, and a method for producing a charge transport material that do not cause white spots even when used repeatedly in a high-temperature and high-humidity environment even in a full-color image forming apparatus.
  • Electrophotographic technology has been widely used and applied not only in the field of copying machines but also in the field of various printers in recent years because of its immediacy and high quality images.
  • photoconductors that are the core of electrophotographic technology in recent years, photoconductors using organic photoconductive materials that have advantages such as non-polluting, easy film formation, and easy manufacture are available. Has been developed.
  • This full-color image forming method mainly includes a tandem method and a four-cycle method.
  • a transfer method to a printing medium there are a direct transfer method, a transfer drum method, an intermediate transfer method, a multiple development batch transfer method, and the like.
  • a full-color image forming apparatus has a very high level of required image quality. In such a flow, there is a demand for a photoreceptor that can maintain high image quality even when subjected to excessive stress under a special environment (for example, high temperature and high humidity).
  • the contribution of the charge transport material is significant in determining the image quality of the photoreceptor.
  • a charge transport material various materials such as a carbazole derivative, a hydrazone derivative, a stilbene derivative, a butadiene derivative, and an enamine derivative have been put into practical use.
  • a highly sensitive triarylamine-stilbene hybrid type compound is used as a charge transport material for an electrophotographic photoreceptor (Patent Document 1).
  • An object of the present invention is to provide a method for producing an electrophotographic photosensitive member, an electrophotographic photosensitive member, an electrophotographic cartridge, and an image forming apparatus that do not generate white spots even when used repeatedly in a high-color and high-humidity environment in a full-color image forming apparatus. There is to do.
  • the present inventors have manufactured a photoconductor using a specific charge transport material by a specific manufacturing method, or using a photoconductor using a specific charge transport material, thereby increasing the temperature and temperature.
  • the inventors have found that it is possible to provide a good image quality that does not cause white spots even when repeatedly used under moisture, and have completed the present invention described below.
  • the gist of the present invention resides in the following ⁇ 1> to ⁇ 12>.
  • the photosensitive layer contains a compound represented by the general formula (1) and palladium, and the palladium content in the photosensitive layer is 0.01 to 50 ppm.
  • An electrophotographic photoreceptor characterized in that
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • An electrophotographic photoreceptor having a content of 0.01 to 150 ppm.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • the photosensitive layer is formed from a coating solution using an organic solvent.
  • the residual amount of the halogen-based solvent in the photosensitive layer is 1.0 mg / g or less, and the residual amount of the non-halogen-based solvent is 0.05 mg / g.
  • the compound represented by the formula (1) contained in the photosensitive layer is 20 to 50 parts by mass with respect to 100 parts by mass of the binder resin forming the photosensitive layer.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have an alkyl group or an alkoxy group
  • Ar 6 to Ar 9 each independently have a substituent.
  • ⁇ 8> The electrophotographic photosensitive member according to any one of ⁇ 1> to ⁇ 7>, wherein the compound represented by the formula (1) is purified using an adsorbent.
  • ⁇ 9> The electrophotographic photosensitive member according to any one of ⁇ 1> to ⁇ 8>, which is used in a full-color image forming apparatus.
  • An electrophotographic photosensitive member cartridge comprising: an apparatus and at least one selected from the group consisting of a developing device for developing an electrostatic latent image formed on the electrophotographic photosensitive member.
  • a developing device for developing an electrostatic latent image formed on the electrophotographic photosensitive member.
  • a charging device that charges the electrophotographic photosensitive member
  • an exposure device that exposes the charged electrophotographic photosensitive member to form an electrostatic latent image.
  • a full-color image forming apparatus comprising: a developing device for developing the electrostatic latent image formed on the electrophotographic photosensitive member.
  • a charge transport material comprising a compound represented by the general formula (1) and palladium, wherein the charge transport material has a palladium content of 0.01 to 150 ppm.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have an alkyl group or an alkoxy group
  • Ar 6 to Ar 9 each independently have a substituent.
  • And represents an 1,4-phenylene group, wherein m and n each independently represents an integer of 1 or more and 2 or less.
  • the present invention can provide an electrophotographic photoreceptor that does not cause white spots when used repeatedly in a high-temperature and high-humidity environment even in a full-color image forming apparatus.
  • FIG. 1 is a schematic diagram showing a main configuration of an embodiment of an image forming apparatus according to the present invention.
  • FIG. 2 is an X-ray diffraction diagram showing a powder X-ray diffraction spectrum of oxytitanium phthalocyanine used in Examples and Comparative Examples of the present invention.
  • FIG. 3 is an X-ray diffraction diagram showing a powder X-ray diffraction spectrum of oxytitanium phthalocyanine used in Examples and Comparative Examples of the present invention.
  • the charge transport material of the present invention may contain any compound as long as it contains a compound represented by the following general formula (1) and palladium and has a palladium content of 0.01 to 150 ppm.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent
  • Ar 6 to Ar 9 may each independently have a substituent.
  • m and n each independently represents an integer of 1 to 3.
  • Ar 1 to Ar 5 each independently represents an aryl group which may have a substituent.
  • carbon number of an aryl group it is 30 or less, for example, Preferably it is 20 or less, More preferably, it is 15 or less.
  • Specific examples include a phenyl group, a naphthyl group, a biphenyl group, an anthryl group, and a phenanthryl group.
  • a phenyl group, a naphthyl group, and an anthryl group are preferable. From the viewpoint of charge transport capability, a phenyl group and a naphthyl group are more preferable, and a phenyl group is further preferable.
  • Examples of the substituent that Ar 1 to Ar 5 may have include an alkyl group, an aryl group, an alkoxy group, and a halogen atom.
  • the alkyl group includes a linear alkyl group such as a methyl group, an ethyl group, an n-propyl group and an n-butyl group, a branched alkyl group such as an isopropyl group and an ethylhexyl group, and a cyclic alkyl group such as a cyclohexyl group. Groups and the like.
  • examples of the aryl group include a phenyl group and a naphthyl group which may have a substituent.
  • alkoxy group examples include linear alkoxy groups such as methoxy group, ethoxy group, n-propoxy group and n-butoxy group, branched alkoxy groups such as isopropoxy group and ethylhexyloxy group, and cyclic alkoxy groups such as cyclohexyloxy group.
  • alkoxy groups having a fluorine atom such as a group, a trifluoromethoxy group, a pentafluoroethoxy group, and a 1,1,1-trifluoroethoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom and a bromine atom.
  • an alkyl group having 1 to 20 carbon atoms and an alkoxy group having 1 to 20 carbon atoms are preferable from the versatility of production raw materials. From the viewpoint of properties, an alkyl group having 1 to 12 carbon atoms and an alkoxy group having 1 to 12 carbon atoms are more preferable. From the viewpoint of light attenuation characteristics as an electrophotographic photosensitive member, an alkyl group having 1 to 6 carbon atoms and a carbon number More preferred are 1 to 6 alkoxy groups.
  • Ar 1 to Ar 5 are phenyl groups, it is preferable to have a substituent from the viewpoint of charge transport capability, and the number of substituents can be 1 to 5, but from the versatility of the raw materials for production, 1 1 to 3 is preferable, and 1 to 2 is more preferable from the viewpoint of the characteristics of the electrophotographic photosensitive member.
  • Ar 1 to Ar 5 are naphthyl groups
  • the number of substituents is 2 or less or that they have no substituent, more preferably the number of substituents is 1 or a substituent. It has no group.
  • Ar 1 preferably has at least one substituent in the ortho-position or para-position relative to the nitrogen atom, and examples of the substituent include an alkoxy group having 1 to 6 carbon atoms or 1 to 6 carbon atoms from the viewpoint of solubility. Are preferred.
  • Ar 6 to Ar 9 each independently represents a 1,4-phenylene group which may have a substituent.
  • substituent that Ar 6 to Ar 9 may have, those listed as the substituents that Ar 1 to Ar 5 may have are applicable.
  • alkyl groups having 1 to 6 carbon atoms and alkoxy groups having 1 to 6 carbon atoms are preferable from the viewpoint of versatility of production raw materials, and alkyl groups having 1 to 4 carbon atoms and carbon numbers from the viewpoint of handleability during production.
  • An alkoxy group of 1 to 4 is more preferable, and a methyl group, an ethyl group, a methoxy group, and an ethoxy group are more preferable from the viewpoint of light attenuation characteristics as an electrophotographic photosensitive member.
  • Ar 6 to Ar 9 may have a substituent, the molecular structure may be twisted, which may hinder ⁇ -conjugate expansion in the molecule and reduce the electron transport capability. Therefore, Ar 6 to Ar 9 may have a substituent. It is preferable not to have.
  • M and n each independently represents an integer of 1 to 3.
  • M and n each independently represents an integer of 1 to 3.
  • m and n are large, the solubility in a coating solvent tends to decrease. Therefore, it is preferably 2 or less, and more preferably 1 from the viewpoint of charge transport ability as a charge transport material.
  • the photosensitive layer may contain the compound represented by the formula (1) as a single component, or it may be contained as a mixture of the compounds represented by the formula (1).
  • Ar 1 in formula (1) is a phenyl group having an alkyl group, an alkoxy group, an aryloxy group, or an aralkyloxy group
  • Ar 2 to Ar 5 are each independently a substituent.
  • a phenyl group which may have an alkyl group having 1 to 6 carbon atoms, Ar 6 to Ar 9 are all unsubstituted 1,4-phenylene groups, and m and n are both 1.
  • R a to R e each independently represents an alkyl group, an alkoxy group, an aryloxy group, an aralkyloxy group, or a hydrogen atom.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Bu represents a butyl group.
  • the ratio of the binder resin in the photosensitive layer to the charge transport material containing the compound represented by the formula (1) is usually 15 masses of the charge transport material with respect to 100 parts by mass of the binder resin in the same layer. Use more than one part. 20 parts by mass or more is preferable from the viewpoint of residual potential reduction, and 25 parts by mass or more is more preferable from the viewpoint of stability and charge mobility when repeatedly used.
  • the charge transport material is usually used in an amount of 70 parts by mass or less. 65 parts by mass or less is preferable from the viewpoint of compatibility between the charge transporting material containing the compound represented by the formula (1) and the binder resin, 60 parts by mass or less is more preferable from the viewpoint of heat resistance, and from the viewpoint of scratch resistance.
  • the amount is preferably 50 parts by mass or less, and particularly preferably 45 parts by mass or less from the viewpoint of wear resistance.
  • a step of synthesizing the compound represented by the general formula (1) using a palladium compound, and the general formula (1) using an adsorbent preferably includes a step of purifying the expressed charge transport material to have a palladium content of 0.01 to 150 ppm.
  • the exemplified charge transport material can be produced according to Scheme 1 below. Taking the above compound as an example, it is possible to synthesize a crude product before purification by performing a coupling reaction using a triphenylamine derivative having a halogen atom and an aniline compound as a palladium compound as a catalyst. . ⁇ Scheme 1>
  • the palladium compound examples include tetravalent palladium compounds such as sodium hexachloropalladate tetrahydrate and potassium hexachloropalladate tetrahydrate, palladium acetate, palladium chloride, palladium bromide, palladium acetyl acetate, dichlorobis (benzonitrile).
  • tetravalent palladium compounds such as sodium hexachloropalladate tetrahydrate and potassium hexachloropalladate tetrahydrate
  • palladium acetate palladium chloride
  • palladium bromide palladium acetyl acetate
  • dichlorobis benzonitrile
  • Divalent palladium compounds such as palladium, dichlorobis (triphenylphosphine) palladium, dichlorotetraminepalladium and dichloro (cycloocta-1,5-diene) palladium, tris (dibenzylideneacetone) dipalladium, tris (dibenzylideneacetone) dipalladium
  • Examples include chloroform complex, tetrakis (triphenylphosphine) palladium, and allylpalladium (II) chloride dimer.
  • palladium acetate and allyl palladium (II) chloride dimer which are divalent palladium compounds are preferable.
  • the compound serving as a ligand is preferably a phosphorus compound.
  • phosphine compounds include phosphine compounds, phosphite compounds, phosphoramidite compounds, and triaminophosphine compounds.
  • a phosphine compound is preferable from the viewpoint of yield.
  • the phosphine compound include alkylphosphine derivatives such as tricyclohexylphosphine and tri-tert-butylphosphine, and arylphosphine derivatives such as triphenylphosphine and tri-o-tolylphosphine.
  • alkylphosphine derivatives are preferable from the viewpoint of yield.
  • the lower limit of the amount of the palladium compound used in the coupling reaction is usually 0.0002 mol or more, preferably 0.0005 mol or more, more preferably 0 with respect to 1 mol of the triphenylamine derivative compound having a halogen atom. 0.001 mol or more.
  • the upper limit is 10 mol or less, preferably 1 mol or less, more preferably 0.5 mol or less, and still more preferably 0.1 mol or less.
  • the crude product synthesized in the above scheme 1 can be purified to a state having a specific palladium content that can be used for an electrophotographic photosensitive member by performing a purification treatment using an adsorbent.
  • any known adsorbent can be used for the purification method using the adsorbent, and specific examples of the adsorbent include activated carbon, silica gel, alumina, activated clay, florisil, diatomaceous earth, and the like.
  • activated carbon, silica gel, activated clay, and florisil are preferable from the viewpoint of electrophotographic photoreceptor characteristics, and activated carbon, activated clay, and florisil are more preferable from the viewpoint of production cost, and more preferably activated clay and florisil.
  • the purification treatment with an adsorbent is usually performed by dissolving a coarse charge transport material in an organic solvent and bringing the solution into contact with the adsorbent.
  • the organic solvent that can be used for the purification treatment is not particularly limited as long as it is a solvent that can dissolve the charge transport material.
  • aromatic hydrocarbons can be used.
  • a solvent or an aliphatic hydrocarbon solvent is preferred.
  • aromatic hydrocarbon solvent examples include benzene, toluene, o-xylene, m-xylene, p-xylene, o-cymene, m-cymene, p-cymene, anisole, ethyl xylene, ethyl toluene, ethyl Anisole, methylnaphthalene, diphenylmethane and the like can be mentioned.
  • aliphatic hydrocarbon solvent examples include n-hexane, n-heptane, n-octane, n-decane, n-dodecane, 2,3-dimethylhexane, 2-methylheptane, 2-methylhexane, Examples include 3-methylhexane and cyclohexane.
  • an aromatic hydrocarbon solvent is preferable from the viewpoint of operability during production, and an aromatic hydrocarbon solvent having a boiling point of 150 ° C. or lower is particularly preferable, among which toluene and xylene are more preferable, and toluene is more preferable. . Any one of these solvents may be used as a single solvent, or any two or more of them may be used as a mixed solvent.
  • the amount of the organic solvent used can be selected from various values depending on the solubility of the crude body, but the mass ratio of (crude body) / (organic solvent) can be used in terms of the productivity of the charge transport material. From the viewpoint of the purification efficiency of the charge transport material, it is usually 0.5 or less, preferably 0.4 or less, more preferably 0.3 or less. is there.
  • the mass ratio of (adsorbent) / (coarse) is usually 1.5 or less, preferably 1.2 or less, more preferably 1.0 or less.
  • the mass ratio is usually 0.001 or more, preferably 0.005 from the viewpoint of low degree of adverse effect of the oxidizing ability of the adsorbent on the arylamine compound, since the purification efficiency is lowered if the amount is too small.
  • the range is more preferably 0.01 or more.
  • the charge transport material used in the present invention may be purified by adding another purification method to the purification method using the adsorbent and combining two or more purification methods.
  • a specific example of another purification method combined with the purification method using an adsorbent is a reprecipitation method in which the solution is dissolved in a good solvent having a high affinity with the charge transport material, and after the solution is prepared, the solution is added to a poor solvent and solidified. Examples thereof include a crystallization method in which the solution is cooled by heating in a solvent having high affinity, and then the solution is cooled as it is, or a poor solvent is added to the solution and then cooled and aged to precipitate crystals.
  • the adsorption method and one or more other purification methods more preferably the combined use of the adsorption method and the reprecipitation method, and the combined use of the adsorption method and the crystallization method.
  • the palladium content in the charge transport material is 150 ppm or less, more preferably 120 ppm or less, still more preferably 100 ppm or less from the viewpoint of electrical characteristics. From the viewpoint of reducing the purification load and the burden on the charge transport material due to purification, it is 0.01 ppm or more, more preferably 0.1 ppm or more, still more preferably 0.5 ppm or more, and even more preferably 1 ppm or more.
  • the palladium content can be satisfied by combining the adsorbent, purification technique and conditions used.
  • the purity of the charge transport material is preferably 97.0% or more, more preferably 97.5% or more, and still more preferably 98.0% or more from the viewpoint of electrical characteristics. From the viewpoint of solubility, it is preferably 99.9% or less, more preferably 99.8% or less, and still more preferably 99.7% or less.
  • a method for achieving 97.0% or more a production method in which a palladium compound as a catalyst is combined with a ligand having a phosphorus atom, and the like can be mentioned.
  • a purification method such as a crystallization treatment. In order to make it 98.0% or more and 99.7% or less, it is preferable to purify by a method using an adsorbent.
  • a desired charge transport material can be produced with high efficiency, but the palladium used in the charge transport material remains.
  • the crude charge transport material before purification contains many impurities that affect the electrophotographic photoreceptor characteristics, such as a compound by-produced during the reaction.
  • the manner in which the electrophotographic photosensitive member exerts an adverse effect on stress such as transfer voltage received from the image forming apparatus varies greatly depending on the combination of the amount and type of impurities and the structure of the charge transport material.
  • the amount and type of the compound / impurity that may remain depends on the structure of the target charge transport material.
  • the residual palladium compound greatly affects the development of an adverse effect on the stress of the transfer voltage received from the image forming apparatus.
  • Details of the mechanism are unknown, but a weak intermolecular force is likely to act between the charge transport material and the residual palladium compound, and a strong voltage can be applied from the image forming apparatus during the transfer process with this weak intermolecular force acting. As a result, it becomes easier to form charge trap sites in the photosensitive layer, and it is presumed that the formation image quality is adversely affected by the trap.
  • the charge transport material can be identified by NMR, IR, mass spectrum and the like.
  • the palladium content can be measured using an ICP emission spectrometer, and the purity can be calculated by a liquid chromatograph.
  • the liquid chromatograph can be measured using an apparatus having a UV-vis detector.
  • the electrophotographic photoreceptor of the present invention will be described below.
  • the photosensitive layer of the electrophotographic photosensitive member is provided on the conductive support, and when it has an undercoat layer, it is provided on the undercoat layer.
  • the type of the photosensitive layer the charge generation material and the charge transport material exist in the same layer and are dispersed in the binder resin, so-called single-layer type photoreceptor, the charge generation material is dispersed in the binder resin.
  • a multi-layered structure in which a charge generation layer and a charge transport material are dispersed in a binder resin, and a multi-layer structure in which the function is separated, is a so-called laminated type photoconductor.
  • an overcoat layer may be provided on the photosensitive layer for the purpose of improving the chargeability and improving the wear resistance.
  • conductive support used for the photoreceptor for example, metal materials such as aluminum, aluminum alloy, stainless steel, copper, nickel, and conductive powders such as metal, carbon, and tin oxide are added to impart conductivity.
  • a resin material, a resin, glass, paper, or the like on which a conductive material such as aluminum, nickel, or ITO (indium tin oxide) is deposited or applied on the surface is mainly used.
  • Forms such as a drum shape, a sheet shape, and a belt shape are used.
  • conductive support of metallic materials for control of conductivity, surface properties, etc. and for defect coating.
  • a conductive material having an appropriate resistance value may be applied.
  • a metal material such as an aluminum alloy
  • it may be used after an anodized film is applied.
  • sealing treatment can be performed by a known method.
  • the support surface may be smooth, or may be roughened by using a special cutting method or by polishing. Further, it may be roughened by mixing particles having an appropriate particle diameter with the material constituting the support.
  • a special cutting method or by polishing In order to reduce the cost, it is possible to use the drawing tube as it is without cutting.
  • the process eliminates dirt, foreign matter, etc. on the surface, small scratches, etc., and a uniform and clean support can be obtained. Therefore, it is preferable.
  • An undercoat layer may be provided between the conductive support and the photosensitive layer described later for improving adhesion and blocking properties.
  • a resin a resin in which particles such as a metal oxide are dispersed, or the like is used.
  • metal oxide particles used for the undercoat layer include metal oxide particles containing one metal element such as titanium oxide, aluminum oxide, silicon oxide, zirconium oxide, zinc oxide, iron oxide, calcium titanate, titanium Examples thereof include metal oxide particles containing a plurality of metal elements such as strontium acid and barium titanate.
  • titanium oxide and aluminum oxide are preferable, and titanium oxide is particularly preferable.
  • the surface of the titanium oxide particles may be treated with an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • an inorganic substance such as tin oxide, aluminum oxide, antimony oxide, zirconium oxide, or silicon oxide, or an organic substance such as stearic acid, polyol, or silicon.
  • any of rutile, anatase, brookite, and amorphous can be used.
  • the thing of the several crystal state may be contained.
  • the average primary particle diameter is usually 1 nm or more, preferably 10 nm, from the viewpoint of electrical characteristics and the stability of the coating liquid for forming the undercoat layer. As described above, it is usually 100 nm or less, preferably 50 nm or less.
  • the undercoat layer is preferably formed in a form in which metal oxide particles are dispersed in a binder resin.
  • a binder resin for example, epoxy resin, polyethylene resin, polypropylene resin, acrylic resin, methacrylic resin, polyamide resin, vinyl chloride resin, vinyl chloride resin, vinyl acetate resin, phenol resin, polycarbonate resin, Polyurethane resin, polyimide resin, vinylidene chloride resin, polyvinyl acetal resin, vinyl chloride-vinyl acetate copolymer, polyvinyl alcohol resin, polyurethane resin, polyacrylic acid resin, polyacrylamide resin, polyvinyl pyrrolidone resin, polyvinyl pyridine resin, water-soluble polyester Resin, cellulose ester resin such as nitrocellulose, cellulose ether resin, casein, gelatin, polyglutamic acid, starch, starch acetate, amino starch, zirconium clean Compounds, organic zirconium compounds such as zirconium alkoxid
  • the use ratio of the inorganic particles to the binder resin used for the undercoat layer can be arbitrarily selected, but is usually 10% by mass or more and 500% by mass or less from the viewpoint of the stability of the dispersion and the coating property. It is preferable to use in a range.
  • the thickness of the undercoat layer can be selected arbitrarily, but is usually preferably in the range of 0.1 ⁇ m or more and 20 ⁇ m or less from the viewpoint of improving the photoreceptor characteristics and applicability.
  • a known antioxidant or the like may be mixed.
  • pigment particles, resin particles and the like may be contained and used.
  • the photosensitive layer contains the charge transport material represented by the general formula (1), and the palladium content of the charge transport material is 0.01 to 150 ppm.
  • Either a single layer type photosensitive layer or a multilayer type photosensitive layer may be used.
  • As the multilayer type photosensitive layer a layered type photosensitive layer in which a charge generation layer and a charge transport layer are laminated in this order from the conductive support side. Layer and a reverse laminated type photosensitive layer provided by laminating a charge transport layer and a charge generation layer in this order from the conductive support side, and any of them can be adopted, but a particularly well-balanced photoconductive layer A normally laminated photosensitive layer capable of exhibiting properties is preferred.
  • the palladium content in the photosensitive layer is preferably 50 ppm or less, more preferably 45 ppm or less, still more preferably 40 ppm or less from the viewpoint of electrical characteristics. From the viewpoint of reducing the purification load during production of the charge transport material and reducing the burden on the charge transport material during purification, it is preferably 0.01 ppm or more, more preferably 0.1 ppm or more, and even more preferably 0.5 ppm or more.
  • the palladium content can be satisfied by forming a photosensitive layer using the charge transport material represented by the formula (1) obtained by combining the adsorbent, purification method and conditions used.
  • the palladium content is quantitatively analyzed as follows using an ICP emission spectroscopic analyzer or an ICP mass spectrometer. First, the photosensitive layer is scraped off from the photoreceptor, and a certain amount is measured. Next, this is carbonized by a sample pretreatment apparatus, and this is dissolved by using various acids such as sulfuric acid and nitric acid alone or by mixing them. This solution is ashed to remove organic substances, and the residue is further dissolved by using various acids such as sulfuric acid and nitric acid alone or by mixing them. This sample is quantitatively analyzed for palladium using an ICP emission spectroscopic analyzer or an ICP mass spectrometer.
  • the photosensitive layer has well-known antioxidants, plasticizers, and UV absorbers in order to improve film formability, flexibility, coatability, contamination resistance, gas resistance, light resistance, and the like. You may contain additives, such as an agent, an electron withdrawing compound, a leveling agent, and a visible light shading agent.
  • the photosensitive layer may contain various additives such as a leveling agent, an antioxidant, and a sensitizer for improving the coating property, if necessary.
  • a leveling agent such as hindered phenol compounds and hindered amine compounds.
  • a sensitizer for improving the coating property, if necessary.
  • the antioxidant include hindered phenol compounds and hindered amine compounds.
  • dyes and pigments include various pigment compounds and azo compounds.
  • surfactants include silicone oil and fluorine oil.
  • the solvent usually used for the coating solution remains.
  • a halogen-based solvent having a halogen atom such as chlorine in the structure generates free halogen when the solvent itself decomposes during production of the photoreceptor and during long-term storage, causing deterioration of the characteristics of the electrophotographic photoreceptor.
  • it is preferably 1.0 mg / g or less, more preferably not remaining in the photosensitive layer.
  • a non-halogen solvent having no halogen atom in the structure it is usually 20.0 mg / g or less, more preferably 15.0 mg / g or less, and even more preferably 12.5 mg / g or less in the photosensitive layer. Yes, usually 0.05 mg / g or more, more preferably 0.1 mg / g or more, still more preferably 0.5 mg / g or more, still more preferably 1.0 mg / g or more. If the remaining amount in the photosensitive layer is too large, the mechanical strength of the photosensitive member may be insufficient, and if it is too small, the load during drying of the photosensitive layer in the production of the photosensitive member may be too high and the productivity may decrease. There is.
  • the charge generation layer is formed by binding a charge generation material with a binder resin.
  • the charge generation material include inorganic photoconductive materials such as selenium and its alloys, cadmium sulfide, and organic photoconductive materials such as organic pigments, but organic photoconductive materials are preferred, especially organic pigments. Is preferred.
  • organic pigments examples include phthalocyanine pigments, azo pigments, dithioketopyrrolopyrrole pigments, squalene (squarylium) pigments, quinacridone pigments, indigo pigments, perylene pigments, polycyclic quinone pigments, anthanthrone pigments, and benzimidazole pigments. .
  • phthalocyanine pigments or azo pigments are particularly preferable.
  • fine particles of these organic pigments are used in the form of a dispersion layer bound with various binder resins.
  • a photosensitive member having a high sensitivity to a laser beam having a relatively long wavelength for example, a laser beam having a wavelength around 780 nm
  • a photosensitive member having a high sensitivity to a laser beam having a relatively long wavelength for example, a laser beam having a wavelength around 780 nm
  • an azo pigment such as diazo or trisazo
  • a photosensitive member having a high sensitivity can be obtained.
  • a phthalocyanine pigment or an azo pigment is particularly preferable.
  • the phthalocyanine pigment provides a photosensitive material with high sensitivity to a laser beam having a relatively long wavelength, and the azo pigment has a sufficient sensitivity to white light and a laser beam having a relatively short wavelength. , Each is excellent.
  • a phthalocyanine pigment as a charge generating material, specifically, metal-free phthalocyanine, copper, indium, gallium, tin, titanium, zinc, vanadium, silicon, germanium, aluminum or other metal or oxide thereof, halide, water Those having crystal forms of coordinated phthalocyanines such as oxides and alkoxides, and phthalocyanine dimers using oxygen atoms as bridging atoms are used.
  • titanyl phthalocyanines also known as oxytitanium
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • D-type also known as Y-type
  • vanadyl phthalocyanine vanadyl phthalocyanine
  • chloroindium phthalocyanine hydroxyindium phthalocyanine
  • chlorogallium phthalocyanine such as type II
  • hydroxygallium phthalocyanine such as type V
  • ⁇ -oxo-gallium phthalocyanine dimer such as type G and type I, type II, etc.
  • the ⁇ -oxo-aluminum phthalocyanine dimer is preferred.
  • A-type also known as ⁇ -type
  • B-type also known as ⁇ -type
  • powder X-ray diffraction angle 2 ⁇ ⁇ 0.2 °
  • D-type (Y-type) titanyl phthalocyanine, II-type chlorogallium phthalocyanine, V-type and 28.1 ° have the strongest peaks, and 26.2 ° have peaks Hydroxygallium phthalocyanine, G-type ⁇ -oxo-gallium, characterized by having a clear peak at 28.1 ° and a full width at half maximum W of 25.9 ° of 1 ° ⁇ W ⁇ 0.4 °
  • a phthalocyanine dimer and the like are particularly preferable.
  • the phthalocyanine compound a single compound may be used, or several mixed or mixed crystals may be used.
  • the mixed state that can be put in the phthalocyanine compound or crystal state here those obtained by mixing the respective constituent elements later may be used, or they may be mixed in the production / treatment process of the phthalocyanine compound such as synthesis, pigmentation, and crystallization. It may be the one that caused the condition.
  • acid paste treatment, grinding treatment, solvent treatment and the like are known.
  • an azo pigment When an azo pigment is used as the charge generating substance, various bisazo pigments and trisazo pigments are preferably used.
  • an organic pigment When an organic pigment is used as the charge generation material, one kind may be used alone, or two or more kinds of pigments may be mixed and used. In this case, it is preferable to use a combination of two or more kinds of charge generating materials having spectral sensitivity characteristics in different spectral regions of the visible region and the near red region.
  • a disazo pigment, a trisazo pigment and a phthalocyanine pigment are preferably used in combination. More preferred.
  • the binder resin used in the charge generation layer is not particularly limited, but examples include polyvinyl butyral resin, polyvinyl formal resin, and polyvinyl acetal such as partially acetalized polyvinyl butyral resin in which a part of butyral is modified with formal or acetal.
  • the charge generation layer is prepared by dispersing a charge generation material in a solution obtained by dissolving the above-described binder resin in an organic solvent to prepare a coating solution, and applying the coating solution on the conductive support (by applying an undercoat layer). If provided, it is formed by coating (on the undercoat layer).
  • the compounding ratio (mass) of the binder resin and the charge generation material is usually 10 parts by mass or more, preferably 30 parts by mass or more, and usually 30 parts by mass or more with respect to 100 parts by mass of the binder resin. It is 1000 mass parts or less, Preferably it is the range of 500 mass parts or less.
  • the film thickness of the charge generation layer is usually 0.1 ⁇ m or more, preferably 0.15 ⁇ m or more, and usually 10 ⁇ m or less, preferably 0.6 ⁇ m or less. If the ratio of the charge generation material is too high, the stability of the coating solution may be reduced due to aggregation of the charge generation material, while if the ratio of the charge generation material is too low, the sensitivity as a photoreceptor may be decreased. There is.
  • a known dispersion method such as a ball mill dispersion method, an attritor dispersion method, a sand mill dispersion method, or a bead mill dispersion can be used. At this time, it is effective to refine the particles to a particle size in the range of 0.5 ⁇ m or less, preferably 0.3 ⁇ m or less, more preferably 0.15 ⁇ m or less.
  • the charge transport layer of the multilayer photoconductor contains a charge transport material and usually contains a binder resin and other components used as necessary.
  • the charge transport layer is prepared by, for example, preparing a coating solution by dissolving or dispersing a charge transport material and a binder resin in a solvent, and in the case of a sequentially laminated photosensitive layer, the charge transport layer is formed on the charge generation layer.
  • an inversely laminated photosensitive layer it can be obtained by applying and drying on a conductive support (on the undercoat layer when an undercoat layer is provided).
  • charge transport material containing a compound represented by the formula (1) it is essential to use a charge transport material containing a compound represented by the formula (1), but other charge transport materials may be mixed and used. There is no particular limitation on the charge transporting material that may be used as a mixture, and any material can be used.
  • Examples of other known charge transport materials include aromatic nitro compounds such as 2,4,7-trinitrofluorenone, cyano compounds such as tetracyanoquinodimethane, electron withdrawing materials such as quinone compounds such as diphenoquinone, Carbazole derivatives, indole derivatives, imidazole derivatives, oxazole derivatives, pyrazole derivatives, thiadiazole derivatives, heterocyclic compounds such as benzofuran derivatives, aniline derivatives, hydrazone derivatives, aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives, and these compounds
  • An electron donating substance such as a polymer in which a plurality of types are bonded, or a polymer having a group consisting of these compounds in the main chain or side chain is exemplified.
  • carbazole derivatives aromatic amine derivatives, stilbene derivatives, butadiene derivatives, enamine derivatives, and those in which a plurality of these compounds are bonded are preferable.
  • binder resin examples include vinyl polymers such as polymethyl methacrylate, polystyrene, and polyvinyl chloride, and copolymers thereof, thermoplastic resins such as polycarbonate, polyester, polyester polycarbonate, polysulfone, phenoxy, epoxy, and silicone resin.
  • thermoplastic resins such as polycarbonate, polyester, polyester polycarbonate, polysulfone, phenoxy, epoxy, and silicone resin.
  • thermosetting resins are exemplified.
  • polycarbonate resin or polyester resin is preferable.
  • binder resin Specific examples of suitable structures of the binder resin are shown below. These specific examples are shown for illustration, and any known binder resin may be mixed and used as long as it does not contradict the gist of the present invention.
  • the viscosity average molecular weight of the binder resin is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 20,000 or more, preferably 40,000 or more, and usually 150,000 or less from the viewpoint of wear resistance. From the viewpoint of applicability, it is preferably 120,000 or less, more preferably 100,000 or less.
  • the compound represented by the formula (1) has poor solubility due to large ⁇ -conjugation, and usually does not use a resin having a high viscosity average molecular weight.
  • the purity of the charge transport material is as follows.
  • Examples of the solvent used for preparing the coating solution for the charge transport layer include saturated aliphatic solvents such as pentane, hexane, octane and nonane; aromatic hydrocarbon solvents such as toluene, xylene and anisole; chlorobenzene and dichlorobenzene Halogenated aromatic solvents such as chloronaphthalene; amide solvents such as dimethylformamide and N-methyl-2-pyrrolidone; alcohol solvents such as methanol, ethanol, isopropanol, n-butanol and benzyl alcohol; glycerin and polyethylene glycol Aliphatic polyhydric alcohols such as; ketone solvents such as acetone, cyclohexanone, methyl ethyl ketone, 4-methoxy-4-methyl-2-pentanone; ester solvents such as methyl formate, ethyl acetate, n-butyl acetate; methylene chloride , Ch
  • solvents may be used alone or in combination of two or more in any combination and ratio.
  • aromatic hydrocarbon solvents such as toluene and xylene; acetone, cyclohexanone, methyl ethyl ketone, 4-methoxy-4-methyl-2-pentanone, etc.
  • Ketone solvents from the viewpoint of solubility of materials used for the charge transport layer Ketone solvents; ester solvents such as methyl formate, ethyl acetate, n-butyl acetate; halogenated hydrocarbon solvents such as methylene chloride, chloroform, 1,2-dichloroethane; diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4 -Ether solvents such as dioxane, methyl cellosolve, ethyl cellosolve and anisole are preferred, and aromatic solvents such as toluene, xylene, anisole and the like from the film forming property; diethyl ether, dimethoxyethane, tetrahydrofuran, 1,4-dioxane, Methyl cell solve, ethyl cell Lube, more preferably ether solvents such as anisole, toluene from the viewpoint of the electrophotographic photosensitive member
  • Two or more kinds may be used in any combination and type.
  • mixing it is preferable to use an ether solvent and another solvent in combination from the viewpoint of repeated transfer voltage resistance, and aromatic hydrocarbons are preferable from the viewpoint of compatibility.
  • the mass ratio [ether solvent / other solvent] is usually 1/2 or more, preferably 1/1 or more, more preferably 2/1 or more, from the viewpoint of repeated transfer voltage resistance. is there. From the viewpoint of applicability, it is usually 15/1 or less, preferably 10/1 or less.
  • the coating solution for forming a photosensitive layer it is preferable to adjust the coating solution for forming a photosensitive layer so that the mass ratio [charge transport material / solvent] of the charge transport material and the solvent is 1/10 to 1/100. From the viewpoint of solubility with the charge transport material, it is preferably 1/12 or less, and more preferably 1/15 or less. From the viewpoint of applicability, 1/90 or more is more preferable, and 1/50 or more is even more preferable.
  • the lower limit of the temperature of the solution during heating is usually 20 ° C. or higher, preferably 25 ° C. or higher, more preferably 30 ° C. or higher.
  • the upper limit is usually 80 degrees or less, preferably 70 degrees or less, more preferably 65 degrees or less.
  • the solid content concentration of the coating solution is usually 5% by mass or more, preferably 10% by mass or more, and usually 40% by mass or less. The range is preferably 35% by mass or less.
  • the viscosity of the coating solution is usually 10 mPa ⁇ s or more, preferably 50 mPa ⁇ s or more, and usually 1500 Pa ⁇ s or less, preferably 1000 Pa ⁇ s or less, more preferably 500 mPa ⁇ s or less, even more preferably at the temperature at the time of use. Is in the range of 400 mPa ⁇ s or less.
  • the coating liquid is preferably dried by touching at room temperature and then heating and drying in a temperature range of 30 to 200 ° C. for 1 minute to 2 hours with no air or air.
  • the heating temperature may be constant or may be changed while drying.
  • the single-layer type photosensitive layer is formed using a charge generation material, a charge transport material represented by the formula (1), and a binder resin. Specifically, a charge generating substance, a charge transporting substance, and various binder resins are dissolved or dispersed in a solvent to prepare a coating solution, and on a conductive support (when an undercoat layer is provided, on an undercoat layer) It can be obtained by coating and drying.
  • the charge transport material represented by the above formula (1), the type of the binder resin, and the use ratio thereof are the same as those in the charge transport layer of the multilayer photoreceptor.
  • the film thickness of the photosensitive layer of the single-layer type photoreceptor is usually 5 to 100 ⁇ m, preferably 10 to 50 ⁇ m.
  • the film thickness of the charge transport layer of the forward laminated photoreceptor is usually 5 to 50 ⁇ m. Although used, it is preferably 10 to 45 ⁇ m from the viewpoint of long life and image stability, and more preferably 10 to 30 ⁇ m from the viewpoint of high resolution.
  • a protective layer may be provided on the outermost surface layer of the photosensitive member for the purpose of preventing the photosensitive layer from being worn out or preventing or reducing the deterioration of the photosensitive layer due to a discharge substance generated from a charger or the like.
  • the protective layer is formed by containing a conductive material in an appropriate binder resin, or a triphenylamine skeleton as described in Japanese Patent Laid-Open Nos. 9-190004 and 10-252377.
  • a copolymer using a compound having the following charge transporting ability can be used.
  • the conductive material examples include aromatic amino compounds such as TPD (N, N′-diphenyl-N, N′-bis- (m-tolyl) benzidine), antimony oxide, indium oxide, tin oxide, titanium oxide, and tin oxide.
  • aromatic amino compounds such as TPD (N, N′-diphenyl-N, N′-bis- (m-tolyl) benzidine
  • antimony oxide indium oxide, tin oxide, titanium oxide, and tin oxide.
  • -Metal oxides such as antimony oxide, aluminum oxide, and zinc oxide can be used, but are not limited thereto.
  • binder resin used for the protective layer known resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinyl ketone resin, polystyrene resin, polyacrylamide resin, and siloxane resin can be used.
  • resins such as polyamide resin, polyurethane resin, polyester resin, epoxy resin, polyketone resin, polycarbonate resin, polyvinyl ketone resin, polystyrene resin, polyacrylamide resin, and siloxane resin
  • a copolymer of the above resin with a skeleton having a charge transporting ability such as a triphenylamine skeleton as described in Japanese Patent Laid-Open Nos. 9-190004 and 10-252377 may be used. it can.
  • the protective layer is preferably configured to have an electric resistance of 10 9 to 10 14 ⁇ ⁇ cm.
  • the electric resistance is higher than 10 14 ⁇ ⁇ cm, the residual potential is increased and an image with much fogging is formed.
  • the electric resistance is lower than 10 9 ⁇ ⁇ cm, the image is blurred and the resolution is lowered.
  • the protective layer is configured so as not to substantially prevent transmission of light irradiated for image exposure.
  • fluorine resin, silicone resin, polyethylene resin, polystyrene resin, etc. are used for the surface layer for the purpose of reducing frictional resistance and abrasion on the surface of the photoconductor and increasing the transfer efficiency of the toner from the photoconductor to the transfer belt and paper. May be included.
  • grains which consist of these resin, and particles of inorganic compounds, such as a silica and an alumina, may be included.
  • the photosensitive layer constituting the photosensitive member is formed by immersing, spraying, nozzle coating, bar coating, roll coating, blade coating a coating solution obtained by dissolving or dispersing a substance to be contained in an organic solvent. It is formed by repeating a coating / drying step sequentially for each layer by a known method such as coating.
  • organic solvent examples include aliphatic cyclic ethers such as tetrahydrofuran, methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,3-dioxolane, ethylpropyl ether, propyl ether, dibutyl ether, dimethoxyethane, diethoxyethane, and the like.
  • aliphatic cyclic ethers such as tetrahydrofuran, methyltetrahydrofuran, tetrahydropyran, 1,4-dioxane, 1,3-dioxolane, ethylpropyl ether, propyl ether, dibutyl ether, dimethoxyethane, diethoxyethane, and the like.
  • Ether-based solvents such as aliphatic chain ethers, aromatic ethers such as anisole, methoxytoluene and phenetole, alcohols such as methanol, ethanol, propanol and 2-methoxyethanol, esters such as methyl formate and ethyl acetate, Ketones such as acetone, methyl ethyl ketone, cyclohexanone, 4-methoxy-4-methyl-2-pentanone, aromatic hydrocarbons such as benzene, toluene, xylene, dichloromethane, chloroform, 1,2- Chlorinated hydrocarbons such as chloroethane, 1,1,2-trichloroethane, 1,1,1-trichloroethane, tetrachloroethane, 1,2-dichloropropane, trichloroethylene, n-butylamine, isopropanolamine, diethylamine, triethanolamine, Examples thereof include nitrogen-
  • aliphatic cyclic ethers aromatic ethers, and aromatic hydrocarbons are preferable from the viewpoint of film forming properties of the photosensitive layer
  • tetrahydrofuran, 1,3-dioxolane, anisole, and toluene are preferable from the viewpoint of repeated transfer voltage resistance. More preferred.
  • the solid content concentration of the coating solution is usually 0.1% by mass or more, preferably 1% by mass or more, and usually 15% by mass or less, preferably 10% by mass. % Or less.
  • the viscosity of the coating solution is usually 0.01 mPa ⁇ s or higher, preferably 0.1 mPa ⁇ s or higher, and usually 20 mPa ⁇ s or lower, preferably 10 mPa ⁇ s or lower, at the temperature during use.
  • Examples of the coating method of the coating liquid include dip coating, spray coating, spinner coating, bead coating, wire bar coating, blade coating, roller coating, air knife coating, curtain coating, and the like. However, other known coating methods can be used.
  • the drying of the coating solution is preferably performed by drying at the room temperature, and then drying by heating in a temperature range of usually 30 ° C. or more and 200 ° C. or less for 1 minute to 2 hours while still or blowing. Further, the heating temperature may be constant, or heating may be performed while changing the temperature during drying.
  • reference numeral 1 denotes a drum-shaped photoconductor, which is rotationally driven at a predetermined peripheral speed in the direction of an arrow.
  • the photosensitive member 1 is uniformly charged with a positive or negative predetermined potential on the surface thereof by the charging device 2 during the rotation process, and then exposure for forming a latent image is performed by the image exposure unit in the exposure device 3.
  • the formed electrostatic latent image is then developed with toner by the developing device 4, and the toner development is sequentially transferred onto the recording paper P fed from the paper feeding unit by the transfer device 5.
  • the developing device 4 includes a developing tank 41, an agitator 42, a supply roller 43, a developing roller 44, and a regulating member 45, and has a configuration in which toner T is stored inside the developing tank 41. . Further, a replenishing device (not shown) for replenishing the toner T may be attached to the developing device 4 as necessary. This replenishing device is configured to be able to replenish toner T from a container such as a bottle or a cartridge.
  • the image-transferred transfer body is then sent to the fixing device 7 where the image is fixed and printed out of the apparatus.
  • the fixing device 7 includes an upper fixing member (fixing roller) 71 and a lower fixing member (fixing roller) 72, and a heating device 73 is provided inside each of the upper and lower fixing members 71 or 72.
  • FIG. 1 shows an example in which a heating device 73 is provided inside the upper fixing member 71.
  • Each of the upper and lower fixing members 71 and 72 includes a fixing roll in which a metal base tube such as stainless steel or aluminum is coated with silicon rubber, a fixing roll in which Teflon (registered trademark) resin is coated, a fixing sheet, or the like.
  • a member can be used.
  • each of the fixing members 71 and 72 may be configured to supply a release agent such as silicone oil in order to improve releasability, or may be configured to forcibly apply pressure to each other by a spring or the like.
  • the toner transferred onto the recording paper P passes between the upper fixing member 71 and the lower fixing member 72 heated to a predetermined temperature, the toner is heated to a molten state and cooled after passing through the recording paper. Toner is fixed on P.
  • the surface of the photoreceptor 1 after the image transfer is cleaned by the cleaning device 6 after the transfer residual toner is removed, and is neutralized by the neutralizing means for the next image formation.
  • a charger in addition to a corona charger such as corotron or scorotron, a direct charging means for charging a charged member by contacting a directly charged member to which voltage is applied is provided. It may be used.
  • Examples of direct charging means include contact chargers such as charging rollers and charging brushes.
  • the direct charging means any one that involves air discharge or injection charging that does not involve air discharge is possible.
  • a voltage applied at the time of charging it is possible to use only a direct current voltage or to superimpose an alternating current on a direct current.
  • a halogen lamp, a fluorescent lamp, a laser (semiconductor, He—Ne), an LED, a photoconductor internal exposure system, or the like is used.
  • a laser semiconductor, He—Ne
  • an LED semiconductor, a photoconductor internal exposure system, or the like
  • the digital electrophotographic system it is preferable to use a laser, an LED, an optical shutter array, or the like.
  • the wavelength in addition to monochromatic light of 780 nm, monochromatic light near a short wavelength in the 600 to 700 nm region can be used.
  • a dry development method such as cascade development, one-component insulating toner development, one-component conductive toner development, two-component magnetic brush development, or the like is used.
  • the toner in addition to the pulverized toner, chemical toners such as suspension granulation, suspension polymerization, and emulsion polymerization aggregation can be used.
  • chemical toners those having a small particle diameter of about 4 to 8 ⁇ m are used, and those having a shape close to a sphere, and those outside a potato-like sphere can also be used.
  • the polymerized toner is excellent in charging uniformity and transferability, and is preferably used for high image quality.
  • electrostatic transfer methods such as corona transfer, roller transfer, and belt transfer
  • pressure transfer method and adhesive transfer method
  • fixing for example, heat roller fixing, flash fixing, oven fixing, pressure fixing, IH fixing, belt fixing, IHF fixing, and the like are used. These fixing methods may be used alone or in combination with a plurality of fixing methods. May be used.
  • a brush cleaner for cleaning, for example, a brush cleaner, a magnetic brush cleaner, an electrostatic brush cleaner, a magnetic roller cleaner, a blade cleaner, or the like is used.
  • the static elimination step is often omitted, but when used, a fluorescent lamp, LED, or the like is used, and an exposure energy that is three times or more of the exposure light is often used as the intensity.
  • a pre-exposure process and an auxiliary charging process may be included.
  • a plurality of components such as the drum-shaped photoconductor 1, the charging device 2, the developing device 4, the cleaning device 6 and the like are integrally coupled as a drum cartridge. It may be configured to be detachable from the main body of an electrophotographic apparatus such as a copying machine or a laser beam printer.
  • at least one of the charging device 2, the developing device 4, and the cleaning device 6 can be integrally supported together with the drum-shaped photoconductor 1 to form a cartridge.
  • a color image can be obtained by adjusting magenta, yellow, cyan, and black toners in multiple layers to a desired color.
  • the color development part located before the black development part may reduce color mixing due to reverse transfer of black toner, and the black development part located behind the color development part is only black.
  • the color mixture due to the photosensitive member fog of the color toner is reduced, and the speed of black image formation can be increased by transporting the recording paper by short-passing the color developing unit. .
  • a cyan, magenta, and yellow color developing unit When applied to full-color image formation, such a cyan, magenta, and yellow color developing unit is at the front position, and the black developing unit is suitable for a tandem system positioned after the color developing unit. It should be noted that the order in which the cyan, magenta, and yellow color developing units are positioned can be freely changed in a timely manner.
  • a toluene solution of the CT1 crude material was prepared by dissolving 10 g of the charge transport material CT1 crude product obtained in Production Example 1 in 100 g of toluene.
  • 5 g of activated clay was added, stirred and filtered.
  • the purified solution after repeating this purification with activated clay [adsorbent treatment-filtration] three times is concentrated, the concentrated residue is dissolved in tetrahydrofuran, this solution is added to methanol, solidified by reprecipitation, and stirred.
  • 9.3 g of a charge transport material CT1 was obtained. It was 83 ppm when palladium content in obtained CT1 was confirmed by the ICP emission analysis.
  • Production Example 3 The same operation as in Production Example 2 was performed except that 5 g of activated clay used in the second treatment when the purification [Adsorbent treatment-filtration] in Production Example 2 was repeated three times was changed to 2.0 g of Florisil. As a result, 9.4 g of a charge transport material CT1 was obtained. It was 41 ppm when the palladium content in obtained CT1 was confirmed by the ICP emission analysis.
  • Production Example 4 The same operation as in Production Example 2 was performed except that 5 g of activated clay used for the second treatment in the case of repeating the purification [adsorbent treatment-filtration] three times in Production Example 2 was changed to 1.5 g of activated carbon. As a result, 9.3 g of a charge transport material CT1 was obtained. It was 117 ppm when the palladium content in obtained CT1 was confirmed by the ICP emission analysis.
  • Production Example 5 The same operation as in Production Example 2 was performed except that 5 g of activated clay used in the second treatment in the case of repeating the purification [adsorbent treatment-filtration] three times in Production Example 2 was changed to 2.0 g of silica gel. As a result, 9.3 g of a charge transport material CT1 was obtained. The palladium content in the obtained CT1 was confirmed to be 112 ppm by ICP emission analysis.
  • a rutile type titanium oxide having an average primary particle size of 40 nm (“TTO55N” manufactured by Ishihara Sangyo Co., Ltd.) and 3% by mass of methyldimethoxysilane (“TSL8117” manufactured by Toshiba Silicone Co., Ltd.) with respect to the titanium oxide were added to a Henschel mixer.
  • a 15-liter Ultra Apex mill (UAM-015 type) manufactured by Kotobuki Kogyo Co., Ltd. a titanium oxide dispersion was prepared by dispersing for 1 hour in a liquid circulation state with a rotor peripheral speed of 10 m / second and a liquid flow rate of 10 kg / hour. .
  • the titanium oxide dispersion, a mixed solvent of methanol / 1-propanol / toluene, and ⁇ -caprolactam [compound represented by the following formula (A)] / bis (4-amino-3-methylcyclohexyl) methane [following formula Compound represented by (B)] / hexamethylenediamine [compound represented by the following formula (C)] / decamethylene dicarboxylic acid [compound represented by the following formula (D)] / octadecamethylene dicarboxylic acid [following formula (E ) And a copolymerized polyamide pellet having a composition molar ratio of 75% / 9.5% / 3% / 9.5% / 3% while stirring and mixing the mixture to obtain polyamide pellets.
  • ultrasonic dispersion treatment with an ultrasonic transmitter with an output of 1200 W is performed for 1 hour, and a PTFE membrane filter with a pore size of 5 ⁇ m ( Filtered by Advantech Mytex LC), the mass ratio of the surface-treated titanium oxide / copolymerized polyamide is 3/1, and the mass ratio of the mixed solvent of methanol / 1-propanol / toluene is 7/1/2.
  • a coating solution for forming an undercoat layer having a solid content concentration of 18.0% by mass was prepared.
  • ⁇ Manufacture of coating solution for forming charge generation layer As a charge generation material, 20 parts of oxytitanium phthalocyanine showing X-ray diffraction spectrum by CuK ⁇ characteristic X-ray in FIG. 2 and 280 parts of 1,2-dimethoxyethane are mixed, and pulverized in a sand grind mill for 1 hour to be atomized and dispersed. Processing was performed. Subsequently, 10 parts of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denkabutyral” # 6000C), 255 parts of 1,2-dimethoxyethane, and 4-methoxy-4-methyl are added to the refined treatment liquid. A binder solution obtained by dissolving in a mixed solution of 85 parts of -2-pentanone and 230 parts of 1,2-dimethoxyethane were mixed to prepare a coating solution A for forming a charge generation layer.
  • oxytitanium phthalocyanine showing an X-ray diffraction spectrum by CuK ⁇ characteristic X-ray in FIG. 3 and 280 parts of 1,2-dimethoxyethane are mixed and pulverized in a sand grind mill for 4 hours to be atomized and dispersed. Processing was performed. Subsequently, 10 parts of polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denkabutyral” # 6000C), 255 parts of 1,2-dimethoxyethane, and 4-methoxy-4-methyl are added to the refined treatment liquid.
  • polyvinyl butyral manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denkabutyral” # 6000C
  • a binder solution obtained by dissolving in a mixed solution of 85 parts of -2-pentanone and 230 parts of 1,2-dimethoxyethane were mixed to prepare a coating solution B for forming a charge generation layer.
  • the charge generation layer forming coating solution A and the charge generation layer forming coating solution B were mixed at a mass ratio of 8: 2 to prepare a charge generation layer forming coating solution used in this example.
  • Coating liquid C1 100 parts of a polyarylate resin represented by the following repeating structure (resin X, viscosity average molecular weight 70,000), 40 parts of the charge transport material prepared in Production Example 2, 4 parts of compound AD1 represented by the following formula, Charge transport layer by dissolving 1 part of AD2, 1 part of AD3 and 0.03 part of dimethylpolysiloxane (KF96-10CS manufactured by Shin-Etsu Chemical Co., Ltd.) in 880 parts of tetrahydrofuran / toluene (8/2 (mass ratio)) mixed solvent A forming coating solution C1 was prepared.
  • a polyarylate resin represented by the following repeating structure (resin X, viscosity average molecular weight 70,000)
  • compound AD1 represented by the following formula
  • Coating fluid C2-5 Coating solutions C2 to C5 were prepared in the same manner as the coating solution C1, except that the charge transport material prepared in Preparation Examples 3 to 6 was used instead of the charge transport material of Preparation Example 2 as the charge transport material.
  • Coating fluid C6-7 Coating solutions C6 to C7 were prepared in the same manner as the coating solution C1, except that the charge transporting material prepared in Comparative Production Examples 1 and 2 was used instead of the charge transporting material of Production Example 2 as the charge transporting material. .
  • the coating solution for forming the undercoat layer and the coating solution for forming the charge generation layer prepared in the manufacturing example of the coating solution on a cylinder made of an aluminum alloy having an outer diameter of 60 mm, a length of 248 mm, and a wall thickness of 1.0 mm.
  • the coating solution for forming the charge transport layer is sequentially applied and dried by the dip coating method, and the undercoat layer, the charge generation layer, the charge are formed so that the dried film thicknesses are 1.5 ⁇ m, 0.5 ⁇ m, and 21 ⁇ m, respectively.
  • a transport layer was formed to produce a photoreceptor drum.
  • the charge transport layer was dried at 125 ° C. for 24 minutes.
  • the photosensitive layer was peeled off from the obtained photoreceptor and ICP emission analysis [apparatus: ICPS-8100S manufactured by Shimadzu Corporation] was performed to measure the palladium content in the photosensitive layer.
  • ⁇ Image test> The obtained photoreceptor is mounted on a photoreceptor cartridge of a Samsung 4-cycle full color printer CLP-320 (DC roller charging, LD exposure, non-magnetic one-component jumping development), and the temperature is 35 ° C. and the relative humidity is 85% lower. , Continuous printing of 6000 sheets was performed at a printing rate of 5%. After printing 6000 sheets, a halftone image was printed, and the white spot of the image was determined as follows.
  • the light of the halogen lamp is converted to monochromatic light of 780 nm with an interference filter at 0.6 ⁇ J / cm 2 .
  • the surface potential (unit: ⁇ V) measured after exposure with irradiation energy was defined as the residual potential.
  • Table 1 shows the results of producing and evaluating the photosensitive drum shown in Table 1.
  • Example 6> ⁇ Creation of electrophotographic photoreceptor ⁇ ⁇ Manufacture of coating solution for forming charge generation layer>
  • an oxytitanium phthalocyanine crystal shown in an X-ray diffraction spectrum with respect to CuK ⁇ characteristic X-ray as shown in FIG. 2.
  • this oxytitanium phthalocyanine crystal was mixed with 280 parts by weight of 1,2-dimethoxyethane, pulverized with a sand grind mill for 1 hour, and subjected to atomization dispersion treatment to obtain a refined treatment liquid.
  • a mixture of 253 parts by weight of 1,2-dimethoxyethane and 85 parts by weight of 4-methoxy-4-methyl-2-pentanone was added to polyvinyl butyral (manufactured by Denki Kagaku Kogyo Co., Ltd., trade name “Denkabutyral” # 6000C) 20 parts by weight was dissolved to prepare a binder solution.
  • a charge generation layer coating solution was prepared by mixing the above-mentioned atomization treatment solution obtained by the atomization dispersion treatment, the above-described binder solution, and 230 parts by weight of 1,2-dimethoxyethane.
  • the charge generation layer forming coating solution and the charge transport layer forming coating solution prepared in the coating liquid production example are sequentially applied to the obtained cylinder by a dip coating method and dried. A charge generation layer and a charge transport layer were formed so as to be 4 ⁇ m and 18 ⁇ m, and a photosensitive drum was manufactured.
  • the charge transport layer was dried at 125 ° C. for 20 minutes.
  • the charge transport layer of the obtained photoreceptor was peeled off, and the residual solvent was analyzed by gas chromatography [apparatus: 7890 manufactured by Agilent Technologies, Inc.].
  • the residual solvent amount in the photosensitive layer was a non-halogen solvent [tetrahydrofuran.
  • the total amount of toluene] was 9.5 mg / g, and no halogenated solvent was detected.
  • Example 7 The ratio of the mixed solvent of tetrahydrofuran and toluene in ⁇ Manufacture of coating solution for forming a charge transport layer> in Example 6 was 90% by weight of tetrahydrofuran and 10% by weight of toluene (coating solution C9), and the drying condition of the charge transport layer was 135.
  • a photoconductor was prepared by carrying out the same operations as in Example 6 except that the temperature was changed to 30 minutes at 30 ° C. Further, the charge transport layer of the obtained photoreceptor was peeled off, and the residual solvent was analyzed in the same manner as in Example 6. As a result, the amount of residual solvent in the photosensitive layer was 2 for the non-halogen solvent [total amount of tetrahydrofuran and toluene]. It was 2 mg / g, and no halogenated solvent was detected.
  • Example 8> In ⁇ Manufacture of Coating Solution for Forming Charge Transport Layer> in Example 6, a polyarylate resin comprising a repeating structural unit of the formula (resin X) having a viscosity average molecular weight of 53,000 was used (coating solution C10). Except for the above, a photoconductor was prepared by carrying out the same operations as in Example 6. Further, the charge transport layer of the obtained photoreceptor was peeled off, and the residual solvent was analyzed in the same manner as in Example 6. As a result, the non-halogen solvent [total amount of tetrahydrofuran and toluene] was 10.1 mg / g. Solvent was not detected.
  • solvent total amount of tetrahydrofuran and toluene
  • Example 9 A photoconductor was prepared by the same operation as in Example 6 except that the charge transport layer drying condition in Example 6 was changed to 10 minutes at 120 degrees. Further, the charge transport layer of the obtained photoreceptor was peeled off, and the residual solvent was analyzed in the same manner as in Example 6. As a result, the non-halogen solvent [total amount of tetrahydrofuran and toluene] was 17.5 mg / g, Solvent was not detected.
  • Example 10> In ⁇ Manufacture of Coating Solution for Forming Charge Transport Layer> in Example 6, a polyarylate resin comprising a repeating structural unit of the formula (resin X) having a viscosity average molecular weight of 20,400 was used (coating solution C11). Except for the above, a photoconductor was prepared by carrying out the same operations as in Example 6. Further, the charge transport layer of the obtained photoreceptor was peeled off, and the residual solvent was analyzed in the same manner as in Example 6. As a result, the non-halogen solvent [total amount of tetrahydrofuran and toluene] was 9.9 mg / g, Solvent was not detected.
  • solvent total amount of tetrahydrofuran and toluene
  • Example 11> The same operation as in Example 6 was performed except that the mixed solvent of tetrahydrofuran and toluene was changed to 1,2-dichloroethane (Coating Solution C12) in ⁇ Manufacture of Coating Solution for Charge Transport Layer Formation> in Example 6. By doing so, a photoreceptor was prepared. Further, the charge transport layer of the obtained photoreceptor was peeled off and the residual solvent was analyzed in the same manner as in Example 6. As a result, no non-halogen solvent was detected and the halogen solvent was 1.3 mg / g.
  • ⁇ Print life evaluation test> The obtained photoreceptor was mounted on a drum cartridge of an A4 tandem type full-color printer [COREFIDO C711dn remodeling machine manufactured by Oki Data Co., Ltd. (printing speed: color 34 rpm, resolution: 600 dpi, exposure source: LED), and set in the printer.
  • the printer is placed in a low-temperature and low-humidity environment, and as a printing input, a vertically and horizontally symmetrical pattern consisting of a solid image and a line image with a printing rate of 5% is sent from the personal computer to the printer. 500 sheets were printed.
  • the thickness of the charge transport layer after printing was measured, and the printing durability was evaluated by comparing the thickness of the charge transport layer before and after printing.
  • A The difference in thickness of the charge transport layer before and after printing is less than 2.0 ⁇ m.
  • The difference in the thickness of the charge transport layer before and after printing is 2.0 ⁇ m or more and less than 2.5 ⁇ m.
  • The charge transport layer before and after printing.
  • Photoconductor (Electrophotographic photoconductor) 2 Charging device (charging roller; charging unit) 3 Exposure equipment (exposure section) 4 Development device (development unit) DESCRIPTION OF SYMBOLS 5 Transfer apparatus 6 Cleaning apparatus 7 Fixing apparatus 41 Developing tank 42 Agitator 43 Supply roller 44 Developing roller 45 Control member 71 Upper fixing member (fixing roller) 72 Lower fixing member (fixing roller) 73 Heating device T Toner P Recording paper (paper, medium)

Abstract

 高温高湿環境下で、繰り返し使用した場合においても、白抜けを発生させない電子写真感光体の製造方法、電子写真感光体、電子写真カートリッジ、画像形成装置を提供することを目的とする。本発明は、導電性支持体上に感光層を有する電子写真感光体において、前記感光層が一般式(1)で表される化合物及びパラジウムを含有し、前記感光層中のパラジウム含有量が0.01~50ppmであることを特徴とする電子写真感光体に関する。

Description

電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質
 本発明は、フルカラー画像形成装置においても高温高湿環境下、繰り返し使用した場合においても白抜けを発生しない電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質の製造方法に関する。
 電子写真技術は、即時性、高品質の画像が得られること等から、近年では複写機の分野にとどまらず、各種プリンターの分野でも広く使われ応用されている。電子写真技術の中核となる感光体については、近年ではその光導電材料として、無公害で成膜が容易、製造が容易である等の利点を有する有機系の光導電材料を使用した感光体が開発されている。
 近年、電子写真技術を利用した複写機、プリンターは共にモノクロからフルカラー化に向かっている。このフルカラー画像形成方法には主としてタンデム方式、4サイクル方式がある。また印刷媒体への転写方式としては、直接転写方式、転写ドラム方式、中間転写方式、多重現像一括転写方式等がある。フルカラーの画像形成装置では、モノクロの画像形成装置と異なり、画質への要求レベルが非常に高い。このような流れの中で、特殊な環境(例えば高温高湿)下で、過剰なストレスを受けた場合にも、高画質を維持できる感光体が求められている。
 感光体の画質を決めるのに電荷輸送物質の寄与は大きい。電荷輸送物質としては、カルバゾール誘導体、ヒドラゾン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体等、各種のものが実用化されている。例えば、高感度のトリアリールアミン-スチルベンハイブリッド型の化合物が電子写真感光体用の電荷輸送物質として使用することが提案されている(特許文献1)。
日本国特開平9-292724号公報
 しかしながら、電子写真感光体用の電荷輸送物質としてトリアリールアミン-スチルベンハイブリッド型の化合物を用いた場合においても、過剰なストレスを受けた場合には高画質を維持できない問題があった。そのような中で、高温高湿下、繰り返し使用した場合に白抜けが発生し、フルカラー画像形成装置の場合には特に問題となる。
 本発明は、上記問題に鑑みてされたものである。本発明の目的はフルカラー画像形成装置においても高温高湿環境下、繰り返し使用しても白抜けを発生しない電子写真感光体の製造方法、電子写真感光体、電子写真カートリッジ、及び画像形成装置を提供することにある。
 本発明者らは、鋭意検討を行った結果、特定の電荷輸送物質を用いて感光体を特定の製法で製造する、又は特定の電荷輸送物質を用いた感光体を使用することにより、高温高湿下で繰り返し使用した場合においても白抜けが発生しない良好な画質を提供することが可能であることを見出し、以下の本発明の完成に至った。
 本発明の要旨は下記の<1>~<12>に存する。
<1>
 導電性支持体上に感光層を有する電子写真感光体において、前記感光層が一般式(1)で表される化合物及びパラジウムを含有し、前記感光層中のパラジウム含有量が0.01~50ppmであることを特徴とする電子写真感光体。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
<2>
 導電性支持体上に電荷輸送物質を含有する感光層を有する電子写真感光体において、前記電荷輸送物質が一般式(1)で表される化合物及びパラジウムを含有し、前記電荷輸送物質中のパラジウム含有量が0.01~150ppmであることを特徴とする電子写真感光体。
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
<3>
 前記感光層が結着樹脂を含有し、前記結着樹脂の粘度平均分子量が40000以上100000以下であることを特徴とする<1>又は<2>に記載の電子写真感光体。
<4>
 前記感光層が有機溶媒を用いた塗布液から形成されたものであり、前記感光層中のハロゲン系溶媒の残留量が1.0mg/g以下、非ハロゲン系溶媒の残留量が0.05mg/g以上20.0mg/g以下であることを特徴とする<1>~<3>のいずれか1項に記載の電子写真感光体。
<5>
 前記感光層中に含有される前記式(1)で表される化合物が、感光層を形成する結着樹脂100質量部に対して、20質量部以上50質量部以下であることを特徴とする<1>~<4>のいずれか1に記載の電子写真感光体。
<6>
 前記式(1)中、Ar~Arはそれぞれ独立してアルキル基またはアルコキシ基を有していてもよいアリール基、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基、m及びnは1であることを特徴とする<1>~<5>のいずれか1に記載の電子写真感光体。
<7>
 前記感光層が結着樹脂を含有し、前記結着樹脂がポリアリレート樹脂またはポリカーボネート樹脂であることを特徴とする<1>~<6>のいずれか1に記載の電子写真感光体。
<8>
 前記式(1)で表される化合物が吸着材を用いて精製されたものであることを特徴する<1>~<7>のいずれか1に記載の電子写真感光体。
<9>
 フルカラー画像形成装置に用いられることを特徴とする、<1>~<8>のいずれか1に記載の電子写真感光体。
<10>
 <1>~<9>のいずれか1に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置、帯電した電子写真感光体を露光させて静電潜像を形成する露光装置及び該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つ、を備えたことを特徴とする、電子写真感光体カートリッジ。
<11>
 <1>~<9>のいずれか1項に記載の電子写真感光体、該電子写真感光体を帯電させる帯電装置、帯電した電子写真感光体を露光させて静電潜像を形成する露光装置及び該電子写真感光体上に形成された静電潜像を現像する現像装置を備えたことを特徴とするフルカラー画像形成装置。
<12>
 一般式(1)で表される化合物及びパラジウムを含有する電荷輸送物質であって、前記電荷輸送物質のパラジウム含有量が0.01~150ppmであることを特徴とする電荷輸送物質。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、Ar~Arはそれぞれ独立してアルキル基、アルコキシ基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上2以下の整数を表す。)
 本発明は、フルカラー画像形成装置においても高温高湿環境下で、繰り返し使用した場合に、白抜けの発生しない電子写真感光体を提供することが可能となる。
図1は、本発明の画像形成装置の一実施態様の要部構成を示す概略図である。 図2は、本発明の実施例及び比較例で用いたオキシチタニウムフタロシアニンの粉末X線回折スペクトルを示すX線回折図である。 図3は、本発明の実施例及び比較例で用いたオキシチタニウムフタロシアニンの粉末X線回折スペクトルを示すX線回折図である。
 以下、本発明の実施の形態につき詳細に説明するが、以下に記載する構成要件の説明は本発明の実施形態の代表例であって、本発明の趣旨を逸脱しない範囲において適宜変形して実施することができる。
 ≪本発明の電荷輸送物質≫
<電荷輸送物質の構造>
 本発明の電荷輸送物質は、下記一般式(1)で表される化合物及びパラジウムを含有し、パラジウム含有量が0.01~150ppmであればいかなるものであってもよい。
Figure JPOXMLDOC01-appb-C000007
 (式(1)中、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していても良い1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
 上記式(1)においてAr~Arは、それぞれ独立して置換基を有していてもよいアリール基を表す。アリール基の炭素数としては、例えば30以下、好ましくは20以下、更に好ましくは15以下である。具体的には、フェニル基、ナフチル基、ビフェニル基、アントリル基、フェナントリル基等があげられる。中でも、電子写真感光体の特性を考慮すると、フェニル基、ナフチル基、アントリル基が好ましく、電荷輸送能力の観点からは、フェニル基、ナフチル基がより好ましく、フェニル基が更に好ましい。
 Ar~Arが有していてもよい置換基としては、例えば、アルキル基、アリール基、アルコキシ基、ハロゲン原子等が挙げられる。
 具体的にはアルキル基としては、メチル基、エチル基、n-プロピル基、n-ブチル基等の直鎖状アルキル基、イソプロピル基、エチルヘキシル基等の分岐状アルキル基、シクロヘキシル基等の環状アルキル基等が挙げられる。
 また、アリール基としては、置換基を有していてもよいフェニル基、ナフチル基等が挙げられる。
 アルコキシ基としては、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基等の直鎖状アルコキシ基、イソプロポキシ基、エチルヘキシロキシ基等の分岐状アルコキシ基、シクロヘキシロキシ基等の環状アルコキシ基、トリフルオロメトキシ基、ペンタフルオロエトキシ基、1,1,1-トリフルオロエトキシ基等のフッ素原子を有するアルコキシ基等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子等があげられる。
 Ar~Arが有していてもよい置換基として、これらの中でも、製造原料の汎用性から炭素数1~20のアルキル基、炭素数1~20のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1~12のアルキル基、炭素数1~12のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が更に好ましい。
 Ar~Arがフェニル基である場合、電荷輸送能力の観点から置換基を有することが好ましく、置換基の数としては1~5個が可能であるが、製造原料の汎用性からは1~3個が好ましく、電子写真感光体の特性の面からは、1~2個がより好ましい。
 また、Ar~Arがナフチル基である場合は、製造原料の汎用性から置換基の数が2以下または置換基を有さないことが好ましく、より好ましくは置換基の数が1または置換基を有さないことである。Arは、窒素原子に対してオルト位又はパラ位に少なくとも1つの置換基を有することが好ましく、置換基としては、溶解性の観点から炭素数1~6のアルコキシ基又は炭素数1~6のアルキル基が好ましい。
 上記式(1)においてAr~Arは、それぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。Ar~Arが有していてもよい置換基としては、Ar~Arが有していてもよい置換基として挙げたものが適用できる。これらの中でも、製造原料の汎用性から炭素数1~6のアルキル基、炭素数1~6のアルコキシ基が好ましく、製造時の取扱性の面から、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基がより好ましく、電子写真感光体としての光減衰特性の面から、メチル基、エチル基、メトキシ基、エトキシ基が更に好ましい。
 Ar~Arが置換基を有すると、分子構造にねじれが生じ、分子内でのπ共役拡張を妨げ、電子輸送能力が低下する可能性があることから、Ar~Arは置換基を有さないことが好ましい。
 m、nはそれぞれ独立して1以上3以下の整数を表す。m、nが大きくなると塗布溶媒への溶解性が低下する傾向にあることから、好ましくは2以下であり、電荷輸送物質としての電荷輸送能力の面から、より好ましくは1である。
 m、nが1の場合、エテニル基を表し、幾何異性体を有するが、電子写真感光体特性の面から、トランス体構造が好ましい。m、nが2の場合、ブタジエニル基を表し、この場合も幾何異性体を有するが、塗布液保管安定性の面から、2種以上の幾何異性体混合物であることが好ましい。感光層中に、式(1)で表される化合物を単一成分として含有するものでもよいし、式(1)で表される化合物の混合物として含有することも可能である。
 また、電荷輸送物質としては、下記式(1a)で表される化合物が特に好ましい。式(1a)は、式(1)においてArはアルキル基、アルコキシ基、アリールオキシ基、又はアラルキルオキシ基を有する、フェニル基であり、Ar~Arはそれぞれ独立して、置換基として炭素数1~6のアルキル基を有していてもよい、フェニル基であり、Ar~Arはいずれも無置換の1,4-フェニレン基であり、m及びnは共に1である。
Figure JPOXMLDOC01-appb-C000008
(式(1a)中、R~Rはそれぞれ独立して、アルキル基、アルコキシ基、アリールオキシ基、アラルキルオキシ基、又は水素原子を表す。)
 以下に本発明に好適な化合物の構造を例示する。以下の構造は本発明をより具体的にするために例示するものであり、本発明の概念を逸脱しない限りは下記構造に限定されるものではない。なお、式中、Meはメチル基を表し、Etは、エチル基を表し、Buは、ブチル基を表す。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 感光層中の結着樹脂と式(1)で表される化合物を含む電荷輸送物質との割合は、同一層中の結着樹脂100質量部に対して、通常、前記電荷輸送物質を15質量部以上で使用する。残留電位低減の観点から20質量部以上が好ましく、繰り返し使用した際の安定性や電荷移動度の観点から25質量部以上がより好ましい。
 一方、感光層の熱安定性の観点から、通常、前記電荷輸送物質を70質量部以下で使用する。式(1)で表される化合物を含む電荷輸送物質と結着樹脂との相溶性の観点から65質量部以下が好ましく、耐熱性の観点から60質量部以下がより好ましく、耐傷性の観点から50質量部以下が好ましく、耐摩耗性の観点から45質量部以下が特に好ましい。
<電荷輸送物質の製造方法>
 一般式(1)で表される電荷輸送物質の製造方法において、パラジウム化合物を用いて一般式(1)で表される化合物を合成する工程と、吸着材を用いて前記一般式(1)で表される電荷輸送物質のパラジウム含有量を0.01~150ppmとなるように精製する工程とを有する電荷輸送物質の製造方法であることが好ましい。
(合成する工程)
 例示した電荷輸送物質は、下記スキーム1に従って製造することが可能である。前記した化合物を例にすると、ハロゲン原子を有するトリフェニルアミン誘導体とアニリン化合物とをパラジウム化合物を触媒として使用してカップリング反応を行うことで精製処理前の粗体を合成することが可能である。
<スキーム1>
Figure JPOXMLDOC01-appb-C000013
(上記式中、Xはハロゲン原子を表す)
 パラジウム化合物としては、例えば、ヘキサクロロパラジウム酸ナトリウム四水和物及びヘキサクロロパラジウム酸カリウム四水和物等の四価パラジウム化合物、酢酸パラジウム、塩化パラジウム、臭化パラジウム、パラジウムアセチルアセテート、ジクロロビス(ベンゾニトリル)パラジウム、ジクロルビス(トリフェニルホスフィン)パラジウム、ジクロロテトラミンパラジウム及びジクロロ(シクロオクタ-1,5-ジエン)パラジウム等の二価のパラジウム化合物、トリス(ジベンジリデンアセトン)ジパラジウム、トリス(ジベンジリデンアセトン)ジパラジウムクロロホルム錯体及びテトラキス(トリフェニルホスフィン)パラジウム、アリルパラジウム(II)クロリドダイマー等が挙げられる。この中でも、収率の観点から、二価のパラジウム化合物である酢酸パラジウム、アリルパラジウム(II)クロリドダイマーが好ましい。
 また、前記化合物と共にリガンドとなる化合物を系中に存在させてカップリング反応を行うことも可能である。リガンドとなる化合物としては、リン化合物が好ましい。
 具体的には、ホスフィン化合物、ホスファイト化合物、ホスホロアミダイト化合物、及びトリアミノホスフィン化合物が挙げられる。この中でも、収率の観点からホスフィン化合物が好ましい。ホスフィン化合物としては、例えば、トリシクロヘキシルホスフィン、トリ-tert-ブチルホスフィン等のアルキルホスフィン誘導体、トリフェニルホスフィン、トリ-o-トリルホスフィン等のアリールホスフィン誘導体等が挙げられる。この中でも、収率の観点から、アルキルホスフィン誘導体が好ましい。
 カップリング反応におけるパラジウム化合物の使用量は、ハロゲン原子を有するトリフェニルアミン誘導体化合物1molに対して、収率の観点から、下限は通常0.0002mol以上、好ましくは0.0005mol以上、より好ましくは0.001mol以上である。精製容易性の観点から、上限は10mol以下、好ましくは1mol以下、より好ましくは0.5mol以下、更に好ましくは0.1mol以下である。
(精製する工程)
 上記のスキーム1において合成された粗体は、吸着材を用いた精製処理を行うことにより電子写真感光体に用いることのできる特定のパラジウム含有量を有する状態に精製することが可能である。
 吸着材を用いた精製法には、いかなる公知の吸着材でも使用可能であり、具体的な吸着材の例としては、活性炭、シリカゲル、アルミナ、活性白土、フロリジル、珪藻土等が挙げられ、これらの中でも、電子写真感光体特性の面から、活性炭、シリカゲル、活性白土、フロリジルが好ましく、生産コストの面から、活性炭、活性白土、フロリジルがより好ましく、更に好ましくは、活性白土、フロリジルである。
 吸着材による精製処理は、通常電荷輸送物質の粗体を有機溶媒に溶解させ、溶液を吸着材と接触されることにより行われる。精製処理に用いることのできる有機溶媒は、電荷輸送物質を溶解させることが可能な溶剤であれば特に制限は無いが、吸着材と電荷輸送物質との吸脱着平衡を考慮すると、芳香族炭化水素系溶剤又は脂肪族炭化水素系溶剤が好ましい。
 芳香族炭化水素系溶剤の好ましい具体例としては、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、o-シメン、m-シメン、p-シメン、アニソール、エチルキシレン、エチルトルエン、エチルアニソール、メチルナフタレン、ジフェニルメタン等が挙げられる。
 脂肪族炭化水素系溶剤の好ましい具体例としては、n-ヘキサン、n-ヘプタン、n-オクタン、n-デカン、n-ドデカン、2,3-ジメチルヘキサン、2-メチルヘプタン、2-メチルヘキサン、3-メチルヘキサン、シクロヘキサン等が挙げられる。
 上記溶媒の中でも、製造時の操作性の面から、芳香族炭化水素系溶剤が好ましく、特に沸点150℃以下の芳香族炭化水素系溶剤が好ましく、中でもトルエン、キシレンがより好ましく、トルエンが更に好ましい。これらの溶剤は何れか一種を単一溶剤として用いてもよく、何れか2種以上を混合することにより混合溶剤として用いてもよい。
 有機溶媒の使用量は、粗体の溶解性によって様々な値を選択することが可能であるが、(粗体)/(有機溶媒)の質量比の値で、電荷輸送物質の生産性の観点から、通常0.01以上、好ましくは0.05以上、また、電荷輸送物質の精製効率の観点から、通常0.5以下、好ましくは0.4以下、より好ましくは0.3以下の範囲である。
 吸着材の使用量としては、粗体に対する吸着材の量が多過ぎると、濾過性不良等による精製収率の低下や吸着材の酸化能により電荷輸送物質の正孔輸送能力に悪影響を与えることから、(吸着材)/(粗体)の質量比の値で通常1.5以下、好ましくは1.2以下、より好ましくは1.0以下の範囲である。
 一方、吸着材の酸化能がアリールアミン化合物に与える悪影響の度合いの低さの観点から、少な過ぎると精製効率が低下することから、前記の質量比は通常0.001以上、好ましくは0.005以上、より好ましくは0.01以上の範囲である。
 また、本発明に用いる電荷輸送物質は、上記の吸着材による精製法に、他の精製法を追加し、精製法を2種以上組み合わせて精製を行っても良い。吸着材による精製法と組み合わせる他の精製法の具体例としては、電荷輸送物質と親和性の高い良溶媒で溶解し、溶液を調整後に、溶液を貧溶媒に添加して固体化させる再沈殿法、親和性の高い溶媒に加温することで溶解後、その溶液をそのまま降温、もしくは溶液に貧溶媒を添加後、降温し、熟成させることにより結晶を析出させる晶析法等が挙げられる。
 画像形成時の画質の面から、少なくとも吸着法と他の1種以上の精製法を用いて精製することが好ましく、吸着法と再沈殿法の併用、吸着法と晶析法の併用がより好ましい。
 前記電荷輸送物質中のパラジウム含有量は、電気特性の観点から150ppm以下、より好ましくは120ppm以下、更に好ましくは100ppm以下である。精製負荷軽減、精製による電荷輸送物質への負担の観点から、0.01ppm以上、より好ましくは0.1ppm以上、更に好ましくは0.5ppm以上、更により好ましくは1ppm以上である。前記使用する吸着剤・精製手法・条件を組み合わせることにより、上記パラジウム含有量を満たすことができる。
 前記電荷輸送物質の純度は、電気特性の観点から好ましくは97.0%以上、より好ましくは97.5%以上、更に好ましくは98.0%以上である。溶解性の観点から、好ましくは99.9%以下、より好ましくは99.8%以下、更に好ましくは99.7%以下である。
 97.0%以上を達成する手法として、触媒としてパラジウム化合物を、リン原子を有する配位子と組み合わせる製造方法等が挙げられる。一方、99.9%以下を達成する達成する手法として、晶析処理等の精製方法が挙げられる。98.0%以上99.7%以下とするためには、吸着材を用いた手法で精製することが好ましい。
 パラジウム化合物を用いて電荷輸送物質を製造する場合、高効率で所望する電荷輸送物質が製造できるが、電荷輸送物質中に用いたパラジウムが残存する。また、精製前の電荷輸送物質の粗体には、パラジウム化合物以外に、反応時に副生する化合物等、電子写真感光体特性に影響を与える不純物も多く含まれている。
 パラジウム化合物を用いて製造した電荷輸送物質の粗体を精製する場合、残存パラジウム化合物のみを除去するのではなく、それと同時に、感光体特性を悪化させる不純物も同時に除去することが好ましい。全ての残存パラジウム化合物や、反応時に生成する不純物を除去できるように精製を強化することが考えられるが、過度に精製を行うと、吸着材との接触により電荷輸送物質の構造自体に変化が起こり、精製の効果よりも悪影響が大きくなる場合があり、その一方、精製が不十分だと、残存不純物の悪影響が大きくなる。
 また、電子写真感光体が画像形成装置から受ける転写電圧等のストレスに対する悪影響の発現の仕方は、不純物の量・種類と電荷輸送物質の構造の組み合わせによって大きく異なり、精製後の電荷輸送物質中に残存してもよい化合物・不純物の量・種類は、目的とする電荷輸送物質の構造によって異なる。
 特に前記電荷輸送物質では、画像形成装置から受ける転写電圧のストレスに対する悪影響の発現に、残存パラジウム化合物が大きく影響する。メカニズムの詳細は不明であるが、前記電荷輸送物質と残存パラジウム化合物の間で弱い分子間力が働きやすく、この弱い分子間力が働いた状態で、画像形成装置から転写プロセスで強い電圧を印可されることで、感光層中に電荷のトラップサイトを形成しやすくなり、このトラップの影響で形成画質に悪影響を与えていると推測される。
 よって、本発明の通り吸着材処理を行うことによって、特定のパラジウム含有量になるよう精製を行いながら、その他不純物を除去することで、画像形成装置からの転写電圧等のストレスに対して悪影響を発現することなく、良好な特性を示す電子写真感光体の提供が可能となる。
 なお、上記電荷輸送物質は、NMR、IR、マススペクトル等により同定できる。パラジウム含有量は、ICP発光分析装置を用いて測定することができ、純度は、液体クロマトグラフにより算出できる。液体クロマトグラフの測定は、UV-vis検出器を有する装置を用いて測定することができる。
≪電子写真感光体≫
 以下、本発明の電子写真感光体について説明する。
 電子写真感光体の感光層は、導電性支持体上に設けられ、下引き層を有する場合は下引き層上に設けられる。感光層の型式としては、電荷発生物質と電荷輸送物質とが同一層に存在し、結着樹脂中に分散された、いわゆる単層型感光体、電荷発生物質が結着樹脂中に分散された電荷発生層及び電荷輸送物質が結着樹脂中に分散された電荷輸送層の二つに機能分離された複層構造の、いわゆる積層型感光体があげられるが、何れの構成であってもよい。また、感光層上に、帯電性の改善や、耐摩耗性改善を目的としてオーバーコート層を設けてもよい。
<導電性支持体>
 感光体に用いる導電性支持体としては、例えばアルミニウム、アルミニウム合金、ステンレス鋼、銅、ニッケル等の金属材料や、金属、カーボン、酸化錫等の導電性粉体を添加して導電性を付与した樹脂材料や、アルミニウム、ニッケル、ITO(酸化インジウム酸化錫)等の導電性材料をその表面に蒸着又は塗布した樹脂、ガラス、紙等が主として使用される。
 形態としては、ドラム状、シート状、ベルト状等のものが用いられる。金属材料の導電性支持体に、導電性・表面性等の制御のためや欠陥被覆のために。適当な抵抗値をもつ導電性材料を塗布したものでもよい。
 導電性支持体としてアルミニウム合金等の金属材料を用いた場合、陽極酸化被膜を施してから用いてもよい。陽極酸化被膜を施した場合、公知の方法により封孔処理を施すことができる。
 支持体表面は、平滑であってもよいし、特別な切削方法を用いたり、研磨処理したりすることにより、粗面化されていてもよい。また、支持体を構成する材料に適当な粒径の粒子を混合することによって、粗面化されたものであってもよい。また、安価化のためには切削処理を施さず、引き抜き管をそのまま使用することも可能である。特に引き抜き加工、インパクト加工、しごき加工等の非切削アルミニウム支持体を用いる場合、処理により、表面に存在した汚れや異物等の付着物、小さな傷等が無くなり、均一で清浄な支持体が得られるので好ましい。
<下引き層>
 導電性支持体と後述する感光層との間には、接着性・ブロッキング性等の改善のため、下引き層を設けてもよい。下引き層としては、樹脂、樹脂に金属酸化物等の粒子を分散したもの等が用いられる。
 下引き層に用いる金属酸化物粒子の例としては、酸化チタン、酸化アルミニウム、酸化珪素、酸化ジルコニウム、酸化亜鉛、酸化鉄等の1種の金属元素を含む金属酸化物粒子、チタン酸カルシウム、チタン酸ストロンチウム、チタン酸バリウム等の複数の金属元素を含む金属酸化物粒子等があげられる。
 これらは一種類の粒子を単独で用いてもよいし、複数の種類の粒子を混合して用いてもよい。これらの金属酸化物粒子の中で、酸化チタン及び酸化アルミニウムが好ましく、特に酸化チタンが好ましい。酸化チタン粒子は、その表面に、酸化錫、酸化アルミニウム、酸化アンチモン、酸化ジルコニウム、酸化珪素等の無機物、又はステアリン酸、ポリオール、シリコン等の有機物による処理を施されていてもよい。酸化チタン粒子の結晶型としては、ルチル、アナターゼ、ブルッカイト、アモルファスのいずれも用いることができる。また、複数の結晶状態のものが含まれていてもよい。
 また、金属酸化物粒子の粒径としては種々のものが利用できるが、中でも電気特性及び下引き層形成要の塗布液の安定性の面から、平均一次粒径として通常1nm以上、好ましくは10nm以上、また、通常100nm以下、好ましくは50nm以下のものが望ましい。
 下引き層は、金属酸化物粒子を結着樹脂に分散した形で形成するのが望ましい。下引き層に用いられる結着樹脂としては、例えば、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアミド樹脂、塩化ビニル樹脂、塩化ビニル樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリカーボネート樹脂、ポリウレタン樹脂、ポリイミド樹脂、塩化ビニリデン樹脂、ポリビニルアセタール樹脂、塩化ビニル-酢酸ビニル共重合体、ポリビニルアルコール樹脂、ポリウレタン樹脂、ポリアクリル酸樹脂、ポリアクリルアミド樹脂、ポリビニルピロリドン樹脂、ポリビニルピリジン樹脂、水溶性ポリエステル樹脂、ニトロセルロース等のセルロースエステル樹脂、セルロースエーテル樹脂、カゼイン、ゼラチン、ポリグルタミン酸、澱粉、スターチアセテート、アミノ澱粉、ジルコニウムキレート化合物、ジルコニウムアルコキシド化合物等の有機ジルコニウム化合物、チタニルキレート化合物、チタニルアルコキシド化合物等の有機チタニル化合物、シランカップリング剤等の公知の結着樹脂があげられる。
 これらは単独で用いても良く、或いは2種以上を任意の組み合わせ及び比率で併用してもよい。また、硬化剤とともに硬化した形で使用してもよい。中でも、アルコール可溶性の共重合ポリアミド、変性ポリアミド等は、良好な分散性、塗布性を示すことから好ましい。
 下引き層に用いられる結着樹脂に対する無機粒子の使用比率は任意に選ぶことが可能であるが、分散液の安定性、塗布性の観点から、通常は10質量%以上、500質量%以下の範囲で使用することが好ましい。下引き層の膜厚は、任意に選ぶことができるが、感光体特性及び塗布性を向上させる観点から、通常は0.1μm以上、20μm以下の範囲が好ましい。
 下引き層には、公知の酸化防止剤等を混合してもよい。画像欠陥防止等を目的として、顔料粒子、樹脂粒子等を含有させ用いてもよい。
<感光層>
 感光層は、一般式(1)で表される電荷輸送物質を含有し、前記電荷輸送物質のパラジウム含有量が0.01~150ppmである。単層型感光層、積層型感光層の何れの形態であってもよく、積層型感光層としては、導電性支持体側から電荷発生層、電荷輸送層をこの順に積層して設ける順積層型感光層と、逆に導電性支持体側から電荷輸送層、電荷発生層の順に積層して設ける逆積層型感光層とがあり、いずれを採用することも可能であるが、特にバランスの取れた光導電性を発揮できる順積層型感光層が好ましい。
 感光層中のパラジウム含有量は、電気特性の観点から好ましくは50ppm以下、より好ましくは45ppm以下、更に好ましくは40ppm以下である。電荷輸送物質の製造時の精製負荷軽減、精製時にかかる電荷輸送物質への負担軽減の観点から、好ましくは0.01ppm以上、より好ましくは0.1ppm以上、更に好ましくは0.5ppm以上である。
 前記使用する吸着剤・精製手法・条件を組み合わせことにより得られた式(1)で表される電荷輸送物質を用いて感光層を形成することにより、上記パラジウム含有量を満たすことができる。パラジウム含有量は、ICP発光分光分析装置や、ICP質量分析装置を用いて以下のようにして定量分析を行う。まず、感光体から感光層を削り取り、一定量を測定する。次に、これを試料前処理装置により炭化処理し、これを硫酸や硝酸などの各種酸を単一で用いたり、混合して使用して溶解する。この溶液を灰化させて有機物を取り除き、残留物をさらに硫酸や硝酸などの各種酸を単一で用いたり、混合して使用して溶解させてサンプルとする。このサンプルを、ICP発光分光分析装置や、ICP質量分析装置を用いて、パラジウムの定量分析を行う。
 なお、感光層には後述する材料以外にも成膜性、可撓性、塗布性、耐汚染性、耐ガス性、耐光性等を向上させるために周知の酸化防止剤、可塑剤、紫外線吸収剤、電子吸引性化合物、レベリング剤、可視光遮光剤等の添加物を含有させてもよい。
 また、感光層には必要に応じて塗布性を改善するためのレベリング剤や酸化防止剤、増感剤等の各種添加剤を含んでいてもよい。酸化防止剤の例としては、ヒンダードフェノール化合物、ヒンダードアミン化合物等が挙げられる。また染料、顔料の例としては、各種の色素化合物、アゾ化合物等が挙げられ、界面活性剤の例としては、シリコ-ンオイル、フッ素系オイル等が挙げられる。
 感光層中には、通常塗布液に用いた溶媒が残存する。構造中に塩素等のハロゲン原子を有するハロゲン系溶媒は、感光体製造時、及び長期保管中に、溶媒自身が分解することで遊離ハロゲン等を発生し、電子写真感光体の特性の悪化を引き起こす可能性があることから、好ましくは、1.0mg/g以下、より好ましくは感光層中に残存していないことが好ましい。
 構造中にハロゲン原子を有さない非ハロゲン系溶媒の場合、通常、感光層中に20.0mg/g以下、より好ましくは、15.0mg/g以下、更により好ましく12.5mg/g以下であり、通常0.05mg/g以上、より好ましくは0.1mg/g以上、更に好ましくは0.5mg/g以上、更により好ましくは1.0mg/g以上である。感光層中の残存量が多すぎる場合、感光体の機械的強度が不足する可能性があり、少な過ぎる場合、感光体製造における感光層乾燥時の負荷が高すぎて生産性が低下する可能性がある。
<電荷発生層>
 電荷発生層は、電荷発生物質を結着樹脂で結着することにより形成される。電荷発生物質としては、セレニウム及びその合金、硫化カドミウム等の無機系光導電材料と、有機顔料等の有機系光導電材料とが挙げられるが、有機系光導電材料の方が好ましく、特に有機顔料が好ましい。
 有機顔料としては、例えば、フタロシアニン顔料、アゾ顔料、ジチオケトピロロピロール顔料、スクアレン(スクアリリウム)顔料、キナクリドン顔料、インジゴ顔料、ペリレン顔料、多環キノン顔料、アントアントロン顔料、ベンズイミダゾール顔料等が挙げられる。これらの中でも、特にフタロシアニン顔料又はアゾ顔料が好ましい。電荷発生物質として有機顔料を使用する場合、通常はこれらの有機顔料の微粒子を、各種の結着樹脂で結着した分散層の形で使用する。
 電荷発生物質として無金属フタロシアニン化合物、金属含有フタロシアニン化合物を用いた場合は比較的長波長のレーザー光、例えば780nm近辺の波長を有するレーザー光に対して高感度の感光体が得られ、またモノアゾ、ジアゾ、トリスアゾ等のアゾ顔料を用いた場合には、白色光、又は660nm近辺の波長を有するレーザー光、もしくは比較的短波長のレーザー光、例えば450nm、400nm近辺の波長を有するレーザーに対して十分な感度を有する感光体を得ることができる。
 電荷発生物質として有機顔料を使用する場合、特にフタロシアニン顔料又はアゾ顔料が好ましい。フタロシアニン顔料は、比較的長波長のレーザー光に対して高感度の感光体が得られる点で、また、アゾ顔料は、白色光及び比較的短波長のレーザー光に対し十分な感度を持つ点で、それぞれ優れている。
 電荷発生物質としてフタロシアニン顔料を使用する場合、具体的には無金属フタロシアニン、銅、インジウム、ガリウム、スズ、チタン、亜鉛、バナジウム、シリコン、ゲルマニウム、アルミニウム等の金属又はその酸化物、ハロゲン化物、水酸化物、アルコキシド等の配位したフタロシアニン類の各結晶型を持ったもの、酸素原子等を架橋原子として用いたフタロシアニンダイマー類等が使用される。
 特に、感度の高い結晶型であるX型、τ型無金属フタロシアニン、A型(別称β型)、B型(別称α型)、D型(別称Y型)等のチタニルフタロシアニン(別称:オキシチタニウムフタロシアニン)、バナジルフタロシアニン、クロロインジウムフタロシアニン、ヒドロキシインジウムフタロシアニン、II型等のクロロガリウムフタロシアニン、V型等のヒドロキシガリウムフタロシアニン、G型、I型等のμ-オキソ-ガリウムフタロシアニン二量体、II型等のμ-オキソ-アルミニウムフタロシアニン二量体が好適である。
 また、これらフタロシアニンの中でも、A型(別称β型)、B型(別称α型)、及び粉末X線回折の回折角2θ(±0.2゜)が27.1゜、もしくは27.3゜に明瞭なピークを示すことを特徴とするD型(Y型)チタニルフタロシアニン、II型クロロガリウムフタロシアニン、V型及び28.1゜にもっとも強いピークを有すること、また26.2゜にピークを持たず28.1゜に明瞭なピークを有し、かつ25.9゜の半値幅Wが1゜≦W≦0.4゜であることを特徴とするヒドロキシガリウムフタロシアニン、G型μ-オキソ-ガリウムフタロシアニン二量体等が特に好ましい。
 フタロシアニン化合物は単一の化合物のものを用いてもよいし、幾つかの混合又は混晶状態のものを用いてもよい。ここでのフタロシアニン化合物ないしは結晶状態に置ける混合状態としては、それぞれの構成要素を後から混合したものを用いてもよいし、合成、顔料化、結晶化等のフタロシアニン化合物の製造・処理工程において混合状態を生じさせたものでもよい。このような処理としては、酸ペースト処理・磨砕処理・溶剤処理等が知られている。
 混晶状態を生じさせるためには、日本国特開平10-48859号公報記載のように、2種類の結晶を混合後に機械的に磨砕、不定形化した後に、溶剤処理によって特定の結晶状態に変換する方法が挙げられる。
 電荷発生物質としてアゾ顔料を使用する場合には、各種ビスアゾ顔料、トリスアゾ顔料が好適に用いられる。電荷発生物質として有機顔料を用いる場合には、1種を単独で用いてもよいが、2種類以上の顔料を混合して用いてもよい。この場合、可視域と近赤域の異なるスペクトル領域で分光感度特性を有する2種類以上の電荷発生物質を組み合わせて用いることが好ましく、中でもジスアゾ顔料、トリスアゾ顔料とフタロシアニン顔料とを組み合わせて用いることがより好ましい。
 電荷発生層に用いる結着樹脂は特に制限されないが、例としては、ポリビニルブチラール樹脂、ポリビニルホルマール樹脂、ブチラールの一部がホルマールや、アセタール等で変性された部分アセタール化ポリビニルブチラール樹脂等のポリビニルアセタール系樹脂、ポリアリレート樹脂、ポリカーボネート樹脂、ポリエステル樹脂、変性エーテル系ポリエステル樹脂、フェノキシ樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、ポリ酢酸ビニル樹脂、ポリスチレン樹脂、アクリル樹脂、メタクリル樹脂、ポリアクリルアミド樹脂、ポリアミド樹脂、ポリビニルピリジン樹脂、セルロース系樹脂、ポリウレタン樹脂、エポキシ樹脂、シリコン樹脂、ポリビニルアルコール樹脂、ポリビニルピロリドン樹脂、カゼインや、塩化ビニル-酢酸ビニル共重合体、ヒドロキシ変性塩化ビニル-酢酸ビニル共重合体、カルボキシル変性塩化ビニル-酢酸ビニル共重合体、塩化ビニル-酢酸ビニル-無水マレイン酸共重合体等の塩化ビニル-酢酸ビニル系共重合体、スチレン-ブタジエン共重合体、塩化ビニリデン-アクリロニトリル共重合体、スチレン-アルキッド樹脂、シリコン-アルキッド樹脂、フェノール-ホルムアルデヒド樹脂等の絶縁性樹脂や、ポリ-N-ビニルカルバゾール、ポリビニルアントラセン、ポリビニルペリレン等の有機光導電性ポリマー等が挙げられる。これらの結着樹脂は、何れか1種を単独で用いても良く、2種類以上を任意の組み合わせで混合して用いても良い。
 電荷発生層は、具体的に例えば、上述の結着樹脂を有機溶剤に溶解した溶液に、電荷発生物質を分散させて塗布液を調整し、これを導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布することにより形成される。
 電荷発生層において、結着樹脂と電荷発生物質との配合比(質量)は、結着樹脂100質量部に対して電荷発生物質が通常10質量部以上、好ましくは30質量部以上、また、通常1000質量部以下、好ましくは500質量部以下の範囲である。
 電荷発生層の膜厚は通常0.1μm以上、好ましくは0.15μm以上、また、通常10μm以下、好ましくは0.6μm以下の範囲である。電荷発生物質の比率が高過ぎると、電荷発生物質の凝集等により塗布液の安定性が低下するおそれがある一方、電荷発生物質の比率が低過ぎると、感光体としての感度の低下を招くおそれがある。
 電荷発生物質を分散させる方法としては、ボールミル分散法、アトライター分散法、サンドミル分散法、ビーズミル分散等の公知の分散法を用いることができる。この際、粒子を0.5μm以下、好ましくは0.3μm以下、より好ましくは0.15μm以下の範囲の粒子サイズに微細化することが有効である。
<電荷輸送層>
 積層型感光体の電荷輸送層は、電荷輸送物質を含有するとともに、通常は結着樹脂と、必要に応じて使用されるその他の成分とを含有する。電荷輸送層は、具体的には、例えば電荷輸送物質等と結着樹脂とを溶媒に溶解又は分散して塗布液を作製し、これを順積層型感光層の場合には電荷発生層上に、また、逆積層型感光層の場合には導電性支持体上に(下引き層を設ける場合は下引き層上に)塗布、乾燥して得ることができる。
 本発明では式(1)で表される化合物を含む電荷輸送物質を用いることが必須であるが、その他の電荷輸送物質を混合して用いてもよい。混合して用いてもよい電荷輸送物質としては特に限定されず、任意の物質を用いることが可能である。
 公知のその他の電荷輸送物質の例としては、2,4,7-トリニトロフルオレノン等の芳香族ニトロ化合物、テトラシアノキノジメタン等のシアノ化合物、ジフェノキノン等のキノン化合物等の電子吸引性物質、カルバゾール誘導体、インドール誘導体、イミダゾール誘導体、オキサゾール誘導体、ピラゾール誘導体、チアジアゾール誘導体、ベンゾフラン誘導体等の複素環化合物、アニリン誘導体、ヒドラゾン誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体及びこれらの化合物の複数種が結合したもの、あるいはこれらの化合物からなる基を主鎖又は側鎖に有する重合体等の電子供与性物質等が挙げられる。
 これらの中でも、カルバゾール誘導体、芳香族アミン誘導体、スチルベン誘導体、ブタジエン誘導体、エナミン誘導体、及びこれらの化合物の複数種が結合したものが好ましい。
 前記その他の電荷輸送物質の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の電荷輸送物質を用いてもよい。これらの電荷輸送物質は、何れか1種を単独で用いても良く、2種以上を任意の組み合わせで併用しても良い。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 結着樹脂としては、例えば、ポリメチルメタクリレート、ポリスチレン、ポリ塩化ビニル等のビニル重合体、及びその共重合体、ポリカーボネート、ポリエステル、ポリエステルポリカーボネート、ポリスルホン、フェノキシ、エポキシ、シリコーン樹脂等の熱可塑性樹脂や種々の熱硬化性樹脂等が挙げられる。これら樹脂の中でもポリカーボネート樹脂又はポリエステル樹脂が好ましい。
 前記結着樹脂の好適な構造の具体例を以下に示す。これら具体例は例示のために示したものであり、本発明の趣旨に反しない限りはいかなる公知の結着樹脂を混合して用いてもよい。
Figure JPOXMLDOC01-appb-C000017
 結着樹脂の粘度平均分子量は、本発明の効果を著しく損なわない限り任意であるが、通常20,000以上、耐摩耗性の観点から、好ましくは40,000以上、また、通常150,000以下、塗布性の観点から、好ましくは120,000以下、更に好ましくは100,000以下である。
 前記式(1)で表される化合物は、π共役が大きいため溶解性が悪く、通常高粘度平均分子量の樹脂を用いないが、ハイエンド機種に適応するために前記電荷輸送物質の純度や以下に記載の塗布液の溶媒を好ましい態様にすることにより実用に耐える感光体とすることができる。
 電荷輸送層用塗布液の作製に用いられる溶媒としては、例えば、ペンタン、ヘキサン、オクタン、ノナン等の飽和脂肪族系溶媒;トルエン、キシレン、アニソール等の芳香族炭化水素系溶媒;クロロベンゼン、ジクロロベンゼン、クロロナフタレン等のハロゲン化芳香族系溶媒;ジメチルホルムアミド、N-メチル-2-ピロリドン等のアミド系溶媒;メタノール、エタノール、イソプロパノール、n-ブタノール、ベンジルアルコール等のアルコール系溶媒;グリセリン、ポリエチレングリコール等の脂肪族多価アルコール類;アセトン、シクロヘキサノン、メチルエチルケトン、4-メトキシ-4-メチル-2-ペンタノン等のケトン系溶媒;ギ酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系溶媒;塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、メチルセルソルブ、エチルセルソルブ、アニソール等のエーテル系溶媒;アセトニトリル、ジメチルスルホキシド、スルフォラン、ヘキサメチルリン酸トリアミド等の非プロトン性極性溶媒;n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン、トリエチルアミン等の含窒素化合物;リグロイン等の鉱油;水等が挙げられる。電気特性の観点から、構造中にハロゲン原子を有さない非ハロゲン系溶媒であることが好ましい。
 これらの溶媒は、何れか一種を単独で用いてもよく、二種以上を任意の組み合わせ及び比率で併用してもよい。これらの溶媒の中でも、電荷輸送層に用いる材料の溶解性の観点から、トルエン、キシレン等の芳香族炭化水素系溶媒;アセトン、シクロヘキサノン、メチルエチルケトン、4-メトキシ-4-メチル-2-ペンタノン等のケトン系溶媒;ギ酸メチル、酢酸エチル、酢酸n-ブチル等のエステル系溶媒;塩化メチレン、クロロホルム、1,2-ジクロロエタン等のハロゲン化炭化水素系溶媒;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、メチルセルソルブ、エチルセルソルブ、アニソール等のエーテル系溶媒が好ましく、成膜性からトルエン、キシレン、アニソール等の芳香族系溶媒;ジエチルエーテル、ジメトキシエタン、テトラヒドロフラン、1,4-ジオキサン、メチルセルソルブ、エチルセルソルブ、アニソール等のエーテル系溶媒がより好ましく、電子写真感光体特性の観点からトルエン、テトラヒドロフランを用いることがより好ましい。
 また、2種以上を任意の組み合わせ及び種類で併用してもよい。混合する場合には、繰り返し転写電圧耐性の観点から、エーテル系溶媒とその他溶媒を併用することが好ましく、相溶性の観点から、芳香族炭化水素類が好ましい。
 混合溶媒として用いる場合には、その質量比[エーテル系溶媒/その他溶媒]は、繰り返し転写電圧耐性の観点から、通常1/2以上、好ましくは1/1以上、より好ましくは2/1以上である。塗布性の観点から、通常15/1以下、好ましくは10/1以下である。
 前記電荷輸送物質と溶媒の質量比[電荷輸送物質/溶媒]が、1/10~1/100となるように感光層形成用塗布液を調整することが好ましい。前記電荷輸送物質との溶解性の観点から、1/12以下がより好ましく、1/15以下が更に好ましい。塗布性の観点から、1/90以上がより好ましく、1/50以上が更に好ましい。
 前記電荷輸送物質と溶媒を混合する際、加温溶解させることが好ましい。加温する際の溶液の温度は、溶解性の観点から、下限は通常20度以上、好ましくは25度以上、より好ましくは30度以上である。分解防止の観点から、上限は通常80度以下、好ましくは70度以下、より好ましくは65度以下である。
 例えば、単層型感光体、及び機能分離型感光体の電荷輸送層の場合には、塗布液の固形分濃度を通常5質量%以上、好ましくは10質量%以上、また、通常40質量%以下、好ましくは35質量%以下の範囲とする。また、塗布液の粘度を使用時の温度において通常10mPa・s以上、好ましくは50mPa・s以上、また、通常1500Pa・s以下、好ましくは1000Pa・s以下、より好ましくは500mPa・s以下、更に好ましくは400mPa・s以下の範囲とする。
 塗布液の乾燥は室温における指触乾燥後、30~200℃の温度範囲で、1分から2時間の間、無風、または送風下で加熱乾燥させることが好ましい。また加熱温度は一定であっても、乾燥時に変更させながら行なってもよい。
<単層型感光層>
 単層型感光層は、電荷発生物質と前記式(1)で表される電荷輸送物質、結着樹脂を使用して形成する。具体的には、電荷発生物質と電荷輸送物質と各種結着樹脂とを溶媒に溶解又は分散して塗布液を作製し、導電性支持体上(下引き層を設ける場合は下引き層上)に塗布、乾燥して得ることができる。
 前記式(1)で表される電荷輸送物質、前記結着樹脂の種類並びにこれらの使用比率は、積層型感光体の電荷輸送層の場合と同様である。単層型感光体の感光層の膜厚は、通常5~100μm、好ましくは10~50μmの範囲で使用され、順積層型感光体の電荷輸送層の膜厚は、通常5~50μmの範囲で用いられるが、長寿命、画像安定性の観点からは、好ましくは10~45μm、高解像度の観点からは10~30μmがより好ましい。
<保護層>
 感光体の最表面層には、感光層の損耗を防止したり、帯電器等からの発生する放電物質等による感光層の劣化を防止・軽減する目的で保護層を設けてもよい。保護層は導電性材料を適当な結着樹脂中に含有させて形成するか、日本国特開平9-190004号公報、日本国特開平10-252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する化合物を用いた共重合体を用いることができる。
 導電性材料としては、TPD(N,N'-ジフェニル-N,N'-ビス-(m-トリル)ベンジジン)等の芳香族アミノ化合物、酸化アンチモン、酸化インジウム、酸化錫、酸化チタン、酸化錫-酸化アンチモン、酸化アルミ、酸化亜鉛等の金属酸化物等を用いることが可能であるが、これに限定されるものではない。
 保護層に用いる結着樹脂としてはポリアミド樹脂、ポリウレタン樹脂、ポリエステル樹脂、エポキシ樹脂、ポリケトン樹脂、ポリカーボネート樹脂、ポリビニルケトン樹脂、ポリスチレン樹脂、ポリアクリルアミド樹脂、シロキサン樹脂等の公知の樹脂を用いることができ、また、日本国特開平9-190004号公報、日本国特開平10-252377号公報の記載のようなトリフェニルアミン骨格等の電荷輸送能を有する骨格と上記樹脂の共重合体を用いることもできる。
 上記保護層は電気抵抗が10~1014Ω・cmとなるように構成することが好ましく。電気抵抗が1014Ω・cmより高くなると残留電位が上昇しカブリの多い画像となってしまい、一方10Ω・cmより低くなると画像のボケ、解像度の低下が生じてしまう。また、保護層は像露光に照射される光の透過を実質上妨げないように構成される。
 また、感光体表面の摩擦抵抗や、摩耗を低減、トナーの感光体から転写ベルト、紙への転写効率を高める等の目的で、表面層にフッ素系樹脂、シリコーン樹脂、ポリエチレン樹脂、ポリスチレン樹脂等を含んでいてもよい。また、これらの樹脂からなる粒子やシリカやアルミナ等の無機化合物の粒子を含んでいてもよい。
<各層の形成方法>
 感光体を構成する感光層は、含有させる物質を有機溶媒に溶解又は分散させて得られた塗布液を、導電性支持体上に浸漬塗布、スプレー塗布、ノズル塗布、バーコート、ロールコート、ブレード塗布等の公知の方法により、各層ごとに順次塗布・乾燥工程を繰り返すことにより形成される。
 有機溶媒としては、例えば、テトラヒドロフラン、メチルテトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサン、1,3-ジオキソラン等の脂肪族環状エーテル、エチルプロピルエーテル、プロピルエーテル、ジブチルエーテル、ジメトキシエタン、ジエトキシエタン等の脂肪族鎖状エーテル、アニソール、メトキシトルエン、フェネトール等の芳香族エーテルのようなエーテル系溶媒、メタノール、エタノール、プロパノール、2-メトキシエタノール等のアルコール類、ギ酸メチル、酢酸エチル等のエステル類、アセトン、メチルエチルケトン、シクロヘキサノン、4-メトキシ-4-メチル-2-ペンタノン等のケトン類、ベンゼン、トルエン、キシレン等の芳香族炭化水素類、ジクロロメタン、クロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、1,1,1-トリクロロエタン、テトラクロロエタン、1,2-ジクロロプロパン、トリクロロエチレン等の塩素化炭化水素類、n-ブチルアミン、イソプロパノールアミン、ジエチルアミン、トリエタノールアミン、エチレンジアミン、トリエチレンジアミン等の含窒素化合物類、アセトニトリル、N-メチルピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシド等の非プロトン性極性溶剤類等が挙げられる。
 この中でも、感光層の成膜性の観点から、脂肪族環状エーテル、芳香族エーテル、芳香族炭化水素類が好ましく、繰り返し転写電圧耐性の観点から、テトラヒドロフラン、1,3-ジオキソラン、アニソール、トルエンがより好ましい。
 また、積層型感光体の電荷発生層の場合には、塗布液の固形分濃度は、通常0.1質量%以上、好ましくは1質量%以上、また、通常15質量%以下、好ましくは10質量%以下の範囲とする。また、塗布液の粘度は、使用時の温度において、通常0.01mPa・s以上、好ましくは0.1mPa・s以上、また、通常20mPa・s以下、好ましくは10mPa・s以下の範囲とする。
 塗布液の塗布方法としては、例えば、浸漬コーティング法、スプレーコーティング法、スピナーコーティング法、ビードコーティング法、ワイヤーバーコーティング法、ブレードコーティング法、ローラーコーティング法、エアーナイフコーティング法、カーテンコーティング法等が挙げられるが、他の公知のコーティング法を用いることも可能である。
 塗布液の乾燥は、室温における指触乾燥後、通常30℃以上、200℃以下の温度範囲で、1分から2時間の間、静止又は送風下で加熱乾燥させることが好ましい。また、加熱温度は一定であってもよく、乾燥時に温度を変更させながら加熱を行っても良い。
<カートリッジ、画像形成装置>
 次に、本発明の電子写真感光体を用いたドラムカートリッジ、画像形成装置について、装置の一例を示す図1に基づいて説明する。
 図1において、1はドラム状の感光体であり、矢印方向に所定の周速度で回転駆動される。感光体1はその回転過程で帯電装置2により、その表面に正又は負の所定電位の均一帯電を受け、ついで露光装置3において像露光手段により潜像形成のための露光が行われる。
 形成された静電潜像は、次に現像装置4でトナー現像され、そのトナー現像が転写装置5により給紙部から給送された記録紙Pに順次転写されていく。
 図1では、現像装置4は、現像槽41、アジテータ42、供給ローラ43、現像ローラ44、及び、規制部材45からなり、現像槽41の内部にトナーTを貯留している構成となっている。また、必要に応じ、トナーTを補給する補給装置(図示せず)を現像装置4に付帯させてもよい。この補給装置は、ボトル、カートリッジ等の容器からトナーTを補給することが可能に構成される。
 像転写された転写体はついで定着装置7に送られ、像定着され、機外へプリントアウトされる。定着装置7は、上部定着部材(定着ローラ)71及び下部定着部材(定着ローラ)72から構成され、上部及び下部の各定着部材71又は72の内部には加熱装置73が備えられている。なお、図1では、上部定着部材71の内部に加熱装置73が備えられた例を示す。
 上部及び下部の各定着部材71,72は、ステンレス、アルミニウム等の金属素管にシリコンゴムを被覆した定着ロール、更にテフロン(登録商標)樹脂で被覆した定着ロール、定着シート等が公知の熱定着部材を使用することができる。更に、各定着部材71,72は、離型性を向上させる為にシリコーンオイル等の離型剤を供給する構成としてもよく、バネ等により互いに強制的に圧力を加える構成としてもよい。
 記録紙P上に転写されたトナーは、所定温度に加熱された上部定着部材71と下部定着部材72との間を通過する際、トナーが溶融状態まで熱加熱され、通過後冷却されて記録紙P上にトナーが定着される。
 像転写後の感光体1の表面はクリーニング装置6により転写残りのトナーが除去され、除電手段により除電されて次の画像形成のために清浄化される。
本発明の電子写真感光体を使用するにあたって、帯電器としては、コロトロン、スコロトロン等のコロナ帯電器の他に、電圧印加された直接帯電部材を感光体表面に接触させて帯電させる直接帯電手段を用いてもよい。
 直接帯電手段の例としては、帯電ローラー、帯電ブラシ等の接触帯電器等が挙げられる。直接帯電手段として、気中放電を伴うもの、あるいは気中放電を伴わない注入帯電いずれも可能である。また、帯電時に印可する電圧としては、直流電圧だけの場合、及び直流に交流を重畳させて用いることもできる。
 露光はハロゲンランプ、蛍光灯、レーザー(半導体、He-Ne)、LED、感光体内部露光方式等が用いられるが、デジタル式電子写真方式として、レーザー、LED、光シャッターアレイ等を用いることが好ましい。波長としては780nmの単色光の他、600~700nm領域のやや短波長寄りの単色光を用いることができる。
 現像行程はカスケード現像、1成分絶縁トナー現像、1成分導電トナー現像、二成分磁気ブラシ現像等の乾式現像方式や湿式現像方式等が用いられる。
 トナーとしては、粉砕トナーの他に、懸濁造粒、懸濁重合、乳化重合凝集法等のケミカルトナーを用いることができる。特に、ケミカルトナーの場合には、4~8μm程度の小粒径のものが用いられ、形状も球形に近いものから、ポテト状の球形から外れたものも使用することができる。重合トナーは、帯電均一性、転写性に優れ、高画質化には好適に用いられる。
 転写行程は、例えば、コロナ転写、ローラー転写、ベルト転写等の静電転写法、圧力転写法、粘着転写法等が用いられる。定着は、例えば、熱ローラー定着、フラッシュ定着、オーブン定着、圧力定着、IH定着、ベルト定着、IHF定着等が用いられ、これら定着方式は単独で用いても良く、複数の定着方式を組み合わせた形で使用してもよい。
 クリーニングには、例えば、ブラシクリーナー、磁気ブラシクリーナー、静電ブラシクリーナー、磁気ローラークリーナー、ブレードクリーナー等が用いられる。
 除電工程は、省略される場合も多いが、使用される場合には、蛍光灯、LED等が使用され、強度としては露光光の3倍以上の露光エネルギーが使用される場合が多い。これらのプロセスのほかに、前露光工程、補助帯電工程のプロセスを有してもよい。
 本発明においては、上記ドラム状の感光体1、帯電装置2、現像装置4及びクリーニング装置6等の構成要素の内の複数のものをドラムカートリッジとして一体に結合して構成し、このドラムカートリッジを複写機やレーザービームプリンタ等の電子写真装置本体に対して着脱可能な構成にしてもよい。例えば、帯電装置2、現像装置4及びクリーニング装置6の内、少なくとも1つをドラム状の感光体1と共に一体に支持してカートリッジ化とすることができる。
 カラー画像はマゼンタ、イエロー、シアン、及びブラックの各トナーを多層に重ねて所望する色に調整することでフルカラー画像を得ることができる。タンデム方式の場合、カラー現像部がブラック現像部より前に位置する方がブラックトナーの逆転写等による混色が少なくなりよいこと、及びブラック現像部がカラー現像部より後ろに位置する方がブラックだけの単色で画像形成する場合にカラートナーの感光体カブリによる混色が少なくなること、及びカラー現像部をショートパスして記録紙を搬送することでブラック画像形成の速度をアップすることができるので好ましい。
 フルカラー画像形成に適用する場合には、この様なシアン、マゼンタ、イエローのカラー現像部が前の位置にあり、ブラック現像部がカラー現像部より後に位置するタンデム方式に好適である。なお、シアン、マゼンタ、イエローのカラー現像部の位置する順番は適時自由に変更することができる。
 以下、実施例を示して本発明の実施の形態を更に具体的に説明する。ただし、以下の実施例は本発明を詳細に説明するために示すものであり、本発明はその要旨を逸脱しない限り、以下に示した実施例に限定されるものではなく任意に変形して実施することができる。また、以下の実施例、及び比較例中の「部」の記載は、特に指定しない限り「質量部」を示す。
<式(1)で表される電荷輸送物質の製造>
(製造例1:CT1粗体)
 下記式(CT1)で表される構造式を有する電荷輸送物質を、下記スキームAに従って製造した。詳細条件は下記の通りである。
<スキームA>
Figure JPOXMLDOC01-appb-C000018
 キシレン500ml中に、トリフェニルアミン誘導体である化合物A23.5gとp-トルイジン2.7g、ナトリウム t-ブトキシド10.6g、酢酸パラジウム500mg、トリシクロヘキシルホスフィンの0.6mmol/mlトルエン溶液を20ml仕込み、還流が起こるまで昇温させた。昇温後、3時間撹拌し、反応させ、反応終了後、反応溶液を室温まで降温し、水250mlを添加し、30分撹拌した。撹拌後、水層を分離し、有機層を脱イオン水にて洗浄後、濃縮し、濃縮残渣をテトラヒドロフランに溶解することでCT1粗体のテトラヒドロフラン溶液を調製し、溶液をメタノールに添加し、撹拌後、濾別・乾燥することにより電荷輸送物質CT1粗体を18.4g得た。(収率85.4%)
(製造例2)
 製造例1で得られた電荷輸送物質CT1粗体10gをトルエン100gに溶解することでCT1粗体のトルエン溶液を調製した。このトルエン溶液中に活性白土5g添加し撹拌後、濾別した。この活性白土による精製[吸着材処理-濾過]を3回繰り返した後の精製溶液を濃縮し、濃縮残渣をテトラヒドロフランに溶解後、この溶液をメタノールに添加し、再沈殿法で固体化し、撹拌後、濾別・乾燥することにより電荷輸送物質CT1を9.3g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、83ppmであった。
(製造例3)
 製造例2中の精製[吸着材処理-濾過]を3回繰り返す際の、2回目の処理に用いた活性白土5gを、フロリジール2.0gに変更した以外は、製造例2と同様に操作を行うことにより電荷輸送物質CT1を9.4g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、41ppmであった。
(製造例4)
 製造例2中の精製[吸着材処理-濾過]を3回繰り返す際の、2回目の処理に用いた活性白土5gを、活性炭1.5gに変更した以外は、製造例2と同様に操作を行うことにより電荷輸送物質CT1を9.3g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、117ppmであった。
(製造例5)
 製造例2中の精製[吸着材処理-濾過]を3回繰り返す際の、2回目の処理に用いた活性白土5gを、シリカゲル2.0gに変更した以外は、製造例2と同様に操作を行うことにより電荷輸送物質CT1を9.3g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、112ppmであった。
(製造例6)
 下記式(CT2)で表される構造式を有する電荷輸送物質を、下記スキームBに従って製造した。詳細条件は下記の通りである。
<スキームB>
Figure JPOXMLDOC01-appb-C000019
 キシレン500ml中に、トリフェニルアミン誘導体である化合物A18.8gとp-フェネチジン2.8g、ナトリウム t-ブトキシド8.5g、酢酸パラジウム100mg、トリシクロヘキシルホスフィンの0.6mmol/mlトルエン溶液を16ml仕込み、還流が起こるまで昇温させた。昇温後、3時間撹拌し、反応させた。反応終了後、反応溶液を室温まで降温し、水200mlを添加し、30分撹拌した。撹拌後、水層を分離し、有機層を脱イオン水にて洗浄後、濃縮し、濃縮残渣をテトラヒドロフランに溶解することでCT2粗体のテトラヒドロフラン溶液を調整し、溶液をメタノールに添加し、撹拌後、濾別・乾燥することにより電荷輸送物質CT2粗体を13.7g得た。(収率75.8%)
 得られた電荷輸送物質CT2粗体10gを製造例2と同様に操作を行うことにより電荷輸送物質CT2を9.1g得た。得られたCT2中のパラジウム含有量をICP発光分析により確認したところ、14ppmであった。
(比較製造例1)
 製造例1で得られた電荷輸送物質CT1粗体10gをトルエン40gに
加温して完全に溶解後、0℃以下に冷却した。冷却状態で静置し、晶析後、濾別・乾燥することにより電荷輸送物質CT1を6.3g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、180ppmであった。
(比較製造例2)
 下記式(CT1)で表される構造式を有する電荷輸送物質を、下記スキームCに従って製造した。詳細条件は下記の通りである。
<スキームC>
Figure JPOXMLDOC01-appb-C000020
 テトラヒドロフラン300ml中に、トリフェニルアミン誘導体である化合物B26.7gと化合物C9.5gを仕込み溶解させた。溶解後、カリウム t-ブトキシド7.5gを加え、室温下2時間撹拌した。反応終了後、反応溶液をメタノール1000ml中に添加し、30分撹拌した。撹拌後、濾別・乾燥することにより電荷輸送物質CT1粗体を17.5g得た(収率68.3%)。
 得られた電荷輸送物質CT1粗体10gを製造例2と同様に操作を行うことにより電荷輸送物質CT1を8.3g得た。得られたCT1中のパラジウム含有量をICP発光分析により確認したところ、パラジウムは検出されなかった。
<下引き層形成用塗布液の製造>
 平均一次粒子径40nmのルチル型酸化チタン(石原産業株式会社製「TTO55N」)と、該酸化チタンに対して3質量%のメチルジメトキシシラン(東芝シリコーン社製「TSL8117」)とを、ヘンシェルミキサーにて混合して得られた表面処理酸化チタン50部と、メタノール120部を混合してなる原料スラリー1kgを、直径約100μmのジルコニアビーズ(株式会社ニッカトー製 YTZ)を分散メディアとして、ミル容積約0.15Lの寿工業株式会社製ウルトラアペックスミル(UAM-015型)を用い、ロータ周速10m/秒、液流量10kg/時間の液循環状態で1時間分散処理し、酸化チタン分散液を作製した。
 前記酸化チタン分散液と、メタノール/1-プロパノール/トルエンの混合溶媒、及び、ε-カプロラクタム[下記式(A)で表わされる化合物]/ビス(4-アミノ-3-メチルシクロヘキシル)メタン[下記式(B)で表わされる化合物]/ヘキサメチレンジアミン[下記式(C)で表わされる化合物]/デカメチレンジカルボン酸[下記式(D)で表わされる化合物]/オクタデカメチレンジカルボン酸[下記式(E)で表わされる化合物]の組成モル比率が、75%/9.5%/3%/9.5%/3%からなる共重合ポリアミドのペレットとを加熱しながら撹拌、混合してポリアミドペレットを溶解させた後、出力1200Wの超音波発信器による超音波分散処理を1時間行い、更に孔径5μmのPTFE製メンブレンフィルター(アドバンテック製 マイテックス LC)により濾過し、表面処理酸化チタン/共重合ポリアミドを質量比が3/1であり、メタノール/1-プロパノール/トルエンの混合溶媒の質量比が7/1/2であって、含有する固形分の濃度が18.0質量%の下引き層形成用塗布液を作製した。
Figure JPOXMLDOC01-appb-C000021
<電荷発生層形成用塗布液の製造>
 電荷発生物質として、図2のCuKα特性X線によるX線回折スペクトルを示すオキシチタニウムフタロシアニン20部と1,2-ジメトキシエタン280部とを混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2-ジメトキシエタンの255部と4-メトキシ-4-メチル-2-ペンタノンの85部との混合液に溶解させて得られたバインダー液、及び230部の1,2-ジメトキシエタンを混合して電荷発生層形成用塗布液Aを調製した。
 電荷発生物質として、図3のCuKα特性X線によるX線回折スペクトルを示すオキシチタニウムフタロシアニン20部と1,2-ジメトキシエタン280部とを混合し、サンドグラインドミルで4時間粉砕して微粒化分散処理を行なった。続いてこの微細化処理液に、ポリビニルブチラール(電気化学工業(株)製、商品名「デンカブチラール」#6000C)10部を、1,2-ジメトキシエタンの255部と4-メトキシ-4-メチル-2-ペンタノンの85部との混合液に溶解させて得られたバインダー液、及び230部の1,2-ジメトキシエタンを混合して電荷発生層形成用塗布液Bを調製した。電荷発生層形成用塗布液Aと電荷発生層形成用塗布液Bを8:2の質量比で混合し、本実施例で用いる電荷発生層形成用塗布液を作製した。
<電荷輸送層形成用塗布液の製造>
[塗布液C1]
下記の繰り返し構造で表されるポリアリレート樹脂100部(樹脂X、粘度平均分子量70,000)、製造例2で作製した電荷輸送物質を40部、下記式で表される化合物AD1を4部、AD2を1部、AD3を1部、ジメチルポリシロキサン(信越化学社製KF96-10CS)0.03部をテトラヒドロフラン/トルエン(8/2(質量比))混合溶媒880部に溶解させて電荷輸送層形成用塗布液C1を調製した。
樹脂X
Figure JPOXMLDOC01-appb-C000022
AD1
Figure JPOXMLDOC01-appb-C000023
AD2
Figure JPOXMLDOC01-appb-C000024
AD3
Figure JPOXMLDOC01-appb-C000025
[塗布液C2~5]
 それぞれ、電荷輸送物質として製造例2の電荷輸送物質の代わりに、製造例3~6で作製した電荷輸送物質を用いた以外は、塗布液C1と同様にして塗布液C2~C5を作製した。
[塗布液C6~7]
 それぞれ、電荷輸送物質として製造例2の電荷輸送物質の代わりに、比較製造例1~2で作製した電荷輸送物質を用いた以外は、塗布液C1と同様にして塗布液C6~7を作製した。
<感光体ドラムの製造>
 表面が切削加工された外径60mm、長さ248mm、肉厚1.0mmのアルミニウム合金よりなるシリンダーに、塗布液の製造例で作製した下引き層形成用塗布液、電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、1.5μm、0.5μm、21μmとなるように、下引き層、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、125℃で24分間行なった。また、得られた感光体から感光層を剥離し、ICP発光分析[装置:株式会社島津製作所社製ICPS-8100S]を行うことにより感光層中のパラジウム含有量を測定した。
<画像試験>
 得られた感光体を、Samsung社製4サイクルフルカラープリンタ CLP-320(DCローラー帯電、LD露光、非磁性一成分ジャンピング現像)の感光体カートリッジに搭載して、気温35℃、相対湿度85%下において、印字率5%で、6000枚の連続印刷を行った。6000枚印刷後に、ハーフトーン画像を印刷し、以下の通り、画像の白抜けの判定を行った。
白抜け
 ◎:ハーフトーン画像に白抜けは見られない
 ○:ハーフトーン画像の一部に白抜けは見られない
 △:ハーフトーン画像の全体に軽度の白抜けが見られる
 ×:ハーフトーン画像に全体にはっきりと白抜けが見られる
<電子写真感光体の評価>
 表1に記載の実施例1~5、比較例1~2の電子写真感光体を、電子写真学会標準に従って作製された電子写真特性評価装置(「続電子写真技術の基礎と応用」、電子写真学会編、コロナ社、1996年、404~405頁記載)に装着し、以下の手順に従って帯電、露光、電位測定、除電のサイクルを実施することにより、電気特性の評価を行なった。
 温度25℃、湿度50%の条件下、感光体の初期表面電位が-700Vになるように帯電後、ハロゲンランプの光を干渉フィルターで780nmの単色光とした光を0.6μJ/cmの照射エネルギーで露光後に測定した表面電位(単位:-V)を残留電位とした。
[実施例1~5、比較例1~2]
 表1に示す感光体ドラムを作製し、評価した結果を表1に示す。
Figure JPOXMLDOC01-appb-T000026
 表1から分かるように、本発明の電子写真感光体を用いた場合、露光後の残留電位が低く、また、高温高湿で連続印刷した場合、白抜けが発生せず良好な結果が得られた。
<実施例6>
≪電子写真感光体の作成≫
<電荷発生層形成用塗布液の製造>
 電荷発生物質として、オキシチタニウムフタロシアニン結晶(図2に示すようにCuKα特性X線に対するX線回折スペクトルにおいてブラック角(2θ±0.2°)に27.2°に主たる回折ピークを示す。)を用いた。このオキシチタニウムフタロシアニン結晶を20重量部用い、これを1,2-ジメトキシエタン280重量部と混合し、サンドグラインドミルで1時間粉砕して微粒化分散処理を行って微細化処理液を得た。また、1,2-ジメトキシエタン253重量部及び4-メトキシ-4-メチル-2-ペンタノン85重量部の混合液に、ポリビニルブチラール(電気化学工業(株)社製、商品名「デンカブチラール」#6000C)20重量部を溶解させて、バインダー液を調製した。
 上述の微粒化分散処理により得られた微細化処理液、上述のバインダー液、及び1,2-ジメトキシエタン230重量部を混合して、電荷発生層用塗布液を調製した。
<電荷輸送層形成用塗布液の製造>
[塗布液C8]
 前記式(樹脂X)の繰り返し構造単位からなるポリアリレート樹脂(粘度平均分子量=72,000)を100重量部、前記式(CT2)で表わされる構造を有する電荷輸送材料を40重量部、前記式(AD1)で表される酸化防止剤を4重量部、前記式(AD2)で表される化合物を0.5部、前記式(AD3)で表される化合物を0.1部、レベリング剤としてシリコーンオイル0.05重量部を、テトラヒドロフランとトルエンとの混合溶媒(テトラヒドロフラン80重量%、トルエン20重量%)1060重量部に混合し、電荷輸送層形成用塗布液を調製した。
<感光体ドラムの製造>
 表面が粗切削された外径30mm、長さ246mm、肉厚0.75mmのアルミニウム合金よりなるシリンダーを、陽極酸化処理を行い、その後酢酸ニッケルを主成分とする封孔剤によって封孔処理を行うことにより、約6μmの陽極酸化被膜(アルマイト被膜)を形成した。得られたシリンダーに、塗布液の製造例で作製した電荷発生層形成用塗布液、電荷輸送層形成用塗布液を浸漬塗布法により順次塗布、乾燥し、乾燥後の膜厚がそれぞれ、0.4μm、18μmとなるように、電荷発生層、電荷輸送層を形成し、感光体ドラムを製造した。なお、電荷輸送層の乾燥は、125℃で20分間行なった。得られた感光体の電荷輸送層を剥離し、残留溶媒をガスクロマトグラフィー[装置:アジレント・テクノロジー株式会社社製7890]で分析した結果、感光層中の残留溶媒量は非ハロゲン系溶媒[テトラヒドロフランとトルエンの総量]が9.5mg/gであり、ハロゲン系溶媒は検出されなかった。
<実施例7>
 実施例6中の<電荷輸送層形成用塗布液の製造>のテトラヒドロフランとトルエンとの混合溶媒の比率をテトラヒドロフラン90重量%、トルエン10重量%とし(塗布液C9)、電荷輸送層乾燥条件を135℃で30分に変更した以外は、実施例6と同様の操作を行うことにより感光体を作成した。また、得られた感光体の電荷輸送層を剥離し、残留溶媒を実施例6と同様に分析した結果、感光層中の残留溶媒量は非ハロゲン系溶媒[テトラヒドロフランとトルエンの総量]が2.2mg/gであり、ハロゲン系溶媒は検出されなかった。
<実施例8>
 実施例6中の<電荷輸送層形成用塗布液の製造>において、前記式(樹脂X)の繰り返し構造単位からなるポリアリレート樹脂を粘度平均分子量が53,000のものを用いた(塗布液C10)以外は、実施例6と同様の操作を行うことにより感光体を作成した。また、得られた感光体の電荷輸送層を剥離し、残留溶媒を実施例6と同様に分析した結果、非ハロゲン系溶媒[テトラヒドロフランとトルエンの総量]が10.1mg/gであり、ハロゲン系溶媒は検出されなかった。
<実施例9>
 実施例6中の電荷輸送層乾燥条件を120度で10分に変更した以外は、実施例6と同様の操作を行うことにより感光体を作成した。また、得られた感光体の電荷輸送層を剥離し、残留溶媒を実施例6と同様に分析した結果、非ハロゲン系溶媒[テトラヒドロフランとトルエンの総量]が17.5mg/gであり、ハロゲン系溶媒は検出されなかった。
<実施例10>
 実施例6中の<電荷輸送層形成用塗布液の製造>において、前記式(樹脂X)の繰り返し構造単位からなるポリアリレート樹脂を粘度平均分子量が20,400のものを用いた(塗布液C11)以外は、実施例6と同様の操作を行うことにより感光体を作成した。また、得られた感光体の電荷輸送層を剥離し、残留溶媒を実施例6と同様に分析した結果、非ハロゲン系溶媒[テトラヒドロフランとトルエンの総量]が9.9mg/gであり、ハロゲン系溶媒は検出されなかった。
<実施例11>
 実施例6中の<電荷輸送層形成用塗布液の製造>において、テトラヒドロフランとトルエンとの混合溶媒を1,2-ジクロロエタンに変更した(塗布液C12)以外は、実施例6と同様の操作を行うことにより感光体を作成した。また、得られた感光体の電荷輸送層を剥離し、残留溶媒を実施例6と同様に分析した結果、非ハロゲン系溶媒は検出されず、ハロゲン系溶媒が1.3mg/gであった。
<耐刷評価試験>
 得られた感光体をA4タンデム型フルカラープリンター[沖データ社製 COREFIDO C711dn改造機(印刷速度:カラー34rpm 解像度:600dpi 露光源:LED)のドラムカートリッジに装着し、上記プリンターにセットした。
 上記プリンターを低温低湿環境条件下におき、印刷の入力として、べた塗り画像と線画像から構成される印字率5%の上下左右対称なパターンをパソコンからプリンターに送り、1枚間欠モードで12,500枚印刷を行った。
 耐刷後の電荷輸送層の膜厚を測定し、耐刷前後の電荷輸送層の膜厚比較することにより耐刷性を評価した。
 ◎:耐刷前後の電荷輸送層の膜厚差が2.0μm未満
 ○:耐刷前後の電荷輸送層の膜厚差が2.0μm以上、2.5μm未満
 △:耐刷前後の電荷輸送層の膜厚差が2.5μm以上、3.0μm未満
 ×:耐刷前後の電荷輸送層の膜厚差が3.0μm以上
<電子写真感光体の評価>
 実施例6~11で得られた電子写真感光体を、電子写真学会標準に従って作製された電子写真特性評価装置(「続電子写真技術の基礎と応用」、電子写真学会編、コロナ社、1996年、404~405頁記載)に装着し、以下の手順に従って帯電、露光、電位測定、除電のサイクルを実施することにより、電気特性の評価を行なった。
 温度25℃、湿度50%の条件下、感光体の初期表面電位が-700Vになるように帯電後、ハロゲンランプの光を干渉フィルターで780nmの単色光とした光を0.6μJ/cmの照射エネルギーで露光後に測定した表面電位(単位:-V)を残留電位とした。
 耐刷、及び電子写真感光体特性(残留電位)の評価結果は、表2に示した。
Figure JPOXMLDOC01-appb-T000027
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更および変形が可能であることは、当業者にとって明らかである。なお本出願は、2014年1月21日付で出願された日本特許出願(特願2014-008594)及び2014年1月31日付で出願された日本特許出願(特願2014-017157)に基づいており、その全体が引用により援用される。
 1  感光体(電子写真感光体)
 2  帯電装置(帯電ローラ;帯電部)
 3  露光装置(露光部)
 4  現像装置(現像部)
 5  転写装置
 6  クリーニング装置
 7  定着装置
 41 現像槽
 42 アジテータ
 43 供給ローラ
 44 現像ローラ
 45 規制部材
 71 上部定着部材(定着ローラ)
 72 下部定着部材(定着ローラ)
 73 加熱装置
 T  トナー
 P  記録紙(用紙,媒体)

Claims (12)

  1.  導電性支持体上に感光層を有する電子写真感光体において、前記感光層が一般式(1)で表される化合物及びパラジウムを含有し、前記感光層中のパラジウム含有量が0.01~50ppmであることを特徴とする電子写真感光体。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
  2.  導電性支持体上に電荷輸送物質を含有する感光層を有する電子写真感光体において、前記電荷輸送物質が一般式(1)で表される化合物及びパラジウムを含有し、前記電荷輸送物質中のパラジウム含有量が0.01~150ppmであることを特徴とする電子写真感光体。
    Figure JPOXMLDOC01-appb-C000002
    (式(1)中、Ar~Arはそれぞれ独立して置換基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上3以下の整数を表す。)
  3.  前記感光層が結着樹脂を含有し、前記結着樹脂の粘度平均分子量が40000以上100000以下であることを特徴とする請求項1又は2に記載の電子写真感光体。
  4.  前記感光層が有機溶媒を用いた塗布液から形成されたものであり、前記感光層中のハロゲン系溶媒の残留量が1.0mg/g以下、非ハロゲン系溶媒の残留量が0.05mg/g以上20.0mg/g以下であることを特徴とする請求項1~3のいずれか1項に記載の電子写真感光体。
  5.  前記感光層中に含有される前記式(1)で表される化合物が、感光層を形成する結着樹脂100質量部に対して、20質量部以上50質量部以下であることを特徴とする請求項1~4のいずれか1項に記載の電子写真感光体。
  6.  前記式(1)中、Ar~Arはそれぞれ独立してアルキル基またはアルコキシ基を有していてもよいアリール基、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基、m及びnは1であることを特徴とする請求項1~5のいずれか1項に記載の電子写真感光体。
  7.  前記感光層が結着樹脂を含有し、前記結着樹脂がポリアリレート樹脂またはポリカーボネート樹脂であることを特徴とする請求項1~6のいずれか1項に記載の電子写真感光体。
  8.  前記式(1)で表される化合物が吸着材を用いて精製されたものであることを特徴する請求項1~7のいずれか1項に記載の電子写真感光体。
  9.  フルカラー画像形成装置に用いられることを特徴とする、請求項1~8のいずれか1項に記載の電子写真感光体。
  10.  請求項1~9のいずれか1項に記載の電子写真感光体、並びに、該電子写真感光体を帯電させる帯電装置、帯電した電子写真感光体を露光させて静電潜像を形成する露光装置及び該電子写真感光体上に形成された静電潜像を現像する現像装置からなる群から選ばれる少なくとも1つ、を備えたことを特徴とする、電子写真感光体カートリッジ。
  11.  請求項1~9のいずれか1項に記載の電子写真感光体、該電子写真感光体を帯電させる帯電装置、帯電した電子写真感光体を露光させて静電潜像を形成する露光装置及び該電子写真感光体上に形成された静電潜像を現像する現像装置を備えたことを特徴とするフルカラー画像形成装置。
  12.  一般式(1)で表される化合物及びパラジウムを含有する電荷輸送物質であって、前記電荷輸送物質のパラジウム含有量が0.01~150ppmであることを特徴とする電荷輸送物質。
    Figure JPOXMLDOC01-appb-C000003
    (式(1)中、Ar~Arはそれぞれ独立してアルキル基、アルコキシ基を有していてもよいアリール基を表し、Ar~Arはそれぞれ独立して置換基を有していてもよい1,4-フェニレン基を表す。m、nはそれぞれ独立して1以上2以下の整数を表す。)
PCT/JP2015/051425 2014-01-21 2015-01-20 電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質 WO2015111589A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167019295A KR20160107196A (ko) 2014-01-21 2015-01-20 전자 사진 감광체, 전자 사진 카트리지, 화상 형성 장치, 및 전하 수송 물질
CN201580005140.0A CN106415398B (zh) 2014-01-21 2015-01-20 电子照相感光体、电子照相盒、图像形成装置、以及电荷传输物质
US15/211,386 US9791791B2 (en) 2014-01-21 2016-07-15 Electrophotographic photoreceptor, electrophotographic cartridge, image forming apparatus, and charge transport substance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014008594 2014-01-21
JP2014-008594 2014-01-21
JP2014-017157 2014-01-31
JP2014017157 2014-01-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/211,386 Continuation US9791791B2 (en) 2014-01-21 2016-07-15 Electrophotographic photoreceptor, electrophotographic cartridge, image forming apparatus, and charge transport substance

Publications (1)

Publication Number Publication Date
WO2015111589A1 true WO2015111589A1 (ja) 2015-07-30

Family

ID=53681392

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051425 WO2015111589A1 (ja) 2014-01-21 2015-01-20 電子写真感光体、電子写真カートリッジ、画像形成装置、及び電荷輸送物質

Country Status (4)

Country Link
US (1) US9791791B2 (ja)
KR (1) KR20160107196A (ja)
CN (1) CN106415398B (ja)
WO (1) WO2015111589A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6135369B2 (ja) * 2012-07-31 2017-05-31 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2019061146A (ja) * 2017-09-27 2019-04-18 富士ゼロックス株式会社 電子写真感光体、プロセスカートリッジおよび画像形成装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287049A (ja) * 1991-03-15 1992-10-12 Konica Corp ビススチリル化合物及び電子写真感光体
JPH05142793A (ja) * 1991-11-20 1993-06-11 Ricoh Co Ltd 電子写真感光体
JP2000214608A (ja) * 1999-01-25 2000-08-04 Kyocera Mita Corp 電子写真感光体
JP2003221601A (ja) * 2002-01-31 2003-08-08 Japan Science & Technology Corp 貴金属細孔体及びその製造方法
JP2006267197A (ja) * 2005-03-22 2006-10-05 Konica Minolta Business Technologies Inc 電子写真感光体とそれを用いた画像形成装置及びプロセスカートリッジ
JP2008063230A (ja) * 2006-09-04 2008-03-21 Kyocera Mita Corp トリフェニルアミン誘導体および電子写真感光体
JP2008070591A (ja) * 2006-09-14 2008-03-27 Mitsubishi Chemicals Corp 電子写真感光体及び画像形成装置
JP2012014141A (ja) * 2010-06-04 2012-01-19 Kyocera Mita Corp 画像形成装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2940502B2 (ja) 1996-02-28 1999-08-25 日本電気株式会社 電子写真感光体
CN101077860A (zh) * 2006-05-25 2007-11-28 京瓷美达株式会社 三苯胺衍生物、其制造方法以及电子照相感光体
CN101676260B (zh) * 2008-09-16 2013-07-10 京瓷办公信息系统株式会社 三苯胺衍生物、其制造方法和电子照相感光体
EP2881795B1 (en) * 2012-07-31 2016-07-13 Mitsubishi Chemical Corporation Electrophotographic photo-receptor, electrophotographic photo-receptor cartridge, image-forming device, and triarylamine compound
JP2015062056A (ja) * 2013-08-19 2015-04-02 三菱化学株式会社 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04287049A (ja) * 1991-03-15 1992-10-12 Konica Corp ビススチリル化合物及び電子写真感光体
JPH05142793A (ja) * 1991-11-20 1993-06-11 Ricoh Co Ltd 電子写真感光体
JP2000214608A (ja) * 1999-01-25 2000-08-04 Kyocera Mita Corp 電子写真感光体
JP2003221601A (ja) * 2002-01-31 2003-08-08 Japan Science & Technology Corp 貴金属細孔体及びその製造方法
JP2006267197A (ja) * 2005-03-22 2006-10-05 Konica Minolta Business Technologies Inc 電子写真感光体とそれを用いた画像形成装置及びプロセスカートリッジ
JP2008063230A (ja) * 2006-09-04 2008-03-21 Kyocera Mita Corp トリフェニルアミン誘導体および電子写真感光体
JP2008070591A (ja) * 2006-09-14 2008-03-27 Mitsubishi Chemicals Corp 電子写真感光体及び画像形成装置
JP2012014141A (ja) * 2010-06-04 2012-01-19 Kyocera Mita Corp 画像形成装置

Also Published As

Publication number Publication date
CN106415398B (zh) 2019-11-19
CN106415398A (zh) 2017-02-15
US20160320717A1 (en) 2016-11-03
KR20160107196A (ko) 2016-09-13
US9791791B2 (en) 2017-10-17

Similar Documents

Publication Publication Date Title
JP5522128B2 (ja) フタロシアニン組成物並びにそれを用いた光導電性材料、電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
WO2014021341A1 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP2007320925A (ja) トリアリールアミン系化合物並びにそれを用いた電子写真感光体及び画像形成装置
JP6160370B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及びトリアリールアミン化合物
JP2008107649A (ja) 電子写真感光体、および該感光体を用いた画像形成装置
JP5181410B2 (ja) フタロシアニン組成物並びにそれを用いた光導電性材料、電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP5353078B2 (ja) エナミン骨格を有する化合物を用いた電子写真感光体及び画像形成装置
US9791791B2 (en) Electrophotographic photoreceptor, electrophotographic cartridge, image forming apparatus, and charge transport substance
JP5803743B2 (ja) 電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP4983066B2 (ja) アミン化合物、電子写真感光体、画像形成方法及び画像形成装置
JP6497092B2 (ja) 電子写真感光体、電子写真カートリッジ、画像形成装置、電子写真感光体の製造方法、及び電荷輸送物質
KR101834599B1 (ko) 전하 수송 물질, 전자 사진 감광체, 전자 사진 감광체 카트리지, 및 화상 형성 장치
JP5803744B2 (ja) 電荷輸送物質、電子写真感光体、電子写真感光体カートリッジ、および画像形成装置
JP5509732B2 (ja) 新規スチルベン系化合物を含有する電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及び新規スチルベン系化合物
JP2008216559A (ja) 電子写真感光体、および該感光体を用いた画像形成装置
JP6476893B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及び電子写真感光体の製造方法
JP6337531B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2015184355A (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP5369736B2 (ja) 新規エナミン系化合物を含有する電子写真感光体、電子写真感光体カートリッジ及び画像形成装置
JP6183113B2 (ja) 電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP4661241B2 (ja) フッ素置換インジウムフタロシアニン、並びにそれを用いた電子写真感光体、電子写真感光体カートリッジ、及び画像形成装置
JP2014095868A (ja) 新規ブタジエン骨格を持つ化合物を含有する電子写真感光体、電子写真感光体カートリッジ、画像形成装置、及び新規ブタジエン骨格を持つ化合物
JP4793218B2 (ja) 電子写真感光体、および該感光体を用いた画像形成装置
JP2010070511A (ja) エナミン系化合物、該化合物を用いた電子写真感光体および画像形成装置
JP2011118177A (ja) フタロシアニン顔料及びスチルベン系化合物を含有する電子写真感光体、電子写真感光体カートリッジ及び画像形成装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15741014

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167019295

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15741014

Country of ref document: EP

Kind code of ref document: A1