JP6067793B2 - めっき方法およびめっき装置 - Google Patents

めっき方法およびめっき装置 Download PDF

Info

Publication number
JP6067793B2
JP6067793B2 JP2015136192A JP2015136192A JP6067793B2 JP 6067793 B2 JP6067793 B2 JP 6067793B2 JP 2015136192 A JP2015136192 A JP 2015136192A JP 2015136192 A JP2015136192 A JP 2015136192A JP 6067793 B2 JP6067793 B2 JP 6067793B2
Authority
JP
Japan
Prior art keywords
voltage
plating
substrate
via hole
anode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015136192A
Other languages
English (en)
Other versions
JP2015200029A (ja
Inventor
裕介 玉理
裕介 玉理
尾渡 晃
晃 尾渡
瑞樹 長井
瑞樹 長井
慎吾 安田
慎吾 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Publication of JP2015200029A publication Critical patent/JP2015200029A/ja
Application granted granted Critical
Publication of JP6067793B2 publication Critical patent/JP6067793B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/54Electroplating of non-metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/10Agitating of electrolytes; Moving of racks
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D21/00Processes for servicing or operating cells for electrolytic coating
    • C25D21/12Process control or regulation
    • C25D21/14Controlled addition of electrolyte components
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/02Electroplating of selected surface areas
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/288Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition
    • H01L21/2885Deposition of conductive or insulating materials for electrodes conducting electric current from a liquid, e.g. electrolytic deposition using an external electrical current, i.e. electro-deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76879Filling of holes, grooves or trenches, e.g. vias, with conductive material by selective deposition of conductive material in the vias, e.g. selective C.V.D. on semiconductor material, plating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76898Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/001Apparatus specially adapted for electrolytic coating of wafers, e.g. semiconductors or solar cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

本発明は、半導体デバイスの配線形成技術に関し、特にウェハ等の基板の表面に形成されたビアホールの内部に、銅等の金属を充填するめっき方法およびめっき装置に関する。
半導体デバイスの配線形成技術において、銅めっきプロセスが広く採用されている。半導体デバイスの高集積化が進むにつれて回路の配線が微細化し、二次元方向における微細化レベルは限界に近づきつつある。そこで、デバイス性能をさらに向上させる技術として、TSV(through silicon via)技術が期待されている。このTSV技術は、ビアホール内に銅等の導電材料を埋め込んで貫通電極を形成し、この貫通電極を介して半導体チップ同士を接続する三次元積層技術である。
ビアホールの内部に空隙(いわゆるボイド)を形成することなく金属を埋め込むための重要なポイントは、基板のフィールド部表面における金属の析出を抑制しつつ、ビアホールの底部における金属の析出を促進させることである。そこで、めっき液には、金属の析出を促進する促進剤、および金属の析出を抑制するサプレッサ(例えばPEG(ポリエチレングリコール))やレベラ(平滑化剤)などの抑制成分含有剤が一般に添加されている。特に、50μm〜200μmの深さを有するビアホールの内部に銅を埋め込むためには、抑制作用の非常に強い抑制成分含有剤を使用しなければならない。これら促進剤および抑制成分含有剤は総称して添加剤と呼ばれる。
ボイドを形成することなくビアホール内を金属で充填させるためには、めっき中における添加剤の濃度管理が重要である。添加剤の濃度分析には、CVS(Cyclic Voltammetric Stripping)技術が従来から使用されている。しかしながら、めっき液中の添加剤はめっきの進行に伴って副生成物を生じ、この副生成物は濃度分析結果に悪影響を及ぼすことがある。その結果、添加剤の濃度が正しく管理されず、金属内にボイドが形成されてしまうことがある。さらに、添加剤の作用によって、めっきされた銅の結晶粒径や配向性などの膜質が変化するため、添加剤の適正な濃度管理が行われないと基板ごとに膜質がばらついてしまうおそれがある。特に、抑制作用の非常に強い抑制成分含有剤を使用した場合には、CVS技術で抑制成分含有剤の濃度を適切に測定することは副生成物が分析に影響を与えるために困難である。
ビアホール内に金属を早く充填することを目的として、基板のめっき中に基板上での電流密度を上昇させることが従来から行われている。ボイドを防ぎつつビアホール内に金属を早く充填するためには、ビアホールの大部分に金属が埋め込まれたときに、電流密度を上昇させることが必要である。しかしながら、従来ではめっきの進捗はめっき時間によって判断されているために、ビアホール内での金属の充填率を正確に決定することが難しい。結果として、適切なタイミングで電流密度を上昇させることができないことがあった。電流密度を上昇させるタイミングが早すぎると、ビアホール内にボイドが形成されてしまい、逆に電流密度を上昇させるタイミングが遅すぎると、めっきに要する時間を短縮することができない。
通常、めっきの終点はめっき時間のみによって管理されている。しかしながら、めっきの進捗の仕方はめっきプロセスごとに異なるため、めっきの終点をめっき時間のみによって管理すると、めっき不足またはめっき過剰となることがあった。
特開2006−317197号公報
本発明は、上述した従来の問題点に鑑みてなされたもので、基板のめっきの進捗を正確に決定し、めっき時間を短縮することができるめっき方法およびめっき装置を提供することを第1の目的とする。
さらに本発明は、めっきの終点を正確に決定することができるめっき方法およびめっき装置を提供することを第2の目的とする。
第1の態様は、アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、前記アノードと前記基板との間に電圧を印加して前記ビアホール内に金属を充填し、前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて増加したときに前記基板上での電流密度を増加させることを特徴とするめっき方法である。
参考例は、アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、前記アノードと前記基板との間に電圧を印加して前記ビアホール内に金属を充填し、前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて減少したときに前記電圧の印加を停止させることを特徴とするめっき方法である。
参考例は、アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、前記アノードと前記基板との間に電圧を印加して前記ビアホール内に金属を充填し、前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の第1のしきい値を上回った時点を決定し、その後、前記電圧の変化量が所定の第2のしきい値を下回った時点から、予め設定された時間が経過したときに前記電圧の印加を停止させることを特徴とするめっき方法である。
の態様は、アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、前記アノードと前記基板との間に電圧を印加して、第1の電流密度で前記ビアホールの底部から上方に向かって金属を析出させる第1のめっき工程を行い、前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて増加した時点で、前記アノードと前記基板との間に印加される電圧を増加させて、前記第1の電流密度よりも高い第2の電流密度で前記ビアホール内に金属を充填する第2のめっき工程を行うことを特徴とするめっき方法である。
の態様は、金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する電源と、前記基板に印加される電圧を測定する電圧測定器と、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて増加したときに前記電源に指令を出して前記電圧を増加させて前記基板上での電流密度を上昇させるめっき制御部とを備えたことを特徴とするめっき装置である。
参考例は、金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する電源と、前記基板に印加される電圧を測定する電圧測定器と、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて減少したときに前記電源に指令を出して前記電圧の印加を停止させるめっき制御部とを備えたことを特徴とするめっき装置である。
参考例は、金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する電源と、前記基板に印加される電圧を測定する電圧測定器と、前記電圧の測定値に基づいて、所定時間当たりの電圧の変化量を計算するめっき制御部とを備え、前記めっき制御部は、前記電圧の変化量が所定の第1のしきい値を上回った時点を決定し、その後、前記電圧の変化量が所定の第2のしきい値を下回った時点から、予め設定された時間が経過したときに前記電源に指令を出して前記電圧の印加を停止させることを特徴とするめっき装置である。
の態様は、金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する電源と、前記基板に印加される電圧を測定する電圧測定器と、前記電圧の測定値に基づいて、所定時間当たりの電圧の変化量を計算するめっき制御部とを備え、前記めっき制御部は、前記電源に指令を出して前記基板と前記アノードとの間に電圧を印加させ、第1の電流密度で前記ビアホールの底部から上方に向かって金属を析出させ、前記電圧の変化量が所定の変動幅を越えて増加した時点で、前記電源に指令を出して前記基板と前記アノードとの間に印加される電圧を増加させて、前記第1の電流密度よりも高い第2の電流密度で前記ビアホール内に金属を充填することを特徴とするめっき装置である。
の参考例は、アノードと、表面にビアホールが形成された基板とを、添加剤を含むめっき液中に互いに対向させて配置し、前記アノードと前記基板との間に電圧を印加して前記ビアホール内に金属を充填し、前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の管理範囲内に維持されるように、前記めっき液の前記添加剤の濃度を調整することを特徴とするめっき方法である。
なお、電圧の測定は、基板とアノードとの間の電圧を測定することに限られず、めっき液に浸漬された参照電極と基板との間の電圧を測定するなど、基板上の電位の変化を検出できる他の手段を用いてもよい。
の参考例は、基板をめっきするためのめっき槽から添加剤を含むめっき液を抜き出し、前記抜き出しためっき液中に第1の電極および第2の電極を浸漬させ、前記第1の電極および前記第2の電極の間に電圧を印加し、金属が析出している前記第2の電極に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の管理範囲内に維持されるように、前記めっき液の前記添加剤の濃度を調整することを特徴とするめっき方法である。
の参考例は、添加剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する電源と、前記基板に印加される電圧を測定する電圧測定器と、前記電圧の測定値に基づいて、前記めっき液中の添加剤の濃度を制御するめっき制御部と、前記めっき制御部からの指令に従って、前記めっき液中の前記添加剤の濃度を調整する濃度調整部とを備え、前記めっき制御部は、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の管理範囲内に維持されるように、前記濃度調整部に指令を出して該濃度調整部に前記めっき液の前記添加剤の濃度を調整させることを特徴とするめっき装置である。
の参考例は、添加剤を含むめっき液を保持するためのめっき槽と、表面にビアホールが形成された基板を保持する基板ホルダと、前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、前記基板と前記アノードとの間に電圧を印加する第1の電源と、前記めっき液を分析するめっき液分析部と、前記めっき液中の前記添加剤の濃度を調整する濃度調整部とを備え、前記めっき液分析部は、前記めっき槽から抜き出しためっき液を貯留する分析槽と、前記分析槽内の前記めっき液に浸漬される第1の電極および第2の電極と、前記第1の電極および前記第2の電極の間に電圧を印加する第2の電源と、金属が析出される前記第2の電極に印加される電圧を測定する電圧測定器と、前記電圧の測定値に基づいて、前記めっき槽内の前記めっき液中の添加剤の濃度を制御するめっき制御部とを備え、前記めっき制御部は、所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の管理範囲内に維持されるように、前記濃度調整部に指令を出して該濃度調整部に前記めっき液の前記添加剤の濃度を調整させることを特徴とするめっき装置である。
基板とアノードとの間の電気抵抗は、金属膜の成長に従って変化する。これは、金属膜の厚さの変化および添加剤の金属膜への付着の仕方の変化によるものである。したがって、第1、第4、第5、第8の態様によれば、電圧の変化に基づいてめっきの進捗を正確に把握し、適正なタイミングで電流密度を上げることによってめっき時間を短縮することができる。
上述したように、基板とアノードとの間の電気抵抗は、金属膜の成長に従って変化する。第2、第3、第6、第7の態様によれば、電圧の変化に基づいてめっきの終点を正確に決定することができる。
所定時間あたりの電圧の変化量は、めっき液中の添加剤の濃度に依存して変わる。したがって、第1、第2、第3、第4の参考例によれば、電圧の変化量に基づいて添加剤の濃度を適正な範囲内に制御することができる。その結果、ボイドなどの欠陥を生じることなく、また、膜質が均一な基板を得ることができる。
図1は、めっき装置の一実施形態を示す概略図である。 図2は、基板ホルダを示す斜視図である。 図3は、図2に示す基板ホルダの平面図である。 図4は、図2に示す基板ホルダの右側面図である。 図5は、図4に示す記号Aで囲まれた部分を示す拡大図である。 図6Aは、基板のビアホール内に銅が充填される工程を示す図である。 図6Bは、基板のビアホール内に銅が充填される工程を示す図である。 図6Cは、基板のビアホール内に銅が充填される工程を示す図である。 図6Dは、基板のビアホール内に銅が充填される工程を示す図である。 図7は、図1に示すめっき装置の変形例を示す図である。 図8は、図1に示すめっき装置の他の変形例を示す図である。 図9は、電圧測定器によって測定された電圧の時間変化の一例を模式的に示すグラフである。 図10は、電圧測定器によって測定された電圧の時間変化の他の例を模式的に示すグラフである。 図11は、電圧測定器によって測定された電圧の時間変化のさらに他の例を模式的に示すグラフである。 図12は、抑制成分含有剤の濃度によって異なる電圧の時間変化を示すグラフである。 図13Aは抑制成分含有剤の濃度によって変わる銅の析出状態を示す図である。 図13Bは抑制成分含有剤の濃度によって変わる銅の析出状態を示す図である。 図13Cは抑制成分含有剤の濃度によって変わる銅の析出状態を示す図である。 図13Dは抑制成分含有剤の濃度によって変わる銅の析出状態を示す図である。 図14は、基板をめっき処理した際の電圧の時間変化の一例を示すグラフである。 図15は、めっき制御部の制御シーケンスの一例を示す図である。 図16は、めっき装置の他の実施形態を示す概略図である。 図17は、図16に示すめっき装置の変形例を示す図である。 図18は、図16に示すめっき装置の他の変形例を示す図である。
以下、本発明の実施形態について図面を参照して説明する。図1乃至図18において、同一または相当する構成要素には、同一の符号を付して重複した説明を省略する。なお、以下の実施形態では、基板の表面に形成されたビアホールの内部に銅を充填する例が示される。
図1は、めっき装置の一実施形態を示す概略図である。図1に示すように、めっき装置は、めっき槽1を備えており、めっき槽1は、めっき液を貯留する内槽7と、内槽7に隣接して配置されたオーバーフロー槽8とを備えている。内槽7の上端をオーバーフローしためっき液は、オーバーフロー槽8内に流入するようになっている。オーバーフロー槽8の底部には、めっき液を循環させるめっき液循環ライン12の一端が接続され、他端は内槽7の底部に接続されている。オーバーフロー槽8内に流入しためっき液は、めっき液循環ライン12を通って内槽7内に戻される。
さらに、めっき装置は、銅などの金属から構成されるアノード2を保持し、かつアノード2を内槽7内のめっき液に浸漬させるアノードホルダ3と、ウェハなどの基板Wを着脱自在に保持し、かつ基板Wを内槽7内のめっき液に浸漬させる基板ホルダ6とを備えている。アノード2および基板Wはめっき液中で互いに対向するように配置される。アノード2は、アノードホルダ3を介して電源10の正極に接続され、基板Wの表面に形成されたシード層などの導電層は、基板ホルダ6を介して電源10の負極に接続されている。
さらに、めっき装置は、内槽7内の基板ホルダ6に保持された基板Wの表面に近接してめっき液を攪拌する攪拌パドル14と、基板W上の電位分布を調整する調整板(レギュレーションプレート)15とを備えている。調整板15はめっき液中の電場を制限するための開口15aを有しており、攪拌パドル14は、基板ホルダ6に保持された基板Wの表面近傍に配置されている。換言すれば、攪拌パドル14は基板ホルダ6とアノードホルダ3との間に配置されている。攪拌パドル14は、鉛直に配置されており、基板Wと平行に往復運動することでめっき液を攪拌し、基板Wのめっき中に、十分な金属イオンを基板Wの表面に均一に供給することができる。調整板15は、攪拌パドル14とアノードホルダ3との間に配置されている。
基板Wを保持する基板ホルダ6について説明する。基板ホルダ6は、図2乃至図5に示すように、矩形平板状の第1保持部材40と、この第1保持部材40にヒンジ42を介して開閉自在に取付けられた第2保持部材44とを有している。他の構成例として、第2保持部材44を第1保持部材40に対峙した位置に配置し、この第2保持部材44を第1保持部材40に向けて前進させ、また第1保持部材40から離間させることによって第2保持部材44を開閉するようにしてもよい。
第1保持部材40は例えば塩化ビニル製である。第2保持部材44は、基部46と、リング状のシールホルダ48とを有している。シールホルダ48は例えば塩化ビニル製であり、下記の押えリング50との滑りを良くしている。シールホルダ48の上部には環状の基板側シール部材52(図4および図5参照)が内方に突出して取付けられている。この基板側シール部材52は、基板ホルダ6が基板Wを保持した時、基板Wの表面外周部に圧接して第2保持部材44と基板Wとの隙間をシールするように構成されている。シールホルダ48の第1保持部材40と対向する面には、環状のホルダ側シール部材58(図4および図5参照)が取付けられている。このホルダ側シール部材58は、基板ホルダ6が基板Wを保持した時、第1保持部材40に圧接して第1保持部材40と第2保持部材44との隙間をシールするように構成されている。ホルダ側シール部材58は、基板側シール部材52の外側に位置している。
図5に示すように、基板側シール部材52は、シールホルダ48と第1固定リング54aとの間に挟持されてシールホルダ48に取付けられている。第1固定リング54aは、シールホルダ48にねじ等の締結具56aを介して取付けられる。ホルダ側シール部材58は、シールホルダ48と第2固定リング54bとの間に挟持されてシールホルダ48に取付けられている。第2固定リング54bは、シールホルダ48にねじ等の締結具56bを介して取付けられる。
シールホルダ48の外周部には段部が設けられており、この段部には押えリング50がスペーサ60を介して回転自在に装着されている。押えリング50は、第1固定リング54aの外周部によって脱出不能に装着されている。この押えリング50は、酸やアルカリに対して耐食性に優れ、十分な剛性を有する材料から構成される。例えば、押えリング50はチタンから構成される。スペーサ60は、押えリング50がスムーズに回転できるように、摩擦係数の低い材料、例えばPTFEから構成されている。
押えリング50の外側には、複数のクランパ62が押えリング50の円周方向に沿って等間隔で配置されている。これらクランパ62は第1保持部材40に固定されている。各クランパ62は、内方に突出する突出部を有する逆L字状の形状を有している。押えリング50の外周面には、外方に突出する複数の突起部50bが設けられている。これら突起部50bは、クランパ62の位置に対応する位置に配置されている。クランパ62の内方突出部の下面および押えリング50の突起部50bの上面は、押えリング50の回転方向に沿って互いに逆方向に傾斜する傾斜面となっている。押えリング50の円周方向に沿った複数箇所(例えば3箇所)には、上方に突出する凸部50aが設けられている。回転ピン(図示せず)を回転させて凸部50aを横から押し回すことにより、押えリング50を回転させることができる。
第2保持部材44を開いた状態で、第1保持部材40の中央部に基板Wが挿入され、ヒンジ42を介して第2保持部材44が閉じられる。押えリング50を時計回りに回転させて、押えリング50の突起部50bをクランパ62の内方突出部の内部に滑り込ませる。押えリング50およびクランパ62にそれぞれ設けられた傾斜面を介して、第1保持部材40と第2保持部材44とが互いに締め付けられると、第2保持部材44は第1保持部材40に固定される。押えリング50を反時計回りに回転させて押えリング50の突起部50bをクランパ62から外すことで、第2保持部材44は第1保持部材40から解放される。
第2保持部材44が第1保持部材40に固定された時、基板側シール部材52の下方突出部は基板Wの表面外周部に圧接される。基板側シール部材52は均一に基板Wに押圧され、これによって基板Wの表面外周部と第2保持部材44との隙間をシールする。同様に、第2保持部材44が第1保持部材40に固定された時、ホルダ側シール部材58の下方突出部は第1保持部材40の表面に圧接される。ホルダ側シール部材58は均一に第1保持部材40に押圧され、これによって第1保持部材40と第2保持部材44との間の隙間をシールする。
図3に示すように、第1保持部材40の端部には、一対の略T字型のホルダハンガ64が設けられている。第1保持部材40の上面には、基板Wの大きさにほぼ等しいリング状の突条部66が形成されている。この突条部66は、基板Wの周縁部に当接して該基板Wを支持する環状の支持面68を有している。この突条部66の円周方向に沿った所定位置に配置部70が設けられている。
配置部70内には複数(図示では12個)の導電体(電気接点)72がそれぞれ配置されている。これら導電体72は、ホルダハンガ64に設けられた接続端子76から延びる複数の配線にそれぞれ接続されている。第1保持部材40の支持面68上に基板Wを載置した際、この導電体72の端部が図5に示す電気接点74の下部に弾性的に接触する。
導電体72に電気的に接続される電気接点74は、ねじ等の締結具78によって第2保持部材44のシールホルダ48に固着されている。この電気接点74は、板ばね形状に形成されている。電気接点74は、基板側シール部材52の外方に位置した、内方に板ばね状に突出する接点部を有している。電気接点74はこの接点部において、容易に屈曲するようになっている。第1保持部材40と第2保持部材44で基板Wを保持した時に、電気接点74の接点部が、第1保持部材40の支持面68上に支持された基板Wの外周面に弾性的に接触するように構成されている。
第2保持部材44の開閉は、図示しないエアシリンダと第2保持部材44の自重によって行われる。つまり、第1保持部材40には通孔40aが設けられ、エアシリンダ(図示しない)のピストンロッドにより、通孔40aを通じて第2保持部材44のシールホルダ48を上方に押上げることで第2保持部材44を開き、ピストンロッドを収縮させることで、第2保持部材44をその自重で閉じるようになっている。
図6A乃至図6Dは、基板Wに形成されたビアホール20内に銅22が充填される工程を示す図である。図6Aに示すように、基板Wには、例えばビア径が1μmから20μmで、深さが50μmから200μmのビアホール20が形成されており、このビアホール20の内面を含む基板Wの表面には電解めっきの給電層としての導電層21が形成されている。攪拌パドル14は基板Wの表面と平行に往復運動し、アノード2と基板Wとの間に存在するめっき液を攪拌している。この状態で、アノード2と導電層21との間に電圧が印加され、基板Wのめっきが開始される。銅22は一例であり、他の金属をビアホール20に埋め込んでもよい。
めっき液に含まれる添加剤は銅22の析出に影響を及ぼす。この添加剤は、銅22の析出を促進する促進剤、および銅22の析出を抑制するサプレッサやレベラ(すなわち平滑化剤)などの抑制成分含有剤を含んでいる。促進剤としては、例えば、ビス(3−スルホプロピル)ジスルフィド(SPS)またはメルカプトプロパンスルホン酸ナトリウム(MPS)などの硫黄系化合物が使用される。サプレッサとしては、例えばポリエチレングリコールなどの高分子界面活性剤が使用され、レベラとしては、例えばポリエチレンイミン(PEI)、またはヤーヌスグリーンB(JGB)などの窒素系化合物が使用される。めっき液は、硫酸銅液などのベース液に添加剤を添加することで生成される。
めっき液を攪拌しながら基板Wのめっきを行うと、めっき液の流れの速い基板Wのフィールド部23およびビアホール20の開口部付近では、抑制成分含有剤が作用して銅22の析出が抑制される。これに対し、めっき液の流れの遅いビアホール20の底部では、抑制成分含有剤の供給が少なく、促進剤が効果的に作用する。このように、めっき液の流れの速い領域で銅22の析出が抑制され、めっき液の流れの遅い領域で銅22の析出が促進されるのは、促進剤よりも分子量が大きい抑制成分含有剤が拡散によってビアホール20の底部に到達しにくいためである。このため、図6Bに示すように、ビアホール20の底部から上方に銅22が優先的に析出する。その結果、図6Cに示すように、銅22によるビアホール20の入口の閉塞を防止しつつ、ビアホール20に銅22を埋め込むことが可能となる。
そして、図6Dに示すように、ビアホール20内が完全に銅22で埋まり、さらにフィールド部23内の導電層21上に所定膜厚の銅22が析出すると、アノード2と基板Wとの間への電圧の印加を停止し、攪拌パドル14の往復運動を停止してめっきを終了する。
添加剤を含んだめっき液を使用すると、主に、めっき処理量(めっきした基板の枚数)に伴って添加剤の濃度が変化する。図1に示すように、めっき装置は、基板Wとアノード2との間の電圧を測定する電圧測定器24と、電圧の測定値に基づいてめっき液中の添加剤の濃度を制御するめっき制御部25と、めっき制御部25からの指令に従ってめっき液中の添加剤の濃度を調整する濃度調整部28とを備える。電圧測定器24は電源10およびめっき制御部25に接続されており、基板Wに印加される電圧の測定値、より具体的には基板Wとアノード2との間の電圧の測定値をめっき制御部25に送るように構成されている。電圧測定器24は、mVまたはそれ以下のオーダーの細かい分解能を有しており、一枚の基板をめっきする間の電圧の微小な変化を検出することができる。
図7は図1に示すめっき装置の変形例を示す図である。図7に示すように、基板Wとアノード2との間の電圧を測定する代わりに、電圧を測定する際の電位の基準となる参照電極(基準電極)30を内槽7内のめっき液に浸漬させ、この参照電極30と基板Wとの間の電圧を測定してもよい。参照電極30は、めっき液の攪拌やめっき液中の電場の制御の妨げにならないように基板Wの近傍に配置することが望ましい。図7の一点鎖線で示すように、参照電極30および基板Wは電圧測定器24に電気的に接続されている。このような構成により、参照電極30と基板Wとの間の電圧を測定することができる。なお、電圧の測定方法は、基板Wとアノード2との間の電圧を測定する方法または基板Wと参照電極30との間の電圧を測定する方法に限られず、基板Wの表面電位の変化を検出できる方法であれば他の手段を用いてもよい。
図8は図1に示すめっき装置の他の変形例を示す図である。図8において、図面を見やすくするために、めっき制御部25および濃度調整部28は省略されている。図8に示すように、めっき装置は、参照電極槽31と、参照電極槽31内の電解液および内槽7内のめっき液に浸漬される塩橋32とをさらに備えている。電解液として、例えば、参照電極30の内部液として使用される塩化カリウム(KCl)水溶液または硫酸カリウム(KSO)水溶液等が使用される。参照電極30は参照電極槽31内の電解液中に浸漬される。図8の一点鎖線で示すように、参照電極30および基板Wは電圧測定器24に電気的に接続されている。
塩橋32は、内槽7内のめっき液と参照電極槽31内の電解液とを電気的に接続しつつ、電解液がめっき液に混入するのを防止する接続管である。塩橋32は、参照電極槽31内の電解液に浸漬される鉛直管33と、内槽7内のめっき液に浸漬されるルギン細管34と、これら鉛直管33およびルギン細管34を連結する連結管35とから構成される。ルギン細管34は、めっき液の攪拌やめっき液中の電場の制御の妨げにならないように基板Wの近傍に配置することが望ましい。ルギン細管34の先端は細く、基板Wに向かって湾曲しているため、基板W近傍の電位を測定することができる。
めっき制御部25は、電圧測定器24から送られた電圧の測定値に基づいて、所定時間当たりの電圧の変化量を計算するように構成されている。濃度調整部28は、めっき制御部25に接続されており、めっき制御部25からの指令に従ってめっき槽1内のめっき液の添加剤の濃度を調整するように構成されている。より具体的には、添加剤の濃度を高めるときは、濃度調整部28は、オーバーフロー槽8からめっき液の一部を抜き出し、抜き出しためっき液または添加剤を含まない新たなめっき液に添加剤を追加して、添加剤を追加しためっき液をオーバーフロー槽8に戻す。または、内槽7に隣接するオーバーフロー槽8内に添加剤を追加してもよい。添加剤の濃度を低めるときは、濃度調整部28は、オーバーフロー槽8からめっき液の一部を抜き出し、添加剤を含まない新たなめっき液をオーバーフロー槽8に追加する。このようなめっき液の濃度調整方法は、ブリード・アンド・フィード法としてよく知られている。添加剤の濃度を低めるために、ダミー電解を行ってもよい。
図9は電圧測定器24によって測定された電圧の時間変化の一例を模式的に示すグラフ(電圧曲線)である。横軸は時間を示しており、縦軸は電圧を示している。基板Wはめっき液に浸漬される前に前処理され(プリウェット工程と呼ばれる)、ビアホール20内が純水で満たされる。その後、基板Wはめっき液に浸漬される。アノード2と基板Wとの間に電圧を印加する前に、攪拌パドル14によってアノード2と基板Wとの間のめっき液が攪拌される。この攪拌により、ビアホール20内の純水がめっき液に置換される。電圧を印加する前にめっき液を攪拌する時間は無通電時間と呼ばれる。所定の無通電時間が経過した後、アノード2と基板Wとの間に電圧が印加され、基板Wのめっきが開始される(図9の時刻T1)。図9の時刻T1時における基板Wの状態は、図6Aに示される。
本実施形態においては、めっきを開始してから終了するまでの間、基板Wに流れる電流は一定に制御される。めっきを開始した直後では、ビアホール20の底部に抑制成分含有剤はほとんど存在せず、その代わりに多くの促進剤が存在している。このため、めっきの進行に伴って、銅22はビアホール20の底部から上方に向かって優先的に析出する。すなわち、銅22はビアホール20の底部から上方に向かって析出するが、ビアホール20の開口部付近ではほとんど析出しない。このような金属析出速度の違いによって、いわゆるボトムアップ成長が実現される。
銅22の析出量が増加するに従い、基板Wとアノード2と間の電気抵抗はめっき時間とともに減少する。基板Wに流れる電流は一定になるように電源10で制御されているため、電気抵抗の減少に伴い、電圧も時間経過とともに減少する(図9の時刻T2)。図9の時刻T2時における基板Wの状態は、図6Bに示される。
銅22の析出がさらに進行し、ビアホール20内の銅22の充填率が30%〜90%に達すると、本実施形態においては、電圧は下降傾向から上昇傾向に転じる(図9の時刻T3)。これは、ビアホール20に析出した銅22の析出量が増加するに従い、ビアホール20内に供給される抑制成分含有剤が増加し、ビアホール20内の電気抵抗が上昇するためである。電気抵抗の上昇に伴い、電圧も上昇する。図9の時刻T3時における基板Wの状態は図6Cに示される。
図9の時刻T3時における電圧波形の変化に示されるように、所定時間当たりの電圧の変化量(以下、電圧レートという)がマイナスからプラスに転じたとき、すなわち、電圧が下降傾向から上昇傾向に転じたときは、図6Cに示すように、ビアホール20内の30%〜90%が銅22で充填されている。つまり、ビアホール20の未充填部分のアスペクト比は、ビアホール20の初期のアスペクト比よりも小さくなっている。そこで、銅22の充填速度を上げるために、電圧レートが上昇する時刻T3で電圧を上げて基板Wでの電流密度を上げてもよい。一例として、電流密度は1.5倍〜5倍に上昇される。このように電流密度を上げることにより、めっき開始からめっき終了まで一定の電流密度でめっきする場合に比べて、効果的にめっき時間を短縮することができる。通常、電流密度をめっき中に上げるタイミングは数多くの実験により決める必要があるが、本実施形態では電流密度を上げるタイミングを、実際のめっきの進捗を反映した電圧波形によって決めることができる。このため、めっき条件を決定する負担を減らし、また種々のばらつき要因の影響を排除することができる。
さらに、電圧レートがマイナスからプラスに転じたときに、抑制成分含有剤の作用を低下させるために、攪拌パドル14によるめっき液の攪拌強度を電圧レートがマイナスに変化しているときよりも弱める。その結果、ボイドと呼ばれる空隙を形成することなく、基板Wのめっきに要する時間をより短縮することができる。
銅22の析出がさらに進行してビアホール20内が完全に銅22で埋まると、電圧は上昇傾向から再び下降傾向に転じる(図9の時刻T4)。これは、銅22の膜厚が厚くなるに従って、電気抵抗が減少するためである。図9の時刻T4時における基板Wの状態は、図6Dに示される。したがって、電圧が上昇傾向から下降傾向に転じたとき(すなわち、電圧レートがプラスからマイナスに転じたとき)にめっきを終了することが望ましい。このように、本実施形態によれば、電圧の変化に基づいてめっきの終点を正確に決定することができる。電圧が上昇傾向から下降傾向に転じた時点から、予め設定された時間が経過した後にめっきを終了してもよい。基板Wのめっきを終了するときは、電圧の印加を停止し、攪拌パドル14の往復運動を停止する。電圧の監視、および電圧の変化に基づくめっき終点の決定は、めっき制御部25によって実行される。
これまで図9を参照してめっきの進行と電圧波形の変化について説明したが、めっき中の電圧は様々な条件によって変化しうる。すなわち、めっき中は基板Wの表面の銅22の膜厚が増加することによって電気抵抗が減少する。また、銅22の埋め込みが完了するまでは、ビアホール20内の銅22の埋め込みの進行に伴ってビアホール20のアスペクト比が小さくなることで抑制成分含有剤が拡散しやすくなり、電気抵抗は上昇する。
めっき中の電圧変化は、銅22の膜厚の増加または抑制成分含有剤の拡散量の増加のうち、どちらが優勢であるかによって決まる。すなわち、銅22の膜厚の増加による電気抵抗の減少が優勢であれば電圧は低下し、抑制成分含有剤の拡散量の増加による電気抵抗の上昇が優勢であれば電圧は上昇する。膜厚の増加および抑制成分含有剤の拡散はどちらも様々な条件によって変化しうる。例えば、抑制成分含有剤の拡散量は抑制成分含有剤の種類や濃度によって異なる。その種類や濃度は、ビアホール20のサイズや開口率に基づいて最適化される。さらに、抑制成分含有剤の拡散量は、温度、撹拌強度、電流密度などのめっき条件によっても変化するため、電圧は、めっき条件によって上昇する場合もあれば下降する場合もある。
さらに、銅22の埋め込みが完了した時刻T4以降においても、ビアホール20の上部に残っている促進剤が抑制成分含有剤に置き換わることで電気抵抗は上昇する。しかしながら、抑制成分含有剤の拡散量は先に挙げためっき条件によって変化しうるため、電圧は上昇、または下降しうる。
このような状況において、時刻T3から時刻T4までの時間帯は、ビアホール20内への銅22の埋め込みが完了する直前の期間であり、この時間帯ではビアホール20内への抑制成分含有剤の拡散量が急増する。このため、時刻T3から時刻T4までの電圧レートは、めっき時間における他の時間帯での電圧レートと比較して大きくなる。つまり、時刻T1から時刻T3までの電圧レートをg1、時刻T3から時刻T4までの電圧レートをg3、時刻T4からめっき終了までの電圧レートをg4とすると、電圧レートの増減は、g1<g3、g3>g4と表現できる。そのため、後述する図10及び図11に示すような電圧の変化も起こりうるし、電圧レートがg1<g3の条件を満たしつつ、電圧レートg3が負の値になる場合もありうる。
これまで図9を参照してめっきの進行と電圧波形の変化について説明したが、めっき中の電圧の変化の仕方は、添加剤の種類、ビアホールのサイズ、ビアホールの開口率など、様々な条件によって変わりうる。例えば、図10に示すように、めっき開始から電圧が上昇する場合もあり得る。図10においては、時刻T1’から時刻T3’までの期間で電圧が上昇している。めっきの進行に伴い、抑制成分含有剤がビアホール20内に作用すると、さらに電気抵抗が上がるため、時刻T3’以降、電圧はさらに上昇する。
また、図9は、ビアホール20内が完全に銅22で埋まった後、電圧が減少傾向に転じる例を示しているが、添加剤の種類、添加剤の分布状態によっては、図11に示すように、時刻T4”以降も電圧が上昇し続ける場合もある。
図9から図11の場合を総合すると、ビアホール20内での抑制成分含有剤の作用によりボトムアップ成長が弱まる時点(図9の時刻T3、図10の時刻T3’、図11の時刻T3”)は、電圧レート(電圧曲線の傾き)が所定の変動幅を越えて増加する時点と表現することができる。また、ビアホール20内が完全に銅22で埋まる時点(図9の時刻T4、図10の時刻T4’、図11の時刻T4”)は、電圧レート(電圧曲線の傾き)が所定の変動幅を越えて減少する時点と表現することができる。上記変動幅とは、電圧レートの変化点を決定するための電圧レートの変化の程度を示す所定の基準幅であり、電圧レートが変動幅を越えた時点は、電圧レートの変化点として決定される。
電圧レートが所定の変動幅を越えたか否かを判断することに代えて、めっき制御部25は、電圧レートを所定のしきい値と比較してもよい。具体的には、ボトムアップ成長が弱まる時点(図9の時刻T3、図10の時刻T3’、図11の時刻T3”)を決定するための第1のしきい値と、ビアホール20内が完全に銅22で埋まる時点(図9の時刻T4、図10の時刻T4’、図11の時刻T4”)を決定するための第2のしきい値を予め設けてもよい。ボトムアップ成長が弱まる時点(図9の時刻T3、図10の時刻T3’、図11の時刻T3”)は、電圧レートが増加して第1のしきい値を上回った時点である。また、ビアホール20内が完全に銅22で埋まる時点(図9の時刻T4、図10の時刻T4’、図11の時刻T4”)は、電圧レートが上記第1のしきい値を上回った後に減少して、第2のしきい値を下回った時点である。図9に示すような電圧波形の場合、第1のしきい値および第2のしきい値は、例えば0(ゼロ)に設定される。めっき制御部25は、電圧レートが増加して第1のしきい値を上回ったときに電源10に指令を出して電流密度を増加させ、電圧レートが減少して第2のしきい値を下回ったときに電源10に指令を出して電圧の印加を停止してめっきを終了させる。
ビアホール20内に金属の埋め込みが適切に行われているかを判断するために、電圧レートが第1のしきい値に到達すべき時間(時間幅または時間帯でもよい)を予め定めておいてもよい。つまり、電圧レートが所定の時間よりも早く第1のしきい値に到達した場合、または、所定の時間が経過しても電圧レートが第1のしきい値に達しない場合は、ビアホール20内の金属の埋め込みに何らかの異常が発生していると考えられる。この場合、めっき制御部25は、電源10に指令を出して電圧の印加を停止させてめっきを終了させ、異常警報を発してもよい。さらに、電圧レートが第2のしきい値に到達すべき時間(時間幅または時間帯でもよい)を予め定めておき、この所定の時間を、ビアホール20内の金属の埋め込みに何らかの異常が生じたことを検知する指標として用いてもよい。
本発明者らは、めっき中の電圧レート(所定時間当たりの電圧の変化量)に基づいて、めっき液中の添加剤の濃度の変化を判断することができることを実験により確かめた。さらに直接的に言えば、本発明者らは、ビアホール内の望ましい金属埋め込みを実現するために、添加剤が効果的に機能しているかどうかを電圧レートから判断することができることを実験により確かめた。
めっき制御部25には、電圧レートの所定の管理範囲が記憶(格納)されている。めっき制御部25によって計算された電圧レートが管理範囲外である場合、めっき制御部25は、電圧レートが管理範囲内になるように濃度調整部28に指令を発する。この指令を受けて、濃度調整部28は、上述したように、めっき槽1内のめっき液の添加剤の濃度を調整する。
電圧レートは、めっき液中の添加剤の濃度によって変わりうる。この一例を図12および図13A乃至図13Dを参照して説明する。図12は添加剤の一つである抑制成分含有剤の濃度によって変わる電圧の時間変化を示すグラフである。図13A乃至図13Dは抑制成分含有剤の濃度によって変わる銅22の析出状態を示す図である。
図12のグラフ(1)に示すように、電圧レート(電圧曲線の傾き)が所定の管理範囲(図12ではαで表される)内であるとき、図13Aに示すように、銅22は、ボイドが形成されることなくビアホール20の全体に充填される。図12のグラフ(2)は、管理範囲を越えた電圧レートを示している。このグラフ(2)は、めっき液中の抑制成分含有剤の濃度が何らかの理由で望ましい濃度範囲を越えて増加した時に、電圧レートが大きくなる場合を示している。このような場合、図13Bに示すように、ビアホール20内にボイドが形成される。これは、濃度の高い抑制成分含有剤がビアホール20の底部に供給されることによって、銅22がビアホール20内の底部から上方に向かって析出されにくくなり、結果として、ビアホール20の開口付近が銅22によって閉塞するためである。
図12のグラフ(3)は、所定の管理範囲αを下回る場合の電圧レートを示している。このグラフ(3)は、めっき液中の抑制成分含有剤の濃度が何らかの理由で望ましい濃度範囲を越えて減少した時に、時間経過とともに電圧が大きく減少する場合を示している。このような場合、図13Cに示すように、基板Wのフィールド部23では銅22が過剰に析出し、所定時間以内にビアホール20内に銅22が充填されない。
めっき液中の抑制成分含有剤の濃度がさらに低下すると、図12のグラフ(4)に示すように、電圧レートがさらに低下する。この場合、図13Dに示すように、基板Wのフィールド部23では銅22が過剰に析出し、ビアホール20内にボイドが形成される。これは、ビアホール20の側壁での銅22の析出抑制作用が弱くなり、銅22がビアホール20内に充填される前にビアホール20の入口が銅22によって閉塞されるためである。
図12のグラフ(2)、グラフ(3)、およびグラフ(4)から分かるように、抑制成分含有剤の濃度の増減によって電圧レートが変化する。このような電圧レートの変化の理由の一つとして、次のことが考えられる。前述の通り、電圧レートは、基板Wの表面の銅22の膜厚の増加による電気抵抗の低下と、抑制成分含有剤の拡散量の増加による電気抵抗の上昇との2つの要因に依存して決定される。抑制成分含有剤の濃度が増加すると基板Wの表面で銅22が析出しにくくなり、銅22の膜厚増加が抑制される。したがって、抑制成分含有材の濃度が高い場合は電圧レートが大きくなる。
抑制成分含有剤の濃度が高い場合では、電圧レートは、めっき初期よりもめっき後半でより増加する傾向にある。この理由として次のことが考えられる。めっき初期ではビアホール20のアスペクト比が大きく、分子量が大きい抑制成分含有剤は拡散によってビアホール20の底部に到達しにくい。めっき液全体の抑制成分含有剤の濃度が高くても、ビアホール20内の抑制成分含有剤の拡散量は大きく変わらない。したがって、フィールド部23でのめっき反応の抑制効果が増加したことによる電圧の上昇のみが生じる。このため、抑制成分含有剤のわずかな濃度変化は電圧レートの変化に影響を与えにくい。
これに対して、めっき後半ではビアホール20のアスペクト比が小さくなっているので、抑制成分含有剤が拡散によりビアホール20の底部に到達しやすくなる。そして、めっき液中の抑制成分含有剤の濃度が高いほど抑制成分含有剤の拡散量は増加する。したがって、抑制成分含有剤の濃度が適正な場合に比べて電気抵抗の上昇が顕著になり、電圧レートは大きく上昇する。
抑制成分含有剤の濃度が低い場合、フィールド部23でのめっき反応を抑制する能力が不足するので基板Wのフィールド部23での銅22の膜厚は厚くなりやすく、さらにビアホール20内への抑制成分含有剤の拡散量は少ない。このため、電圧レートは低下する。
なお、図12のグラフ(1)は時間の経過とともに電圧が低下する例を示したが、上述したように添加剤の種類やビアホールのサイズなどの条件によっては電圧が時間の経過とともに上昇する場合もある。
めっき制御部25は、基板Wのめっき中に、電圧測定器24から送られてくる電圧の測定値から電圧レートを算出し、その電圧レートが所定の管理範囲を外れたときに、濃度調整部28に指令を発する。濃度調整部28は、めっき制御部25からの指令に従ってめっき槽1内のめっき液の抑制成分含有剤の濃度を調整する。より具体的には、電圧レートが所定の管理範囲よりも小さい(すなわち、管理範囲の下限値よりも小さい)ときは、めっき制御部25は、めっき液中の抑制成分含有剤の濃度を高めるための指令を発する。濃度調整部28は、この指令を受けて、めっき槽1(内槽7に隣接するオーバーフロー槽8内)に抑制成分含有剤を追加することで、めっき液中の抑制成分含有剤の濃度を高める。または、濃度調整部28は、めっき槽1(オーバーフロー槽8)からめっき液の一部を抜き出し、抜き出しためっき液または添加剤を含まない新たなめっき液に添加剤を追加し、添加剤を追加しためっき液をめっき槽1(オーバーフロー槽8)に戻して、めっき液中の抑制成分含有剤の濃度を高めてもよい。
添加剤をめっき液に添加するさらに別の方法としては、電圧レートの管理範囲からのずれと添加剤の添加量との関係を予め定めておき、この関係から決定された量の添加剤をめっき槽1(オーバーフロー槽8)のめっき液に添加するようにしてもよい。
電圧レートが所定の管理範囲よりも大きい(すなわち、管理範囲の上限値よりも大きい)ときは、めっき制御部25は、めっき液中の抑制成分含有剤の濃度を低めるための指令を発する。濃度調整部28は、この指令を受けて、オーバーフロー槽8からめっき液の一部を抜き出し、抑制成分含有剤を含まない新たなめっき液をオーバーフロー槽8に追加することで、めっき液中の抑制成分含有剤の濃度を低める。このように、基板Wのめっき中に得られる電圧レートに基づいて添加剤の濃度を調整することができる。結果として、ボイドのない金属をビアホールに充填することができる。
CVS技術による添加剤の濃度管理方法では、抑制成分含有剤の副生成物が測定結果に影響を与えるため、抑制成分含有剤の濃度を管理することは困難である。これに対して、本実施形態によれば、めっき中におけるビアホール20内の金属埋め込みの進行状況を把握することができるとともに、添加剤の濃度が高いか低いかをリアルタイムでモニタリングすることができ、その結果に基づいて添加剤の濃度を調整することができる。
図14は、基板Wをめっきした際の電圧の時間変化の一例を示すグラフである。横軸は時間を示し、縦軸は電圧を示す。図14では、時間の経過とともに電圧は減少し、60分付近で上昇傾向に変わっている。この初期のめっき工程は、ビアホール20の底部から上方に向かって金属を析出させる第1のめっき工程である。この第1のめっき工程では、ビアホール20内の銅22の充填率は80%〜90%に達する。この例においては、電圧が下降傾向から上昇傾向に転じたときに(すなわち、電圧レートが所定の変動幅を越えて増加したとき)、基板Wとアノード2との間に印加される電圧を上昇させて基板Wでの電流密度を上昇させることが好ましい。その理由は2つある。第1の理由は、電圧が上昇傾向に転じた後は抑制成分含有剤がビアホール20の底部にも拡散して該底部に付着しており、ボトムアップ効果が弱まっているため、ビアホール20内の銅22の未充填部分を埋めるのに時間がかかるからである。第2の理由は、ビアホール20内の銅22の充填率が上がっているため、電流密度を上昇させてもいわゆるピンチオフが生じにくいためである。結果として、図14の太線で示すように、基板Wをめっきする時間を短縮することができる。この例では、めっきに要する時間は約20分間短縮される。
このように電圧を上昇させた状態で行われるめっき工程は、ビアホール20内に金属を充填させる第2のめっき工程である。この第2のめっき工程では、上述したように、第1のめっき工程での電流密度(第1の電流密度)よりも高い電流密度(第2の電流密度)で行われる。本実施形態によれば、電圧の変化に基づいてめっきの進捗を正確に把握して、適正なタイミングで電流密度を上げることによってめっき時間を短縮することができる。このような電圧のコントロールは、めっき制御部25によって実行される。すなわち、電圧レートが所定の変動幅を越えて増加したとき、めっき制御部25は電源10に指令を出して基板Wとアノード2との間に印加される電圧を上昇させる。
銅22の析出がさらに進行し、ビアホール20内が完全に銅22で埋まると、電圧は上昇傾向から再び下降傾向に変わる。図14では、電圧は時間t4付近で下降傾向に転じている。この段階で、めっきは概ね終了している。したがって、この例においては、電圧が上昇傾向から下降傾向に転じたとき(すなわち、電圧レートが所定の変動幅を越えて増加した後、この変動幅を越えて減少したとき)にめっきを停止してもよい。具体的には、電圧レートが所定の変動幅を越えて増加した後、この変動幅を越えて減少したときに、めっき制御部25は電源10に指令を出して基板Wとアノード2との間に印加される電圧を停止させる。このように、本実施形態によれば、めっき制御部25は、電圧の変化に基づいてめっきの終点を正確に決定することができる。電圧レートが変動幅を越えて減少した時点から、予め設定された時間が経過した後にめっきを終了してもよい。
図14を参照して、めっき制御部25によって行われる電圧測定器24からの電圧信号(電圧値)の処理について説明する。めっき開始後、めっき制御部25は、所定の時刻t1での電圧値V1と、所定の時刻t2での電圧値V2とから、電圧レート(=(V2−V1)/(t2−t1))を計算する。めっき浴を建浴した後、めっきされた基板の枚数が増えるに従って、抑制成分含有剤が消耗、変質するので、電圧レートは徐々に低下する。この電圧レートが所定の設定値を下回った場合、めっき制御部25は、濃度調整部28に、めっき液中の抑制成分含有剤の濃度を高めるための指令を発する。濃度調整部28は、この指令を受けて、オーバーフロー槽8からめっき液の一部を抜き出し、抜き出しためっき液または添加剤を含まない新たなめっき液に添加剤を追加して、添加剤を追加しためっき液をオーバーフロー槽8に戻して、めっき液中の抑制成分含有剤の濃度を高める。
上記では所定の時刻t1,t2における電圧変化に基づいて電圧レートを計算する例を説明したが、本発明はこの例に限られない。例えば、めっき制御部25は、電圧測定器24から送られる電圧の測定値から、微小時間当たりの電圧の変化量、すなわち時々刻々と変わりうる第1の電圧レートを算出し、さらに第1の電圧レートから、めっき開始直後に電圧値が極大となる時刻tmと、電圧が下降傾向から上昇傾向に転じる時刻t3を決定し、そして、時刻tmでの電圧値Vmと時刻t3での電圧値V3から第2の電圧レート(=(V3−Vm)/(t3−tm))を計算してもよい。時刻t3で電流密度を上昇させるようにめっき条件を設定してもよい。
時刻t3が決定された後、めっき制御部25は、第1の電圧レートに基づいて電圧が上昇傾向から下降傾向に転じた時刻t4を決定してもよい。時刻t4は、ビアホール20の上方の銅22の高さとフィールド部23上の銅22の高さがほぼ同じになったことを示しているため、時刻t4から予め設定された時間が経過した後にめっきを終了してもよい。この予め設定された時間は0(ゼロ)秒を含むため、時刻t4で電圧の印加を止めてめっきを終了してもよい。
図15はめっき制御部25の処理シーケンスの一例を示す図である。図15に示すように、めっき開始後、めっき制御部25は、電圧測定器24から送られた電圧の測定値を用いて、時々刻々と変わりうる第1の電圧レートを算出する(ステップ1)。めっき制御部25は、所定の第1の時刻t1での第1の電圧値V1を記憶し(ステップ2)、その後、所定の第2の時刻t2での第2の電圧値V2を記憶する(ステップ3)。そして、めっき制御部25は、これらの値から第2の電圧レート(=(V2−V1)/(t2−t1))を算出する(ステップ4)。
第2の電圧レートが所定の管理範囲よりも小さいときは、めっき制御部25は、めっき液中の抑制成分含有剤の濃度を高めるための指令を発する。濃度調整部28は、この指令を受けて、めっき液中の抑制成分含有剤の濃度を高める。第2の電圧レートが所定の管理範囲よりも大きいときは、めっき制御部25は、めっき液中の抑制成分含有剤の濃度を低めるための指令を発する。濃度調整部28は、この指令を受けて、めっき液中の抑制成分含有剤の濃度を低める。
めっき制御部25は、第1の電圧レートが所定の変動幅を越えて増加した第3の時刻t3を決定し(ステップ5)、電源10に指令を出して第3の時刻t3で基板Wの電流密度を上げる(ステップ6)。さらに、めっき制御部25は、第1の電圧レートが変動幅を越えて増加した後に、第1の電圧レートが変動幅を越えて減少した第4の時刻t4を決定する(ステップ7)。第4の時刻t4は、ビアホール20上方の銅22の高さとフィールド部23上の銅22の高さがほぼ同じになった時点であり、第4の時刻t4から予め設定された時間が経過した後にめっきを終了する(ステップ8)。この予め設定された時間は0(ゼロ)秒を含んでもよい。したがって、第4の時刻t4で電圧の印加を止めてめっきを終了してもよい。
本実施形態について図14に示す電圧波形を参照して説明したが、図10や図11に示すような電圧波形でも、同様にして添加剤の濃度管理、めっき電流上昇のタイミング、およびめっき終了のタイミングを決定することができる。つまり、電圧の測定値に基づいて電圧レートを算出し、適切な管理範囲を予め決めておくことで、添加剤の濃度管理などを決定することができる。
図16はめっき装置の他の実施形態を示す概略図である。上述した実施形態において、アノード2と基板Wとの間の電圧を測定するめっき装置について説明したが、図16に示すように、めっき槽1からめっき液を抜き出して、めっき液分析部80にめっき槽1内のめっき液を移送してもよい。具体的なめっき装置の構成について、図16を参照して説明する。
図16に示すように、めっき装置は、めっき液中の添加剤の濃度を測定するめっき液分析部80を備えている。めっき液分析部80は、めっき槽1から抜き出しためっき液を貯留する分析槽82と、電源84の正極に接続される第1の電極(アノード)86と、電源84の負極に接続される第2の電極(カソード)88とを備えている。これら第1の電極86および第2の電極88は分析槽82内のめっき液中に浸漬される。これら電極86,88は例えば、Pt(白金)、Au(金)、Ag(銀)、Pd(パラジウム)、C(カーボン)、またはSUS(ステンレス鋼)等から構成されている。
さらに、めっき液分析部80は、第1の電極86と第2の電極88との間の電圧を測定する電圧測定器90と、電圧測定器90によって取得された電圧の測定値に基づいてめっき槽1内のめっき液中の添加剤の濃度を制御するめっき制御部92とを備えている。電圧測定器90はめっき制御部92に接続されており、第1の電極86と第2の電極88との間に印加される電圧の測定値をめっき制御部92に送るように構成されている。
めっき液循環ライン12にはめっき液流入ライン94の一端が接続され、めっき液流入ライン94の他端は分析槽82の底部に接続されている。めっき液循環ライン12内のめっき液の一部はめっき液流入ライン94を通じて分析槽82に移送される。分析槽82へのめっき液の移送が完了すると、第1の電極86と第2の電極88との間に電圧が印加される。
第1の電極86と第2の電極88との間に電圧を印加すると、第2の電極88に金属(銅)が析出する。電圧測定器90は、第2の電極88に印加される電圧を測定するように構成される。例えば、電圧測定器90は、第1の電極86と第2の電極88との間に印加される電圧を測定する。めっき制御部92は電圧の測定値に基づいて、所定時間当たりの電圧の変化量、すなわち電圧レートを計算するように構成されている。濃度調整部28は、めっき制御部92に接続されており、めっき制御部92からの指令に従ってめっき槽1内のめっき液の添加剤の濃度を調整するように構成されている。
分析槽82の底部にはめっき液をめっき槽1の内槽7に戻すためのめっき液流出ライン96の一端が接続されており、めっき液流出ライン96の他端はめっき液循環ライン12に接続されている。さらに、分析槽82の底部には、めっき液を排出するための排液管98が接続されている。分析槽82内のめっき液を、めっき液流出ライン96およびめっき液循環ライン12を通じて内槽7内に戻してもよく、また、排液管98を通じて外部に排出してもよい。
第2の電極88にビアホールは存在しないため、電圧レートは、ビアホールを有する基板にめっきを行う場合と異なる。しかしながら、添加剤の量に依存した電圧レートの変化の傾向は同じである。したがって、予め適正な電圧レートの管理範囲を定めておけば、上記の場合と同様に添加剤濃度の管理を行うことができる。添加剤をめっき液に添加する方法としては、電圧レートの管理範囲からのずれと添加剤の添加量の関係を予め定めておき、この関係から決定された量の添加剤をめっき槽1内のめっき液に添加するようにしてもよい。これに代えて、添加剤をめっき液に添加する方法として、めっき槽1からめっき液を抜き出して分析槽82に移送し、分析槽82のめっき液に所定量の添加剤を加えた後に電圧レートを算出して添加剤の適正な添加量を決定し、決定された量の添加剤をめっき槽1内のめっき液に添加するようにしてもよい。このように、めっき液分析部80を用いて添加剤の濃度が判定されるので、基板Wをめっきしていないときでも電圧レートの変化から添加剤の量が多いか少ないかを判断することができる。
図17は図16に示すめっき装置の変形例を示す図である。図17に示すように、めっき液分析部80は、第1の電極86と第2の電極88との間の電圧を測定する代わりに、参照電極30と第2の電極88との間の電圧を測定してもよい。参照電極30は、分析槽82内のめっき液に浸漬され、さらに第2の電極88の近傍に配置されている。図17の一点鎖線で示すように、参照電極30および第2の電極88は電圧測定器90に電気的に接続されているため、電圧測定器90は参照電極30と第2の電極88との間の電圧を測定することができる。めっき制御部92は電圧の測定値に基づいて、電圧レートを計算する。
図18は図16に示すめっき装置の他の変形例を示す図である。図18に示すように、めっき液分析部80は、参照電極槽31と、参照電極槽31内の電解液に浸漬される参照電極30と、参照電極槽31内の電解液および分析槽82内のめっき液に浸漬される塩橋32とをさらに備えている。塩橋32は図8において説明した塩橋32と同一の構成を有しているため、その詳細な説明を省略する。図18の一点鎖線で示すように、参照電極30および第2の電極88は電圧測定器90に電気的に接続されているため、電圧測定器90は参照電極30と第2の電極88との間の電圧を測定することができる。めっき制御部92は電圧の測定値に基づいて、電圧レートを計算する。
めっき液中で管理すべき抑制成分含有剤以外の添加剤成分の濃度、すなわち促進剤の濃度は、CVS技術により測定、管理することができる。しかしながら、本発明は、電圧レートの変化に基づいて抑制成分含有剤の濃度を管理する上記実施形態に限定されず、電圧レートの変化に基づいて促進剤の濃度を管理する技術にも適用することができる。
これまで本発明の実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術思想の範囲内において、種々の異なる形態で実施されてよいことは勿論である。
1 めっき槽
2 アノード
3 アノードホルダ
6 基板ホルダ
7 内槽
8 オーバーフロー槽
10 電源
12 めっき液循環ライン
14 攪拌パドル
15 調整板(レギュレーションプレート)
15a 開口
20 ビアホール
21 導電層
22 銅
23 フィールド部
24 電圧測定器
25 めっき制御部
28 濃度調整部
30 参照電極(基準電極)
31 参照電極槽
32 塩橋
33 鉛直管
34 ルギン細管
35 連結管
40 第1保持部材
40a 通孔
44 第2保持部材
46 基部
48 シールホルダ
50 押えリング
50a 凸部
50b 突起部
52 基板側シール部材
54a 第1固定リング
54b 第2固定リング
56a 締結具
56b 締結具
58 ホルダ側シール部材
60 スペーサ
62 クランパ
64 ホルダハンガ
66 突条部
68 支持面
70 配置部
72 導電体
74 電気接点
78 締結具
80 めっき液分析部
82 分析槽
84 電源
86 第1の電極
88 第2の電極
90 電圧測定器
92 めっき制御部
94 めっき液流入ライン
96 めっき液流出ライン
98 排液管
W 基板

Claims (7)

  1. アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、
    前記アノードと前記基板との間に電圧を印加して前記ビアホール内に金属を充填し、
    前記基板に印加される電圧を測定し、
    所定時間当たりの電圧の変化量を計算し、
    前記電圧の変化量が所定の変動幅を越えて増加したときに前記基板上での電流密度を増加させることを特徴とするめっき方法。
  2. 前記電流密度を増加させた後、前記電圧の変化量が前記所定の変動幅を越えて減少したときに前記電圧の印加を停止することを特徴とする請求項1に記載のめっき方法。
  3. 前記電流密度を増加させた後、前記電圧の変化量が前記所定の変動幅を越えて減少した時点から予め設定された時間が経過した後に前記電圧の印加を停止することを特徴とする請求項1に記載のめっき方法。
  4. 前記電流密度は、前記電圧の変化量が前記所定の変動幅を越えて増加する直前の電流密度よりも1.5倍から5倍に上昇されることを特徴とする請求項1に記載のめっき方法。
  5. アノードと、表面にビアホールが形成された基板とを、金属の析出を抑制する抑制成分含有剤を含むめっき液中に互いに対向させて配置し、
    前記アノードと前記基板との間に電圧を印加して、第1の電流密度で前記ビアホールの底部から上方に向かって金属を析出させる第1のめっき工程を行い、
    前記基板に印加される電圧を測定し、所定時間当たりの電圧の変化量を計算し、
    前記電圧の変化量が所定の変動幅を越えて増加した時点で、前記アノードと前記基板との間に印加される電圧を増加させて、前記第1の電流密度よりも高い第2の電流密度で前記ビアホール内に金属を充填する第2のめっき工程を行うことを特徴とするめっき方法。
  6. 金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、
    表面にビアホールが形成された基板を保持する基板ホルダと、
    前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、
    前記基板と前記アノードとの間に電圧を印加する電源と、
    前記基板に印加される電圧を測定する電圧測定器と、
    所定時間当たりの電圧の変化量を計算し、前記電圧の変化量が所定の変動幅を越えて増加したときに前記電源に指令を出して前記電圧を増加させて前記基板上での電流密度を上昇させるめっき制御部とを備えたことを特徴とするめっき装置。
  7. 金属の析出を抑制する抑制成分含有剤を含むめっき液を保持するためのめっき槽と、
    表面にビアホールが形成された基板を保持する基板ホルダと、
    前記基板ホルダに保持された前記基板に対向するように配置されたアノードと、
    前記基板と前記アノードとの間に電圧を印加する電源と、
    前記基板に印加される電圧を測定する電圧測定器と、
    前記電圧の測定値に基づいて、所定時間当たりの電圧の変化量を計算するめっき制御部とを備え、
    前記めっき制御部は、
    前記電源に指令を出して前記基板と前記アノードとの間に電圧を印加させ、第1の電流密度で前記ビアホールの底部から上方に向かって金属を析出させ、
    前記電圧の変化量が所定の変動幅を越えて増加した時点で、前記電源に指令を出して前記基板と前記アノードとの間に印加される電圧を増加させて、前記第1の電流密度よりも高い第2の電流密度で前記ビアホール内に金属を充填することを特徴とするめっき装置。
JP2015136192A 2014-01-17 2015-07-07 めっき方法およびめっき装置 Active JP6067793B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201461928673P 2014-01-17 2014-01-17
US61/928,673 2014-01-17

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2015001842A Division JP5826952B2 (ja) 2014-01-17 2015-01-07 めっき方法およびめっき装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2016247946A Division JP6268271B2 (ja) 2014-01-17 2016-12-21 めっき方法およびめっき装置

Publications (2)

Publication Number Publication Date
JP2015200029A JP2015200029A (ja) 2015-11-12
JP6067793B2 true JP6067793B2 (ja) 2017-01-25

Family

ID=53544285

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015001842A Active JP5826952B2 (ja) 2014-01-17 2015-01-07 めっき方法およびめっき装置
JP2015136192A Active JP6067793B2 (ja) 2014-01-17 2015-07-07 めっき方法およびめっき装置
JP2016247946A Active JP6268271B2 (ja) 2014-01-17 2016-12-21 めっき方法およびめっき装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2015001842A Active JP5826952B2 (ja) 2014-01-17 2015-01-07 めっき方法およびめっき装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2016247946A Active JP6268271B2 (ja) 2014-01-17 2016-12-21 めっき方法およびめっき装置

Country Status (5)

Country Link
US (3) US10294580B2 (ja)
JP (3) JP5826952B2 (ja)
KR (1) KR102265226B1 (ja)
CN (1) CN104790008B (ja)
TW (1) TWI634235B (ja)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5826952B2 (ja) * 2014-01-17 2015-12-02 株式会社荏原製作所 めっき方法およびめっき装置
US10094038B2 (en) * 2015-04-13 2018-10-09 Lam Research Corporation Monitoring electrolytes during electroplating
JP6621377B2 (ja) * 2016-06-07 2019-12-18 株式会社荏原製作所 めっき装置、めっき方法、及び記録媒体
KR102416775B1 (ko) 2016-10-07 2022-07-05 도쿄엘렉트론가부시키가이샤 전해 처리 지그 및 전해 처리 방법
CN107881534A (zh) * 2017-11-10 2018-04-06 广州东有电子科技有限公司 一种具备金属电极的器件与基板的互连方法
JP6971915B2 (ja) * 2018-06-05 2021-11-24 株式会社荏原製作所 めっき方法、めっき装置、及び限界電流密度を推定する方法
CN108914198B (zh) * 2018-08-08 2021-04-13 南通汇丰电子科技有限公司 电镀液添加剂的添加控制方法及装置、终端和存储介质
JP7100556B2 (ja) * 2018-10-05 2022-07-13 株式会社荏原製作所 基板ホルダに基板を保持させるためおよび/又は基板ホルダによる基板の保持を解除するための装置、および同装置を有するめっき装置
TWI711724B (zh) 2018-11-30 2020-12-01 台灣積體電路製造股份有限公司 電化學鍍覆系統、執行電化學鍍覆製程的方法以及形成半導體結構的方法
TWI715368B (zh) * 2019-12-24 2021-01-01 鴻宇科技股份有限公司 電鍍添加劑濃度監控裝置
CN111560637A (zh) * 2020-05-27 2020-08-21 上海新阳半导体材料股份有限公司 晶圆电镀设备
WO2022074820A1 (ja) * 2020-10-09 2022-04-14 三菱重工業株式会社 分析システム及び管理システム、並びに分析方法、並びに分析プログラム
JP6937974B1 (ja) * 2021-03-10 2021-09-22 株式会社荏原製作所 めっき装置、およびめっき方法
TWI759133B (zh) * 2021-03-11 2022-03-21 日商荏原製作所股份有限公司 鍍覆裝置及鍍覆方法

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07840B2 (ja) 1985-11-25 1995-01-11 大和特殊株式会社 電気めつき添加剤の管理方法並びにそのための装置
DE3718584A1 (de) * 1987-06-03 1988-12-15 Norddeutsche Affinerie Verfahren zur messung der wirksamen inhibitorkonzentration waehrend der metallabscheidung aus waessrigen elektrolyten
US4812210A (en) 1987-10-16 1989-03-14 The United States Department Of Energy Measuring surfactant concentration in plating solutions
JPH08178893A (ja) 1994-12-26 1996-07-12 Nikko Kinzoku Kk 電解液中添加剤濃度の測定方法および添加剤濃度の管理方法
JPH08178894A (ja) 1994-12-26 1996-07-12 Nikko Kinzoku Kk 電解液中添加剤濃度の測定方法および添加剤濃度の管理方法
US6610190B2 (en) 2000-11-03 2003-08-26 Nutool, Inc. Method and apparatus for electrodeposition of uniform film with minimal edge exclusion on substrate
JP2001089896A (ja) 1999-09-20 2001-04-03 Hitachi Ltd めっき方法,めっき液,半導体装置及びその製造方法
US6280602B1 (en) * 1999-10-20 2001-08-28 Advanced Technology Materials, Inc. Method and apparatus for determination of additives in metal plating baths
JP2002322592A (ja) * 2001-04-24 2002-11-08 Hitachi Ltd 半導体装置の製造方法
JP4672189B2 (ja) * 2001-06-11 2011-04-20 凸版印刷株式会社 配線基板または半導体回路の製造方法
JP3664669B2 (ja) 2001-06-27 2005-06-29 株式会社荏原製作所 電解めっき装置
JP2003268590A (ja) * 2002-03-07 2003-09-25 Applied Materials Inc めっき方法、及び半導体装置の製造方法
DE10232612B4 (de) * 2002-07-12 2006-05-18 Atotech Deutschland Gmbh Vorrichtung und Verfahren zur Überwachung eines elektrolytischen Prozesses
JP3827627B2 (ja) * 2002-08-13 2006-09-27 株式会社荏原製作所 めっき装置及びめっき方法
US6974531B2 (en) 2002-10-15 2005-12-13 International Business Machines Corporation Method for electroplating on resistive substrates
JP2005126803A (ja) * 2003-10-27 2005-05-19 Ebara Corp めっき方法
US20050051433A1 (en) * 2003-04-23 2005-03-10 Zdunek Alan D. Method and apparatus for monitoring, dosing and distribution of chemical solutions
JP2004342750A (ja) 2003-05-14 2004-12-02 Toshiba Corp 電子デバイスの製造方法
US20050109624A1 (en) * 2003-11-25 2005-05-26 Mackenzie King On-wafer electrochemical deposition plating metrology process and apparatus
US20050274604A1 (en) * 2004-02-06 2005-12-15 Koji Saito Plating apparatus
JP2005256071A (ja) * 2004-03-11 2005-09-22 Shozo Niimiyabara 陽極酸化膜の製造方法
JP2006317197A (ja) 2005-05-11 2006-11-24 Sumitomo Metal Mining Co Ltd めっき液中の添加剤の分析方法、分析装置及びそれを備えためっき装置
US7837851B2 (en) * 2005-05-25 2010-11-23 Applied Materials, Inc. In-situ profile measurement in an electroplating process
JP4148477B2 (ja) * 2005-07-21 2008-09-10 Tdk株式会社 多層配線基板の製造に供せられるシート、及び該シートの製造に用いられるめっき方法及びめっき装置
US20070056856A1 (en) * 2005-09-13 2007-03-15 Dongbuanam Semiconductor Inc. Apparatus and method for electrically contacting wafer in electronic chemical plating cell
JP4816901B2 (ja) * 2005-11-21 2011-11-16 上村工業株式会社 電気銅めっき浴
US20070261963A1 (en) * 2006-02-02 2007-11-15 Advanced Technology Materials, Inc. Simultaneous inorganic, organic and byproduct analysis in electrochemical deposition solutions
US20090020434A1 (en) 2007-07-02 2009-01-22 Akira Susaki Substrate processing method and substrate processing apparatus
JP5089322B2 (ja) 2007-10-04 2012-12-05 株式会社野毛電気工業 ビアフィリング方法
US8372258B2 (en) 2009-08-03 2013-02-12 Novellus Systems, Inc. Monitoring of electroplating additives
TW201218277A (en) * 2010-09-09 2012-05-01 Novellus Systems Inc By-product mitigation in through-silicon-via plating
JP2012122097A (ja) * 2010-12-08 2012-06-28 Ebara Corp 電気めっき方法
US20130023166A1 (en) 2011-07-20 2013-01-24 Tyco Electronics Corporation Silver plated electrical contact
JP2013077619A (ja) * 2011-09-29 2013-04-25 Renesas Electronics Corp 半導体装置の製造方法
CN102392278B (zh) 2011-11-01 2014-04-16 淄博润博化工销售有限公司 低温熔盐体系中电镀Al-Ni合金的方法
JP2013095968A (ja) * 2011-11-01 2013-05-20 Sumitomo Metal Mining Co Ltd めっき皮膜の製造方法
JP5980735B2 (ja) * 2012-08-07 2016-08-31 株式会社荏原製作所 スルーホールの電気めっき方法及び電気めっき装置
US20140299476A1 (en) * 2013-04-09 2014-10-09 Ebara Corporation Electroplating method
JP5826952B2 (ja) * 2014-01-17 2015-12-02 株式会社荏原製作所 めっき方法およびめっき装置
US10094038B2 (en) * 2015-04-13 2018-10-09 Lam Research Corporation Monitoring electrolytes during electroplating

Also Published As

Publication number Publication date
US20150203983A1 (en) 2015-07-23
US20210164125A1 (en) 2021-06-03
KR20150086184A (ko) 2015-07-27
US10294580B2 (en) 2019-05-21
CN104790008A (zh) 2015-07-22
US20190233967A1 (en) 2019-08-01
JP6268271B2 (ja) 2018-01-24
CN104790008B (zh) 2019-04-09
TW201529905A (zh) 2015-08-01
JP5826952B2 (ja) 2015-12-02
JP2015134963A (ja) 2015-07-27
TWI634235B (zh) 2018-09-01
US10941504B2 (en) 2021-03-09
JP2015200029A (ja) 2015-11-12
JP2017075405A (ja) 2017-04-20
US11566339B2 (en) 2023-01-31
KR102265226B1 (ko) 2021-06-15

Similar Documents

Publication Publication Date Title
JP6268271B2 (ja) めっき方法およびめっき装置
KR102335508B1 (ko) 필드 대 피처 콘트라스트를 사용하는 tsv 조 평가
US10294581B2 (en) Plating method
JP6170938B2 (ja) 電気めっき溶液内のレベラー濃度の監視
TW200404106A (en) Apparatus and method for regulating the electrical power applied to a substrate during immersion
KR102314415B1 (ko) 기판의 도금에 사용되는 산화구리 분체
KR102550311B1 (ko) 전기도금 동안 전해액들 모니터링
WO2004085715A1 (ja) 電気銅めっき液の分析方法、その分析装置及び半導体製品の製造方法
JP4221365B2 (ja) 電気分解を監視するための装置および方法
JP6409291B2 (ja) 電気銅めっき液分析装置、及び電気銅めっき液分析方法
JP4385824B2 (ja) 電気銅めっき液の分析方法及び分析装置
JP2009132982A (ja) 銅配線の製造方法
KR20120079414A (ko) 인쇄회로기판의 도금 방법
JP2021521330A (ja) フラックスを用いずに付与されるはんだにおけるボイドを減少させるまたは除去するためのメッキ方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160524

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161221

R150 Certificate of patent or registration of utility model

Ref document number: 6067793

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250