JP6062478B2 - 半導体装置の作製方法 - Google Patents

半導体装置の作製方法 Download PDF

Info

Publication number
JP6062478B2
JP6062478B2 JP2015082617A JP2015082617A JP6062478B2 JP 6062478 B2 JP6062478 B2 JP 6062478B2 JP 2015082617 A JP2015082617 A JP 2015082617A JP 2015082617 A JP2015082617 A JP 2015082617A JP 6062478 B2 JP6062478 B2 JP 6062478B2
Authority
JP
Japan
Prior art keywords
layer
electrode
transistor
light
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015082617A
Other languages
English (en)
Other versions
JP2015165583A (ja
Inventor
宮永 昭治
昭治 宮永
坂田 淳一郎
淳一郎 坂田
坂倉 真之
真之 坂倉
山崎 舜平
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP2015082617A priority Critical patent/JP6062478B2/ja
Publication of JP2015165583A publication Critical patent/JP2015165583A/ja
Application granted granted Critical
Publication of JP6062478B2 publication Critical patent/JP6062478B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428
    • H01L21/477Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/04Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their crystalline structure, e.g. polycrystalline, cubic or particular orientation of crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electroluminescent Light Sources (AREA)
  • Liquid Crystal (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Recrystallisation Techniques (AREA)

Description

酸化物半導体を用いる薄膜トランジスタと、該薄膜トランジスタを用いた半導体装置及び
その作製方法に関する。
近年、絶縁表面を有する基板上に形成された半導体薄膜(厚さ数nm以上数百nm以下程
度)を用いて薄膜トランジスタ(TFT)を構成する技術が注目されている。薄膜トラン
ジスタはICや電気光学装置のような電子デバイスに広く応用され、特に画像表示装置の
スイッチング素子として開発が急がれている。金属酸化物は多様に存在しさまざまな用途
に用いられている。酸化インジウムはよく知られた材料であり、液晶ディスプレイなどで
必要とされる透光性を有する電極材料として用いられている。
金属酸化物の中には半導体特性を示すものがある。半導体特性を示す金属酸化物としては
、例えば、酸化タングステン、酸化スズ、酸化インジウム、酸化亜鉛などがあり、このよ
うな半導体特性を示す金属酸化物をチャネル形成領域とする薄膜トランジスタが既に知ら
れている(特許文献1及び特許文献2)。
特開2007−123861号公報 特開2007−96055号公報
本発明の一態様は、新規な状態を有する酸化物半導体層を用いる半導体装置を提供するこ
と課題とする。
また、本発明の一態様は、電気特性が良好で信頼性の高い薄膜トランジスタ及び当該薄膜
トランジスタをスイッチング素子として用いた半導体装置を提供することを課題とする。
従来公知のアモルファス状態とも異なり、従来公知の結晶状態とも異なる電子線回折パタ
ーンを示す新規な状態(インキュベーション状態)を有するIn−Ga−Zn−O系膜を
形成し、薄膜トランジスタのチャネル形成領域として用いる。インキュベーション状態を
有するIn−Ga−Zn−O系膜を薄膜トランジスタのチャネル形成領域として用いると
、オン電流及び電界効果移動度を高めることができ、さらに信頼性の向上も実現すること
ができる。
本明細書で開示する本発明の一態様は、電子線回折パターンの解析においてスポットが明
確に現れる結晶系、及び、ハロー状のパターンが現れる非晶質系のいずれでもないインキ
ュベーション状態を有するIn−Ga−Zn−O系で、一部、或いは全部が構成されてい
るチャネル形成領域を有する薄膜トランジスタを備えた半導体装置である。
上記構成は、上記課題の少なくとも一つを解決する。
なお、酸化物半導体層としては、InMO(ZnO)(m>0)で表記される薄膜を
形成し、その薄膜を酸化物半導体層として用いた薄膜トランジスタを作製する。なお、M
は、Ga、Fe、Ni、Mn及びCoから選ばれた一の金属元素または複数の金属元素を
示す。例えばMとして、Gaの場合があることの他、GaとNiまたはGaとFeなど、
Ga以外の上記金属元素が含まれる場合がある。また、上記酸化物半導体において、Mと
して含まれる金属元素の他に、不純物元素としてFe、Niその他の遷移金属元素、また
は該遷移金属の酸化物が含まれているものがある。本明細書においては、InMO(Z
nO)(m>0)で表記される構造の酸化物半導体層のうち、MとしてGaを含む構造
の酸化物半導体をIn−Ga−Zn−O系酸化物半導体とよび、その薄膜をIn−Ga−
Zn−O系膜とも呼ぶ。
また、従来公知のアモルファス状態とも異なり、従来公知の結晶状態とも異なる電子線回
折パターンを示すインキュベーション状態を有する金属酸化物であれば特にIn−Ga−
Zn−O系金属酸化物に限定されず、酸化物半導体層に適用する金属酸化物として上記の
他にも、In−Sn−O系、In−Sn−Zn−O系、In−Al−Zn−O系、Sn−
Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系、In−Zn−O
系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、またはZn−O系
の金属酸化物を適用することができる。また上記金属酸化物からなる酸化物半導体層中に
酸化珪素を含ませてもよい。
本発明の一態様として、ボトムゲート構造の薄膜トランジスタを用いる。具体的には、酸
化膜半導体層上にソース電極層及びドレイン電極層が重なるチャネルエッチ型であり、酸
化物半導体層はチャネル形成領域上部において酸化物半導体層の一部がエッチングされて
いる構造とする。
また、本発明の他の一態様は、絶縁表面上にゲート電極層と、ゲート電極層上方に第1の
絶縁層と、第1の絶縁層上方にインジウム、ガリウム、及び亜鉛を含む酸化物半導体層と
、酸化物半導体層上方にソース電極層またはドレイン電極層と、ソース電極層またはドレ
イン電極層を覆う第2の絶縁層とを有し、酸化物半導体層は、ソース電極層またはドレイ
ン電極層と重なる領域よりも膜厚の薄い領域を有し、第2の絶縁層は、酸化物半導体層の
膜厚の薄い領域と接し、酸化物半導体層の膜厚の薄い領域は、電子線回折パターンの解析
においてスポットが明確に現れる結晶系、及び、ハロー状のパターンが現れる非晶質系の
いずれでもないインキュベーション状態を有することを特徴とする半導体装置である。
本明細書において、インキュベーション状態とは、電子線回折パターンの解析においてス
ポットが明確に現れる結晶系、及び、ハロー状のパターンが現れる非晶質系のいずれでも
ないが、電子線回折パターンの解析におけるスポットは明確でないがそれが現れ、周期性
を有している状態を指している。また、インキュベーション状態は、モル数比がIn
:Ga:ZnO=1:1:1や、In:Ga:ZnO=1:1:2
のスパッタ法による成膜用ターゲットなどを用いて得られる酸化物半導体膜の状態であり
、InGaZnOの結晶構造(図35参照。)や、InGaZnOの結晶構造(
図34参照。)などの安定な結晶構造にいたる直前の状態、即ち、一部の結合はできてい
るが、一つの結晶にまで安定な分子構造を有する結晶になっていない前駆体を指している
インキュベーション状態を示すパターンの例を図28、図29、図30、及び図31に示
す。また、インキュベーション状態を有するIn−Ga−Zn−O系の酸化物半導体層を
薄膜トランジスタのチャネル形成領域として用いたチャネルエッチ型の薄膜トランジスタ
の断面を高分解能透過電子顕微鏡(日立製作所製「H9000−NAR」:TEM)で観
察した写真を図26に示し、酸化物半導体層とその上に接する酸化物絶縁層の界面を走査
透過型電子顕微鏡(日立製作所製「HD−2700」:STEM)で加速電圧を200k
Vとし、観察した高倍写真(400万倍)を図27に示す。
また、比較例として電子線回折パターンの解析においてスポットが明確に現れる結晶系の
パターンの一例を図32に示す。図32に示す電子線回折パターンは、既知の格子定数を
比較すると、結晶構造は、図34に示すInGaZnOである。図34は、結晶構
造の模式図であり、ab面内でIn原子が取りうるサイト201、In原子202、Ga
原子またはZn原子のいずれか一の原子203、酸素原子204をそれぞれ示している。
また、比較例として電子線回折パターンの解析においてハロー状のパターンが現れる非晶
質系のパターンを図33に示す。
図28、図29、図30、及び図31に示されるインキュベーション状態を示すパターン
は、図32や図33と異なっている。
また、上記構成において、薄膜トランジスタのゲート電極層、ソース電極層及びドレイン
電極層は、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、
ネオジム、スカンジウムから選ばれた金属元素を主成分とする膜、若しくはそれらの合金
膜を用いる。また、ソース電極層及びドレイン電極層は、上述した元素を含む単層に限定
されず、二層以上の積層を用いることができる。
また、酸化インジウム、酸化インジウム酸化スズ合金、酸化インジウム酸化亜鉛合金、酸
化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アルミニウム、または酸化亜鉛ガリウム等の
透光性を有する酸化物導電層をソース電極層、ドレイン電極層及びゲート電極層に用いる
ことで画素部の透光性を向上させ、開口率を高くすることもできる。
また、本発明の一態様である薄膜トランジスタを用いて、駆動回路部及び画素部を同一基
板上に形成し、EL素子、液晶素子または電気泳動素子などを用いて表示装置を作製する
ことができる。
また、薄膜トランジスタは静電気などにより破壊されやすいため、ゲート線またはソース
線に対して、画素部の薄膜トランジスタの保護用の保護回路を同一基板上に設けることが
好ましい。保護回路は、酸化物半導体層を用いた非線形素子を用いて構成することが好ま
しい。
なお、第1、第2として付される序数詞は便宜上用いるものであり、工程順又は積層順を
示すものではない。また、本明細書において発明を特定するための事項として固有の名称
を示すものではない。
なお、本明細書中において半導体装置とは、半導体特性を利用することで機能しうる装置
全般を指し、電気光学装置、半導体回路および電子機器は全て半導体装置である。
また、本明細書中で連続成膜とは、スパッタ法で行う第1の成膜工程からスパッタ法で行
う第2の成膜工程までの一連のプロセス中、被処理基板の置かれている雰囲気が大気等の
汚染雰囲気に触れることなく、常に真空中または不活性ガス雰囲気(窒素雰囲気または希
ガス雰囲気)で制御されていることを言う。連続成膜を行うことにより、清浄化された被
処理基板の水分等の再付着を回避して成膜を行うことができる。
同一チャンバー内で第1の成膜工程から第2の成膜工程までの一連のプロセスを行うこと
は本明細書における連続成膜の範囲にあるとする。
また、異なるチャンバーで第1の成膜工程から第2の成膜工程までの一連のプロセスを行
う場合、第1の成膜工程を終えた後、大気にふれることなくチャンバー間を基板搬送して
第2の成膜を施すことも本明細書における連続成膜の範囲にあるとする。
なお、第1の成膜工程と第2の成膜工程の間に、基板搬送工程、アライメント工程、徐冷
工程、または第2の工程に必要な温度とするため基板を加熱または冷却する工程等を有し
ても、本明細書における連続成膜の範囲にあるとする。
ただし、洗浄工程、ウエットエッチング、レジスト形成といった液体を用いる工程が第1
の成膜工程と第2の成膜工程の間にある場合、本明細書でいう連続成膜の範囲には当ては
まらないとする。
酸化物半導体層の一部または全部をインキュベーション状態とすることにより寄生チャネ
ルの発生を抑えることができる。また、オンオフ比の高い薄膜トランジスタを得ることが
でき、良好な動特性を有する薄膜トランジスタを作製できる。
本発明の一態様を説明する断面図。 本発明の一態様を説明する断面図工程図。 本発明の一態様を説明する断面図工程図。 本発明の一態様を説明する平面図。 本発明の一態様を説明する平面図。 本発明の一態様を説明する平面図。 本発明の一態様を説明する平面図。 本発明の一態様を説明する断面図及び平面図。 本発明の一態様を説明する平面図。 本発明の一態様を説明する平面図。 半導体装置のブロック図を説明する図。 信号線駆動回路の回路構成及びタイミングチャートを説明する図。 シフトレジスタの構成を示す回路図。 シフトレジスタの動作を説明する回路図およびタイミングチャート。 本発明の一態様を説明する断面図及び平面図。 本発明の一態様を説明する断面図。 半導体装置の画素等価回路を説明する図。 本発明の一態様を説明する断面図。 本発明の一態様を説明する断面図及び平面図。 本発明の一態様を説明する断面図。 電子ペーパーの使用形態の例を説明する図。 電子書籍の一例を示す外観図。 テレビジョン装置およびデジタルフォトフレームの例を示す外観図。 遊技機の例を示す外観図。 携帯電話機の一例を示す外観図。 薄膜トランジスタの断面TEM写真。 薄膜トランジスタの酸化物半導体層と酸化物絶縁層の界面付近の断面TEM写真。 本発明の一態様を説明する電子線回折パターン。 本発明の一態様を説明する電子線回折パターン。 本発明の一態様を説明する電子線回折パターン。 本発明の一態様を説明する電子線回折パターン。 比較例である電子線回折パターン。 比較例である電子線回折パターン。 酸化物半導体の結晶構造の比較例を説明する図。 酸化物半導体の結晶構造の比較例を説明する図。
以下では、本発明の実施の形態について図面を用いて詳細に説明する。ただし、本発明は
以下の説明に限定されず、その形態および詳細を様々に変更し得ることは、当業者であれ
ば容易に理解される。また、本発明は以下に示す実施の形態の記載内容に限定して解釈さ
れるものではない。
(実施の形態1)
本実施の形態では、薄膜トランジスタの構造について、図1を用いて説明する。
本実施の形態のチャネルエッチ型の薄膜トランジスタを図1に示す。図1は断面図であり
、その平面図を図4(A)に示す。図1は、図4(A)における線A1−A2の断面図と
なっている。
図1に示す薄膜トランジスタは、基板100上にゲート電極層101、ゲート絶縁層10
2、酸化物半導体層103、ソース電極層105a及びドレイン電極層105bを含む。
また、酸化物半導体層103、ソース電極層105a及びドレイン電極層105b上に酸
化物絶縁層107が設けられている。
なお、図1に示す薄膜トランジスタは、ソース電極層105aとドレイン電極層105b
との間で酸化膜半導体層の一部がエッチングされた構造である。
ゲート電極層101は、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タ
ングステン、ネオジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成分
とする合金材料、またはこれらの金属材料を成分とする窒化物を用いて、単層又は積層で
形成することができる。好ましくはアルミニウムや銅などの低抵抗金属材料での形成が有
効であり、耐熱性や腐食性の問題から高融点金属材料と組み合わせて用いると良い。高融
点金属材料としては、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム
、スカンジウム等を用いることができる。
また、画素部の開口率を向上させる目的として、ゲート電極層101に酸化インジウム、
酸化インジウム酸化スズ合金、酸化インジウム酸化亜鉛合金、酸化亜鉛、酸化亜鉛アルミ
ニウム、酸窒化亜鉛アルミニウム、または酸化亜鉛ガリウム等の透光性を有する酸化物導
電層を用いることもできる。
ゲート絶縁層102はCVD法やスパッタ法などで形成する酸化シリコン、酸化窒化シリ
コン、窒化酸化シリコン、窒化シリコン、酸化アルミニウム、酸化タンタルなどの単層膜
または積層膜を用いることができる。
酸化物半導体層103は、In、Ga、及びZnを含むIn−Ga−Zn−O系膜を用い
、例えばInMO(ZnO)(m>0)で表記される構造とする。なお、Mは、ガリ
ウム(Ga)、鉄(Fe)、ニッケル(Ni)、マンガン(Mn)及びコバルト(Co)
から選ばれた一の金属元素又は複数の金属元素を示す。例えばMとして、Gaの場合があ
ることの他、GaとNi又はGaとFeなど、Ga以外の上記金属元素が含まれる場合が
ある。また、上記酸化物半導体において、Mとして含まれる金属元素の他に、不純物元素
としてFe、Niその他の遷移金属元素、又は該遷移金属の酸化物が含まれているものが
ある。
酸化物半導体層103はスパッタ法を用いて形成する。膜厚は、10nm以上300nm
以下とし、好ましくは20nm以上100nm以下とする。なお、図1のように酸化物半
導体層103は、ソース電極層105aとドレイン電極層105bの間の一部をエッチン
グするため、ソース電極層105a又はドレイン電極層105bと重なる領域よりも膜厚
の薄い領域を有する。
酸化物半導体層103は、成膜された段階でインキュベーション状態とすることが好まし
いが必要があれば加熱処理を行ってもよい。また、酸化物半導体層が成膜された段階で多
くの未結合手を有する非晶質である場合、脱水化または脱水素化処理の加熱工程を行うこ
とで、近距離にある未結合手同士が結合し合い、インキュベーション状態とする。例えば
、RTA法等で高温短時間の脱水化または脱水素化処理を行うことが好ましい。なお、本
明細書では、窒素、または希ガス等の不活性気体雰囲気下での加熱処理を脱水化または脱
水素化のための加熱処理と呼ぶ。本明細書では、この加熱処理によってHとして脱離さ
せていることのみを脱水素化と呼んでいるわけではなく、H、OHなどを脱離することを
含めて脱水化または脱水素化と便宜上呼ぶこととする。
ソース電極層105a及びドレイン電極層105bは、第1の導電層112a、112b
、第2の導電層113a、113b、第3の導電層114a、114bからなる3層構造
となっている。これらの材料としては、前述したゲート電極層101と同様の材料を用い
ることができる。
また、ゲート電極層101と同様に前述の透光性を有する酸化物導電層をソース電極層1
05a及びドレイン電極層105bに用いることで画素部の透光性を向上させ、開口率を
高くすることもできる。
また、ソース電極層105a及びドレイン電極層105bとなる前述の金属材料を主成分
とする膜と酸化物半導体層103のそれぞれの間に前述の酸化物導電層を形成し、接触抵
抗を低減させることもできる。
酸化物半導体層103、ソース電極層105a及びドレイン電極層105b上には、チャ
ネル保護層として機能する酸化物絶縁層107を有する。酸化物絶縁層107にはスパッ
タ法を用いる無機絶縁膜を用い、代表的には酸化珪素膜、窒化酸化珪素膜、酸化アルミニ
ウム膜、または酸化窒化アルミニウムなどを用いる。
また、従来公知のアモルファス状態とも異なり、従来公知の結晶状態とも異なる電子線回
折パターンを示すインキュベーション状態を有する金属酸化物をチャネル形成領域とする
ことにより、信頼性が高く、オン電流及び電界効果移動度が高いなどの電気特性の向上し
た薄膜トランジスタを提供することができる。
(実施の形態2)
本実施の形態では、実施の形態1で示したチャネルエッチ型薄膜トランジスタを含む表示
装置の作製工程を例として、図2乃至図10を用いて説明する。図2と図3は断面図で、
図4乃至図7は平面図となっており、図4乃至図7の線A1−A2及び線B1−B2は、
図2及び図3の断面図A1−A2、B1−B2に対応している。
まず、基板100を準備する。基板100は、フュージョン法やフロート法で作製される
ガラス基板の他、本作製工程の処理温度に耐えうる耐熱性を有するプラスチック基板等を
用いることができる。また、ステンレス合金などの金属基板の表面に絶縁膜を設けた基板
を適用しても良い。
なお、ガラス基板としては、後の加熱処理の温度が高い場合には、歪み点が730℃以上
のものを用いると良い。また、ガラス基板には、例えば、アルミノシリケートガラス、ア
ルミノホウケイ酸ガラス、バリウムホウケイ酸ガラスなどのガラス材料が用いられている
。酸化ホウ素(B)と比較して酸化バリウム(BaO)を多く含ませることで、よ
り実用的な耐熱ガラスが得られる。このため、BよりBaOを多く含むガラス基板
を用いることが好ましい。
なお、上記のガラス基板に代えて、セラミック基板、石英基板、サファイア基板などの絶
縁体でなる基板を用いても良い。他にも、結晶化ガラスなどを用いることができる。
また基板100上に下地膜として絶縁膜を形成してもよい。下地膜としては、CVD法や
スパッタ法等を用いて、酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、または
窒化酸化シリコン膜の単層、又は積層で形成すればよい。基板100としてガラス基板の
ようにナトリウム等の可動イオンを含有する基板を用いる場合、下地膜として窒化シリコ
ン膜、窒化酸化シリコン膜などの窒素を含有する膜を用いることで、可動イオンが酸化物
半導体層に侵入することを防ぐことができる。
次に、ゲート電極層101を含むゲート配線、容量配線108、及び第1の端子121を
形成するための導電膜をスパッタ法や真空蒸着法で基板100全面に成膜する。次いで、
導電膜を基板100全面に形成した後、第1のフォトリソグラフィ工程を行い、レジスト
マスクを形成し、エッチングにより不要な部分を除去して配線及び電極(ゲート電極層1
01を含むゲート配線、容量配線108、及び第1の端子121)を形成する。このとき
段切れ防止のために、少なくともゲート電極層101の端部にテーパー形状が形成される
ようにエッチングするのが好ましい。この段階での断面図を図2(A)に示した。なお、
この段階での平面図が図4(B)に相当する。
ゲート電極層101を含むゲート配線と容量配線108、ゲート配線端子部の第1の端子
121は、アルミニウム、銅、モリブデン、チタン、クロム、タンタル、タングステン、
ネオジム、スカンジウムなどの金属材料、またはこれらの金属材料を主成分とする合金材
料、またはこれらの金属材料を成分とする窒化物を用いて、単層又は積層で形成すること
ができる。好ましくはアルミニウムや銅などの低抵抗金属材料での形成が有効であるが、
耐熱性や腐食性の問題から高融点金属材料と組み合わせて用いると良い。高融点金属材料
としては、モリブデン、チタン、クロム、タンタル、タングステン、ネオジム、スカンジ
ウム等を用いることができる。
例えば、ゲート電極層101の積層構造としては、アルミニウム層上にモリブデン層が積
層された二層の積層構造、または銅層上にモリブデン層を積層した二層構造、または銅層
上に窒化チタン層若しくは窒化タンタル層を積層した二層構造、窒化チタン層とモリブデ
ン層とを積層した二層構造とすることが好ましい。3層の積層構造としては、アルミニウ
ム、アルミニウムとシリコンの合金、アルミニウムとチタンの合金またはアルミニウムと
ネオジムの合金を中間層とし、タングステン、窒化タングステン、窒化チタンまたはチタ
ンを上下層として積層した構造とすることが好ましい。
このとき、一部の電極層や配線層に透光性を有する酸化物導電層を用いて開口率を向上さ
せることもできる。例えば、酸化物導電層には酸化インジウム、酸化インジウム酸化スズ
合金、酸化インジウム酸化亜鉛合金、酸化亜鉛、酸化亜鉛アルミニウム、酸窒化亜鉛アル
ミニウム、または酸化亜鉛ガリウム等を用いることができる。
次いで、ゲート電極層101を覆い、ゲート絶縁層102を全面に成膜する。ゲート絶縁
層102はCVD法やスパッタ法などを用い、膜厚を50nm以上250nm以下とする
例えば、ゲート絶縁層102としてスパッタ装置を用いて酸化シリコン膜を100nmの
厚さで形成する。勿論、ゲート絶縁層102はこのような酸化シリコン膜に限定されるも
のでなく、酸化窒化シリコン膜、窒化酸化シリコン膜、窒化シリコン膜、酸化アルミニウ
ム、酸化タンタル膜などの他の絶縁膜を用い、これらの材料から成る単層または積層構造
として形成しても良い。
また、島状の酸化物半導体層103を形成するための酸化物半導体膜を成膜する前に、ア
ルゴンガスを導入してプラズマを発生させる逆スパッタを行い、ゲート絶縁層102の表
面に付着しているゴミを除去する処理を行ってもよい。逆スパッタとは、ターゲット側に
電圧を印加せずに、アルゴン雰囲気下で基板側にRF電源を用いて電圧を印加して基板近
傍にプラズマを形成して表面を改質する方法である。なお、アルゴン雰囲気に代えて窒素
、ヘリウムなどを用いてもよい。また、アルゴン雰囲気に酸素、NOなどを加えた雰囲
気で行ってもよい。また、アルゴン雰囲気にCl、CFなどを加えた雰囲気で行って
もよい。逆スパッタ処理後、大気に曝すことなく酸化物半導体膜を成膜することによって
、ゲート絶縁層102と酸化物半導体層103の界面にゴミや水分が付着するのを防ぐこ
とができる。
次いで、ゲート絶縁層102上に、膜厚5nm以上200nm以下、好ましくは10nm
以上40nm以下の酸化物半導体膜を形成する。
酸化物半導体膜は、In−Ga−Zn−O系、In−Sn−Zn−O系、In−Al−Z
n−O系、Sn−Ga−Zn−O系、Al−Ga−Zn−O系、Sn−Al−Zn−O系
、In−Zn−O系、Sn−Zn−O系、Al−Zn−O系、In−O系、Sn−O系、
またはZn−O系の酸化物半導体膜を用いることができる。また、酸化物半導体膜は、希
ガス(代表的にはアルゴン)雰囲気下、酸素雰囲気下、又は希ガス(代表的にはアルゴン
)及び酸素混合雰囲気下においてスパッタ法により形成することができる。
ここでは、In、Ga、及びZnを含む酸化物半導体成膜用ターゲット(モル数比がIn
:Ga:ZnO=1:1:1、またはIn:Ga:ZnO=1
:1:2)を用いて、基板とターゲットの間との距離を100mm、圧力0.6Pa、直
流(DC)電源0.5kW、酸素(酸素流量比率100%)雰囲気下で成膜する。なお、
パルス直流(DC)電源を用いると、成膜時に発生する粉状物質(パーティクル、ゴミと
もいう)が軽減でき、膜厚分布も均一となるために好ましい。本実施の形態では、酸化物
半導体膜として、In−Ga−Zn−O系酸化物半導体成膜用ターゲットを用い、スパッ
タ装置により膜厚30nmのIn−Ga−Zn−O系膜を成膜する。
また、酸化物半導体成膜用ターゲットの相対密度は80%以上、好ましくは95%以上、
さらに好ましくは99.9%以上とするのが好ましい。相対密度の高いターゲットを用い
ると、形成される酸化物半導体膜中の不純物濃度を低減することができ、電気特性及び信
頼性の高い薄膜トランジスタを得ることができる。
スパッタ法にはスパッタ用電源に高周波電源を用いるRFスパッタ法、直流電源を用いる
DCスパッタ法、さらにパルス的にバイアスを与えるパルスDCスパッタ法がある。RF
スパッタ法は主に絶縁膜を成膜する場合に用いられ、DCスパッタ法は主に金属膜を成膜
する場合に用いられる。
また、材料の異なるターゲットを複数設置できる多元スパッタ装置もある。多元スパッタ
装置は、同一チャンバーで異なる材料膜を積層成膜することも、同一チャンバーで複数種
類の材料を同時に放電させて成膜することもできる。
また、チャンバー内部に磁石機構を備えたマグネトロンスパッタ法を用いるスパッタ装置
や、グロー放電を使わずマイクロ波を用いて発生させたプラズマを用いるECRスパッタ
法を用いるスパッタ装置がある。
また、スパッタ法を用いる成膜方法として、成膜中にターゲット物質とスパッタガス成分
とを化学反応させてそれらの化合物薄膜を形成するリアクティブスパッタ法や、成膜中に
基板にも電圧をかけるバイアススパッタ法もある。
また、スパッタ法による成膜中に光やヒータによって基板を400℃以上700℃以下に
加熱してもよい。成膜中に加熱することで、成膜と同時にスパッタによる損傷を修復させ
る。
また、酸化物半導体膜の成膜を行う前に、スパッタ装置内壁や、ターゲット表面やターゲ
ット材料中に残存している水分または水素を除去するためにプレヒート処理を行うと良い
。プレヒート処理としては成膜チャンバー内を減圧下で200℃〜600℃に加熱する方
法や、加熱しながら窒素や不活性ガスの導入と排気を繰り返す方法等がある。プレヒート
処理を終えたら、基板またはスパッタ装置を冷却した後大気にふれることなく酸化物半導
体膜の成膜を行う。この場合のターゲット冷却液は、水ではなく油脂等を用いるとよい。
加熱せずに窒素の導入と排気を繰り返しても一定の効果が得られるが、加熱しながら行う
となお良い。
また、酸化物半導体膜の成膜を行う前、または成膜中、または成膜後に、スパッタ装置内
に残存している水分などをクライオポンプを用いて除去することが好ましい。
次に、第2のフォトリソグラフィ工程を行い、レジストマスクを形成し、In−Ga−Z
n−O系膜をエッチングする。エッチングには、クエン酸やシュウ酸などの有機酸をエッ
チングとして用いることができる。ここでは、ITO07N(関東化学社製)を用いたウ
ェットエッチングにより、不要な部分を除去してIn−Ga−Zn−O系膜を島状にし、
酸化物半導体層111を形成する。酸化物半導体層111の端部をテーパー状にエッチン
グすることで、段差形状による配線の段切れを防ぐことができる。なお、ここでのエッチ
ングは、ウェットエッチングに限定されずドライエッチングを用いてもよい。この段階で
の断面図を図2(B)に示した。この段階での平面図が図5に相当する。
また、必要であれば、酸化物半導体層の脱水化または脱水素化を行う。この脱水化または
脱水素化を行う第1の加熱処理は、高温のガス(窒素、または希ガス等の不活性ガス)や
光を用いて500℃以上750℃以下(若しくはガラス基板の歪点以下の温度)で1分間
以上10分間以下程度、好ましくは650℃、3分間以上6分間以下程度のRTA(Ra
pid Thermal Anneal)処理で行うことができる。RTA法を用いれば
、短時間に脱水化または脱水素化が行えるため、ガラス基板の歪点を超える温度でも処理
することができる。なお、第1の加熱処理は、酸化物半導体層111を形成後のタイミン
グに限らず、フォトリソグラフィ工程の前や、酸化物半導体層111を形成後などで複数
回行っても良い。
なお、第1の加熱処理においては、雰囲気中に、水、水素などが含まれないことが好まし
い。または、加熱処理装置に導入する不活性ガスの純度を、6N(99.9999%)以
上、好ましくは7N(99.99999%)以上、(即ち不純物濃度を1ppm以下、好
ましくは0.1ppm以下)とすることが好ましい。
次いで、第3のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングに
より不要な部分を除去してゲート電極層101と同じ材料の配線や電極層に達するコンタ
クトホールを形成する。このコンタクトホールは後に形成する導電膜と直接接続するため
に設ける。例えば、駆動回路部において、ゲート電極層とソース電極層或いはドレイン電
極層と直接接する薄膜トランジスタや、端子部のゲート配線と電気的に接続する端子を形
成する場合にコンタクトホールを形成する。
次に、酸化物半導体層111およびゲート絶縁層102上に金属材料からなる第1の導電
層112、第2の導電層113、第3の導電層114をスパッタ法や真空蒸着法で成膜す
る。この段階での平面図を図2(C)に示した。
第1の導電層112、第2の導電層113、第3の導電層114の材料としては、前述し
たゲート電極層101と同様の材料を用いることができる。
ここでは、第1の導電層112及び第3の導電層114として耐熱性導電性材料であるチ
タンを用い、第2の導電層113としてネオジムを含むアルミニウム合金を用いる。この
ような構成にすることで、アルミニウムの低抵抗性を活かしつつ、ヒロックの発生を低減
することができる。なお、本実施の形態では第1の導電層112乃至第3の導電層114
からなる3層構造としたが、これに限られることはなく、単層構造としてもよいし、2層
構造としてもよいし、4層以上の構造としてもよい。例えば、チタン膜の単層構造として
もよいし、シリコンを含むアルミニウム膜の単層構造としてもよい。
次に、第4のフォトリソグラフィ工程を行い、レジストマスク131を形成し、エッチン
グにより不要な部分を除去してソース電極層105a及びドレイン電極層105b、酸化
物半導体層103及び接続電極120を形成する。この際のエッチング方法としてウェッ
トエッチングまたはドライエッチングを用いる。例えば、第1の導電層112及び第3の
導電層114にチタンを、第2の導電層113にネオジムを含むアルミニウム合金を用い
る場合には、過酸化水素水又は加熱塩酸をエッチャントに用いてウェットエッチングする
ことができる。このエッチング工程において、酸化物半導体層103の一部がエッチング
され、ソース電極層105aとドレイン電極層105bの間に、ソース電極層105a又
はドレイン電極層105bと重なる領域よりも膜厚の薄い領域を有する酸化物半導体層1
03となる。この段階での断面図を図3(A)に示した。なお、この段階での平面図が図
6に相当する。
また、第1の導電層112、第2の導電層113、第3の導電層114、酸化物半導体層
103のエッチングを過酸化水素水又は加熱塩酸をエッチャントとするエッチングで一度
に行うことができるため、ソース電極層105a又はドレイン電極層105b及び酸化物
半導体層103の端部は一致し、連続的な構造とすることができる。またウェットエッチ
ングを用いるために、エッチングが等方的に行われ、ソース電極層105a及びドレイン
電極層105bの端部はレジストマスク131より後退している。以上の工程で酸化物半
導体層103をチャネル形成領域とする薄膜トランジスタ170が作製できる。
ここで、ゲート電極層101と同様に前述の透光性を有する酸化物導電層をソース電極層
105a及びドレイン電極層105bに用いることで画素部の透光性を向上させ、開口率
を高くすることもできる。
また、この第4のフォトリソグラフィ工程において、ソース電極層105a及びドレイン
電極層105bと同じ材料である第2の端子122をソース配線端子部に残す。なお、第
2の端子122はソース配線(ソース電極層105a又はドレイン電極層105bを含む
ソース配線)と電気的に接続されている。
また、端子部において、接続電極120は、ゲート絶縁膜に形成されたコンタクトホール
を介して端子部の第1の端子121と直接接続される。なお、ここでは図示しないが、上
述した工程と同じ工程を経て駆動回路の薄膜トランジスタのソース配線あるいはドレイン
配線とゲート電極が直接接続される。
また、多階調マスクにより形成した複数(代表的には二種類)の厚さの領域を有するレジ
ストマスクを用いると、レジストマスクの数を減らすことができるため、工程簡略化、低
コスト化が図れる。
次いで、レジストマスク131を除去し、薄膜トランジスタ170を覆う酸化物絶縁層1
07を形成する。酸化物絶縁層107はスパッタ法などを用いて得られる酸化シリコン膜
、酸化窒化シリコン膜、酸化アルミニウム膜、酸化タンタル膜などの酸化物絶縁層を用い
ることができる。
酸化物絶縁層107は、スパッタリング法など、酸化物絶縁層に水、水素等の不純物を混
入させない方法を適宜用いて形成することができる。本実施の形態では、酸化物絶縁層と
して酸化珪素膜をスパッタリング法を用いて成膜する。成膜時の基板温度は、室温以上3
00℃以下とすればよく、本実施の形態では100℃とする。ここで、成膜時に水、水素
等の不純物を混入させない方法として、成膜前に減圧下で150℃以上350℃以下の温
度で2分間以上10分間以下のプリベークを行い、大気に触れることなく酸化物絶縁層を
形成することが望ましい。酸化珪素膜のスパッタリング法による成膜は、希ガス(代表的
にはアルゴン)雰囲気下、酸素雰囲気下、または希ガス(代表的にはアルゴン)及び酸素
混合雰囲気下において行うことができる。また、ターゲットとして酸化珪素ターゲットま
たは珪素ターゲットを用いることができる。例えば、珪素ターゲットを用いて、酸素、及
び希ガス雰囲気下でスパッタリング法により酸化珪素膜を形成することができる。低抵抗
化した酸化物半導体層に接して形成する酸化物絶縁層は、水分や、水素イオンや、OH
などの不純物を含まず、これらが外部から侵入することをブロックする無機絶縁膜が好ま
しい。
本実施の形態では、純度が6Nであり、柱状多結晶Bドープの珪素ターゲット(抵抗値0
.01Ωcm)を用い、基板とターゲットの間との距離(T−S間距離)を89mm、圧
力0.4Pa、直流(DC)電源6kW、酸素(酸素流量比率100%)雰囲気下でパル
スDCスパッタ法により成膜する。膜厚は300nmとする。
次いで、必要であれば、不活性ガス雰囲気下で第2の加熱処理(好ましくは200℃以上
400℃以下、例えば250℃以上350℃以下)を行う。例えば、窒素雰囲気下で25
0℃、1時間の第2の加熱処理を行う。または、第1の加熱処理と同様に高温短時間のR
TA処理を行っても良い。
次に、第5のフォトリソグラフィ工程を行い、レジストマスクを形成し、酸化物絶縁層1
07のエッチングによりドレイン電極層105bに達するコンタクトホール125を形成
する。また、ここでのエッチングにより第2の端子122に達するコンタクトホール12
7、接続電極120に達するコンタクトホール126も形成する。この段階での断面図を
図3(B)に示す。
次いで、レジストマスクを除去した後、透光性を有する導電膜を成膜する。透光性を有す
る導電膜の材料としては、酸化インジウム(In)や酸化インジウム酸化スズ合金
(In―SnO、ITOと略記する)などをスパッタ法や真空蒸着法などを用い
て形成する。このような材料のエッチング処理は塩酸系の溶液により行う。ただし、特に
ITOのエッチングは残渣が発生しやすいので、エッチング加工性を改善するために酸化
インジウム酸化亜鉛合金(In―ZnO)を用いても良い。
次に、第6のフォトリソグラフィ工程を行い、レジストマスクを形成し、エッチングによ
り不要な部分を除去して画素電極層110を形成する。
また、この第6のフォトリソグラフィ工程において、容量部におけるゲート絶縁層102
及び酸化物絶縁層107を誘電体として、容量配線108と画素電極層110とで保持容
量が形成される。
また、この第6のフォトリソグラフィ工程において、第1の端子121及び第2の端子1
22をレジストマスクで覆い端子部に形成された透光性を有する導電膜128、129を
残す。透光性を有する導電膜128、129はFPCとの接続に用いられる電極または配
線となる。第1の端子121と直接接続された接続電極120上に形成された透光性を有
する導電膜128は、ゲート配線の入力端子として機能する接続用の端子電極となる。第
2の端子122上に形成された透光性を有する導電膜129は、ソース配線の入力端子と
して機能する接続用の端子電極である。
次いで、レジストマスクを除去し、この段階での断面図を図3(C)に示す。なお、この
段階での平面図が図7に相当する。
また、図8(A1)、図8(A2)は、この段階でのゲート配線端子部の平面図及び断面
図をそれぞれ図示している。図8(A1)は図8(A2)中のC1−C2線に沿った断面
図に相当する。図8(A1)において、保護絶縁膜154および第2の端子150上に形
成される透光性を有する導電膜155は、入力端子として機能する接続用の端子電極であ
る。また、図8(A1)において、ゲート配線端子部では、ゲート配線と同じ材料で形成
される第1の端子151と、ソース配線と同じ材料で形成される接続電極153とがゲー
ト絶縁層152を介して重なり直接接して導通させている。また、接続電極153と透光
性を有する導電膜155が保護絶縁膜154に設けられたコンタクトホールを介して直接
接して導通させている。
また、図8(B1)、及び図8(B2)は、ソース配線端子部の平面図及び断面図をそれ
ぞれ図示している。また、図8(B1)は図8(B2)中のD1−D2線に沿った断面図
に相当する。図8(B1)において、保護絶縁膜154および接続電極153上に形成さ
れる透光性を有する導電膜155は、入力端子として機能する接続用の端子電極である。
また、図8(B1)において、ソース配線端子部では、ゲート配線と同じ材料で形成され
る電極156が、ソース配線と電気的に接続される第2の端子150の下方にゲート絶縁
層152を介して重なる。電極156は第2の端子150とは電気的に接続しておらず、
電極156を第2の端子150と異なる電位、例えばフローティング、GND、0Vなど
に設定すれば、ノイズ対策のための容量または静電気対策のための容量を形成することが
できる。また、第2の端子150は、保護絶縁膜154を介して透光性を有する導電膜1
55と電気的に接続している。
ゲート配線、ソース配線、及び容量配線は画素密度に応じて複数本設けられるものである
。また、端子部においては、ゲート配線と同電位の第1の端子、ソース配線と同電位の第
2の端子、容量配線と同電位の第3の端子などが複数並べられて配置される。それぞれの
端子の数は、それぞれ任意な数で設ければ良いものとし、実施者が適宣決定すれば良い。
こうして6回のフォトリソグラフィ工程により、6枚のフォトマスクを使用して、チャネ
ルエッチ型の薄膜トランジスタ170及び保持容量部を完成させることができる。また、
チャネルエッチ型の薄膜トランジスタ170は、インキュベーション状態を有するIn−
Ga−Zn−O系の酸化物半導体層をチャネル形成領域として用いた薄膜トランジスタで
あり、その断面を高分解能透過電子顕微鏡で観察した写真が図26に相当する。
そして、これらを個々の画素に対応してマトリクス状に配置し、画素部を構成することに
よりアクティブマトリクス型の表示装置を作製するための一方の基板とすることができる
。本明細書では便宜上このような基板をアクティブマトリクス基板と呼ぶ。
アクティブマトリクス型の液晶表示装置を作製する場合には、アクティブマトリクス基板
と、対向電極が設けられた対向基板との間に液晶層を設け、アクティブマトリクス基板と
対向基板とを固定する。なお、対向基板に設けられた対向電極と電気的に接続する共通電
極をアクティブマトリクス基板上に設け、共通電極と電気的に接続する第4の端子を端子
部に設ける。この第4の端子は、共通電極を固定電位、例えばGND、0Vなどに設定す
るための端子である。
また、本実施の形態は、図7の画素構成に限定されず、図7とは異なる平面図の例を図9
に示す。図9では容量配線を設けず、画素電極を隣り合う画素のゲート配線と保護絶縁膜
及びゲート絶縁層を介して重ねて保持容量を形成する例であり、この場合、容量配線及び
容量配線と接続する第3の端子は省略することができる。なお、図9において、図7と同
じ部分には同じ符号を用いて説明する。
また、図7の画素構成とは異なる例を図10に示す。図10では、ソース電極層105a
及びドレイン電極層105bと同じ材料である容量電極層124をゲート絶縁層102上
に形成し、画素電極層110は酸化物絶縁層107に設けられたコンタクトホール109
を介して容量電極層124と電気的に接続する。図10の画素構成において、保持容量は
、容量部におけるゲート絶縁層102を誘電体として、容量電極層124と容量配線10
8とで保持容量が形成される。
アクティブマトリクス型の液晶表示装置においては、マトリクス状に配置された画素電極
を駆動することによって、画面上に表示パターンが形成される。詳しくは選択された画素
電極と該画素電極に対応する対向電極との間に電圧が印加されることによって、画素電極
と対向電極との間に配置された液晶層の光学変調が行われ、この光学変調が表示パターン
として観察者に認識される。
液晶表示装置の動画表示において、液晶分子自体の応答が遅いため、残像が生じる、また
は動画のぼけが生じるという問題がある。液晶表示装置の動画特性を改善するため、全面
黒表示を1フレームおきに行う、所謂、黒挿入と呼ばれる駆動技術がある。
また、垂直同期周波数を1.5倍、好ましくは2倍以上にすることで動画特性を改善する
、所謂、倍速駆動と呼ばれる駆動技術もある。
また、液晶表示装置の動画特性を改善するため、バックライトとして複数のLED(発光
ダイオード)光源または複数のEL光源などを用いて面光源を構成し、面光源を構成して
いる各光源を独立して1フレーム期間内で間欠点灯駆動する駆動技術もある。面光源とし
て、3種類以上のLEDを用いてもよいし、白色発光のLEDを用いてもよい。独立して
複数のLEDを制御できるため、液晶層の光学変調の切り替えタイミングに合わせてLE
Dの発光タイミングを同期させることもできる。この駆動技術は、LEDを部分的に消灯
することができるため、特に一画面を占める黒い表示領域の割合が多い映像表示の場合に
は、消費電力の低減効果が図れる。
これらの駆動技術を組み合わせることによって、液晶表示装置の動画特性などの表示特性
を従来よりも改善することができる。
本実施の形態で得られるnチャネル型のトランジスタは、インキュベーション状態である
In−Ga−Zn−O系膜をチャネル形成領域に用いており、良好な動特性を有するため
、これらの駆動技術を組み合わせることができる。
また、発光表示装置を作製する場合、有機発光素子の一方の電極(カソードとも呼ぶ)は
、低電源電位、例えばGND、0Vなどに設定するため、端子部に、カソードを低電源電
位、例えばGND、0Vなどに設定するための第4の端子が設けられる。また、発光表示
装置を作製する場合には、ソース配線、及びゲート配線に加えて電源供給線を設ける。従
って、端子部には、電源供給線と電気的に接続する第5の端子を設ける。
以上の工程により、電気特性が良好で信頼性の高い薄膜トランジスタ及び該薄膜トランジ
スタを用いた表示装置を提供することができる。
なお、本実施の形態に示す構成は、実施の形態1に示した構成を適宜組み合わせて用いる
ことができる。
(実施の形態3)
本実施の形態では、同一基板上に少なくとも駆動回路部の一部と、画素部に配置する薄膜
トランジスタを作製する例について以下に説明する。
画素部に配置する薄膜トランジスタは、実施の形態1または実施の形態2に従って形成す
る。また、実施の形態1または実施の形態2に示す薄膜トランジスタはnチャネル型TF
Tであるため、駆動回路のうち、nチャネル型TFTで構成することができる駆動回路の
一部を画素部の薄膜トランジスタと同一基板上に形成する。
アクティブマトリクス型表示装置のブロック図の一例を図11(A)に示す。表示装置の
基板5300上には、画素部5301、第1の走査線駆動回路5302、第2の走査線駆
動回路5303、信号線駆動回路5304を有する。画素部5301には、複数の信号線
が信号線駆動回路5304から延伸して配置され、複数の走査線が第1の走査線駆動回路
5302、及び第2の走査線駆動回路5303から延伸して配置されている。なお走査線
と信号線との交差領域には、各々、表示素子を有する画素がマトリクス状に配置されてい
る。また、表示装置の基板5300はFPC(Flexible Printed Ci
rcuit)等の接続部を介して、タイミング制御回路5305(コントローラ、制御I
Cともいう)に接続されている。
図11(A)では、第1の走査線駆動回路5302、第2の走査線駆動回路5303、信
号線駆動回路5304は、画素部5301と同じ基板5300上に形成される。そのため
、外部に設ける駆動回路等の部品の数が減るので、コストの低減を図ることができる。ま
た、基板5300外部に駆動回路を設けた場合、配線を延伸させる必要が生じ、配線間の
接続数が増える。同じ基板5300上に駆動回路を設けた場合、その配線間の接続数を減
らすことができ、信頼性の向上、又は歩留まりの向上を図ることができる。
なお、タイミング制御回路5305は、第1の走査線駆動回路5302に対し、一例とし
て、第1の走査線駆動回路用スタート信号(GSP1)(スタート信号はスタートパルス
ともいう)、走査線駆動回路用クロック信号(GCK1)を供給する。また、タイミング
制御回路5305は、第2の走査線駆動回路5303に対し、一例として、第2の走査線
駆動回路用スタート信号(GSP2)、走査線駆動回路用クロック信号(GCK2)を供
給する。タイミング制御回路5305は、信号線駆動回路5304に、信号線駆動回路用
スタート信号(SSP)、信号線駆動回路用クロック信号(SCK)、ビデオ信号用デー
タ(DATA)(単にビデオ信号ともいう)、ラッチ信号(LAT)を供給するものとす
る。なお各クロック信号は、周期のずれた複数のクロック信号でもよいし、クロック信号
を反転させた信号(CKB)とともに供給されるものであってもよい。なお、第1の走査
線駆動回路5302と第2の走査線駆動回路5303との一方を省略することが可能であ
る。
図11(B)では、駆動周波数が低い回路(例えば、第1の走査線駆動回路5302、第
2の走査線駆動回路5303)を画素部5301と同じ基板5300に形成し、信号線駆
動回路5304を画素部5301とは別の基板に形成する構成について示している。当該
構成により、単結晶半導体を用いたトランジスタと比較すると電界効果移動度が小さい薄
膜トランジスタによって、基板5300に形成する駆動回路を構成することができる。し
たがって、表示装置の大型化、工程数の削減、コストの低減、又は歩留まりの向上などを
図ることができる。
また、実施の形態1または実施の形態2に示す薄膜トランジスタは、nチャネル型TFT
である。図12(A)、図12(B)ではnチャネル型TFTで構成する信号線駆動回路
の構成、動作について一例を示し説明する。
信号線駆動回路は、シフトレジスタ5601、及びスイッチング回路5602を有する。
スイッチング回路5602は、スイッチング回路5602_1〜5602_N(Nは自然
数)という複数の回路を有する。スイッチング回路5602_1〜5602_Nは、各々
、薄膜トランジスタ5603_1〜5603_k(kは自然数)という複数のトランジス
タを有する。薄膜トランジスタ5603_1〜5603_kが、nチャネル型TFTであ
る例を説明する。
信号線駆動回路の接続関係について、スイッチング回路5602_1を例にして説明する
。薄膜トランジスタ5603_1〜5603_kの第1端子は、各々、配線5604_1
〜5604_kと接続される。薄膜トランジスタ5603_1〜5603_kの第2端子
は、各々、信号線S1〜Skと接続される。薄膜トランジスタ5603_1〜5603_
kのゲートは、配線5605_1と接続される。
シフトレジスタ5601は、配線5605_1〜5605_Nに順番にHレベル(H信号
、高電源電位レベル、ともいう)の信号を出力し、スイッチング回路5602_1〜56
02_Nを順番に選択する機能を有する。
スイッチング回路5602_1は、配線5604_1〜5604_kと信号線S1〜Sk
との導通状態(第1端子と第2端子との間の導通)を制御する機能、即ち配線5604_
1〜5604_kの電位を信号線S1〜Skに供給するか否かを制御する機能を有する。
このように、スイッチング回路5602_1は、セレクタとしての機能を有する。また薄
膜トランジスタ5603_1〜5603_kは、各々、配線5604_1〜5604_k
と信号線S1〜Skとの導通状態を制御する機能、即ち配線5604_1〜5604_k
の電位を信号線S1〜Skに供給する機能を有する。このように、薄膜トランジスタ56
03_1〜5603_kは、各々、スイッチとしての機能を有する。
なお、配線5604_1〜5604_kには、各々、ビデオ信号用データ(DATA)が
入力される。ビデオ信号用データ(DATA)は、画像情報又は画像信号に応じたアナロ
グ信号である場合が多い。
次に、図12(A)の信号線駆動回路の動作について、図12(B)のタイミングチャー
トを参照して説明する。図12(B)には、信号Sout_1〜Sout_N、及び信号
Vdata_1〜Vdata_kの一例を示す。信号Sout_1〜Sout_Nは、各
々、シフトレジスタ5601の出力信号の一例であり、信号Vdata_1〜Vdata
_kは、各々、配線5604_1〜5604_kに入力される信号の一例である。なお、
信号線駆動回路の1動作期間は、表示装置における1ゲート選択期間に対応する。1ゲー
ト選択期間は、一例として、期間T1〜期間TNに分割される。期間T1〜TNは、各々
、選択された行に属する画素にビデオ信号用データ(DATA)を書き込むための期間で
ある。
期間T1〜期間TNにおいて、シフトレジスタ5601は、Hレベルの信号を配線560
5_1〜5605_Nに順番に出力する。例えば、期間T1において、シフトレジスタ5
601は、ハイレベルの信号を配線5605_1に出力する。すると、薄膜トランジスタ
5603_1〜5603_kはオンになるので、配線5604_1〜5604_kと、信
号線S1〜Skとが導通状態になる。このとき、配線5604_1〜5604_kには、
Data(S1)〜Data(Sk)が入力される。Data(S1)〜Data(Sk
)は、各々、薄膜トランジスタ5603_1〜5603_kを介して、選択される行に属
する画素のうち、1列目〜k列目の画素に書き込まれる。こうして、期間T1〜TNにお
いて、選択された行に属する画素に、k列ずつ順番にビデオ信号用データ(DATA)が
書き込まれる。
以上のように、ビデオ信号用データ(DATA)が複数の列ずつ画素に書き込まれること
によって、ビデオ信号用データ(DATA)の数、又は配線の数を減らすことができる。
よって、外部回路との接続数を減らすことができる。また、ビデオ信号が複数の列ずつ画
素に書き込まれることによって、書き込み時間を長くすることができ、ビデオ信号の書き
込み不足を防止することができる。
なお、シフトレジスタ5601及びスイッチング回路5602としては、実施の形態1ま
たは実施の形態2に示す薄膜トランジスタで構成される回路を用いることが可能である。
この場合、シフトレジスタ5601が有する全てのトランジスタを単極性のトランジスタ
で構成することができる。
走査線駆動回路及び/または信号線駆動回路の一部に用いるシフトレジスタの一形態につ
いて図13及び図14を用いて説明する。
走査線駆動回路は、シフトレジスタを有している。また場合によってはレベルシフタやバ
ッファを有していても良い。走査線駆動回路において、シフトレジスタにクロック信号(
CLK)及びスタートパルス信号(SP)が入力されることによって、選択信号が生成さ
れる。生成された選択信号はバッファにおいて緩衝増幅され、対応する走査線に供給され
る。走査線には、1ライン分の画素のトランジスタのゲート電極が接続されている。そし
て、1ライン分の画素のトランジスタを一斉にONにしなくてはならないので、バッファ
は大きな電流を流すことが可能なものが用いられる。
シフトレジスタは、第1のパルス出力回路10_1乃至第Nのパルス出力回路10_N(
Nは3以上の自然数)を有している(図13(A)参照)。図13(A)に示すシフトレ
ジスタの第1のパルス出力回路10_1乃至第Nのパルス出力回路10_Nには、第1の
配線11より第1のクロック信号CK1、第2の配線12より第2のクロック信号CK2
、第3の配線13より第3のクロック信号CK3、第4の配線14より第4のクロック信
号CK4が供給される。また第1のパルス出力回路10_1では、第5の配線15からの
スタートパルスSP1(第1のスタートパルス)が入力される。また2段目以降の第nの
パルス出力回路10_n(nは、2以上N以下の自然数)では、一段前段のパルス出力回
路からの信号(前段信号OUT(n−1)という)(nは2以上の自然数)が入力される
。また第1のパルス出力回路10_1では、2段後段の第3のパルス出力回路10_3か
らの信号が入力される。同様に、2段目以降の第nのパルス出力回路10_nでは、2段
後段の第(n+2)のパルス出力回路10_(n+2)からの信号(後段信号OUT(n
+2)という)が入力される。従って、各段のパルス出力回路からは、後段及び/または
二つ前段のパルス出力回路に入力するための第1の出力信号(OUT(1)(SR)〜O
UT(N)(SR))、別の配線等に入力される第2の出力信号(OUT(1)〜OUT
(N))が出力される。なお、図13(A)に示すように、シフトレジスタの最終段の2
つの段には、後段信号OUT(n+2)が入力されないが、一例としては、別途第6の配
線16より第2のスタートパルスSP2、第7の配線17より第3のスタートパルスSP
3をそれぞれ入力する構成とすればよい。または、別途シフトレジスタの内部で生成され
た信号であってもよい。例えば、画素部へのパルス出力に寄与しない第(N+1)のパル
ス出力回路10_(N+1)、第(N+2)のパルス出力回路10_(N+2)を設け(
ダミー段ともいう)、当該ダミー段より第2のスタートパルス(SP2)及び第3のスタ
ートパルス(SP3)に相当する信号を生成する構成としてもよい。
なお、クロック信号(CK)は、一定の間隔でHレベルとLレベル(L信号、低電源電位
レベル、ともいう)を繰り返す信号である。ここで、第1のクロック信号(CK1)〜第
4のクロック信号(CK4)は、順に1/4周期分遅延している。本実施の形態では、第
1のクロック信号(CK1)〜第4のクロック信号(CK4)を利用して、パルス出力回
路の駆動の制御等を行う。なお、クロック信号は、入力される駆動回路に応じて、GCK
、SCKということもあるが、ここではCKとして説明を行う。
第1の入力端子21、第2の入力端子22及び第3の入力端子23は、第1の配線11
〜第4の配線14のいずれかと電気的に接続されている。例えば、図13(A)において
、第1のパルス出力回路10_1は、第1の入力端子21が第1の配線11と電気的に接
続され、第2の入力端子22が第2の配線12と電気的に接続され、第3の入力端子23
が第3の配線13と電気的に接続されている。また、第2のパルス出力回路10_2は、
第1の入力端子21が第2の配線12と電気的に接続され、第2の入力端子22が第3の
配線13と電気的に接続され、第3の入力端子23が第4の配線14と電気的に接続され
ている。
第1のパルス出力回路10_1〜第Nのパルス出力回路10_Nの各々は、第1の入力端
子21、第2の入力端子22、第3の入力端子23、第4の入力端子24、第5の入力端
子25、第1の出力端子26、第2の出力端子27を有しているとする(図13(B)参
照)。第1のパルス出力回路10_1において、第1の入力端子21に第1のクロック信
号CK1が入力され、第2の入力端子22に第2のクロック信号CK2が入力され、第3
の入力端子23に第3のクロック信号CK3が入力され、第4の入力端子24にスタート
パルスが入力され、第5の入力端子25に後段信号OUT(3)が入力され、第1の出力
端子26より第1の出力信号OUT(1)(SR)が出力され、第2の出力端子27より
第2の出力信号OUT(1)が出力されていることとなる。
次に、パルス出力回路の具体的な回路構成の一例について、図13(C)で説明する。
図13(C)に示した第1のパルス出力回路10_1は、第1のトランジスタ31〜第
11のトランジスタ41を有している。また、上述した第1の入力端子21〜第5の入力
端子25、及び第1の出力端子26、第2の出力端子27に加え、第1の高電源電位VD
Dが供給される電源線51、第2の高電源電位VCCが供給される電源線52、低電源電
位VSSが供給される電源線53から、第1のトランジスタ31〜第11のトランジスタ
41に信号、または電源電位が供給される。ここで図13(C)における各電源線の電源
電位の大小関係は、第1の電源電位VDDは第2の電源電位VCC以上とし、第2の電源
電位VCCは第3の電源電位VSSより大きい電位とする。なお、第1のクロック信号(
CK1)〜第4のクロック信号(CK4)は、一定の間隔でHレベルとLレベルを繰り返
す信号であるが、HレベルのときVDD、LレベルのときVSSであるとする。なお電源
線51の電位VDDを、電源線52の電位VCCより高くすることにより、動作に影響を
与えることなく、トランジスタのゲート電極に印加される電位を低く抑えることができ、
トランジスタのしきい値のシフトを低減し、劣化を抑制することができる。
図13(C)において第1のトランジスタ31は、第1端子が電源線51に電気的に接
続され、第2端子が第9のトランジスタ39の第1端子に電気的に接続され、ゲート電極
が第4の入力端子24に電気的に接続されている。第2のトランジスタ32は、第1端子
が電源線53に電気的に接続され、第2端子が第9のトランジスタ39の第1端子に電気
的に接続され、ゲート電極が第4のトランジスタ34のゲート電極に電気的に接続されて
いる。第3のトランジスタ33は、第1端子が第1の入力端子21に電気的に接続され、
第2端子が第1の出力端子26に電気的に接続されている。第4のトランジスタ34は、
第1端子が電源線53に電気的に接続され、第2端子が第1の出力端子26に電気的に接
続されている。第5のトランジスタ35は、第1端子が電源線53に電気的に接続され、
第2端子が第2のトランジスタ32のゲート電極及び第4のトランジスタ34のゲート電
極に電気的に接続され、ゲート電極が第4の入力端子24に電気的に接続されている。第
6のトランジスタ36は、第1端子が電源線52に電気的に接続され、第2端子が第2の
トランジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続
され、ゲート電極が第5の入力端子25に電気的に接続されている。第7のトランジスタ
37は、第1端子が電源線52に電気的に接続され、第2端子が第8のトランジスタ38
の第2端子に電気的に接続され、ゲート電極が第3の入力端子23に電気的に接続されて
いる。第8のトランジスタ38は、第1端子が第2のトランジスタ32のゲート電極及び
第4のトランジスタ34のゲート電極に電気的に接続され、ゲート電極が第2の入力端子
22に電気的に接続されている。第9のトランジスタ39は、第1端子が第1のトランジ
スタ31の第2端子及び第2のトランジスタ32の第2端子に電気的に接続され、第2端
子が第3のトランジスタ33のゲート電極及び第10のトランジスタ40のゲート電極に
電気的に接続され、ゲート電極が電源線52に電気的に接続されている。第10のトラン
ジスタ40は、第1端子が第1の入力端子21に電気的に接続され、第2端子が第2の出
力端子27に電気的に接続され、ゲート電極が第9のトランジスタ39の第2端子に電気
的に接続されている。第11のトランジスタ41は、第1端子が電源線53に電気的に接
続され、第2端子が第2の出力端子27に電気的に接続され、ゲート電極が第2のトラン
ジスタ32のゲート電極及び第4のトランジスタ34のゲート電極に電気的に接続されて
いる。
図13(C)において、第3のトランジスタ33のゲート電極、第10のトランジスタ
40のゲート電極、及び第9のトランジスタ39の第2端子の接続箇所をノードAとする
。また、第2のトランジスタ32のゲート電極、第4のトランジスタ34のゲート電極、
第5のトランジスタ35の第2端子、第6のトランジスタ36の第2端子、第8のトラン
ジスタ38の第1端子、及び第11のトランジスタ41のゲート電極の接続箇所をノード
Bとする(図14(A)参照)。
図14(A)に、図13(C)で説明したパルス出力回路を第1のパルス出力回路10_
1に適用した場合に、第1の入力端子21乃至第5の入力端子25と第1の出力端子26
及び第2の出力端子27に入力または出力される信号を示している。
具体的には、第1の入力端子21に第1のクロック信号CK1が入力され、第2の入力端
子22に第2のクロック信号CK2が入力され、第3の入力端子23に第3のクロック信
号CK3が入力され、第4の入力端子24にスタートパルスが入力され、第5の入力端子
25に後段信号OUT(3)が入力され、第1の出力端子26より第1の出力信号OUT
(1)(SR)が出力され、第2の出力端子27より第2の出力信号OUT(1)が出力
される。
なお、薄膜トランジスタとは、ゲートと、ドレインと、ソースとを含む少なくとも三つの
端子を有する素子である。また、ゲートと重畳した領域にチャネル領域が形成される半導
体を有しており、ゲートの電位を制御することで、チャネル領域を介してドレインとソー
スの間に流れる電流を制御することが出来る。ここで、ソースとドレインとは、薄膜トラ
ンジスタの構造や動作条件等によって変わるため、いずれがソースまたはドレインである
かを限定することが困難である。そこで、ソース及びドレインとして機能する領域を、ソ
ースもしくはドレインと呼ばない場合がある。その場合、一例としては、それぞれを第1
端子、第2端子と表記する場合がある。
ここで、図14(A)に示したパルス出力回路を複数具備するシフトレジスタのタイミン
グチャートについて図14(B)に示す。なおシフトレジスタが走査線駆動回路である場
合、図14(B)中の期間61は垂直帰線期間であり、期間62はゲート選択期間に相当
する。
なお、図14(A)に示すように、ゲート電極に第2の電源電位VCCが印加される第9
のトランジスタ39を設けておくことにより、ブートストラップ動作の前後において、以
下のような利点がある。
ゲート電極に第2の電源電位VCCが印加される第9のトランジスタ39がない場合、ブ
ートストラップ動作によりノードAの電位が上昇すると、第1のトランジスタ31の第2
端子であるソースの電位が上昇していき、第1の電源電位VDDより大きくなる。そして
、第1のトランジスタ31のソースが第1端子側、即ち電源線51側に切り替わる。その
ため、第1のトランジスタ31においては、ゲートとソースの間、ゲートとドレインの間
ともに、大きなバイアス電圧が印加されるために大きなストレスがかかり、トランジスタ
の劣化の要因となりうる。そこで、ゲート電極に第2の電源電位VCCが印加される第9
のトランジスタ39を設けておくことにより、ブートストラップ動作によりノードAの電
位は上昇するものの、第1のトランジスタ31の第2端子の電位の上昇を生じないように
することができる。つまり、第9のトランジスタ39を設けることにより、第1のトラン
ジスタ31のゲートとソースの間に印加される負のバイアス電圧の値を小さくすることが
できる。よって、本実施の形態の回路構成とすることにより、第1のトランジスタ31の
ゲートとソースの間に印加される負のバイアス電圧も小さくできるため、ストレスによる
第1のトランジスタ31の劣化を抑制することができる。
なお、第9のトランジスタ39を設ける箇所については、第1のトランジスタ31の第2
端子と第3のトランジスタ33のゲートとの間に第1端子と第2端子を介して接続される
ように設ける構成であればよい。なお、本実施形態でのパルス出力回路を複数具備するシ
フトレジスタの場合、走査線駆動回路より段数の多い信号線駆動回路では、第9のトラン
ジスタ39を省略してもよく、トランジスタ数を削減する利点がある。
なお第1のトランジスタ31乃至第11のトランジスタ41の半導体層として、インキュ
ベーション状態を有するIn−Ga−Zn−O系膜を用いることにより、薄膜トランジス
タのオフ電流を低減すると共に、オン電流及び電界効果移動度を高めることが出来ると共
に、劣化の度合いを低減することが出来るため、回路内の誤動作を低減することができる
。またインキュベーション状態を有するIn−Ga−Zn−O系膜をチャネル形成領域に
用いたトランジスタは、アモルファスシリコンを用いたトランジスタに比べ、ゲート電極
に高電位が印加されることによるトランジスタの劣化の程度が小さい。そのため、第2の
電源電位VCCを供給する電源線に、第1の電源電位VDDを供給しても同様の動作が得
られ、且つ回路間を引き回す電源線の数を低減することができるため、回路の小型化を図
ることが出来る。
なお、第7のトランジスタ37のゲート電極に第3の入力端子23によって供給されるク
ロック信号、第8のトランジスタ38のゲート電極に第2の入力端子22によって供給さ
れるクロック信号は、第7のトランジスタ37のゲート電極に第2の入力端子22によっ
て供給されるクロック信号、第8のトランジスタ38のゲート電極に第3の入力端子23
によって供給されるクロック信号となるように、結線関係を入れ替えても同様の作用を奏
する。なお、図14(A)に示すシフトレジスタにおいて、第7のトランジスタ37及び
第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37がオフ、第8の
トランジスタ38がオンの状態、次いで第7のトランジスタ37がオフ、第8のトランジ
スタ38がオフの状態とすることによって、第2の入力端子22及び第3の入力端子23
の電位が低下することで生じる、ノードBの電位の低下が第7のトランジスタ37のゲー
ト電極の電位の低下、及び第8のトランジスタ38のゲート電極の電位の低下に起因して
2回生じることとなる。一方、図14(A)に示すシフトレジスタにおいて第7のトラン
ジスタ37及び第8のトランジスタ38が共にオンの状態から、第7のトランジスタ37
がオン、第8のトランジスタ38がオフの状態、次いで、第7のトランジスタ37がオフ
、第8のトランジスタ38がオフの状態とすることによって、第2の入力端子22及び第
3の入力端子23の電位が低下することで生じるノードBの電位の低下を、第8のトラン
ジスタ38のゲート電極の電位の低下による一回に低減することができる。そのため、第
7のトランジスタ37のゲート電極に第3の入力端子23からクロック信号CK3が供給
され、第8のトランジスタ38のゲート電極に第2の入力端子22からクロック信号CK
2が供給される結線関係とすることが好適である。なぜなら、ノードBの電位の変動回数
が低減され、またノイズを低減することが出来るからである。
このように、第1の出力端子26及び第2の出力端子27の電位をLレベルに保持する
期間に、ノードBに定期的にHレベルの信号が供給される構成とすることにより、パルス
出力回路の誤動作を抑制することができる。
(実施の形態4)
実施の形態1及び2に示す薄膜トランジスタを作製し、該薄膜トランジスタを画素部、さ
らには駆動回路部に用いて表示機能を有する半導体装置(表示装置ともいう)を作製する
ことができる。また、実施の形態1及び2に示す薄膜トランジスタを用いて駆動回路部の
一部または全体を、画素部と同じ基板上に一体形成し、システムオンパネルを形成するこ
とができる。
表示装置は表示素子を含む。表示素子としては液晶素子(液晶表示素子ともいう)、発光
素子(発光表示素子ともいう)を用いることができる。発光素子は、電流または電圧によ
って輝度が制御される素子をその範疇に含んでおり、具体的には無機EL(Electr
o Luminescence)、有機EL等が含まれる。また、電子インクなど、電気
的作用によりコントラストが変化する表示媒体も適用することができる。
また、表示装置は、表示素子が封止された状態にあるパネルと、該パネルにコントローラ
を含むIC等を実装した状態にあるモジュールとを含む。さらに、該表示装置を作製する
過程における、表示素子が完成する前の一形態に相当する素子基板に関し、該素子基板は
、電流を表示素子に供給するための手段を複数の各画素に備える。素子基板は、具体的に
は、表示素子の画素電極のみが形成された状態であっても良いし、画素電極となる導電膜
を成膜した後であって、エッチングして画素電極を形成する前の状態であっても良いし、
あらゆる形態があてはまる。
なお、本明細書中における表示装置とは、画像表示デバイス、表示デバイス、もしくは光
源(照明装置含む)を指す。また、コネクター、例えばFPC(Flexible pr
inted circuit)もしくはTAB(Tape Automated Bon
ding)テープもしくはTCP(Tape Carrier Package)が取り
付けられたモジュール、TABテープやTCPの先にプリント配線板が設けられたモジュ
ール、または表示素子にCOG(Chip On Glass)方式によりIC(集積回
路)が直接実装されたモジュールも全て表示装置に含むものとする。
本実施の形態では、半導体装置の一形態に相当する液晶表示パネルの外観及び断面につい
て、図15を用いて説明する。図15(A1)(A2)は、第1の基板4001上に形成
された実施の形態1及び2で示したインキュベーション状態であるIn−Ga−Zn−O
系膜をチャネル形成領域として含む薄膜トランジスタ4010、4011、及び液晶素子
4013を、第1の基板4001と第2の基板4006との間にシール材4005によっ
て封止した、パネルの上面図であり、図15(B)は、図15(A1)(A2)のM−N
における断面図に相当する。
第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004とを囲む
ようにして、シール材4005が設けられている。また画素部4002と、走査線駆動回
路4004の上に第2の基板4006が設けられている。よって画素部4002と、走査
線駆動回路4004とは、第1の基板4001とシール材4005と第2の基板4006
とによって、液晶層4008と共に封止されている。また第1の基板4001上のシール
材4005によって囲まれている領域とは異なる領域に、別途用意された基板上に単結晶
半導体又は多結晶半導体で形成された信号線駆動回路4003が実装されている。
なお、別途形成した駆動回路の接続方法は、特に限定されるものではなく、COG法、ワ
イヤボンディング法、或いはTAB法などを用いることができる。図15(A1)は、C
OG方法により信号線駆動回路4003を実装する例であり、図15(A2)は、TAB
方法により信号線駆動回路4003を実装する例である。
また第1の基板4001上に設けられた画素部4002と、走査線駆動回路4004は、
薄膜トランジスタを複数有しており、図15(B)では、画素部4002に含まれる薄膜
トランジスタ4010と、走査線駆動回路4004に含まれる薄膜トランジスタ4011
とを例示している。薄膜トランジスタ4010、4011上には絶縁層4020、402
1が設けられている。
薄膜トランジスタ4010、4011は、インキュベーション状態であるIn−Ga−Z
n−O系膜をチャネル形成領域として含む実施の形態1及び2に示す薄膜トランジスタを
適用することができる。本実施の形態において、薄膜トランジスタ4010、4011は
nチャネル型薄膜トランジスタである。
絶縁層4044上において駆動回路用の薄膜トランジスタ4011の酸化物半導体層のチ
ャネル形成領域と重なる位置に導電層4040が設けられている。導電層4040は画素
電極層4030と同じ材料を用いて同一工程で形成することができる。導電層4040を
酸化物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後に
おける薄膜トランジスタ4011のしきい値電圧の変化量を低減することができる。また
、導電層4040は、電位が薄膜トランジスタ4011のゲート電極層と同じでもよいし
、異なっていても良く、第2のゲート電極層として機能させることもできる。また、導電
層4040の電位がGND、0V、或いはフローティング状態であってもよい。
また、液晶素子4013が有する画素電極層4030は、薄膜トランジスタ4010と電
気的に接続されている。そして液晶素子4013の対向電極層4031は第2の基板40
06に形成されている。画素電極層4030と対向電極層4031と液晶層4008とが
重なっている部分が、液晶素子4013に相当する。なお、画素電極層4030、対向電
極層4031はそれぞれ配向膜として機能する絶縁層4032、4033が設けられ、絶
縁層4032、4033を介して液晶層4008を挟持している。なお、図示はしていな
いが、カラーフィルタは第1の基板4001または第2の基板4006のどちら側に設け
ても良い。
なお、第1の基板4001、第2の基板4006としては、ガラス、金属(代表的にはス
テンレス)、セラミックス、プラスチックを用いることができる。プラスチックとしては
、FRP(Fiberglass−Reinforced Plastics)板、PV
F(ポリビニルフルオライド)フィルム、ポリエステルフィルム、またはアクリル樹脂フ
ィルムを用いることができる。また、アルミニウムホイルをPVFフィルムやポリエステ
ルフィルムで挟んだ構造のシートを用いることもできる。
また4035は絶縁膜を選択的にエッチングすることで得られる柱状のスペーサであり、
画素電極層4030と対向電極層4031との間の距離(セルギャップ)を制御するため
に設けられている。なお球状のスペーサを用いていても良い。また、対向電極層4031
は、薄膜トランジスタ4010と同一基板上に設けられる共通電位線と電気的に接続され
る。共通接続部を用いて、一対の基板間に配置される導電性粒子を介して対向電極層40
31と共通電位線とを電気的に接続することができる。なお、導電性粒子はシール材40
05に含有させる。
また、配向膜を用いないブルー相を示す液晶を用いてもよい。ブルー相は液晶相の一つで
あり、コレステリック液晶を昇温していくと、コレステリック相から等方相へ転移する直
前に発現する相である。ブルー相は狭い温度範囲でしか発現しないため、温度範囲を改善
するために5重量%以上のカイラル剤を混合させた液晶組成物を用いて液晶層4008に
用いる。ブルー相を示す液晶とカイラル剤とを含む液晶組成物は、応答速度が10μse
c.以上100μsec.以下と短く、光学的等方性であるため配向処理が不要であり、
視野角依存性が小さい。なお、ブルー相を用いる場合は、図15の構成に限らず、対向電
極層4031に相当する電極層が画素電極層4030と同じ基板側に形成された構造の、
所謂横電界モードの構成を用いても良い。
なお本実施の形態は透過型液晶表示装置の例であるが、本発明は反射型液晶表示装置でも
半透過型液晶表示装置でも適用できる。
また、本実施の形態の液晶表示装置では、基板の外側(視認側)に偏光板を設け、内側に
着色層、表示素子に用いる電極層という順に設ける例を示すが、偏光板は基板の内側に設
けてもよい。また、偏光板と着色層の積層構造も本実施の形態に限定されず、偏光板及び
着色層の材料や作製工程条件によって適宜設定すればよい。また、ブラックマトリクスと
して機能する遮光膜を設けてもよい。
また、本実施の形態では、薄膜トランジスタの表面凹凸を低減するため、及び薄膜トラン
ジスタの信頼性を向上させるため、実施の形態2で得られた薄膜トランジスタを保護膜や
平坦化絶縁膜として機能する絶縁層(絶縁層4020、絶縁層4021)で覆う構成とな
っている。なお、保護膜は、大気中に浮遊する有機物や金属物、水蒸気などの汚染不純物
の侵入を防ぐためのものであり、緻密な膜が好ましい。保護膜は、スパッタ法を用いて、
酸化シリコン膜、窒化シリコン膜、酸化窒化シリコン膜、窒化酸化シリコン膜、酸化アル
ミニウム膜、窒化アルミニウム膜、酸化窒化アルミニウム膜、又は窒化酸化アルミニウム
膜の単層、又は積層で形成すればよい。本実施の形態では保護膜をスパッタ法で形成する
例を示すが、特に限定されず種々の方法で形成すればよい。
ここでは、保護膜として積層構造の絶縁層4020を形成する。ここでは、絶縁層402
0の一層目として、スパッタ法を用いて酸化シリコン膜を形成する。保護膜として酸化シ
リコン膜を用いると、ソース電極層及びドレイン電極層として用いるアルミニウム膜のヒ
ロック防止に効果がある。
また、保護膜の二層目として絶縁層を形成する。ここでは、絶縁層4020の二層目とし
て、スパッタ法を用いて窒化シリコン膜を形成する。保護膜として窒化シリコン膜を用い
ると、ナトリウム等の可動イオンが半導体領域中に侵入して、TFTの電気特性を変化さ
せることを抑制することができる。
また、保護膜を形成した後に、酸化物半導体層のアニール(300℃以上400℃以下)
を行ってもよい。
また、平坦化絶縁膜として絶縁層4021を形成する。絶縁層4021としては、アクリ
ル樹脂、ポリイミド、ベンゾシクロブテン樹脂、ポリアミド、エポキシ樹脂等の、耐熱性
を有する有機材料を用いることができる。また上記有機材料の他に、低誘電率材料(lo
w−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リンボロンガラス
)等を用いることができる。なお、これらの材料で形成される絶縁膜を複数積層させるこ
とで、絶縁層4021を形成してもよい。
なおシロキサン系樹脂とは、シロキサン系材料を出発材料として形成されたSi−O−S
i結合を含む樹脂に相当する。シロキサン系樹脂は置換基としては有機基(例えばアルキ
ル基やアリール基)やフルオロ基を用いても良い。また、有機基はフルオロ基を有してい
ても良い。
絶縁層4021の形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法
、スピンコート、ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン
印刷、オフセット印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイ
フコーター等を用いることができる。絶縁層4021を材料液を用いて形成する場合、ベ
ークする工程で同時に、酸化物半導体層のアニール(300℃以上400℃以下)を行っ
てもよい。絶縁層4021の焼成工程と酸化物半導体層のアニールを兼ねることで効率よ
く半導体装置を作製することが可能となる。
画素電極層4030、対向電極層4031は、酸化タングステンを含むインジウム酸化物
、酸化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、
酸化チタンを含むインジウム錫酸化物、インジウム錫酸化物(以下、ITOと示す。)、
インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透光性を有する
導電性材料を用いることができる。
また、画素電極層4030、対向電極層4031として、導電性高分子(導電性ポリマー
ともいう)を含む導電性組成物を用いて形成することができる。導電性組成物を用いて形
成した画素電極は、シート抵抗が10000Ω/□以下、波長550nmにおける透光率
が70%以上であることが好ましい。また、導電性組成物に含まれる導電性高分子の抵抗
率が0.1Ω・cm以下であることが好ましい。
導電性高分子としては、いわゆるπ電子共役系導電性高分子が用いることができる。例え
ば、ポリアニリンまたはその誘導体、ポリピロールまたはその誘導体、ポリチオフェンま
たはその誘導体、若しくはこれらの2種以上の共重合体などがあげられる。
また別途形成された信号線駆動回路4003と、走査線駆動回路4004及び画素部40
02に与えられる各種信号及び電位は、FPC4018から供給されている。
本実施の形態では、接続端子電極4015が、液晶素子4013が有する画素電極層40
30と同じ導電膜から形成され、端子電極4016は、薄膜トランジスタ4010、40
11のソース電極層及びドレイン電極層と同じ導電膜で形成されている。
接続端子電極4015は、FPC4018が有する端子と、異方性導電膜4019を介し
て電気的に接続されている。
また図15においては、信号線駆動回路4003を別途形成し、第1の基板4001に実
装している例を示しているが、本実施の形態はこの構成に限定されない。走査線駆動回路
を別途形成して実装しても良いし、信号線駆動回路の一部または走査線駆動回路の一部の
みを別途形成して実装しても良い。
図16は、実施の形態1及び2に示すTFTを適用して作製されるTFTが設けられた基
板、即ちTFT基板2600を用いて半導体装置として液晶表示モジュールを構成する一
例を示している。
図16は液晶表示モジュールの一例であり、TFT基板2600と対向基板2601がシ
ール材2602により固着され、その間にTFT等を含む画素部2603、液晶層を含む
表示素子2604、着色層2605等が設けられ表示領域を形成している。また、TFT
基板2600及び対向基板2601は偏光板2606、偏光板2607を備えている。着
色層2605はカラー表示を行う場合に必要であり、RGB方式の場合は、赤、緑、青の
各色に対応した着色層が各画素に対応して設けられている。TFT基板2600と対向基
板2601の外側には偏光板2606、偏光板2607、拡散板2613が配設されてい
る。光源は冷陰極管2610と反射板2611により構成され、回路基板2612は、フ
レキシブル配線基板2609によりTFT基板2600の配線回路部2608と接続され
、コントロール回路や電源回路などの外部回路が組みこまれている。また偏光板と、液晶
層との間に位相差板を有した状態で積層してもよい。
液晶表示モジュールには、TN(Twisted Nematic)モード、IPS(I
n−Plane−Switching)モード、FFS(Fringe Field S
witching)モード、MVA(Multi−domain Vertical A
lignment)モード、PVA(Patterned Vertical Alig
nment)モード、ASM(Axially Symmetric aligned
Micro−cell)モード、OCB(Optical Compensated B
irefringence)モード、FLC(Ferroelectric Liqui
d Crystal)モード、AFLC(AntiFerroelectric Liq
uid Crystal)モードなどを用いることができる。
以上の工程により、半導体装置として信頼性の高い液晶表示パネルを作製することができ
る。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態5)
本実施の形態では、実施の形態1及び2に示す薄膜トランジスタを適用した半導体装置と
して発光表示装置の例を示す。表示装置の有する表示素子としては、ここではエレクトロ
ルミネッセンスを利用する発光素子を用いて示す。エレクトロルミネッセンスを利用する
発光素子は、発光材料が有機化合物であるか、無機化合物であるかによって区別され、一
般的に、前者は有機EL素子、後者は無機EL素子と呼ばれている。
有機EL素子は、発光素子に電圧を印加することにより、一対の電極から電子および正孔
がそれぞれ発光性の有機化合物を含む層に注入され、電流が流れる。そして、それらキャ
リア(電子および正孔)が再結合することにより、発光する。このようなメカニズムから
、このような発光素子は、電流励起型の発光素子と呼ばれる。
無機EL素子は、その素子構成により、分散型無機EL素子と薄膜型無機EL素子とに分
類される。分散型無機EL素子は、発光材料の粒子をバインダ中に分散させた発光層を有
するものであり、発光メカニズムはドナー準位とアクセプター準位を利用するドナー−ア
クセプター再結合型発光である。薄膜型無機EL素子は、発光層を誘電体層で挟み込み、
さらにそれを電極で挟んだ構造であり、発光メカニズムは金属イオンの内殻電子遷移を利
用する局在型発光である。なお、ここでは、発光素子として有機EL素子を用いて説明す
る。
図17は、本発明を適用した半導体装置の例としてデジタル時間階調駆動を適用可能な画
素構成の一例を示す図である。
デジタル時間階調駆動を適用可能な画素の構成及び画素の動作について説明する。ここで
は、実施の形態1及び2で示した、インキュベーション状態である酸化物半導体層(In
−Ga−Zn−O系膜)をチャネル形成領域に用いるnチャネル型のトランジスタを、1
つの画素に2つ用いる例を示す。
画素6400は、スイッチング用トランジスタ6401、駆動用トランジスタ6402、
発光素子6404及び容量素子6403を有している。スイッチング用トランジスタ64
01はゲートが走査線6406に接続され、第1電極(ソース電極及びドレイン電極の一
方)が信号線6405に接続され、第2電極(ソース電極及びドレイン電極の他方)が駆
動用トランジスタ6402のゲートに接続されている。駆動用トランジスタ6402は、
ゲートが容量素子6403を介して電源線6407に接続され、第1電極が電源線640
7に接続され、第2電極が発光素子6404の第1電極(画素電極)に接続されている。
発光素子6404の第2電極は共通電極6408に相当する。共通電極6408は、同一
基板上に形成される共通電位線と電気的に接続される。
なお、発光素子6404の第2電極(共通電極6408)には低電源電位が設定されてい
る。なお、低電源電位とは、電源線6407に設定される高電源電位を基準にして低電源
電位<高電源電位を満たす電位であり、低電源電位としては例えばGND、0Vなどが設
定されていても良い。この高電源電位と低電源電位との電位差を発光素子6404に印加
して、発光素子6404に電流を流して発光素子6404を発光させるため、高電源電位
と低電源電位との電位差が発光素子6404の順方向しきい値電圧以上となるようにそれ
ぞれの電位を設定する。
なお、容量素子6403は駆動用トランジスタ6402のゲート容量を代用して省略する
ことも可能である。駆動用トランジスタ6402のゲート容量については、チャネル領域
とゲート電極との間で容量が形成されていてもよい。
ここで、電圧入力電圧駆動方式の場合には、駆動用トランジスタ6402のゲートには、
駆動用トランジスタ6402が十分にオンするか、オフするかの二つの状態となるような
ビデオ信号を入力する。つまり、駆動用トランジスタ6402は線形領域で動作させる。
駆動用トランジスタ6402は線形領域で動作させるため、電源線6407の電圧よりも
高い電圧を駆動用トランジスタ6402のゲートにかける。なお、信号線6405には、
(電源線電圧+駆動用トランジスタ6402のVth)以上の電圧をかける。
また、デジタル時間階調駆動に代えて、アナログ階調駆動を行う場合も信号の入力を異な
らせることで、図17と同じ画素構成を用いることができる。
アナログ階調駆動を行う場合、駆動用トランジスタ6402のゲートに発光素子6404
の順方向電圧+駆動用トランジスタ6402のVth以上の電圧をかける。発光素子64
04の順方向電圧とは、発光素子を所望の輝度とする場合の電圧を指しており、少なくと
も順方向しきい値電圧を含む。なお、駆動用トランジスタ6402が飽和領域で動作する
ようなビデオ信号を入力することで、発光素子6404に電流を流すことができる。駆動
用トランジスタ6402を飽和領域で動作させるため、電源線6407の電位は、駆動用
トランジスタ6402のゲート電位よりも高くする。ビデオ信号をアナログとすることで
、発光素子6404にビデオ信号に応じた電流を流し、アナログ階調駆動を行うことがで
きる。
なお、図17に示す画素構成は、これに限定されない。例えば、図17に示す画素に新た
にスイッチ、抵抗素子、容量素子、トランジスタ又は論理回路などを追加してもよい。
次に、発光素子の構成について、図18を用いて説明する。ここでは、発光素子駆動用T
FTがn型の場合を例に挙げて、画素の断面構造について説明する。図18(A)(B)
(C)の半導体装置に用いられる発光素子駆動用TFTであるTFT7001、7011
、7021は、実施の形態1及び2で示す薄膜トランジスタと同様に作製でき、インキュ
ベーション状態であるIn−Ga−Zn−O系膜をチャネル形成領域として含む薄膜トラ
ンジスタである。インキュベーション状態であるIn−Ga−Zn−O系膜をチャネル形
成領域として含む薄膜トランジスタを用いることにより発光素子を有する半導体装置の低
消費電力を実現することができる。
発光素子は発光を取り出すために少なくとも陽極又は陰極の一方が透光性を有していれば
よい。そして、基板上に薄膜トランジスタ及び発光素子を形成し、基板とは逆側の面から
発光を取り出す上面射出や、基板側の面から発光を取り出す下面射出や、基板側及び基板
とは反対側の面から発光を取り出す両面射出構造の発光素子があり、図17に示す画素構
成はどの射出構造の発光素子にも適用することができる。
下面射出構造の発光素子について図18(A)を用いて説明する。
発光素子駆動用TFT7011がn型で、発光素子7012から発せられる光が第1の電
極7013側に射出する場合の、画素の断面図を示す。図18(A)では、発光素子駆動
用TFT7011のドレイン電極層と電気的に接続された透光性を有する導電膜7017
上に、発光素子7012の第1の電極7013が形成されており、第1の電極7013上
にEL層7014、第2の電極7015が順に積層されている。
透光性を有する導電膜7017としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、発光素子の第1の電極7013は様々な材料を用いることができる。例えば、第1
の電極7013を陰極として用いる場合には、仕事関数が小さい材料、具体的には、例え
ば、LiやCs等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およ
びこれらを含む合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等
が好ましい。図18(A)では、第1の電極7013の膜厚は、光を透過する程度(好ま
しくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニウム膜
を、第1の電極7013として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7017と第1の電極7013を形成してもよく、この場合、同
じマスクを用いてエッチングすることができるため、好ましい。
また、第1の電極7013の周縁部は、隔壁7019で覆う。隔壁7019は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7019は、特に感光性の樹脂材料を用い、第1の電極70
13上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7019として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7013及び隔壁7019上に形成するEL層7014は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7014が複数の層で構成されている場合、陰極とし
て機能する第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なお、これらの内、発光層以外の層を全て設ける必要はない
また、上記積層順に限定されず、第1の電極7013を陽極として機能させ、第1の電極
7013上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層
してもよい。ただし、消費電力を比較する場合、第1の電極7013を陰極として機能さ
せ、第1の電極7013上に電子注入層、電子輸送層、発光層、ホール輸送層、ホール注
入層の順に積層するほうが、駆動回路部の電圧上昇を抑制でき、消費電力を少なくできる
ため好ましい。
また、EL層7014上に形成する第2の電極7015としては、様々な材料を用いるこ
とができる。例えば、第2の電極7015を陽極として用いる場合、仕事関数が大きい材
料、例えば、ZrN、Ti、W、Ni、Pt、Cr等や、ITO、IZO、ZnOなどの
透光性を有する導電性材料が好ましい。また、第2の電極7015上に遮蔽膜7016、
例えば光を遮光する金属、光を反射する金属等を用いる。本実施の形態では、第2の電極
7015としてITO膜を用い、遮蔽膜7016としてTi膜を用いる。
第1の電極7013及び第2の電極7015で、発光層を含むEL層7014を挟んでい
る領域が発光素子7012に相当する。図18(A)に示した素子構造の場合、発光素子
7012から発せられる光は、矢印で示すように第1の電極7013側に射出する。
なお、図18(A)において、発光素子7012から発せられる光は、カラーフィルタ層
7033を通過し、第2のゲート絶縁層7031、第1のゲート絶縁層7030、及び基
板7010を通過して射出させる。
カラーフィルタ層7033はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング法などでそれぞれ形成する。
また、カラーフィルタ層7033はオーバーコート層7034で覆われ、さらに保護絶縁
層7035によって覆う。なお、図18(A)ではオーバーコート層7034は薄い膜厚
で図示したが、オーバーコート層7034は、アクリル樹脂などの樹脂材料を用い、カラ
ーフィルタ層7033に起因する凹凸を平坦化する機能を有している。
また、第2のゲート絶縁層7031、絶縁層7032、カラーフィルタ層7033、オー
バーコート層7034、及び保護絶縁層7035に形成され、且つ、ドレイン電極層に達
するコンタクトホールは、隔壁7019と重なる位置に配置する。
次に、両面射出構造の発光素子について、図18(B)を用いて説明する。
図18(B)では、発光素子駆動用TFT7021のドレイン電極層と電気的に接続され
た透光性を有する導電膜7027上に、発光素子7022の第1の電極7023が形成さ
れており、第1の電極7023上にEL層7024、第2の電極7025が順に積層され
ている。
透光性を有する導電膜7027としては、酸化タングステンを含むインジウム酸化物、酸
化タングステンを含むインジウム亜鉛酸化物、酸化チタンを含むインジウム酸化物、酸化
チタンを含むインジウム錫酸化物、インジウム錫酸化物、インジウム亜鉛酸化物、酸化ケ
イ素を添加したインジウム錫酸化物などの透光性を有する導電膜を用いることができる。
また、第1の電極7023は様々な材料を用いることができる。例えば、第1の電極70
23を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。本
実施の形態では、第1の電極7023を陰極として用い、その膜厚は、光を透過する程度
(好ましくは、5nm〜30nm程度)とする。例えば20nmの膜厚を有するアルミニ
ウム膜を、第1の電極7023として用いる。
なお、透光性を有する導電膜とアルミニウム膜を積層成膜した後、選択的にエッチングし
て透光性を有する導電膜7027と第1の電極7023を形成してもよく、この場合、同
じマスクを用いてエッチングすることができ、好ましい。
また、第1の電極7023の周縁部は、隔壁7029で覆う。隔壁7029は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7029は、特に感光性の樹脂材料を用い、陰極である第1
の電極7023上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成され
る傾斜面となるように形成することが好ましい。隔壁7029として感光性の樹脂材料を
用いる場合、レジストマスクを形成する工程を省略することができる。
また、第1の電極7023及び隔壁7029上に形成するEL層7024は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7024が複数の層で構成されている場合、陰極とし
て機能する第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なおこれらの内、発光層以外の層を全て設ける必要はない。
また、上記積層順に限定されず、第1の電極7023を陽極として機能させ、第1の電極
7023上にホール注入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層
に積層してもよい。ただし、消費電力を比較する場合、第1の電極7023を陰極として
機能させ、第1の電極7023上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層するほうが消費電力が少ないため好ましい。
また、EL層7024上に形成する第2の電極7025としては、様々な材料を用いるこ
とができる。例えば、第2の電極7025を陽極として用いる場合、仕事関数が大きい材
料、例えば、ITO、IZO、ZnOなどの透光性を有する導電性材料を好ましく用いる
ことができる。本実施の形態では、第2の電極7025を陽極として用い、酸化珪素を含
むITO膜を形成する。
第1の電極7023及び第2の電極7025で、発光層を含むEL層7024を挟んでい
る領域が発光素子7022に相当する。図18(B)に示した素子構造の場合、発光素子
7022から発せられる光は、矢印で示すように第2の電極7025側と第1の電極70
23側の両方に射出する。
なお、図18(B)において、発光素子7022から第1の電極7023側に発せられる
一方の光は、カラーフィルタ層7043を通過し、第2のゲート絶縁層7041、第1の
ゲート絶縁層7040、及び基板7020を通過して射出させる。
カラーフィルタ層7043はインクジェット法などの液滴吐出法や、印刷法、フォトリソ
グラフィ技術を用いたエッチング方法などでそれぞれ形成する。
また、カラーフィルタ層7043はオーバーコート層7044で覆われ、さらに保護絶縁
層7045によって覆う。
また、第2のゲート絶縁層7041、絶縁層7042、カラーフィルタ層7043、オー
バーコート層7044、及び保護絶縁層7045に形成され、且つ、ドレイン電極層に達
するコンタクトホールは、隔壁7029と重なる位置に配置する。
ただし、両面射出構造の発光素子を用い、どちらの表示面もフルカラー表示とする場合、
第2の電極7025側からの光はカラーフィルタ層7043を通過しないため、別途カラ
ーフィルタ層を備えた封止基板を第2の電極7025上方に設けることが好ましい。
次に、上面射出構造の発光素子について、図18(C)を用いて説明する。
図18(C)に、発光素子駆動用TFT7001がn型で、発光素子7002から発せら
れる光が第2の電極7005側に抜ける場合の、画素の断面図を示す。図18(C)では
、発光素子駆動用TFT7001のドレイン電極層と電気的に接続された発光素子700
2の第1の電極7003が形成されており、第1の電極7003上にEL層7004、第
2の電極7005が順に積層されている。
また、第1の電極7003は様々な材料を用いることができる。例えば、第1の電極70
03を陰極として用いる場合、仕事関数が小さい材料、具体的には、例えば、LiやCs
等のアルカリ金属、およびMg、Ca、Sr等のアルカリ土類金属、およびこれらを含む
合金(Mg:Ag、Al:Liなど)の他、YbやEr等の希土類金属等が好ましい。
また、第1の電極7003の周縁部は、隔壁7009で覆う。隔壁7009は、ポリイミ
ド、アクリル、ポリアミド、エポキシ等の有機樹脂膜、無機絶縁膜または有機ポリシロキ
サンを用いて形成する。隔壁7009は、特に感光性の樹脂材料を用い、第1の電極70
03上に開口部を形成し、その開口部の側壁が連続した曲率を持って形成される傾斜面と
なるように形成することが好ましい。隔壁7009として感光性の樹脂材料を用いる場合
、レジストマスクを形成する工程を省略することができる。
また、第1の電極7003及び隔壁7009上に形成するEL層7004は、少なくとも
発光層を含めば良く、単数の層で構成されていても、複数の層が積層されるように構成さ
れていてもどちらでも良い。EL層7004が複数の層で構成されている場合、陰極とし
て機能する第1の電極7003上に電子注入層、電子輸送層、発光層、ホール輸送層、ホ
ール注入層の順に積層する。なおこれらの内、発光層以外の層を全て設ける必要はない。
また、上記積層順に限定されず、陽極として機能する第1の電極7003上にホール注入
層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層してもよい。
図18(C)ではTi膜、アルミニウム膜、Ti膜の順に積層した積層膜上に、ホール注
入層、ホール輸送層、発光層、電子輸送層、電子注入層の順に積層し、その上にMg:A
g合金薄膜とITOとの積層を形成する。
ただし、TFT7001がn型の場合、第1の電極7003上に電子注入層、電子輸送層
、発光層、ホール輸送層、ホール注入層の順に積層するほうが、駆動回路部における電圧
上昇を抑制することができ、消費電力を少なくできるため好ましい。
第2の電極7005は光を透過する透光性を有する導電性材料を用いて形成し、例えば酸
化タングステンを含むインジウム酸化物、酸化タングステンを含むインジウム亜鉛酸化物
、酸化チタンを含むインジウム酸化物、酸化チタンを含むインジウム錫酸化物、インジウ
ム錫酸化物、インジウム亜鉛酸化物、酸化ケイ素を添加したインジウム錫酸化物などの透
光性を有する導電膜を用いても良い。
第1の電極7003及び第2の電極7005で発光層を含むEL層7004を挟んでいる
領域が発光素子7002に相当する。図18(C)に示した素子構造の場合、発光素子7
002から発せられる光は、矢印で示すように第2の電極7005側に射出する。
また、図18(C)において、TFT7001は薄膜トランジスタ170を用いる例を示
しているが、特に限定されない。
また、図18(C)において、TFT7001のドレイン電極層は、保護絶縁層7052
及び絶縁層7055に設けられたコンタクトホールを介して第1の電極7003と電気的
に接続する。平坦化絶縁層7053は、ポリイミド、アクリル、ベンゾシクロブテン、ポ
リアミド、エポキシ等の樹脂材料を用いることができる。また上記樹脂材料の他に、低誘
電率材料(low−k材料)、シロキサン系樹脂、PSG(リンガラス)、BPSG(リ
ンボロンガラス)等を用いることができる。なお、これらの材料で形成される絶縁膜を複
数積層させることで、平坦化絶縁層7053を形成してもよい。平坦化絶縁層7053の
形成法は、特に限定されず、その材料に応じて、スパッタ法、SOG法、スピンコート、
ディップ、スプレー塗布、液滴吐出法(インクジェット法、スクリーン印刷、オフセット
印刷等)、ドクターナイフ、ロールコーター、カーテンコーター、ナイフコーター等を用
いることができる。
また、第1の電極7003と、隣り合う画素の第1の電極7008とを絶縁するために隔
壁7009を設ける。隔壁7009は、ポリイミド、アクリル、ポリアミド、エポキシ等
の有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。隔壁7009は
、特に感光性の樹脂材料を用い、第1の電極7003上に開口部を形成し、その開口部の
側壁が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。隔
壁7009として感光性の樹脂材料を用いる場合、レジストマスクを形成する工程を省略
することができる。
また、図18(C)の構造においては、フルカラー表示を行う場合、例えば発光素子70
02として緑色発光素子とし、隣り合う一方の発光素子を赤色発光素子とし、もう一方の
発光素子を青色発光素子とする。また、3種類の発光素子だけでなく白色素子を加えた4
種類の発光素子でフルカラー表示ができる発光表示装置を作製してもよい。
また、図18(C)の構造においては、配置する複数の発光素子を全て白色発光素子とし
て、発光素子7002上方にカラーフィルタなどを有する封止基板を配置する構成とし、
フルカラー表示ができる発光表示装置を作製してもよい。白色などの単色の発光を示す材
料を形成し、カラーフィルタや色変換層を組み合わせることによりフルカラー表示を行う
ことができる。
もちろん単色発光の表示を行ってもよい。例えば、白色発光を用いて照明装置を形成して
もよいし、単色発光を用いてエリアカラータイプの発光装置を形成してもよい。
また、必要があれば、円偏光板などの偏光フィルムなどの光学フィルムを設けてもよい。
なお、ここでは、発光素子として有機EL素子について述べたが、発光素子として無機E
L素子を設けることも可能である。
なお、発光素子の駆動を制御する薄膜トランジスタ(発光素子駆動用TFT)と発光素子
が電気的に接続されている例を示したが、発光素子駆動用TFTと発光素子との間に電流
制御用TFTが接続されている構成であってもよい。
なお本実施の形態で示す半導体装置は、図18に示した構成に限定されるものではなく、
本発明の技術的思想に基づく各種の変形が可能である。
次に、実施の形態1及び2に示す薄膜トランジスタを適用した半導体装置の一形態に相当
する発光表示パネル(発光パネルともいう)の外観及び断面について、図19を用いて説
明する。図19(A)は、第1の基板上に形成された薄膜トランジスタ及び発光素子を、
第2の基板との間にシール材によって封止した、パネルの上面図であり、図19(B)は
、図19(A)のH−Iにおける断面図に相当する。
第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、450
3b、及び走査線駆動回路4504a、4504bを囲むようにして、シール材4505
が設けられている。また画素部4502、信号線駆動回路4503a、4503b、及び
走査線駆動回路4504a、4504bの上に第2の基板4506が設けられている。よ
って画素部4502、信号線駆動回路4503a、4503b、及び走査線駆動回路45
04a、4504bは、第1の基板4501とシール材4505と第2の基板4506と
によって、充填材4507と共に密封されている。このように外気に曝されないように気
密性が高く、脱ガスの少ない保護フィルム(貼り合わせフィルム、紫外線硬化樹脂フィル
ム等)やカバー材でパッケージング(封入)することが好ましい。
また第1の基板4501上に設けられた画素部4502、信号線駆動回路4503a、4
503b、及び走査線駆動回路4504a、4504bは、薄膜トランジスタを複数有し
ており、図19(B)では、画素部4502に含まれる薄膜トランジスタ4510と、信
号線駆動回路4503aに含まれる薄膜トランジスタ4509とを例示している。
薄膜トランジスタ4509、4510は、In−Ga−Zn−O系膜をチャネル形成領域
として含む実施の形態1及び2に示す薄膜トランジスタを適用することができる。本実施
の形態において、薄膜トランジスタ4509、4510はnチャネル型薄膜トランジスタ
である。
絶縁層4544上において駆動回路用の薄膜トランジスタ4509の酸化物半導体層のチ
ャネル形成領域と重なる位置に導電層4540が設けられている。導電層4540を酸化
物半導体層のチャネル形成領域と重なる位置に設けることによって、BT試験前後におけ
る薄膜トランジスタ4509のしきい値電圧の変化量を低減することができる。また、導
電層4540は、電位が薄膜トランジスタ4509のゲート電極層と同じでもよいし、異
なっていても良く、第2のゲート電極層として機能させることもできる。また、導電層4
540の電位がGND、0V、或いはフローティング状態であってもよい。
また4511は発光素子に相当し、発光素子4511が有する画素電極である第1の電極
層4517は、薄膜トランジスタ4510のソース電極層またはドレイン電極層と電気的
に接続されている。なお発光素子4511の構成は、第1の電極層4517、電界発光層
4512、第2の電極層4513の積層構造であるが、本実施の形態に示した構成に限定
されない。発光素子4511から取り出す光の方向などに合わせて、発光素子4511の
構成は適宜変えることができる。
隔壁4520は、有機樹脂膜、無機絶縁膜または有機ポリシロキサンを用いて形成する。
特に感光性の材料を用い、第1の電極層4517上に開口部を形成し、その開口部の側壁
が連続した曲率を持って形成される傾斜面となるように形成することが好ましい。
電界発光層4512は、単数の層で構成されていても、複数の層が積層されるように構成
されていてもどちらでも良い。
発光素子4511に酸素、水素、水分、二酸化炭素等が侵入しないように、第2の電極層
4513及び隔壁4520上に保護膜を形成してもよい。保護膜としては、窒化シリコン
膜、窒化酸化シリコン膜、DLC膜等を形成することができる。
また、信号線駆動回路4503a、4503b、走査線駆動回路4504a、4504b
、及び画素部4502に与えられる各種信号及び電位は、FPC4518a、4518b
から供給されている。
本実施の形態では、接続端子電極4515が、発光素子4511が有する第1の電極層4
517と同じ導電膜から形成され、端子電極4516は、薄膜トランジスタ4509、4
510が有するソース電極層及びドレイン電極層と同じ導電膜から形成されている。
接続端子電極4515は、FPC4518aが有する端子と、異方性導電膜4519を介
して電気的に接続されている。
発光素子4511からの光の取り出し方向に位置する基板には、第2の基板は透光性でな
ければならない。その場合には、ガラス板、プラスチック板、ポリエステルフィルムまた
はアクリルフィルムのような透光性を有する材料を用いる。
また、充填材4507としては窒素やアルゴンなどの不活性な気体の他に、紫外線硬化樹
脂または熱硬化樹脂を用いることができ、PVC(ポリビニルクロライド)、アクリル、
ポリイミド、エポキシ樹脂、シリコーン樹脂、PVB(ポリビニルブチラル)またはEV
A(エチレンビニルアセテート)を用いることができる。本実施の形態は充填材として窒
素を用いた。
また、必要であれば、発光素子の射出面に偏光板、又は円偏光板(楕円偏光板を含む)、
位相差板(λ/4板、λ/2板)、カラーフィルタなどの光学フィルムを適宜設けてもよ
い。また、偏光板又は円偏光板に反射防止膜を設けてもよい。例えば、表面の凹凸により
反射光を拡散し、映り込みを低減できるアンチグレア処理を施すことができる。
信号線駆動回路4503a、4503b、及び走査線駆動回路4504a、4504bは
、別途用意された基板上に単結晶半導体又は多結晶半導体によって形成された駆動回路で
実装されていてもよい。また、信号線駆動回路のみ、或いはその一部、又は走査線駆動回
路のみ、或いはその一部のみを別途形成して実装しても良く、本実施の形態は図19の構
成に限定されない。
以上の工程により、半導体装置として低消費電力であり、信頼性の高い発光表示装置(表
示パネル)を作製することができる。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態6)
本実施の形態では、実施の形態1及び2に示す薄膜トランジスタを適用した半導体装置と
して電子ペーパーの例を示す。
図20は、半導体装置の例としてアクティブマトリクス型の電子ペーパーを示す。半導体
装置に用いられる薄膜トランジスタ581としては、実施の形態1及び2で示すインキュ
ベーション状態を有するIn−Ga−Zn−O系で、一部、或いは全部が構成されている
チャネル形成領域を有する薄膜トランジスタを適用することができる。
図20の電子ペーパーは、ツイストボール表示方式を用いた表示装置の例である。ツイス
トボール表示方式とは、白と黒に塗り分けられた球形粒子を表示素子に用いる電極層であ
る第1の電極層及び第2の電極層の間に配置し、第1の電極層及び第2の電極層に電位差
を生じさせての球形粒子の向きを制御することにより、表示を行う方法である。
基板580上に設けられた薄膜トランジスタ581はボトムゲート構造の薄膜トランジス
タであり、ソース電極層又はドレイン電極層は第1の電極層587と、絶縁層583、5
84、585に形成する開口で接しており電気的に接続している。第1の電極層587と
第2の電極層588との間には黒色領域590a及び白色領域590bを有し、周りに液
体で満たされているキャビティ594を含む球形粒子589が設けられており、球形粒子
589の周囲は樹脂等の充填材595で充填されている(図20参照。)。本実施の形態
においては、第1の電極層587が画素電極に相当し、対向基板596に設けられる第2
の電極層588が共通電極に相当する。
また、ツイストボールの代わりに、電気泳動素子を用いることも可能である。透明な液体
と、正に帯電した白い微粒子と負に帯電した黒い微粒子とを封入した直径10μm以上2
00μm以下程度のマイクロカプセルを用いる。第1の電極層と第2の電極層との間に設
けられるマイクロカプセルは、第1の電極層と第2の電極層によって、電場が与えられる
と、白い微粒子と、黒い微粒子が互いに逆の方向に移動し、白または黒を表示することが
できる。この原理を応用した表示素子が電気泳動表示素子であり、電気泳動表示素子を用
いたデバイスは一般的に電子ペーパーとよばれている。電気泳動表示素子は、液晶表示素
子に比べて反射率が高いため、補助ライトは不要であり、また消費電力が小さく、薄暗い
場所でも表示部を認識することが可能である。また、表示部に電源が供給されない場合で
あっても、一度表示した像を保持することが可能であるため、電波発信源から表示機能付
き半導体装置(単に表示装置、又は表示装置を具備する半導体装置ともいう)を遠ざけた
場合であっても、表示された像を保存しておくことが可能となる。
以上の工程により、半導体装置として、電気特性が高く、且つ、信頼性の高い電子ペーパ
ーを作製することができる。
電子ペーパーは、情報を表示するものであればあらゆる分野の電子機器に用いることが可
能である。例えば、電子ペーパーを用いて、電子書籍(電子ブック)、ポスター、電車な
どの乗り物の車内広告、クレジットカード等の各種カードにおける表示等に適用すること
ができる。電子機器の一例を図21、図22に示す。
図21(A)は、電子ペーパーで作られたポスター2631を示している。広告媒体が紙
の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用いれ
ば短時間で広告の表示を変えることができる。また、表示も崩れることなく安定した画像
が得られる。なお、ポスターは無線で情報を送受信できる構成としてもよい。
また、図21(B)は、電車などの乗り物の車内広告2632を示している。広告媒体が
紙の印刷物である場合には、広告の交換は人手によって行われるが、電子ペーパーを用い
れば人手を多くかけることなく短時間で広告の表示を変えることができる。また表示も崩
れることなく安定した画像が得られる。なお、ポスターは無線で情報を送受信できる構成
としてもよい。
また、図22は、電子書籍の一例を示している。例えば、電子書籍2700は、筐体27
01および筐体2703の2つの筐体で構成されている。筐体2701および筐体270
3は、軸部2711により一体とされており、該軸部2711を軸として開閉動作を行う
ことができる。このような構成により、紙の書籍のような動作を行うことが可能となる。
筐体2701には表示部2705が組み込まれ、筐体2703には表示部2707が組み
込まれている。表示部2705および表示部2707は、続き画面を表示する構成として
もよいし、異なる画面を表示する構成としてもよい。異なる画面を表示する構成とするこ
とで、例えば右側の表示部(図22では表示部2705)に文章を表示し、左側の表示部
(図22では表示部2707)に画像を表示することができる。
また、図22では、筐体2701に操作部などを備えた例を示している。例えば、筐体2
701において、電源2721、操作キー2723、スピーカ2725などを備えている
。操作キー2723により、頁を送ることができる。なお、筐体の表示部と同一面にキー
ボードやポインティングディバイスなどを備える構成としてもよい。また、筐体の裏面や
側面に、外部接続用端子(イヤホン端子、USB端子、またはACアダプタおよびUSB
ケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構成
としてもよい。さらに、電子書籍2700は、電子辞書としての機能を持たせた構成とし
てもよい。
また、電子書籍2700は、無線で情報を送受信できる構成としてもよい。無線により、
電子書籍サーバから、所望の書籍データなどを購入し、ダウンロードする構成とすること
も可能である。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
(実施の形態7)
実施の形態1及び2に示すインキュベーション状態を有するIn−Ga−Zn−O系で、
一部、或いは全部が構成されているチャネル形成領域を有する薄膜トランジスタを用いた
半導体装置は、さまざまな電子機器(遊技機も含む)に適用することができる。インキュ
ベーション状態を有するIn−Ga−Zn−O系で、一部、或いは全部が構成されている
チャネル形成領域を有する薄膜トランジスタを用いた電子機器は、信頼性が向上する。電
子機器としては、例えば、テレビジョン装置(テレビ、またはテレビジョン受信機ともい
う)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ等のカメラ
、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲ
ーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる
図23(A)は、テレビジョン装置の一例を示している。テレビジョン装置9600は、
筐体9601に表示部9603が組み込まれている。表示部9603により、映像を表示
することが可能である。また、ここでは、スタンド9605により筐体9601を支持し
た構成を示している。
テレビジョン装置9600の操作は、筐体9601が備える操作スイッチや、別体のリモ
コン操作機9610により行うことができる。リモコン操作機9610が備える操作キー
9609により、チャンネルや音量の操作を行うことができ、表示部9603に表示され
る映像を操作することができる。また、リモコン操作機9610に、当該リモコン操作機
9610から出力する情報を表示する表示部9607を設ける構成としてもよい。
なお、テレビジョン装置9600は、受信機やモデムなどを備えた構成とする。受信機に
より一般のテレビ放送の受信を行うことができ、さらにモデムを介して有線または無線に
よる通信ネットワークに接続することにより、一方向(送信者から受信者)または双方向
(送信者と受信者間、あるいは受信者間同士など)の情報通信を行うことも可能である。
図23(B)は、デジタルフォトフレームの一例を示している。例えば、デジタルフォト
フレーム9700は、筐体9701に表示部9703が組み込まれている。表示部970
3は、各種画像を表示することが可能であり、例えばデジタルカメラなどで撮影した画像
データを表示させることで、通常の写真立てと同様に機能させることができる。
なお、デジタルフォトフレーム9700は、操作部、外部接続用端子(USB端子、US
Bケーブルなどの各種ケーブルと接続可能な端子など)、記録媒体挿入部などを備える構
成とする。これらの構成は、表示部と同一面に組み込まれていてもよいが、側面や裏面に
備えるとデザイン性が向上するため好ましい。例えば、デジタルフォトフレーム9700
の記録媒体挿入部に、デジタルカメラで撮影した画像データを記憶したメモリを挿入して
画像データを取り込み、取り込んだ画像データを表示部9703に表示させることができ
る。
また、デジタルフォトフレーム9700は、無線で情報を送受信できる構成としてもよい
。無線により、所望の画像データを取り込み、表示させる構成とすることもできる。
図24(A)は携帯型遊技機であり、筐体9881と筐体9891の2つの筐体で構成さ
れており、連結部9893により、開閉可能に連結されている。筐体9881には表示部
9882が組み込まれ、筐体9891には表示部9883が組み込まれている。また、図
24(A)に示す携帯型遊技機は、その他、スピーカ部9884、記録媒体挿入部988
6、LEDランプ9890、入力手段(操作キー9885、接続端子9887、センサ9
888(力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、
化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振
動、におい又は赤外線を測定する機能を含むもの)、マイクロフォン9889)等を備え
ている。もちろん、携帯型遊技機の構成は上述のものに限定されず、少なくとも本発明に
係る半導体装置を備えた構成であればよく、その他付属設備が適宜設けられた構成とする
ことができる。図24(A)に示す携帯型遊技機は、記録媒体に記録されているプログラ
ム又はデータを読み出して表示部に表示する機能や、他の携帯型遊技機と無線通信を行っ
て情報を共有する機能を有する。なお、図24(A)に示す携帯型遊技機が有する機能は
これに限定されず、様々な機能を有することができる。
図24(B)は大型遊技機であるスロットマシンの一例を示している。スロットマシン9
900は、筐体9901に表示部9903が組み込まれている。また、スロットマシン9
900は、その他、スタートレバーやストップスイッチなどの操作手段、コイン投入口、
スピーカなどを備えている。もちろん、スロットマシン9900の構成は上述のものに限
定されず、少なくとも本発明に係る半導体装置を備えた構成であればよく、その他付属設
備が適宜設けられた構成とすることができる。
図25(A)は、携帯電話機の一例を示している。携帯電話機1000は、筐体1001
に組み込まれた表示部1002の他、操作ボタン1003、外部接続ポート1004、ス
ピーカ1005、マイク1006などを備えている。
図25(A)に示す携帯電話機1000は、表示部1002を指などで触れることで、情
報を入力ことができる。また、電話を掛ける、或いはメールを打つなどの操作は、表示部
1002を指などで触れることにより行うことができる。
表示部1002の画面は主として3つのモードがある。第1は、画像の表示を主とする表
示モードであり、第2は、文字等の情報の入力を主とする入力モードである。第3は表示
モードと入力モードの2つのモードが混合した表示+入力モードである。
例えば、電話を掛ける、或いはメールを作成する場合は、表示部1002を文字の入力を
主とする文字入力モードとし、画面に表示させた文字の入力操作を行えばよい。この場合
、表示部1002の画面のほとんどにキーボードまたは番号ボタンを表示させることが好
ましい。
また、携帯電話機1000内部に、ジャイロ、加速度センサ等の傾きを検出するセンサを
有する検出装置を設けることで、携帯電話機1000の向き(縦か横か)を判断して、表
示部1002の画面表示を自動的に切り替えるようにすることができる。
また、画面モードの切り替えは、表示部1002を触れること、又は筐体1001の操作
ボタン1003の操作により行われる。また、表示部1002に表示される画像の種類に
よって切り替えるようにすることもできる。例えば、表示部に表示する画像信号が動画の
データであれば表示モード、テキストデータであれば入力モードに切り替える。
また、入力モードにおいて、表示部1002の光センサで検出される信号を検知し、表示
部1002のタッチ操作による入力が一定期間ない場合には、画面のモードを入力モード
から表示モードに切り替えるように制御してもよい。
表示部1002は、イメージセンサとして機能させることもできる。例えば、表示部10
02に掌や指を触れることで、掌紋、指紋等を撮像することで、本人認証を行うことがで
きる。また、表示部に近赤外光を発光するバックライトまたは近赤外光を発光するセンシ
ング用光源を用いれば、指静脈、掌静脈などを撮像することもできる。
図25(B)も携帯電話機の一例である。図25(B)の携帯電話機は、筐体9411に
、表示部9412、及び操作ボタン9413を含む表示装置9410と、筐体9401に
操作ボタン9402、外部入力端子9403、マイク9404、スピーカ9405、及び
着信時に発光する発光部9406を含む通信装置9400とを有しており、表示機能を有
する表示装置9410は電話機能を有する通信装置9400と矢印の2方向に脱着可能で
ある。よって、表示装置9410と通信装置9400の短軸同士を取り付けることも、表
示装置9410と通信装置9400の長軸同士を取り付けることもできる。また、表示機
能のみを必要とする場合、通信装置9400より表示装置9410を取り外し、表示装置
9410を単独で用いることもできる。通信装置9400と表示装置9410とは無線通
信又は有線通信により画像又は入力情報を授受することができ、それぞれ充電可能なバッ
テリーを有する。
なお、本実施の形態に示す構成は、他の実施の形態に示した構成を適宜組み合わせて用い
ることができることとする。
10 パルス出力回路
11 第1の配線
12 第2の配線
13 第3の配線
14 第4の配線
15 第5の配線
16 第6の配線
17 第7の配線
21 入力端子
22 入力端子
23 入力端子
24 入力端子
25 入力端子
26 出力端子
27 出力端子
28 薄膜トランジスタ
31 トランジスタ
32 トランジスタ
33 トランジスタ
34 トランジスタ
35 トランジスタ
36 トランジスタ
37 トランジスタ
38 トランジスタ
39 トランジスタ
40 トランジスタ
41 トランジスタ
42 トランジスタ
43 トランジスタ
51 電源線
52 電源線
53 電源線
100 基板
101 ゲート電極層
102 ゲート絶縁層
103 酸化物半導体層
105a ソース電極層
105b ドレイン電極層
107 酸化物絶縁層
108 容量配線
109 コンタクトホール
110 画素電極層
112 導電層
112a、112b 導電層
113 導電層
113a、113b 導電層
114 導電層
114a、114b 導電層
120 接続電極
121 端子
122 端子
124 容量電極層
125 コンタクトホール
126 コンタクトホール
127 コンタクトホール
128 透光性を有する導電膜
129 透光性を有する導電膜
131 レジストマスク
150 端子
151 端子
152 ゲート絶縁層
153 接続電極
154 保護絶縁膜
155 透光性を有する導電膜
156 電極
170 薄膜トランジスタ
201 サイト
202 In原子
203 原子
204 酸素原子
580 基板
581 薄膜トランジスタ
585 絶縁層
587 電極層
588 電極層
589 球形粒子
590a 黒色領域
590b 白色領域
594 キャビティ
595 充填材
596 対向基板
1000 携帯電話機
1001 筐体
1002 表示部
1003 操作ボタン
1004 外部接続ポート
1005 スピーカ
1006 マイク
2600 TFT基板
2601 対向基板
2602 シール材
2603 画素部
2604 表示素子
2605 着色層
2606 偏光板
2607 偏光板
2608 配線回路部
2609 フレキシブル配線基板
2610 冷陰極管
2611 反射板
2612 回路基板
2613 拡散板
2631 ポスター
2632 車内広告
2700 電子書籍
2701 筐体
2703 筐体
2705 表示部
2707 表示部
2711 軸部
2721 電源
2723 操作キー
2725 スピーカ
4001 基板
4002 画素部
4003 信号線駆動回路
4004 走査線駆動回路
4005 シール材
4006 基板
4008 液晶層
4010 薄膜トランジスタ
4011 薄膜トランジスタ
4013 液晶素子
4015 接続端子電極
4016 端子電極
4018 FPC
4019 異方性導電膜
4020 絶縁層
4021 絶縁層
4030 画素電極層
4031 対向電極層
4032 絶縁層
4040 導電層
4044 絶縁層
4501 基板
4502 画素部
4503a、4503b 信号線駆動回路
4504a、4504b 走査線駆動回路
4505 シール材
4506 基板
4507 充填材
4509 薄膜トランジスタ
4510 薄膜トランジスタ
4511 発光素子
4512 電界発光層
4513 電極層
4515 接続端子電極
4516 端子電極
4517 電極層
4518a、4518b FPC
4519 異方性導電膜
4520 隔壁
4540 導電層
4544 絶縁層
5300 基板
5301 画素部
5302 走査線駆動回路
5303 走査線駆動回路
5304 信号線駆動回路
5305 タイミング制御回路
5601 シフトレジスタ
5602 スイッチング回路
5603 薄膜トランジスタ
5604 配線
5605 配線
6400 画素
6401 スイッチング用トランジスタ
6402 駆動用トランジスタ
6403 容量素子
6404 発光素子
6405 信号線
6406 走査線
6407 電源線
6408 共通電極
7001 発光素子駆動用TFT
7002 発光素子
7003 電極
7004 EL層
7005 電極
7008 電極
7009 隔壁
7010 基板
7011 発光素子駆動用TFT
7012 発光素子
7013 電極
7014 EL層
7015 電極
7016 遮蔽膜
7017 導電膜
7019 隔壁
7020 基板
7021 発光素子駆動用TFT
7022 発光素子
7023 電極
7024 EL層
7025 電極
7027 導電膜
7029 隔壁
7030 第1のゲート絶縁層
7031 第2のゲート絶縁層
7032 絶縁層
7033 カラーフィルタ層
7034 オーバーコート層
7035 保護絶縁層
7040 第1のゲート絶縁層
7041 第2のゲート絶縁層
7042 絶縁層
7043 カラーフィルタ層
7044 オーバーコート層
7045 保護絶縁層
7052 保護絶縁層
7053 平坦化絶縁層
7055 絶縁層
9400 通信装置
9401 筐体
9402 操作ボタン
9403 外部入力端子
9404 マイク
9405 スピーカ
9406 発光部
9410 表示装置
9411 筐体
9412 表示部
9413 操作ボタン
9600 テレビジョン装置
9601 筐体
9603 表示部
9605 スタンド
9607 表示部
9609 操作キー
9610 リモコン操作機
9700 デジタルフォトフレーム
9701 筐体
9703 表示部
9881 筐体
9882 表示部
9883 表示部
9884 スピーカ部
9885 操作キー
9886 記録媒体挿入部
9887 接続端子
9888 センサ
9889 マイクロフォン
9890 LEDランプ
9891 筐体
9893 連結部
9900 スロットマシン
9901 筐体
9903 表示部

Claims (3)

  1. 基板上にゲート電極を形成し、
    前記ゲート電極上にゲート絶縁膜を形成し、
    前記基板を加熱しつつ、スパッタ法により前記ゲート絶縁膜上に酸化物半導体層を形成し、
    前記酸化物半導体層形成後に、不活性気体雰囲気下で前記酸化物半導体層を500℃以上750℃以下で加熱し、
    前記加熱後に、前記酸化物半導体層上にソース電極及びドレイン電極を形成し、
    前記ソース電極及び前記ドレイン電極の一方と電気的に接続する画素電極を形成し、
    前記酸化物半導体層は、インジウムを有し、
    前記画素電極上には液晶層を有することを特徴する半導体装置の作製方法。
  2. 請求項1において、
    前記基板の前記加熱は、400℃以上700℃以下で行うことを特徴とする半導体装置の作製方法。
  3. 請求項1または請求項2において、
    前記酸化物半導体層は、電子回折パターンの解析において、ハロー状のパターンではない領域を有することを特徴とする半導体装置の作製方法。
JP2015082617A 2009-09-24 2015-04-14 半導体装置の作製方法 Active JP6062478B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015082617A JP6062478B2 (ja) 2009-09-24 2015-04-14 半導体装置の作製方法

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2009219128 2009-09-24
JP2009219128 2009-09-24
JP2015082617A JP6062478B2 (ja) 2009-09-24 2015-04-14 半導体装置の作製方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013096196A Division JP5734338B2 (ja) 2009-09-24 2013-05-01 半導体装置の作製方法

Publications (2)

Publication Number Publication Date
JP2015165583A JP2015165583A (ja) 2015-09-17
JP6062478B2 true JP6062478B2 (ja) 2017-01-18

Family

ID=43795800

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010212290A Withdrawn JP2011091385A (ja) 2009-09-24 2010-09-22 半導体装置およびその作製方法
JP2013096196A Active JP5734338B2 (ja) 2009-09-24 2013-05-01 半導体装置の作製方法
JP2015082617A Active JP6062478B2 (ja) 2009-09-24 2015-04-14 半導体装置の作製方法

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2010212290A Withdrawn JP2011091385A (ja) 2009-09-24 2010-09-22 半導体装置およびその作製方法
JP2013096196A Active JP5734338B2 (ja) 2009-09-24 2013-05-01 半導体装置の作製方法

Country Status (7)

Country Link
US (3) US20110227060A1 (ja)
EP (1) EP2481089A4 (ja)
JP (3) JP2011091385A (ja)
KR (1) KR20120071393A (ja)
CN (2) CN102549758B (ja)
TW (1) TWI577026B (ja)
WO (1) WO2011037050A1 (ja)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102576677B (zh) * 2009-09-24 2015-07-22 株式会社半导体能源研究所 半导体元件及其制造方法
KR20170143023A (ko) * 2009-10-21 2017-12-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
EP2535939A1 (en) * 2011-06-14 2012-12-19 Nederlandse Organisatie voor toegepast -natuurwetenschappelijk onderzoek TNO Thin film transistor
KR20120138074A (ko) * 2011-06-14 2012-12-24 삼성디스플레이 주식회사 박막 트랜지스터, 및 박막 트랜지스터 표시판과 이들을 제조하는 방법
US8804061B2 (en) 2012-04-11 2014-08-12 Apple Inc. Devices and methods for reducing the size of display panel routings
CN103578984B (zh) * 2012-07-26 2016-10-26 瀚宇彩晶股份有限公司 半导体元件及其制造方法
CN109065553A (zh) 2012-11-08 2018-12-21 株式会社半导体能源研究所 金属氧化物膜及金属氧化物膜的形成方法
KR102039102B1 (ko) * 2012-12-24 2019-11-01 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR102209871B1 (ko) 2012-12-25 2021-02-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US9812581B2 (en) * 2013-03-07 2017-11-07 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
KR102123529B1 (ko) * 2013-03-28 2020-06-17 삼성디스플레이 주식회사 박막 트랜지스터 표시판 및 그 제조 방법
US9496330B2 (en) * 2013-08-02 2016-11-15 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
CN103353633B (zh) * 2013-08-05 2016-04-06 武汉邮电科学研究院 波长选择开关和波长选择方法
TW201516167A (zh) * 2013-10-22 2015-05-01 Semiconductor Energy Lab 氧化物半導體膜之製作方法
US9455142B2 (en) * 2014-02-06 2016-09-27 Transtron Solutions Llc Molecular precursor compounds for ABIGZO zinc-group 13 mixed oxide materials
US10012883B2 (en) * 2014-02-10 2018-07-03 Sharp Kabushiki Kaisha Semiconductor device including a silicon nitride dielectric layer and method for producing same
JP6216668B2 (ja) * 2014-03-17 2017-10-18 株式会社ジャパンディスプレイ 表示装置の製造方法
KR20150146409A (ko) * 2014-06-20 2015-12-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치, 표시 장치, 입출력 장치, 및 전자 기기
US20160155803A1 (en) * 2014-11-28 2016-06-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor Device, Method for Manufacturing the Semiconductor Device, and Display Device Including the Semiconductor Device
TWI629791B (zh) 2015-04-13 2018-07-11 友達光電股份有限公司 主動元件結構及其製作方法
CN105161523B (zh) 2015-08-13 2018-09-25 京东方科技集团股份有限公司 一种电极、薄膜晶体管、阵列基板及显示设备
US9634036B1 (en) * 2016-03-11 2017-04-25 Shenzhen China Star Optoelectronics Technology Co., Ltd. Metal oxide thin-film transistor, method of fabricating the same, and array substrate
JP6802653B2 (ja) * 2016-07-15 2020-12-16 株式会社ジャパンディスプレイ 表示装置
US10205008B2 (en) 2016-08-03 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of semiconductor device
JP7126823B2 (ja) 2016-12-23 2022-08-29 株式会社半導体エネルギー研究所 半導体装置の作製方法
CN109670368B (zh) * 2017-10-13 2021-09-28 深圳芯启航科技有限公司 生物特征图像采集系统
KR102418612B1 (ko) 2018-01-03 2022-07-08 엘지전자 주식회사 이동 단말기
CN109034053A (zh) 2018-07-24 2018-12-18 京东方科技集团股份有限公司 显示模组及制备方法、控制方法和控制装置、显示装置
CN109727968A (zh) * 2019-02-26 2019-05-07 京东方科技集团股份有限公司 平板探测器及制作方法

Family Cites Families (138)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2590A (en) * 1842-04-29 Measuring and cutting garments
US315194A (en) * 1885-04-07 Chaeles p
US315200A (en) * 1885-04-07 Manufacture of brick
US111663A (en) * 1871-02-07 Improvement in type-holders
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
KR100306565B1 (ko) * 1992-12-15 2001-11-30 도미나가 가즈토 투명도전막과그의제조방법,투명도전막이형성된도전성투명필름과도전성투명유리,및도전성재료
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
DE69635107D1 (de) * 1995-08-03 2005-09-29 Koninkl Philips Electronics Nv Halbleiteranordnung mit einem transparenten schaltungselement
JP3625598B2 (ja) 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
US6726812B1 (en) * 1997-03-04 2004-04-27 Canon Kabushiki Kaisha Ion beam sputtering apparatus, method for forming a transparent and electrically conductive film, and process for the production of a semiconductor device
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW515109B (en) * 1999-06-28 2002-12-21 Semiconductor Energy Lab EL display device and electronic device
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
TW490714B (en) * 1999-12-27 2002-06-11 Semiconductor Energy Lab Film formation apparatus and method for forming a film
TW507258B (en) * 2000-02-29 2002-10-21 Semiconductor Systems Corp Display device and method for fabricating the same
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
KR20020038482A (ko) 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP2003029293A (ja) 2001-07-13 2003-01-29 Minolta Co Ltd 積層型表示装置及びその製造方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
US6903377B2 (en) * 2001-11-09 2005-06-07 Semiconductor Energy Laboratory Co., Ltd. Light emitting apparatus and method for manufacturing the same
JP2003179233A (ja) * 2001-12-13 2003-06-27 Fuji Xerox Co Ltd 薄膜トランジスタ、及びそれを備えた表示素子
JP4083486B2 (ja) 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
CN1445821A (zh) 2002-03-15 2003-10-01 三洋电机株式会社 ZnO膜和ZnO半导体层的形成方法、半导体元件及其制造方法
JP3933591B2 (ja) * 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
TWI380080B (en) * 2003-03-07 2012-12-21 Semiconductor Energy Lab Liquid crystal display device and method for manufacturing the same
JP4108633B2 (ja) * 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
EP1737044B1 (en) 2004-03-12 2014-12-10 Japan Science and Technology Agency Amorphous oxide and thin film transistor
US7282782B2 (en) 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US7211825B2 (en) 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7829444B2 (en) 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
BRPI0517568B8 (pt) 2004-11-10 2022-03-03 Canon Kk Transistor de efeito de campo
CA2585063C (en) 2004-11-10 2013-01-15 Canon Kabushiki Kaisha Light-emitting device
RU2358355C2 (ru) 2004-11-10 2009-06-10 Кэнон Кабусики Кайся Полевой транзистор
US7863611B2 (en) 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
US7791072B2 (en) 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
JP5138163B2 (ja) * 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
US7453065B2 (en) 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
CN102496346B (zh) * 2004-12-06 2015-05-13 株式会社半导体能源研究所 显示装置
US7579224B2 (en) 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
US7608531B2 (en) 2005-01-28 2009-10-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, electronic device, and method of manufacturing semiconductor device
TWI505473B (zh) 2005-01-28 2015-10-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7402506B2 (en) 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP2007059128A (ja) 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP2007073705A (ja) 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4280736B2 (ja) 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
JP5116225B2 (ja) 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
KR100729043B1 (ko) 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
EP1998373A3 (en) * 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
JP5037808B2 (ja) 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
JP5129473B2 (ja) 2005-11-15 2013-01-30 富士フイルム株式会社 放射線検出器
US7745798B2 (en) * 2005-11-15 2010-06-29 Fujifilm Corporation Dual-phosphor flat panel radiation detector
CN101577281B (zh) * 2005-11-15 2012-01-11 株式会社半导体能源研究所 有源矩阵显示器及包含该显示器的电视机
KR100732849B1 (ko) * 2005-12-21 2007-06-27 삼성에스디아이 주식회사 유기 발광 표시장치
TWI292281B (en) 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4999400B2 (ja) 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP4609797B2 (ja) 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4332545B2 (ja) 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP4274219B2 (ja) 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
JP5164357B2 (ja) 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
US7622371B2 (en) 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
US7772021B2 (en) 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140684A (ja) 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101303578B1 (ko) 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
KR100851215B1 (ko) 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
US8158974B2 (en) 2007-03-23 2012-04-17 Idemitsu Kosan Co., Ltd. Semiconductor device, polycrystalline semiconductor thin film, process for producing polycrystalline semiconductor thin film, field effect transistor, and process for producing field effect transistor
JP2008276212A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
WO2008126879A1 (en) 2007-04-09 2008-10-23 Canon Kabushiki Kaisha Light-emitting apparatus and production method thereof
JP5197058B2 (ja) 2007-04-09 2013-05-15 キヤノン株式会社 発光装置とその作製方法
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
KR101345376B1 (ko) * 2007-05-29 2013-12-24 삼성전자주식회사 ZnO 계 박막 트랜지스터 및 그 제조방법
US7935964B2 (en) 2007-06-19 2011-05-03 Samsung Electronics Co., Ltd. Oxide semiconductors and thin film transistors comprising the same
JP2010530634A (ja) 2007-06-19 2010-09-09 サムスン エレクトロニクス カンパニー リミテッド 酸化物半導体及びそれを含む薄膜トランジスタ
US8354674B2 (en) * 2007-06-29 2013-01-15 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device wherein a property of a first semiconductor layer is different from a property of a second semiconductor layer
KR100889688B1 (ko) * 2007-07-16 2009-03-19 삼성모바일디스플레이주식회사 반도체 활성층 제조 방법, 그를 이용한 박막 트랜지스터의제조 방법 및 반도체 활성층을 구비하는 박막 트랜지스터
EP2183780A4 (en) 2007-08-02 2010-07-28 Applied Materials Inc THIN FILM TRANSISTORS USING THIN FILM SEMICONDUCTOR MATERIALS
JP5414161B2 (ja) * 2007-08-10 2014-02-12 キヤノン株式会社 薄膜トランジスタ回路、発光表示装置と及びそれらの駆動方法
WO2009034953A1 (ja) * 2007-09-10 2009-03-19 Idemitsu Kosan Co., Ltd. 薄膜トランジスタ
JP5215158B2 (ja) 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
JP5372776B2 (ja) 2007-12-25 2013-12-18 出光興産株式会社 酸化物半導体電界効果型トランジスタ及びその製造方法
KR101425131B1 (ko) 2008-01-15 2014-07-31 삼성디스플레이 주식회사 표시 기판 및 이를 포함하는 표시 장치
JP5540517B2 (ja) 2008-02-22 2014-07-02 凸版印刷株式会社 画像表示装置
JP2009265271A (ja) 2008-04-23 2009-11-12 Nippon Shokubai Co Ltd 電気光学表示装置
US9041202B2 (en) * 2008-05-16 2015-05-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method of the same
JP4623179B2 (ja) 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
CN102187467A (zh) 2008-10-23 2011-09-14 出光兴产株式会社 薄膜晶体管及其制造方法

Also Published As

Publication number Publication date
CN105161543A (zh) 2015-12-16
JP5734338B2 (ja) 2015-06-17
US20110227060A1 (en) 2011-09-22
CN102549758B (zh) 2015-11-25
JP2013214752A (ja) 2013-10-17
EP2481089A1 (en) 2012-08-01
US9520288B2 (en) 2016-12-13
CN102549758A (zh) 2012-07-04
US9048094B2 (en) 2015-06-02
JP2011091385A (ja) 2011-05-06
WO2011037050A1 (en) 2011-03-31
US20150340506A1 (en) 2015-11-26
KR20120071393A (ko) 2012-07-02
EP2481089A4 (en) 2015-09-23
TWI577026B (zh) 2017-04-01
US20130330914A1 (en) 2013-12-12
TW201130138A (en) 2011-09-01
JP2015165583A (ja) 2015-09-17

Similar Documents

Publication Publication Date Title
JP6062478B2 (ja) 半導体装置の作製方法
JP7490850B2 (ja) 表示装置
JP7297965B2 (ja) 表示装置
EP2486569B1 (en) Shift register and display device
JP5683179B2 (ja) 表示装置の作製方法

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160531

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160617

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161214

R150 Certificate of patent or registration of utility model

Ref document number: 6062478

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250