JP5972700B2 - メモリ装置 - Google Patents

メモリ装置 Download PDF

Info

Publication number
JP5972700B2
JP5972700B2 JP2012169549A JP2012169549A JP5972700B2 JP 5972700 B2 JP5972700 B2 JP 5972700B2 JP 2012169549 A JP2012169549 A JP 2012169549A JP 2012169549 A JP2012169549 A JP 2012169549A JP 5972700 B2 JP5972700 B2 JP 5972700B2
Authority
JP
Japan
Prior art keywords
memory cell
memory
source line
bit line
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012169549A
Other languages
English (en)
Other versions
JP2014029745A (ja
Inventor
利章 竹下
利章 竹下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Electronics Corp
Original Assignee
Renesas Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Electronics Corp filed Critical Renesas Electronics Corp
Priority to JP2012169549A priority Critical patent/JP5972700B2/ja
Priority to US13/952,591 priority patent/US9230657B2/en
Publication of JP2014029745A publication Critical patent/JP2014029745A/ja
Priority to US14/953,370 priority patent/US20160078956A1/en
Application granted granted Critical
Publication of JP5972700B2 publication Critical patent/JP5972700B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0416Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/08Address circuits; Decoders; Word-line control circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Read Only Memory (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Description

本発明は、メモリ装置に関し、特に、複数のメモリセルのソースを共通接続する共通ソース線を有するメモリ装置に関する。
従来から不揮発性メモリとしてフラッシュメモリが広く利用されており、情報通信技術の発展に伴い、さらなる大容量化・高速化が望まれている。
図27(a)は、一般的なフラッシュメモリを構成するメモリセルの構造を示している。なお、メモリセルは、0/1の情報を記録する最小単位である。
図27(a)に示すように、メモリセル10は、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)の一種であり、一般的なMOSFETに対し絶縁された浮遊ゲート(フローティングゲート)13を有している。浮遊ゲート13上には選択ゲート(ワードゲート)11が形成され、浮遊ゲート13と選択ゲート11の間はポリシリコン間絶縁膜12で絶縁されている。ポリシリコン間絶縁膜12は、選択ゲート11と浮遊ゲート13が一般的に多結晶シリコン(ポリシリコン)で形成されるため、ポリシリコン間絶縁膜(IPD)と呼ばれている。また、浮遊ゲート13とシリコン基板との間には通常のMOSFETと同様にゲート絶縁膜14が形成されている。また、シリコン基板の表面内部にも、MOSFETと同様に、ゲートを挟むようにソース16及びドレイン15という電極が形成されている。
図27(b)に示すように、メモリセル10は、浮遊ゲート13に電荷を蓄積することで記憶動作を行う。浮遊ゲート13は周りをすべて絶縁されているため、電源が切れている状態でも蓄積された電荷が抜けない構造(不揮発性)となっている。つまり、メモリセル10は、浮遊ゲート13に電子による電荷のあり/なしによって1ビットの記憶状態を示す。
このようなメモリセルをアレイ状に配列した従来のメモリセルアレイが、特許文献1に記載されている。図28は、特許文献1に記載された従来のメモリセルアレイを示している。
図28(a)〜(c)に示すように、従来のメモリセルアレイ900では、シリコン基板901の表面領域に、ソース領域903,ドレイン領域904が離隔して形成されている。ソース領域903は、行方向に沿って連続的なパターンで形成されており、隣接するメモリセル間で共通接続されている(共通ソース線)。各セルトランジスタのソース領域903,ドレイン領域904間のチャネル領域上には、トンネル酸化膜905を介してフローティングゲート906が形成されている。
このフローティングゲート906上には、絶縁膜907を介してコントロールゲート908が形成されている。このコントロールゲート908は、行方向に沿って延設され、ワード線を形成している。
上記積層ゲート構造上には層間絶縁膜909が形成され、各ワード線(コントロールゲート)908と交差する列方向に沿って、この層間絶縁膜909上にビット線910とソース線911とが形成されている。ソース線911は、ソースコンタクト部912においてスルーホール913を介してソース領域903に接続され、ビット線910はスルーホール914を介してドレイン領域904に接続されている。
特開2000−49316号公報
上記特許文献1に記載された従来のメモリセルアレイでは、複数のメモリセルのソースを共通接続して共通ソース線を形成し、共通ソース線にソースコンタクトを設けて、共通ソース線から金属配線層(ソース線)まで引き上げて接続している。
メモリセルごとにソースコンタクトを設ける場合と比べて、複数のメモリセルおきにソースコンタクトを設けることで、回路面積を小さくすることが可能である。
一方、近年、メモリ装置の製造プロセスの微細化が進んでおり、メモリセルのソース領域から金属配線までのソース抵抗の抵抗値が極端に大きくなっているため、高速動作の妨げとなっている。しかし、高速動作を可能にするため、ソースコンタクトを増やしてソース抵抗の抵抗値を下げようとすると、回路面積が増大してしまう。
したがって、従来のメモリ装置では、高速動作を可能にするとともに、回路面積の増大を抑止することが困難であるという問題があった。
本発明に係るメモリ装置は、複数のメモリセルを備えたメモリセルアレイと、前記メモリセルアレイ内に前記複数のメモリセル各々のソースが共通接続された共通ソース線と、前記共通ソース線が第1の電気的接続パスを形成して接地電位に接続される場合に、前記共通ソース線と前記接地電位との間をさらに接続する第2の電気的接続パスとを備え、前記第2の電気的接続パスは、前記複数のメモリセルに含まれる第1のメモリセルにより形成されるものである。
本発明に係るメモリ装置は、半導体基板の表面に形成されたソース及びドレインと、前記ソースと前記ドレインとの間の前記半導体基板上に浮遊ゲートを含んで形成されたゲートと、を有する複数のメモリセルと、前記複数のメモリセルをアレイ配列したメモリセルアレイと、前記メモリセルアレイ内の前記半導体基板表面に、前記複数のメモリセル各々のソースが共通接続されるように連続形成された共通ソース線と、前記半導体基板上の層間絶縁膜上に形成され、前記共通ソース線とスルーホールを介して接続される上部ソース線と、前記共通ソース線及び前記上部ソース線が第1の電気的接続パスを形成して接地電位に接続される場合に、前記共通ソース線と前記接地電位との間を前記上部ソース線を介さずに接続する第2の電気的接続パスとを備え、前記第2の電気的接続パスは、前記複数のメモリセルに含まれる第1のメモリセルにより形成されるものである。
本発明に係るメモリ装置は、ワード線方向及びビット線方向にアレイ配列された複数のメモリセルと、前記ワード線方向に並ぶ前記複数のメモリセルのソースを共通接続する共通ソース線と、前記ビット線方向に並ぶ前記複数のメモリセルのドレインを、前記共通ソース線の接地に応じて接地する接地回路と、を有するものである。
本発明では、共通ソース線と接地電位との間を、さらに、メモリセルが形成する第2の電気的接続パスにより接続することから、ソース抵抗の抵抗値を小さくすることができるため、高速動作を可能にするとともに、回路面積の増大を抑止することができる。
本発明によれば、高速動作を可能にするとともに、回路面積の増大を抑止することが可能なメモリ装置を提供することができる。
本発明の前提例に係るメモリ装置の構成を示すブロック図である。 本発明の前提例に係るメモリ装置の構成を示す回路図である。 本発明の前提例に係るメモリセルアレイの構成を示す回路図である。 本発明の前提例に係るメモリセルの物理構成を示す図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の動作を説明するための図である。 本発明の前提例に係るメモリ装置の特性を説明するための図である。 本発明の前提例に係るメモリ装置の特性を説明するための図である。 本発明の前提例に係るメモリ装置の概略を説明するための図である。 本発明に係るメモリ装置の概略を説明するための図である。 本発明の実施の形態1に係るメモリ装置の構成を示す回路図である。 本発明の実施の形態1に係るメモリセルアレイの構成を示す回路図である。 本発明の実施の形態1に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態1に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態1に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態2に係るメモリ装置の構成を示す回路図である。 本発明の実施の形態2に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態2に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態2に係るメモリ装置の動作を説明するための図である。 本発明の実施の形態3に係るビット線セレクタの構成作を示す回路図である。 従来のメモリセルの構成を示す図である。 従来のメモリセルアレイの構成を示す図である。
(本発明の前提例)
本発明の実施の形態について説明する前に、まず、本発明が適用される前提例のメモリ装置について、図面を参照して説明する。
図1は、前提例のメモリ装置の概略構成を示し、図2は、図1の前提例のメモリ装置の回路構成を示している。
図に示されるように、前提例のメモリ装置100は、NOR型(もしくはDINOR型)フラッシュメモリ回路であり、メモリセルアレイ部110、ワード線ドライバ部120、センスアンプ部130、ビット線セレクタ部140、ソース線ドライバ部150を備えている。
メモリセルアレイ部110は、複数のメモリセルアレイ111を有している。複数のメモリセルアレイ111は、ワード線方向(ワード線の延在する方向、X方向ともいう)及びビット線方向(ビット線の延在する方向、Y方向ともいう)にアレイ状に配列されている。また、メモリセルアレイ111は、後述するように、内部に複数のメモリセルを備えており、8ビット×8ビットの情報を記憶する。
なお、メモリセルアレイのビット数や、メモリセルアレイ毎のビット線及びワード線の数は8本に限らず任意の本数とすることができ、メモリセルアレイ毎のソース線も1本に限らず任意の本数とすることができる。また、メモリセルアレイの数やデータの入出力数も任意に設定可能である。
ワード線ドライバ部120は、複数のXアドレスデコーダ121、複数のワード線ドライバ122を有している。複数のXアドレスデコーダ121は、メモリセルアレイ111単位に設けられ、ここでは、メモリセルアレイ111のワード線と同じ8ビット単位に設けられている。
Xアドレスデコーダ121は、メモリセルアレイ111と複数のワード線112により複数のワード線ドライバ122を介して接続されている。Xアドレスデコーダ121は、外部の制御回路から入力されるXアドレス信号をデコードし、Xアドレス信号に該当するワード線112をワード線ドライバ122により駆動する。ワード線ドライバ122は、メモリセルの書き込み時にメモリセルの高電圧を印可し、メモリセルの消去時に負電圧を印可し、メモリセルの読み出し時にVDDを印可する。
センスアンプ部130は、複数のセンスアンプ131、複数の書込用ビット線ドライバ132を有し、ビット線セレクタ部140は、複数のYアドレスデコーダ141、複数のビット線セレクタ142を有している。
これらのセンスアンプ131、書込用ビット線ドライバ132、Yアドレスデコーダ141、ビット線セレクタ142は、それぞれメモリセルアレイ111単位に設けられ、ここでは、メモリセルアレイ111のビット線と同じ8ビット単位に設けられている。
ビット線セレクタ142は、複数のビット線113によりメモリセルアレイ111と接続され、メモリセルアレイ111のビット線113とセンスアンプ131、書込用ビット線ドライバ132との接続を切り替える。
Yアドレスデコーダは、外部の制御回路から入力されるYアドレス信号をデコードし、ビット線セレクタ142を制御して、Yアドレス信号に該当するビット線113と、センスアンプ131もしくは書込用ビット線ドライバ132とを接続する。
センスアンプ131は、メモリセルの読み出し時にメモリセルと接続され、読出しを行うメモリセルの記憶状態を検出するために、メモリセルの電圧を増幅して、外部にデータ出力信号を出力する。
書込用ビット線ドライバ132は、メモリセルの書き込み時にメモリセルと接続され、メモリセルにデータを書き込むために、データ入力信号に応じてYアドレス信号に該当するビット線113を駆動する。データ書込用ビット線ドライバ132は、インバータであり、データ入力信号を反転させてメモリセルにVDDを印可する。
ソース線ドライバ部150は、複数のソースデコーダ151、複数のソース線ドライバ152を有している。複数のソースデコーダ151及び複数のソース線ドライバ152は、それぞれメモリセルアレイ111単位に設けられている。ここでは、メモリセルアレイ111毎のソース線114に対応して設けられている。
ソースデコーダ151は、メモリセルアレイ111と1本のソース線114によりソース線ドライバ152を介して接続されている。ソースデコーダ151は、外部の制御回路から入力されるソースアドレス信号をデコードし、ソースアドレス信号に該当するソース線114をソース線ドライバ152により駆動する。ソース線ドライバ152は、メモリセルの書き込み時に高電圧を印可し、読出しや消去時にメモリセルをGNDに接地するように切り替える。
図3は、前提例のメモリセルアレイ111の回路構成を示している。メモリセルアレイ111は、複数のワード線112と複数のビット線113が交差するように配置され、ワード線112とビット線113の交差する位置に、複数のメモリセル201がアレイ状に配列されている。さらに、メモリセル201からソース線114がワード線方向に引き出されている。
ここでは、ワード線112が112−0〜112−7まで8本設けられ、ビット線113が113−0〜113−7まで8本設けられ、ソース線114が1本設けられている。
ワード線方向に並ぶ複数のメモリセル201は、1行ごとに各メモリセル201のゲートが1本のワード線112に共通接続されている。
ビット線方向に並ぶ複数のメモリセル201は、1列ごとに各メモリセル201のドレインが1本のビット線113に共通接続されている。メモリセル201ごとにビットコンタクト117を介してビット線113に接続されている。
ワード線方向に並ぶ複数のメモリセル201は、1行ごとに各メモリセル201のソースが1本の共通ソース線115に共通接続されている。さらに、この共通ソース線115からソースコンタクト116を介してソース線114に接続されている。ここでは、8個のメモリセル201ごとに1個のソースコンタクト116が形成されている。
図4は、図3で示した前提例のメモリセルアレイ111の物理構造を示している。図4(a)は、メモリセルアレイ111の平面図、図4(b)は、図4(a)のX−X'断面図、図4(c)は、図4(a)のY−Y'断面図である。なお、図4(a)では、ビットコンタクトが接続されるビット線とソースコンタクトが接続されるソース線の図示を省略している。
図4(a)〜図4(c)に示されるように、シリコン基板200の表面には素子分離酸化膜210が形成されており、この素子分離酸化膜210で分離されたシリコン基板200の表面領域に、ソース領域115、ドレイン領域202が隔離して形成されている。ソース領域115は、X方向に沿って連続的なパターンで形成されており、隣接するメモリセル間で共通接続されて共通ソース線115を形成している。
各メモリセルのソース領域115、ドレイン領域202間のチャネル領域上には、ゲート酸化膜204を介して浮遊ゲート205が形成されている。浮遊ゲート205上には、ポリシリコン間絶縁膜206を介して選択ゲート112が形成されている。選択ゲート112はX方向に延設され、ワード線112を形成している。
積層ゲート構造上には層間絶縁膜211が形成され、層間絶縁膜211上にY方向へ向かってビット線113が形成されている。また層間絶縁膜211上にY方向へ向かってソース線(上部ソース線)114も形成されている(不図示)。
ビット線113は、層間絶縁膜211を貫通するスルーホールを介してビットコンタクト117によりドレイン領域202に接続されている。図3と同様に、メモリセルごとにビットコンタクト117が形成されている。
ソース線114も、層間絶縁膜211を貫通するスルーホールを介してソースコンタクト116によりソース領域(共通ソース線)115に接続されている。ソースコンタクト116を形成するためには、数セル分の領域が必要であるため、ここでは、図3と同様に、8個のメモリセルごとにソースコンタクト116が形成されている。
次に、図5及び図6を用いて、前提例のメモリ装置における、データの書込動作について説明する。
図5に示すように、メモリセル201にデータを書込む場合、まず、Yアドレス信号がYアドレスデコーダ141に入力される。Yアドレスデコーダ141は、Yアドレス信号をデコードし、ビット線セレクタ142を切り替えて書込対象メモリセル201aにつながるビット線113と書込用ビット線ドライバ132を接続する。
また、ソースアドレス信号がソースデコーダ151に入力される。ソースデコーダ151は、ソースアドレス信号をデコードし、ソース線ドライバ152によって、書込対象メモリセル201aの存在する領域(メモリセルアレイ111)のソース線114に高電圧が印加される。
ビット線113の電位は0データを書込むセルにはGND、1データを書込むセル(すなわちデータを書込まないセル)にはVDD電位、すなわち入力データを書込用ビット線ドライバ132により反転した電位が与えられる。
この段階ではまだワード線112を介してゲート112に電圧が印加されていないため、メモリセル201aに電流は流れない。図6はこのときのメモリセル201aの状態を示している。
図6(a)に示すように、メモリセル201aに0データを書き込む場合、ドレイン202をビット線113によりGNDとし、ソース115へソース線114により高電圧を印可し、この段階でゲート112はGNDである。
また、図6(b)に示すように、メモリセル201aに1データを書き込む(データを書き込まない)場合、ドレイン202にビット線113によりVDDを供給し、ソース115へソース線114により高電圧を印可し、この段階でゲート112はGNDである。
そして、図7に示すように、Xアドレス信号がXアドレスデコーダ121に入力される。Xアドレスデコーダ121は、Xアドレス信号をデコードし、ワード線ドライバ122がXアドレスに対応した書込対象メモリセル201aにつながるワード線112に高電圧を印加する。図8はこのときのメモリセル201aの状態を示している。
図8(a)に示すように、0データを書き込むメモリセル201aに対し、ワード線112によりゲート112に高電圧が印可される。そうするとメモリセル201aではソース115からドレイン202に電流が流れ、メモリセル201aのチャネルで発生した高エネルギーを持った電子(チャネルホットエレクトロン)がゲート112の高電圧に引かれて浮遊ゲート205中に注入され、データの書き込みが行われる。
また、図8(b)に示すように、1データを書き込むメモリセル201に対し、ワード線112によりゲート112に高電圧が印可される。メモリセル201では、ビット線113によりドレイン202がVDDに持ち上げられているために、ソース−ドレイン間に電流が流れず、メモリセル201に書き込みは行われない。
次に、図9を用いて、前提例のメモリ装置における、データの消去動作について説明する。
図9に示すように、メモリセル201のデータを消去する場合、ビット線113の電位をGNDとし、ソース線114の電位をGNDとし、消去対象メモリセル201bにつながるワード線112に負の高電圧を印加する。図10はこのときのメモリセル201bの状態を示している。
図10に示すように、メモリセル201bは、ドレイン202をビット線113によりGNDとし、ソース115をソース線114によりGNDとし、ゲート112へワード線112により負の高電圧が印可される。
そうすると、浮遊ゲート205中に蓄えられた電子がFowler-Nordheim(FN)トンネル現象によってシリコン基板200へ排出される。ワード線112を共通とするメモリセル201bすべてが消去されるが、NOR型フラッシュメモリでは特定のメモリセルを消去することはしないため問題にならない。また、消去のためにはYアドレスは必要とならない。
次に、図11を用いて、前提例のメモリ装置における、データの読出動作について説明する。
図11に示すように、データを読み出す場合、Yアドレス信号がYアドレスデコーダ141に入力される。Yアドレスデコーダ141は、Yアドレス信号をデコードし、ビット線セレクタ142を切り替えて読出対象メモリセル201cにつながるビット線113とセンスアンプ131を接続する。また、Xアドレス信号がXアドレスデコーダ121に入力される。Xアドレスデコーダ121は、Xアドレス信号をデコードし、読出対象メモリセル201cにつながるワード線112に電圧を印加する。そして、共通ソース線115及びソース線114はソース線ドライバ152によってGNDに接地される。そうすると、読出対象メモリセル201cの記憶状態に応じて、メモリセル201cから共通ソース線115及びソース線114を介した経路でGNDへ電流が流れる。図12はこのときのメモリセル201cの状態を示している。
図12に示すように、メモリセル201cのデータを読み出す場合、ソース115をソース線114によりGNDとし、ゲート112へワード線112によりVDDを供給し、さらに、センスアンプ131からビット線113を介してドレイン202にVDDを印可する。
そうすると、読出対象メモリセル201cが非書込状態である"1"の場合は、図12(a)のように、浮遊ゲート205に電荷が蓄積されていないため、ゲート112の電界によりシリコン基板200界面に反転層が形成され、ドレイン202からソース115へ電流が流れ、ソース線114を経てGNDへ流れ込む。センスアンプ131は、この電流を検出することで、非書込状態(データ1)を読み出すことができる。
また、読出対象メモリセル201cが書込み状態である"0"の場合は、図12(b)のように、ゲート112に印加した電圧が浮遊ゲート205中の電子に阻害されてシリコン基板200に届かないため、ドレイン−ソース間に電流が流れない。センスアンプ131は、この電流無しを検出することで、書込状態(データ0)を読み出すことができる。
このように、前提例では、複数のメモリセルのソースを共通接続した共通ソース線を有し、共通ソース線からソースコンタクトを介してソース線に接続する構成となっている。
ここで、前提例の問題について検討する。図13は、前提例を含む複数のメモリセルの構成とソース抵抗の関係を示している。
図13において、「(a)1セルごとにコンタクト」の構成とは、メモリセルごとにソースコンタクトを設け、各メモリセルのソースからソース線へ接続する構成である。
「(b)シリサイド共通ソース線」の構成とは、各メモリセルのソースをシリサイド(金属)で接続し、このシリサイドにより共通ソース線を形成し、このシリサイド共通ソース線から複数のメモリセル単位でソースコンタクトを介しソース線へ接続する構成である。
「(c)セルフアラインソース」の構成とは、「シリサイド共通ソース線」の構成に対し、シリコンで共通ソース線を形成した構成である。
「(e)非シリサイド共通ソース線」の構成とは、「シリサイド共通ソース線」の構成に対し、微細化プロセスによって、ソース領域にシリサイドを形成することができなくなり、金属を含まない非シリサイドで共通ソース線を形成した構成である。
「(f)埋め込みソース線」の構成とは、「非シリサイド共通ソース線」の構成に対し、さらに微細化プロセスが進み、消去ゲート等補助電極や、絶縁膜の下の領域に非シリサイドの共通ソース線が形成された構成である。
近年、微細化プロセスが進むに従って、メモリセルの構成は、構成(a)から構成(f)に進んできている。構成(a)から構成(f)に進むに従って、セルアレイの面積が小さくなっている。
まず、構成(a)と構成(b)(c)を比較すると、構成(b)(c)では、各メモリセルのソースを共通に接続して複数のメモリセル単位にソースコンタクトを設ける共通ソース線の構成とすることで、構成(a)よりもセルアレイの面積を小さくすることが可能となっている。
しかし、図13から分かるように、共通ソース線はソース線よりも配線抵抗が大きいため、共通ソース線を用いるとソース抵抗が大きくなる。
さらに、構成(b)(c)と構成(d)(e)を比較すると、構成(d)(e)では、微細化プロセルによって、構成(b)(c)よりもさらに面積が小さくなっている。しかし、構成(d)(e)では、微細化プロセスによりソースをシリサイドで形成することができないため、ソース抵抗が極端に増大する。
このソース抵抗の増大は、メモリセルに流れるセル電流に大きく影響する。図14は、メモリセルにおけるソース電圧とセル電流の関係を示している。すなわち、ソース抵抗が増大すると、ソース電圧が上昇する。そうすると、図14から分かるように、ソース電圧の上昇にしたがってセル電流が減少する。
つまり、ソース抵抗が増大すると、メモリセルの読み出し時に、ソース電圧をグランド電位まで下げることができなくなり、バックゲート効果によりセル電流が低下してしまう。セル電流は大きければ大きいほど高速での読み出しが可能であり、セル電流の低下は読出し速度の低下を意味する。
一方で、ソース抵抗を下げるために、ソースコンタクトを増やすことが考えられるが、一般的にソースコンタクト領域は通常セルの数倍以上の面積を占有するため、ソースコンタクトを増やすとセルアレイ面積全体に対する有効セルの面積が非常に小さくなってしまう。
以上のように、NOR型フラッシュメモリのセル密度を上げるには共通ソース線技術が有効であるが、セル密度にとって有利な技術ほどソース抵抗が増大し、セル電流が下がる。また、ソース抵抗を下げるには、ソースコンタクト数を増やすのが有効だが、セル密度は低下してしまう。つまり、セル密度とソース線抵抗は相反する関係にある。
そこで、以下に説明するように、本発明では、ソースのグランドへの放電経路を別に作ることで、セル密度を上げつつソース線抵抗を下げることを可能とする。特に、消去状態のセルは、ゲートに電圧を印加しなければOFF、印加するとONと、通常のMOSFETと同じ動作をする原理を利用することで、ソース電流の経路を複数形成し、回路面積の増大を抑える。
(本発明の特徴)
本発明の実施の形態の説明に先立って、本発明の主な特徴について参考例と比べて説明する。
まず、図15は、参考例のメモリ装置における読み出し時の模式図である。参考例では上述したように、センスアンプ131は、ビット線セレクタ142により読み出し対象メモリセル201cと接続され、読み出し対象メモリセル201cは、共通ソース線115からソースコンタクト116、ソース線114を介して、ソース線ドライバ152により接地される。ここでソース線114は金属配線であり抵抗値は小さく、共通ソース線115は拡散層配線であり抵抗値は大きい。
参考例では、メモリセルのソースから接地までの経路上に抵抗の大きい拡散層配線(共通ソース線)があるため、電流量が制限される。電流量が大きいほどセンスアンプ131の反応は速くなるため、高速での読出動作のためには抵抗を小さくする必要があるが、そのためには、大きな面積を必要とする拡散層−金属配線接続部(ソースコンタクト)領域を数多く取る必要があり、メモリセルアレイ面積の増大につながる。
これに対し、図16は、本発明のメモリ装置における読み出し時の模式図である。本発明では、常に消去状態のメモリセル302をGNDへの接地経路として使用する。すなわち、参考例と同様に、センスアンプ131は、ビット線セレクタ142により読み出し対象メモリセル301cと接続され、読み出し対象メモリセル301c(第2のメモリセル)は、共通ソース線115からソースコンタクト116、ソース線114を介した第1の電気的接続パスにより、ソース線ドライバ152により接地される。本発明では、さらに、共通ソース線115に共通接続されたメモリセル302(第1のメモリセル)を介した第2の電気的接続パスによりGNDへ接続される。
このように、本発明では、セル電流が共通ソース線だけではなく、メモリセル302を介してもGNDに接続されるため、ソース抵抗を小さくすることができ、ソース電圧の上昇を抑え、高速動作が可能となる。さらに、ソースコンタクトではなく、メモリセルアレイ内のメモリセルを利用してGNDに接続するため、ソースコンタクトの配置頻度を下げることができ、回路規模の増大を抑えることができる。
(本発明の実施の形態1)
以下、図面を参照して本発明の実施の形態1について説明する。図17は、本発明の実施の形態1に係るメモリ装置の構成を示している。
本実施形態に係るメモリ装置1は、図1及び図2と同様に、NOR型(DINOR型)フラッシュメモリ回路であり、ワード線ドライバ部120、センスアンプ部130、ビット線セレクタ部140、ソース線ドライバ部150を備えている。また、図1及び図2に対し、メモリ装置1は、メモリセルアレイ部110の構成が異なり、新たに、ビット線接地用スイッチ部310を備えている。
メモリセルアレイ部110のメモリセルアレイ300は、後述するように、内部に複数のメモリセルを備え、8ビット×8ビットの情報を記憶するとともに、常に消去状態の消去状態メモリセル(後述のメモリセル302)を有している。そして、特定のビット線113(後述のビット線113−G)上に、消去状態メモリセルが配置され、この特定のビット線113が、ビット線接地用スイッチ部310まで接続されている。特定のビット線113は、ビット線セレクタ142まで延在されるが、ビット線セレクタ142とは電気的に接続されていない。
ビット線接地用スイッチ部310は、複数のビット線接地用スイッチ311を有している。複数のビット線接地用スイッチ311は、メモリセルアレイ300の消去状態メモリセルごとに設けられ、消去状態メモリセルとビット線113により接続されている。ビット線接地用スイッチ311は、メモリセルの読み出し時に、スイッチがONされて、消去状態メモリセルをGNDに接地する。
図18は、本発明の実施の形態1に係るメモリセルアレイ300の回路構成を示している。
このメモリセルアレイ300は、図3と同様に、NOR型フラッシュメモリセルであるメモリセル301がアレイ状に配列され、各メモリセル301に、ワード線112、ビット線113、共通ソース線115を介してソース線114が接続されている。メモリセルアレイ300は、図3に比べて、ビット線113−Gに接続された、常に消去状態にしておく複数の消去状態メモリセル302を有している。消去状態メモリセル302は、常に消去状態であるとともに、ビット線接地用スイッチ311に接続されている。消去状態メモリセル302は、任意のビット線113に接続されるメモリセルを用いることができる。また、消去状態メモリセル302は、他のメモリセル301と同じ構成であり、図4と同様の物理構成である。
次に、図19を用いて、本発明の実施の形態1に係るメモリ装置1における、データの書込動作について説明する。
メモリ装置1の書込動作は、図5と同様となる。すなわち、Yアドレス信号がYアドレスデコーダ141に入力され、ビット線セレクタ142が書込対象メモリセル301aにつながるビット線113と書込用ビット線ドライバ132を接続する。ソースアドレス信号がソースデコーダ151に入力され、ソース線ドライバ152が書込対象メモリセル301aの存在する領域のソース線114に高電圧を印加する。Xアドレス信号がXアドレスデコーダ121に入力され、ワード線ドライバ122が書込対象メモリセル201aにつながるワード線112に高電圧を印加する。これにより、図8のようにメモリセル301aにデータが書き込まれる。
本実施形態では、常に消去状態にある消去状態メモリセル302が接続されているビット線113−Gは、ビット線セレクタ142及び書込用ビット線ドライバ132には接続されていないため、消去状態メモリセル302は常にビット線セレクタ142により選択されることはない。また、書込時には、ビット線接地用スイッチ311がオフであり、消去状態メモリセル302は、GNDからスイッチで切り離されている。
このため、書込時にビット線113−G上にある消去状態メモリセル302には電子が注入されず、消去状態のままとなる。また、このビット線接地用スイッチ311にアドレス情報は不要であるため、簡素な構成で済む。
次に、図20を用いて、本発明の実施の形態1に係るメモリ装置における、データの消去動作について説明する。
メモリ装置1の消去動作は、図9と同様となる。すなわち、メモリセル301のデータを消去する場合、ビット線113の電位をGNDとし、ソース線114の電位をGNDとし、消去対象メモリセル301bにつながるワード線112に負の高電圧を印加する。これにより、図10のようにワード線112上のメモリセル301bのデータが消去される。
このとき、ビット線接地用スイッチ311がオフである。また、消去対象メモリセル301bは、Xアドレスのみで決定されるため、このメモリセル301bの消去時に、消去状態メモリセル302も消去されることになる。消去状態メモリセル302は、常に消去状態にすべきであるため、メモリセル301bと同時に消去されても本発明の動作に影響はない。
次に、図21を用いて、本発明の実施の形態1に係るメモリ装置における、データの読出動作について説明する。
データを読み出す場合、図11と同様に、Yアドレス信号がYアドレスデコーダ141に入力され、Yアドレスデコーダ141は、Yアドレス信号をデコードし、ビット線セレクタ142を切り替えて読出対象メモリセル301cにつながるビット線113とセンスアンプ131を接続する。また、Xアドレス信号がXアドレスデコーダ121に入力され、Xアドレスデコーダ121は、Xアドレス信号をデコードし、読出対象メモリセル301cにつながるワード線112に電圧を印加する。そして、共通ソース線115及びソース線114はソース線ドライバ152によってGNDに接地される。
このとき、さらに、本実施形態では、ビット線接地用スイッチ311をオンし、消去状態メモリセル302とGNDを接続する。データを読み出す場合、常に消去状態にある消去状態メモリセル302cは、ワード線112に電圧が印加されると同時にON状態になる。ビット線接地用スイッチ311は、外部の制御回路によって、少なくともメモリセルの読み出し時にオンとなるように制御される。例えば、ソースデコーダ151によってソース線ドライバ152がソース線114を接地するタイミングで、ビット線接地用スイッチ311がオンされる。
このため、センスアンプ131から読出対象メモリセル301cを介して共通ソース線115に流れ込んだ電流は、ソース線ドライバ152への経路だけではなく、常に消去状態にある消去状態メモリセル302cを介した経路でもGNDへ流れ出す。すなわち、読出対象メモリセル301c(第2のメモリセル)から、共通ソース線115、ソースコンタクト116、ソース線114、ソース線ドライバ152を経由してGNDへ接続される第1の電気的接続パスと、読出対象メモリセル301cから、共通ソース線115、ON状態の消去状態メモリセル302c(第1のメモリセル)のソースからドレイン、消去状態メモリセル302cに接続されたビット線113−G、ビット線接地用スイッチ311を経由してGNDへ接続される第2の電気的接続パスと、2つの経路により接地される。
以上のように、本実施形態では、読出対象メモリセルと同一のワード線上に、常に消去状態でデータの記憶に使用しないメモリセルを用意し、常に消去状態のメモリセルの存在するビット線上にはグランドへの放電経路を用意する構成とした。消去状態のメモリセルは、通常のトランジスタと同じ動作をするため、ワード線に電圧を印加するとON状態となり、共通ソース線以外に消去状態のメモリセルのビット線を介して放電する経路が形成されることになる。
このため、読出時におけるメモリセルのソース抵抗を小さくすることができる。図13及び図14のように、ソース抵抗を小さくすることで、ソース電圧が下がりセル電流の低下を抑えることができるため、高速動作が可能となる。
また、常に消去状態のメモリセルは、データを記録するには使えなくなるが、ソースコンタクト部よりも面積が遥かに小さいため、メモリセルアレイ面積の増大を最小限に抑えることが可能である。常に消去状態のメモリセルの大きさは1メモリセルの幅であるが、ソースコンタクト領域には数セル分以上の大きさが必要となる。つまり、ソースコンタクトの配置頻度を下げることで、有効セルの割合が増加し、回路面積の増大を抑えることができる。
さらに、ソースコンタクト部はメモリセルアレイ内の規則性を崩してしまうために製造において歩留まりを低下させる傾向にあるが、本発明では通常のメモリセルを常に消去状態にすることで接地経路を確保するため、通常のメモリセルと同様に製造できる。したがって、メモリセルアレイの規則性を崩すことがないため、リソグラフィやエッチングの安定性が向上し、メモリセルの形状・特性のばらつきが低減し、歩留まりを改善することが可能である。
例えば、拡散層配線抵抗が1メモリセル幅あたり500Ω程度である場合、前提例では80MHz以上の高速読出のためにはセルコンタクト領域をメモリセル16個おき確保する必要があった。これに対し、本実施形態を採用すると、常に消去状態のメモリセルを16個おきに配置することでセルコンタクト領域は128メモリセルおきに確保すれば良くなる。
例えば、セルコンタクト領域に3メモリセル幅を必要とする場合、前提例と比較して同一のメモリセルアレイ面積に対して実際にデータの記録できるメモリセルの数が10%程度増加する。
(本発明の実施の形態2)
以下、図面を参照して本発明の実施の形態2について説明する。本実施形態では、実施の形態1に対し、常に消去状態のメモリセルを任意のビット線上に配置可能としている。
図22は、本発明の実施の形態2に係るメモリ装置の構成を示している。本実施形態に係るメモリ装置1は、実施の形態1の図17と比べて、ビット線接地用スイッチ部310の構成が異なり、新たに、スイッチ制御用デコーダ312を備えている。その他の構成は実施の形態1と同様である。
ビット線接地用スイッチ部310では、複数のビット線接地用スイッチ311が、複数のメモリセルアレイ300のビット線113のそれぞれに対応して設けられる。すなわち、ビット線接地用スイッチ311は、メモリセルアレイ300の任意のビット線113を選択してGNDに接続する。
スイッチ制御用デコーダ312は、入力されるスイッチ制御信号をデコードし、対応するビット線113のビット線接地用スイッチ311のオン/オフを切り替える。つまり、メモリセルの読み出し時に、読出対象メモリセルが含まれるビット線をGNDから切り離す。
また、本実施形態では、常に消去状態のメモリセルを任意に選択できるため、全てのビット線113がビット線セレクタ142に接続されている。なお、メモリセルアレイ300の構成は図18と同様である。
次に、図23を用いて、本発明の実施の形態2に係るメモリ装置1における、データの書込動作について説明する。
図19と同様に、Yアドレス信号にしたがって、書込対象メモリセル301aにつながるビット線113と書込用ビット線ドライバ132が接続され、ソースアドレス信号にしたがって、書込対象メモリセル301aの存在する領域のソース線114に高電圧が印加され、Xアドレス信号にしたがって、書込対象メモリセル201aにつながるワード線112に高電圧が印加され、メモリセル301aにデータが書き込まれる。
本実施形態では、常に消去状態にある消去状態メモリセル302は任意に選択可能であるため、消去状態メモリセル302に接続されるビット線113−Gについて、Yアドレスデコーダ141はスキップ処理を行う。このためYアドレスに対応してビット線113−Gが選択されることはなく、書込時に、消去状態メモリセル302は書込用ビット線ドライバ132には接続されない。また、書込時には、スイッチ制御用デコーダ312は制御動作しないため、ビット線接地用スイッチ311は全てオフであり、消去状態メモリセル302は、GNDからスイッチで切り離されている。
このため、図19と同様に、書込時にビット線113−G上にある消去状態メモリセル302には電子が注入されず、消去状態のままとなる。実施の形態1と同様に、ビット線接地用スイッチ311にアドレス情報は不要である。
なお、Yアドレスデコーダがスキップ処理を行わないことで、消去状態メモリセル302を通常のメモリセル301として動作させ、任意のデータを書込むことも可能である。
次に、図24を用いて、本発明の実施の形態2に係るメモリ装置における、データの消去動作について説明する。
図20と同様に、ビット線113の電位をGNDとし、ソース線114の電位をGNDとし、消去対象メモリセル301bにつながるワード線112に負の高電圧が印加されて、ワード線112上のメモリセル301bのデータが消去される。
このとき、スイッチ制御用デコーダ312は制御動作しないため、ビット線接地用スイッチ311は全てオフである。
実施の形態1と同様に、消去対象メモリセル301bはXアドレスのみで決定されるため、このメモリセル301bの消去時に、常に消去状態にすべき消去状態メモリセル302も消去される。
次に、図25を用いて、本発明の実施の形態2に係るメモリ装置における、データの読出動作について説明する。
図21と同様に、Yアドレス信号にしたがって、読出対象メモリセル301cにつながるビット線113とセンスアンプ131を接続し、Xアドレス信号にしたがって、読出対象メモリセル301cにつながるワード線112に電圧を印加し、共通ソース線115及びソース線114がGNDに接地される。
このとき、本実施形態では、実施の形態1と異なり、全ビット線113にビット線接地用スイッチ311を介したGNDへの経路があるため、常に消去状態の消去状態メモリセル302が配置されているビット線はGNDへ接続するが、消去状態メモリセル302以外のビット線はGNDへの経路を遮断しておく必要がある。
このため、スイッチ制御用デコーダ312は、メモリセルの配置状況に合わせたスイッチ制御信号を入力してデコードし、消去状態メモリセル302が接続されたビット線113−Gのビット線接地用スイッチ311はオンにし、その他のビット線113のビット線接地用スイッチ311はオフとなるように制御する。なお、ここでは、1本のビット線113のみGNDに接地しているが、複数のビット線113に対応したメモリセルを消去状態メモリセルとし、複数のビット線113を接地することが可能である。
そうすると、実施の形態1と同様に、センスアンプ131から読出対象メモリセル301cを介して共通ソース線115に流れ込んだ電流は、ソース線ドライバ152だけではなく、常に消去状態にある消去状態メモリセル302cを介してGNDへ流れ出す。
したがって、本実施形態では、実施の形態1と同様に、消去状態メモリセル302からGNDへの経路により、ソース抵抗を小さくして高速動作可能であるとともに、ソースコンタクトの頻度を下げ回路規模の増大を抑止することができる。
さらに、本実施形態では、すべてのビット線上に、GNDへの放電経路を用意しておく構成とした。こうすることで、必要な読出速度に応じて常に消去状態のメモリセルの数を増減させることが可能である。
例えば、低速動作でも記憶容量がより多く必要な製品の場合には消去状態メモリセルの数をより減らし、記憶容量が少なくてもより高速な動作が必要な製品の場合には消去状態メモリセルの数を増やすことで制御可能である。低速読出と高速読出の切り替えは外部からの制御信号やヒューズ等でデコーダの動作を切り替えるだけであるため、同一のフォトマスクで、容量が少ないが高速読出可能な製品と、低速だが容量の大きい製品を作り分けることが可能となる。
前提例では、高速読出のためには16個おきに常に消去状態のメモリセルを配置する必要があるが、例えば、10MHz程度の低速読出で良い場合は常に消去状態のメモリセルを配置する必要が無くなるため、実施の形態1に比べてさらに6%程度メモリセルの数が増加する。
なお、常に消去状態のメモリセルの選択するためビット線セレクタはスキップ動作を行うが、例えば、メモリ装置に対しYアドレスを与える制御回路の制御プログラムにより実現できる。これは制御プログラムのコンパイラ等によるバイナリ生成時に導入することも可能である。
この場合、スキップするビット線をGNDに接地するような回路構成にした上で、例えば、消去セルのデータ(FF)にNOPが割り当てられたCPUであれば、コンパイル時に消去状態にしたい箇所はFFのままにしておいてもよいし、消去セルのデータ(FF)に別の命令が割り当てられているCPUの場合は、コンパイル時にこのアドレスをスキップするようにしてもよい。
(本発明の実施の形態3)
以下、図面を参照して本発明の実施の形態3について説明する。本実施形態では、実施の形態2に対し、ビット線接地用スイッチをビット線セレクタに内蔵している。
本実施形態のメモリ装置は、実施の形態2の図22の構成と比べて、ビット線セレクタ142の構成が異なり、ビット線接地用スイッチ311が不要である。その他の構成は実施の形態2と同様である。
図26は、本発明の実施の形態3に係るビット線セレクタの構成を示している。このビット線セレクタ142は、ビット線113ごとにスイッチ401を有している。ビット線113と、センスアンプ131またはGNDとの接続を切り替える。
図25のように実施の形態2では、消去状態メモリセル302以外のビット線はGNDへの経路を遮断しておく必要がある。この遮断を、実施の形態2ではビット線接地用スイッチ311で切り替えていたが、本実施形態では、ビット線セレクタ142内のスイッチ401により切り替える。すなわち、スイッチ401は、Yアドレスデコーダ141にしたがって、読出対象メモリセル301cにつながるビット線113をセンスアンプ131と接続し、その他のビット線113はGNDへ接続する。
これにより、実施の形態2に対し、簡易な構成で、消去状態メモリセル以外のビット線についてGNDへの経路を遮断することができ、さらに回路規模の増大を抑止することができる。
(その他の本発明の実施の形態)
なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。
例えば、上記実施の形態で述べられているVDD電位とGND電位は必ずしも常に同じ値である必要はなく、必要に応じて独立した任意の電圧とすることが可能である。
例えば、書込時の浮遊ゲートへの注入電子量と、読出時のワード線電位を調整することで複数の書込状態を取り、一つのセルに複数ビットのデータを記録することを可能とした構成にも適用が可能である。
1,100 メモリ装置
110 メモリセルアレイ部
111,300 メモリセルアレイ
112 ワード線(選択ゲート)
113 ビット線
114 ソース線
115 共通ソース線(ソース領域)
116 ソースコンタクト
117 ビットコンタクト
120 ワード線ドライバ部
121 Xアドレスデコーダ
122 ワード線ドライバ
130 センスアンプ部
131 センスアンプ
132 書込用ビット線ドライバ
140 ビット線セレクタ部
141 Yアドレスデコーダ
142 ビット線セレクタ
150 ソース線ドライバ部
151 ソースデコーダ
152 ソース線ドライバ
200 シリコン基板
201,301 メモリセル
202 ドレイン領域
204 ゲート酸化膜
205 浮遊ゲート
206 ポリシリコン間絶縁膜
210 素子分離酸化膜
211 層間絶縁膜
302 消去状態メモリセル
310 ビット線接地用スイッチ部
311 ビット線接地用スイッチ
312 スイッチ制御用デコーダ
401 スイッチ

Claims (16)

  1. 複数のメモリセルを備えたメモリセルアレイと、
    前記メモリセルアレイ内に前記複数のメモリセル各々のソースが共通接続された共通ソース線と、
    前記共通ソース線が第1の電気的接続パスを形成して接地電位に接続される場合に、前記共通ソース線と前記接地電位との間をさらに接続する第2の電気的接続パスとを備え、
    前記第2の電気的接続パスは、前記複数のメモリセルに含まれる第1のメモリセルにより形成され、
    前記第1の電気的接続パスは、前記複数のメモリセルに含まれる第2のメモリセルのデータを読み出す場合に形成され、
    前記第2のメモリセルのゲートと前記第1のメモリセルのゲートとが共通接続されている、
    メモリ装置。
  2. 前記第2のメモリセルのソースと前記第1のメモリセルのソースとが前記共通ソース線を介して接続されている、
    請求項に記載のメモリ装置。
  3. 前記第1のメモリセルは、前記第1の電気的接続パスが形成される場合に、導通状態となる、
    請求項1または2に記載のメモリ装置。
  4. 前記第1のメモリセルは、データが消去された消去状態のメモリセルである、
    請求項1乃至のいずれか一項に記載のメモリ装置。
  5. 前記第1のメモリセルは、ドレインがビット線に接続され、前記ビット線とともに前記第2の電気的接続パスを形成する、
    請求項1乃至のいずれか一項に記載のメモリ装置。
  6. 前記ビット線と前記接地電位との接続をオン/オフするスイッチ回路を備える、
    請求項に記載のメモリ装置。
  7. 前記スイッチ回路は、前記第1の電気的接続パスが形成される場合にオンし、前記第1の電気的接続パスが形成されない場合にオフする、
    請求項に記載のメモリ装置。
  8. 複数のビット線にそれぞれ接続された複数の前記第1のメモリセルを備え、
    前記複数のビット線と前記複数の第1のメモリセルは、前記第2の電気的接続パスを形成する、
    請求項1乃至のいずれか一項に記載のメモリ装置。
  9. 前記複数のビット線と前記接地電位との接続をそれぞれオン/オフする複数のスイッチ回路を備える、
    請求項に記載のメモリ装置。
  10. 前記複数のスイッチ回路は、前記第1の電気的接続パスが形成される場合にオンし、前記第1の電気的接続パスが形成されない場合にオフする、
    請求項に記載のメモリ装置。
  11. 前記複数のスイッチ回路のいずれかがオフの場合、当該オフであるスイッチ回路に接続されている前記第1のメモリセルは、データの書き込みが可能である、
    請求項または10に記載のメモリ装置。
  12. 前記複数のメモリセルは、NOR型フラッシュメモリセルである、
    請求項1乃至11のいずれか一項に記載のメモリ装置。
  13. 半導体基板の表面に形成されたソース及びドレインと、前記ソースと前記ドレインとの間の前記半導体基板上に浮遊ゲートを含んで形成されたゲートと、を有する複数のメモリセルと、
    前記複数のメモリセルをアレイ配列したメモリセルアレイと、
    前記メモリセルアレイ内の前記半導体基板表面に、前記複数のメモリセル各々のソースが共通接続されるように連続形成された共通ソース線と、
    前記半導体基板上の層間絶縁膜上に形成され、前記共通ソース線とスルーホールを介して接続される上部ソース線と、
    前記共通ソース線及び前記上部ソース線が第1の電気的接続パスを形成して接地電位に接続される場合に、前記共通ソース線と前記接地電位との間を前記上部ソース線を介さずに接続する第2の電気的接続パスとを備え、
    前記第2の電気的接続パスは、前記複数のメモリセルに含まれる第1のメモリセルにより形成され、
    前記第1の電気的接続パスは、前記複数のメモリセルに含まれる第2のメモリセルのデータを読み出す場合に形成され、
    前記第2のメモリセルのゲートと前記第1のメモリセルのゲートとが共通接続されている、
    メモリ装置。
  14. ワード線方向及びビット線方向にアレイ配列された複数のメモリセルと、
    前記ワード線方向に並ぶ前記複数のメモリセルのソースを共通接続する共通ソース線と、
    前記ビット線方向に並ぶ前記複数のメモリセルのドレインを、前記共通ソース線の接地に応じて接地する接地回路と、
    を有し、
    前記ワード線方向に並ぶ第1のメモリセルと第2のメモリセルのうち、前記第1のメモリセルのデータを読み出す場合、前記第1のメモリセルのソースが前記共通ソース線を介して接地され、かつ、前記第2のメモリセルのドレインが前記接地回路により接地される、
    メモリ装置。
  15. 前記接地回路は、前記ビット線方向に並ぶメモリセルに接続されたビット線と接地電位とを接続する、
    請求項14に記載のメモリ装置。
  16. 前記接地回路を複数有し、複数の前記接地回路は、複数の前記ビット線のそれぞれに接続されている、
    請求項15に記載のメモリ装置。
JP2012169549A 2012-07-31 2012-07-31 メモリ装置 Active JP5972700B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2012169549A JP5972700B2 (ja) 2012-07-31 2012-07-31 メモリ装置
US13/952,591 US9230657B2 (en) 2012-07-31 2013-07-27 Memory device with erase mode memory cells
US14/953,370 US20160078956A1 (en) 2012-07-31 2015-11-29 Memory Device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012169549A JP5972700B2 (ja) 2012-07-31 2012-07-31 メモリ装置

Publications (2)

Publication Number Publication Date
JP2014029745A JP2014029745A (ja) 2014-02-13
JP5972700B2 true JP5972700B2 (ja) 2016-08-17

Family

ID=50025335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012169549A Active JP5972700B2 (ja) 2012-07-31 2012-07-31 メモリ装置

Country Status (2)

Country Link
US (2) US9230657B2 (ja)
JP (1) JP5972700B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5972700B2 (ja) * 2012-07-31 2016-08-17 ルネサスエレクトロニクス株式会社 メモリ装置
FR3021803B1 (fr) 2014-05-28 2017-10-13 Stmicroelectronics Rousset Cellules memoire jumelles accessibles individuellement en lecture
FR3021804B1 (fr) 2014-05-28 2017-09-01 Stmicroelectronics Rousset Cellule memoire non volatile duale comprenant un transistor d'effacement
FR3025353B1 (fr) 2014-09-03 2016-09-09 Stmicroelectronics Rousset Memoire non volatile composite a effacement par page ou par mot
FR3025649B1 (fr) 2014-09-09 2016-12-09 Stmicroelectronics Rousset Procede de polarisation d’un plan de source enterre d’une memoire non volatile a grilles de selection verticales
TWI594264B (zh) * 2015-08-13 2017-08-01 旺宏電子股份有限公司 具有區域解碼器之陣列架構
US9953719B2 (en) 2016-05-18 2018-04-24 Silicon Storage Technology, Inc. Flash memory cell and associated decoders
JP7429110B2 (ja) 2019-11-12 2024-02-07 ルネサスエレクトロニクス株式会社 半導体装置および半導体装置の制御方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4334036B2 (ja) * 1998-07-31 2009-09-16 株式会社東芝 不揮発性半導体記憶装置
JP2002043444A (ja) 2000-07-27 2002-02-08 Toshiba Corp 不揮発性半導体メモリ
JP2004031617A (ja) 2002-06-26 2004-01-29 Sony Corp メモリ装置およびその製造方法
US6850438B2 (en) * 2002-07-05 2005-02-01 Aplus Flash Technology, Inc. Combination nonvolatile memory using unified technology with byte, page and block write and simultaneous read and write operations
JP4331966B2 (ja) * 2003-04-14 2009-09-16 株式会社ルネサステクノロジ 半導体集積回路
JP4628114B2 (ja) * 2005-01-20 2011-02-09 ルネサスエレクトロニクス株式会社 不揮発性半導体記憶装置
KR101271174B1 (ko) 2007-08-03 2013-06-04 삼성전자주식회사 비트라인 레이아웃의 구조를 개선한 플래시 메모리 장치 및그 레이아웃 방법
US8369148B2 (en) * 2007-11-06 2013-02-05 Macronix International Co., Ltd. Operation methods for memory cell and array thereof immune to punchthrough leakage
US7697330B1 (en) * 2007-12-20 2010-04-13 Actel Corporation Non-volatile memory array having drain-side segmentation for an FPGA device
US8730739B2 (en) * 2012-01-17 2014-05-20 Eon Silicon Solution Inc. Semiconductor device for accelerating erase verification process and method therefor
JP5972700B2 (ja) * 2012-07-31 2016-08-17 ルネサスエレクトロニクス株式会社 メモリ装置

Also Published As

Publication number Publication date
JP2014029745A (ja) 2014-02-13
US9230657B2 (en) 2016-01-05
US20160078956A1 (en) 2016-03-17
US20140036591A1 (en) 2014-02-06

Similar Documents

Publication Publication Date Title
JP5972700B2 (ja) メモリ装置
JP4907897B2 (ja) 不揮発性半導体記憶装置
US9318211B2 (en) Apparatuses and methods including memory array data line selection
KR100323970B1 (ko) 비휘발성메모리구조
JP5231972B2 (ja) 不揮発性半導体記憶装置
US9177649B2 (en) Flash memory circuit
TW202032544A (zh) 半導體記憶裝置
JP3594001B2 (ja) 不揮発性半導体記憶装置
JP2008508662A (ja) フラッシュメモリユニット、およびフラッシュメモリ素子のプログラミング方法
JP2007200512A (ja) 半導体記憶装置
US8897079B2 (en) Non-volatile semiconductor memory with bit line hierarchy
JP2010257528A (ja) 半導体集積回路装置
JPWO2006129344A1 (ja) 半導体装置
JP2008262613A (ja) 不揮発性半導体記憶装置
JP4299825B2 (ja) 不揮発性半導体記憶装置及びその書き込み方法
JP5468023B2 (ja) 不揮発性半導体メモリ
US20240250026A1 (en) Semiconductor memory device
JP4544733B2 (ja) フラッシュメモリ素子のcamセル
JP2008084439A (ja) 半導体記憶装置
JP2006085839A (ja) 不揮発性半導体記憶装置およびその制御方法
TW202234406A (zh) 半導體記憶裝置
JPH10321821A (ja) 不揮発性半導体メモリおよびその動作方法
WO2006035502A1 (ja) 半導体装置及びデータ読み出し方法
JP2007310999A (ja) 半導体記憶装置
JP2007123652A (ja) 半導体装置およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160315

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160713

R150 Certificate of patent or registration of utility model

Ref document number: 5972700

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150