JP5451303B2 - 画像形成装置 - Google Patents

画像形成装置 Download PDF

Info

Publication number
JP5451303B2
JP5451303B2 JP2009241698A JP2009241698A JP5451303B2 JP 5451303 B2 JP5451303 B2 JP 5451303B2 JP 2009241698 A JP2009241698 A JP 2009241698A JP 2009241698 A JP2009241698 A JP 2009241698A JP 5451303 B2 JP5451303 B2 JP 5451303B2
Authority
JP
Japan
Prior art keywords
charging
speed
image forming
mode
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009241698A
Other languages
English (en)
Other versions
JP2010134442A (ja
Inventor
憲彦 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2009241698A priority Critical patent/JP5451303B2/ja
Priority to US12/608,275 priority patent/US8170433B2/en
Publication of JP2010134442A publication Critical patent/JP2010134442A/ja
Application granted granted Critical
Publication of JP5451303B2 publication Critical patent/JP5451303B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0208Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus
    • G03G15/0216Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices by contact, friction or induction, e.g. liquid charging apparatus by bringing a charging member into contact with the member to be charged, e.g. roller, brush chargers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/02Apparatus for electrographic processes using a charge pattern for laying down a uniform charge, e.g. for sensitising; Corona discharge devices
    • G03G15/0283Arrangements for supplying power to the sensitising device

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Electrostatic Charge, Transfer And Separation In Electrography (AREA)
  • Control Or Security For Electrophotography (AREA)

Description

本発明は、電子写真方式を用いた、複写機、プリンタ、ファクシミリ装置などの画像形成装置に関するものである。
感光体を帯電する帯電方式として、ローラ形状の帯電部材である帯電ローラを用いて帯電する方法が製品で採用されている。帯電ローラを用いて感光体を一様に帯電させる際に、ピーク間電圧が直流電圧を印加した際に感光体と帯電ローラとの微小ギャップにおいて放電が開始する電圧の2倍以上となる交流電圧を帯電ローラに印加する方法(以下、AC帯電方式)がある。しかしながら、直流電圧のみを印加して感光体ドラムを帯電させる方法(以下、DC帯電方式)と比べ、AC帯電方式は放電量が多い。そのため、画像流れやボケ等の画像不良や寿命低下が発生し易いことが知られている。また、交流ピーク間電圧Vppと放電量の関係は環境や装置の耐久によっても変動する。環境変動によって放電量が少なすぎると、帯電均一性が損なわれ、逆に多すぎると放電生成物が大量に生成されて画像不良の原因となる。そのため、特許文献1には環境変動に依らず、適正な放電量が得られる交流ピーク間電圧Vppを決定する方法(以下、放電電流量制御)が開示されている。
ここで、画像形成装置の中には普通紙の他に、厚紙、OHPシート、葉書、光沢紙などの厚手の紙等に画像を形成することができる装置がある。中でも、厚紙、OHPシート、光沢紙などの厚手の紙や特殊な素材を使用した転写材(以下、単に「特殊紙」という。)にトナー像を転写する場合は、普通紙にトナー像形成時する時の1/2程度の遅い速度で、転写、定着を行う構成が多くの装置で採用されている。このように、厚手の紙に画像を形成する場合に、作像条件を変えずに感光体の回転速度(以下、プロセススピードと呼ぶ)を遅くすると、単位面積辺りの感光体への放電量が増加し、画像不良や寿命低下を引き起こす。
そのため、特許文献2には、厚手の紙に画像を形成する低速モード時に帯電ローラに印加する交流電圧の周波数(帯電周波数)を、通常モード時の帯電周波数よりも低くする構成が開示されている。例えば、特殊紙にトナー像を形成する場合、特殊紙の搬送速度は普通紙の搬送速度の1/2程度とする。このとき、特殊紙にトナー像を形成する場合(1/2速モード)の帯電周波数は、普通紙に画像を形成する場合(通常モード)の周波数の1/2程度にする。つまり、普通紙に画像を形成する通常モード時の帯電周波数を2100Hzとすると、特殊紙に画像を形成する1/2速モード時は帯電ローラに1050Hzの交流電圧を印加する。また、普通紙の1/3程度の搬送速度で特殊紙に画像を形成する場合は、帯電ローラに周波数が700Hzの交流電圧を印加する。ここで、1つの高圧電源回路基板(高圧基板)を用いて、広い帯域の(例では700Hz〜2100Hz)周波数の波形を歪みなく出力することは困難であることが知られている(図13参照)。つまり、1つの高圧基板を用いて高い周波数体の帯電交流電圧の波形を保証しようとすると、高圧基板の特性上、低い周波数の帯電交流電圧の波形が保証することが困難である。また、周波数と歪みの関係は1KHz程度を境に低い周波数になるにつれて歪が増加することが知られている(図14参照)。これは、低い周波数で波形が崩れる原因は電源のACインピーダンスが原因として考えられる。そのため、出力管プレートとカソードの間のコンデンサ容量を増やすことで、低い周波数で波形が崩れることを改善できる。しかしながら、全ての周波数帯において正弦波形の歪みを保証するのは困難である。
このように、帯電周波数が異なると交流電圧の波形が歪むため、二つの異なる帯電周波数で同じピーク間電圧Vppを印加したとしても、放電電流量に差が生じてしまう。そのため、適切な放電電流量を保つために、帯電周波数に応じたピーク間電圧Vppを求めることが好ましい。
特開2001−201920号公報 特開平10−149075号公報
しかしながら、特殊紙を使用するたびに、感光体の回転速度を遅くしてから、交流電流量及び放電電流量を一定になるように制御しようとすると、放電電流量を制御する間のダウンタイム(画像出力ができない期間)が増加してしまう。これにより、画像生産性が低下することになる。また、感光体の回転速度を遅くしてから、交流電流量特殊紙に画像を形成するための、作像準備時間(以下「前回転」という。)が増加し、1枚目の画像を出力するまでの時間(ファーストコピータイム:FCOT)の増加にも影響がある。
そこで本発明の目的は、画像形成速度を変更した場合に各画像形成速度における感光体の帯電処理条件を適正に抑制すると共に、画像形成速度の変更に伴う帯電処理条件の制御動作に起因する画像生産性の低下を抑制可能な画像形成装置を提供することである。
そこで第1の本発明の画像形成装置は「回転可能な感光体と、前記感光体を帯電する帯電部材と、前記帯電部材に直流電圧と交流電圧を重畳した帯電バイアスを印加する印加手段と、前記帯電部材によって帯電された前記感光体にトナー像を形成するトナー像形成手段と、前記感光体を第1の速度で回転させて画像形成を行う第1のモード時に第1の帯電バイアスの周波数を第1の周波数に設定するとともに、前記感光体を第1の速度よりも遅い第2の速度で回転させて画像形成を行う第2のモード時に第2の帯電バイアスの周波数を第1の周波数とは異なる第2の周波数に設定する設定手段と、前記帯電部材にテストバイアスを印加した時の前記帯電部材と前記感光体の間に流れる電流を検出する検出手段と、前記第1のモードから前記第2のモードに切り替えて画像形成する際に前記感光体を前記第1の速度で回転させて前記第2の周波数のテストバイアスを前記帯電部材に印加し、その時の前記検出手段の出力に基づき前記第2の帯電バイアスを調整する調整手段」を有することを特徴とし、第2の本発明の画像形成装置は「回転可能な感光体と、前記感光体を帯電する帯電部材と、前記帯電部材に直流電圧と交流電圧を重畳した帯電バイアスを印加する印加手段と、帯電された前記感光体を露光して静電潜像を形成する露光手段と、前記感光体に形成された静電潜像を現像してトナー像を形成する現像手段と、前記感光体を所定の速度で回転させて画像形成を行うモード時に帯電バイアスの周波数を所定の周波数に設定する設定手段と、前記帯電部材にテストバイアスを印加した時の前記帯電部材と前記感光体の間に流れる電流を検出する検出手段と、前記モードで画像形成する際における画像形成信号が入力されてから入力された画像形成信号に応じて前記露光手段が露光するまでの期間に、前記感光体を前記所定の速度よりも速い速度で回転させて前記所定の周波数のテストバイアスを前記帯電部材に印加し、その時の前記検出手段の出力に基づき前記モードで画像形成を行う際に印加する帯電バイアスを調整する調整手段」を有することを特徴とする。
画像形成速度を変更した場合に各画像形成速度における感光体の帯電処理条件を適正に抑制すると共に、画像形成速度の変更に伴う帯電処理条件の制御動作に起因する画像生産性の低下を抑制することができる。
本発明の実施例に係る画像形成装置の概略断面図である。 本発明の実施例に係る画像形成装置の画像形成部の詳細断面図である。 本発明の実施例に係る感光体の層構成の模式図である。 本発明の実施例に係る画像形成装置の帯電バイアス印加系のブロック図である。 放電電流量の測定方法の概略を説明するための説明図である。 放電電流量制御において測定するピーク間電圧と交流電流量との関係式を説明するための説明図である。 放電電流量定制御のシーケンスを示す説明図である。 本発明の実施例に係る画像形成装置の帯電バイアス制御系統を示すブロック図である。 本発明の実施例に係る通常モードから低速モードへの移行時の画像形成装置の動作を示すチャート図である。 従来の画像形成装置の通常モードから低速モードへの移行時の画像形成装置の動作を示すチャート図である。 本発明に係る制御と従来例との放電電流量制御に要する時間の差を説明するためのチャート図である。 本発明の実施例に係る画像形成装置のスタンバイ状態から低速モードジョブを開始する時の動作を示すチャート図である。 帯電周波数が変わった際に帯電波形が影響を受けることを示した模式図である。 帯電周波数が変わった際の帯電周波数と波形の歪み量の関係を示したグラフ図である。 感光体の回転速度及び帯電周波数を変えた時の帯電交流電圧と交流電流との関係を示すグラフ図である。 本発明の実施例に係る作像動作のフローを示すフローチャートである。 本発明の実施例に係る作像動作のフローを示すフローチャートである。
以下、本発明に係る画像形成装置を図面に則して更に詳しく説明する。
まず、本実施例において用いる画像形成装置の構成について説明する(§1〜7)。その後に、普通紙を用いるジョブと特殊紙(厚紙やOHP等)を用いるジョブとが混在した場合の放電電流量制御についてタイミングチャートとフローチャートを用いて説明する(§8〜13)。
§1.{画像形成装置の全体構成について}
図1は、本発明に係る画像形成装置の一実施例の概略縦断面を示す。本実施例の画像形成装置100は、中間転写体の移動方向に沿って4個の画像形成部を並べて配設したタンデム型のフルカラー画像形成装置である。
画像形成装置100は、原稿画像を読み取る原稿読み取り部Rと、画像出力部Pとを有する。画像出力部Pは、大別して、4個の画像形成部10(10a、10b、10c、10d)、給紙ユニット20、中間転写ユニット30、定着ユニット40及び制御ユニット50を有する。
以下、画像形成装置100の個々のユニットについて詳しく説明する。本実施例では、並設された4個の画像形成部10a、10b、10c、10dの構成は、使用する現像剤の色が異なることを除いて実質的に同一である。図2は、一例として画像形成部10aをより詳しく示す。各画像形成部10は、回転可能な像担持体としての円筒型の感光体(感光ドラム)11(11a、11b、11c、11d)を有する。感光体11は、その中心回転軸が軸支されて、図示矢印R1方向(反時計回り)に所定の回転速度(周速)で回転駆動される。感光体11の外周面に対向して、その回転方向(表面移動方向)に、次の各手段が配置されている。まず、帯電手段としてのローラ状の帯電部材である帯電ローラ12(12a、12b、12c、12d)である。次に、露光手段としてのレーザースキャナユニット13(13a、13b、13c、13d)である。次に、現像手段としての現像装置14(14a、14b、14c、14d)である。次に、感光体11のクリーニング手段としてのクリーニング装置15(15a、15b、15c、15d)である。又、各画像形成部10に対向するようにして、中間転写ユニット30が配置されている。中間転写ユニット30は、中間転写体としての無端ベルト(エンドレスベルト)型の中間転写ベルト31を有する。中間転写ベルト31の材料としては、例えば、PI(ポリイミド)、PET(ポリエチレンテレフタレート)、PVdF(ポリフッ化ビニリデン)などが用いられる。中間転写ベルト31は、支持部材として、駆動ローラ32、テンションローラ33、二次転写対向ローラ34に巻回されている。駆動ローラ32は、中間転写ベルト31に駆動を伝達する。テンションローラ33は、付勢手段としてのばねの付勢によって、中間転写ベルト31に適度な張力を与える。駆動ローラ32とテンションローラ33との間に一次転写平面31Aが形成される。又、駆動ローラ32は、金属ローラの表面に厚さ数ミリメートルのゴム(ウレタン又はクロロプレン)をコーティングして構成され、ベルトとのスリップが防止されている。又、駆動ローラ32はパルスモータによって回転駆動される。これにより、中間転写ベルト31は、図示矢印R2方向(時計回り)に回転(周回移動)する。本実施例では、中間転写ベルト31と感光体11との周速は、略同一とされている。
中間転写ベルト31の内周面側において、各感光体11と対向する位置には、一次転写手段としての一次転写ローラ35(35a、35b、35c、35d)が配置されている。各一次転写ローラ35は、中間転写ベルト31を各感光体11に向けて押圧して、中間転写ベルト31と各感光体11とが接触する一次転写部(一次転写領域)Ta、Tb、Tc、Tdを形成する。又、中間転写ベルト31の外周面側において、二次転写対向ローラ34に対向する位置には、二次転写手段としての二次転写ローラ36が配置されている。二次転写ローラ36は、中間転写ベルト31に接触して二次転写部(二次転写領域)Teを形成する。二次転写ローラ36は中間転写ベルト31に対して適度な圧力で加圧されている。又、中間転写ベルト31の回転方向において、二次転写領域Teの下流には、中間転写ベルト31の画像形成面をクリーニングするための中間転写体クリーナ37が設けられている。中間転写体クリーナ37には、ブラシローラなどのクリーニング部材や、廃トナーを収納する廃トナーボックスなどが設けられている。
各帯電ローラ12による帯電処理によって、各感光体11の表面に均一な帯電量の電荷が与えられる。この時、帯電ローラ12には、帯電バイアス印加手段としての帯電バイアス電源S1により、所定の帯電バイアス電圧が印加される。次いで、各レーザースキャナユニット13により、記録画像信号に応じて変調された光線(本実施例ではレーザービーム)で、各感光体11上が露光される。これによって、各感光体11上に静電潜像(静電像)が形成される。更に、各現像装置14によって、上記静電潜像が顕像化される。この時、現像装置14が備える現像剤担持体といての現像スリーブには、現像バイアス印加手段としての現像バイアス電源S2により、所定の現像バイアス電圧が印加される。現像装置14a、14b、14c、14dには、それぞれイエロー、シアン、マゼンタ、ブラックの各色のトナーが収納されている。本実施例では、現像装置14は、現像剤として非磁性トナーと磁性キャリアとを混合した2成分現像剤を用いる2成分現像装置である。又、本実施例では、現像装置14は、反転現像方式によって感光体11上の静電潜像を現像する。即ち、帯電処理した感光体11の表面のうち露光により電荷が減衰した部分(露光部)に、感光体11の帯電極性と同極性に帯電したトナーを付着させることで、感光体11上にトナー像を形成する。
本実施例では、レーザースキャナユニット13と現像装置14とで、帯電ローラ12にて帯電された感光体11にトナー像を形成するトナー像形成手段を形成する。各感光体11上に形成された可視画像(トナー像)は、一次転写部Ta〜Tdにおいて、一次転写ブレード35a〜35dの作用により、中間転写ベルト31上に転写(一次転写)される。この時、一次転写ローラ35には、一次転写バイアス印加手段としての一次転写バイアス電源S3により、所定の一次転写バイアス電圧が印加される。各感光体11の回転方向における一次転写領域Ta、Tb、Tc、Tdの下流側には、クリーニング手段としてのクリーニング装置15(15a、15b、15c、15d)が配置されている。中間転写ベルト31に転写されずに各感光体11a〜11d上に残されたトナー(転写残トナー)は、各クリーニング装置15が有するクリーニング部材としてのクリーニングブレードによって掻き落とされて回収される。これにより、各感光体11の表面が清掃される。
以上に示したプロセスにより、各色のトナーによる画像形成が順次行われる。例えば、フルカラー画像の形成時には、4個の画像形成部10a、10b、10c、10dによって4色のトナー像が、順次、中間転写ベルト31上に重ね合わせて転写される。一方、給紙ユニット20は、次の各手段を有する。転写材Sを収納するためのカセット21a、21b及び手差しトレイ27、カセット内又は手差しトレイより転写材Sを1枚ずつ送り出すためのピックアップローラ22a、22b及び26である。更に、給紙ユニット20は、次の各手段を有する。各ピックアップローラから送り出された転写材Sをレジストローラまで搬送するための給紙ローラ対23及び給紙ガイド24、画像形成部の画像形成タイミングに合わせて転写材Sを二次転写部Teへ送り出すためのレジストローラ25a、25bである。中間転写ベルト31上に形成されたトナー像は、二次転写部Teにおいて、二次転写ローラ36の作用により、転写材Sに一括して転写(二次転写)される。この時、二次転写ローラ36には、二次転写バイアス印加手段としての二次転写バイアス電源(図示せず)により、所定の二次転写バイアス電圧が印加される。
二次転写領域Teでトナー像の転写を受けた転写材Sは、中間転写ベルト31から分離された後、定着ユニット40へ導入されて、トナー像の定着処理を受ける。定着ユニット40は、内部にハロゲンヒーターなどの熱源を備えた定着ローラ41aと、この定着ローラ41aに加圧される加圧ローラ41b(このローラにも熱源を備える場合もある)とを有する。又、定着ユニット40は、上記ローラ対のニップ部へ転写材Sを導くためのガイド43、上記ローラ対から排出されてきた転写材Sを更に装置外部に導き出すための内排紙ローラ44、外排紙ローラ45などを有する。定着ユニット40を出た転写材Sは、内排紙ローラ44、外排紙ローラ45によって、装置外部に排出される。
制御ユニット50は、上記各ユニット内の機構の動作を制御するための制御基板やモータドライブ基板などから成る。又、画像形成装置100は、環境(温度・湿度)を検知するための環境検知手段として環境センサー(温湿度センサー)105を有する。環境センサー105は、装置本体内で熱源となる定着ユニット40などの影響を受けずに装置周囲の環境の温度、湿度が正確に測定できるように、中間転写ユニット30などを挟んで定着ユニット40から離れた図示の位置に配置されている。この環境センサー105の出力に基づいて、制御ユニット50において、画像形成条件の制御を含む様々な制御が行われる。
§2.{トナーについて}
トナーの特性としては、重量平均粒径が5〜8μmであることが、良好な画像を形成する上で好ましい。重量平均粒径がこの範囲内であれば、十分な解像性を有し、鮮明で高画質の画像を形成でき、静電力よりも付着力や凝集力が小さくなり、種々のトラブルが低減する。
非磁性トナー粒子の重量平均粒径は、ふるい分け法、沈降法、光子相関法等の種々の方法によって測定することができるが、ここでは、次のような方法によって測定した。測定装置としてコールター社製のコールターマルチサイザー(商品名)を用い、特級又は1級塩化ナトリウムを用いて1%NaCl水溶液を調製(例えば、コールターサイエンティフイックジャパン社製の商品名:ISOTON−IIを使用)する。この電解水溶液100〜150mL中に分散剤として界面活性剤、好ましくはアルキルベンゼンスルホン酸塩を0.1〜5mL加え、更に測定試料であるトナーを2〜20mg加え、試料を懸濁した電解液を超音波分散機で約1〜3分間分散処理する。そして、100μmアパーチャーを用いてトナーの体積、個数を測定し、体積分布と個数分布とを算出し、重量平均粒径を体積分布から求める(各チャンネルの中央値をチャンネル毎の代表値とする)。これにより非磁性トナー粒子の重量平均粒径を測定することができる。
非磁性トナー粒子は、従来知られている製法によって製造することができる。非磁性トナー粒子は、構成材料を加熱溶融により均一化し、これを冷却固化し、これを粉砕することによりトナー粒子を製造する粉砕法によっても製造することができる。しかし、この粉砕法で得られるトナー粒子は一般に不定形であるため、略球形形状とするには機械的、熱的又は何らかの特殊な処理を行うことが必要であり、前述した範囲の重量平均粒径とするには球形化処理後のトナー粒子を分級することが必要となる。そこで、非磁性トナー粒子の好ましい製造法として重合法を採用することが好ましい。
§3.{中間転写ユニットについて}
本実施例では、中間転写ベルト31の材料としては、厚さ100μmのポリイミドを用いた。又、本実施例では、一次転写ローラ35としては、ウレタンスポンジローラを使用した。又、本実施例では、中間転写ベルト31の回転速度(周速)が300mm/secであり、一次転写部Ta〜Tdのスラスト方向(一次転写ローラ35の軸線方向)の幅は330mmである。感光体11上のトナーの電荷保持量は30μC/gであり、一次転写時に一次転写ローラ35の芯金に対して40μAの電流が印加される。この印加電流量は、環境変動によるトナー電荷保持量等の変動により変化させることが望ましいが、上記値は、通常環境(温度/湿度が23℃/60%)で設定した適性電流値である。
一次転写ローラ35のより具体的な構成は次のとおりである。一次転写ローラ35は、1kVの電圧印加で5×10Ωの抵抗値を有する外径16mm、芯金径8mmのウレタンスポンジローラである。このウレタンスポンジローラの製造方法においては、ポリウレタン形成材料として、ポリオール成分、ポリイソシアネート成分、発泡剤及び所望により用いられる導電性付与剤、触媒、整泡剤などを含有するものが使用される。上記ポリウレタン形成材料においては、ポリオール成分やポリイソシアネート成分は、それらを反応させてなるプレポリマーの形で含まれていてもよい。ポリオール或いはプレポリマーの製造に用いられるポリオール成分としては特に制限はなく、ポリエーテルポリオール、ポリエステルポリオール、疎水性ポリオールなどを挙げることができる。
§4.{帯電ローラについて}
本実施例では、帯電ローラ12の表層を、カーボンブラック等の導電剤を分散混入させた1〜2mmの厚さを有する導電性ゴムとし、画像形成時の帯電ムラを防止するためにその抵抗値を10〜10Ωcmに制御した。又、帯電ローラ12は、その弾性を利用してギャップを作らずに感光体11と接触させる接触式のものを用い、低電圧で感光体11を帯電させる。又、帯電ローラ12としては、次のようなものを使用することができる。ポリエーテルエステルアミド等のイオン導電性の高分子化合物を含有し、抵抗値を10〜10Ωcmに制御したABS樹脂を、射出成形により導電性支持体の表面に0.5〜1mm被覆して抵抗調整層とする。その抵抗調整層の表面に酸化スズなどの導電性微粒子が分散した熱可塑性樹脂組成物からなる保護層を順次形成する。帯電電圧を印加するための導電性支持体としては、金属製軸部材が用いられる。この軸部材は、軸受け部と、電圧印加用軸受け部と、外径が14mmの被覆部と、が一体で構成される。又、その被覆部の周面上には、ポリエーテルエステルアミド等のイオン導電性の高分子化合物を含有した熱可塑性樹脂であるABS樹脂の体積抵抗値10〜10Ωcmの抵抗調整層が射出成形で0.5〜1mmの厚みで被覆成形加工される。
§5.{感光体について}
感光体11としては、負極性のOPC感光体を用いた。具体的には感光体層は、アゾ顔料をCGL層(キャリア発生層)とし、その上にヒドラゾンと樹脂を混合したものをCTL層(キャリア輸送層)として29μmの厚さに積層した、負極性有機半導体層(OPC層)とした。
更に説明すると、感光体11は、図3に示すように、支持体Aの上に、下引き層B、電荷発生層C、電荷輸送層Dがこの順で積層構成された有機感光体である。感光体11の支持体Aとしては、導電性を示すものであって硬度の測定に影響を与えない範囲内のものであれば、特に制限なく使用することができる。例えばアルミニウム、銅、クロム、ニッケル、亜鉛及びステンレスなどの金属や合金をドラム状に成形したものなどが使用できる。下引き層Bは、感光層の接着性改良、塗工性改良、支持体の保護、支持体上の欠陥の被覆、支持体からの電荷注入性改良、又は感光層の電気的破壊に対する保護などのために形成される。下引き層Bの材料としては、ポリビニルアルコール、ポリ−N−ビニルイミダゾール、ポリエチレンオキシド、エチルセルロース、エチレン−アクリル酸共重合体、カゼイン、ポリアミド、N−メトキシメチル化6ナイロン、共重合ナイロン、にかわ及びゼラチンなどを用いることができる。これらを適当な溶剤に溶解し、支持体A上に塗布する。その際、下引き層Bの膜厚としては0.1〜2μmが好ましい。下引き層Bの上に感光層を形成する。電荷発生層Cと電荷輸送層Dとを機能分離して積層させた積層型感光層を形成する場合には、下引き層B上に電荷発生層C、電荷輸送層Dの順で積層する。
ここで、電荷発生層Cに用いる電荷発生物質としては、セレン−テルル、ピリリウム、チアピリリウム系染料、又各種の中心金属及び結晶系、より具体的には例えばα、β、γ、ε及びX型などの結晶型を有するフタロシアニン化合物、アントアントロン顔料、ジベンズピレンキノン顔料、ピラントロン顔料、トリスアゾ顔料、ジスアゾ顔料、モノアゾ顔料、インジゴ顔料、キナクリドン顔料、非対称キノシアニン顔料、キノシアニン及び特開昭54−143645号公報に記載のアモルファスシリコンなどが挙げられる。本実施例中では、高画質を実現するために感度を高くできるフタロシアニン化合物を用いた電荷発生層を用いた。この積層型感光体の場合、電荷発生層Cは、次のようにして形成する。上記電荷発生物質を0.3〜4倍量の結着樹脂及び溶剤とともにホモジナイザー、超音波分散、ボールミル、振動ボールミル、サンドミル、アトライター及びロールミルなどの方法を用いて分散させる。そして、該分散液を下引き層B上に塗布し乾燥させることにより電荷発生層Cを形成させるか、又は上記電荷発生物質の単独組成からなる膜を蒸着法などを用いることにより電荷発生層Cを下引き層B上に形成させる。電荷発生層Cの膜厚は5μm以下であることが好ましく、特に0.1〜2μmの範囲であることが好ましい。
上記結着樹脂としては、スチレン、酢酸ビニル、塩化ビニル、アクリル酸エステル、メタクリル酸エステル、フッ化ビニリデン、トリフルオロエチレン、などのビニル化合物の重合体及び共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリビニルブチラール、ポリカーボネート、ポリエステル、ポリスルホン、ポリフェニレンオキサイド、ポリウレタン、セルロース樹脂、フェノール樹脂、メラミン樹脂、ケイ素樹脂、エポキシ樹脂などを用いることができる。
表面層は、上述した連鎖重合性官能基を有する正孔輸送性化合物を重合或いは架橋させることにより形成することができる。また、電荷輸送層Dは以下のようにして形成する。適当な電荷輸送物質、例えばポリ−N−ビニルカルバゾール、ポリスチリルアントラセンなどの複素環や縮合多環芳香族を有する高分子化合物や、ピラゾリン、イミダゾール、オキサゾール、トリアゾール、カルバゾールなどの複素環化合物、トリフェニルメタンなどのトリアリールアルカン誘導体、トリフェニルアミンなどのトリアリールアミン誘導体、フェニレンジアミン誘導体、N−フェニルカルバゾール誘導体、スチルベン誘導体、ヒドラゾン誘導体などの低分子化合物などを適当な結着樹脂(上述した電荷発生層の箇所で説明したのと同様な樹脂が適用できる)と共に溶剤に分散/溶解し、該溶液を上述の公知の方法を用いて電荷発生層C上に塗布し乾燥させることにより形成する。この場合の電荷輸送物質と結着樹脂の比率は、両者の全重量を100とした場合に電荷輸送物質の重量は20〜100であると好ましく、より好ましくは30〜100である。電荷輸送物質の量がそれ以下であると、電荷輸送能が低下し、感度低下及び残留電位の上昇などの問題が生ずる。保護層が形成された積層型感光体における電荷輸送層Dの膜厚は1〜50μmが好ましく、より好ましくは3〜30μmである。本実施例としては、電荷輸送層Dは29μmの感光体を用いた。
§6.{クリーニング装置について}
クリーニング装置15としては、カウンターブレード方式のものを用いた。即ち、クリーニング装置15は、クリーニング部材として、自由端を感光体11の回転方向上流側に向けて感光体11に当接させられた板状部材、即ち、クリーニングブレードを有する。本実施例では、クリーニングブレードの自由長は、8mmである。このクリーニングブレードは、ウレタンを主体とした弾性ブレードであり、感光体11に対して、線圧約35g/cmにて押圧されている。
§7.{帯電バイアスの印加系について}
図4は、帯電ローラ12に対する帯電バイアス印加系のブロック回路図である。なお、耐電バイアス印加系の構成は、画像形成部10a〜10dに対して同一である。
帯電バイアス電源S1から直流電圧に周波数fの交流電圧を重畳した所定の振動電圧(バイアス電圧Vdc+Vac)が芯金を介して帯電ローラ12に印加される。これにより、回転する感光体11の周面が所定の電位に帯電処理される。帯電ローラ12に対する電圧印加手段である帯電バイアス電源S1は、直流(DC)電源101と交流(AC)電源102とを有している。
制御ユニット(制御回路)50は、帯電バイアス電源S1のDC電源101とAC電源102とをオン・オフ制御して、帯電ローラ12に直流電圧と交流電圧のどちらか、若しくはその両方の重畳電圧(帯電バイアス)を印加するように制御する機能を有する。又、制御ユニット50は、DC電源101から帯電ローラ12に印加する直流電圧値と、AC電源102から帯電ローラ12に印加する交流電圧のピーク間電圧値を制御する機能を有する。制御ユニット50には、感光体11を介して帯電ローラ12に流れる交流電流値を測定する検出手段としての交流電流値測定回路201から、測定された交流電流値情報が入力される。又、制御ユニット50には、画像形成装置100が設置されている環境を検知する環境検知手段としての環境センサー105から、検知された環境情報が入力される。そして、制御ユニット50は、交流電流値測定回路201から入力された交流電流値情報、更には環境センサー105から入力された環境情報から、帯電工程で帯電ローラ12に対する印加交流電圧の適切なピーク間電圧値を演算し、決定するプログラムを実行する。このように、制御ユニット50は、検出手段としての交流電流値測定回路201などの出力に応じて画像形成時に帯電ローラ12に印加すべき帯電バイアスを調整する調整手段(帯電高圧制御手段)としての機能を有する。又、詳しくは後述するように、制御ユニット50は、感光体11の回転速度が異なる各画像形成モードにおいて、画像形成工程の帯電工程における帯電ローラ12に対する印加交流電圧の周波数を設定する設定手段(帯電周波数切替手段)としての機能も有する。
§8.{放電電流量制御について}
次に、放電電流量を一定にするための基本的な交流電圧の制御方法について説明する。
画像形成工程時に帯電ローラ12に印加する交流電圧のピーク間電圧は、以下に説明するような制御方法で制御される。従来、以下に定義するように数値化した放電電流量が、実際のAC放電の量を代用的に示し、感光体11の削れ、画像流れ、帯電均一性と強い相関関係があることが見出されている。図5に示すように、ピーク間電圧Vppに対して交流電流Iacは、放電開始電圧値Vthの2倍未満、即ち、Vth×2(V)未満(未放電領域)で線形の関係にある。そして、Vth×2(V)以上から放電領域に入るにつれて徐々に電流の増加方向にずれる。放電の発生しない真空中での同様の実験においては直線が保たれたため、これが放電に関与している電流の増分△Iacであると考える。ここで、放電開始電圧Vthとは帯電ローラと感光体との間で放電が開始する電圧のことである。
Vth×2(V)未満のピーク間電圧Vppに対して電流Iacの比をαとしたとき、放電による電流以外の、帯電部材と被帯電体との接触部へ流れる電流(以下、「ニップ電流」という。)などの交流電流は、α・Vppとなる。従って、下記の式(1)により算出される、Vth×2(V)以上の電圧印加時に測定されるIacと上記α・Vppとの差分△Iacを、放電量を代用的に示す放電電流量と定義する。
△Iac=Iac−α・Vpp ・・・(1)
この放電電流量は、一定電圧又は一定電流での制御下で帯電を行った場合、環境によって、又装置の使用量の増加によって変化する。これは、ピーク間電圧と放電電流量との関係、交流電流値と放電電流量との関係が変動しているからである。AC定電流制御方式では、帯電部材から被帯電体に流れる総電流で制御している。この総電流量は、上記のように、ニップ電流α・Vppと非接触部で放電することで流れる放電電流量△Iacとの和になっている。そして、定電流制御では、実際に被帯電体を帯電させるのに必要な電流である放電電流だけでなく、ニップ電流も含めた形で制御されている。そのため、実際には、放電電流量は制御できていない。定電流制御において同じ電流値で制御していても、帯電部材の材質の環境変動によって、ニップ電流が多くなれば当然放電電流量は減り、ニップ電流が減れば放電電流量は増える。従って、AC定電流制御方式でも、完全に放電電流量の増減を抑制することは困難であり、長寿命を目指したとき、感光体11の削れと帯電均一性との両立を実現することは困難である。
そこで、本実施例では、常に所望の放電電流量を得るため、以下の要領で制御を行っている。所望の放電電流量をDとしたときに、この放電電流量Dとなるピーク間電圧を決定する方法について説明する。本実施例では、前回転動作(作像準備回転動作)時に、制御ユニット50で、画像形成工程時の帯電工程における帯電ローラ12に対する印加交流電圧の適切なピーク間電圧値の演算・決定プログラムを実行する。図6は、本実施例における制御を説明するためのピーク間電圧Vppと交流電流Iacとの関係(Vpp−Iacグラフ)を示し、図7は、同制御の制御フローを示す。
制御ユニット50は、前回転動作時に、AC電源102を制御して、放電領域にある3点のピーク間電圧の交流電圧、未放電領域にある3点のピーク間電圧の交流電圧を、帯電ローラ12に順次に印加する。そして、その時に感光体11を介して帯電ローラ12に流れる交流電流値が、交流電流値測定回路201で測定されて、制御ユニット50に入力される。次に、制御ユニット50は、上述のようにして測定された放電領域、未放電領域の各3点の電流値から、最小二乗法を用いて、放電領域、未放電領域のそれぞれにおけるピーク間電圧と交流電流との関係を直線近似し、下記の式(2)、式(3)を算出する。
放電領域の近似直線:Yα=αXα+A ・・・(2)
未放電領域の近似直線:Yβ=βXβ+B ・・・(3)
その後、上記の式(2)の放電領域の近似直線と、上記の式(3)の未放電領域の近似直線との差分が、放電電流量Dとなるピーク間電圧Vppを、下記の式(4)によって決定する。
Vpp1=(D−A+B)/(α−β) ・・・(4)
ここで、未放電領域でのピーク間電圧Vppと交流電流Iacとの関係を示す関数fI1(Vpp)、放電領域でのピーク間電圧Vppと交流電流Iacとの関係を示す関数fI2(Vpp)を、それぞれ上記の式(3)、式(2)に対応するものとする。定数Dは上記の所望の放電電流量Dと対応する。
よって、fI2(Vpp)−fI1(Vpp)=Dは、
α−Yβ=(αXα+A)−(βXβ+B)=D
となる。
又、fI2(Vpp)−fI1(Vpp)=Dから式(4)、即ち、
Vpp=(D−A+B)/(α−β)
の誘導は次のとおりである。
fI2(Vpp)−fI1(Vpp)=Yα−Yβ=D
(αXα+A)−(βXβ+B)=D
今、DとなるXの値を探しており、その点をVppとすると、
(αVpp+A)−(βVpp+B)=D
よって、
Vpp=(D−A+B)/(α−β)
となる。
そして、帯電ローラ12に印加する交流電圧のピーク間電圧を、上記の式(4)で求めたVpp1に切り替え、Vpp1で定電圧制御し、画像形成工程へと移行する。
画像形成工程時には、上述のようにして求めたピーク間電圧Vpp1の交流電圧が帯電ローラ12に印加され、その時に帯電ローラ12に流れる交流電流値が交流電流値測定回路201で測定されて、制御ユニット50に入力される。このとき、Vpp1は定電圧制御されている。画像形成領域と次の画像形成領域との間の非画像形成領域(以下、「紙間」という。)において、例えば、帯電ローラ12に未放電領域にある1点のピーク間電圧(Vpp)の交流電圧を印加し、その時に流れる交流電流値が交流電流値測定回路201で測定されて制御ユニット50に入力される。制御ユニット50は、新たに測定されたピーク間電圧と交流電流値との関係と、前回転動作時に測定したピーク間電圧と交流電流値との関係とから、統計的処理を行なうことで、下記の式(5)、(6)を算出する。即ち、制御ユニット50は、画像形成時の測定点と紙間時の測定点とを、前回転時の制御において求められた測定点に追加して、測定点数を多くして最小二乗法を用いて下記の式(5)、(6)を再計算する。
放電領域の近似直線:Yα=α’Xα+A’ ・・・(5)
未放電領域の近似直線:Yβ=β’Xβ+B ・・・(6)
その後、画像形成工程時に帯電ローラ12に印加する交流電圧のピーク間電圧Vpp1を求める時と同様にVpp2を決定する。具体的には、下記の式(7)を用いて、上記の式(5)の放電領域の近似直線と上記の式(6)の未放電領域の近似直線との差分である放電電流量Dとなるピーク間電圧Vpp2を決定する。
Vpp2=(D−A’−B)/(α’−β’) ・・・(7)
ここで、未放電領域での補正されたピーク間電圧Vppと交流電流Iacとの関係を示す関数fI1’(Vpp)は、放電領域でのピーク間電圧Vppと交流電流Iacとの関係を示す関数fI2’(Vpp)を、それぞれ上記の式(6)、式(5)に対応するものとする。
関数fI1’(Vpp)とfI2’(Vpp)からの式(7)の誘導は、前述の関数fI1(Vpp)とfI2(Vpp)からの式(4)の誘導と同様である。
そして、帯電ローラ12に印加する交流電圧のピーク間電圧を、上記の式(7)で求めたVpp2に切り替え、次はこのVpp2で定電圧制御し、画像形成を行なう。次の画像形成工程時においても、同様に、画像形成工程時と紙間工程時にピーク間電圧と交流電流値との関係を測定し、画像形成工程時に帯電ローラ12に印加する交流電圧のピーク間電圧を、画像形成動作が行なわれている間は常に補正する。
このように、前回転動作時ごとに、画像形成工程時に所定の放電電流量Dを得るために必要なピーク間電圧を算出し、画像形成工程中には求めたピーク間電圧の交流電圧を定電圧制御しながら帯電ローラ12に印加する。更に、連続画像形成時には、画像形成工程中の交流電流値と、紙間工程時に帯電ローラ12に未放電領域にあるピーク間電圧の交流電圧を印加した時の交流電流を測定し、次の画像形成工程時に印加する交流電圧のピーク間電圧を補正する。これによって、帯電ローラ12の製造ばらつきや材質の環境変動に起因する抵抗値のふれ、或いは装置本体の高圧電源ばらつきを吸収するだけでなく、連続画像形成による帯電ローラ12の抵抗値変動に対しても画像1枚ごとに補正を行なうことができる。従って、より確実に、所望の放電電流量で制御することが可能となる。このような制御方法を、ここでは、「放電電流量制御」と呼ぶ。
§9.{画像形成速度変更時の帯電バイアス制御}
本実施例の画像形成装置100は、画像形成モードとして、感光体を第1の速度で回転させて画像形成を行なう通常モード(第1のモード)と、感光体を第1の速度よりも遅い第2の速度で回転させて画像形成を行なう低速モード(第2のモード)とを有する。本実施例では、通常モードは、普通紙に画像を形成して出力するためのモードである。又、本実施例では、低速モードは、特殊紙(厚紙、OHPシート、光沢紙などの厚手の紙や特殊な素材を使用した転写材)に画像を形成して出力するためのモードである。又、本実施例では、第1の速度は、画像形成時の感光体の速度として設定されている複数の速度の中で最も速い速度である。なお、第1のモードにおいて、感光体を帯電せるために、帯電部材には第1の帯電バイアスが印加される。同様に、第2のモードにおいて、感光体を帯電させるために、帯電ローラには第2の帯電バイアスが印加される。
本実施例の目的の1つは、画像形成速度を変更した場合に各画像形成速度における感光体の帯電処理条件を適正に抑制すると共に、画像形成速度の変更に伴う帯電処理条件の制御動作に起因する画像生産性の低下を抑制することである。即ち、本実施例では、普通紙に対する通常モードと特殊紙に対する低速モードというようにプロセススピードを変更した場合に、それぞれの条件下での放電電流量を必要最低限に抑える方法である放電電流量制御を行なう。
本実施例の目的の1つは、この場合に課題となる低速時のダウンタイムの増加による生産性の低下を、放電電流量制御の精度を落とすことなく抑制することである。本実施例のより詳細な目的の1つは、普通紙を用いるジョブ(1つの開始指令による単数又は複数の転写材に対する画像形成動作)と特殊紙を用いるジョブとが連続した場合の画像生産性を向上させることである。
特殊紙を用いる画像形成工程の場合の感光体11及び中間転写ベルト31の回転速度(周速)は、普通紙を用いる画像形成工程の場合の1/2の速度とすることができる。但し、特殊紙は様々な種類のものがあり、特殊紙の種類によっては、感光体11及び中間転写ベルト31の速度を普通紙の場合の1/3、或いは1/4の速度に落とすことも可能である。本発明はこれら全ての条件下において適用可能である。
§10.{帯電バイアス制御系統について}
図8は、本実施例の画像形成装置100における帯電バイアスの制御系統をより詳しく示すブロック図である。本実施例では、制御の中心的素子としてのCPU200が、制御ユニット50に設けられている。又、本実施例では、レーザー露光手段204、調整手段(帯電高圧制御手段)205、現像高圧制御手段206、転写高圧制御手段207、駆動切替手段208、設定手段(帯電周波数切替手段)209の機能を有する回路が、制御ユニット50に設けられている。又、制御ユニット50には、制御ユニット50において実行される制御のプログラムやデータが記憶された記憶手段としてのメモリ202が設けられている。又、制御ユニット50のCPU200には、検出手段(交流電流値測定回路,帯電ローラ電流検知手段)201、入力手段としての操作パネル203などが接続されている。レーザー露光手段204は、レーザーはレーザースキャナユニット13による露光を制御する。帯電高圧制御手段205は、帯電バイアス電源S1から帯電ローラ12に印加する帯電バイアス電圧制御する。現像高圧制御手段206は、現像バイアス電源S2から現像装置14の現像スリーブに印加する現像バイアス電圧を制御する。転写高圧制御手段207は、一次転写バイアス電源S3から一次転写ローラ35に印加する一次転写バイアス電圧、二次転写バイアス電源(図示せず)から二次転写ローラ36に印加する二次転写バイアス電圧を制御する。そして、駆動切替手段208は、感光体11及び中間転写ベルト31のそれぞれの駆動手段(駆動モータ)を制御して、それぞれの回転速度を制御する。
§11.{画像形成装置に入力されるジョブについて}
本実施例では、普通紙を用いるジョブと、特殊紙を用いるジョブとが連続する、次のような場合について考える。即ち、例えば、画像形成装置100の操作パネル203によって、普通紙(秤量80g/m)が選択されたジョブが予約された後に厚紙(秤量160g/m)などの特殊紙が選択されたジョブが予約された場合である。又は、画像形成装置100の操作パネル203によって、普通紙が選択されたジョブが行われている最中に厚紙などの特殊紙が選択されたジョブが予約された場合である。この場合、CPU200からは、普通紙を用いるジョブが行われた後に、連続して特殊紙を用いるジョブを行なうコマンドが、各手段に伝えられ、画像形成条件の切り替え動作が行われる。即ち、上記コマンドは、レーザー露光手段204、調整手段(帯電高圧制御手段)205、現像高圧制御手段206、転写高圧制御手段207、及び駆動切り替え手段208のそれぞれに伝えられる。なお、操作パネルによってジョブを予約する以外に、例えばPC等の外部端末を用いてジョブを予約しても良い。
§12.{フローチャートを用いた画像形成動作の説明}
本実施例の画像形成100は普通紙(坪量80g/m)に画像を形成する普通紙ジョブと厚紙(坪量160g/m)に画像を形成する厚紙ジョブが予約されたものとして説明する。また、CPU200はメモリ202に格納されたプログラムに従い画像形成部としてのプリンタを下記のように制御する。
図16は画像形成装置の作像動作のフローを示すフローチャートである。最初に操作パネル203によって複数のジョブ(普通紙ジョブと厚紙ジョブ)作像動作開始指令(ジョブ指令)を受けて画像形成装置は作像をするための動作を開始する(S101)。なお、普通紙ジョブと特殊紙ジョブの混在は、普通紙を用いるジョブが継続している最中に特殊紙を用いるジョブが連続して行われる場合に発生する。また、特殊紙を用いるジョブの前に普通紙を用いるジョブの予約がなされている場合に、普通紙を用いるジョブの後に、特殊紙を用いるジョブが連続して行われる場合である。このような場合、感光体11及び中間転写ベルト31の回転は停止させず、ジョブが連続されるのが一般的である。
ここで、CPU200は、普通紙を用いるジョブであるのか、特殊紙を用いるジョブであるのかを判断する(S102)。ここで、画像を形成するシートが普通紙である場合、CPU200はS103の処理を実行する。また、画像を形成するシートが特殊紙(厚紙を含む)場合、CPU200はS109の処理を実行する。
本実施例は連続ジョブ(普通紙ジョブと厚紙ジョブ)が入力された場合について説明する。S102において、ジョブが普通紙ジョブであると判断された場合、CPU200は感光ドラムが等速モードで回転するように、また、帯電ローラに印加する帯電バイアスの周波数が等速モードの周波数(2000Hz)になるように制御する(S103)。なお、最初に普通紙に画像を形成するジョブが入力された場合は、放電電流量制御は行なわずに、普通紙に対する通常モードによる作像シーケンスを開始してもよい。続いて、S104において、CPU200はS103において設定された等速モードの回転速度(300mm/s)で感光体を回転させ、S103において設定された等速モードの周波数交流電圧で放電電流量制御を行う(詳細については§8、9を参照)。その後、画像形成装置は等速モードの回転速度で感光体を回転させ、画像形成を行う(S105)。続いて、CPU200はS101において入力されたジョブに従い、ジョブによって指定された出力が全て出力し終えた場合、画像形成を終了する。ジョブによって指定された出力を全て出力し終えていない場合、CPU200はS107の処理を実行する(S106)。続いて、CPU200は次に画像を形成すべきシートの種類に基づき、次の画像形成も等速モードであるか否かに基づき、画像形成装置の動作を制御する。CPU200は次の画像形成も等速モードであると判断した場合、S108の処理を実行する。また、CPU200は次の画像形成が等速モード以外であると判断した場合、S109の処理を実行する。ここで、普通紙を用いるジョブであっても、装置本体の昇温状態、帯電部材の通電劣化状態などによっては、放電電流量に振れが発生する。そのため、積算画像形成枚数(耐久枚数)によって、放電電流量制御を行なうのが望ましい。そのため、本実施例では、実際にA4換算枚数をCPU200でカウントし、連続200枚毎に、放電電流量制御(S104)を行なうように制御する。CPU200はA4換算で連続200枚毎か否かを判断し、200枚毎である場合は、S104の処理を実行させ、200枚毎以外の場合は、S105の処理を実行する。放電電流量制御を行なう積算画像形成枚数は、100枚〜1000枚程度が一般的であり、装置本体の昇温状態に合わせて変更することも可能である。上述のように普通紙を用いるジョブで放電電流量制御を行なう場合は、感光体11の回転速度(300mm/s)は通常モードのものから変更せず、帯電交流周波数も通常モードの周波数(2000Hz)から変更しない。その後、ジョブが継続している場合は、放電電流量制御終了後、再度作像動作を継続する。上述のS104からS108までの処理は、次に画像形成すべきシートが普通紙以外(等速モード以外)の場合、または、すべてのジョブが出力完了するまで繰り返される。
本実施例においては、普通紙を用いるジョブと特殊紙を用いるジョブとが混在した場合において説明している。厚紙ジョブの後に普通紙ジョブが連続している場合、CPU200はS102において、S109の処理を実行させる。また、逆に、普通紙ジョブの後に厚紙ジョブが連続している場合、普通紙ジョブで指定された画像形成を終了した後(S107)、CPU200はS109の処理を実行させる。
このような普通紙を用いるジョブと特殊紙を用いるジョブとが混在した場合においても、CPU200は、作像動作開始指令(ジョブ指令)が発されると(S101)、普通紙を用いるジョブであるのか、特殊紙を用いるジョブであるのかを判断する(S102)。次に、CPU200は、特殊紙を用いるジョブであると判断した場合は、1/2速モードのジョブであるのか、1/3速モードのジョブであるのかを判断する(S109)。
CPU200は、1/2速モードであると判断した場合は、帯電交流周波数を1/2速モードの周波数(1000Hz)に変更する。但し、この時、感光体11の回転速度は、通常モードの速度のままにする(S110)。1枚前の画像形成が1/2速モード以外で行われた場合、CPU200はS110で設定した等速モードの回転速度で感光体を回転させ、1/2速モードの周波数(1000Hz)のテストバイアスを印加して放電電流量制御を行う(S111)。また、1枚前の画像形成が1/2速モードで行われた場合(前のステップがS115である場合)、CPU200は1/2速モードの速度で感光体を回転させて、1/2速モードの周波数のテストバイアスを印加して放電電流量制御を行う(S111)。ここで、モードが変わる際は、1/2速モードの回転速度よりも速い等速モードの回転速度で感光体を回転させる。しかしながら、連続して1/2速モードで画像を形成する際は、感光体の回転速度が安定するまでに時間が掛かるため、1/2速モードの回転速度(150mm/s)で感光体を回転させることにより、連続画像形成時のダウンタイムを低減することができる。
続いて、CPU200は1/2速モードの回転速度(150mm/s)で感光体を回転させて、1/2速モードの周波数(1000Hz)の帯電バイアスを印加して画像形成を行う(S112)。なお、1枚前の画像形成が1/2速モードで無い場合は、1/2速モードの作像動作を開始するために、駆動切替手段208によって感光体11の速度を1/2速に切り替える。
続いて、CPU200はS101において入力されたジョブに従い、ジョブによって指定された出力が全て出力し終えた場合、画像形成を終了する。ジョブによって指定された出力を全て出力し終えていない場合、CPU200はS114の処理を実行する(S113)。続いて、CPU200は次に画像を形成すべきシートの種類に基づき、次の画像形成も1/2速モードであるか否かに基づき、画像形成装置の動作を制御する。CPU200は次の画像形成も1/2速モードであると判断した場合、S112の処理を実行する。また、CPU200は次の画像形成が等速モード以外であると判断した場合、S102の処理を実行する。また普通紙同様に、実際にA4換算枚数をCPU200でカウントし、連続200枚毎に、放電電流量制御(S111)を行なうように制御する。CPU200はA4換算で連続200枚毎か否かを判断し、200枚毎である場合は、S111の処理を実行させ、200枚毎以外の場合は、S112の処理を実行する。また、普通紙同様に、連続して1/2速モードで画像を形成する場合、感光体11の回転速度は1/2速モードのものから変更せず、帯電交流周波数も1/2速モードの周波数から変更しない。その後、ジョブが継続している場合は、放電電流量制御終了後、再度作像動作を継続する。上述のS111からS115までの処理は、次の画像形成が1/2速モード以外である場合、または、すべてのジョブが出力完了するまで繰り返される。
以上が1/2速モードの場合に行われる処理である。ここで、S116からS120までの処理は、感光体の回転速度及び帯電ローラに印加する周波数が1/3速モードの速度及び周波数であることを除き、S110からS115と略同一の処理であるため説明は省略する。
次に、図9を参照して、本実施例における画像形成モードの切り替え動作のより詳細なフローを説明する。
普通紙を用いるジョブ、即ち、通常モードでのジョブが開始されると、まず、感光体11及び中間転写ベルト31の回転駆動が開始される。通常モードでの感光体11及び中間転写ベルト31の回転速度は300mm/sに設定されている。感光体11の回転速度が所定の速度に安定化したところで、帯電高圧制御手段205によって、帯電ローラ12に帯電直流電圧及び帯電交流電圧が略同時に印加される。ここで、感光体11が所定の速度に安定するまで、本実施例では約5周回転させるが、感光体11の径やモータの種類に応じて適正値は異なり、回転数は3〜7周くらいが一般的である。又、操作パネル203で選択された紙種に応じて、帯電交流電圧が印加される前に帯電周波数は通常モードに対応した帯電周波数、本実施例では2000Hzに変更される。
次に、帯電直流電圧及び帯電交流電圧が印加された帯電ローラ12により帯電処理された感光体の表面が現像装置を通過する直前のタイミングから、現像高圧制御手段206によって、現像装置の現像スリーブに対する現像直流電圧の印加が開始される。その後、帯電直流電圧、交流電圧、及び現像直流電圧が全て立ち上がり、安定状態に入ったところで、レーザー露光手段204によって、レーザー露光が開始され、感光体11上の潜像の形成が開始される。帯電直流電圧、交流電圧、及び現像直流電圧が全て立ち上がりに要する時間は約100〜500mmsで、本実施例では300mmsで安定化したとみなして作像を開始する。その後、特殊紙を用いるジョブ、即ち、低速モード(代表として1/2速モード)に移行する。ここで、従来、通常モードでの画像形成工程の後に低速モードでの画像形成工程が連続する場合、低速モードでの画像形成工程に入る前に放電電流量制御が行われる。これは、前述のように、次のような理由による。即ち、低速モードにおいては、感光体11の劣化を抑制するために、設定手段(帯電周波数切替手段)209により、感光体11の回転速度に応じて帯電周波数が切り替えられる。そのため、放電量の予測が困難な状態となり、低速モードでの放電電流量を再度制御する必要があるためである。
従来は、図10に示すように、通常モードでの画像形成工程から低速モードでの画像形成工程に移行する前に放電電流量制御を行なう際には、最初に感光体11の速度を300mm/sから150mm/sに低下させ、その後放電電流量制御を開始していた。
これに対し、本実施例では、図9に示すように、放電電流量制御中は、感光体11の速度を低下させず、通常モードでの速度、即ち、ここでは300mm/sのままとする。そして、放電電流量制御中に、帯電周波数のみを、2000Hzから低速モードに対応する帯電周波数である1000Hzに低下さる。これは、帯電交流電圧と帯電交流電流量の検出量とが、感光体11の回転速度には依存しないことを利用したものである。検出交流電流は、あくまで単位時間当りの帯電ローラ12から感光体11に流れる電流量を定義したものであるためである。帯電周波数と感光体11の回転速度をそれぞれ切り替えた際の、帯電交流電圧と帯電交流電流との関係を図15に示す。同図から、帯電交流電圧と帯電交流電流との関係性が、感光体11の回転速度には依存せず、帯電周波数にのみ依存していることが分かる。
§13.{放電電流量制御に要する時間について}
次に、通常モードの画像形成工程と低速モードの画像形成工程とが連続する場合に、低速モードでの画像形成工程の前の放電電流量制御を、感光体11の速度を通常モードのままとして行った際の、制御時間におけるメリットについて説明する。
本実施例では、前述のようにして、画像形成工程時に、ピーク間電圧と交流電流値との関係を測定して、帯電ローラ12に印加する交流電圧のピーク間電圧を制御することで、放電電流量を制御している。更に説明すると、紙間においては、帯電交流電圧値を、例えば、放電領域、未放電領域で少なくとも各2点ずつ振って、交流電流を測定するようにすることができる。そして、直線近似することにより、放電領域の直線の傾きから未放電領域の直線の傾きを除算することによって算出し、所望の放電量になる帯電交流電圧の値を決定することができる。上述したように、式(5)、式(6)は、放電電流量を算出するために必要な近似式である。
放電領域の近似直線:Yα=α’Xα+A’ ・・・(5)
未放電領域の近似直線:Yβ=β’Xβ+B ・・・(6)
本実施例では、より精度を上げるために、式(5)、式(6)をそれぞれ算出する際、交流電圧の値を放電領域、未放電領域の各領域において3段階、計6段階に振り、交流電流を検出する動作を行なう。サンプリング点ごとのサンプリング時間は、各サンプリングの精度を上げるために、好ましくは感光体11の1周分の時間、最低でも帯電ローラ12の1周分の時間とすることが望ましい。本実施例では、具体的には、帯電交流電圧を未放電領域の600Vpp、700Vpp、800Vppの3点、放電領域の1500Vpp、1600Vpp、1700Vppの3点としてサンプリングを行った。なお、本実施例では、通常モード時に印加すべき帯電バイアスを調整するためのテストモードと、低速モード時に印加すべき帯電バイアスを調整するためのテストモードとで、帯電ローラ12に印加するテストバイアスのピーク間電圧は等しくする。
本実施例のように放電領域、未放電領域で各3点の測定をした場合における制御時間に影響する動作を挙げると、図11に示すようになる。まず、1回のサンプリング時間を感光体11の1周分の時間とした場合を考える(図11(a))。この場合、感光体11の速度を通常モードのもの(300mm/s)として放電電流量制御を行うと、交流電流の1回のサンプリング時間当り感光体11の1周分の時間である0.314sのサンプリング動作が、6回分必要となる。又、各サンプリング間の交流高圧の切り替え時間0.05sの切り替え時間が5回分必要となる。更に、帯電交流電圧切り替え時に現像高圧設定との電位差の不安定領域(所謂、Vbackの振れ)によって感光体11上に発生したトナー帯が、次の画像形成に影響しないように二次転写部Teまで運搬されるのを待っている時間である1.1sが必要となる。次に、1回のサンプリング時間を帯電ローラ12の1周分の時間とした場合を考える(図11(b))。この場合、感光体11の速度を通常モードのもの(300mm/s)として放電電流量制御を行なうと、交流電流の1回のサンプリング時間当たり帯電ローラ12の1周分の時間である0.178sのサンプリング動作が、6回分必要となる。又、上記同様、各サンプリング間の交流高圧の切り替え時間0.05sの切り替え時間が5回分必要となる。更に、上記同様、所謂、Vbackの振れによって感光体11上に発生したトナー帯が、次の画像形成に影響しないように二次転写部Teまで運搬されるのを待っている時間である1.1sが必要となる。
同様に、感光体11の回転速度を低速モードのもの(150mm/s)とした場合に放電電流量制御に係る時間は、図11(c)(感光体11の1周分のサンプリング)、図11(d)(帯電ローラ12の1周分のサンプリング)に示している。感光体11の回転速度を低速モードのものとして放電電流量制御を行なう場合には、サンプリング時間、トナー帯の二次転写部Teまでの運搬時間は、それぞれ感光体11の回転速度を通常モードのものとして行なう場合の約2倍必要となる。各サンプリング間の交流高圧の切り替え時間は、感光体11の速度によらず、ほぼ同じである。
なお、図11(a)〜(d)に示す各場合についての制御時間を下記表にまとめる。
Figure 0005451303
本実施例では、放電電流値のサンプリング時間を帯電ローラ12の1周分の時間として放電電流量制御を行った。そのため、放電電流量制御に掛かる時間は、感光体11の回転速度を通常モードのものである300mm/sとして当該制御を行なえば、約2.4sで済む。放電電流値の1回のサンプリング時間を感光体11の1周分とした場合でも、制御時間は約3.2sで済む。
これに対して、感光体11の回転速度を低速モードのものである150mm/sとして放電電流量制御を行なう場合は、当該制御に掛かる時間は、1回のサンプリング時間を帯電ローラ12の1周分とした場合で約4.5s掛かることになる。又、1回のサンプリング時間を感光体11の1周分とした場合で約6.2s掛かることになる。従って、本実施例のように、帯電制御時間中は感光体及び中間転写ベルトの回転速度を通常モードと同等の300mm/sに保持して、制御終了後に低速モードの150mm/sとして画像形成を行なうことで、従来に比べて制御時間を短縮することができる。
本実施例では、帯電周波数を変えても、帯電交流電圧と帯電交流電流の関係、所謂、V−I特性が変化しないことを利用して、放電電流量制御中は感光体11の速度をできるだけ速くして制御している。ここで、前述の放電電流量制御中に発生するトナー帯に関して更に説明する。通常は、放電電流量制御を行った場合は、帯電交流電圧を何段かに振るため、それぞれの設定において、感光体11の電位は安定せず、感光体11の電位と現像電位の関係は、所謂、Vbackは、不安定な状態となる。そのため、キャリアやトナーの帯が感光体11上に発生し、このキャリアやトナーの帯は、中間転写ベルト31に転写されたのち、二次転写部Teに到達する。二次転写部Teでは二次転写ローラ36の中間転写ベルト31への押し付け圧力によって、二次転写ローラ36側にトナーやキャリアが付着する。そして、これがしばらくの間中間転写ベルト31の方へ吐き出される。このキャリアやトナーが吐き出されている最中に画像形成が行われ、中間転写ベルト31上の画像が二次転写部Teに到達した際には、転写材Sの裏汚れなどの問題に発展する場合がある。二次転写ローラ36に付着したトナーやキャリアを効率的に吐き出すような制御が設けられる場合もあるが、瞬時に吐き出せるのは困難である。又、二次転写ローラ36に画像形成時に印加するバイアスとは逆極性のバイアス(逆バイアス)を印加して、二次転写ローラ36にトナーが付着しづらくする手法もある。しかし、逆バイアスを印加する機能を高圧電源に持たせるとコスト的に不利になったり、極性が反転したトナーが二次転写部Teに到達するとどうしてもこれが二次転写ローラ36に付着したりすることがある。
本実施例では、画像形成装置100は、二次転写部Teに逆バイアスを印加する機能を有し、二次転写部Teにトナーが付着し難くしている。しかし、上述のような極性が反転したトナーを考慮して、放電電流量制御の終了後も二次転写部Teにトナー帯が到達するまでは、感光体11及び中間転写ベルト31の速度を低速モードのものには切り換えず、通常モードのもののままとする。このように感光体11及び中間転写ベルト31の速度を低速モードのものに切り替える時間を遅らせることによって、放電電流量制御中のみならず、当該制御の終了時のトナー帯の解消時間も短縮することができる。そして、上述のように時間が短縮された放電電流量制御を行った後、低速モードでの画像形成工程に移行する。この際、帯電周波数は、放電電流量制御中に既に低速モードの周波数1000Hzに低下させられているので、帯電周波数は切り替えずに、感光体11及び中間転写ベルト31の回転速度のみを低速モードのもの(150mm/s)に切り替える。その後、レーザー露光による作像動作等が行われ、ジョブの終了、あるいは、次のジョブへの移行が行われる。
上述のように、本実施例では、設定手段(帯電周波数切替手段)209は、感光体11を第1の速度で回転させて画像形成を行なう第1のモード(通常モード)時に帯電バイアスの周波数を第1の周波数に設定する。それとともに、該設定手段209は、感光体11を第1の速度よりも遅い第2の速度で回転させて画像形成を行なう第2のモード(低速モード)時に帯電バイアスの周波数を第1の周波数とは異なる第2の周波数に設定する。又、検出手段(帯電ローラ電流検知手段)201は、帯電ローラ12にテストバイアス(放電電流量制御時のバイアス)を印加するテストモードを実行するとき帯電ローラ12から感光体11へ流れる電流を検出する。又、調整手段(帯電高圧制御手段)205は、検出手段201の出力に応じて画像形成時に印加すべき帯電バイアスを調整する。そして、本実施例では、テストバイアスの周波数を第2の周波数に設定することで第2のモード時に印加すべき帯電バイアスを調整するためのテストモードを実行するとき、感光体11を第1の速度で回転させる。又、本実施例では、テストバイアスの周波数を第1の周波数に設定することで第1のモード時に印加すべき帯電バイアスを調整するためのテストモードを実行するとき、感光体11を第1の速度で回転させる。
以上、本実施例では、普通紙を用いるジョブから特殊紙を用いるジョブへの移行時に、感光体の劣化を抑制するために感光体の速度に応じて帯電交流周波数を切り替える。本実施例によれば、上記両ジョブが連続する場合に、帯電交流周波数を切り替えたとしても、帯電交流電流量や放電電流量といった帯電条件を一定に保つことができるようにする制御を、非常に短期間で効率よく行なうことができる。つまり、本実施例によれば、普通紙を用いるジョブと特殊紙を用いるジョブとが連続した場合の画像生産性を向上させることができる。従って、本実施例によれば、画像形成速度を変更した場合に各画像形成速度における感光体の帯電処理条件を適正に抑制すると共に、画像形成速度の変更に伴う帯電処理条件の制御動作に起因する画像生産性の低下を抑制することができる。
実施例1では、普通紙を用いるジョブと特殊紙を用いるジョブとが混在した場合について説明した。これに対して、本実施例では、スタンバイ状態から特殊紙を用いるジョブが開始された場合について説明する。本実施例の画像形成装置の基本的な構成及び動作は実施例1のものと同じである。そのため、同一符合を付すことにより詳しい説明を省略する。
本実施例の画像形成装置は、スタンバイ状態から特殊紙を用いるジョブが開始された場合にも、前回転時に、実施例1にて説明したものと同様の放電電流量制御を行なうことができる。即ち、低速モードに対応した帯電周波数に設定した後に、感光体11及び中間転写ベルト31の回転速度を低速モードのものよりも速い速度(通常モードのもの)で回転させて、放電電流量制御を行なうことが可能である。
図8を参照して、操作パネルによって、厚紙(秤量160g/m)が選択されたジョブが指示された場合、CPUからは厚紙を用いるジョブ、即ち、低速モードのジョブを行なうコマンドが、次の各手段に伝えられ、画像形成条件の切り替え動作が行われる。即ち、上記コマンドは、レーザー露光手段204、調整手段(帯電高圧制御手段)205、現像高圧制御手段206、転写高圧制御手段207、及び駆動切替手段208のそれぞれに伝えられる。
§14.{フローチャートを用いた画像形成動作の説明}
図17は画像形成装置の作像動作のフローを示すフローチャートである。図17のフローチャートを参照して、本実施例の制御フローについて説明する。なお、CPU200はメモリ202に格納されたプログラムに従い、図17に示すフローチャートのように制御する。本実施例においては、普通紙に画像を形成する普通紙ジョブが1つ入力される、又は、特殊紙に画像を形成する特殊紙ジョブ(1/2速モード又は1/3速モード)が連続することなく入力されるものとする。また、ジョブが終了した後は、画像形成装置はスタンバイ状態を保つものとする。
最初に操作パネル203によって作像動作開始指令(ジョブ指令)が発せられると(S201)、CPU200は、普通紙を用いるジョブであるのか、特殊紙を用いるジョブであるのかを判断する(S202)。
まず、最初に操作パネル203によって、スタンバイ状態から普通紙を用いるジョブが設定された場合について説明する。
CPU200は、普通紙を用いるジョブであると判断した場合、S203の処理を実行させる。また、CPU200は、特殊紙を用いるジョブであると判断した場合、S208の処理を実行する。
スタンバイ状態であった画像形成装置は、普通紙ジョブが入力されることによって、感光体の回転を開始させる。感光体が回転した後、入力された画像形成信号(普通紙ジョブの中の画像信号)に従い、画像形成するまでの間に放電電流量制御を行う。CPU200は感光体の回転速度を等速モードの回転速度(300mm/s)に設定する。また、帯電ローラに印加する交流電圧の周波数を等速モードの周波数(2000Hz)に設定する(S203)。続いて、CPU200はS203において設定された等速モードの速度で感光体を回転させ、等速モードの周波数のテストバイアスを印加して放電電流量制御を実行する(S204)。なお、放電電流量制御は行なわずに、普通紙に対する通常モードによる作像シーケンスを開始してもよい。放電電流量制御を行ったあと、CPU200は感光体を等速モードの速度で回転させ、等速モードの周波数で放電電流量制御によって設定されたピーク間電圧Vppの帯電バイアスを印加して感光体を帯電させて画像形成を行う(S206)。ここで、装置本体の昇温状態、帯電部材の通電劣化状態などによっては、放電電流量に振れが発生する。そのため、積算画像形成枚数(耐久枚数)によって、放電電流量制御を行なうのが望ましい。そこで、A4換算した連続画像形成枚数をCPU200でカウントし、連続画像形成枚数が200枚毎に、放電電流量制御を行なう(S203)。200枚毎に行う放電電流量制御の際には、感光体の回転速度は変更しない。これは、感光体の速度を変更すると、感光体の速度が安定するまでに時間が掛かるため、等速モードの回転速度(300mm/s)で感光体を回転させることにより、連続画像形成時のダウンタイムを低減することができる。その後、CPU200はS201において入力されたジョブによって指定された枚数の画像形成が終了した場合、画像形成を終了してスタンバイ状態に移行する(S207)。
続いて、S201において、特殊紙を用いるジョブが設定された場合について説明する。
この場合も、CPU200は、作像動作開始指令(ジョブ指令)が発されると(S201)、普通紙を用いるジョブであるのか、特殊紙を用いるジョブであるのかを判断する(S202)。次に、CPU200は、特殊紙を用いるジョブであると判断した場合は、1/2速モードのジョブであるのか、1/3速モードのジョブであるのかを判断する(S208)。CPU200は、1/2速モードであると判断した場合は、帯電交流周波数を1/2速モードのものに変更する。但し、感光体の回転速度は等速モードの速度を用いる(S209)。続いて、CPU200は感光体を等速モードの速度(300mm/s)で回転させて、1/2速モードの周波数(1000Hz)のテストバイアスを帯電ローラに印加して放電電流量制御を行なう(S209)。そして、CPU200は、放電電流量制御が終了した後に、1/2速モードの作像動作を開始するために、駆動切替手段208によって感光体11の速度を1/2速モードの速度(150mm/s)に切り替えて画像形成を行う(S211)。また等速モードの場合と同様に、装置本体の昇温状態、帯電部材の通電劣化状態などによっては、放電電流量に振れが発生する。そのため、積算画像形成枚数(耐久枚数)によって、放電電流量制御を行なうのが望ましい。そこで、A4換算した連続画像形成枚数をCPU200でカウントし、連続画像形成枚数が200枚毎に、放電電流量制御を行なう(S212)。200枚毎に行う放電電流量制御の際には、感光体の回転速度は変更しない。これは、感光体の速度を変更すると、感光体の速度が安定するまでに時間が掛かるため、1/2速モードの回転速度(150mm/s)で感光体を回転させることにより、連続画像形成時のダウンタイムを低減することができる。その後、CPU200はS201において入力されたジョブによって指定された枚数の画像形成が終了した場合、画像形成を終了してスタンバイ状態に移行する(S213)。
又、CPU200は、S208において1/3速モードであると判断した場合は、帯電交流周波数を1/3速モードの周波数(667Hz)に変更する(S214)。即ち、1/3速モードが選択された場合も、上記1/2速モード時と同様に、感光体11は通常モードの速度で回転させて、帯電交流周波数のみを1/3速モードのものに替えて、放電電流量制御を行なう(S215)。同様に、CPU200は、放電電流量制御が終了した後に、1/3速モードの作像動作を開始するために、駆動切替手段208によって感光体11の速度を1/3速の速度(100mm/s)に切り替えて画像形成を行う(S216)。連続画像形成枚数が200枚毎に、放電電流量制御を行なう(S217)。同様に感光体の回転速度は1/3速の速度から変更しない。その後、CPU200はS201において入力されたジョブによって指定された枚数の画像形成が終了した場合、画像形成を終了してスタンバイ状態に移行する(S218)。
次に、図12を参照して、本実施例における画像形成モードの切り替え動作のより詳細なフローを説明する。
特殊紙を用いるジョブ、即ち、低速モードでのジョブが開始されると、まず、感光体11及び中間転写ベルト31の回転駆動が開始される。この時、低速モードの感光体11及び中間転写ベルト31の回転速度は150mm/sに設定されているが、放電電流量制御を最初に行なうため、通常モードに対応する回転速度300mm/sに立ち上げる。感光体11の回転速度が所定の速度に安定化したところで、帯電高圧制御手段205によって、帯電ローラ12に帯電直流電圧が印加され、その後、帯電交流電圧が印加される。この時、まず、帯電交流電圧は、放電電流量制御のサンプリング点の最初の設定値に設定される。本実施例では、実施例1と同様に、放電電流量制御において帯電交流電圧を未放電領域の600Vpp、700Vpp、800Vppの3点、放電領域の1500Vpp、1600Vpp、1700Vppの3点としてサンプリングを行った。従って、上記帯電交流電圧は、まず、600Vppに設定される。
ここで、感光体11が所定の速度に安定するまで、本実施例では約5周回転させるが、感光体11の径やモータの種類に応じて適正値は異なり、回転数は3〜7周くらいが一般的である。
又、実施例1にて説明したように、帯電交流電圧と帯電交流電流との関係は、感光体11の回転速度には全く依存しない。そのため、理論上は、感光体11の立ち上がりを待たずに、放電電流量制御を開始しても問題ない。これにより、更なる制御時間短縮が期待できる。
又、本実施例では、放電電流量制御時の感光体11の速度を通常モードのものと同じ設定速度としたが、装置本体の構成の許す限り、より速い速度で回転させて制御しても良い。
又、操作パネル203で選択された紙種に応じて、帯電交流電圧が印加される前に帯電周波数は低速モードに対応した帯電周波数、本実施例では1000Hzに変更されている。
次に、帯電直流電圧及び帯電交流電圧が印加された帯電ローラ12により帯電処理された感光体の表面が現像装置を通過する直前のタイミングから、現像高圧制御手段206によって、現像装置の現像スリーブに対する現像直流電圧の印加が開始される。放電電流量制御中は、現像高圧が印加されている必要はないが、当該制御中に帯電直流電圧を印加している都合上、Vbackの変動を避けるために現像高圧をたち上げていることが好ましい。
放電電流量制御は、実施例1と同様に、交流電圧の値を放電領域、未放電領域の各領域において3段階、計6段階に振り、交流電流を検出する動作を行なう。
サンプリング点ごとのサンプリング時間は、各サンプリングの精度を上げるために、好ましくは感光体11の1周分の時間、最低でも帯電ローラ12の1周分の時間とすることが望ましい。上述のように、本実施例では、具体的には、帯電交流電圧を未放電領域の600Vpp、700Vpp、800Vppの3点、放電領域の1500Vpp、1600Vpp、1700Vppの3点としてサンプリングを行った。
本実施例のように放電領域、未放電領域で各3点の測定をした場合における制御時間に影響する動作を挙げると、図11に示すようになる。図11(a)〜(d)に示す各場合についての制御時間は実施例1(表1)において説明した通りである。制御時間とサンプリングモード、サンプリング条件との関係は(表1)と全く同じである。即ち、本実施例においても、実施例1と同様に制御時間短縮の効果を得ることができる。
上述のような放電電電流量制御の終了後は、感光体11の回転速度を通常モードの150mm/sに低下させ、回転速度が安定状態に入ったところで、レーザー露光手段204によって、レーザー露光が開始され、感光体11上に潜像形成が開始される。
本実施例では、帯電周波数を変えても、帯電交流電圧と帯電交流電流の関係、所謂、V−I特性が変化しないことを利用して、放電電流量制御中は感光体11の速度をできるだけ速くして制御している。
以上、本実施例では、スタンバイ状態から特殊紙を用いるジョブが行われた際に、感光体の劣化を抑制するために感光体の速度に応じて帯電交流周波数を替える。本実施例によれば、このように帯電交流周波数を切り替えたとしても、前回転時に、帯電交流電流量や放電電流量といった帯電条件を一定に保つことができるようにする制御を、非常に短期間で効率よく行なうことができる。従って、本実施例によれば、画像形成速度を変更した場合に各画像形成速度における感光体の帯電処理条件を適正に抑制すると共に、画像形成速度の変更に伴う帯電処理条件の制御動作に起因する画像生産性の低下を抑制することができる。
11 感光体ドラム(感光体)
12 帯電ローラ(帯電部材)
S1、S2、S3 電源(印加手段)
13 露光装置(露光手段)
14 現像装置(現像手段)
200 CPU(制御手段)
201 検知手段
202 メモリ(記憶手段)
205 調整手段
206 現像高圧制御手段(制御手段)
207 転写高圧制御手段(制御手段)

Claims (5)

  1. 回転可能な感光体と、
    前記感光体を帯電する帯電部材と、
    前記帯電部材に直流電圧と交流電圧を重畳した帯電バイアスを印加する印加手段と、
    前記帯電部材によって帯電された前記感光体にトナー像を形成するトナー像形成手段と、
    前記感光体を第1の速度で回転させて画像形成を行う第1のモード時に第1の帯電バイアスの周波数を第1の周波数に設定するとともに、前記感光体を第1の速度よりも遅い第2の速度で回転させて画像形成を行う第2のモード時に第2の帯電バイアスの周波数を第1の周波数とは異なる第2の周波数に設定する設定手段と、
    前記帯電部材にテストバイアスを印加した時の前記帯電部材と前記感光体の間に流れる電流を検出する検出手段と、
    前記第1のモードから前記第2のモードに切り替えて画像形成する際に前記感光体を前記第1の速度で回転させて前記第2の周波数のテストバイアスを前記帯電部材に印加し、その時の前記検出手段の出力に基づき前記第2の帯電バイアスを調整する調整手段と、を有することを特徴とする画像形成装置。
  2. 前記調整手段は、前記第2のモードから前記第1のモードに切り替える際に前記感光体を前記第1の速度で回転させて前記第1の周波数のテストバイアスを前記帯電部材に印加し、その時の前記検出手段の出力に基づき前記第1の帯電バイアスを調整することを特徴とする請求項1に記載の画像形成装置。
  3. 前記第2のモードで連続して画像を形成する際は、前記調整手段は、前記第2のモードの速度で感光体を回転させて、前記第2のモードの周波数のテストバイアスを印加し、その時の前記検出手段の出力に基づき前記第2のモードで画像形成を行う際に印加する帯電バイアスを調整することを特徴とする請求項1に記載の画像形成装置。
  4. 前記感光体は画像形成モードに応じて第1の速度と第2の速度を含む複数の速度で回転可能であり、第1の速度は複数の速度の中で最も速い速度であることを特徴とする請求項1に記載の画像形成装置。
  5. 回転可能な感光体と、
    前記感光体を帯電する帯電部材と、
    前記帯電部材に直流電圧と交流電圧を重畳した帯電バイアスを印加する印加手段と、
    帯電された前記感光体を露光して静電潜像を形成する露光手段と、
    前記感光体に形成された静電潜像を現像してトナー像を形成する現像手段と、
    前記感光体を所定の速度で回転させて画像形成を行うモード時に帯電バイアスの周波数を所定の周波数に設定する設定手段と、
    前記帯電部材にテストバイアスを印加した時の前記帯電部材と前記感光体の間に流れる電流を検出する検出手段と、
    前記モードで画像形成する際における画像形成信号が入力されてから入力された画像形成信号に応じて前記露光手段が露光するまでの期間に、前記感光体を前記所定の速度よりも速い速度で回転させて前記所定の周波数のテストバイアスを前記帯電部材に印加し、その時の前記検出手段の出力に基づき前記モードで画像形成を行う際に印加する帯電バイアスを調整する調整手段と、を有することを特徴とする画像形成装置。
JP2009241698A 2008-10-30 2009-10-20 画像形成装置 Active JP5451303B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2009241698A JP5451303B2 (ja) 2008-10-30 2009-10-20 画像形成装置
US12/608,275 US8170433B2 (en) 2008-10-30 2009-10-29 Image forming apparatus with rotation-speed-related adjustable photosensitive member charging bias

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008280559 2008-10-30
JP2008280559 2008-10-30
JP2009241698A JP5451303B2 (ja) 2008-10-30 2009-10-20 画像形成装置

Publications (2)

Publication Number Publication Date
JP2010134442A JP2010134442A (ja) 2010-06-17
JP5451303B2 true JP5451303B2 (ja) 2014-03-26

Family

ID=42131541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009241698A Active JP5451303B2 (ja) 2008-10-30 2009-10-20 画像形成装置

Country Status (2)

Country Link
US (1) US8170433B2 (ja)
JP (1) JP5451303B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5740848B2 (ja) * 2010-06-15 2015-07-01 株式会社リコー 画像形成装置
JP5854846B2 (ja) * 2012-01-10 2016-02-09 キヤノン株式会社 画像形成装置
JP5921210B2 (ja) * 2012-01-25 2016-05-24 キヤノン株式会社 画像形成装置
JP6137869B2 (ja) * 2012-02-27 2017-05-31 キヤノン株式会社 画像形成装置
JP5670374B2 (ja) * 2012-03-29 2015-02-18 株式会社沖データ 画像形成装置、および画像形成プログラム
DE102013101446B4 (de) * 2013-02-14 2015-09-03 Océ Printing Systems GmbH & Co. KG Verfahren zur Einstellung der Druckqualität bei einem elektrofotografischen Drucker
JP6275682B2 (ja) 2014-12-02 2018-02-07 キヤノンファインテックニスカ株式会社 画像形成装置
JP6155434B2 (ja) * 2015-03-26 2017-07-05 コニカミノルタ株式会社 画像形成装置
JP2016188934A (ja) * 2015-03-30 2016-11-04 株式会社沖データ 画像形成装置
JP2016206599A (ja) 2015-04-28 2016-12-08 キヤノン株式会社 画像形成装置
JP6575379B2 (ja) * 2016-02-02 2019-09-18 コニカミノルタ株式会社 画像形成装置
CN110637259A (zh) * 2017-10-18 2019-12-31 富士电机株式会社 电子摄影用感光体、其制造方法以及电子摄影装置
JP7282585B2 (ja) * 2019-04-24 2023-05-29 キヤノン株式会社 情報処理装置、記録装置、記録媒体の決定方法、及びプログラム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54143645A (en) 1978-04-28 1979-11-09 Canon Inc Image forming member for electrophotography
DE2908123A1 (de) * 1978-03-03 1979-09-06 Canon Kk Bildaufzeichnungsmaterial fuer elektrophotographie
JPH0728309A (ja) * 1993-07-13 1995-01-31 Toshiba Corp 画像形成装置
JPH10149075A (ja) 1996-11-20 1998-06-02 Canon Inc 画像形成装置
US6532347B2 (en) * 2000-01-20 2003-03-11 Canon Kabushiki Kaisha Method of controlling an AC voltage applied to an electrifier
JP4298107B2 (ja) 2000-01-20 2009-07-15 キヤノン株式会社 画像形成装置
JP4272808B2 (ja) * 2000-12-19 2009-06-03 キヤノン株式会社 画像形成装置
JP4915164B2 (ja) * 2006-07-28 2012-04-11 富士ゼロックス株式会社 画像形成装置および帯電装置
JP2008233702A (ja) * 2007-03-23 2008-10-02 Kyocera Mita Corp 画像形成装置
JP5153245B2 (ja) * 2007-07-26 2013-02-27 キヤノン株式会社 画像形成装置
JP5247549B2 (ja) * 2009-03-17 2013-07-24 キヤノン株式会社 画像形成装置

Also Published As

Publication number Publication date
US20100111550A1 (en) 2010-05-06
US8170433B2 (en) 2012-05-01
JP2010134442A (ja) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5451303B2 (ja) 画像形成装置
US5701551A (en) Image forming apparatus including control means for controlling an output from en electrical power source to a charging member for charging an image bearing member
JP5921222B2 (ja) 画像形成装置
JP5404215B2 (ja) 画像形成装置
JP5744157B2 (ja) 画像形成装置
JP2012237974A (ja) 画像形成装置及び画像形成方法
JP2013171093A (ja) 画像形成装置
JP5470239B2 (ja) 画像形成装置
JP5744153B2 (ja) 画像形成装置
JP5618572B2 (ja) 画像形成装置
US8265497B2 (en) Image forming apparatus
JP5335409B2 (ja) 画像形成装置
JP5470240B2 (ja) 画像形成装置
JP2013171094A (ja) 画像形成装置
JP2010190968A (ja) 画像形成装置
JP2009128842A (ja) 画像形成装置
JP2007101755A (ja) 画像形成装置
US10281833B2 (en) Image forming apparatus
JP6614871B2 (ja) 画像形成装置
JP2013205547A (ja) 画像形成装置
JP2008015250A (ja) 画像形成装置及びプロセスカートリッジ
JP2009151068A (ja) 画像形成装置
JP2005164779A (ja) 画像形成装置
JP2006178000A (ja) 画像形成装置
JP6628523B2 (ja) 画像形成装置

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20100630

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20130806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R151 Written notification of patent or utility model registration

Ref document number: 5451303

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151