JP5019683B2 - ガスハイドレートスラリーの脱水装置及び脱水方法 - Google Patents

ガスハイドレートスラリーの脱水装置及び脱水方法 Download PDF

Info

Publication number
JP5019683B2
JP5019683B2 JP2001264907A JP2001264907A JP5019683B2 JP 5019683 B2 JP5019683 B2 JP 5019683B2 JP 2001264907 A JP2001264907 A JP 2001264907A JP 2001264907 A JP2001264907 A JP 2001264907A JP 5019683 B2 JP5019683 B2 JP 5019683B2
Authority
JP
Japan
Prior art keywords
gas hydrate
water
natural gas
slurry
dehydrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001264907A
Other languages
English (en)
Other versions
JP2003073678A (ja
Inventor
隆宏 木村
省二郎 岩崎
勝夫 伊東
雄一 近藤
孝三 吉川
弘貢 長安
晴彦 江間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2001264907A priority Critical patent/JP5019683B2/ja
Priority to US10/416,004 priority patent/US20040020123A1/en
Priority to EP02772823A priority patent/EP1421313A2/en
Priority to PCT/JP2002/008724 priority patent/WO2003019068A2/en
Publication of JP2003073678A publication Critical patent/JP2003073678A/ja
Priority to NO20031894A priority patent/NO20031894L/no
Application granted granted Critical
Publication of JP5019683B2 publication Critical patent/JP5019683B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C11/00Use of gas-solvents or gas-sorbents in vessels
    • F17C11/007Use of gas-solvents or gas-sorbents in vessels for hydrocarbon gases, such as methane or natural gas, propane, butane or mixtures thereof [LPG]

Description

【0001】
【発明の属する技術分野】
本発明は、原料ガスと水とを接触させて生成したガスハイドレート(水和物)が水中に分散しているスラリーから水を除去する、ガスハイドレートスラリーの脱水装置及び脱水方法に関する。
【0002】
【従来の技術】
現在、メタン等の炭化水素を主成分とする天然ガスを貯蔵・輸送する方法としては、ガス田から天然ガスを採取したあと液化温度まで冷却し、液化天然ガス(LNG)とした状態で貯蔵・輸送する方法が一般的である。しかしながら、たとえば液化天然ガスの主成分であるメタンの場合、液化させるには−162℃といった極低温条件が必要であり、こうした条件を維持しながら貯蔵・輸送を行うためには、専用の貯蔵装置やLNG輸送船といった専用の輸送手段が必要となる。
こうした装置等の製造および維持・管理には非常に高いコストを要するため、上記方法に代わる低コストの貯蔵・輸送方法が鋭意研究されてきた。
【0003】
こうした研究の結果、天然ガスを水和させて固体状態の水和物(以下「天然ガスハイドレート」とする)を生成し、この固体状態のまま貯蔵・輸送するという方法が見出され、近年特に有望視されている。この方法では、LNGを取扱う場合のような極低温条件は必要とされず、また固体とするためその取扱いも比較的容易である。このため、既存の冷凍装置あるいは既存のコンテナ船を若干改良したものを各々貯蔵装置あるいは輸送手段として利用可能となり、従って、大幅な低コスト化が図れるものとして期待が寄せられている。
【0004】
この天然ガスハイドレートとは、包接化合物(クラスレート化合物)の一種であって、複数の水分子(H2O )により形成された立体かご型の包接格子(クラスレート)の中に、天然ガスの各成分を構成する分子、すなわちメタン(CH4 )、エタン(C26)、プロパン(C38)等が入り込み包接された結晶構造をなすものである。クラスレートに包接された天然ガス構成分子どうしの分子間距離は、天然ガスが高圧充填された場合のガスボンベ中における分子間距離よりも短くなる。これは、天然ガスが緊密充填された固体を生成し得ることを意味し、たとえばメタンの水和物が安定に存在し得る条件下、すなわち−30℃・大気圧(1kg/cm2 )においては、気体状態と比較して約1/170の体積とすることができる。このように、天然ガスハイドレートは比較的容易に得られる温度・圧力条件下において製造可能で、かつ安定した保存が可能なものである。
【0005】
この方法において、ガス田から産出された天然ガスは、酸性ガス除去工程において二酸化炭素(CO2 )や硫化水素(H2S )等の酸性ガスを除去され、低温・高圧状態にしていったんガス貯蔵部に貯蔵された後、生成工程において水和される。この天然ガスハイドレートは水が混在するスラリー状(以下「原料スラリー」とする)であり、続く脱水工程において、原料スラリーに混在している未反応の水が除去され、さらに冷却工程および減圧工程を経て固体となったものがコンテナ等の容器に封入され、貯蔵装置内において所定の温度・圧力に調整された状態で貯蔵される。
【0006】
輸送時には、この容器のままコンテナ船等の輸送手段に積み込まれ、目的地まで輸送される。目的地での陸揚げ後、天然ガスハイドレートは分解工程を経て天然ガスの状態に戻され、各供給地へと送られる。
なお、上述した天然ガスハイドレートの他にも、原料ガスを代えることによって、種々のガスハイドレートを生成することができる。
【0007】
【発明が解決しようとする課題】
ところで、上述した従来のガスハイドレートの生成から輸送までのプロセスにおいては、下記のような解決すべき問題を有している。
すなわち、ガスハイドレートの生成プラントでは、生成直後のガスハイドレートが多量の水(水スラリー)を含んだスラリー状であるため、このガスハイドレートをそのままあるいは冷凍して貯蔵及び輸送をすれば、水(氷)の分だけ容積や重量が増すため、貯蔵や輸送にかかるコストは膨大なものとなってしまう。換言すれば、多量の水を含むスラリー状ガスハイドレート(原料スラリー)を冷却すれば、ガスハイドレート固体として輸送する場合のガス密度が低くなり、余分な水(氷)も同時に輸送することとなって輸送効率上好ましくない。
【0008】
特に、天然ガスを原料とする天然ガスハイドレートの場合には、高い回収率を確保するためには、天然ガスハイドレートが分解せず、しかも、水が氷にならない条件にて脱水を行なうのが望ましく、従って、高圧条件を維持しつつ脱水することが望まれる。また、天然ガスは可燃性のガスであるため、脱水装置の外部へのリークを完全になくすことが重要である。
本発明は上記の事情に鑑みてなされたものであり、ガスハイドレートが分解せず、しかも水が凝固して氷にならないような条件下で、連続的に効率よく脱水して含水率の低いガスハイドレートを提供できるガスハイドレートスラリーの脱水装置及びスラリー脱水方法の提供を目的としている。
【0009】
【課題を解決するための手段】
本発明は、上記課題を解決するため、以下の手段を採用した。
請求項1に記載のガスハイドレートスラリーの脱水装置は、水中にガスハイドレートが分散したスラリーから水を除去するガスハイドレートスラリーの脱水装置であって、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件を維持した圧力容器内に脱水手段を設置し、前記脱水手段が、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型であることを特徴とするものである。
【0010】
このようなガスハイドレートスラリーの脱水装置とすれば、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件を維持した圧力容器内に脱水手段を設置し、前記脱水手段が、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型であるから、ガスハイドレートを分解させることなく、液体の水を容易に脱水することができる。
【0012】
本発明のガスハイドレートスラリーの脱水装置においては、前記脱水手段の駆動部を圧力容器内に設置することにより、脱水手段の駆動力が圧力容器を貫通して伝達されることがなくなり、軸シールが不要となる。軸シールは圧力容器内部からのリークの原因となりやすく、軸シールをなくすことにより圧力容器内部流体のリークを最小限とすることができる。
特に、前記脱水手段をキャンドモータによって駆動することにより、容易に前記軸シールをなくすことができる。
そして、上述したガスハイドレートスラリーの脱水装置は、特に天然ガスハイドレートの脱水装置として好適である。
【0013】
請求項5に記載のガスハイドレートスラリーの脱水方法は、水中にガスハイドレートが分散したスラリーから水を除去するガスハイドレートスラリーの脱水方法であって、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件に維持した圧力容器内に設置されている脱水手段に水中にガスハイドレートが分散したスラリーを供給して脱水し、前記脱水手段として、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型が用いられることを特徴としている。
【0014】
このようなガスハイドレートスラリーの脱水方法によれば、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件に維持した圧力容器内に設置されている脱水手段に水中にガスハイドレートが分散したスラリーを供給して脱水し、前記脱水手段として、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型が用いられているので、ガスハイドレートを分解させることなく、液体の水を容易に脱水することができる。
【0016】
本発明のガスハイドレートスラリーの脱水方法においては、前記脱水手段の駆動部を圧力容器内に設置することにより、脱水手段の駆動力が圧力容器を貫通して伝達されることがなくなり、軸シールが不要となる。軸シールは圧力容器内部からのリークの原因となりやすく、軸シールをなくすことにより圧力容器内部流体のリークを最小限とすることができる。
特に、前記脱水手段をキャンドモータによって駆動することにより、容易に前記軸シールをなくすことができる。
そして、上述したガスハイドレートスラリーの脱水方法は、特に天然ガスハイドレートの脱水方法として好適である。
【0017】
【発明の実施の形態】
以下、本発明に係るガスハイドレートスラリーの脱水装置及び脱水方法の一実施形態を図面に基づいて説明する。なお、以下の実施形態においては、ガスハイドレートが天然ガスを原料とする天然ガスハイドレートである場合について説明する。
【0018】
図1は、本発明に係るガスハイドレートスラリーの脱水装置及びスラリー脱水方法が適用される、天然ガスハイドレートの生成システムのプロセスを示すブロック図である。
図において、図中の符号1は天然ガスと水とを氷点よりも高温かつ大気圧よりも高圧下で反応させて天然ガスハイドレートを生成する生成手段、2は生成された天然ガスハイドレートを物理的に脱水する物理脱水手段、3は脱水の過程もしくは脱水後において天然ガスハイドレートに含まれる残存水分を天然ガスと反応させて天然ガスハイドレートを生成する水和脱水手段、4は生成された天然ガスハイドレートを冷却する冷却手段、5は冷却された天然ガスハイドレートを大気圧まで減圧する減圧手段、6は天然ガスハイドレートを成形固化する成形手段である。
【0019】
当該生成システムの具体的な装置構成を図2に示す。図において、図中の符号11は生成手段1を構成する生成反応装置、12は物理脱水手段2を構成するガスハイドレートスラリーの脱水装置となるスクリュープレス型脱水装置、13は水和脱水手段3を構成する2軸スクリュー型脱水装置、14は冷却手段4を構成するスクリューコンベア型冷却装置、15は減圧手段5を構成するバルブ切替型減圧装置、16は成形手段6を構成する加圧プレス型成形装置(ガスハイドレート成形装置)である。また、符号17は原料である水を貯蔵する貯水槽、18は同じく原料である天然ガスを産出するガス田、19はガス田18から産出された天然ガスを貯蔵するガス貯蔵部である。
【0020】
生成反応装置11は密閉された圧力容器20を有している。圧力容器20には水配管21を介して貯水槽17が接続されており、圧力容器20の内部には、水配管21を通じて貯水槽17の水が供給されることによって水相Lが形成されている。また、水配管21には給水ポンプ22およびバルブ23が設けられており、水相Lが所定の水位を保つように制御される。
【0021】
また、圧力容器20にはガス配管24を介してガス貯蔵部19が接続されている。ガス貯蔵部19には、ガス田18から産出された天然ガスが、酸性ガスおよび重質成分の除去の工程を経た後、圧縮機等により低温・高圧の状態にされて貯蔵されている。圧力容器20の内部には、ガス貯蔵部19に貯蔵された天然ガスがガス配管24を通じて供給されることによって気相Gが形成されている。
【0022】
さらに、圧力容器20には気相Gの圧力を計測する圧力計25が設けられ、ガス配管にはバルブ26および流量調節弁27が設けられており、流量調節弁27の開度は、圧力計25の計測値に基づき圧力容器20内部に天然ガスを補充して気相Gの圧力をガスハイドレートの生成圧力(例えば40atm)に保つように制御される。
【0023】
圧力容器20の内部には、水相Lの温度を氷点よりも高温であってガスハイドレートの生成温度(例えば5℃前後)よりも低温(これの状態を「過冷却」と定義する)に保つ冷却装置28が設けられている。冷却装置28によって過冷却の状態を保つのは、天然ガスハイドレートが生成する過程で発生する水和熱を回収し、生成反応装置11の内部を常に生成温度に保つためである。なお、冷却装置28には、水相Lを直接冷却する冷却コイルやラジエタ、圧力容器20を包んで容器全体を冷却する冷却ジャケットを採用するのが好ましい。
【0024】
圧力容器20には、底部と頂部とを繋ぐ水配管30が接続されている。水配管30には、フィルタ31、バルブ32、水循環ポンプ33、熱交換器34およびバルブ35が設けられている。また、圧力容器20の頂部から内側に突き出した水配管30の端部には、スプレーノズル36が設けられている。
【0025】
水相Lの液面に近い圧力容器20の側面には、液面に生成されたスラリー状の天然ガスハイドレートを抜き出すスラリー抜出口20aが設けられている。このスラリー抜出口20aはスラリー配管37を介してスクリュープレス型脱水装置12に接続されている。スラリー配管37には、バルブ38およびスラリー抜出ポンプ39が設けられており、水相Lの液面に生成された天然ガスハイドレートを抜き出してスクリュープレス型脱水装置12に供給するようになっている。
【0026】
スクリュープレス型脱水装置12は、円筒形の内部空間40aを有する容器本体40と、容器本体40の内部に設けられた筒形スクリーン(メッシュ)状のろ材40cと、側面に螺旋状の突条部41aを有し内部空間40aに配置された軸体であるスクリュー部41と、このスクリュー部41を駆動する駆動部42とを備えている。
容器本体40の先端(上流側)には、生成反応装置11においてスラリー状に生成された天然ガスハイドレート(原料スラリー)を上方から内部空間40aに取り入れる原料スラリー導入口40bが設けられている。原料スラリー導入口40bには、上述したスラリー配管37が接続されている。容器本体40は、内部空間40aを形成するろ材(内壁)40cと外殻を構成する筐体40dとの二重構造になっており、ろ材40cはメッシュ加工され、筐体40dの下部には脱水して内部に溜まった水(回収水)を排出する回収水排水口40eが設けられている。
【0027】
スクリュー部41は、突条部41aの回転外周面を内部空間40aの内面、すなわちろ材40cに近接させて配置されるとともに、自らの軸線を中心として所定方向に回転可能に支持されており、軸端に連結された駆動部42によって回転駆動される。
容器本体40の終端(下流側)には、スクリュー部41の回転によって搬送されてきた天然ガスハイドレートを取り出すハイドレート排出口40fが設けられている。ハイドレート排出口40fはハイドレート配管43を介して後段の2軸スクリュー型脱水装置13に接続されている。
【0028】
以下では、上述したスクリュープレス型脱水装置(ガスハイドレートスラリーの脱水装置)12について、本発明の特徴的な構成を詳述する。
図3は、図2のスクリュープレス型脱水装置12を拡大して、その詳細な構成を示したものである。
さて、このスクリュープレス型脱水装置12は、脱水する原料スラリーが天然ガスハイドレートであって、その回収率を確保するとともに含水率の低い最終製品を得るためにも、天然ガスハイドレートが分解せず、かつ、水が凝固しない条件下で脱水しなければならない。このため、圧力が0.5MPa以上といった高圧条件を維持した環境下で脱水する必要がある。なお、この場合の温度条件は、0℃となる。
【0029】
そこで、スクリュープレス型脱水装置12の容器本体40を上記高圧条件に耐えうる圧力容器とし、その内部にスクリュープレス型の脱水機を設置する。具体的には、外殻となる筐体40dを圧力容器とし、駆動部42にキャンドモータを使用したスクリュー部41を採用する。
駆動部42となるキャンドモータは、圧力容器である筐体40dの一部をなす外壁部42aの内壁面に固定側の胴体部コイル42bを備え、スクリュー部41の軸部を延長した軸端部41bに回転側のローター部コイル42cが設けられている。なお、胴体部コイル42bとローター部コイル42cとの間は、非接触に分離されている。
【0030】
このような構成としたので、ローター部コイル42cは、外壁部42aに固定されている胴体部コイル42bに対して、通電により同軸としたスクリュー部41と一体に回転する。このため、スクリュー部41及び駆動部42は、圧力容器の筐体40dを貫通する回転軸部をシールするというに、困難なシール構造が不要の設置構造となる。特に、可燃性ガスである天然ガスが回転軸の貫通部から容器本体40の外へ漏出することは絶対に避けなければならないので、軸貫通部における完全なシール構造が不要となるキャンドモータの採用は、この観点からも好ましいことである。
【0031】
上述したスクリュープレス型脱水装置12で脱水された天然ガスハイドレートは、2軸スクリュー型脱水装置13へ送られる。
2軸スクリュー型脱水装置13は、断面が長円形をなす筒形の内部空間50aを有する容器本体50と、側面に螺旋状の突条部51a,52aを有し内部空間50aに配置されて個々に回転しながら天然ガスハイドレートを搬送する2本の軸体51,52とを備えている。
【0032】
容器本体50の先端には、スクリュープレス型脱水装置12において物理的に脱水された天然ガスハイドレートを取り入れる取入口50bが設けられている。取入口50bには、上述したハイドレート配管43が接続されている。
軸体51,52は、両者が平行に配置されるとともに軸方向から見てそれぞれの突条部51a,52aを重複させて配置されている。さらに、それぞれの突条部51a,52aを内部空間50aの内面に近接させて配置されるとともに、自らの軸線を中心として回転可能に支持されており、駆動部53によって回転駆動される。なお、両軸体の回転方向は同方向であってもよいし、異なる方向であってもよい。
【0033】
容器本体50の終端には、軸体51,52の回転によって搬送されてきたガスハイドレートを取り出す取出口50cが設けられている。取出口50cにはハイドレート配管54を介して後段のスクリューコンベア型冷却装置14に接続されている。
取出口50cに近い容器体50の側面には、天然ガスを内部空間50aに供給するガス供給孔50dが設けられている。ガス供給孔50dは、ガス配管24から分岐するガス配管55を介してガス貯蔵部19に接続されている。ガス配管55にはバルブ56および流量調節弁57が設けられている。
【0034】
一方、取入口50bに近い容器体50には、内部空間50aの圧力を検出する圧力計58が設置されており、流量調節弁57の開度は、圧力計58の計測値に基づき内部空間50aに天然ガスを補充して内部の圧力を常に生成圧(例えば40atm)に保持するように制御されている。
【0035】
スクリュープレス型脱水装置12および2軸スクリュー型脱水装置13には、容器本体40,50の内部を上記過冷却の状態に保持する冷却装置(図示略)が設けられている。
【0036】
スクリューコンベア型冷却装置14は、円筒形の内部空間60aを有する容器本体60と、側面に螺旋状の突条部61aを有し内部空間60aに配置された軸体61とを備えている。
容器本体60の先端には、2軸スクリュー型脱水装置13において水和脱水された天然ガスハイドレートを内部空間60aに取り入れる取入口60bが設けられている。取入口60bには、上述したハイドレート配管54が接続されている。
【0037】
軸体61は、突条部61aを内部空間60aの内面に近接させて配置されるとともに、自らの軸線を中心として所定方向に回転可能に支持されており、駆動部62によって回転駆動される。
容器体60の終端には、軸体61の回転によって搬送されてきた天然ガスハイドレートを取り出す取出口60cが設けられている。取出口60cはハイドレート配管63を介して後段のバルブ切替型減圧装置15に接続されている。
【0038】
容器本体60は、内部空間60aを形成する内壁60dと外殻を構成する筐体60eとの二重構造になっており、取出口60cに近い筐体60eの側面には内壁60dとの隙間に冷媒を導入する冷媒入口60fが設けられ、取入口60bに近い筐体60eの側面には冷媒を導出する冷媒出口60gが設けられている。
容器本体60には、冷媒入口60fと冷媒出口60gとを繋ぐ冷媒配管65が接続されており、冷媒配管65には冷媒循環ポンプ66および熱交換器67が設けられている。冷媒は熱交換器66によって冷却され、冷媒配管65を通じて内壁60dと筐体60eとの隙間に流入し、脱水を終えた天然ガスハイドレートを低気圧下でも分解しない氷点以下の低温(例えば−10℃〜−15℃)まで冷却する。
【0039】
バルブ切替型減圧装置15は、ハイドレート配管63に直列に設けられた2つのバルブ71,72によって構成されている。2つのバルブ71,72は離間して配置され、後段のバルブ72を経たハイドレート配管63は大気開放されており、その後段には加圧プレス型成形装置16が設けられている。加圧プレス型成形装置16は、固定の壁部75と壁部75に接近離間可能に駆動されるプレート76とを備えている。
【0040】
上記のように構成された生成システムによる天然ガスハイドレートの生成について説明する。
まず、貯水槽17から圧力容器20内に水を導入し水相Lを形成する。同時に、ガス貯蔵部19から圧力容器20内に天然ガスを導入し、気相Gの圧力をガスハイドレートの生成圧力にまで高める。なお、水相Lを形成する水には、必要であれば安定化剤を添加してもよい。次に、水相Lの温度を過冷却の状態にまで冷却し、以後はこの状態が維持されるように温度管理を行う。
【0041】
圧力容器20内の温度および圧力の状態が安定したら、水相Lを形成する水の一部を水配管30を通じて圧力容器20の底部から抜き出し、熱交換器34によって上記再度冷却した後、スプレーノズル36から気相G中に噴霧する。スプレーノズル36から噴霧された水粒子は気相G中を漂いながら水相Lに向けて落下する。このように気相G中に水の粒子を多量に形成することにより、気相G中に存在する水の粒子の表面積、すなわち気相Gを形成する天然ガスとの接触面積が極めて大きくなる。水粒子の表面では、水と天然ガスとの水和反応が起こり、天然ガスハイドレートが生成される。なお、圧力容器20内の温度は氷点よりも高温になるように制御されているので、水相Lを形成する水や噴霧された水粒子が凍りつくことはない。
【0042】
水粒子の表面で生成された天然ガスハイドレートはそのまま落下し、水相Lの液面に降り積もり、天然ガスハイドレートの層を形成する。この天然ガスハイドレートはスラリー抜出口20aから抜き出され、スラリー配管37を通じてスクリュープレス型脱水装置12に送り込まれる。このとき、天然ガスハイドレートは水とともに回収されるため、含水率が非常に高いスラリー状となる。
【0043】
スラリー配管37を通じてスクリュープレス型脱水装置12に送り込まれたスラリー状天然ガスハイドレート(原料スラリー)は、原料スラリー導入口40bから容器本体40の内部空間40aに落下して内部空間40aに収容される。そして、スクリュー部41の回転によって軸方向に搬送され、その過程で加圧されることによって物理的に脱水される。この時、スクリュー部41が設置されている容器本体40内は適切な高圧及び温度に維持されているので、天然ガスハイドレートは分解することなく脱水される。また、水分についても、凝固して氷になるようなことはないので、液体のまま効率よく脱水されて回収される。従って、前工程でせっかく生成した天然ガスハイドレートが分解し、回収率を低下させるようなことはない。
なお、天然ガスハイドレートから分離された水分は、ろ材40cのメッシュを通じて筐体40dの下部に落下して集められ、回収水排出口40eから排出される。
【0044】
一方、物理脱水を終えた天然ガスハイドレートは、ハイドレート排出口40fを通じてスクリュープレス型脱水装置12から取り出され、ハイドレート配管43を通じて2軸スクリュー型脱水装置13に送り込まれる。
2軸スクリュー型脱水装置13に送り込まれた天然ガスハイドレートは、取入口50bを通じて内部空間50aに収容され、軸体51,52の回転によって軸方向に搬送される。その過程で残存する水分と内部空間50aに供給された天然ガスと接触し、これとともに撹拌されつつ冷却されることによって残存する水分と天然ガスとを反応させてハイドレート化する。
【0045】
内部空間50aに収容された天然ガスハイドレートは、取出口50cに至るころには残存する水分のほとんどを未水和の天然ガスと水和反応させることで脱水され、結果的に天然ガスハイドレートそのものの量を増加させる。水和脱水を終えた天然ガスハイドレートは、取出口50Cを通じて2軸スクリュー型脱水装置13から取り出され、ハイドレート配管54を通じてスクリューコンベア型冷却装置14に送り込まれる。
【0046】
スクリューコンベア型冷却装置14に送り込まれた天然ガスハイドレートは、取入口60bを通じて内部空間60aに収容され、軸体41の回転によって軸方向に搬送され、その過程で容器本体60内部を循環する冷媒によって冷却される。氷点以下の低温になるまで冷却された天然ガスハイドレートは、取出口60fを通じてスクリューコンベア型冷却装置14から取り出され、ハイドレート配管63を通じてバルブ切替型減圧装置15に送り込まれる。
【0047】
バルブ切替型減圧装置15は上流側のバルブ71を開き、下流側のバルブ72を閉じた状態とされ、天然ガスハイドレートを受け入れる。バルブ71,72間には天然ガスハイドレートが蓄積していくので、ある程度になったらバルブ71を閉じ、続いてバルブ72を開いてバルブ71,72間の天然ガスハイドレートを大気圧まで減圧する。減圧を終えた天然ガスハイドレートは、バルブ切替型減圧装置15から取り出され、加圧プレス型成形装置16に送り込まれる。
【0048】
加圧プレス型成形装置16に送り込まれた天然ガスハイドレートは、プレート76によって壁部75に押し付けられるようにして成形固化される。成形固化された天然ガスハイドレートは図示しない専用の輸送容器に収容され、貯蔵・輸送される。
【0049】
上記の生成システムにおいては、天然ガスと水とを氷点よりも高温、かつ大気圧よりも高圧下で反応させることで、水を凍らせることなく天然ガスハイドレートを生成することが可能である。ただし、この天然ガスハイドレートには多量の水が含まれることになるので、生成された天然ガスハイドレートを物理的に脱水し、さらにこの物理脱水の後に天然ガスハイドレートに含まれる残存水分を天然ガスと反応させて天然ガスハイドレートを生成することによって天然ガスハイドレートの含水率を低下させる。
【0050】
ここまでの工程はいずれも氷点よりも高温、かつ大気圧よりも高圧下で実施されるので、生成された天然ガスハイドレートを大気圧下に取り出すべく、これを氷点よりも低温にまで冷却し、残存する水(氷)の中に凍りづけにしたのち減圧し、大気圧下に取り出せるようにする。
以上の各工程を実施することで、より含水率の低い天然ガスハイドレートが得られる。
【0051】
従って、上記の生成システムによれば、含水率の低い天然ガスハイドレートを生成してその貯蔵や輸送にかかるコストを削減することができる。また、減圧を終えた天然ガスハイドレートを成形固化することにより、貯蔵や輸送の際の利便性を向上させることができる。
【0052】
なお、本実施形態においては、物理脱水単独のスクリュープレス型脱水装置12により脱水した後に水和脱水を行っているが、物理脱水と同時進行的に水和脱水を行うようにしても構わない。また、減圧手段5(バルブ切替型減圧装置15)の後段に成形手段6(加圧プレス型成形装置16)を設けたが、成形手段6を設けず、脱水を終えた天然ガスハイドレートをそのまま容器に詰めて貯蔵・輸送することも可能である。
【0053】
ところで、上述したスクリュープレス型脱水装置12は、図1に示した生成システムのプロセス以外にも使用することができる。
以下、上述したスクリュープレス型脱水装置12を適用できるプロセスの構成例を図面に基づいて簡単に説明する。なお、上記実施形態において既に説明した構成要素には同一符号を付して説明は省略する。
図4に示すブロック図のプロセス構成(第1変形例)では、脱水によって分離された水(回収水)を生成手段1に戻して再利用する。具体的には、スクリュープレス型脱水装置12の排水口40eと貯水槽17とを接続する水配管を設け、天然ガスハイドレートから分離された回収水を、この水配管を通じて貯水槽17や圧力容器20に戻すように構成されている。
【0054】
図5に示すブロック図のプロセス構成(第2変形例)では、図4の場合と同様に、回収水を生成手段1に戻すのであるが、回収水を生成手段1に戻す前にその水を冷却する水冷却手段7を設けてある。
【0055】
図6に示すブロック図のプロセス構成(第3変形例)では、水和脱水手段3において天然ガスハイドレートの生成に供されなかった天然ガスを生成手段1に導くようにしてある。
【0056】
図7に示すブロック図のプロセス構成(第4変形例)では、図6の場合と同様に、天然ガスを生成手段1に導入する前に冷却する、天然ガス冷却手段8を設けてある。
なお、天然ガス冷却手段8には、天然ガスを直接的に冷却する機構の他、天然ガスを断熱膨張させ自らの温度を低下させたうえで昇圧する機構を採用しても構わない。
また、生成手段1への導入前ではなく、天然ガスを水和脱水手段3へ導入する前に天然ガス冷却手段8を設けても構わないし、両方に設けても構わない。
【0057】
図8に示すブロック図のプロセス構成(第5変形例)では、生成手段1において天然ガスハイドレートの生成に供されなかった天然ガスを水和脱水手段3に導き、生成手段1と水和脱水手段3との間を循環させるようにしてある。
【0058】
図9に示すブロック図のプロセス構成(第6変形例)では、生成手段1において天然ガスハイドレートを生成した後に残る未反応ガスを生成手段1から除去する(パージする)ようにしてある。
なお、図8に示すように、天然ガスを生成手段1と水和脱水手段3との間で循環させる場合には、循環系を構成するガス配管のいずれかの場所から未反応ガスを除去するようにしても構わない。
【0059】
図10に示すブロック図のプロセス構成(第7変形例)では、未反応ガスを内燃機関9やボイラ等の燃料として利用している。
【0060】
図11に示すブロック図のプロセス構成(第8変形例)では、未反応ガスをガスタービン10の駆動ガスとして利用している。
【0061】
以上説明したように、本発明のスクリュープレス型脱水装置は、図1及び図4〜11に示したブロック図のプロセス構成はもちろんのこと、それらの組合せによるプロセス構成に対しても採用可能である。
また、本発明のスクリュープレス型脱水装置は、上記の各プロセス構成またはそれらの組合せによるプロセス構成を採用した天然ガスハイドレート生成システムに限らず、生成後の天然ガスハイドレートについて脱水を必要とするプロセスを採用した生成システムに対しても採用可能である。
さらに、上記の説明では天然ガスハイドレートを例に示してあるが、本発明はこれに限定されるものではなく、天然ガスハイドレート以外のガスハイドレートにも適用することができる。
【0062】
なお、本発明の構成は上述した実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲内において適宜変更することができる。
【0063】
【発明の効果】
上述した本発明のガスハイドレートスラリー脱水装置によれば、下記のような効果を奏する。
請求項1に記載のガスハイドレートスラリーの脱水装置によれば、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件を維持した圧力容器内に脱水手段を設置し、前記脱水手段が、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型であるから、脱水中にガスハイドレートを分解させることがなく、また、水が液体のまま凝固することもない。従って、原料スラリーの水を容易に脱水することができ、しかも、高い回収率を維持したガスハイドレートスラリーの脱水装置を提供することができる。
【0064】
また、本発明のガスハイドレートスラリーの脱水装置は、脱水手段としてスクリュープレス型を採用したことで連続脱水が可能となり、前記脱水手段を圧力容器内に設置、特にキャンドモータを採用して駆動することで、圧力容器を貫通する軸部分がなくなって軸シールが不要となる。
このような脱水装置は、ガスハイドレートが分解せず、かつ、水が凝固しない環境とするため高圧条件が求められ、しかも、分解すると可燃性ガスとなるため漏洩を確実に防止することが求められる天然ガスハイドレートの脱水に特に適している。
【0065】
請求項5に記載の発明によれば、ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件に維持した圧力容器内に設置されている脱水手段に水中にガスハイドレートが分散したスラリーを供給して脱水し、前記脱水手段として、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型が用いられるガスハイドレートスラリーの脱水方法としたので、脱水中にガスハイドレートを分解させることがなく、また、水が液体のまま凝固することもない。従って、原料スラリーの水を容易に脱水することができ、しかも、高い回収率を維持したガスハイドレートスラリーの脱水方法を提供することができる。
【0066】
また、本発明のガスハイドレートスラリーの脱水方法は、脱水手段としてスクリュープレス型を採用したことで連続脱水が可能となり、前記脱水手段を圧力容器内に設置、特にキャンドモータを採用して駆動することで、圧力容器を貫通する軸部分がなくなって軸シールが不要となる。
このような脱水方法は、ガスハイドレートが分解せず、かつ、水が凝固しない環境とするため高圧条件が求められ、しかも、分解すると可燃性ガスとなるため漏洩を確実に防止することが求められる天然ガスハイドレートの脱水に特に適している。
【図面の簡単な説明】
【図1】 本発明に係る実施形態として、天然ガスハイドレート生成システムのプロセス構成例を示すブロック図である。
【図2】 図1の生成システムの具体的な装置構成を示す図である。
【図3】 本発明に係るガスハイドレートスラリーの脱水装置の一実施形態を示す構成図である。
【図4】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第1変形例)を示すブロック図である。
【図5】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第2変形例)を示すブロック図である。
【図6】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第3変形例)を示すブロック図である。
【図7】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第4変形例)を示すブロック図である。
【図8】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第5変形例)を示すブロック図である。
【図9】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第6変形例)を示すブロック図である。
【図10】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第7変形例)を示すブロック図である。
【図11】 本発明に係るガスハイドレートスラリーの脱水装置を適用可能な天然ガスハイドレート生成システムのプロセス(第8変形例)を示すブロック図である。
【符号の説明】
12 スクリュープレス型脱水装置
(ガスハイドレートスラリーの脱水装置)
40 容器本体
40b 原料スラリー導入口
40c ろ材
40d 筐体
40e 回収水排水口
40f ハイドレート排出口
41 スクリュー部
41a 突条部
41b 軸端部
42 駆動部(キャンドモータ)
42a 外壁部
42b 胴体部コイル
42c ローター部コイル

Claims (8)

  1. 水中にガスハイドレートが分散したスラリーから水を除去するガスハイドレートスラリーの脱水装置であって、
    ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件を維持した圧力容器内に脱水手段を設置し、
    前記脱水手段が、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型であることを特徴とするガスハイドレートスラリーの脱水装置。
  2. 前記脱水手段の駆動部を前記圧力容器の内部に設置したことを特徴とする請求項1に記載のガスハイドレートスラリーの脱水装置。
  3. 前記脱水手段がキャンドモータによって駆動されることを特徴とする請求項1または2に記載のガスハイドレートスラリーの脱水装置。
  4. 前記ガスハイドレートが天然ガスハイドレートであることを特徴とする請求項1から3のいずれか1項に記載のガスハイドレートスラリーの脱水装置。
  5. 水中にガスハイドレートが分散したスラリーから水を除去するガスハイドレートスラリーの脱水方法であって、
    ガスハイドレートが分解せず、かつ、水が凝固しない温度及び圧力条件に維持した圧力容器内に設置されている脱水手段に水中にガスハイドレートが分散したスラリーを供給して脱水し、
    前記脱水手段として、円筒形の内部空間を有する前記圧力容器の容器本体と、該容器本体の内部に設けられた筒形スクリーン状のろ材と、側面に螺旋状の突条部を有し前記内部空間に配置された軸体であるスクリュー部と、該スクリュー部を駆動する駆動部とを備えたスクリュープレス型が用いられることを特徴とするガスハイドレートスラリーの脱水方法。
  6. 前記脱水手段の駆動部を前記圧力容器の内部に設置したことを特徴とする請求項5に記載のガスハイドレートスラリーの脱水方法。
  7. 前記脱水手段が、キャンドモータによって駆動されることを特徴とする請求項5または6に記載のガスハイドレートスラリーの脱水方法。
  8. 前記ガスハイドレートが天然ガスハイドレートであることを特徴とする請求項5から7のいずれか1項に記載のガスハイドレートスラリーの脱水方法。
JP2001264907A 2001-08-31 2001-08-31 ガスハイドレートスラリーの脱水装置及び脱水方法 Expired - Fee Related JP5019683B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2001264907A JP5019683B2 (ja) 2001-08-31 2001-08-31 ガスハイドレートスラリーの脱水装置及び脱水方法
US10/416,004 US20040020123A1 (en) 2001-08-31 2002-08-29 Dewatering device and method for gas hydrate slurrys
EP02772823A EP1421313A2 (en) 2001-08-31 2002-08-29 Dewatering device and method for gas hydrate slurrys
PCT/JP2002/008724 WO2003019068A2 (en) 2001-08-31 2002-08-29 Dewatering device and method for gas hydrate slurrys
NO20031894A NO20031894L (no) 2001-08-31 2003-04-28 Avvanningsanordning og fremgangsmåte for avvanning av gass hydratoppslemminger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001264907A JP5019683B2 (ja) 2001-08-31 2001-08-31 ガスハイドレートスラリーの脱水装置及び脱水方法

Publications (2)

Publication Number Publication Date
JP2003073678A JP2003073678A (ja) 2003-03-12
JP5019683B2 true JP5019683B2 (ja) 2012-09-05

Family

ID=19091438

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001264907A Expired - Fee Related JP5019683B2 (ja) 2001-08-31 2001-08-31 ガスハイドレートスラリーの脱水装置及び脱水方法

Country Status (5)

Country Link
US (1) US20040020123A1 (ja)
EP (1) EP1421313A2 (ja)
JP (1) JP5019683B2 (ja)
NO (1) NO20031894L (ja)
WO (1) WO2003019068A2 (ja)

Families Citing this family (83)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001038811A1 (fr) 1999-11-26 2001-05-31 Nkk Corporation Materiau de stockage thermique utilisant un dispositif de stockage hydrate et thermique et procede de production de ce materiau
WO2002079355A1 (fr) * 2001-03-29 2002-10-10 Mitsubishi Heavy Industries, Ltd. Dispositif de production d'hydrate de gaz et dispositif de deshydratation d'hydrate de gaz
JP5106727B2 (ja) * 2001-08-31 2012-12-26 三菱重工業株式会社 ガスハイドレートスラリー脱水装置
EP1510763B1 (en) * 2002-05-31 2012-02-01 JFE Engineering Corporation Apparatus for producing hydrate slurry
JP4507534B2 (ja) * 2003-09-01 2010-07-21 株式会社Ihi 天然ガスの包接水和物の製造方法及び製造装置
JP4817608B2 (ja) * 2004-03-24 2011-11-16 三井造船株式会社 ガスハイドレートの払い出し方法および払い出し装置
JP4578916B2 (ja) * 2004-09-30 2010-11-10 三井造船株式会社 ハイドレート生成装置
JP2006104385A (ja) * 2004-10-07 2006-04-20 Mitsui Eng & Shipbuild Co Ltd 混合ガスハイドレート製造方法
JP4564327B2 (ja) * 2004-10-18 2010-10-20 三井造船株式会社 ガスハイドレート脱水装置
JP2006111816A (ja) * 2004-10-18 2006-04-27 Mitsui Eng & Shipbuild Co Ltd ガスハイドレート製造方法
JP2006117755A (ja) * 2004-10-20 2006-05-11 Mitsui Eng & Shipbuild Co Ltd 高濃度ガスハイドレート生成装置およびその装置を用いたガスハイドレート製造プラント
JP4654010B2 (ja) * 2004-11-25 2011-03-16 三井造船株式会社 ガスハイドレート生成装置
US8114176B2 (en) * 2005-10-12 2012-02-14 Great Point Energy, Inc. Catalytic steam gasification of petroleum coke to methane
WO2007116456A1 (ja) * 2006-03-30 2007-10-18 Mitsui Engineering & Shipbuilding Co., Ltd. ガスハイドレートペレットの製造方法
US7922782B2 (en) * 2006-06-01 2011-04-12 Greatpoint Energy, Inc. Catalytic steam gasification process with recovery and recycle of alkali metal compounds
US8163048B2 (en) * 2007-08-02 2012-04-24 Greatpoint Energy, Inc. Catalyst-loaded coal compositions, methods of making and use
WO2009048723A2 (en) * 2007-10-09 2009-04-16 Greatpoint Energy, Inc. Compositions for catalytic gasification of a petroleum coke and process for conversion thereof to methane
WO2009048724A2 (en) * 2007-10-09 2009-04-16 Greatpoint Energy, Inc. Compositions for catalytic gasification of a petroleum coke and process for their conversion to methane
CN101910371B (zh) * 2007-12-28 2014-04-02 格雷特波因特能源公司 用于制备合成气衍生产物的方法
AU2008345189B2 (en) * 2007-12-28 2011-09-22 Greatpoint Energy, Inc. Petroleum coke compositions for catalytic gasification
WO2009086363A1 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Coal compositions for catalytic gasification and process for its preparation
US20090165376A1 (en) 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Steam Generating Slurry Gasifier for the Catalytic Gasification of a Carbonaceous Feedstock
US20090165380A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Petroleum Coke Compositions for Catalytic Gasification
US20090165361A1 (en) * 2007-12-28 2009-07-02 Greatpoint Energy, Inc. Carbonaceous Fuels and Processes for Making and Using Them
CN101910373B (zh) * 2007-12-28 2013-07-24 格雷特波因特能源公司 从焦炭中回收碱金属的催化气化方法
WO2009086383A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
WO2009086361A2 (en) * 2007-12-28 2009-07-09 Greatpoint Energy, Inc. Catalytic gasification process with recovery of alkali metal from char
US8709113B2 (en) 2008-02-29 2014-04-29 Greatpoint Energy, Inc. Steam generation processes utilizing biomass feedstocks
US7926750B2 (en) 2008-02-29 2011-04-19 Greatpoint Energy, Inc. Compactor feeder
US8297542B2 (en) * 2008-02-29 2012-10-30 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2009111330A1 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc. Processes for making adsorbents and processes for removing contaminants from fluids using them
US20090220406A1 (en) * 2008-02-29 2009-09-03 Greatpoint Energy, Inc. Selective Removal and Recovery of Acid Gases from Gasification Products
US8361428B2 (en) * 2008-02-29 2013-01-29 Greatpoint Energy, Inc. Reduced carbon footprint steam generation processes
US8366795B2 (en) 2008-02-29 2013-02-05 Greatpoint Energy, Inc. Catalytic gasification particulate compositions
US20090260287A1 (en) * 2008-02-29 2009-10-22 Greatpoint Energy, Inc. Process and Apparatus for the Separation of Methane from a Gas Stream
WO2009111342A2 (en) * 2008-02-29 2009-09-11 Greatpoint Energy, Inc Carbonaceous fines recycle
US8652222B2 (en) * 2008-02-29 2014-02-18 Greatpoint Energy, Inc. Biomass compositions for catalytic gasification
US8114177B2 (en) 2008-02-29 2012-02-14 Greatpoint Energy, Inc. Co-feed of biomass as source of makeup catalysts for catalytic coal gasification
US8286901B2 (en) * 2008-02-29 2012-10-16 Greatpoint Energy, Inc. Coal compositions for catalytic gasification
WO2009124019A2 (en) 2008-04-01 2009-10-08 Greatpoint Energy, Inc. Sour shift process for the removal of carbon monoxide from a gas stream
CN101981163B (zh) * 2008-04-01 2014-04-16 格雷特波因特能源公司 从气体物流中分离甲烷的方法
US20090324461A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
US20090324460A1 (en) * 2008-06-27 2009-12-31 Greatpoint Energy, Inc. Four-Train Catalytic Gasification Systems
WO2009158583A2 (en) * 2008-06-27 2009-12-30 Greatpoint Energy, Inc. Four-train catalytic gasification systems
CN102076829B (zh) * 2008-06-27 2013-08-28 格雷特波因特能源公司 用于合成气制备的四列催化气化系统
JP5384649B2 (ja) * 2008-09-19 2014-01-08 グレイトポイント・エナジー・インコーポレイテッド 炭素質フィードストックのガス化のための方法
KR101330894B1 (ko) * 2008-09-19 2013-11-18 그레이트포인트 에너지, 인크. 차르 메탄화 촉매를 사용한 기체화 방법
US20100120926A1 (en) * 2008-09-19 2010-05-13 Greatpoint Energy, Inc. Processes for Gasification of a Carbonaceous Feedstock
WO2010033850A2 (en) 2008-09-19 2010-03-25 Greatpoint Energy, Inc. Processes for gasification of a carbonaceous feedstock
KR101275429B1 (ko) * 2008-10-23 2013-06-18 그레이트포인트 에너지, 인크. 탄소질 공급원료의 기체화 방법
EP2370549A1 (en) 2008-12-30 2011-10-05 Greatpoint Energy, Inc. Processes for preparing a catalyzed coal particulate
KR101290453B1 (ko) * 2008-12-30 2013-07-29 그레이트포인트 에너지, 인크. 촉매된 탄소질 미립자의 제조 방법
US8268899B2 (en) * 2009-05-13 2012-09-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2010132551A2 (en) * 2009-05-13 2010-11-18 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
AU2010249091B2 (en) * 2009-05-13 2013-05-23 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
CA2771578A1 (en) * 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Processes for hydromethanation of a carbonaceous feedstock
WO2011034891A1 (en) * 2009-09-16 2011-03-24 Greatpoint Energy, Inc. Two-mode process for hydrogen production
CN102549121B (zh) * 2009-09-16 2015-03-25 格雷特波因特能源公司 整体加氢甲烷化联合循环方法
WO2011049861A2 (en) 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011049858A2 (en) * 2009-10-19 2011-04-28 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011084581A1 (en) * 2009-12-17 2011-07-14 Greatpoint Energy, Inc. Integrated enhanced oil recovery process injecting nitrogen
US8733459B2 (en) * 2009-12-17 2014-05-27 Greatpoint Energy, Inc. Integrated enhanced oil recovery process
WO2011106285A1 (en) 2010-02-23 2011-09-01 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
US8652696B2 (en) * 2010-03-08 2014-02-18 Greatpoint Energy, Inc. Integrated hydromethanation fuel cell power generation
KR101440710B1 (ko) 2010-04-26 2014-09-17 그레이트포인트 에너지, 인크. 바나듐 회수를 동반한 탄소질 공급원료의 히드로메탄화
JP5559428B2 (ja) 2010-05-28 2014-07-23 グレイトポイント・エナジー・インコーポレイテッド 液体重質炭化水素フィードストックのガス状生成物への変換
CA2806673A1 (en) 2010-08-18 2012-02-23 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CA2815243A1 (en) 2010-11-01 2012-05-10 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CN103391989B (zh) 2011-02-23 2015-03-25 格雷特波因特能源公司 伴有镍回收的碳质原料加氢甲烷化
WO2012166879A1 (en) 2011-06-03 2012-12-06 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock
CN103974897A (zh) 2011-10-06 2014-08-06 格雷特波因特能源公司 碳质原料的加氢甲烷化
WO2014055351A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
WO2014055349A1 (en) 2012-10-01 2014-04-10 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US9328920B2 (en) 2012-10-01 2016-05-03 Greatpoint Energy, Inc. Use of contaminated low-rank coal for combustion
US9034058B2 (en) 2012-10-01 2015-05-19 Greatpoint Energy, Inc. Agglomerated particulate low-rank coal feedstock and uses thereof
US10065136B2 (en) * 2013-10-25 2018-09-04 Lyco Manufacturing, Inc. Rotary drum with screen for processing food
US10464872B1 (en) 2018-07-31 2019-11-05 Greatpoint Energy, Inc. Catalytic gasification to produce methanol
CN108815881B (zh) * 2018-08-06 2023-08-25 西南石油大学 一种水合物浆体加工处理装置及方法
US10344231B1 (en) 2018-10-26 2019-07-09 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization
US10435637B1 (en) 2018-12-18 2019-10-08 Greatpoint Energy, Inc. Hydromethanation of a carbonaceous feedstock with improved carbon utilization and power generation
US10618818B1 (en) 2019-03-22 2020-04-14 Sure Champion Investment Limited Catalytic gasification to produce ammonia and urea
CN112240186A (zh) * 2019-07-18 2021-01-19 中国石油天然气股份有限公司 一种天然气水合物注热-置换联合模拟开采装置及方法
CN112111308B (zh) * 2020-09-21 2021-03-12 青岛科技大学 一种水合物生产-输运一体式连续反应装置

Family Cites Families (93)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3126334A (en) * 1964-03-24 Process and apparatus for melting
US2270016A (en) * 1938-05-25 1942-01-13 Chicago By Products Corp The use of gas hydrates in improving the load factor of gas supply systems
US2363529A (en) * 1941-05-06 1944-11-28 Fluor Corp Fractionation of hydrate-forming hydrocarbons
US2399723A (en) * 1941-06-28 1946-05-07 Kellogg M W Co Gas hydration
US2356407A (en) * 1941-08-15 1944-08-22 Fluor Corp System for forming and storing hydrocarbon hydrates
US2375559A (en) * 1941-10-20 1945-05-08 Fluor Corp Treatment of hydrocarbon gases by hydration
US2375560A (en) * 1941-10-27 1945-05-08 Fluor Corp Treatment of gases
US2410583A (en) * 1943-07-10 1946-11-05 Fluor Corp Separation of hydrate-forming components of gaseous mixtures
US2518337A (en) * 1946-04-26 1950-08-08 Standard Oil Dev Co Slurry handling
US2500533A (en) * 1946-09-06 1950-03-14 Phillips Petroleum Co Preparation of solid hydrocarbons
US2904511A (en) * 1955-06-17 1959-09-15 Koppers Co Inc Method and apparatus for producing purified water from aqueous saline solutions
US2943124A (en) * 1957-02-25 1960-06-28 Nat Tank Co Hydrocarbon hydrate separation process and separation unit therefor
US3354663A (en) * 1961-06-13 1967-11-28 Atlantic Richfield Co Hydrate removal from wet natural gas
US3148143A (en) * 1962-01-16 1964-09-08 Koppers Co Inc Hydrate crystallizer
US3170870A (en) * 1963-05-17 1965-02-23 Koppers Co Inc Removing occluded aqueous system from hydrate crystals
US3514274A (en) * 1965-02-18 1970-05-26 Exxon Research Engineering Co Transportation of natural gas as a hydrate
US3456028A (en) * 1967-02-13 1969-07-15 Universal Oil Prod Co Clathrate separation process
SU477917A1 (ru) * 1973-03-12 1975-07-25 Якутский Филиал Со Ан Ссср Способ трубопроводного транспорта природного газа
US3975167A (en) * 1975-04-02 1976-08-17 Chevron Research Company Transportation of natural gas as a hydrate
US4007787A (en) * 1975-08-18 1977-02-15 Phillips Petroleum Company Gas recovery from hydrate reservoirs
US4207351A (en) * 1975-09-05 1980-06-10 British Vinegars Water removal by hydrate formation
US4424858A (en) * 1981-02-19 1984-01-10 The United States Of America As Represented By The United States Department Of Energy Apparatus for recovering gaseous hydrocarbons from hydrocarbon-containing solid hydrates
US4376462A (en) * 1981-02-19 1983-03-15 The United States Of America As Represented By The United States Department Of Energy Substantially self-powered method and apparatus for recovering hydrocarbons from hydrocarbon-containing solid hydrates
US4347707A (en) * 1981-03-31 1982-09-07 General Foods Corporation Gasified ice product and process having improved storage stability
US4393660A (en) * 1981-06-29 1983-07-19 General Foods Corporation Quiescent formation of gasified ice product and process
US4424866A (en) * 1981-09-08 1984-01-10 The United States Of America As Represented By The United States Department Of Energy Method for production of hydrocarbons from hydrates
US4404807A (en) * 1981-12-28 1983-09-20 General Foods Corporation Gasified ice process and product
US4670159A (en) * 1982-03-11 1987-06-02 Benmol Corporation Process for obtaining purified water from wet sludges and slurries of solid materials
US4487023A (en) * 1982-09-02 1984-12-11 General Foods Corporation Process for preparing a gasified ice product
US4540501A (en) * 1984-09-12 1985-09-10 The United States Of America As Represented By The United States Department Of Energy Gas hydrate cool storage system
CA1323202C (en) * 1986-05-16 1993-10-19 Toshiyuki Hino Ice storage refrigerating apparatus of direct contact type
JPS63141568A (ja) * 1986-12-04 1988-06-14 Fuaanesu I S:Kk 固形物の脱水・脱脂処理方法
FR2625527B1 (fr) * 1987-12-30 1995-12-01 Inst Francais Du Petrole Procede de transport d'un fluide formant des hydrates
CH677618A5 (ja) * 1988-01-14 1991-06-14 Sulzer Ag
US4821794A (en) * 1988-04-04 1989-04-18 Thermal Energy Storage, Inc. Clathrate thermal storage system
FR2630344B1 (fr) * 1988-04-22 1992-02-21 Inst Francais Du Petrole Procede d'extraction de l'eau melangee a un fluide liquide
US5039499A (en) * 1988-04-29 1991-08-13 Dravo Lime Company Process for desulfurization of sulfur dioxide-containing gas streams
NO172080C (no) * 1990-01-29 1993-06-02 Gudmundsson Jon Steinar Framgangsmaate for framstilling av gasshydrater og apparattil utfoerelse av samme
US5434330A (en) * 1993-06-23 1995-07-18 Hnatow; Miguel A. Process and apparatus for separation of constituents of gases using gas hydrates
US5473904A (en) * 1993-11-12 1995-12-12 New Mexico Tech Research Foundation Method and apparatus for generating, transporting and dissociating gas hydrates
US5536893A (en) * 1994-01-07 1996-07-16 Gudmundsson; Jon S. Method for production of gas hydrates for transportation and storage
US5540190A (en) * 1994-09-29 1996-07-30 Mississippi State University (Msu) Gas hydrate storage system and method for using the gas hydrate storage system in automotive vehicles
US5613362A (en) * 1994-10-06 1997-03-25 Dixon; Billy D. Apparatus and method for energy conversion using gas hydrates
JPH08299771A (ja) * 1995-05-12 1996-11-19 Toyobo Co Ltd キャンドモータインラインミキサ
NO952241D0 (no) * 1995-06-07 1995-06-07 Jon Steinar Gudmundsson Framgangsmåte for transport og lagring av olje og gass
US5660603A (en) * 1995-09-05 1997-08-26 International Process Services, Inc. Process for separating selected components from multi-component natural gas streams
JP3663236B2 (ja) * 1995-09-11 2005-06-22 住友精化株式会社 液化炭酸ガス輸送用タンクローリー
US5741758A (en) * 1995-10-13 1998-04-21 Bj Services Company, U.S.A. Method for controlling gas hydrates in fluid mixtures
GB9601030D0 (en) * 1996-01-18 1996-03-20 British Gas Plc a method of producing gas hydrate
US5733941A (en) * 1996-02-13 1998-03-31 Marathon Oil Company Hydrocarbon gas conversion system and process for producing a synthetic hydrocarbon liquid
US6106595A (en) * 1996-04-30 2000-08-22 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
US5700311A (en) * 1996-04-30 1997-12-23 Spencer; Dwain F. Methods of selectively separating CO2 from a multicomponent gaseous stream
US5713416A (en) * 1996-10-02 1998-02-03 Halliburton Energy Services, Inc. Methods of decomposing gas hydrates
US6028234A (en) * 1996-12-17 2000-02-22 Mobil Oil Corporation Process for making gas hydrates
US6214175B1 (en) * 1996-12-26 2001-04-10 Mobil Oil Corporation Method for recovering gas from hydrates
US5950732A (en) * 1997-04-02 1999-09-14 Syntroleum Corporation System and method for hydrate recovery
GB9706991D0 (en) * 1997-04-05 1997-05-21 Univ Heriot Watt Clathrate hydrate dissociation point detection and measurement
US6028235A (en) * 1997-10-14 2000-02-22 Mobil Oil Corporation Gas hydrate regassification method and apparatus using steam or other heated gas or liquid
US5964093A (en) * 1997-10-14 1999-10-12 Mobil Oil Corporation Gas hydrate storage reservoir
US6180843B1 (en) * 1997-10-14 2001-01-30 Mobil Oil Corporation Method for producing gas hydrates utilizing a fluidized bed
BR9705076A (pt) * 1997-10-17 2000-05-09 Petroleo Brasileiro Sa Processo para o controle termo-hidráulico de hidrato de gás
CN1125938C (zh) * 1998-07-03 2003-10-29 丰田自动车株式会社 气体储存方法和体系
US6082118A (en) * 1998-07-07 2000-07-04 Mobil Oil Corporation Storage and transport of gas hydrates as a slurry suspenion under metastable conditions
US6209965B1 (en) * 1998-07-20 2001-04-03 Sandia Corporation Marine clathrate mining and sediment separation
US6245955B1 (en) * 1998-09-01 2001-06-12 Shell Oil Company Method for the sub-sea separation of hydrocarbon liquids from water and gases
NO985001D0 (no) * 1998-10-27 1998-10-27 Eriksson Nyfotek As Leiv FremgangsmÕte og system for transport av en str°m av fluide hydrokarboner inneholdende vann
US6389820B1 (en) * 1999-02-12 2002-05-21 Mississippi State University Surfactant process for promoting gas hydrate formation and application of the same
CA2300521C (en) * 1999-03-15 2004-11-30 Takahiro Kimura Production method for hydrate and device for proceeding the same
GB9906731D0 (en) * 1999-03-24 1999-05-19 British Gas Plc Formation,processing,transportation and storage of hydrates
US6148911A (en) * 1999-03-30 2000-11-21 Atlantic Richfield Company Method of treating subterranean gas hydrate formations
AUPQ118899A0 (en) * 1999-06-24 1999-07-22 Woodside Energy Limited Natural gas hydrate and method for producing same
US6497794B1 (en) * 1999-07-12 2002-12-24 Marine Desalination Systems L.L.C. Desalination using positively buoyant or negatively buoyant/assisted buoyancy hydrate
US6969467B1 (en) * 1999-07-12 2005-11-29 Marine Desalination Systems, L.L.C. Hydrate-based desalination with hydrate-elevating density-driven circulation
US20040195160A1 (en) * 1999-07-12 2004-10-07 Marine Desalination Systems, L.L.C. Hydrate-based reduction of fluid inventories and concentration of aqueous and other water-containing products
US6767471B2 (en) * 1999-07-12 2004-07-27 Marine Desalination Systems, L.L.C. Hydrate desalination or water purification
US6890444B1 (en) * 2003-04-01 2005-05-10 Marine Desalination Systems, L.L.C. Hydrate formation and growth for hydrate-based desalination by means of enriching water to be treated
US6350928B1 (en) * 1999-12-30 2002-02-26 Marathon Oil Company Production of a gas hydrate slurry using a fluidized bed heat exchanger
US6296060B1 (en) * 2000-01-10 2001-10-02 Kerr-Mcgee Corporation Methods and systems for producing off-shore deep-water wells
US6260501B1 (en) * 2000-03-17 2001-07-17 Arthur Patrick Agnew Submersible apparatus for transporting compressed gas
GB2360574A (en) * 2000-03-25 2001-09-26 Oxford Applied Res Ltd Storing a gas by encapsulation, particularly in an adsorbent.
JP2001342473A (ja) * 2000-03-30 2001-12-14 Mitsubishi Heavy Ind Ltd ガスハイドレート製造装置およびガスハイドレート脱水装置
JP2001279278A (ja) * 2000-03-31 2001-10-10 Mitsubishi Heavy Ind Ltd ガスハイドレート脱水装置及び多段ガスハイドレート脱水装置
US6299256B1 (en) * 2000-05-15 2001-10-09 The United States Of America As Represented By The Department Of Energy Method and apparatus for recovering a gas from a gas hydrate located on the ocean floor
KR100347092B1 (ko) * 2000-06-08 2002-07-31 한국과학기술원 하이드레이트 촉진제를 이용한 혼합가스의 분리방법
US6267849B1 (en) * 2000-07-14 2001-07-31 The United States Of America As Represented By The United States Department Of Energy Method for the photocatalytic conversion of gas hydrates
WO2002079355A1 (fr) * 2001-03-29 2002-10-10 Mitsubishi Heavy Industries, Ltd. Dispositif de production d'hydrate de gaz et dispositif de deshydratation d'hydrate de gaz
US6547037B2 (en) * 2001-05-14 2003-04-15 Dresser-Rand Company Hydrate reducing and lubrication system and method for a fluid flow system
US6502635B1 (en) * 2001-06-20 2003-01-07 Chevron U.S.A. Inc. Sub-sea membrane separation system with temperature control
JP2003041279A (ja) * 2001-07-26 2003-02-13 Hitachi Ltd 潤滑剤の精製方法及びその精製方法により得られた潤滑剤の膜を備えた磁気ディスク
JP3479699B2 (ja) * 2002-01-18 2003-12-15 飛島建設株式会社 ガスハイドレート掘採方法とその装置
MY134335A (en) * 2002-09-11 2007-12-31 Jfe Eng Corp Process for producing gas clathrate and production apparatus
US6733573B2 (en) * 2002-09-27 2004-05-11 General Electric Company Catalyst allowing conversion of natural gas hydrate and liquid CO2 to CO2 hydrate and natural gas
US6978837B2 (en) * 2003-11-13 2005-12-27 Yemington Charles R Production of natural gas from hydrates

Also Published As

Publication number Publication date
US20040020123A1 (en) 2004-02-05
WO2003019068A3 (en) 2003-08-28
WO2003019068A8 (en) 2003-07-10
WO2003019068A2 (en) 2003-03-06
NO20031894D0 (no) 2003-04-28
JP2003073678A (ja) 2003-03-12
EP1421313A2 (en) 2004-05-26
NO20031894L (no) 2003-04-28

Similar Documents

Publication Publication Date Title
JP5019683B2 (ja) ガスハイドレートスラリーの脱水装置及び脱水方法
JP2003105362A (ja) 天然ガスハイドレートの生成方法および生成システム
US20050107648A1 (en) Gas hydrate production device and gas hydrate dehydrating device
JP2001342473A (ja) ガスハイドレート製造装置およびガスハイドレート脱水装置
JP4151942B2 (ja) ガスハイドレートの生成装置、製造装置および製造方法
US20120070344A1 (en) Clathrate Hydrate Modular Storage, Applications and Utilization Processes
JP5106727B2 (ja) ガスハイドレートスラリー脱水装置
JP2006241188A (ja) 天然ガスハイドレート生成システムおよびその生成方法
KR102297865B1 (ko) 부유식 액화천연가스 생산저장하역시설의 증발가스 처리시스템 및 이를 포함하는 부유식 액화천연가스 생산저장하역시설
JP5052386B2 (ja) ガスハイドレートの製造装置
JP2003041276A (ja) 天然ガス水和物の脱水方法および脱水システム、ならびに天然ガス水和物の遠心脱水装置
JP2001348583A (ja) ガスハイドレート製造装置
JP4638706B2 (ja) ガスハイドレート製造方法
JP2003050221A (ja) ハイドレート含有率測定方法、測定装置及びそれを備えた設備
KR101692260B1 (ko) 가스 하이드레이트 펠릿 성형장치
JP2004244496A (ja) 天然ガスハイドレートの生成方法および生成システム
JP2004244495A (ja) 天然ガスハイドレートの生成方法および生成装置
JP4676187B2 (ja) ガスハイドレート払出し装置
JP2003138279A (ja) ガスハイドレート生成装置
KR20190004473A (ko) 선박의 증발가스 재액화 시스템 및 방법
KR102034493B1 (ko) 재액화 시스템용 팽창터빈
AU2002337625A1 (en) Dewatering device and method for gas hydrate slurrys
RU2200727C2 (ru) Способ транспортирования или хранения гидратов газов
JP2001279279A (ja) ガスハイドレート製造装置及び多段ガスハイドレート製造装置
JP2005263824A (ja) ガスハイドレート製造方法および製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110816

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111017

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120515

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120612

R151 Written notification of patent or utility model registration

Ref document number: 5019683

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150622

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees