JP4941804B2 - エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂 - Google Patents

エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂 Download PDF

Info

Publication number
JP4941804B2
JP4941804B2 JP2005257056A JP2005257056A JP4941804B2 JP 4941804 B2 JP4941804 B2 JP 4941804B2 JP 2005257056 A JP2005257056 A JP 2005257056A JP 2005257056 A JP2005257056 A JP 2005257056A JP 4941804 B2 JP4941804 B2 JP 4941804B2
Authority
JP
Japan
Prior art keywords
group
epoxy resin
aromatic hydrocarbon
hydrocarbon group
methylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005257056A
Other languages
English (en)
Other versions
JP2006274236A (ja
Inventor
一郎 小椋
芳行 高橋
泰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
DIC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2005257056A priority Critical patent/JP4941804B2/ja
Application filed by DIC Corp filed Critical DIC Corp
Priority to EP06715019A priority patent/EP1854819B1/en
Priority to US11/817,535 priority patent/US8420749B2/en
Priority to MYPI20060873A priority patent/MY143738A/en
Priority to KR1020077019834A priority patent/KR100893562B1/ko
Priority to TW095106815A priority patent/TWI402306B/zh
Priority to PCT/JP2006/303902 priority patent/WO2006093203A1/ja
Priority to DE602006021707T priority patent/DE602006021707D1/de
Priority to CN2006800064223A priority patent/CN101128505B/zh
Publication of JP2006274236A publication Critical patent/JP2006274236A/ja
Priority to US12/634,259 priority patent/US8440781B2/en
Application granted granted Critical
Publication of JP4941804B2 publication Critical patent/JP4941804B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G16/00Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00
    • C08G16/02Condensation polymers of aldehydes or ketones with monomers not provided for in the groups C08G4/00 - C08G14/00 of aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3011Impedance

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Epoxy Resins (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は得られる硬化物の耐熱性や誘電特性、硬化反応時の硬化性に優れ、半導体封止材、プリント回路基板、塗料、注型用途等に好適に用いる事が出来るエポキシ樹脂組成物、その硬化物、新規フェノール樹脂及び新規エポキシ樹脂に関する。
エポキシ樹脂及びその硬化剤を必須成分とするエポキシ樹脂組成物は、高耐熱性、体質性、低粘性等の諸物性に優れる点から半導体封止材やプリント回路基板等の電子部品、電子部品分野、導電ペースト等の導電性接着剤、その他接着剤、複合材料用マトリックス、塗料、フォトレジスト材料、顕色材料等で広く用いられている。
近年、これら各種用途、とりわけ先端材料用途において、高耐熱化、高耐湿化に代表される性能の一層の向上が求められている。例えば、半導体封止材料分野では、BGA、CSPといった表面実装パッケージへの移行、更に鉛フリー半田への対応により、リフロー処理温度が高温化するに至り、よって、これまでに増して耐湿耐半田性に優れる電子部品封止樹脂材料が求められている。
かかる要求特性に応える電子部品封止材料としては、例えば、レゾール樹脂中のフェノール性水酸基をメトキシ化し、次いで、このメトキシ化レゾール樹脂を、酸触媒下にノボラック樹脂化して得られるメトキシ基含有フェノール樹脂をエポキシ樹脂用硬化剤に用いることにより、流動性を改善すると共に、硬化物に適度な可とう性を付与し、その硬化物自体の耐湿性と耐衝撃性を改善した技術が知られている(例えば、特許文献1参照)。
然しながら、かかるエポキシ樹脂用硬化剤は、一分子当たりの官能基数が少なく耐熱性に劣る。他方、近年、電子部品分野においては高周波デバイスの高周波化への対応が急務であって、半導体封止材料等の電子部品関連材料には誘電率が低く、誘電正接も低い材料が求められているところ、前記メトキシ基含有フェノール樹脂をエポキシ樹脂用硬化剤として用いた硬化物は、架橋点が少ないことから誘電特性は、ある程度改善されているものの、近年要求される低誘電率、低誘電正接の水準には届かないものであった。
このように、電子部品関連材料の分野においては、耐熱性の低下を招来することなく、近年の高周波化に対応できる誘電特性を具備したエポキシ樹脂組成物は得られていないのが現状であった。
特開2004−10700号公報
従って、本発明が解決しようとする課題は、硬化反応時の耐熱性を低下させることなく、近年の高周波タイプの電子部品関連材料に適する低誘電率、低誘電正接を実現するエポキシ樹脂組成物及びその硬化物、並びにこれらの性能を与える新規エポキシ樹脂、及び新規フェノール樹脂を提供することにある。
本発明者らは、上記課題を解決するため、鋭意検討した結果、フェノールノボラック樹脂又はノボラック型エポキシ樹脂骨格中にアルコキシナフタレン構造を導入することにより、優れた耐熱性を保持し乍ら誘電率及び誘電正接を著しく低減できることを見出し、本発明を完成するに至った。
即ち、本発明は、エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記硬化剤が、
フェノール性水酸基含有芳香族炭化水素基(P)、
アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及び
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂であることを特徴とするエポキシ樹脂組成物に関する(以下、このエポキシ樹脂組成物を「エポキシ樹脂組成物(I)」と略記する)。
更に、本発明は、上記エポキシ樹脂組成物(I)を硬化反応させてなることを特徴とするエポキシ樹脂硬化物に関する。
更に、本発明は、フェノール性水酸基含有芳香族炭化水素基(P)、
アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及び
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有し、かつ、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・s、水酸基当量が120〜500g/eqのものであることを特徴とする新規フェノール樹脂に関する。
更に、本発明は、エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及び
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
の各構造部位を有しており、かつ、前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基等(X)を介して結合した構造を分子構造内に有するものであることを特徴とするエポキシ樹脂組成物に関する(以下、このエポキシ樹脂組成物を「エポキシ樹脂組成物(II)」と略記する)。
更に、本発明は、グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及び
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
の各構造部位を有しており、かつ、前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基等(X)を介して結合した構造を分子構造内に有しており、かつ、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・s、エポキシ当量が200〜500g/eqのものであることを特徴とする新規エポキシ樹脂に関する。
更に、本発明は、前記エポキシ樹脂組成物(I)又は(II)であって、前記エポキシ樹脂及び前記硬化剤に加え、更に無機質充填材を組成物中70〜95質量%の割合で含有するエポキシ樹脂組成物(I)又は(II)からなることを特徴とする半導体封止材料に関する。
本発明によれば、硬化物の優れた耐熱性を保持すると共に、近年の高周波タイプの電子部品関連材料に適する低誘電率、低誘電正接を実現するエポキシ樹脂組成物及びその硬化物、並びにこれらの性能を与える新規フェノール樹脂、及び新規エポキシ樹脂を提供できる。
以下、本発明を詳細に説明する。
本発明のエポキシ樹脂組成物(I)は、先ず、エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記硬化剤が、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂であることを特徴としている。
即ち、前記フェノール樹脂は、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)(以下、これを単に「メチレン基等(X)」と略記する)の各構造単位をそれぞれ、「P」、「B」、「X」で表した場合、下記構造部位A1
Figure 0004941804
であらわされる構造部位を必須として分子構造内に含むものである。
本発明では、このような特徴的な化学構造を有することから、分子構造中の芳香族含有率が高くなり、優れた耐熱性を発現すると共に、硬化物における架橋点とアルコキシ基含有縮合多環式芳香族炭化水素基(B)とが近接することから、硬化時に生成される2級水酸基に原因する誘電率や誘電正接の低下といった影響を低減でき、優れた誘電特性を発現させることができる。特に、アルコキシ基という比較的極性の高い官能基を導入しながらも優れた誘電特性を発現することは特筆すべき点である。
ここで、前記フェノール性水酸基含有芳香族炭化水素基(P)は、様々な構造をとり得るものであり、具体的には、以下のP1〜P16の構造式で表されるフェノール、ナフトール、及びこれらの芳香核上の置換基としてアルキル基を有する化合物から形成される芳香族炭化水素基であることが誘電性能に優れる点から好ましい。
Figure 0004941804
ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
以上詳述したフェノール性水酸基含有芳香族炭化水素基(P)は、特に芳香核上の置換基としてメチル基を有するものは、エポキシ樹脂硬化物自体に優れた難燃性を付与でき、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる。
更に、前記フェノール性水酸基含有芳香族炭化水素基(P)は、前記構造式P6、P7、P8、及びP9に代表されるようにフェノール骨格のオルソ位にメチル基を有するものが、硬化物の耐熱性及び誘電特性の改善効果が顕著なものとなり好ましい。
次に、フェノール樹脂構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)は、縮合多環式芳香核上の置換基としてアルコキシ基を有する1価又は多価の芳香族炭化水素基であり、具体的には下記構造式B1〜B15で表されるアルコシキナフタレン型の構造、又は、下記構造式B16で表されるアルコキシアントラセンが挙げられる。
Figure 0004941804
ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
以上詳述した前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)のうち、とりわけ、エポキシ樹脂硬化物の耐熱性が良好なものとなる点からアルコキシナフタレン型の構造を有するものが好ましく、特に、エポキシ樹脂硬化物の難燃性に優れ、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる点から、前記構造式B1〜B13に代表される、メトキシ基又はエトキシ基を置換基として有するナフタレン構造、およびそれらに更にメチル基を置換基として有する構造から形成される芳香族炭化水素基であることが好ましい。
次に、フェノール樹脂構造中に有する、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)は、例えば、メチレン基の他、アルキリデン基としては、エチリデン基、1,1−プロピリデン基、2,2−プロピリデン基、ジメチレン基、プロパン−1,1,3,3−テトライル基、n−ブタン−1,1,4,4−テトライル基、n−ペンタン−1,1,5,5−テトライル基が挙げられる。また、芳香族炭化水素構造含有メチレン基は、下記X1〜X9の構造のものが挙げられる。
Figure 0004941804

これらの中でも特に誘電効果に優れる点からメチレン基であることが好ましい。
本発明で用いるフェノール樹脂は、各構造部位(P)、(B)及び(X)の上記各具体例で示した構造の任意の組み合わせを採り得る。このような各構成部位から構成されるフェノール樹脂の分子構造は、前記した通り、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、およびメチレン基等(X)の各構造単位をそれぞれ、「P」、「B」、「X」で表した場合、下記構造部位A1
Figure 0004941804
であらわされる構造部位を必須として分子構造内に含むものであるが、更に具体的には、下記構造式A2及びA3で表される構造、
Figure 0004941804
下記構造式A4又はA5
Figure 0004941804

で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式A6
Figure 0004941804
で表される構造を有する構造、その他下記構造式A7〜A8
Figure 0004941804

で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
本発明においては、前記フェノール樹脂は、上記のように各種の構造をとり得るが、その分子末端に前記構造式A6で表される構造を有することにより、エポキシ樹脂硬化物の誘電正接を著しく低減できることができる。よって、特に前記構造式A3の構造を有するフェノール樹脂、或いは、前記A4又はA7を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するフェノール樹脂が好ましく、特に本発明の効果が顕著に現れる点から、前記構造式A3の構造を有するフェノール樹脂、或いは、前記A4を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するフェノール樹脂が好ましい。
更に、前記フェノール樹脂は、後述するようにヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを、反応させることによって製造することができ、この際、上記した各種の構造の他、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及びメチレン基等(X)の各構造単位をそれぞれ、「P」、「B」、及び「X」で表した場合に、下記構造式
Figure 0004941804
で表される構造の化合物も同時に生成し、該フェノール樹脂中に含まれる。本発明では該化合物の含有量が比較的高い方が、該フェノール樹脂自体の溶融粘度を低減でき、かつ得られるエポキシ樹脂硬化物の誘電特性に優れたものとなる為好ましく、具体的には該樹脂中、1〜30質量%となる範囲でフェノール樹脂中に含まれることが好ましい。特に、このような効果が顕著なものとなる点から、3〜25質量%、なかでも3〜15質量%の範囲であることが好ましい。
また、同様に、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させる結果、その生成物たるフェノール樹脂中に、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基等(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
Figure 0004941804
で表される構造を有する化合物が混入する場合がある。本発明では、エポキシ樹脂硬化物の耐熱性の点から、かかる化合物の含有率は低いことが望ましく、できれば全く存在しないことが好ましい。よって、フェノール樹脂中に占める該化合物の含有率は、5質量%以下、なかでも3質量%以下、特に2質量%以下であることが好ましい。
また、前記フェノール樹脂は、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・sの範囲であるのものが、成形時の流動性や硬化物の耐熱性などが優れる点で好ましい。更に、前記フェノール樹脂は、その水酸基当量が、120〜500g/eq.の範囲のものが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。また、ここで、本発明では、このような水酸基当量及び溶融粘度の条件を具備するものが、本発明の新規フェノール樹脂となる。上記水酸基当量は、特に200〜350g/eq.の範囲のであることが、硬化物の誘電特性と、組成物の硬化性とのバランスが特に優れたものとなる。
更に、前記フェノール樹脂は、フェノール性水酸基含有芳香族炭化水素基(P)と、前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)との存在比が、モル比で前者/後者=30/70〜98/2なる範囲であるであることが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。
前記フェノール樹脂は、その製造方法として以下に詳述する方法によって製造することができる。以下、フェノール樹脂の製造方法について詳述する。
即ち、前記フェノール樹脂は、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを、反応させることによって製造することができる。
ここで特筆すべきは、アルコキシ基含有芳香族化合物(a2)を原料として使用しながらも何ら加水分解することなく反応が進行する点にある。通常、フェノール性水酸基をアルコキシ化して得られるアルコキシ基は、フェノール性水酸基の保護技術として広く用いられている様に、強酸性環境下では容易に加水分解するものであるのに対して、本発明では何らかかる加水分解を生じさせることなく、フェノール樹脂構造中にアルコキシ基を導入できる。
上記製造方法に用いられるヒドロキシ基含有芳香族化合物(a1)は、具体的には、フェノール、レゾルシノール、ヒドロキノンなどの無置換フェノール類、クレゾール、フェニルフェノール、エチルフェノール、n−プロピルフェノール、iso−プロピルフェノール、t−ブチルフェノールなどの一置換フェノール類、キシレノール、メチルプロピルフェノール、メチルブチルフェノール、メチルヘキシルフェノール、ジプロピルフェノール、ジブチルフェノールなどの二置換フェノール類、メシトール、2,3,5−トリメチルフェノール、2,3,6−トリメチルフェノール等の三置換フェノール類、1−ナフトール、2−ナフトール、メチルナフトールなどのナフトール類が挙げられる。
これらは、2種類以上を併用してもよい。
これらのなかでも、前記したとおり、硬化物の誘電特性及び難燃性の点から1−ナフトール、2−ナフトール、クレゾール、フェノールが特に好ましい。
次に、アルコキシ基含有芳香族化合物(a2)は、具体的には、1−メトキシナフタレン、2−メトキシナフタレン、1−メチル−2−メトキシナフタレン、1−メトキシ−2−メチルナフタレン、1,3,5−トリメチル−2−メトキシナフタレン、2,6−ジメトキシナフタレン、2,7−ジメトキシナフタレン、1−エトキシナフタレン、
1,4−ジメトキシナフタレン、1−t−ブトキシナフタレン、1−メトキシアントラセン、等が挙げられる。
これらの中でも特に分子末端にアルコキシナフタレン骨格を形成し易い点から2−メトキシナフタレン、及び2,7−ジメトキシナフタレンが好ましく、特に誘電特性の点から2−メトキシナフタレンが好ましい。
次に、カルボニル基含有化合物(a3)は、具体的には、ホルムアルデヒド、アセトアルデヒド、プロピオンアルデヒド等の脂肪族系アルデヒド、グリオキザール等のジアルデヒド、ベンズアルデヒド、4−メチルベンズアルデヒド、3,4−ジメチルベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒド等の芳香族系アルデヒド、ベンゾフェノン、フルオレノン、インダノン等のケトン化合物が挙げられる。
これらのなかでも得られる硬化物の難燃性にすぐれる点からホルムアルデヒド、ベンズアルデヒド、4−ビフェニルアルデヒド、ナフチルアルデヒドが好ましく、特に誘電特性に優れる点からホルムアルデヒドが好ましい。
上記したヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させる方法としては、具体的には、
1)ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)とカルボニル基含有化合物(a3)とを実質的に同時に仕込み、適当な重合触媒の存在下で加熱撹拌して反応を行う方法、また、
2)アルコキシ基含有縮合多環式芳香族化合物(a2)1モルに対して、0.05〜30モル、好ましくは2〜30モルのカルボニル基含有化合物(a3)を反応させた後に、ヒドロキシ基含有芳香族系化合物(a1)を仕込んで反応させる方法
3)ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)とを予め混合しておき、ここにカルボニル基含有化合物(a3)を連続的乃至断続的に系内に加えることによって、反応を行う方法
が挙げられる。尚、ここで実質的に同時とは、加熱によって反応が加速されるまでの間に全ての原料を仕込むことを意味するものである。
これらのなかでも、特に下記構造式
Figure 0004941804
で表される構造の化合物の含有率をコントロールし易く、かつ、下記構造式
Figure 0004941804
で表される構造を有する化合物の生成を良好に抑制できる点から、上記方法1)及び方法3)が好ましい。
ここで用いる重合触媒としては、特に限定されるものではないが、酸触媒が好ましく、例えば、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、p−トルエンスルホン酸、シュウ酸などの有機酸、三弗化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。その使用量は仕込み原料の総質量に対して、0.1〜5質量%なる範囲であることが好ましい。
ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)とカルボニル基含有化合物(a3)との反応仕込み比率としては、特に限定されないが、ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有芳香族系化合物(a2)とのモル比(a1)/(a2)が30/70〜98/2であり、且つ、ヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)との合計モル数とカルボニル基含有化合物(a3)のモル数との比{(a1)+(a2)}/(a3)が51/49〜97/3であることが好ましい。
特に、前記方法1)又は方法3)によって、生成するフェノール樹脂中の下記構造式
Figure 0004941804
で表される構造の化合物の含有率や、下記構造式
Figure 0004941804
で表される構造を有する化合物の含有率を制御するには、前記モル比(a1)/(a2)が2以上、且つ、前記比率{(a1)+(a2)}/(a3)が51/49〜97/3となる範囲であることが好ましい。
この反応を行う際、必要に応じて有機溶剤を使用することができる。使用できる有機溶剤の具体例としては、メチルセロソルブ、エチルセロソルブ、トルエン、キシレン、メチルイソブチルケトンなどが挙げられるがこれらに限定されるものではない。有機溶剤の使用量としては仕込み原料の総質量に対して通常10〜500質量%、好ましくは30〜250質量%である。また反応温度としては通常40〜250℃であり、100〜200℃の範囲がより好ましい。また反応時間としては通常1〜10時間である。
また得られる該多価ヒドロキシ化合物の着色が大きい場合は、それを抑制するために、酸化防止剤や還元剤を添加しても良い。前記酸化防止剤としては特に限定されないが、例えば2,6−ジアルキルフェノール誘導体などのヒンダードフェノール系化合物や2価のイオウ系化合物や3価のリン原子を含む亜リン酸エステル系化合物などを挙げることができる。前記還元剤としては特に限定されないが、例えば次亜リン酸、亜リン酸、チオ硫酸、亜硫酸、ハイドロサルファイトまたはこれら塩や亜鉛などが挙げられる。
反応終了後、反応混合物のpH値が3〜7、好ましくは4〜7になるまで中和あるいは水洗処理を行う。中和処理や水洗処理は常法にしたがって行えばよい。例えば酸触媒を用いた場合は水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア、トリエチレンテトラミン、アニリン等の塩基性物質を中和剤として用いることができる。中和の際には、事前にリン酸等のバッファーを入れておいても良いし、また、一旦塩基サイドにしたのちシュウ酸などでpH値が3〜7としてもよい。中和あるいは水洗処理を行った後、減圧加熱下で、主にヒドロキシ基含有芳香族系化合物(a1)とアルコキシ基含有芳香族系化合物(a2)を含む未反応原料や有機溶剤、副生物を留去し生成物の濃縮を行い、目的の多価ヒドロキシ化合物を得ることが出来る。ここで回収した未反応原料は再利用することもできる。反応終了後の処理操作のなかに、精密濾過工程を導入すると、無機塩や異物類を精製除去することができるのでより好ましい方法である。
本発明のエポキシ樹脂組成物(I)において、前記フェノール樹脂を単独で用いてもよいが、または本発明の効果を損なわない範囲で他の硬化剤を使用してもよい。具体的には、硬化剤の全質量に対して前記フェノール樹脂が30質量%以上、好ましくは40質量%以上となる範囲で他の硬化剤を併用することができる。
本発明のフェノール樹脂と併用されうる他の硬化剤としては、特に制限されるものではなく、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、前記したフェノール樹脂以外のフェノ−ル系化合物、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)の多価フェノール化合物挙げられる。
これらの中でも、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましく、特にフェノールアラルキル樹脂、ナフトールアラルキル樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂等の高芳香族性、高水酸基当量のフェノール樹脂や窒素原子を含有するアミノトリアジン変性フェノール樹脂等の化合物を用いることが、得られる硬化物の難燃性や誘電特性が優れる点から好ましい。
次に、本発明のエポキシ樹脂組成物(I)で用いるエポキシ樹脂(B)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、
ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。またこれらのエポキシ樹脂は単独で用いてもよく、2種以上を混合してもよい。
これらのなかでも特にビフェニル型エポキシ樹脂、ナフタレン型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂及びキサンテン型エポキシ樹脂が、難燃性や誘電特性に優れる点から特に好ましい。
本発明のエポキシ樹脂組成物(I)におけるエポキシ樹脂(B)と硬化剤の配合量としては、特に制限されるものではないが、得られる硬化物特性が良好である点から、エポキシ樹脂(B)のエポキシ基の合計1当量に対して、前記フェノール樹脂(A)を含む硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。
また必要に応じて本発明のエポキシ樹脂組成物(I)に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
本発明のもう一つのエポキシ樹脂組成物(II)は、エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂が、
グリシジルオキシ基含有芳香族炭化水素基(E)、
アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに
メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
の各構造を有しており、かつ、前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するものであることを特徴としている。
即ち、エポキシ樹脂組成物(II)における前記エポキシ樹脂は、エポキシ樹脂組成物(I)を構成するフェノール樹脂をエピハロヒドリンと反応させてエポキシ化したものであり、該フェノール樹脂と共通する基本骨格を有するものである。ゆえに、前記フェノール樹脂の場合と同様に、分子構造中の芳香族含有率が高くなって優れた耐熱性を硬化物に付与すると共に、適度にエポキシ基濃度を低減できること及び分子構造内にアルコキシ基を有することから、硬化物の誘電率及び誘電正接を低くできる。
また、前記フェノール樹脂の場合と同様に、前記エポキシ樹脂は、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及びメチレン基等(X)の各構造単位をそれぞれ、「E」、「B」、「X」で表した場合、下記構造部位A1
Figure 0004941804
であらわされる構造部位を必須として分子構造内に含むものである。
本発明では、このような特徴的な化学構造を有することから、分子構造中の芳香族含有率が高くなり、優れた耐熱性を発現すると共に、硬化物における架橋点とアルコキシ基含有縮合多環式芳香族炭化水素基(B)とが近接することから、硬化時に生成される2級水酸基に原因する誘電率や誘電正接の低下といった影響を低減でき、優れた誘電特性を発現させることができる。特に、アルコシキ基という比較的極性の高い官能基を導入しながらも優れた誘電特性を発現することは特筆すべき点である。
ここで、前記グリシジルオキシ基含有芳香族炭化水素基(E)は、特に限定されるものではないが、とりわけ、下記E1〜E16の構造式で表される芳香族炭化水素基であることが誘電性能に優れる点から好ましい。
Figure 0004941804


ここで、前記各構造は、該構造が分子末端に位置する場合には、1価の芳香族炭化水素基となる。また、上掲した構造のうちナフタレン骨格上に他の構造部位との結合位置を二つ以上有するものは、それらの結合位置は同一核上であってもよいし、或いは、それぞれ異核上にあってもよい。
以上詳述したグリシジルオキシ基含有芳香族炭化水素基(E)は、特に芳香核上の置換基としてメチル基を有するものは、エポキシ樹脂硬化物自体に優れた難燃性を付与でき、近年、電子部品分野において要求の高いハロゲンフリーの材料の設計が可能となる。
更に、前記グリシジルオキシ基含有芳香族炭化水素基(E)は、前記構造式E6、E7、E8、及びE9に代表されるようにフェノール骨格のオルソ位にメチル基を有するものが、硬化物の耐熱性及び誘電特性の改善効果が顕著なものとなり好ましい。
次に、エポキシ樹脂構造中に含まれる前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)は、具体的には前記したエポキシ樹脂組成物(I)のフェノール樹脂におけるものと同一である。
次に、エポキシ樹脂構造中に含まれるメチレン基等(X)は、具体的には前記したエポキシ樹脂組成物(I)のフェノール樹脂におけるものと同一である。
本発明で用いるエポキシ樹脂は、各構造部位(E)、(B)及び(X)の上記各具体例で示した構造の任意の組み合わせを採り得る。このような各構成部位から構成されるフェノール樹脂の分子構造は、前記した通り、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、およびメチレン基等(X)の各構造単位をそれぞれ、「E」、「B」、「X」で表した場合、下記構造部位Y1
Figure 0004941804
であらわされる構造部位を必須として分子構造内に含むものであるが、更に具体的には、下記構造式Y2及びY3で表される構造、
Figure 0004941804
下記構造式Y4又はY5
Figure 0004941804

で表される構造を繰り返し単位とするノボラック構造の分子末端に、下記構造式A6
Figure 0004941804
で表される構造を有する構造、その他下記構造式Y7〜Y8
Figure 0004941804

で表される構造を繰り返し単位とする交互共重合体構造が挙げられる。
本発明においては、前記エポキシ樹脂は、上記のように各種の構造をとり得るが、その分子末端に前記構造式A6で表される構造を有することにより、エポキシ樹脂硬化物の誘電正接を著しく低減できることができる。よって、特に前記構造Y3の構造を有するエポキシ樹脂、或いは、前記Y4又はY7を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましく、特に本発明の効果が顕著に現れる点から、前記構造式Y3の構造を有するエポキシ樹脂、或いは、前記Y4を繰り返し単位とし、かつ、その分子末端に前記構造式A6で表される構造を有するエポキシ樹脂が好ましい。
更に、前記エポキシ樹脂は、後述するようにヒドロキシ基含有芳香族化合物(a1)と、アルコキシ基含有芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させ、ついで、これとエピハロヒドリンとを反応させることによって製造することができるが、この際、エポキシ樹脂の前駆体であるフェノール樹脂の製造段階において、各種の構造の化合物が生成することから、最終的に得られるエポキシ樹脂中にも様々な構造の化合物が含まれることになる。本発明では、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、及びメチレン基等(X)の各構造単位をそれぞれ、「E」、「B」、及び「X」で表した場合に、下記構造式
Figure 0004941804
で表される構造の化合物も同時に生成し、該エポキシ樹脂中に含まれる。
前述したフェノール樹脂の場合と同様に、該化合物の含有量が比較的高い方が、溶融粘度及び誘電特性の点から有利であるため、該化合物の含有率は、該樹脂中、1〜30質量%となる範囲であることが好ましく、中でも3〜25質量%、特に3〜15質量%の範囲であることが好ましい。
また、同様に、前記エポキシ樹脂は、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させ、ついで、これとエピハロヒドリンとを反応させることによって製造するため、その生成物たるエポキシ樹脂中に、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基等(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
Figure 0004941804
で表される構造を有する化合物が混入する場合がある。前記した通り、エポキシ樹脂硬化物の耐熱性の点から、かかる化合物の含有率が低いか、或いは、全く存在しないことが好ましく、具体的には、エポキシ樹脂中の該化合物の含有率が、5質量%以下、なかでも3質量%以下、特に2質量%以下であることが好ましい。
また前記エポキシ樹脂は、そのエポキシ当量が、200〜500g/eq.の範囲のものが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。また、更にICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・sの範囲であるのものが、成形時の流動性や硬化物の耐熱性などが優れる点で好ましい。ここで、当該エポキシ当量及び溶融粘度の条件を具備する場合、本発明の新規エポキシ樹脂となる。上記エポキシ当量は、特に260〜420g/eq.の範囲のであることが、硬化物の誘電特性と、組成物の硬化性とのバランスが特に優れたものとなる。
更に、前記エポキシ樹脂は、グリシジルオキシ基含有芳香族炭化水素基(E)と、前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)との存在比が、前者/後者=30/70〜98/2なる範囲であるであることが、硬化物の難燃性と誘電特性が一層良好となる点から好ましい。
前記エポキシ樹脂は、以下に詳述する方法によって製造することができる。
具体的には、前記した方法によりエポキシ樹脂組成物(I)におけるフェノール樹脂を製造した後、これをエピハロヒドリンと反応させることによって目的とするエポキシ樹脂を製造することができる。例えば、フェノール樹脂中のフェノール性水酸基1モルに対し、エピハロヒドリン2〜10モルを添加し、更に、フェノール性水酸基1モルに対し0.9〜2.0モルの塩基性触媒を一括添加または徐々に添加しながら20〜120℃の温度で0.5〜10時間反応させる方法が挙げられる。この塩基性触媒は固形でもその水溶液を使用してもよく、水溶液を使用する場合は、連続的に添加すると共に、反応混合物中から減圧下、または常圧下、連続的に水及びエピハロヒドリン類を留出せしめ、更に分液して水は除去しエピハロヒドリン類は反応混合物中に連続的に戻す方法でもよい。
なお、工業生産を行う際、エポキシ樹脂生産の初バッチでは仕込みに用いるエピハロヒドリン類の全てが新しいものであるが、次バッチ以降は、粗反応生成物から回収されたエピハロヒドリン類と、反応で消費される分で消失する分に相当する新しいエピハロヒドリン類とを併用することが好ましい。この時、使用するエピハロヒドリンは特に限定されないが、例えばエピクロルヒドリン、エピブロモヒドリン、β−メチルエピクロルヒドリン等が挙げられる。なかでも工業的入手が容易なことからエピクロルヒドリンが好ましい。
また、前記塩基性触媒は、具体的には、アルカリ土類金属水酸化物、アルカリ金属炭酸塩及びアルカリ金属水酸化物等が挙げられる。特にエポキシ樹脂合成反応の触媒活性に優れる点からアルカリ金属水酸化物が好ましく、例えば水酸化ナトリウム、水酸化カリウム等が挙げられる。使用に際しては、これらの塩基性触媒を10〜55質量%程度の水溶液の形態で使用してもよいし、固形の形態で使用しても構わない。また、有機溶媒を併用することにより、エポキシ樹脂の合成における反応速度を高めることができる。このような有機溶媒としては特に限定されないが、例えば、アセトン、メチルエチルケトン等のケトン類、メタノール、エタノール、1−プロピルアルコール、イソプロピルアルコール、1−ブタノール、セカンダリーブタノール、ターシャリーブタノール等のアルコール類、メチルセロソルブ、エチルセロソルブ等のセロソルブ類、テトラヒドロフラン、1、4−ジオキサン、1、3−ジオキサン、ジエトキシエタン等のエーテル類、アセトニトリル、ジメチルスルホキシド、ジメチルホルムアミド等の非プロトン性極性溶媒等が挙げられる。これらの有機溶媒は、それぞれ単独で使用してもよいし、また、極性を調整するために適宜二種以上を併用してもよい。
前述のエポキシ化反応の反応物を水洗後、加熱減圧下、蒸留によって未反応のエピハロヒドリンや併用する有機溶媒を留去する。また更に加水分解性ハロゲンの少ないエポキシ樹脂とするために、得られたエポキシ樹脂を再びトルエン、メチルイソブチルケトン、メチルエチルケトンなどの有機溶媒に溶解し、水酸化ナトリウム、水酸化カリウムなどのアルカリ金属水酸化物の水溶液を加えてさらに反応を行うこともできる。この際、反応速度の向上を目的として、4級アンモニウム塩やクラウンエーテル等の相関移動触媒を存在させてもよい。相関移動触媒を使用する場合のその使用量としては、用いるエポキシ樹脂に対して0.1〜3.0質量%の範囲が好ましい。反応終了後、生成した塩を濾過、水洗などにより除去し、更に、加熱減圧下トルエン、メチルイソブチルケトンなどの溶剤を留去することにより高純度のエポキシ樹脂を得ることができる。
本発明のエポキシ樹脂組成物(II)において、本発明の製造方法で得られる前記エポキシ樹脂(A)は単独で、又は本発明の効果を損なわない範囲で他のエポキシ樹脂と併用して用いることができる。併用する場合には、エポキシ樹脂全体に占める本発明のエポキシ樹脂の割合は30質量%以上が好ましく、特に40質量%以上が好ましい。
本発明のエポキシ樹脂と併用されうる他のエポキシ樹脂としては、種々のエポキシ樹脂を用いることができるが、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、テトラフェニルエタン型エポキシ樹脂、ジシクロペンタジエン−フェノール付加反応型エポキシ樹脂、フェノールアラルキル型エポキシ樹脂、ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂等が挙げられる。これらのなかでもフェノールアラルキル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂や、ナフタレン骨格を含有するナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ナフトール−フェノール共縮ノボラック型エポキシ樹脂、ナフトール−クレゾール共縮ノボラック型エポキシ樹脂や、結晶性のビフェニル型エポキシ樹脂、テトラメチルビフェニル型エポキシ樹脂や、下記構造式
Figure 0004941804

で表されるキサンテン型エポキシ樹脂が、難燃性や誘電特性に優れる硬化物が得られる点から特に好ましい。
本発明のエポキシ樹脂組成物(II)に用いる硬化剤としては、公知の各種エポキシ樹脂用硬化剤、例えばアミン系化合物、アミド系化合物、酸無水物系化合物、フェノ−ル系化合物などの硬化剤が使用できる。具体的には、アミン系化合物としてはジアミノジフェニルメタン、ジエチレントリアミン、トリエチレンテトラミン、ジアミノジフェニルスルホン、イソホロンジアミン、イミダゾ−ル、BF−アミン錯体、グアニジン誘導体等が挙げられ、アミド系化合物としては、ジシアンジアミド、リノレン酸の2量体とエチレンジアミンとより合成されるポリアミド樹脂等が挙げられ、酸無水物系化合物としては、無水フタル酸、無水トリメリット酸、無水ピロメリット酸、無水マレイン酸、テトラヒドロ無水フタル酸、メチルテトラヒドロ無水フタル酸、無水メチルナジック酸、ヘキサヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸等が挙げられ、フェノール系化合物としては、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、ジシクロペンタジエンフェノール付加型樹脂、フェノールアラルキル樹脂(通称、ザイロック樹脂)、ナフトールアラルキル樹脂、トリメチロールメタン樹脂、テトラフェニロールエタン樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂(ビスメチレン基でフェノール核が連結された多価フェノール化合物)、ビフェニル変性ナフトール樹脂(ビスメチレン基でフェノール核が連結された多価ナフトール化合物)、アミノトリアジン変性フェノール樹脂(メラミンやベンゾグアナミンなどでフェノール核が連結された多価フェノール化合物)等の多価フェノール化合物が挙げられる。
これらの中でも、特に芳香族骨格を分子構造内に多く含むものが難燃効果の点から好ましく、具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、芳香族炭化水素ホルムアルデヒド樹脂変性フェノール樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、ナフトールノボラック樹脂、ナフトール−フェノール共縮ノボラック樹脂、ナフトール−クレゾール共縮ノボラック樹脂、ビフェニル変性フェノール樹脂、ビフェニル変性ナフトール樹脂、アミノトリアジン変性フェノール樹脂が難燃性に優れることから好ましく、
しかし乍ら、本発明では、誘電率及び誘電正接の低減効果が顕著なものとなる点から、とりわけ前記したエポキシ樹脂組成物(I)にて、必須成分として用いられるフェノール樹脂、特に本発明の新規フェノール樹脂が好ましい。更に、当該フェノール樹脂が、前記構造式(1’)で表されるアルコキシ基含有縮合多環式芳香族炭化水素基(B)と、前記構造式(2’)で表されるメチレン基等(X)と、前記式(3)又は(4)で表されるフェノール性水酸基含有芳香族炭化水素基(P)とから構成されるものである場合、優れた難燃効果を発現する点から特に好ましい。
本発明のエポキシ樹脂組成物(II)におけるエポキシ樹脂と硬化剤との配合量としては、特に制限されるものではないが、得られる硬化物の特性が良好である点から、エポキシ樹脂を含むエポキシ樹脂中のエポキシ基の合計1当量に対して、硬化剤中の活性基が0.7〜1.5当量になる量が好ましい。
また必要に応じて本発明のエポキシ樹脂組成物(II)に硬化促進剤を適宜併用することもできる。前記硬化促進剤としては種々のものが使用できるが、例えば、リン系化合物、第3級アミン、イミダゾール、有機酸金属塩、ルイス酸、アミン錯塩等が挙げられる。特に半導体封止材料用途として使用する場合には、硬化性、耐熱性、電気特性、耐湿信頼性等に優れる点から、リン系化合物ではトリフェニルフォスフィン、第3級アミンでは1,8−ジアザビシクロ−[5.4.0]−ウンデセン(DBU)が好ましい。
以上詳述した本発明のエポキシ樹脂組成物(I)及び(II)は、エポキシ樹脂又はその硬化剤について、その分子構造の選択によっては、当該樹脂自体が優れた難燃性付与効果を有するものである為、従来用いられている難燃剤を配合しなくても、硬化物の難燃性が良好である。しかしながら、より高度な難燃性を発揮させるために、例えば半導体封止材料の分野においては、封止工程での成形性や半導体装置の信頼性を低下させない範囲で、実質的にハロゲン原子を含有しない非ハロゲン系難燃剤(C)を配合してもよい。
かかる非ハロゲン系難燃剤(C)を配合したエポキシ樹脂組成物は、実質的にハロゲン原子を含有しないものであるが、例えばエポキシ樹脂に含まれるエピハロヒドリン由来の5000ppm以下程度の微量の不純物によるハロゲン原子は含まれていても良い。
前記非ハロゲン系難燃剤(C)としては、例えば、
リン系難燃剤、窒素系難燃剤、シリコーン系難燃剤、無機系難燃剤、有機金属塩系難燃剤等が挙げられ、それらの使用に際しても何等制限されるものではなく、単独で使用しても、同一系の難燃剤を複数用いても良く、また、異なる系の難燃剤を組み合わせて用いることも可能である。
前記リン系難燃剤としては、無機系、有機系のいずれも使用することができる。無機系化合物としては、例えば、赤リン、リン酸一アンモニウム、リン酸二アンモニウム、リン酸三アンモニウム、ポリリン酸アンモニウム等のリン酸アンモニウム類、リン酸アミド等の無機系含窒素リン化合物が挙げられる。
また、前記赤リンは、加水分解等の防止を目的として表面処理が施されていることが好ましく、表面処理方法としては、例えば、(i)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン、酸化ビスマス、水酸化ビスマス、硝酸ビスマス又はこれらの混合物等の無機化合物で被覆処理する方法、(ii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物、及びフェノール樹脂等の熱硬化性樹脂の混合物で被覆処理する方法、(iii)水酸化マグネシウム、水酸化アルミニウム、水酸化亜鉛、水酸化チタン等の無機化合物の被膜の上にフェノール樹脂等の熱硬化性樹脂で二重に被覆処理する方法等が挙げられる。
前記有機リン系化合物としては、例えば、リン酸エステル化合物、ホスホン酸化合物、ホスフィン酸化合物、ホスフィンオキシド化合物、ホスホラン化合物、有機系含窒素リン化合物等の汎用有機リン系化合物の他、9,10−ジヒドロ−9−オキサー10−ホスファフェナントレン=10−オキシド、10−(2,5―ジヒドロオキシフェニル)―10H−9−オキサ−10−ホスファフェナントレン=10−オキシド、10―(2,7−ジヒドロオキシナフチル)−10H−9−オキサ−10−ホスファフェナントレン=10−オキシド等の環状有機リン化合物、及びそれをエポキシ樹脂やフェノール樹脂等の化合物と反応させた誘導体等が挙げられる。
それらの配合量としては、リン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、赤リンを非ハロゲン系難燃剤として使用する場合は0.1〜2.0質量部の範囲で配合することが好ましく、有機リン化合物を使用する場合は同様に0.1〜10.0質量部の範囲で配合することが好ましく、特に0.5〜6.0質量部の範囲で配合することが好ましい。
また前記リン系難燃剤を使用する場合、該リン系難燃剤にハイドロタルサイト、水酸化マグネシウム、ホウ化合物、酸化ジルコニウム、黒色染料、炭酸カルシウム、ゼオライト、モリブデン酸亜鉛、活性炭等を併用してもよい。
前記窒素系難燃剤としては、例えば、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物、フェノチアジン等が挙げられ、トリアジン化合物、シアヌル酸化合物、イソシアヌル酸化合物が好ましい。
前記トリアジン化合物としては、例えば、メラミン、アセトグアナミン、ベンゾグアナミン、メロン、メラム、サクシノグアナミン、エチレンジメラミン、ポリリン酸メラミン、トリグアナミン等の他、例えば、(i)硫酸グアニルメラミン、硫酸メレム、硫酸メラムなどの硫酸アミノトリアジン化合物、(ii)フェノール、クレゾール、キシレノール、ブチルフェノール、ノニルフェノール等のフェノール類と、メラミン、ベンゾグアナミン、アセトグアナミン、ホルムグアナミン等のメラミン類およびホルムアルデヒドとの共縮合物、(iii)前記(ii)の共縮合物とフェノールホルムアルデヒド縮合物等のフェノール樹脂類との混合物、(iv)前記(ii)、(iii)を更に桐油、異性化アマニ油等で変性したもの等が挙げられる。
前記シアヌル酸化合物の具体例としては、例えば、シアヌル酸、シアヌル酸メラミン等を挙げることができる。
前記窒素系難燃剤の配合量としては、窒素系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜10質量部の範囲で配合することが好ましく、特に0.1〜5質量部の範囲で配合することが好ましい。
また前記窒素系難燃剤を使用する際、金属水酸化物、モリブデン化合物等を併用してもよい。
前記シリコーン系難燃剤としては、ケイ素原子を含有する有機化合物であれば特に制限がなく使用でき、例えば、シリコーンオイル、シリコーンゴム、シリコーン樹脂等が挙げられる。
前記シリコーン系難燃剤の配合量としては、シリコーン系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましい。また前記シリコーン系難燃剤を使用する際、モリブデン化合物、アルミナ等を併用してもよい。
前記無機系難燃剤としては、例えば、金属水酸化物、金属酸化物、金属炭酸塩化合物、金属粉、ホウ素化合物、低融点ガラス等が挙げられる。
前記金属水酸化物の具体例としては、例えば、水酸化アルミニウム、水酸化マグネシウム、ドロマイト、ハイドロタルサイト、水酸化カルシウム、水酸化バリウム、水酸化ジルコニウム等を挙げることができる。
前記金属酸化物の具体例としては、例えば、モリブデン酸亜鉛、三酸化モリブデン、スズ酸亜鉛、酸化スズ、酸化アルミニウム、酸化鉄、酸化チタン、酸化マンガン、酸化ジルコニウム、酸化亜鉛、酸化モリブデン、酸化コバルト、酸化ビスマス、酸化クロム、酸化ニッケル、酸化銅、酸化タングステン等を挙げることができる。
前記金属炭酸塩化合物の具体例としては、例えば、炭酸亜鉛、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、塩基性炭酸マグネシウム、炭酸アルミニウム、炭酸鉄、炭酸コバルト、炭酸チタン等を挙げることができる。
前記金属粉の具体例としては、例えば、アルミニウム、鉄、チタン、マンガン、亜鉛、モリブデン、コバルト、ビスマス、クロム、ニッケル、銅、タングステン、スズ等を挙げることができる。
前記ホウ素化合物の具体例としては、例えば、ホウ酸亜鉛、メタホウ酸亜鉛、メタホウ酸バリウム、ホウ酸、ホウ砂等を挙げることができる。
前記低融点ガラスの具体例としては、例えば、シープリー(ボクスイ・ブラウン社)、水和ガラスSiO−MgO−HO、PbO−B系、ZnO−P−MgO系、P−B−PbO−MgO系、P−Sn−O−F系、PbO−V−TeO系、Al−HO系、ホウ珪酸鉛系等のガラス状化合物を挙げることができる。
前記無機系難燃剤の配合量としては、無機系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.05〜20質量部の範囲で配合することが好ましく、特に0.5〜15質量部の範囲で配合することが好ましい。
前記有機金属塩系難燃剤としては、例えば、フェロセン、アセチルアセトナート金属錯体、有機金属カルボニル化合物、有機コバルト塩化合物、有機スルホン酸金属塩、金属原子と芳香族化合物又は複素環化合物がイオン結合又は配位結合した化合物等が挙げられる。
前記有機金属塩系難燃剤の配合量としては、有機金属塩系難燃剤の種類、エポキシ樹脂組成物の他の成分、所望の難燃性の程度によって適宜選択されるものであるが、例えば、エポキシ樹脂、硬化剤、非ハロゲン系難燃剤及びその他の充填材や添加剤等全てを配合したエポキシ樹脂組成物100質量部中、0.005〜10質量部の範囲で配合することが好ましい。
本発明のエポキシ樹脂組成物には、必要に応じて無機質充填材を配合することができる。前記無機質充填材としては、例えば、溶融シリカ、結晶シリカ、アルミナ、窒化珪素、水酸化アルミ等が挙げられる。前記無機充填材の配合量を特に大きくする場合は溶融シリカを用いることが好ましい。前記溶融シリカは破砕状、球状のいずれでも使用可能であるが、溶融シリカの配合量を高め且つ成形材料の溶融粘度の上昇を抑制するためには、球状のものを主に用いる方が好ましい。更に球状シリカの配合量を高めるためには、球状シリカの粒度分布を適当に調整することが好ましい。その充填率は難燃性を考慮して、高い方が好ましく、エポキシ樹脂組成物の全体量に対して65質量%以上が特に好ましい。また導電ペーストなどの用途に使用する場合は、銀粉や銅粉等の導電性充填剤を用いることができる。
本発明のエポキシ樹脂組成物(I)又は(II)には、必要に応じて、シランカップリング剤、離型剤、顔料、乳化剤等の種々の配合剤を添加することができる。
本発明のエポキシ樹脂組成物(I)又は(II)は、上記した各成分を均一に混合することにより得られる。本発明のエポキシ樹脂、硬化剤、更に必要により硬化促進剤の配合された本発明のエポキシ樹脂組成物は従来知られている方法と同様の方法で容易に硬化物とすることができる。該硬化物としては積層物、注型物、接着層、塗膜、フィルム等の成形硬化物が挙げられる。
本発明のエポキシ樹脂組成物が用いられる用途としては、半導体封止材料、積層板や電子回路基板等に用いられる樹脂組成物、樹脂注型材料、接着剤、ビルドアップ基板用層間絶縁材料、絶縁塗料等のコーティング材料等が挙げられ、これらの中でも、半導体封止材料に好適に用いることができる。
半導体封止材用に調製されたエポキシ樹脂組成物を作製するためには、エポキシ樹脂と硬化剤、充填剤等の配合剤とを必要に応じて押出機、ニ−ダ、ロ−ル等を用いて均一になるまで充分に混合して溶融混合型のエポキシ樹脂組成物を得ればよい。その際、充填剤としては、通常シリカが用いられるが、その充填率はエポキシ樹脂組成物100質量部当たり、充填剤を30〜95質量%の範囲が用いることが好ましく、中でも、難燃性や耐湿性や耐ハンダクラック性の向上、線膨張係数の低下を図るためには、70質量部以上が特に好ましく、それらの効果を格段に上げるためには、80質量部以上が一層その効果を高めることができる。半導体パッケージ成形としては、該組成物を注型、或いはトランスファー成形機、射出成形機などを用いて成形し、さらに50〜200℃で2〜10時間に加熱することにより成形物である半導体装置を得る方法がある。
本発明のエポキシ樹脂組成物をプリント回路基板用組成物に加工するには、例えばプリプレグ用樹脂組成物とすることができる。該エポキシ樹脂組成物の粘度によっては無溶媒で用いることもできるが、有機溶剤を用いてワニス化することでプリプレグ用樹脂組成物とすることが好ましい。前記有機溶剤としては、メチルエチルケトン、アセトン、ジメチルホルムアミド等の沸点が160℃以下の極性溶剤を用いることが好ましく、単独でも2種以上の混合溶剤としても使用することができる。得られた該ワニスを、紙、ガラス布、ガラス不織布、アラミド紙、アラミド布、ガラスマット、ガラスロービング布などの各種補強基材に含浸し、用いた溶剤種に応じた加熱温度、好ましくは50〜170℃で加熱することによって、硬化物であるプリプレグを得ることができる。この時用いる樹脂組成物と補強基材の質量割合としては、特に限定されないが、通常、プリプレグ中の樹脂分が20〜60質量%となるように調製することが好ましい。また該エポキシ樹脂組成物を用いて銅張り積層板を製造する場合は、上記のようにして得られたプリプレグを、常法により積層し、適宜銅箔を重ねて、1〜10MPaの加圧下に170〜250℃で10分〜3時間、加熱圧着させることにより、銅張り積層板を得ることができる。
本発明のエポキシ樹脂組成物をレジストインキとして使用する場合には、例えば該エポキシ樹脂組成物(II)の硬化剤としてカチオン重合触媒を用い、更に、顔料、タルク、及びフィラーを加えてレジストインキ用組成物とした後、スクリーン印刷方式にてプリント基板上に塗布した後、レジストインキ硬化物とする方法が挙げられる。
本発明のエポキシ樹脂組成物を導電ペーストとして使用する場合には、例えば、微細導電性粒子を該エポキシ樹脂組成物中に分散させ異方性導電膜用組成物とする方法、室温で液状である回路接続用ペースト樹脂組成物や異方性導電接着剤とする方法が挙げられる。
本発明のエポキシ樹脂組成物からビルドアップ基板用層間絶縁材料を得る方法としては例えば、ゴム、フィラーなどを適宜配合した当該硬化性樹脂組成物を、回路を形成した配線基板にスプレーコーティング法、カーテンコーティング法等を用いて塗布した後、硬化させる。その後、必要に応じて所定のスルーホール部等の穴あけを行った後、粗化剤により処理し、その表面を湯洗することによって、凹凸を形成させ、銅などの金属をめっき処理する。前記めっき方法としては、無電解めっき、電解めっき処理が好ましく、また前記粗化剤としては酸化剤、アルカリ、有機溶剤等が挙げられる。このような操作を所望に応じて順次繰り返し、樹脂絶縁層及び所定の回路パターンの導体層を交互にビルドアップして形成することにより、ビルドアップ基盤を得ることができる。但し、スルーホール部の穴あけは、最外層の樹脂絶縁層の形成後に行う。また、銅箔上で当該樹脂組成物を半硬化させた樹脂付き銅箔を、回路を形成した配線基板上に、170〜250℃で加熱圧着することで、粗化面を形成、メッキ処理の工程を省き、ビルドアップ基板を作製することも可能である。
本発明の硬化物を得る方法としては、一般的なエポキシ樹脂組成物の硬化方法に準拠すればよいが、例えば加熱温度条件は、組み合わせる硬化剤の種類や用途等によって、適宜選択すればよいが、上記方法によって得られた組成物を、室温〜250℃程度の温度範囲で加熱すればよい。成形方法などもエポキシ樹脂組成物の一般的な方法が用いられ、特に本発明のエポキシ樹脂組成物に特有の条件は不要である。
従って、該フェノール樹脂を用いることによって、ハロゲン系難燃剤を使用しなくても高度な難燃性が発現できる環境に安心なエポキシ樹脂材料を得ることができる。またその優れた誘電特性は、高周波デバイスの高速演算速度化を実現できる。また、該フェノール樹脂は、本発明の製造方法にて容易に効率よく製造する事が出来、目的とする前述の性能のレベルに応じた分子設計が可能となる。
次に本発明を実施例、比較例により具体的に説明するが、以下において「部」及び「%」は特に断わりのない限り質量基準である。尚、150℃における溶融粘度及びGPC測定、NMR、MSスペクトルは以下の条件にて測定した。
1)150℃における溶融粘度:ASTM D4287に準拠
2)軟化点測定法:JIS K7234
3)GPC:
・装置:東ソー株式会社製 HLC−8220 GPC、カラム:東ソー株式会社製 TSK−GEL G2000HXL+G2000HXL+G3000HXL+G4000HXL
・溶媒:テトラヒドロフラン
・流速:1ml/min
・検出器:RI
4)NMR:日本電子株式会社製 NMR GSX270
5)MS :日本電子株式会社製 二重収束型質量分析装置 AX505H(FD505H)
また、各実施例及び比較例において「P−X−B」、「E−X−B」及び「B−X−B」は、フェノール性水酸基含有芳香族炭化水素基(P)、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「P」、「E」、「B」、「X」で表した場合に、これらの各構造単位の組み合せた化合物の構造を意味する。
実施例1 〔フェノール樹脂(A−1)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、ο-クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)と41%パラホルムアルデヒド179.3g(2.45モル)を仕込み、シュウ酸9.0gを加えて、100℃まで昇温し100℃で3時間反応させた。ついで、水を分留管で捕集しながら41%パラホルム73.2g(1.00モル)を1時間かけて滴下した。滴下終了後,150℃まで1時間で昇温し、更に150℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のο-クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−1)531gを得た。得られたフェノール樹脂の軟化点は76℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、水酸基当量は164g/eq.であった。
得られたフェノール樹脂のGPCチャートを図1に、C13 NMRチャートを図2に、MSスペクトルを図3に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は11質量%、「B−X−B」で表される構造を有する化合物の含有率は1質量%であった。回収した未反応のο-クレゾール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=79/21であった。メトキシ基の残存は、NMRにおける55ppmに観測されるメトキシ基のシグナル、及び水酸基当量から化合物中のメトキシ基は分解していないことを確認した。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例2 〔フェノール樹脂(A−2)の合成〕
温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール169.4g(1.80モル)と2−メトキシナフタレン31.6g(0.20モル)と92%パラホルムアルデヒド32.6g(1.00モル)を仕込み、シュウ酸5.0gを加えて、100℃まで1時間で昇温した。昇温後100℃で1時間反応、更に140℃で1時間反応させた。反応終了後、更にメチルイソブチルケトン700gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のフェノールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−2)149gを得た。これの軟化点は78℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.2dPa・s、水酸基当量は122g/eq.であった。
得られたフェノール樹脂のGPCチャートを図4に、13C−NMRチャートを図5に、MSスペクトルを図6に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は7質量%、「B−X−B」で表される構造を有する化合物の含有率についてはトレースであった。回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=85/15であった。NMRにおける55ppmに観測されるメトキシ基のシグナル、及び水酸基当量から化合物中のメトキシ基は分解していないことを確認した。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例3 〔フェノール樹脂(A−3)の合成〕
温度計、冷却管、分留管、撹拌器を取り付けたフラスコに、フェノール141.2g(1.50モル)と2−メトキシナフタレン79.1g(0.50モル)と92%パラホルムアルデヒド32.6g(1.00モル)を仕込み、シュウ酸5.0gを加えて、100℃まで1時間で昇温した。昇温後100℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン700gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のフェノールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−3)174gを得た。これの軟化点は74℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、水酸基当量は200g/eq.であった。
得られたフェノール樹脂のGPCチャートを図7に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は22質量%、「B−X−B」で表される構造を有する化合物の含有率4質量%であった。回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=65/35であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例4 〔フェノール樹脂(A−4)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、ο-クレゾール432.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)とベンズアルデヒド212.2g(2.00モル)を仕込み、パラトルエンスルホン酸9.0gを加えて、145℃まで1時間で昇温し、145℃で5時間反応させた。その後、水を分留管で捕集しながら170℃まで1時間で昇温し、更に170℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のο-クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−4)545gを得た。得られたフェノール樹脂の軟化点は99℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は5.0dPa・s、水酸基当量は219g/eq.であった。
得られたフェノール樹脂のGPCチャートを図8に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は12質量%、「B−X−B」で表される構造を有する化合物の含有率は1質量%であった。回収した未反応のο-クレゾール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=80/20であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例5 〔フェノール樹脂(A−5)の合成〕
実施例3において、フェノールの質量を173.0g(1.60モル)、2−メトキシナフタレンの質量を63.3g(0.40モル)を用いた以外は実施例3と同様にして、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−5)177gを得た。これの軟化点は67℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.4dPa・s、水酸基当量は170g/eq.であった。
得られたフェノール樹脂のGPCチャートを図9に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は24質量%、「B−X−B」で表される構造を有する化合物の含有率は3質量%であった。回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=74/26であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例6 〔フェノール樹脂(A−6)の合成〕
実施例3において、フェノールの代わりにビスフェノールF 334.0g(1.67モル)と2−メトキシナフタレン131.3g(0.83モル)を用いた以外は実施例3と同様にして、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−6)350gを得た。これの軟化点は64℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.5dPa・s、水酸基当量は139g/eq.であった。得られたフェノール樹脂のGPCチャートを図10に示す。GPC分析の結果、「P−X−B」で表される構造を有する化合物の含有率は0質量%、「B−X−B」で表される構造を有する化合物の含有率は4質量%であった。回収した未反応の2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=85/15であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例7 〔フェノール樹脂(A−7)の合成〕
温度計、冷却管、分留管、窒素ガス導入管、撹拌器を取り付けたフラスコに、フェノール376.4g(4.00モル)と2−メトキシナフタレン158.2g(1.00モル)とベンズアルデヒド159.2g(1.50モル)を仕込み、パラトルエンスルホン酸9.0gを加えて、145℃まで1時間で昇温し、145℃で5時間反応させた。その後、水を分留管で捕集しながら170℃まで1時間で昇温し、更に170℃で2時間反応させた。反応終了後、更にメチルイソブチルケトン1500gを加え、分液ロートに移し水洗した。次いで洗浄水が中性を示すまで水洗後、有機層から未反応のο-クレゾールと2−メトキシナフタレン、及びメチルイソブチルケトンを加熱減圧下に除去し、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−7)を得た。得られたフェノール樹脂の軟化点は63℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.2dPa・s、水酸基当量は288g/eq.であった。
得られたフェノール樹脂のGPCチャートを図11に示す。回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=80/20であった。
実施例8 〔フェノール樹脂(A−8)の合成〕
実施例7においてベンズアルデヒドの代わりに、4−ビフェニルアルデヒド182.2g(1.00モル)を用いた以外は実施例7と同様にして、下記構造式
Figure 0004941804
で表される構造単位を有するフェノール樹脂(A−8)を得た。得られたフェノール樹脂の軟化点は61℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.1dPa・s、水酸基当量は323g/eq.であった。
得られたフェノール樹脂のGPCチャートを図12に示す。回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果、及び得られたフェノール樹脂の水酸基の測定結果から、該フェノール樹脂中のフェノール性水酸基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、前者/後者=80/20であった。
合成例1 (特開2004−010700号公報の化合物の合成)
オルソクレゾール108.0g(1.0mol)と50%ホルマリン水溶液132.0g(2.2mol)を反応容器に仕込み、冷却下30%水酸化ナトリウム水溶液133.3g(1.0mol)を、30℃以下を保ちながら1時間かけて滴下を行った。滴下終了後、40℃まで昇温し、2時間反応させた。次いで硫酸ジメチル126.0g(1.0mol)を40℃にて1時間かけて滴下後、60℃まで昇温し、2時間反応させフェノール性水酸基がメトキシ化されたレゾール樹脂を合成した。反応終了後、水層を分離し、引き続きフェノール282.0g(3.0mol)、及び35%塩酸9.1gを加え、90℃にて4時間反応させた。反応終了後、25%アンモニア水溶液6.0gにより中和し、水洗により中和塩を除去後、60mmHgで200℃まで加熱し未反応のフェノールを除去しフェノール樹脂(A−9)を得た。得られたフェノール樹脂の軟化点は77℃(B&R法)、溶融粘度(測定法:ICI粘度計法,測定温度:150℃)は0.8dPa・s、水酸基当量は160g/eq.であった。
合成例2
500mlの4口フラスコに、2−ナフトール144g(1.0モル)、イソプロピルアルコール200g、49%水酸化ナトリウム8.2gを仕込み、窒素気流下、攪拌しながら40℃に昇温した。昇温後、41%ホルマリン37g(0.5モル)を2時間かけて滴下しながら60℃とし、60℃で2時間反応させた。その結果、下記構造式
Figure 0004941804
で表される化合物が得られ、メチロール化合物は得られなかった。
実施例9 〔エポキシ樹脂(E−1)の合成〕
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、実施例1で得られたフェノール樹脂(A−1)を164g(水酸基1当量)、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン590gとn−ブタノール177gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、下記構造式
Figure 0004941804

で表される構造単位を有するエポキシ樹脂(E−1)198gを得た。得られたエポキシ樹脂の軟化点は58℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、エポキシ当量は252g/eq.であった。
得られたエポキシ樹脂のGPCチャートを図13に、C13 NMRチャートを図14に、MSスペクトルを図15に示す。GPC分析の結果、「E−X−B」で表される構造を有する化合物の含有率は10質量%、「B−X−B」で表される構造を有する化合物の含有率は1質量%であった。メトキシ基の残存は、NMRにおける55ppmに観測されるメトキシ基のシグナル、及びエポキシ当量から化合物中のメトキシ基は分解していないことを確認した。尚、該エポキシ樹脂中のグリシジルオキシ基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、フェノール樹脂(A−1)を製造した際の回収した未反応のο−クレゾール及び2−メトキシナフタレンの質量測定の結果と得られたフェノール樹脂の水酸基の測定結果から求めた。その結果、前者/後者=79/21であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例10 〔エポキシ樹脂(E−2)の合成〕
エポキシ化反応は、実施例9においてフェノール樹脂(A−1)を、実施例2で得られたフェノール樹脂(A−2)122g(水酸基1当量)に変更した以外は実施例9と同様にして行い、下記構造式
Figure 0004941804
で表される構造単位を有するエポキシ樹脂(E−2)160gを得た。これの軟化点は60℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は1.0dPa・s、エポキシ当量は200g/eq.であった。
得られたエポキシ樹脂のGPCチャートを図16に、13C NMRチャートを図17に、MSスペクトルを図18に示す。GPC分析の結果、「E−X−B」の含有量は6質量%、「B−X−B」で表される構造を有する化合物の含有率についてはトレースであった。メトキシ基の残存を、NMRにおける55ppmに観測されるメトキシ基のシグナル、及びエポキシ当量により確認した。尚、該エポキシ樹脂中のグリシジルオキシ基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、フェノール樹脂(A−2)を製造した際の回収した未反応のフェノール及び2−メトキシナフタレンの質量測定の結果と得られたフェノール樹脂の水酸基の測定結果から求めた。その結果、前者/後者=92/8であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
実施例11 〔エポキシ樹脂(E−3)の合成〕
エポキシ化反応は、実施例9においてフェノール樹脂(A−1)を、実施例3で得られたフェノール樹脂(A−3)200g(水酸基1当量)に変更した以外は実施例9と同様にして行い、下記構造式
Figure 0004941804
で表される構造単位を有するエポキシ樹脂(E−3)230gを得た。これの軟化点は55℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は0.8dPa・s、エポキシ当量は290g/eq.であった。尚、該エポキシ樹脂中のグリシジルオキシ基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、フェノール樹脂(A−3)を製造した際の回収した未反応のフェノール及び2-メトキシナフタレンの質量測定の結果と得られたフェノール樹脂の水酸基の測定結果から求めた。その結果、前者/後者=65/35であった。
実施例12 〔エポキシ樹脂(E−4)の合成〕
エポキシ化反応は、実施例9においてフェノール樹脂(A−1)を、実施例4で得られたフェノール樹脂(A−4)219g(水酸基1当量)に変更した以外は実施例9と同様にして行い、下記構造式
Figure 0004941804
で表される構造単位を有するエポキシ樹脂(E−4)247gを得た。これの軟化点は78℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は2.0dPa・s、エポキシ当量は298g/eq.であった。
得られたエポキシ樹脂のGPCチャートを図19に示す。GPC分析の結果、「E−X−B」で表される構造を有する化合物の含有率は11質量%、「B−X−B」で表される構造を有する化合物の含有率は1質量%であった。尚、該エポキシ樹脂中のグリシジルオキシ基含有芳香族炭化水素基の構造単位と、アルコキシ基含有縮合多環式芳香族炭化水素基の構造単位とのモル比率は、フェノール樹脂(A−4)を製造した際の回収した未反応のο−クレゾール及び2−メトキシナフタレンの質量測定の結果と得られたフェノール樹脂の水酸基の測定結果から求めた。その結果、前者/後者=80/20であった。また、分子末端に「B−X−」で表される構造を有することが確認できた。
合成例3
温度計、滴下ロート、冷却管、撹拌機を取り付けたフラスコに、窒素ガスパージを施しながら、三井化学株式会社製ミレックスXLC-4L168部、エピクロルヒドリン463g(5.0モル)、n−ブタノール139g、テトラエチルベンジルアンモニウムクロライド2gを仕込み溶解させた。65℃に昇温した後、共沸する圧力まで減圧して、49%水酸化ナトリウム水溶液90g(1.1モル)を5時間かけて滴下した。その後、同条件で0.5時間撹拌を続けた。この間、共沸によって留出してきた留出分をディーンスタークトラップで分離し、水層を除去し、油層を反応系内に戻しながら、反応を行った。その後、未反応のエピクロルヒドリンを減圧蒸留によって留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン590gとn−ブタノール177gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液10gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水150gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して、下記構造式
Figure 0004941804
で表される構造単位を有するエポキシ樹脂(E−5)を得た。該エポキシ樹脂のエポキシ当量は241g/eqであった。
合成例4 (特開2003−201333号公報記載のエポキシ樹脂の合成)
撹拌装置と加熱装置が付いた1リットル四つ口フラスコに、トリメチルハイドロキノン152g(1.0モル)をトルエン500gとエチレングリコールモノエチルエーテル200gの混合溶媒に溶解した。その溶液にパラトルエンスルホン酸4.6gを加え、41%ベンズアルデヒド64g(0.6モル)を発熱に注意しながら滴下して、水分を留去しながら100〜120℃で15時間撹拌した。次いで、冷却して析出結晶を濾別し、中性になるまで繰り返し水で洗浄した後に、乾燥してフェノール樹脂175g(GPC純度:99%)を得た。
温度計、滴下ロート、冷却管、攪拌機を取り付けたフラスコに窒素ガスパージを施しながら、フェノール樹脂175g、エピクロルヒドリン463g(5.0モル)、n−ブタノール53g、テトラエチルベンジルアンモニウムクロライド2.3gを仕込み溶解させた。65℃に昇温した後に、共沸する圧力までに減圧して、49%水酸化ナトリウム水溶液82g(1.0モル)を5時間かけて滴下した、次いで同条件下で0.5時間攪拌を続けた。
この間、共沸で留出してきた留出分をディーンスタークトラップで分離して、水層を除去し、油層を反応系内に戻しながら反応した。その後、未反応のエピクロルヒドリンを減圧蒸留して留去させた。それで得られた粗エポキシ樹脂にメチルイソブチルケトン550gとn−ブタノール55gとを加え溶解した。更にこの溶液に10%水酸化ナトリウム水溶液15gを添加して80℃で2時間反応させた後に洗浄液のPHが中性となるまで水100gで水洗を3回繰り返した。次いで共沸によって系内を脱水し、精密濾過を経た後に、溶媒を減圧下で留去して目的の下記構造式
Figure 0004941804
で表されるエポキシ樹脂(E−6)を得た。このエポキシ樹脂のエポキシ当量は262g/eqであった。
合成例4 (特開平8−301980号公報の化合物の合成)
500mlの4口フラスコに、p−キシリレングリコールジメチルエーテル166g(1.0モル)、ジフェニルエーテル42.5g(0.25モル)、p−トルエンスルホン酸12.5gを仕込み、窒素気流下、攪拌しながら150℃で反応させた。この間、生成するメタノールは系外に除いた。約3時間後、16gのメタノールが生成したところで、o−クレゾール202.5g(1.88モル)を添加し、更に、150℃で2時間反応させた。引続きこの間、生成するメタノールは系外に除いた。メタノールの生成が終了した時点で、炭酸ナトリウムにて中和し、更に、過剰のo−クレゾールを減圧留去しフェノール樹脂(B−10)237.5gを得た。を得た。得られたフェノール樹脂の軟化点は100℃(B&R法)、溶融粘度(測定法:ICI粘度計法、測定温度:150℃)は19dPa・s、水酸基当量は249g/eq.であった。
ついでフェノール樹脂(A−1)に代えて、上述の方法で得られたフェノール樹脂249g/eq(水酸基1当量)を用いる他は実施例9と同様にエポキシ化反応を行いエポキシ樹脂(E−7)を得た。得られたエポキシ樹脂の軟化点は79℃(B&R法)、エポキシ当量は421g/eq.であった。
実施例13〜31と比較例1〜3
エポキシ樹脂として上記(E−1)〜(E−6)及び、ジャパンエポキシレジン株式会社製YX−4000H(テトラメチルビフェノール型エポキシ樹脂、エポキシ当量:195g/eq)、日本化薬株式会社製NC−3000(ビフェニルノボラック型エポキシ樹脂、エポキシ当量:274g/eq)、大日本インキ化学工業製EXA−4700(ナフタレン型エポキシ樹脂、エポキシ当量:164g/eq)、フェノール樹脂として(A−1)〜(A−8)及び、三井化学株式会社製XLC−LL(フェノールアラルキル樹脂、水酸基当量176g/eq)、明和化成株式会社製MEH−7851SS(ビフェニルノボラック樹脂、水酸基当量:200g/eq)、比較用のエポキシ樹脂としてE−7、比較用のフェノール樹脂としてA−9を用い、硬化促進剤としてトリフェニルホスフィン(TPP)、難燃剤として縮合燐酸エステル(大八化学工業株式会社製PX−200)、水酸化マグネシウム(エア・ウォーター株式会社製エコーマグZ−10)、無機充填材として球状シリカ(株式会社マイクロン製S−COL)、シランカップリング剤としてγ−グリシドキシトリエトキシキシシラン(信越化学工業株式会社製KBM−403)、カルナウバワックス(株式会社セラリカ野田製PEARL WAX No.1−P)、カーボンブラックを用いて表1〜3に示した組成で配合し、2本ロールを用いて85℃の温度で5分間溶融混練して目的の組成物を得、硬化性の評価を行った。また、硬化物の物性は、上記組成物を用いて、評価用サンプルを下記の方法で作成し、耐熱性、難燃性、誘電特性を下記の方法で測定し結果を表1〜2に示した。
<耐熱性>
ガラス転移温度:粘弾性測定装置(レオメトリック社製 固体粘弾性測定装置RSAII、二重カレンチレバー法;周波数1Hz、昇温速度3℃/min)を用いて測定した。
<硬化性>
エポキシ樹脂組成物0.15gを175℃に加熱したキュアプレート(THERMO ELECTRIC社製)上に載せ、ストップウォッチで計時を開始する。棒の先端にて試料を均一に攪拌し、糸状に試料が切れてプレートに残るようになった時、ストップウォッチを止める。この試料が切れてプレートに残るようになるまでの時間をゲルタイムとした。
<難燃性>
幅12.7mm、長さ127mm、厚み1.6mmの評価用サンプルを、トランスファー成形機を用い175℃の温度で90秒成形した後、175℃の温度で5時間後硬化して作成した。作成した試験片を用いUL−94試験法に準拠し、厚さ1.6mmの試験片5本を用いて、燃焼試験を行った。
<誘電特性の測定>
幅25mm、長さ75mm、厚み2.0mmの評価用サンプルを、トランスファー成形機を用い175℃の温度で90秒成形した後、175℃の温度で5時間後硬化して作成した。作成した試験片を用い、JIS−C−6481に準拠した方法により、アジレント・テクノロジー株式会社製インピーダンス・マテリアル・アナライザ「HP4291B」により、絶乾後、23℃、湿度50%の室内に24時間保管した後の硬化物の周波数100MHzにおける誘電率と誘電正接を測定した。






Figure 0004941804




Figure 0004941804

Figure 0004941804
表1、2の脚注:
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)
*3:V−1に要求される難燃性(ΣF≦250秒且つFmax≦30秒)は満たさないが、燃焼(炎のクランプ到達)には至らず消火。
表1、2の脚注:
*1:1回の接炎における最大燃焼時間(秒)
*2:試験片5本の合計燃焼時間(秒)
図1は実施例1で得られたフェノール樹脂のGPCチャートである。 図2は実施例1で得られたフェノール樹脂の13C−NMRスペクトルである。 図3は実施例1で得られたフェノール樹脂のマススペクトルである。 図4は実施例2で得られたフェノール樹脂のGPCチャートである。 図5は実施例2で得られたフェノール樹脂の13C−NMRスペクトルである。 図6は実施例2で得られたフェノール樹脂のマススペクトルである。 図7は実施例3で得られたフェノール樹脂のGPCチャートである。 図8は実施例4で得られたフェノール樹脂のGPCチャートである。 図9は実施例5で得られたフェノール樹脂のGPCチャートである。 図10は実施例6で得られたフェノール樹脂のGPCチャートである。 図11は実施例7で得られたフェノール樹脂のGPCチャートである。 図12は実施例8で得られたフェノール樹脂のGPCチャートである。 図13は実施例9で得られたエポキシ樹脂のGPCチャートである。 図14は実施例9で得られたエポキシ樹脂の13C−NMRスペクトルである。 図15は実施例9で得られたエポキシ樹脂のマススペクトルである。 図16は実施例10で得られたエポキシ樹脂のGPCチャートである。 図17は実施例10で得られたエポキシ樹脂の13C−NMRスペクトルである。 図18は実施例10で得られたエポキシ樹脂のマススペクトルである。 図19は実施例12で得られたエポキシ樹脂のGPCチャートである。

Claims (17)

  1. エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記硬化剤が、
    フェノール性水酸基含有芳香族炭化水素基(P)、
    アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、
    メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
    の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するフェノール樹脂であることを特徴とするエポキシ樹脂組成物。
  2. 前記フェノール樹脂が、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
    Figure 0004941804
    で表される構造部位を分子末端に有するものである請求項1記載のエポキシ樹脂組成物。
  3. 前記フェノール樹脂が、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・sのものである請求項1又は2記載のエポキシ樹脂組成物。
  4. 前記フェノール樹脂が、フェノール性水酸基含有芳香族炭化水素基(P)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「P」、「B」、「X」で表した場合に、下記構造式
    Figure 0004941804
    で表される構造の化合物を該樹脂中、1〜30質量%となる範囲で含有するものである請求項1〜3の何れか一つに記載のエポキシ樹脂組成物。
  5. 前記フェノール樹脂が、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させて得られるものであって、かつ、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
    Figure 0004941804
    で表される構造を有する化合物の含有率が該フェノール樹脂中5質量%以下である請求項1〜4の何れか一つに記載のエポキシ樹脂組成物。
  6. 請求項1〜5の何れか一つのエポキシ樹脂組成物を硬化反応させてなることを特徴とするエポキシ樹脂硬化物。
  7. 請求項1〜5の何れか一つに記載されたエポキシ樹脂組成物であって、前記エポキシ樹脂及び前記硬化剤に加え、更に無機質充填材を組成物中70〜95質量%の割合で含有するエポキシ樹脂組成物からなることを特徴とする半導体封止材料。
  8. フェノール性水酸基含有芳香族炭化水素基(P)、
    アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、
    メチレン基、アルキリデン基及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
    の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記アルキリデン基(X)を介して結合した構造を分子構造内に有し、かつ、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・s、水酸基当量が120〜500g/eqのものであることを特徴とする新規フェノール樹脂。
  9. エポキシ樹脂及び硬化剤を必須成分とするエポキシ樹脂組成物であって、前記エポキシ樹脂が、
    グリシジルオキシ基含有芳香族炭化水素基(E)、
    アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、
    メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
    の各構造部位を有しており、かつ、前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)を介して結合した構造を分子構造内に有するものであることを特徴とするエポキシ樹脂組成物。
  10. 前記エポキシ樹脂が、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
    Figure 0004941804
    で表される構造部位を分子末端に有するものである請求項9記載の組成物。
  11. 前記エポキシ樹脂が、150℃における溶融粘度が0.1〜5.0dPa・sのものである請求項9又は10記載のエポキシ樹脂組成物。
  12. 前記エポキシ樹脂が、グリシジルオキシ基含有芳香族炭化水素基(E)、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「E」、「B」、「X」で表した場合に、
    Figure 0004941804
    で表される構造の化合物を該樹脂中、1〜30質量%となる範囲で含有するものである請求項9〜11の何れか一つに記載のエポキシ樹脂組成物。
  13. 前記エポキシ樹脂が、ヒドロキシ基含有芳香族化合物(a1)とアルコキシ基含有縮合多環式芳香族化合物(a2)と、カルボニル基含有化合物(a3)とを反応させて得られるフェノール樹脂に、エピハロヒドリンを反応させて得られるものであって、かつ、アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)の各構造単位をそれぞれ、「B」、「X」で表した場合に、下記構造式
    Figure 0004941804
    で表される構造を有する化合物の含有率が該エポキシ樹脂中5質量%以下である請求項9〜12の何れか一つに記載のエポキシ樹脂組成物。
  14. 前記硬化剤が、
    フェノール性水酸基含有芳香族炭化水素基(P)、
    アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、
    メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
    の各構造部位を有しており、かつ、前記フェノール性水酸基含有芳香族炭化水素基(P)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記アルキリデン基(X)を介して結合した構造を分子構造内に有するフェノール樹脂である請求項9〜13の何れか一つに記載のエポキシ樹脂組成物。
  15. 請求項9〜14の何れか一つのエポキシ樹脂組成物を硬化反応させてなることを特徴とするエポキシ樹脂硬化物。
  16. 請求項9〜14の何れか一つに記載されたエポキシ樹脂組成物であって、前記エポキシ樹脂及び前記硬化剤に加え、更に無機質充填材を組成物中70〜95質量%の割合で含有するエポキシ樹脂組成物からなることを特徴とする半導体封止材料。
  17. グリシジルオキシ基含有芳香族炭化水素基(E)、
    アルコキシ基含有縮合多環式芳香族炭化水素基(B)、並びに、
    メチレン基、アルキリデン基、及び芳香族炭化水素構造含有メチレン基から選択される2価の炭化水素基(X)
    の各構造部位を有しており、かつ、前記グリシジルオキシ基含有芳香族炭化水素基(E)及び前記アルコキシ基含有縮合多環式芳香族炭化水素基(B)が、前記アルキリデン基(X)を介して結合した構造を分子構造内に有しており、かつ、ICI粘度計で測定した150℃における溶融粘度が0.1〜5.0dPa・s、エポキシ当量が200〜500g/eqのものであることを特徴とする新規エポキシ樹脂。

JP2005257056A 2005-03-02 2005-09-05 エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂 Active JP4941804B2 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2005257056A JP4941804B2 (ja) 2005-03-02 2005-09-05 エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂
CN2006800064223A CN101128505B (zh) 2005-03-02 2006-03-01 环氧树脂组合物、其固化物、半导体密封材料、新酚树脂及新环氧树脂
MYPI20060873A MY143738A (en) 2005-03-02 2006-03-01 Epoxy resin composition and cured article thereof, semiconductor encapsulation material, novel phenol resin, and novel epoxy resin
KR1020077019834A KR100893562B1 (ko) 2005-03-02 2006-03-01 에폭시 수지 조성물, 그 경화물, 반도체 밀봉 재료, 신규페놀 수지, 및 신규 에폭시 수지
TW095106815A TWI402306B (zh) 2005-03-02 2006-03-01 環氧樹脂組成物及其硬化物品、半導體包封材料、酚樹脂、以及環氧樹脂
PCT/JP2006/303902 WO2006093203A1 (ja) 2005-03-02 2006-03-01 エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂
EP06715019A EP1854819B1 (en) 2005-03-02 2006-03-01 Epoxy resin composition, cured object obtained therefrom, semiconductor-encapsulating material, novel phenolic resin, and novel epoxy resin
US11/817,535 US8420749B2 (en) 2005-03-02 2006-03-01 Epoxy resin composition and cured article thereof, semiconductor encapsulation material, novel phenol resin, and novel epoxy resin
DE602006021707T DE602006021707D1 (de) 2005-03-02 2006-03-01 Epoxidharzzusammensetzung, daraus erhaltenes gehäres phenolharz und neues epoxidharz
US12/634,259 US8440781B2 (en) 2005-03-02 2009-12-09 Epdxy resin composition and cured article thereof, semiconductor encapsulation material, novel phenol resin, and novel epdoxy resin

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2005057393 2005-03-02
JP2005057394 2005-03-02
JP2005057394 2005-03-02
JP2005057393 2005-03-02
JP2005257056A JP4941804B2 (ja) 2005-03-02 2005-09-05 エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂

Publications (2)

Publication Number Publication Date
JP2006274236A JP2006274236A (ja) 2006-10-12
JP4941804B2 true JP4941804B2 (ja) 2012-05-30

Family

ID=36941232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005257056A Active JP4941804B2 (ja) 2005-03-02 2005-09-05 エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂

Country Status (9)

Country Link
US (2) US8420749B2 (ja)
EP (1) EP1854819B1 (ja)
JP (1) JP4941804B2 (ja)
KR (1) KR100893562B1 (ja)
CN (1) CN101128505B (ja)
DE (1) DE602006021707D1 (ja)
MY (1) MY143738A (ja)
TW (1) TWI402306B (ja)
WO (1) WO2006093203A1 (ja)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706904B2 (ja) * 2005-05-31 2011-06-22 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP4706905B2 (ja) * 2005-05-31 2011-06-22 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規多価ヒドロキシ化合物およびその製造方法
JP4984451B2 (ja) * 2005-07-20 2012-07-25 Dic株式会社 エポキシ樹脂組成物及びその硬化物
JP5321057B2 (ja) * 2006-03-31 2013-10-23 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
JP2007314678A (ja) * 2006-05-26 2007-12-06 Matsushita Electric Works Ltd 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5169204B2 (ja) * 2006-12-25 2013-03-27 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5103912B2 (ja) * 2007-01-30 2012-12-19 Dic株式会社 硬化性樹脂組成物、及びその硬化物
JP5035602B2 (ja) * 2007-02-07 2012-09-26 Dic株式会社 エポキシ樹脂組成物及び新規フェノール樹脂
JP5035604B2 (ja) * 2007-02-14 2012-09-26 Dic株式会社 エポキシ樹脂組成物、その硬化物、および新規エポキシ樹脂
JP5024604B2 (ja) * 2007-03-20 2012-09-12 Dic株式会社 エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP5024605B2 (ja) * 2007-03-20 2012-09-12 Dic株式会社 硬化性樹脂組成物、その硬化物、新規フェノール樹脂及びその製造方法
MY150705A (en) 2007-04-10 2014-02-28 Sumitomo Bakelite Co Epoxy resin composition, prepreg, laminate board, multilayer printed wiring board, semiconductor device, insulating resin sheet, and process for manufacturing multilayer printed wiring board
JP5169285B2 (ja) * 2007-08-22 2013-03-27 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5176075B2 (ja) * 2007-08-29 2013-04-03 日立化成株式会社 封止用エポキシ樹脂成形材料及びこれを用いて封止された素子を備えてなる電子部品装置
JP5169288B2 (ja) * 2007-09-21 2013-03-27 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5169287B2 (ja) * 2007-09-21 2013-03-27 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5320714B2 (ja) * 2007-09-27 2013-10-23 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5104252B2 (ja) * 2007-11-29 2012-12-19 住友ベークライト株式会社 半導体封止用エポキシ樹脂組成物及び半導体装置
JP5365014B2 (ja) * 2008-02-01 2013-12-11 住友ベークライト株式会社 半導体封止用樹脂組成物及び半導体装置
JP5245496B2 (ja) * 2008-03-31 2013-07-24 Dic株式会社 エポキシ樹脂組成物、及びその硬化物
JP5206600B2 (ja) * 2008-06-30 2013-06-12 住友ベークライト株式会社 エポキシ樹脂組成物、プリプレグ、積層板、樹脂シート、多層プリント配線板、及び半導体装置
JP5447921B2 (ja) * 2009-03-27 2014-03-19 Dic株式会社 硬化性樹脂組成物、その硬化物、及び電子部品用樹脂材料
KR101095225B1 (ko) * 2009-04-23 2011-12-20 삼성전기주식회사 인쇄회로기판용 수지 조성물 및 이를 이용한 인쇄회로기판
JP5233858B2 (ja) * 2009-06-19 2013-07-10 Dic株式会社 エポキシ樹脂組成物、その硬化物、及び半導体装置
KR101676397B1 (ko) * 2009-06-25 2016-11-16 삼성전자 주식회사 카본/에폭시 수지 조성물 및 이를 이용하여 제조된 카본-에폭시 유전막
JP5339146B2 (ja) * 2009-07-13 2013-11-13 Dic株式会社 エポキシ樹脂組成物、その硬化物、回路基板、ビルドアップ材料、及び半導体封止材料
JP5689230B2 (ja) * 2009-07-22 2015-03-25 Dic株式会社 エポキシ樹脂組成物、その硬化物、半導体封止材料、半導体装置、及びエポキシ樹脂
US9082708B2 (en) * 2009-10-09 2015-07-14 Sumitomo Bakelite Co., Ltd. Semiconductor device
KR101340283B1 (ko) * 2010-02-03 2013-12-10 디아이씨 가부시끼가이샤 페놀 수지 조성물, 경화성 수지 조성물, 그 경화물, 및 프린트 배선 기판
JP2011246545A (ja) * 2010-05-25 2011-12-08 Hitachi Chem Co Ltd 封止用エポキシ樹脂組成物及び電子部品装置
SG187238A1 (en) * 2010-07-30 2013-03-28 Dainippon Ink & Chemicals Curing resin composition, cured product thereof, phenolic resin, epoxy resin, and semiconductor sealing material
JP5136729B2 (ja) * 2010-09-29 2013-02-06 Dic株式会社 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
KR101775898B1 (ko) * 2010-12-28 2017-09-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 방향족 탄화수소 수지, 리소그래피용 하층막 형성 조성물 및 다층 레지스트 패턴의 형성방법
KR101480178B1 (ko) * 2011-12-20 2015-01-09 제일모직주식회사 반도체 소자 밀봉용 에폭시 수지 조성물 및 이를 사용하여 밀봉된 반도체 소자
KR101464353B1 (ko) * 2011-12-28 2014-11-25 제일모직 주식회사 이방 도전성 필름용 조성물, 이방 도전성 필름, 및 이를 이용한 반도체 장치
KR101944577B1 (ko) * 2012-03-13 2019-01-31 미츠비시 가스 가가쿠 가부시키가이샤 수지 조성물, 프리프레그 및 금속박 피복 적층판
JP2013234305A (ja) * 2012-05-11 2013-11-21 Panasonic Corp 半導体封止用エポキシ樹脂組成物および半導体装置
JP6175781B2 (ja) * 2013-01-29 2017-08-09 東レ株式会社 成形材料および繊維強化複合材料
WO2023129135A1 (en) 2021-12-28 2023-07-06 Compagnie Generale Des Etablissements Michelin High rigidity rubber composition with low formaldehyde content
WO2023129137A1 (en) 2021-12-28 2023-07-06 Compagnie Generale Des Etablissements Michelin Method for preparing high rigidity rubber composition with low formaldehyde content
CN115558375B (zh) * 2022-10-19 2023-09-29 西华大学 一种金属掺杂膨胀阻燃涂覆液、阻燃剂及其制备和应用

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3787451A (en) * 1971-08-19 1974-01-22 Dow Chemical Co Epoxides of alkoxy-substituted tri(hydroxyphenyl)alkanes
US4464521A (en) * 1981-09-10 1984-08-07 Ashland Oil, Inc. Curable composition and use thereof
JP2616265B2 (ja) * 1991-03-05 1997-06-04 信越化学工業株式会社 熱硬化性樹脂組成物
JP3447015B2 (ja) 1993-04-23 2003-09-16 三井化学株式会社 エポキシ樹脂組成物
JP3428699B2 (ja) * 1993-09-24 2003-07-22 ジャパンエポキシレジン株式会社 エポキシ樹脂組成物
JP4031061B2 (ja) * 1995-05-01 2008-01-09 新日鐵化学株式会社 新規エポキシ樹脂、中間体及び製造法、並びにこれを用いたエポキシ樹脂組成物及びその硬化物
EP1890324A3 (en) 1997-03-31 2008-06-11 Hitachi Chemical Company, Ltd. Circuit-connecting material and circuit terminal connected structure and connecting method
JPH11140167A (ja) * 1997-11-13 1999-05-25 Mitsui Chem Inc ポリエステル化合物、その製造方法および用途
US6117536A (en) 1998-09-10 2000-09-12 Ga-Tek Inc. Adhesion promoting layer for use with epoxy prepregs
JP2000212238A (ja) 1999-01-26 2000-08-02 Meiwa Kasei Kk フェノ―ルノボラック樹脂及び半導体封止用硬化剤
JP2001064340A (ja) 1999-08-30 2001-03-13 Nippon Kayaku Co Ltd 4,4’−ビフェニルジイルジメチレン−フェノール樹脂、エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
US6660811B2 (en) 2001-01-30 2003-12-09 Dainippon Ink And Chemicals, Inc. Epoxy resin composition and curing product thereof
JP4247658B2 (ja) 2001-07-12 2009-04-02 Dic株式会社 新規エポキシ樹脂、エポキシ樹脂組成物及びその硬化物
US6784228B2 (en) 2001-07-12 2004-08-31 Dainippon Ink And Chemicals, Inc. Epoxy resin composition, cured article thereof, novel epoxy resin, novel phenol compound, and process for preparing the same
CN1309783C (zh) * 2001-10-24 2007-04-11 大日本油墨化学工业株式会社 环氧树脂组合物,其固化制品,新型环氧树脂,新型酚化合物,及其制备方法
JP2004010700A (ja) * 2002-06-05 2004-01-15 Gun Ei Chem Ind Co Ltd 新規フェノール系樹脂、及びそれを硬化剤としたエポキシ樹脂組成物
US20040265596A1 (en) * 2003-04-28 2004-12-30 Sumitomo Bakelite Co., Ltd. Epoxy resin composition for semiconductor sealing and semiconductor device

Also Published As

Publication number Publication date
US8440781B2 (en) 2013-05-14
CN101128505B (zh) 2011-07-27
EP1854819A4 (en) 2009-05-06
JP2006274236A (ja) 2006-10-12
KR20070108387A (ko) 2007-11-09
EP1854819B1 (en) 2011-05-04
MY143738A (en) 2011-07-15
KR100893562B1 (ko) 2009-04-17
TW200710158A (en) 2007-03-16
WO2006093203A1 (ja) 2006-09-08
TWI402306B (zh) 2013-07-21
CN101128505A (zh) 2008-02-20
US8420749B2 (en) 2013-04-16
EP1854819A1 (en) 2007-11-14
DE602006021707D1 (de) 2011-06-16
US20090054585A1 (en) 2009-02-26
US20100087590A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP4941804B2 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、および新規エポキシ樹脂
EP1785441B1 (en) Epoxy resin composition, products of curing thereof, material for the encapsulation of semiconductors, novel phenol resin, novel epoxy resin, process for production of novel phenol resin and process for production of novel epoxy resin
JP5245199B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂、その製造方法、及び新規フェノール樹脂
JP5013234B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール系樹脂、エポキシ樹脂、及び半導体封止材料
JP5136729B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5380763B2 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、新規フェノール樹脂、新規エポキシ樹脂、新規フェノール樹脂の製造方法、および新規エポキシ樹脂の製造方法
JP5689230B2 (ja) エポキシ樹脂組成物、その硬化物、半導体封止材料、半導体装置、及びエポキシ樹脂
JP2013023613A (ja) ポリヒドロキシ化合物、エポキシ樹脂、熱硬化性樹脂組成物、その硬化物及び半導体封止材料
JP5605629B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材
JP5708306B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物、半導体封止材料、及びプリント配線基板
JP5626566B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP4984451B2 (ja) エポキシ樹脂組成物及びその硬化物
JP5590416B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5035604B2 (ja) エポキシ樹脂組成物、その硬化物、および新規エポキシ樹脂
JP5668987B2 (ja) 硬化性樹脂組成物、その硬化物、フェノール樹脂、エポキシ樹脂、及び半導体封止材料
JP5024604B2 (ja) エポキシ樹脂組成物、その硬化物、新規エポキシ樹脂及びその製造方法
JP6065215B2 (ja) エポキシ樹脂、硬化性樹脂組成物、その硬化物及び半導体封止材料
JP5035602B2 (ja) エポキシ樹脂組成物及び新規フェノール樹脂

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120216

R150 Certificate of patent or registration of utility model

Ref document number: 4941804

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150309

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250