JP4075022B2 - 角速度センサ - Google Patents

角速度センサ Download PDF

Info

Publication number
JP4075022B2
JP4075022B2 JP17699298A JP17699298A JP4075022B2 JP 4075022 B2 JP4075022 B2 JP 4075022B2 JP 17699298 A JP17699298 A JP 17699298A JP 17699298 A JP17699298 A JP 17699298A JP 4075022 B2 JP4075022 B2 JP 4075022B2
Authority
JP
Japan
Prior art keywords
vibration
axis
drive
frame
angular velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17699298A
Other languages
English (en)
Other versions
JP2000009474A (ja
Inventor
宗 志 峠
藤 学 加
田 伸 一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Aisin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd, Aisin Corp filed Critical Aisin Seiki Co Ltd
Priority to JP17699298A priority Critical patent/JP4075022B2/ja
Priority to DE19928759A priority patent/DE19928759B4/de
Priority to US09/339,107 priority patent/US6134961A/en
Publication of JP2000009474A publication Critical patent/JP2000009474A/ja
Application granted granted Critical
Publication of JP4075022B2 publication Critical patent/JP4075022B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis

Description

【0001】
【発明の属する技術分野】
本発明は、基板に対して浮動支持された振動体を備える角速度センサに関し、特に、これに限定する意図ではないが、半導体微細加工技術を用いて形成される浮動半導体薄膜を櫛歯電極にて電気的に吸引/解放してx方向に励振する角速度センサに関する。
【0002】
【従来の技術】
この種の角速度センサの代表的なものは、浮動薄膜の左辺部に1組かつ右辺部に1組の浮動櫛歯電極(左側浮動櫛歯電極と右側浮動櫛歯電極)を備え、固定櫛歯電極も2組(各組の浮動櫛歯電極に非接触で噛み合いかつ平行な左側固定櫛歯電極および右側固定櫛歯電極)として、左側浮動櫛歯電極/左側固定櫛歯電極間と右側浮動櫛歯電極/右側固定櫛歯電極間に交互に電圧を印加することにより、浮動薄膜がx方向に振動する。浮動薄膜に、z軸を中心とする回転の角速度が加わると、浮動薄膜にコリオリ力が加わって、浮動薄膜は、y方向にも振動する楕円振動となる。浮動薄膜を導体としもしくは電極が接合したものとし、浮動薄膜のxz平面に平行な検出電極を基板上に備えておくと、この検出電極と浮動薄膜との間の静電容量が、楕円振動のy成分(角速度成分)に対応して振動する。この静電容量の変化(振幅)を測定することにより、角速度を求めることが出来る(例えば特開平5−248872号公報,特開平7−218268号公報,特開平8−152327号公報,特開平9−127148号公報,特開平9−42973号公報)。
【0003】
米国特許明細書第5,635,638号のFig.4には、1対の振動子を半円形状の1対の梁で連結して、各振動子の振動方向xに対して撓み性が高い梁を介して、8個のアンカーにて、該1対の振動子を浮動支持した角速度センサが開示されている。
【0004】
【発明が解決しようとする課題】
従来の角速度センサではアンカー部が多点にわかれており、互いに距離があるため振動子を単振動させる梁バネ部に温度変化等の外力が加わると圧縮あるいは引張りの応力がかかる。そのため共振周波数が温度とともに変化し、ヒステリシスと不連続点をもつ特性となる。それはセンサの精度を低下させる。例えば特開平7−218268号公報に開示のごとき、アンカー部が多点にわかれた従来の角度センサでは、アンカー間に距離があるため駆動時の振動が検出側の振動にもれ、そのため精度低下となることが考えられる。また、例えば特開平7−218268号公報に開示のごときの、駆動の振動モードと検出の振動モードの不動点が不一致のものでは、互いの振動もれと外力の影響があると角速度検出精度が低下すると考えられる。また、駆動の振動モードにコリオリ力による振動を低減させる振動成分を含むと、角速度検出出力が小さい。従来の振動子の振幅が、+x方向と−x方向とで異なって振動が不安定になるときがあり、センサとして成立しないときがある。
【0005】
米国特許明細書第5,635,638号の角速度センサでは、振動子の重心から振動バネが接続されていないため、製造時の寸法変動により、振動マスに加わる駆動力が不均一になると振動がアンバランスになると推察される。また、非線形振動になる。そのため共振周波数のシフト振動のアンバランスにより検出出力の不安定な変動を発生させるためS/Nが悪いと推察される。振動駆動信号が検出コンデンサに伝わるので、角速度信号のS/Nが低いと推察される。更に、従来のセンサでは駆動振動の漏れが各検出部に漏れ信号として流れるが、励振部と各検出部までの電気的距離,幾何学的距離に対称性がないため、電気回路部の作動構成でも漏れ信号が除去できず、S/Nの低下をもたらす。
【0006】
本発明は、物理的(電気的および機械的)外乱による検出精度の低下を防ぎ、振動駆動信号の漏れによるS/N低下を抑止し、角速度検出精度を高くすることを目的とする。
【0007】
【課題を解決するための手段】
(1)本発明の角速度センサは、x,y平面上にあって中心Oを中心とし、該中心Oを通るx軸およびy軸の方向に撓み性が高く、浮動支持部材(b1〜b4,c,1,2,8,18,b5〜b8)にて基板(100)に対してx,y平面に沿う方向に振動可に支持された、ループばね梁(3);
該ループばね梁(3)の、前記中心Oを通るx軸,y軸との交点の少くとも一点を、該点で交わる該軸が延びる方向に振動駆動する励振手段(4〜6);
該ループばね梁(3)のx軸との交点に連続し、y軸に関して対称に位置し、x軸の延びる方向に撓み性が高い支持部材(8,18)にて基板(100)に対して浮動支持された第1駆動枠(7)および第2駆動枠(17);
第1駆動枠(7)の内側で第1駆動枠に連続する、y方向に撓み性が高いばね梁(9,10)、および、第1駆動枠の内側で該ばね梁(9,10)に連続する第1振動体(11);
第2駆動枠(17)の内側で第2駆動枠に連続する、y方向に撓み性が高いばね梁(19,20)、および、第2駆動枠の内側で該ばね梁(9,10)に連続する第2振動体(21);
第1振動体(11)のy振動を検出する第1の変位検出手段(12,13);および、
第2振動体(21)のy振動を検出する第2の変位検出手段(22,23);
を備える。なお、理解を容易にするためにカッコ内には、図面に示し後述する実施例の対応要素の符号を参考までに付記した。
【0008】
これによれば、励振手段(4〜6)にて、ループばね梁(3)の、x軸,y軸との交点の少くとも一点例えばy軸との交点を、y軸が延びる方向に振動駆動すると、これによるy振動と180度位相がずれたx振動が、ループばね梁(3)のx軸との交点に現われ、第1駆動枠(7)および第2駆動枠(17)が、逆相でx方向に振動する。第1振動体(11)および第2振動体(21)も、第1駆動枠(7)および第2駆動枠(17)と同じく、x方向に逆相で振動する。z軸廻りの角速度が加わると、第1振動体(11)および第2振動体(21)は、y方向に撓み性が高いばね梁(9,10/19,20)にて支持されているので、第1振動体(11)および第2振動体(21)の振動が楕円振動となり、y方向にも振動する。第1振動体(11)および第2振動体(21)のx振動が相対的に逆相であるので、y振動も相対的には逆相となる。第1および第2変位検出手段(12,13/22,23)が、これらのy振動を検出する。
【0009】
第1および第2変位検出手段(12,13/22,23)の振動検出信号の差動増幅を行なうと、各変位検出手段の振動検出信号の略2倍のレベルの振動検出信号が得られると共に、電気的なノイズが減殺されるばかりでなく、角速度以外の機械的な外力による信号成分も相殺される。例えばy方向の加,減速度が加わった場合、それによる第1振動体(11)および第2振動体(21)の移動が同方向で、第1および第2変位検出手段(12,13/22,23)の変位検出信号レベルが同方向に同程度振れるが、それらを差動増幅すると、この信号レベルの振れが相殺となる。したがって、加速度など、外力による角速度信号のS/N低下を生じない。
【0010】
ループばね梁(3)が、浮動支持部材(b1〜b4,c,1,2,8,18,b5〜b8)にて基板(100)に対してx,y平面に沿う方向に振動可に支持され、しかも、第1駆動枠(7)および第2駆動枠(17)が、x軸の延びる方向に撓み性が高い支持部材(8,18)にて基板(100)に対して浮動支持されているので、第1駆動枠(5)および第2駆動枠(25)が、温度歪を生じにくく、それらならびに第1および第2振動体(11,21)のx振動が安定するのに加えて、y方向に撓み性が高いばね梁(9,10,19,20)を介して第1および第2振動体(11,21)が浮動支持されているので、第1および第2振動体(11,21)は更に温度歪を生じにくく、角速度対応のy振動が安定したものとなり、角速度信号の信頼性(安定性)が高い。
【0011】
励振手段(4〜6)にて、ループばね梁(3)の、y軸との交点をy軸が延びる方向に振動駆動する態様では、該交点から第1および第2振動体(11,21)が等距離になるので、第1および第2変位検出手段(12,13/22,23)への励振駆動信号の漏れは同等となり、上述の差動増幅により相殺されるので、S/Nが高い角速度検出信号を得ることができる。ループばね梁(3)の、x軸との交点をx方向に振動駆動する態様は、x軸との2交点のそれぞれを対の励振手段にて振動駆動することにより、各励振手段と各変位検出手段(12,13/22,23)との距離が同一となり、同様にS/Nが高い角速度検出信号を得ることができる。
【0012】
【発明の実施の形態】
(2)前記ループばね梁(3)は前記中心Oに関して点対称の形状であり;
第1駆動枠(7)と第2駆動枠(17)は前記中心Oに関して点対称であり;
第1振動体(11)と第2振動体(21)も前記中心Oに関して点対称であり;
第1の変位検出手段(12,13)と第2の変位検出手段(22,23)も前記中心Oに関して点対称である;上記(1)に記載の角速度センサ。
【0013】
中心Oに関して点対称としたので、駆動枠および振動体が多点でアンカーされても、熱膨張,内部応力等の解放によって中心Oに関する対称性がくずれることはなく、角速度信号の信頼性(安定性)が高い。
【0014】
(3)前記ループばね梁(3)のy軸との交点に連続し、y軸の延びる方向に撓み性が高い支持部材(1,2)にて基板(100)に対して浮動支持され、x軸に関して対称に位置する第3駆動枠(77)および第4駆動枠(87);
第3駆動枠(77)に連続するy方向に撓み性が高いばね梁(79,80)に連続する第3振動体(81);
第4駆動枠(87)に連続するy方向に撓み性が高いばね梁(89,90)に連続する第4振動体(91);
第3振動体(81)のx振動を検出する第3の変位検出手段(82,83);および、
第4振動体(91)のx振動を検出する第4の変位検出手段(92,93);
を更に備える、上記(1)又は(2)に記載の角速度センサ。
【0015】
これによれば、第1および第2変位検出手段(12,13/22,23)の変位検出信号と同様な信号が、第3および第4変位検出手段(82,83/92,93)でも得られる。これらの信号を差動増幅して、第1および第2変位検出手段(12,13/22,23)の差動増幅信号と位相を合せて加算することにより、高レベルの高S/Nの角速度信号が得られる。また、第1〜第4駆動枠および第1〜第4振動体を、駆動枠と振動体の一組を、中心Oを中心に90度づつ回転させ、x軸およびy軸に関して対称なものとすることにより、温度変化,電気ノイズ,外部からの加,減速度や振動による影響が小さい、高S/N,高信頼性(安定性)の角速度信号が得られる。
【0016】
(4)各振動体(11,21,81,91)は、枠形状体であり、それぞれの内側に各振動体の、前記ループばね梁 (3) のx軸との交点のx方向の振動に直交するy方向の振動を検出する各変位検出手段(12,13/22,23/82,83/92,93)が位置する、上記(1)乃至(3)のいずれか1つに記載の角速度センサ。
【0017】
(5)浮動支持部材(b1〜b4,c,1,2,8,18,b5〜b8)は、x軸,y軸上にあって該軸が延びる方向の撓み性が高いばね梁(1,2,8,18)を含む、上記(1)乃至(3)のいずれか1つに記載の角速度センサ。
【0018】
(6)浮動支持部材(b1〜b4,c,1,2,8,18,b5〜b8)は、前記軸が延びる方向の撓み性が高いばね梁(1,2,8,18)が連続する枠体(c)、および、該枠体(c)に一端が連続し他端が基板(100)に固定された、x軸,y軸方向の撓み性が高いばね梁(b1〜b4)を含む、上記(5)に記載の角速度センサ。
【0019】
本発明の好ましい実施例では、角速度センサエレントの配列を、中心Oに関してすべて点対称とした。これによれば、駆動枠および振動体が多点でアンカーされているにもかかわらず、熱膨張,内部応力等の解放によって中心Oに関する対称性がくずれることはなく、角速度信号の信頼性(安定性)が高い。
【0020】
本発明の他の目的および特徴は、図面を参照した以下の実施例の説明より明らかになろう。
【0021】
【実施例】
−第1実施例−
図1に、本発明の第1実施例の機構要素を示す。絶縁層を形成したシリコン基板100には、導電性とするための不純物を含むポリシリコン(以下導電性ポリシリコン)の、浮動体アンカーa1〜a4,駆動電極5,6のアンカー,駆動検出電極15,16のアンカー,角速度検出電極12,13/22,23のアンカー,周波数調整電極25,26のアンカー、および、駆動検出電極15,16と対称な位置にあるダミ−電極65,66のアンカーが接合しており、これらの、65,66のアンカーを除くアンカーは、シリコン基板100上の絶縁層の上に形成された配線により、図示しない接続電極に接続されている。
【0022】
リソグラフによる半導体プロセスを用いて、シリコン基板100から浮きしかも浮動体アンカーa1〜a4に連続した、導電性ポリシリコンの、x軸に対して45度方向に向いた偏平リング状のばね梁b1〜b4,ならびにこれらに連続した矩形ループ状の連結枠cが形成されている。この連結枠cは、中心Oを通るx軸およびy軸に関して対称であり、浮動体アンカーa1〜a4およびばね梁b1〜b4は、x軸およびy軸に関して対称に分布する。
【0023】
連結枠cのx平行2辺c1,c3の中点には偏平リング状のばね梁1,2が連続し、ばね梁1,2に丸コ−ナの4辺形ループ3およびy振動枠4,24が連続している。4辺形ループ3の、x軸との交点には、x振動枠14,64が連続し、しかも、第1駆動枠7,第2駆動枠17が連続している。第1,第2駆動枠7,17は矩形枠であり、もう1つの、x軸との交点は、偏平リング状のばね梁8,18を介して、連結枠cのy平行2辺c4,c2の中点に連続している。第1駆動枠7および第2駆動枠17の内側に、偏平リング状のばね梁9,10/19,20を介して、第1振動体11および第2振動体21が連続している。これらの要素も、シリコン基板100から浮いており、導電性ポリシリコンである。
【0024】
第1,第2の駆動枠7と17、第1,第2の振動体11と21、はセンサ中心Oを通るx軸およびy軸に関して対称な形状であって対称な位置にあり、ばね梁1,2,8,18,9,10,19,20も、x軸およびy軸に関して対称である。
【0025】
y振動枠4,24には、x方向に等ピッチで分布しy方向に突出する櫛歯状の可動電極があり、駆動電極アンカーに連続した、導電性ポリシリコンの駆動電極5,6および周波数調整電極25,26にも、可動電極のx方向分布の空間に突出する櫛歯状の固定電極がありx方向に分布している。
【0026】
駆動電極5,6に交互に、y振動枠4の電位(略機器ア−スレベル)より高い電圧を印加することにより、y振動枠4がy方向に振動する。このy振動により4辺形ループ3のx平行2辺がy振動して、周波数調整電極25,26間のy振動枠24がy振動し、このy振動とは180度の位相差で、駆動枠7,17およびx振動枠14,64がx方向に振動する。y振動枠4,24のy振動は相対的に逆相である。また、x振動枠14,64のx振動も相対的に逆相であり、第1駆動枠7と第2駆動枠17が音叉振動をする。これら第1駆動枠7と第2駆動枠17で支持された第1振動体11および第2振動体21も、同様に逆相でx振動する。すなわち音叉振動をする。
【0027】
駆動枠7および振動体11でなる第1振動系と、駆動枠17および振動体21でなる第2振動系とを、このように音叉振動させることにより、エネルギ消費効率が高いx励振となる。
【0028】
駆動枠17(7)と共にx振動枠14(64)がx方向に振動することにより、駆動枠17と駆動検出電極15,16との間の静電容量が振動し、かつその容量振動と逆位相で駆動枠64と駆動検出電極65,66との間の静電容量が振動する。
【0029】
振動体11/21も大略で枠形状であるが、x方向に延びる複数の渡し梁がy方向に等ピッチで存在し、y方向で隣り合う渡し梁の間の空間に、各1対の導電体ポリシリコンの固定検出電極12,13/22,23があり、基板100上の検出電極用の各アンカーで支持されそれと電気的に連続である(電気接続関係にある)。
【0030】
対の検出電極12,13(22,23)間は絶縁されているが、振動体11(21)のy振動(y変位)を検出するための各対電極12,13(22,23)の、各対間で対応位置にある検出電極は、電気リ−ドに共通接続され、チャ−ジアンプ46,47(56,57)に接続されている。
【0031】
振動体11,21がx方向に音叉振動しているとき、中心Oを通るz軸廻りの角速度が加わると、振動体11,21が、y成分も有する相対的に逆相の楕円振動となり、これによって電極12,13/22,23にy振動対応の静電容量振動を生ずる。電極12,13の静電容量振動は相対的に逆相、同様に電極22,23の静電容量振動も相対的に逆相である。そして、振動体11,21のy振動が逆相であるので、電極12,22の静電容量振動は相対的に逆相、同様に電極13,23の静電容量振動は相対的に逆相である。
【0032】
y振動枠24の可動電極および周波数調整電極25,26の固定電極は、4辺形ループ3のx平行2辺のy振動(およびそれによって強制されるy平行2辺のx振動:7,17のx振動)の速度(ばね力)を調整し、駆動枠7,17の振動周波数を下げて、相対的に、振動体11,21の共振周波数より数100Hz程度低くするものである。なお、駆動枠7,17は、駆動電圧の印加によって固有振動数相当の周波数でx励振する。角速度検出感度を高くするために、駆動枠7,17の共振周波数(固有振動数)より、振動体11,21の共振周波数(固有振動数)を数100Hz高く設計しており、上述の周波数調整電極25,26にx振動枠14の変位に比例した電圧(静止点を零とし、x,−x方向)を印加してそのレベルを調整することにより、駆動枠7,17の共振周波数を設計値に近い値に微調整する。
【0033】
以上に説明した角速度センサには、図1に示す角速度検出回路41〜60,TSG,FCRが接続される。タイミング信号発生器TSGが、駆動枠7,17をx方向に共振周波数で駆動する駆動信号A,Bを発生して、駆動回路41a,41bに与えると共に、同期検波用の同期信号を同期検波回路45,50に与える。
【0034】
図6に、駆動信号A,Bと、駆動フィ−ドバック信号および角速度信号、ならびにx振動およびy振動を示す。駆動信号A,Bに同期して駆動回路41a,41bが駆動電極5,6に駆動電圧(パルス)を印加する。これにより、4辺形ループ3を介して、駆動枠7と共に振動体11ならびに駆動枠17と共に振動体21が、x方向に逆相で振動する。この振動によって、駆動検出電極15,16の静電容量が逆相で振動する。この静電容量の振動をチャ−ジアンプ42,43が電圧振動(静電容量信号)に変換する。
【0035】
差動増幅器44がアンプ42,43の静電容量信号(逆相)を差動増幅し、1個のチャ−ジアンプが発生する静電容量信号の振幅を略2倍とし、ノイズを相殺した差動信号を発生し、同期検波回路45およびフィ−ドバック処理回路FCRに与える。同期検波回路45は、駆動信号と同相の同期信号に同期して、差動増幅器44が与える差動信号すなわちx振動を表わすx振動検出電圧を検波し、駆動パルス信号に対するx振動の位相ずれを表わすフィ−ドバック信号を発生してフィ−ドバック処理回路FCRに与える。
【0036】
フィ−ドバック処理回路FCRは、同期検波回路45が与える位相ずれ信号レベルを設定値に合わすための移相信号を、駆動回路41a,41bに与え、それを受けた駆動回路41a,41bは、移相信号に対応して、駆動信号に対する出力駆動電圧の位相をシフトする。同期検波回路45の位相ずれ信号レベルが実質上設定値になった状態で、駆動枠7,17のx振動は安定したものとなる。周波数調整電極25,26には、駆動枠7,17の振動周波数を、振動体11,21の共振周波数(設計値)より数100Hz程度低い値に下げる直流電圧を、周波数調整回路59,60が印加する。
【0037】
安定した共振音叉振動の間に、中心Oを通るz軸廻りの角速度が加わると、コリオリ力が駆動枠7,17および振動体11,21に加わり、これらに、x振動に加えてy振動を含む楕円運動を起こさせる。しかし駆動枠7,17は、x方向には撓み性が高いがy方向には剛性が高いばね梁8,18および4辺形ループ3のy平行2辺で支持されているので、y振動は小さい。ところが振動体11,21は、y方向に撓み性が高いばね梁9,10,19/20で支持されているので、y方向に大きく振動する。振動体11,21のこのy振動は相対的に逆相である。
【0038】
振動体11のy振動を検出する対の検出電極12,13の静電容量が逆相で振動し、これを表わす静電容量信号をチャ−ジアンプ46,47が発生して差動増幅器48が、両信号の差動信号すなわち1個のチャ−ジアンプが発生する静電容量信号の振幅を略2倍とし、ノイズを相殺した差動信号、を発生し、差動増幅器49に与える。振動体21のy振動を検出する対の検出電極22,23の静電容量が逆相で振動し、これを表わす静電容量信号をチャ−ジアンプ56,57が発生して差動増幅器58が、両信号の差動信号すなわち1個のチャ−ジアンプが発生する静電容量信号の振幅を略2倍とし、ノイズを相殺した差動信号、を発生し、差動増幅器49に与える。差動増幅器48と58の差動増幅信号は相対的に逆相である。したがって差動増幅器49の差動出力は、第1振動体11と第2振動体21の各信号処理回路に同時に実質上同一レベルで作用するノイズを相殺し、しかも、加,減速度,振動など、第1,第2振動体11,21に同時に同方向に作用する外力による振動体のy変位成分(これもノイズに該当する)も相殺した、角速度起因のy振動を増幅した検出信号であり、角速度検出感度が高く、S/Nが高い。
【0039】
この差動出力すなわち検出信号は、同期検波回路50に与えられ、同期検波回路50は、駆動信号と同相の同期信号に同期して、検出信号を検波し、角速度を表わす信号を発生する。この角速度信号の極性(±)は加わった角速度の方向を、信号レベルの絶対値は角速度の大きさを表わす。
【0040】
第1実施例の角速度センサは、上述のように振動型の双共振音叉構造をもち、温度特性の改善とS/N向上を実現したことを特徴とする。温度特性の改善には、保護枠でもある連結枠cを設けて、基板100と振動子(3,7,17,11,21)の熱膨張差による応力の増加を、連結枠cとばね梁b1〜b4で緩和している。というのは基板100と振動子(3,7,17,11,21,14,64)の熱膨張差を、ばね梁b1〜b4のばね形状で吸収する。このばね形状は、ループ形状をしているため、温度による膨張をばねの伸び縮みで吸収する時、ヒステリシスを持たない。そのため、さらに温度特性が改善する。
【0041】
保護枠である連結枠cの中にある2つの振動子(7,11/17,21)を接続するばね梁3は、円環に近い形状をしており、線形性のある単振動の振動が可能になっている。また、駆動枠7,振動体11,振動枠64と、駆動枠17,振動体21,駆動枠14のx振動は、このばね梁3の特性により、逆相の駆動を実現する。これらの振動子は保護枠との接続のために4つのばね梁1,2,8,18により接続されており、応力を緩和するようになっている。このため駆動振動xは線形性のある単振動となる。
【0042】
駆動部の形状は、加振する部分(駆動枠14,ばね梁3)を振動子(7,17,11,21,14,64)と分離し、さらに2つの振動子(7,11,64),(17,21,14)から等距離になるように配置している。駆動変位の検出部(64〜66,14〜16)は、ばね3の、x軸,y軸との交点に接続されている。これにより振動子の駆動変位をフィードバックするための駆動変位検出部(64〜66,14〜16)への駆動信号の漏れが低減し、かつ、漏れ信号が同相成分でもれるような形状を実現しているため、検出部のS/Nを向上することができる。
【0043】
角速度を検出する部分9〜13,19〜23は、駆動枠7,17の内部にループ状のばね梁9,10/19,20に接続された振動体11,21およびそれらのy変位を検出する固定電極12,13/22,23により構成されている。この構成により、角速度対応のy振動の振動モードでは、駆動枠7と17が、また振動体11と21が、逆相で働くため、釣り合いが取れる構成になっている。そのため、角速度検出振動漏れがこの構成ではほとんど無視でき、S/Nが向上する。また、角速度検出振動を同相で振動させてもよい。
【0044】
−第2実施例−
図2に第2実施例の機構要素を示す。この第2実施例では、第1,第2駆動枠7,17のy振動をより抑制するために、偏平ループばね梁(8/18)を各2つ8a,8b/18a,18bに分けてx軸に関して対称な位置に配置し、かつ、第1,第2振動体11,22のx振動をより抑制するために、偏平ループばね梁(9,10/19,20)を各2つ9a,9b,10a,10b/19a,19b,20a,20bに分けて、各振動体の、y軸に平行な中心線に関して対称な位置に配置したものである。これにより、駆動x振動と角速度検知のための検出y振動の分離効果が高く、角速度信号のS/Nがより高くなる。
【0045】
−第3実施例−
図3に、本発明の第3実施例を示す。この第3実施例では、角速度起因の振動(上述の第1,第2実施例ではy振動)の、中心Oを中心とするバランスを整えるために、もう1対の駆動枠および振動体を付加したものである。すなわち、第1駆動枠7,偏平ループばね梁9,10,第1振動体11および振動検出電極12,13を、時計廻りに90度回転させたものと同一形状の第3駆動枠77,偏平ループばね梁79,80,第3振動体81および振動検出電極82,83と、時計廻りに270度回転させたのと同一形状の第4駆動枠87,偏平ループばね梁89,90,第4振動体91および振動検出電極92,93が付加されており、すべての要素が、x軸およびy軸に関して対称に分布している。
【0046】
駆動電極5,6に、駆動信号A,Bに同期した駆動電圧(パルス)を印加することにより、第1,第2駆動枠7,17がx方向に逆相で振動し、かつ、第3,第4駆動枠がy方向に逆相で振動する。z軸廻りの角速度が加わると、第1,第2振動体11,21がy方向に逆相で振動し、第3,第4振動体81,91がx方向に逆相で振動する。
【0047】
図示は省略したが、第3組および第4組の振動検出電極82,83および92,93にも、図1に示す、第1組および第2組の振動検出電極12,13および22,23に接続したアンプ46,47,56,57,差動増幅器48,58,49と同様なものを接続し、第1組および第2組の振動検出電極系の最終段の差動増幅器49の出力と、第3組および第4組の振動検出電極系の最終段の差動増幅器の出力を、追加の差動増幅器に与えて差動増幅器に与えることにより、両系の検出レベルを略2倍としノイズを相殺した角速度起因の振動検出信号が得られる。これを同期検波回路50(例えば図1)に与えることにより、角速度信号が得られる。第1,第2実施例では、角速度起因の振動検出をy軸対称で行なうが、この第3実施例では、x軸対称でも行なうので、角速度起因の振動のバランスが高く、よりS/Nが高い角速度信号を得ることができる。
【0048】
−第4実施例−
図4に本発明の第4実施例を示す。この第4実施例は、更に駆動ばね梁3の不動点を、ループ状のばね梁b5〜b8を介してアンカーa5〜a8にて固定支持した。この構成により駆動ばね梁3が検出回路のGNDに接続されるため、駆動信号の漏れが更に低減し、角速度信号のS/Nが更に向上する。
【0049】
−第5実施例−
図5に本発明の第5実施例を示す。この第5実施例は、第2実施例と同様に、第1,第2駆動枠7,17のy振動ならびに第3,第4駆動枠81,91をより抑制するために、各偏平ループばね梁を対のものとし、しかも第4実施例と同様に駆動ばね梁3の不動点をループばね梁を介してアンカーにて支持したものである。これにより、駆動x,y振動と角速度検知のための検出y,x振動の分離効果が高く、角速度信号のS/Nがより高くなる。
【図面の簡単な説明】
【図1】 本発明の第1実施例の平面図である。
【図2】 本発明の第2実施例の平面図である。
【図3】 本発明の第3実施例の平面図である。
【図4】 本発明の第4実施例の平面図である。
【図5】 本発明の第5実施例の平面図である。
【図6】 第1〜5実施例の駆動回路41,42が、駆動電極に印加する電圧等を示すタイムチャ−トであり、(a)および(b)は駆動電極に印加される駆動電圧を、(c)は同期検波回路45の出力信号を、(d)は同期検波回路50の出力信号を、(e)は差動増幅器44の出力信号を、(f)は差動増幅器49の出力信号を、それぞれ示す。
【符号の説明】
a1〜a8:アンカー
b1〜b8,1〜3,8〜10,19,20:ばね梁
c:連結枠
4:駆動枠
5,6:駆動電極
7:第1駆動枠
11:第1振動体
12,13,22,23:y変位検出電極
14,24,64:振動枠
15,16,65,66:駆動変位検出電極
25,26:周波数調整用電極

Claims (6)

  1. x,y平面上にあって中心Oを中心とし、該中心Oを通るx軸およびy軸の方向に撓み性が高く、浮動支持部材にて基板に対してx,y平面に沿う方向に振動可に支持された、ループばね梁;
    該ループばね梁の、前記中心Oを通るx軸,y軸との交点の少くとも一点を、該点で交わる該軸が延びる方向に振動駆動する励振手段;
    該ループばね梁のx軸との交点に連続し、y軸に関して対称に位置し、x軸の延びる方向に撓み性が高い支持部材にて基板に対して浮動支持された第1駆動枠および第2駆動枠;
    第1駆動枠の内側で第1駆動枠に連続する、y方向に撓み性が高いばね梁、および、第1駆動枠の内側で該ばね梁に連続する第1振動体;
    第2駆動枠の内側で第2駆動枠に連続する、y方向に撓み性が高いばね梁、および、第2駆動枠の内側で該ばね梁に連続する第2振動体;
    第1振動体のy振動を検出する第1の変位検出手段;および、
    第2振動体のy振動を検出する第2の変位検出手段;
    を備える角速度センサ。
  2. 前記ループばね梁は、前記中心Oに関して点対称の形状であり;
    第1駆動枠と第2駆動枠は、前記中心Oに関して点対称であり;
    第1振動体と第2振動体も、前記中心Oに関して点対称であり;
    第1の変位検出手段と第2の変位検出手段も、前記中心Oに関して点対称である;
    請求項1に記載の角速度センサ。
  3. 前記ループばね梁のy軸との交点に連続し、y軸の延びる方向に撓み性が高い支持部材にて基板に対して浮動支持され、x軸に関して対称に位置する第3駆動枠および第4駆動枠;
    第3駆動枠に連続するy方向に撓み性が高いばね梁に連続する第3振動体;
    第4駆動枠に連続するy方向に撓み性が高いばね梁に連続する第4振動体;
    第3振動体のx振動を検出する第3の変位検出手段;および、
    第4振動体のx振動を検出する第4の変位検出手段;
    を更に備える、請求項1又は2に記載の角速度センサ。
  4. 各振動体は、枠形状体であり、それぞれの内側に各振動体の、前記ループばね梁のx軸との交点のx方向の振動に直交するy方向の振動を検出する各変位検出手段が位置する、請求項1乃至3のいずれか1つに記載の角速度センサ。
  5. 浮動支持部材は、x軸,y軸上にあって該軸が延びる方向の撓み性が高いばね梁を含む、請求項1乃至3のいずれか1つに記載の角速度センサ。
  6. 浮動支持部材は、前記軸が延びる方向の撓み性が高いばね梁が連続する枠体、および、該枠体に一端が連続し他端が基板に固定された、x軸,y軸方向の撓み性が高いばね梁を含む、請求項5に記載の角速度センサ。
JP17699298A 1998-06-24 1998-06-24 角速度センサ Expired - Fee Related JP4075022B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP17699298A JP4075022B2 (ja) 1998-06-24 1998-06-24 角速度センサ
DE19928759A DE19928759B4 (de) 1998-06-24 1999-06-23 Winkelgeschwindigkeitssensor
US09/339,107 US6134961A (en) 1998-06-24 1999-06-24 Angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17699298A JP4075022B2 (ja) 1998-06-24 1998-06-24 角速度センサ

Publications (2)

Publication Number Publication Date
JP2000009474A JP2000009474A (ja) 2000-01-14
JP4075022B2 true JP4075022B2 (ja) 2008-04-16

Family

ID=16023299

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17699298A Expired - Fee Related JP4075022B2 (ja) 1998-06-24 1998-06-24 角速度センサ

Country Status (3)

Country Link
US (1) US6134961A (ja)
JP (1) JP4075022B2 (ja)
DE (1) DE19928759B4 (ja)

Families Citing this family (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000337884A (ja) * 1999-03-25 2000-12-08 Murata Mfg Co Ltd 角速度センサ
KR100363786B1 (ko) * 1999-05-13 2002-12-11 삼성전기주식회사 마이크로 자이로스코프
KR100363785B1 (ko) * 1999-06-04 2002-12-11 삼성전기주식회사 마이크로 자이로스코프
JP3554965B2 (ja) * 1999-12-28 2004-08-18 株式会社村田製作所 角速度センサ
JP3666335B2 (ja) * 2000-01-14 2005-06-29 株式会社村田製作所 角速度センサ
JP3603746B2 (ja) * 2000-05-02 2004-12-22 株式会社村田製作所 振動子
DE10108196A1 (de) * 2001-02-21 2002-10-24 Bosch Gmbh Robert Drehratensensor
JP2002310664A (ja) * 2001-04-18 2002-10-23 Denso Corp 角速度センサ
DE10203515A1 (de) * 2002-01-30 2003-08-07 Bosch Gmbh Robert Mikromechanischer Drehratensensor
KR100476562B1 (ko) * 2002-12-24 2005-03-17 삼성전기주식회사 수평형 및 튜닝 포크형 진동식 마이크로 자이로스코프
US7234539B2 (en) * 2003-07-10 2007-06-26 Gyrodata, Incorporated Method and apparatus for rescaling measurements while drilling in different environments
US20050062362A1 (en) * 2003-08-28 2005-03-24 Hongyuan Yang Oscillatory gyroscope
FR2859528B1 (fr) * 2003-09-09 2006-01-06 Thales Sa Gyrometre micro-usine a double diapason et a detection dans le plan de la plaque usinee
US20050066728A1 (en) * 2003-09-25 2005-03-31 Kionix, Inc. Z-axis angular rate micro electro-mechanical systems (MEMS) sensor
JP4433747B2 (ja) * 2003-09-29 2010-03-17 株式会社村田製作所 角速度検出装置
US7117605B2 (en) * 2004-04-13 2006-10-10 Gyrodata, Incorporated System and method for using microgyros to measure the orientation of a survey tool within a borehole
JP4455201B2 (ja) * 2004-07-20 2010-04-21 富士通マイクロエレクトロニクス株式会社 検出回路
WO2006034706A1 (de) * 2004-09-27 2006-04-06 Conti Temic Microelectronic Gmbh Drehratensensor
US7478557B2 (en) * 2004-10-01 2009-01-20 Analog Devices, Inc. Common centroid micromachine driver
EP1677073B1 (en) * 2004-12-29 2013-06-19 STMicroelectronics Srl Micro-electro-mechanical gyroscope having electrically insulated regions
DE102005008352B4 (de) * 2005-02-23 2007-10-11 Universität des Saarlandes Drehratensensor
JP4887034B2 (ja) * 2005-12-05 2012-02-29 日立オートモティブシステムズ株式会社 慣性センサ
JP4396725B2 (ja) * 2006-05-12 2010-01-13 セイコーエプソン株式会社 検出装置、ジャイロセンサ及び電子機器
US8302476B2 (en) * 2006-09-15 2012-11-06 Hitachi, Ltd. Angular velocity measuring device
JP5070778B2 (ja) * 2006-09-20 2012-11-14 株式会社デンソー 力学量センサ
JP4449972B2 (ja) * 2006-11-10 2010-04-14 セイコーエプソン株式会社 検出装置、センサ及び電子機器
JP4211840B2 (ja) * 2006-11-10 2009-01-21 セイコーエプソン株式会社 検出装置、センサ及び電子機器
US8462109B2 (en) * 2007-01-05 2013-06-11 Invensense, Inc. Controlling and accessing content using motion processing on mobile devices
US8250921B2 (en) 2007-07-06 2012-08-28 Invensense, Inc. Integrated motion processing unit (MPU) with MEMS inertial sensing and embedded digital electronics
US7796872B2 (en) * 2007-01-05 2010-09-14 Invensense, Inc. Method and apparatus for producing a sharp image from a handheld device containing a gyroscope
US8508039B1 (en) 2008-05-08 2013-08-13 Invensense, Inc. Wafer scale chip scale packaging of vertically integrated MEMS sensors with electronics
US8020441B2 (en) * 2008-02-05 2011-09-20 Invensense, Inc. Dual mode sensing for vibratory gyroscope
US8952832B2 (en) 2008-01-18 2015-02-10 Invensense, Inc. Interfacing application programs and motion sensors of a device
US8141424B2 (en) * 2008-09-12 2012-03-27 Invensense, Inc. Low inertia frame for detecting coriolis acceleration
US8047075B2 (en) 2007-06-21 2011-11-01 Invensense, Inc. Vertically integrated 3-axis MEMS accelerometer with electronics
US7934423B2 (en) * 2007-12-10 2011-05-03 Invensense, Inc. Vertically integrated 3-axis MEMS angular accelerometer with integrated electronics
US20100071467A1 (en) * 2008-09-24 2010-03-25 Invensense Integrated multiaxis motion sensor
US8065085B2 (en) * 2007-10-02 2011-11-22 Gyrodata, Incorporated System and method for measuring depth and velocity of instrumentation within a wellbore using a bendable tool
US7677099B2 (en) * 2007-11-05 2010-03-16 Invensense Inc. Integrated microelectromechanical systems (MEMS) vibrating mass Z-axis rate sensor
US8185312B2 (en) 2008-10-22 2012-05-22 Gyrodata, Incorporated Downhole surveying utilizing multiple measurements
US8095317B2 (en) 2008-10-22 2012-01-10 Gyrodata, Incorporated Downhole surveying utilizing multiple measurements
US8065087B2 (en) 2009-01-30 2011-11-22 Gyrodata, Incorporated Reducing error contributions to gyroscopic measurements from a wellbore survey system
DE102009001248B4 (de) * 2009-02-27 2020-12-17 Hanking Electronics, Ltd. MEMS-Gyroskop zur Ermittlung von Rotationsbewegungen um eine x-, y- oder z-Achse
FR2945621B1 (fr) * 2009-05-15 2011-08-26 Commissariat Energie Atomique Structure de couplage pour gyrometre resonnant
JP5652775B2 (ja) * 2009-05-29 2015-01-14 トレックス・セミコンダクター株式会社 加速度センサー素子およびこれを有する加速度センサー
JP2011058860A (ja) * 2009-09-08 2011-03-24 Hitachi Automotive Systems Ltd 角速度検出装置
US8534127B2 (en) 2009-09-11 2013-09-17 Invensense, Inc. Extension-mode angular velocity sensor
US9097524B2 (en) 2009-09-11 2015-08-04 Invensense, Inc. MEMS device with improved spring system
JP5817142B2 (ja) * 2011-02-22 2015-11-18 セイコーエプソン株式会社 水平多関節ロボット
JP5880877B2 (ja) * 2012-05-15 2016-03-09 株式会社デンソー センサ装置
KR101388814B1 (ko) * 2012-09-11 2014-04-23 삼성전기주식회사 각속도 센서
KR101366990B1 (ko) * 2012-12-28 2014-02-24 삼성전기주식회사 각속도 센서
US10132630B2 (en) * 2013-01-25 2018-11-20 MCube Inc. Multi-axis integrated MEMS inertial sensing device on single packaged chip
US10036635B2 (en) 2013-01-25 2018-07-31 MCube Inc. Multi-axis MEMS rate sensor device
US20140260611A1 (en) * 2013-03-15 2014-09-18 Analog Devices, Inc. XY-Axis Gyroscopes with Electrode Configuration for Detecting Quadrature Errors and Out-of-Plane Sense Modes
FI126071B (en) * 2014-01-28 2016-06-15 Murata Manufacturing Co Improved gyroscope structure and gyroscope
JP6344033B2 (ja) * 2014-04-22 2018-06-20 セイコーエプソン株式会社 角速度センサー、電子機器及び移動体
JP5821995B2 (ja) * 2014-05-16 2015-11-24 セイコーエプソン株式会社 物理量センサーおよび電子機器
JP6149910B2 (ja) * 2015-10-08 2017-06-21 セイコーエプソン株式会社 物理量センサーおよび電子機器
TWI669267B (zh) * 2017-04-04 2019-08-21 日商村田製作所股份有限公司 用於角速度的微機械感測器元件
JP7215607B2 (ja) * 2017-09-29 2023-01-31 セイコーエプソン株式会社 物理量センサー、慣性計測装置、移動体測位装置、携帯型電子機器、電子機器および移動体
GB2570732B (en) * 2018-02-06 2023-01-11 Atlantic Inertial Systems Ltd Angular rate sensors
JP7215606B2 (ja) * 2020-07-22 2023-01-31 セイコーエプソン株式会社 物理量センサーおよび電子機器

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263113B2 (ja) * 1992-03-06 2002-03-04 株式会社東芝 慣性センサー
US5349855A (en) * 1992-04-07 1994-09-27 The Charles Stark Draper Laboratory, Inc. Comb drive micromechanical tuning fork gyro
JP3077077B2 (ja) * 1994-01-28 2000-08-14 ザ・チャールズ・スターク・ドレイパー・ラボラトリー・インコーポレイテッド 慣性レートセンサー
DE19500800A1 (de) * 1994-06-16 1995-12-21 Bosch Gmbh Robert Beschleunigungssensor
DE4442033C2 (de) * 1994-11-25 1997-12-18 Bosch Gmbh Robert Drehratensensor
JP3385759B2 (ja) * 1994-11-30 2003-03-10 株式会社デンソー 半導体ヨーレートセンサ及びその製造方法
KR100374804B1 (ko) * 1995-05-25 2003-05-09 삼성전자주식회사 진동형자이로스코프
US5635638A (en) * 1995-06-06 1997-06-03 Analog Devices, Inc. Coupling for multiple masses in a micromachined device
JP3409520B2 (ja) * 1995-08-01 2003-05-26 日産自動車株式会社 角速度センサ
DE19530007C2 (de) * 1995-08-16 1998-11-26 Bosch Gmbh Robert Drehratensensor
JP3307200B2 (ja) * 1995-11-01 2002-07-24 株式会社村田製作所 角速度センサ
KR100327481B1 (ko) * 1995-12-27 2002-06-24 윤종용 마이크로 자이로스코프
JP3409565B2 (ja) * 1996-03-01 2003-05-26 日産自動車株式会社 角速度センサの自己診断方法
DE19617666B4 (de) * 1996-05-03 2006-04-20 Robert Bosch Gmbh Mikromechanischer Drehratensensor
US5992233A (en) * 1996-05-31 1999-11-30 The Regents Of The University Of California Micromachined Z-axis vibratory rate gyroscope

Also Published As

Publication number Publication date
DE19928759A1 (de) 2000-01-05
US6134961A (en) 2000-10-24
JP2000009474A (ja) 2000-01-14
DE19928759B4 (de) 2007-05-31

Similar Documents

Publication Publication Date Title
JP4075022B2 (ja) 角速度センサ
JP3882973B2 (ja) 角速度センサ
US6321598B1 (en) Angular velocity sensor device having oscillators
US6119518A (en) Angular velocity sensor
KR101166866B1 (ko) 수평으로 배향된 구동 전극을 구비한 mems자이로스코프
JP3489487B2 (ja) 角速度検出装置
JP3882972B2 (ja) 角速度センサ
US9885576B2 (en) Angular velocity sensor
US7523665B2 (en) Angular velocity sensor and method for operating the same
JP3753209B2 (ja) 角速度センサ
JP2000046560A (ja) 角速度センサ
KR20000029967A (ko) 각속도검출장치
JP4561820B2 (ja) 角速度センサ
JP2000009475A (ja) 角速度検出装置
JP2000009470A (ja) 角速度センサ
JPH0854240A (ja) 角速度センサおよび角速度検出装置
JP2000074673A (ja) 複合運動センサ
JP2000105124A (ja) 静電駆動,静電検出式の角速度センサ
JP2000049358A (ja) 表面マイクロマシンおよびその製造方法
JP2000018951A (ja) 角速度検出方法および装置
JP2000018952A (ja) 角速度センサ
JP2013108929A (ja) 高精度化された振動型ジャイロ
JP2002039759A (ja) 半導体角速度センサ
JP2000146592A (ja) 振動式検出器
JP2001264069A (ja) 角速度センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050523

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070928

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080107

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20080107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees