JP3581513B2 - 光学機器 - Google Patents

光学機器 Download PDF

Info

Publication number
JP3581513B2
JP3581513B2 JP02438197A JP2438197A JP3581513B2 JP 3581513 B2 JP3581513 B2 JP 3581513B2 JP 02438197 A JP02438197 A JP 02438197A JP 2438197 A JP2438197 A JP 2438197A JP 3581513 B2 JP3581513 B2 JP 3581513B2
Authority
JP
Japan
Prior art keywords
temperature
lens
humidity
lens group
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02438197A
Other languages
English (en)
Other versions
JPH10206722A (ja
Inventor
盛也 太田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP02438197A priority Critical patent/JP3581513B2/ja
Priority to US09/009,931 priority patent/US5895129A/en
Publication of JPH10206722A publication Critical patent/JPH10206722A/ja
Application granted granted Critical
Publication of JP3581513B2 publication Critical patent/JP3581513B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/10Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens
    • G02B7/102Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification by relative axial movement of several lenses, e.g. of varifocal objective lens controlled by a microcomputer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/028Mountings, adjusting means, or light-tight connections, for optical elements for lenses with means for compensating for changes in temperature or for controlling the temperature; thermal stabilisation

Description

【0001】
【発明の属する技術分野】
本発明は光学機器に関し、特にフォーカスや変倍の際に光軸上を移動する移動レンズ群を有する光学系(撮影光学系)、例えば単一焦点距離の撮影レンズやズームレンズ等の光学系を備えたビデオカメラ、銀塩カメラ、或は電子スチルカメラ等の光学機器に関する。
【0002】
【従来の技術】
近年、カメラ等の光学機器においては、撮影光学系の小型化及び固体撮像素子のイメージサイズの小径化が急速に進んでいる。また、撮影光学系及び光学系の保持部材の材料としてプラスティック材料が多く使用されている。
【0003】
光学系及び光学系の保持部材の材料としてプラスティック材料を使用すると、これらの部材が金型により容易に成形でき、又、その形状の任意性も大きい上、他の材料に比しコストメリットが大きい等多くの利点がある。この為、プラスティック材料より成るレンズ及び光学系の保持部材がファインダ系や赤外線アクティブオートフォーカスユニット、そして、撮影光学系等に多く採用されているのが実情である。
【0004】
ところが、プラスティック材料は、無機ガラス材料に比べて環境変化に対する物理的性質の変化が大きい。例えば、線膨張係数が大きく、プラスティック材料のPMMAでは代表値で67.9×10−6/ ℃であるのに対して、無機ガラスのLaK 14(OHARA 製)では57×10−7/ ℃と一桁小さい。また、温度変化に対する屈折率の変化についても、PMMAでは代表値で1.0〜1.2 ×10−4/ ℃であるのに対して、上記Lak
14では、D 線で3.9〜4.4 ×10−6/ ℃と二桁小さい。
【0005】
このようにプラスティック材料は、無機ガラス材料に比べ温度変化に対して物理的諸定数(屈折率や形状等)の変化が大きい。例えば、プラスティック材料より成るレンズ、所謂、プラスティックレンズは、温度変化に対して焦点距離が無機ガラス材料より成るレンズに比べて大きく変化する。
【0006】
また、プラスティック材料は、無機ガラス材料に比べて吸水率が大きい。この為、プラスティックレンズの光学的諸定数は温度変化と同様に湿度変化に対しても無機ガラス材料より成るレンズに比べて大きく変化する。
【0007】
かくして、光学系の一部及び光学系の保持部材にプラスティック材料を使用した場合、前述したような多くの利点がある反面、環境変化、特に、温度変化や湿度変化に対し物理的性質や寸法の変化が大きい問題がある。例えばプラスティックレンズを使用すれば無機ガラス材料より成るレンズを使用した場合に比べ、焦点距離等の光学的性質が大きく変化してしまうという光学性能上の弊害が生じてくる。
【0008】
【発明が解決しようとする課題】
従来から環境の変化に伴い、光学系の結像位置 (ピント) がずれる、適切なレンズ制御が行われないといった問題があった。特にデジタル技術による高画質化が進むなかで、光学系の環境変化によるピントずれの影響が顕著に現れるようになり、極めて大きな問題となっている。
【0009】
更に、最近の光学系はズームの高倍率化、小型化が先を競って行われている。それに伴い温度変化や湿度変化等による光学系の予定結像面に対するピントずれ量が増加し、製品として致命的な欠点となりかねない極めて重要な問題となっている。
【0010】
従ってこのような環境変化に伴う結像面のずれをいかに効果的に補正するかが極めて重要な課題となっている。
【0011】
これは、更なる高画質化、高倍率化、小型化を進める上で更に重要な課題となってくる。
【0012】
そして、以上の環境変化に対して補正する際、個体差、生産ロット、などにより補正の程度に違いが有る場合、環境補正係数が個々に異なる場合が生じる。その際その度ごとにメインプログラム変更をおこなうのは開発日程、製造の工数、製造コストの点からしても極めて不具合が生じる。
【0013】
又、光学機器の初期調整時の環境と実際に使用する環境が異なったり、また、ある条件の環境で調整する事によって正確な調整が行えない場合に、実際に使用する環境でボケが生じるといった光学機器として極めて好ましくない問題が発生する。
【0014】
本発明の目的は、移動レンズ群を備えた光学系(撮影レンズ)を有する光学機器の環境に温度変化や湿度変化等の環境変化があったとき、この環境変化に応じて該移動レンズ群の移動軌跡をその都度適切に設定することにより結像面のずれを補正し、高い光学性能を維持することのできる光学機器の提供である。
【0015】
又、調整を要する光学機器で環境が変化した場合、あるいは環境に大きく影響される構成の光学機器であっても、ピントが合焦位置に達しないといった問題や、ボケるといった問題が解決され、常に良好な合焦状態が得られる光学機器の提供である。
【0016】
【課題を解決するための手段】
請求項1の発明の光学機器は、移動レンズ群RR及びバリエータレンズ群を含む複数のレンズ群を有する光学系により結像面上に物体像を形成する光学機器において、
該移動レンズ群RR及びバリエータレンズ群を駆動するレンズ駆動手段と、
該光学系の構造部材に関する温度情報を検出する温度検出手段と、
所定の基準温度における前記移動レンズ群RRとバリエータレンズ群の代表位置データと、
前記構造部材の温度変化による結像面の変動を補正すべく、前記バリエータの移動範囲を所定幅で分割した分割領域毎のバリエータレンズ位置に対応する移動レンズ群RRの位置データの補正をするための基準温度補正係数データ群を記憶した第一の記憶手段と、
該基準の温度補正係数データ群を補正する係数補正データを記憶した書き換え可能な第二の記憶手段と、を有し、
構造部材に関する基準の温度補正係数データ群と該係数補正データと該温度情報に基づいて結像面位置の変動を補正するための該移動レンズ群RRの補正位置データを算出し、前記算出結果に基づいて前記レンズ駆動手段を制御して結像面位置の変動を補正する制御手段を有することを特徴としている。
【0017】
請求項2の発明は、請求項1の発明において、前記構造部材に関する温度情報はレンズの保持部材に関する温度情報であることを特徴としている。
請求項3の発明は、請求項1又は2の発明において、前記光学系はリアフォーカスタイプのズームレンズであることを特徴としている。
請求項4の発明は、請求項3の発明において、前記構造部材に関する温度補正係数データは変倍機能を有する移動レンズ群V の位置の関数として定義されることを特徴としている。
請求項5の発明は、請求項3又は4の発明において、前記補正位置データは前記温度検出手段から検出された温度と前記基準温度との差分値に、前記構造部材に関する温度補正係数データを掛け合せた結果に前記代表位置データを足し合わせたもので定義されることを特徴としている。
請求項6の発明は、請求項3から5のいずれか1項の発明において、前記光学系は少なくとも一部にプラスティックレンズを有することを特徴としている。
【0018】
請求項7の発明の光学機器は、移動レンズ群RR及びバリエータレンズ群を含む複数のレンズ群を有する光学系により結像面上に物体像を形成する光学機器において、
該移動レンズ群RR及びバリエータレンズ群を駆動するレンズ駆動手段と、
該光学系の構造部材に関する湿度情報を検出する湿度検出手段と、
所定の基準温度における前記移動レンズ群RRとバリエータレンズ群の代表位置データと、前記構造部材の湿度変化による結像面の変動を補正すべく、前記バリエータの移動範囲を所定幅で分割した分割領域毎のバリエータレンズ位置に対応する移動レンズ群RRの位置データの補正をするための基準湿度補正係数データ群を記憶した第一の記憶手段と、
該基準の湿度補正係数データを補正する係数補正データを記憶した書き換え可能な第二の記憶手段と、を有し、
構造部材に関する基準の湿度補正係数データ群と該係数補正データと該湿度情報に基づいて結像面位置の変動を補正するための該移動レンズ群RRの補正位置データを算出し、前記算出結果に基づいて前記レンズ駆動手段を制御して結像面位置の変動を補正する制御手段を有することを特徴としている。
【0019】
請求項8の発明は、請求項7の発明において、前記湿度検出手段は静電容量式のセンサを少なくとも1個有することを特徴としている。
【0033】
【発明の実施の形態】
図1 は本発明の光学機器の実施形態1 の要部概略図である。
【0034】
図中1 は光学系であり、4 つのレンズ群より成る4 群構成のリアフォーカスズームレンズ(以下” RFZレンズ”と称する)より成っている。 RFZレンズ1 は固定レンズ群である第1 のレンズ群(以下”前玉”と称する)101 、変倍機能を有する移動レンズ群V である第2 のレンズ群(以下”バリエータ”と称する)102 、固定レンズ群である第3 のレンズ群(以下”アフォーカル”と称す)103 、そして移動レンズ群RRであり且つフォーカス機能と第2 群による変倍に伴う結像面変動を補正するコンペンセータとしての機能を有する第4 のレンズ群(以下”RR”と称する)104 より成っている。
【0035】
実際には、上記レンズ群は複数枚のレンズで構成されていて、例えば本実施形態においては、前玉101 は3 枚、バリエータ102 は3 枚、アフォーカル103 は1 枚、RR104 は2 枚、合計9 枚のレンズ構成より成っているが、各レンズ群の構成枚数については、特に限定するものでない。
【0036】
102aは、バリエータ102 を保持するための保持部材(以下“V 移動環”と称する)、104aはRR104 を保持するための保持部材(以下“RR移動環”と称する)であり、ガラス繊維の混合されたポリカーボネート等のプラスティック材料を使用して金型による成形、又は切削加工により製作している。
【0037】
2 は上記レンズ群の保持部材 (以下”鏡筒”と称する)であり、ポリカーボネート等のプラスティック材料を使用して金型による成形、又は切削加工により製作している。
【0038】
なお、本発明においては、鏡筒や移動環について特に上記材料及び製作方法に限定するものではなく、上記以外のもの、例えばアルミニウム、チタン等の金属材料をダイカストにより成形したものや、ダイカスト成形した後に2 次加工によって製作したもの、又はブロックから直接切削加工したものでも良い。
【0039】
又、鏡筒2 は、いくつかの部材に分けて形成したものでもよく、部材の数は特に限定するものでない。例えば、RFZ レンズ1 の光軸105 に対して平行に分割した2 部材から形成してもよく、また上記光軸105 に垂直に分割した2 部材でもよく、又、各々2 部材だけでなく数部材から形成してもよい。
【0040】
又、本実施形態においては、前玉101 及びアフォーカル103 は、保持部材101a、103aに各々固定した後、鏡筒2 に固定する構成としているが、鏡筒2 に接着等で直接固定してもよく、特に保持部材を介することに限定しない。
【0041】
3 は、CCD 等の光電変換素子18に入射する光量を調節するための絞り部材であり、iGメータ又はステップモータ等の駆動手段7 により絞り部材3 内の絞り羽根3aを光軸105 に略垂直に駆動することによって絞り部材3 の開口部3bの面積を可変としている。9 は絞りエンコーダであり、iGメータの回転角度を検出している。光量制御は、絞り制御回路20と駆動回路16によって光電変換素子18に入射する光量が一定になるように絞り部材3 の絞り羽根3aを駆動手段7 によって駆動することで開口部3bの面積を制御して行っている。22は絞りエンコーダ9 からの信号を検出する検出回路である。
【0042】
本実施形態においては、機械式の絞り部材3 と駆動手段7 及び絞りエンコーダ9 により絞りユニットを構成しているが、絞りユニットはこれに限定するものでなく電気化学作用により光の透過率を制御するエレクトロクロミー機能等を有する所謂物性絞りであってもよい。
【0043】
4 は、光電変換素子18の前に設置したフィルタユニットであり、水晶等の光学的ローパスフィルタ4a、赤外遮断フィルタ4bから構成している。
【0044】
本実施形態において、上記フィルタ4a、4bは光電変換素子18の直前に一体的に配置しているが、これらは各々別体で配置してもよく、又、各フィルタの機能を発揮できるRFZ レンズ1 の任意の位置に配置してもよい。
【0045】
5 、6 は夫々移動レンズ群102 、104 を駆動するためのステップモータ等の駆動手段(レンズ駆動手段)である。5a、6aは表面に所定のピッチでネジを切っているリードスクリューネジである。102b、104bは夫々ラックであり、V 移動環102a、RR移動環104aと同一部材として形成している。該ラック102b、104bはリードスクリューネジ5a、6aとかみ合っておりステップモータ5 、6 が正逆転することによってV 移動環102a、RR移動環104aが光軸105 に平行に移動し、バリエータ102 とRR104 とが光軸に沿って平行に移動する。
【0046】
8a、10a は各々フォトインターラプタである。8b、10b は各々遮光板であり、それぞれV 移動環102a、RR移動環104aと同一部材として金型等で成形するか、切削加工により形成するか、又は、別部材としてV 移動環102a、RR移動環104aに一体的に配設している。該遮光板8b、10b が、V 移動環102a、RR移動環104aの移動によってフォトインターラプタ8a、10a の位置へくるとフォトインターラプタ8a、10a からの信号が変化し、この変化を検出することでバリエータ102 及びRR104 の基準位置(以下“レンズ初期リセット位置”と称する)を決定する。本実施形態においては、該レンズ初期リセット位置に対して前記ステップモータを駆動するための駆動パルス数をカウントすることで各レンズの初期リセット位置からの相対位置情報を検出する。21、23は、フォトインターラプタ8a、10a からの信号を検出する検出回路である。
【0047】
本実施形態においては、レンズ初期リセット位置検出手段として上記フォトインターラプタと遮光板の組み合わせを採用しているが、これに代わって例えば、ホール素子とマグネットの組み合わせや、PSD とiREDの組み合わせ等を用いてもよい。
【0048】
又、本実施形態においてはステップモータとレンズ初期リセット位置検出手段の組み合わせを採用したが、ボイスコイルモータ、DCモータ等と、磁気抵抗効果素子とマグネット等の組み合わせによるレンズ位置検出手段との組み合わせでもよく、本実施形態の構成に特に限定するもでない。
【0049】
15、17 はレンズ駆動手段5 、6 を駆動するための駆動回路である。
【0050】
12は、サーミスタ、感温抵抗等の温度検出手段(温度センサ、環境検出手段)であり、検出回路24によって温度に対応した出力信号をマイコン等の制御回路13へ出力する。
【0051】
本実施形態においては温度検出手段12を前玉101 近傍に配置してある。これは、前玉101 が、計算上、温度変化に対する焦点距離の変化量が、他のレンズ群に比べて大きく支配的であるためである。
【0052】
19は、光電変換素子18からの出力信号を処理して画像信号として出力するカメラプロセス回路である。14はバリエータ102 及びRR104 の制御情報が格納されるROM 等の記憶手段 (第一記憶手段) である。11はズームスイッチであり、広角側(以下“WIDE”と称する)へズーミングしたいときにはズームスイッチ11a を、望遠側(以下“TELE”と称する)へズーミングしたいときには11b を押すことによってズーム動作を行っている。すなわち、ズームスイッチ11a 若しくは11b を押せばバリエータ102 とRR104 を制御回路13からの駆動信号によって駆動してズーミングを行うのである。25は電源である。
【0053】
RFZ レンズ1 はフォーカス状態を維持しつつ変倍を行う為に被写体距離毎にバリエータ102 の光軸上のレンズ停止位置、すなわちズーム位置に対してRR104 の光軸上の停止位置が決まっている。
【0054】
図2 に被写体距離毎にバリエータ102 とRR104 の光軸上の停止位置をプロットした図を示す(以下これらの曲線を“カム軌跡”と称する)を示す。
【0055】
図2 において、例えば被写体距離が無限遠 (又は2m) のとき、バリエータ102 がWIDEからTELEへ光軸上で移動するとRRレンズ104 は、光軸上で物体側へ凸状の軌跡である曲線 Y∞ (又はY2) に沿って移動する。
【0056】
このように本実施形態では、WIDEからTELE、又はTELEからWIDEへズーミングするときには、被写体距離に応じて上記カム軌跡をトレースするように、バリエータ102 とRR104 を駆動制御して、これによりピントずれのない良好な画像を得ている。
【0057】
しかしながら、光学系は一般に温度変化等の環境変化によりレンズの保持部材に形状変化が生じてレンズ間隔が伸縮し、結像面のずれが生じる。
【0058】
このため各レンズ群の焦点距離が変化してRFZ レンズ1 のトータル焦点距離も変化してくる。その結果、基準温度T0(本実施形態では20℃に設定してあるが特にこの温度に限定するものでない)の際の結像面に対して結像面位置がずれる。すなわちピントずれが発生する。したがってズーミングに際しては、基準温度T0に対し温度変化ΔT が生じている時には、温度変化ΔT によって発生した結像面位置のずれを補正するように、移動レンズ群がトレースする上記カム形状を補正する必要がある。
【0059】
図3 に基準温度T0に対して温度が(T0+30) ℃のときと、(T0−30) ℃のときのカム軌跡 (但し、被写体距離は無限遠) の一例を示す。
【0060】
本実施形態においては基準温度T0に対して高温になるとRRレンズ104 の物体側への繰り出し量が大きくなり、逆に低温側になると繰り出し量が小さくなる。
【0061】
本実施形態においては温度変化に対するピントずれが最も大きいのは、TELE端である。
【0062】
そこで本実施形態では、基準温度T0を前提としてバリエータ102 とRR104 の光軸上の可動範囲において、バリエータ102 の位置PVをパラメータとして (これはRFZ レンズ1 の焦点距離をパラメータとすることと同じである) 被写体距離毎のRR104 の物体側への繰り出し量をRR104 の代表位置データPRR として予めROM14 に格納してある。
【0063】
又、上記代表位置データPRR の温度変化1 度あたりのピントずれ補正量、即ち温度補正係数CMRRも同様に予めROM14 に格納してある。この温度補正係数CMRRは1 °の温度変化がおきた時、レンズの保持部材の形状変化に起因するレンズ間隔の変化により発生するピントずれをRR104 で補正する場合の移動量である。
【0064】
本実施形態においては、バリエータ102 の可動範囲を所定幅で分割し、各分割領域毎に、各被写体距離毎のRR104 の代表位置データPRR とその温度補正係数CMRRを各々数値データとして予めROM14 に格納してある。
【0065】
但し、本発明においてはこれに限定するものでない。例えば、バリエータ102 の位置データPVについても所定幅で分割しなくともよく、その場合は、上記被写体距離毎のRR104 の代表位置データPRR と温度補正係数CMRRは、バリエータ102 の位置データPVの関数として定義してもよい。
【0066】
又、上記温度補正係数CMRRはRFZ レンズ1 の各レンズ群を保持する前記保持部材の伸縮に起因するレンズ間隔の変化によるピントずれより算出したものである。そして、この温度補正係数CMRRは構成部材の線膨張係数及びレンズの敏感度から求めることができる。また固定方法などにより計算通りのずれ量になるとは限らないため、実際に温度変化による結像面のずれを測定した結果から求めても良い。
【0067】
図4 に基準温度に対して温度変化が生じた時の結像面のずれ量を示す。この図からわかるようにピントのずれ量は焦点距離によって異なる。そして図5 はテレ(T) 、ミドル(M) 、ワイド(W) の各焦点距離における温度変化とずれ量の関係を示したものである。この図から各焦点距離におけるずれ量は温度変化に対して1 次的なずれであることがわかる。従ってこの傾きの係数すなわち温度補正係数CMRRを各焦点距離ごとに持つことによりより精度の高い補正が容易に実現できるのである。
【0068】
本実施形態においては、温度検出手段12、及び検出回路24にて得られた温度情報データT が前記基準温度T0に対して異なり、温度差ΔT=(T−T0)が生じたとき、以下の式によりRR104 の代表位置データPRR を温度補正係数CMRRと該温度差ΔT を用いて補正し、RR104 の補正後の補正位置データPRRTを算出する。
【0069】
PRRT=CMRR ×ΔT+PRR (1)
これは結像面位置の変動を補正する為のRR104 の駆動量である。
【0070】
但し、本発明はこれに限定されるものでなく、温度変化によるRR104 の繰り出し量の変化を任意の関数(例えば、2 次式、3 次式、4 次式、指数関数、対数関数等)で近似してもよい。
【0071】
以下、本実施形態の動作について、図6 に示すフローチャートによって説明する。
【0072】
初めに電源25が投入される(ステップ10)。次にフォトインターラプタ8a、10a からの信号を検出回路21、23を通して読み込む(ステップ11)。次に制御回路13にて、各々読み込んだ信号に応じた方向、即ち本実施形態においては検出回路21、23からの信号が、highのときはlow となる方向へ、low のときはhighとなる方向へバリエータ102 とRR104 を各々駆動する(ステップ12)。各インターラプタ8a、10a からの信号が変化したか否かを判定し(ステップ13)、信号が変わらなければそのまま駆動を続け、信号が変われば(ステップ14)へ進む。
【0073】
各インターラプタ8a、10a からの信号が変化した時のバリエータ102 とRR104 の位置をそれぞれ初期リセット位置とする(ステップ14)。そして、この信号の変化した位置でバリエータ102 とRR104 を停止させて、制御回路13内のバリエータ102 とRR104 の各カウンタをクリアする(ステップ15)。該カウンタは、バリエータ102とRR104 の駆動パルスをカウントするものであり、これによってバリエータ102
とRR104 の初期リセット位置からの相対的な現在位置を検出する。
【0074】
次に、ズームスイッチ11が押されているか否かをチェックする(ステップ16)。ズームスイッチ11a が押されているときはWIDE方向へズーミングされ、ズームスイッチ11b が押されているときはTELE方向へズーミングが行われる。押されていない場合については、ズーミングしない。
【0075】
以下、TELE方向にズーミングされる場合についてのみ説明するが、WIDE方向でも全く同様のルーチンなので説明は省略する。
【0076】
カウンタよりバリエータ102 の位置PVを読み出して、該バリエータ102 がどの分割領域にいるかサーチして、現在のバリエータ102 のいる領域PVV を決める(ステップ18)。
【0077】
同様にして、カウンタよりバリエータ102 のいる領域PVV に対応するRR104 の代表位置データPRR を読み出す(ステップ19)。
【0078】
又、前玉101 の周囲に配置した温度センサ12からの出力信号を検出回路24を通して制御回路13に入力することで温度センサ12が置かれている場所の温度T を検出する(ステップ20)。以下、電源が投入されてからt 秒後の検出温度をT(t)とする。本実施形態の制御回路13は実際にはマイクロプロセッサ(以下“マイコン”と称する)であり、マイコンのサンプリング周波数に応じてマイコン内に検出温度をデータとして取り込むので上記T(t)を、電源投入時からの所定時間毎の検出温度データの取り込み回数をk 回としてT(k)と表わすことにする。本発明においては、検出温度データ列が時間の関数となっているのが本質であり、表現の仕方をとくに限定するものでない。
【0079】
次に、検出した環境温度T(k)と基準温度T0とを比較してその差分ΔT=T(k)−T0 を算出する(ステップ21)。その上で、温度補正係数CMRRとRR104 の代表位置データPRR を読み込む(ステップ22)。ついで式(1) の演算
PRRT= CMRR×ΔT +PRR (1)
を行って、RR104 の補正後の補正位置データ、即ち繰り出し量PRRTを算出する(ステップ23)。
【0080】
上記算出データをもとに、バリエータ102 とRR104 を各々駆動する(ステップ24)。
【0081】
以上、ズーミング中の動作について説明した。以上の説明はズーミング中にオートフォーカスを作動させないことを前提として説明したが、作動させても支障のないことは明らかである。
【0082】
図7 は本発明の光学機器の実施形態2 の要部概略図である。図中、図1 で示した要素と同一要素には、同符番を付けている。
【0083】
本実施形態は、環境変化として湿度が変化した場合のピントずれに対応するものである。図7 において26は静電容量式、又はサーミスタ等の湿度検出手段 (湿度センサ、環境検出手段) である。27は湿度検出手段26からの出力によって湿度を検出する検出回路であり、検出した湿度情報に相当する出力信号を電気信号として制御回路13へ出力する。
【0084】
本実施形態は環境変化として湿度が変化したときのRFZ レンズ1 のピントずれを補正することが目的であり、補正の仕方は実施形態1 と同様である。又、構成については、実施形態1 の温度検出手段12が湿度センサ26に、温度の検出回路24が湿度の検出回路27に、温度補正係数CMRRが湿度補正係数HMRRに変わっただけである。
【0085】
本実施形態のズーミング動作について簡単に説明する。
【0086】
本実施形態では、湿度変化が生じると吸湿によってレンズの保持部材の形状が変化してレンズ間隔が変わり焦点距離が変化する。この結果、RFZ レンズ1 の結像位置のずれ (ピントずれ) が発生する。したがって、湿度が基準湿度H0(ここでは、50%に設定してある)から異なった環境でマニュアルフォーカスでズーミングする場合に、基準湿度を前提とするRR104 の繰り出し量のデータ、即ち代表位置データPRR に従ったのでは、ぼけのない良好な画像が得られなくなる。
【0087】
本実施形態は実施形態1 と同様に、湿度補正係数HMRRのデータを用いて、基準湿度におけるRR104 の代表位置データPRR を補正することで良好なズーミング性能が得られるようにしたものである。
【0088】
本実施形態では、基準湿度H0を前提としてバリエータ102 とRR104 の光軸上の可動範囲において、バリエータ102 の位置PVをパラメータとして (これはRFZ レンズ1 の焦点距離をパラメータとすることと同じである) 被写体距離毎のRR104 の物体側への繰り出し量をRR104 の代表位置データPRR として予めROM14 に格納してある。
【0089】
又、上記代表位置データPRR の湿度変化1%あたりのピントずれ補正量、即ち湿度補正係数HMRRも同様に予めROM14 に格納してある。この湿度補正係数HMRRは1%の湿度変化がおきた時、レンズの保持部材の形状変化に起因するレンズ間隔の変化により発生するピントずれをRR104 で補正する場合の移動量である。
【0090】
本実施形態においては、バリエータ102 の可動範囲を所定幅で分割し、各分割領域毎に、各被写体距離毎のRR104 の代表位置データPRR とその湿度補正係数HMRRを各々数値データとして予めROM14 に格納してある。
【0091】
但し、本発明においてはこれに限定するものでない。例えば、バリエータ102 の位置データPVについても所定幅で分割しなくともよく、その場合は、上記被写体距離毎のRR104 の代表位置データPRR と湿度補正係数HMRRは、バリエータ102 の位置データPVの関数として定義してもよい。
【0092】
又、上記湿度補正係数HMRRはRFZ レンズ1 の各レンズ群を保持する前記保持部材の吸湿に起因するレンズ間隔の変化によるピントずれより算出したものであり、構成部材の物理的特性等から求めることができる。また固定方法などにより計算通りのずれ量になるとは限らないため、実際に湿度変化による結像面のずれを測定した結果から求めても良い。
【0093】
本実施形態においては、湿度センサ26、及び検出回路27にて得られた湿度情報データH が前記基準湿度H0に対して異なり、湿度差ΔH=(H−H0)が生じたとき、以下の式によりRR104 の代表位置データPRR を湿度補正係数HMRRと該湿度差ΔH を用いて補正し、RR104 の補正後の補正位置データPRRTを算出する。
【0094】
PRRT=HMRR ×ΔH+PRR (2)
但し、本発明はこれに限定されるものでなく、湿度変化によるRR104 の繰り出し量の変化を任意の関数(例えば、2 次式、3 次式、4 次式、指数関数、対数関数等)で近似してもよい。
【0095】
動作のフローチャートは基本的に実施形態1 と同じであり、温度が湿度に替るだけである。
【0096】
図8 は本発明の光学機器の実施形態3 の要部概略図である。本実施形態は温度検出手段と湿度検出手段を設けて、温度変化及び湿度変化によるピントずれを補正するものである。図中、26は湿度検出手段、27は検出手段である。その他の構成は実施形態1 と同じである。
【0097】
温度変化及び湿度変化によるピントずれの補正方法は実施形態1 及び実施形態2 の方法と同じである。本実施形態においては、温度差ΔT=(T−T0)及び湿度差ΔH=(H−H0)が生じたとき、以下の式によりRR104 の代表位置データPRR を補正し、RR104 の温度及び湿度補正後の補正位置データPRRTを算出する。
【0098】
PRRT=(CMRR×ΔT)+(HMRR×ΔH)+PRR (3)
次に本発明の光学機器の実施形態4 を説明する。実施形態4 は実施形態1 のレンズ群のいずれかに少なくとも1 枚のプラスティックレンズを使用したものである。該プラスティックレンズの材料としては、アクリル系、ポリオレフィン系、ポリカーボネート系等のプラスティック材料が適用可能であるが、本発明においては特にこれらを限定するものではない。
【0099】
プラスティックレンズを使用した光学系において、環境変化によりプラスティックレンズの周囲に温度変化が生じるとプラスティックレンズの形状の変化や屈折率の温度係数が無機ガラスに比べて大きいためにその焦点距離が大きく変化する。前記のレンズの保持部材の間隔変化による結像面のずれと同様に、プラスティックレンズも温度変化に伴い焦点距離が変化し結像面のずれが生じ、実施形態1 の場合よりも更に補正を行わなければならなくなる。本実施形態は実施形態1 に対してプラスティックレンズの温度変化によるピントずれの補正制御を付加したものであり、要部概略図は図1 である。
【0100】
プラスティックレンズの形状、または枚数によって環境温度の変化による結像面の変化は様々である。そこで、基準温度T0に対して温度変化が生じた際のプラスティックレンズの焦点距離の変化によるピントずれ量からプラスティックレンズの単位温度当たりのピントずれ量を算出し、これをプラスティックレンズの温度補正係数CPRRとする。
【0101】
そして、前記の保持部材の温度補正係数CMRRとプラスティックレンズの温度補正係数CPRRを夫々ROM14 に記憶して持つことにより、温度変化が生じた時のカム軌跡やレンズ停止時の結像面のずれの補正が容易に行える。
【0102】
このプラスティックレンズの温度補正係数CPRRに前述したレンズの保持部材の温度補正係数CMRRを足し合わせれば、光学系全体の結像面の単位温度当たりの変化量、即ち総合温度補正係数CRR が算出でき、より高精度な温度補償制御が実現できる。図9 にそれぞれのずれ量及び足し合わせたずれ量を示す。
【0103】
そして、それぞれのずれを同一の温度検出手段の出力を基に補正するならば、RR位置補正量ΔPRR は、
Figure 0003581513
と表せ、更に(CMRR+CPRR) は総合温度補正係数CRR であるので、
RR位置補正量ΔPRR =CRR×ΔT
と表される。
【0104】
もし、温度検出手段をプラスティックレンズとレンズの保持部材それぞれに対して持つ場合は、夫々の温度検出手段の検出温度をT1、T2として、RR位置補正量は
RR位置補正量ΔPRR =CMRR ×(T1−T0)+CPRR×(T2−T0)
として求められる。
【0105】
以上のRR位置補正量ΔPRR をRR104 の代表位置データPRR に加えることによりR R104の補正後の補正位置データPRRTが決定される。
【0106】
以下、本実施形態の動作について、図10に示すフローチャートによって説明する。
【0107】
初めに電源25が投入される(ステップ10)。次にフォトインターラプタ8a、10a からの信号を検出回路21、23を通して読み込む(ステップ11)。次に制御回路13にて、各々読み込んだ信号に応じた方向、即ち本実施形態においては検出回路21、23からの信号が、highのときはlow となる方向へ、low のときはhighとなる方向へバリエータ102 とRR104 を各々駆動する(ステップ12)。各インターラプタ8a、10a からの信号が変化したか否かを判定し(ステップ13)、信号が変わらなければそのまま駆動を続け、信号が変われば(ステップ14)へ進む。
【0108】
各インターラプタ8a、10a からの信号が変化した時のバリエータ102 とRR104 の位置をそれぞれ初期リセット位置とする(ステップ14)。そして、この信号の変化した位置でバリエータ102 とRR104 を停止させて、制御回路13内のバリエータ102 とRR104 の各カウンタをクリアする(ステップ15)。該カウンタは、バリエータ102とRR104 の駆動パルスをカウントするものであり、これによってバリエータ102とRR104 の初期リセット位置からの相対的な現在位置を検出する。
【0109】
次に、ズームスイッチ11が押されているか否かをチェックする(ステップ16)。ズームスイッチ11a が押されているときはWIDE方向へズーミングされ、ズームスイッチ11b が押されているときはTELE方向へズーミングが行われる。押されていない場合については、ズーミングしない。
【0110】
以下、TELE方向にズーミングされる場合についてのみ説明するが、WIDE方向でも全く同様のルーチンなので説明は省略する。
【0111】
カウンタよりバリエータ102 の位置PVを読み出して、該バリエータ102 がどの分割領域にいるかサーチして、現在のバリエータ102 のいる領域PVV を決める(ステップ18)。
【0112】
同様にして、カウンタよりRR104 の位置PRR を読み出す(ステップ19)。
【0113】
又、前玉101 の周囲に配置した温度センサ12からの出力信号を検出回路24を通して制御回路13に入力することで温度センサ12が置かれている場所の温度T を検出する(ステップ20)。以下、電源が投入されてからt 秒後の検出温度をT(t)とする。本実施形態の制御回路13は実際にはマイクロプロセッサ(以下“マイコン”と称する)であり、マイコンのサンプリング周波数に応じてマイコン内に検出温度をデータとして取り込むので上記T(t)を、電源投入時からの所定時間毎の検出温度データの取り込み回数をk 回としてT(k)と表わすことにする。本発明においては、検出温度データ列が時間の関数となっているのが本質であり、表現の仕方をとくに限定するものでない。
【0114】
次に、検出した環境温度T(k)と基準温度T0とを比較してその差分ΔT=T(k)−T0 を算出する(ステップ21)。その上で、温度補正係数CPRR,CMRR とRR104 の代表位置データPRR を読み込む(ステップ22)。ついで下記の演算
PRRT=(CPRR+CMRR)×ΔT+PRR
を行って、RR104 の補正後の補正位置データ、即ち繰り出し量PRRTを算出する(ステップ23)。
【0115】
上記算出データをもとに、バリエータ102 とRR104 を各々駆動する(ステップ24)。
【0116】
以上、ズーミング中の動作について説明した。ズーミング中にオートフォーカス作動をさせないことを前提として説明したが、作動させても支障のないことは明らかである。
【0117】
温度補正係数の種類、温度検出手段の数、配置等はこれらに限らず、光学機器の構成、温度分布状態、プラスティックレンズの数、コスト等を考慮して任意に決めれば良い。
【0118】
次に本発明の光学機器の実施形態5 を説明する。実施形態5 は実施形態2 のレンズ群のいずれかに少なくとも1 枚のプラスティックレンズを使用したものである。プラスティックレンズを使用することにより、湿度変化があった場合、前記のレンズの保持部材の間隔変化による結像面のずれと同様に、プラスティックレンズにも形状変化が生じて焦点距離が変化し結像面のずれが生じ、実施形態2 の場合よりも更に補正を行わなければならなくなる。本実施形態は実施形態2 に対してプラスティックレンズの湿度変化によるピントずれの補正制御を付加したもので、要部概略図は図7 である。
【0119】
プラスティックレンズの形状、または枚数によって環境湿度の変化による結像面のずれは様々である。そこで、基準湿度H0に対して湿度変化が生じた際のプラスティックレンズの焦点距離の変化によるピントずれ量からプラスティックレンズの単位湿度当たりのピントずれ量を決定し、これをプラスティックレンズの湿度補正係数HPRRとする。
【0120】
そして、前記の保持部材の湿度補正係数HMRRとプラスティックレンズの湿度補正係数HPRRを夫々ROM14 に記憶して持つことにより、湿度変化が生じた時のカム軌跡やレンズ停止時の結像面のずれの補正が容易に行える。
【0121】
このプラスティックレンズの湿度補正係数HPRRに前述したレンズの保持部材の湿度補正係数HMRRを足し合わせれば、光学系全体の結像面の単位湿度当たりの変化量、即ち総合湿度補正係数DRR が算出でき、より高精度な温度補償制御が実現できる。
【0122】
そして、湿度検出手段の出力H が基準湿度H0に対して湿度差ΔH=(H−H0)があるときには、湿度補正係数HMRR,HPRR と該湿度差ΔH を用いて以下の式で湿度補正を行うRR位置補正量ΔPRR を求める。
【0123】
Figure 0003581513
更に、式(5) において(HMRR+HPRR) は総合湿度補正係数DRR であるので、
RR位置補正量ΔPRR =DRR×ΔH
と表される。このRR位置補正量ΔPRR をRR104 の代表位置データPRR に加えることによりRR104 の補正後の補正位置データPRRTが決定される。
【0124】
図11は本発明の光学機器の実施形態6 の要部概略図である。本実施形態は実施形態4 に対して制御回路13に繋がる書き換え可能な記憶手段 (第二記憶手段) 28を設けた点が異なっており、その他の構成は同じである。この書き換え可能な記憶手段28は後述の温度補正係数CPRR及びCMRRを記憶する。
【0125】
なお、本実施形態においては、各レンズ群の少なくとも1 枚のレンズをプラスティック材料よりなるプラスティックレンズとしている。
【0126】
本実施形態では、基準温度を前提としてバリエータ102 とRR104 の光軸上の可動範囲において、バリエータ102 の位置PVをパラメータとして被写体距離毎のRR104 の物体側への繰り出し量を代表位置データPRR として予めROM14 に格納してある。
【0127】
又、上記バリエータ102 の位置PVに対する被写体距離毎の前記プラスティックレンズの温度補正係数CPRR及び前記保持部材の温度補正係数CMRRも同様に予めROM14 に格納してある。
【0128】
即ち、本実施形態においては、バリエータ102 の可動範囲を所定幅で分割し、各分割領域毎に、各被写体距離毎のRR104 の代表位置データPRR を数値データとして予めROM14(第一記憶手段) に格納してある。
【0129】
そして、温度補正係数CPRR及びCMRRは書き換え可能な記憶手段 (第二記憶手段) 28に記憶している。
【0130】
但し、本発明においてはこれに限定するものでない。例えば、バリエータ102 の位置データPVについても所定幅で分割しなくともよく、その場合は、上記被写体距離毎のRR104 の代表位置データPRR は、バリエータ102 の位置データPVの関数として定義してもよい。
【0131】
又、上記温度補正係数CPRR及びCMRRは、基準温度T0に対して温度変化が生じた際のプラスティックレンズの焦点距離の変化、及び RFZ1 の各レンズ群を保持する前記保持部材の伸縮によるレンズ間隔の変化によるピントずれを考慮して算出する。
【0132】
この温度補正係数CPRR及びCMRRは構成部材の線膨張係数及びレンズの敏感度から求めることができる。しかしながら、レンズによる個体差、製造誤差、材料材質の変更等により、適正な補正が行えないことが生じる。すなわち、補正量がレンズによって過小および過多となり、ピントずれが生じてしまうのである。
【0133】
そこで本実施形態の大きい特徴である書き換え可能な記憶手段28を用いてこの温度補正係数CPRR及びCMRRを容易に書き換えるのである。
【0134】
つまり、レンズによって或は製造ロットごと、材料材質ごとに記憶手段28中の温度補正係数CPRR及びCMRRを書き換えられるようにするのである。こうすることで制御プログラム自体の変更なしに容易に適正な補正を行うことができ、量産性、コストメリットが著しく大きくなる。
【0135】
本実施形態においては、温度センサ12、及び検出回路24にて得られた温度情報データT が前記基準温度T0に対して温度差ΔT=(T−T0)を検出したとき、前記RR104 の代表位置データPRR を前記温度補正係数CPRR、CMRRと該温度差ΔT によって補正を行い、RR104 の温度補正後の補正位置データPRRTを以下の式で算出する。
PRRT=(CPRR+CMRR)×ΔT+PRR
但し、本発明における温度補正後の補正位置データPRRTの算出はこれに限定されるものでなく、温度変化によるRR104 の繰り出し量の変化を任意の関数(例えば、2 次式、3 次式、4 次式、指数関数、対数関数等)で近似してもよい。
【0136】
本実施形態の動作のフローチャートは実施形態4 と同じである。
【0137】
図12は本発明の光学機器の実施形態7 の要部概略図である。本実施形態は実施形態5 に対して制御回路13に繋がる書き換え可能な記憶手段 (第二記憶手段) 28を設けた点が異なっており、その他の構成は同じである。この書き換え可能な記憶手段28は後述の湿度補正係数HPRR及びHMRRを記憶する。そして実施形態6 が温度変化によるピントずれを補正したのに対して本実施形態は湿度変化によるピントずれを補正するものである。
【0138】
なお、本実施形態においては、各レンズ群の少なくとも1 枚のレンズをプラスティック材料よりなるプラスティックレンズを採用している。
【0139】
本実施形態において湿度が変化したときのRFZ レンズ1 のピントずれの補正の仕方は実施形態5 と同様である。又、構成については、実施形態5 に対して書き換え可能な記憶手段28を付加した点のみ異なっている。
【0140】
本実施形態における湿度の作用について簡単に説明する。本実施形態では、各レンズ群にプラスティックレンズを使用しており、このため湿度変化が生じるとプラスティックレンズの吸湿によってレンズ形状が変化して焦点距離が変化する。又、各レンズの保持部材も材質によっては湿度変化で寸法が変化し、これによってレンズ間隔が変化する。これらの結果、RFZ レンズ1 の結像位置のずれが発生する。
【0141】
したがって、湿度が基準湿度(本実施形態においては、50%に設定してある)より大きくずれている環境でマニュアルフォーカスでズーミングする場合に、バリエータ102 位置に対するRR104 の繰り出し量のデータとして基準湿度のデータに従っては、ぼけのない良好な画像が得られない。
【0142】
従って、実施形態6 と同様にして湿度補正係数データHPRR及びHMRRを書き換え可能な記憶手段28に記憶させることによってレンズによって或は製造ロットごと、材料材質ごと等で湿度補正係数を書き換えられるようにすることで制御プログラム自体の変更なしに容易に適正な補正を行うことができ、量産性、コストメリットが著しく大きくなる。
【0143】
尚、以上の実施形態6 、7 は温度検出手段又は湿度検出手段を設けたものであったが、実施形態3 に書き換え可能な記憶手段 (第二記憶手段) 28を設けることにより、温度変化と湿度変化によるピントズレについて各実施形態で説明した方法を用いて同時に補正することができる。
【0144】
次に本発明の光学機器の実施形態8 を説明する。本実施形態の構成は実施形態6 と同一である。従って要部概略図は図11である。本実施形態の最大の特徴は温度補正係数データを補正するためのデータを書き換え可能な記憶手段28に持つことにある。
【0145】
本実施形態では、代表位置データPRR と構造部材に関する基準の温度補正係数データCMRR とプラスティックレンズに関する基準の温度補正係数データCPRR とをROM14(第一記憶手段) に記憶し、係数補正データCCを書き換え可能な記憶手段 (第二記憶手段) に記憶する。
【0146】
つまり、レンズの個体差、製造誤差、材料材質等によって温度補正係数自体を書き換えるのでなく、温度補正係数を更に補正する係数を書き換え可能な記憶手段28に記憶させることで、適正な温度補正を実現するのである。
【0147】
このように構成することで温度補正係数データを書き換え可能な記憶手段28に持つ必要はなくなる。
【0148】
これは温度補正係数データの量が多い場合に極めて有効である。例えば、温度補正係数を焦点距離ごとに 200持つとすると、それを全て記憶させ、書き換えるのは容量、手間、時間コスト的に効率が悪く、光学機器として好ましくない。
【0149】
そこで基準の温度補正係数CPRR 及びCMRR はROM14(第一記憶手段) 内に記憶させておき、基準の温度補正係数をさらに補正するための係数補正データCCを書き換え可能な記憶手段 (第二記憶手段) 28に記憶させる。例えば、前記 200のデータに対して基準の温度補正係数を75%にする、あるいは 125%にするといった係数補正データを記憶させば、容量、手間、時間コスト的に著しく軽減でき、光学機器として好ましい。
【0150】
あらかじめ制御回路13にプログラミングしておけば、この基準の温度補正係数の係数補正データは1次式の係数であったり、ある関数であったり、または焦点距離ごとの補正データとして用いることも可能である。
【0151】
つまり基準の温度補正係数をCPRR,CMRR 、係数補正データをCCとして、RR位置補正量ΔPRR を
ΔPRR =(CPRR+CMRR)×CC×ΔT (6)
で求めるのである。
【0152】
図13は温度補正係数データCPRRを示したもので単位温度当たりのピントずれ量 (これは単位温度当たりのピントずれ量補正量、即ち補正の為のRR移動量となる) を示したものである。図中の最も下の曲線と最も上の曲線は基準の温度補正係数CPRR の係数補正データCCをCC=0.75 及び1.25としたときに得られた補正済みの温度補正係数CPRRである。
【0153】
次に本発明の光学機器の実施形態9 を説明する。本実施形態の構成は実施形態7 と同一である。従って要部概略図は図12である。そして、本実施形態の最大の特徴は基準の湿度補正係数データを補正するための係数補正データCCを書き換え可能な記憶手段 (第二記憶手段) 28に記憶させることにある。
【0154】
つまり、レンズの個体差、製造誤差、材料材質等によって湿度補正係数自体を書き換えるのでなく、基準の湿度補正係数を更に補正する係数補正データを書き換え可能な記憶手段28にもたせることで、適正な湿度補正を実現させるのである。
【0155】
そうすることで湿度補正係数データ自身を書き換え可能な記憶手段28に持つ必要はなくなる。
【0156】
本実施形態の構成は実施形態8 と同様であり、異なるのは実施形態8 の温度検出手段が湿度検出手段、温度検出回路が湿度検出回路、基準の温度補正係数例えばCPRR が基準の湿度補正係数例えばHPRR に変わった点である。
【0157】
これは湿度補正係数データの量が多い場合に極めて有効であり、基準の湿度補正係数はROM14 内に記憶させておき、基準の湿度補正係数をさらに補正するための係数補正データCCを書き換え可能な記憶手段28に持つことで、例えば、 200のデータに対して基準の湿度補正係数を75%にする、あるいは 125%にするといった係数補正データを持てば、容量、手間、時間コスト的に著しく軽減でき、光学機器として好ましい。
【0158】
次ぎに、本発明の光学機器の実施形態10について説明する。本実施形態の構成は実施形態4 と同じであり、要部概略図は図1 である。従って、各レンズ群の少なくとも1 枚のレンズはプラスティックレンズである。但し、本実施形態は光学機器の調整を該光学機器内の温度が一様な状態で行い、使用時の温度を検出して自動的にピントズレを補正する。
【0159】
まず、本実施形態における温度補償方法を述べる。
【0160】
本実施形態では温度変化によるズレ量を算出するために、総合温度補正係数CRR として単位温度当たりの結像面のズレ量をあらかじめ記憶している。このズレ量は温度変化に起因するプラスティックレンズの変形による焦点距離変化による結像面の移動量と、レンズを保持する保持部材の温度変化に起因するレンズ間隔変化による結像面の移動量をあらかじめ計算あるいは実測したデータに基づいて決定して記憶させているものである。
【0161】
従って所定の基準温度T0と温度検出出力T との温度差を△T とするとRR位置補正量ΔPRR は容易に下記の式から算出できる。
【0162】
RR位置補正量ΔPRR = ΔT ×CRR (7)
このRR位置補正量ΔPRR を基準温度時の焦点距離をパラメータとして各被写体距離に対するRRレンズの代表位置データPRR (但し、バリエータの位置又は焦点距離をパラメータとする) に加減することにより、環境変化 (温度変化) に適応する温度補償制御が良好に行える。
【0163】
図17は実施形態10の動作のフローチャートである。これを説明する。ステップ501において調整モードか制御モードかを判定し、調整モードであればステップ502 において所定のレンズの調整を行い、ステップ503 においてそのときの温度計の出力値T0を読み込み、ステップ504 においてその値を記憶し、ステップ505 において調整を終了する。
【0164】
ステップ501 において制御モードであればステップ506 において調整時の温度出力値T0を読み込み、ステップ507 において調整時の温度を温度補償の基準温度とし、ステップ508 において現在の温度出力値T を読み込み、ステップ509 において現在の温度出力値と基準温度との温度差ΔT=T−T0を算出し、ステップ510 において前記式(7) よりRR位置補正量ΔPRR を算出し、ステップ511 においてRR104 を移動して温度補償制御を行う。その後制御モード時はステップ508 に戻り常に温度を観察し、温度が変わればその都度温度補償制御を行う。
【0165】
本実施形態において、調整の温度がある所定の基準温度であれば更に望ましい。
【0166】
また、光学機器が使用される頻度の高い環境条件に近い条件で調整が行われることが望ましいのはいうまでもない。
【0167】
光学機器に電源を投入してから或る時間が経過すると、レンズの中で温度分布が生じ、温度分布が発生する。
【0168】
しかしながら温度分布があると記憶しているデータの軌跡が変化し、記憶データ通りの調整が行えず、調整後、正確なカムトレースが行えなくなる。
【0169】
そこで、本実施形態ではレンズの調整、カム軌跡の調整をレンズ内の温度が一様な状態、温度分布がない状態で行うことによって、正確なカムトレースを行う光学機器を提供することを目的としている。
【0170】
特にプラスティックレンズのように温度による結像面の変動が大きい部材を使用した場合に、前記の問題が深刻になる。また、温度によってレンズを保持する保持部材も変化し、レンズ間隔が変わり、これによっても結像面が移動する。
【0171】
図14は電源投入時からの時間の経過に対する各群の温度変化の説明図である。電源投入時は各群とも一様に同じ温度であっても、ある時間経過すると各群ごとで温度に差がでてくる。例えば、1 時間経過後に、1 群と4 群の温度差が20゜C になったりする。もちろん、この温度分布は光学機器の構成、光学機器内のレンズのレイアウト、アクチュエータの有無などによって異なる。
【0172】
図15は電源投入してから或る時間経過後の各群によるピントの移動量を示したものである。図は各群毎のピント移動量をRFZ レンズ1 の焦点距離を横軸にして、縦軸にピント移動量 (これはピント補正量と同じである) をとって表している。そしてこれらのピント移動量を加算したものがレンズ全体のピント移動量になる。
【0173】
図16は電源投入直後の温度分布がない状態でのカム軌跡と上記のレンズ全体のピント移動量が発生した時、これを補正するカム軌跡を示したものである。これからわかるように温度分布によってカム軌跡の形が著しく変わることがわかる。
【0174】
プラスティックレンズのようにピント移動が大きいものを使用している時には特に顕著に変化する。
【0175】
また、一般に調整時には記憶しているカム軌跡に合うように調整するため、温度分布が或る状態で調整を行うと、調整後の使用時には温度分布が無くなったり、温度分布条件が調整時と異なることになり、いずれにしても正確なカムトレースが行えなくなる。
【0176】
また、温度補償を行うときでも基準となるカム軌跡に対しての調整が行われないことで、正確なピントの温度補正が行えなくなってしまう。
【0177】
そこで、本実施形態ではレンズ内の温度が一様な条件のときに調整を行うことで、正確なカムトレース、及び温度補償が行えるように提唱するものである。
【0178】
光学機器の構成として調整を要するものであれば、本提案をあてはめることができ、光学機器の構成として、温度検出手段及び温度情報手段を持たなくても良い。
【0179】
調整としてはカム軌跡に限らず光学機器のものであればなんでも良く、また、温度によって影響される構成部材を用いる場合に特に有効である。
【0180】
次ぎに、本発明の光学機器の実施形態11について説明する。本実施形態の構成は実施形態5 と同じであり、要部概略図は図7 である。従って、各レンズ群の少なくとも1 枚のレンズはプラスティックレンズである。但し、本実施形態は光学機器の調整を該光学機器内の湿度が一様な状態で行い、使用時の湿度を検出して自動的にピントズレを補正する。 本実施形態の目的は、レンズの調整、カム軌跡の調整をレンズ内の湿度が一様な状態、即ち湿度分布がない状態で行うことによって、正確なカムトレースを行うことにある。
【0181】
つまり、本実施形態は環境変化 (湿度変化) に対する調整不良の対策が目的であり、意図するところは実施形態10と同様である。
【0182】
本実施形態が実施形態10と異なる部分は温度センサ12に対し湿度センサ26、温度検出回路24に対し湿度検出回路27、総合温度補正係数CRR に対し総合湿度補正係数DRR の部分である。
【0183】
湿度変化による結像面のズレ量を算出するために、総合湿度補正係数DRR として単位湿度当たりの結像面のズレ量をあらかじめ記憶している。このズレ量は湿度に起因するプラスティックレンズの変形による焦点距離変化によるものと、レンズを保持する保持部材の湿度変化に起因するレンズ間隔の変化によるものをあらかじめ計算あるいは実測により求めて決定して記憶手段14に記憶させているものである。
【0184】
従って所定の基準湿度H0と湿度検出出力H との湿度差を△H=H−H0とするとRR位置補正量ΔPRR は容易に下記の式から算出できる。
【0185】
RR位置補正量ΔPRR = ΔH ×DRR (8)
この補正量を基準湿度時の各被写体距離に対するRRレンズの代表位置データPRR (但し、バリエータの位置又は焦点距離をパラメータとする) に加減することにより、湿度変化の環境変化に適応する湿度補償制御が良好に行える。
【0186】
図18は本実施形態の動作のフローチャートである。これを説明する。ステップ701において調整モードか制御モードかを判定し、調整モードであればステップ702 において所定のレンズの調整を行い、ステップ703 においてそのときの湿度計の出力値H0を読み込み、ステップ704 においてその値を記憶し、ステップ705 において調整を終了する。
【0187】
ステップ701 において制御モードであればステップ706 において調整時の湿度出力値H0を読み込み、ステップ707 において調整時の湿度を湿度補償の基準湿度とし、ステップ708 において現在の湿度出力値H を読み込み、ステップ709 において現在の湿度出力値と基準湿度との湿度差△H=H−H0を算出し、ステップ710 において前記式(8) よりRR位置補正量ΔPRR を算出し、ステップ711 においてRR104 を移動して湿度補償制御を行う。制御モード時はステップ708 に戻り常に湿度を観察し、湿度補償制御を行う。
【0188】
本実施形態において、調整の湿度がある所定の基準湿度であれば更に望ましい。
【0189】
また、光学機器が使用される頻度の高い環境条件に近い条件で調整が行われることが望ましいのはいうまでもない。
【0190】
光学機器の構成として調整を要するものであれば、本提案をあてはめることができ、湿度検出手段及び湿度情報手段を持たなくても良い。
【0191】
次ぎに、本発明の光学機器の実施形態12について説明する。本実施形態の構成は実施形態3 と同じであり、要部概略図は図8 である。但し、本実施形態は光学機器の調整を該光学機器内の温度及び湿度が一様な状態で行い、使用時の温度及び湿度を検出して自動的にピントズレを補正する。
【0192】
本実施形態の狙いはレンズの調整、カム軌跡の調整をレンズ内の温度及び湿度が一様な状態、即ち温度及び湿度分布がない状態で行うことによって、正確なカムトレースを行うことにある。
【0193】
本実施形態の目的は環境変化 (温度及び湿度の変化) に対する調整不良の対策が目的であり、発明の意図するところは実施形態10及び実施形態11と同様である。
【0194】
従ってRR位置補正量ΔPRR は容易に下記の式から算出できる。
【0195】
RR位置補正量ΔPRR = ΔT ×CRR + ΔH ×DRR (9)
この補正量を基準温度及び基準湿度時の各被写体距離に対するRRレンズの代表位置データPRR (但し、バリエータの位置又は焦点距離をパラメータとする) に加減することにより、温度及び湿度変化の環境変化に適応する補償制御が良好に行える。
【0196】
図19は本実施形態の動作のフローチャートである。これを説明する。ステップ901において調整モードか制御モードかを判定し、調整モードであればステップ902 において所定のレンズの調整を行い、ステップ903 においてそのときの温度計の出力値T0及び湿度計の出力値H0を読み込み、ステップ904 においてその値を記憶し、ステップ905 において調整を終了する。
【0197】
ステップ901 において制御モードであればステップ906 において調整時の温度出力値T 及び湿度出力値H を読み込み、ステップ907 において調整時の温度T0及び湿度H0を温度補償及び湿度補償の基準温度及び基準湿度とし、ステップ908 において現在の温度出力値T 及び湿度出力値H を読み込み、ステップ909 において現在の温度出力値と基準温度との温度差ΔT=T−T0及び湿度出力値と基準湿度との湿度差ΔH=H−H0を算出し、ステップ910 において前記式(9) よりRR位置補正量ΔPRR を算出し、ステップ911 においてRR104 を移動して環境補償制御を行う。制御モード時はステップ908 に戻り常に温度及び湿度を観察し、環境補償制御を行う。
【0198】
また、光学機器が使用される頻度の高い環境条件に近い条件で調整が行われることが望ましいのはいうまでもない。
【0199】
光学機器の構成として調整を要するものであれば、本実施形態を応用することができ、温度及び湿度検出手段、温度及び湿度情報手段を持たなくても良い。
【0200】
図20は実施形態13の要部概略図である。実施形態10及び実施形態11と同一部分は説明を省略する。図中40は環境状態を検出する環境検出手段 (環境センサ) であり、例えば温度センサまたは湿度センサである。41は環境センサ40の検出回路である。
【0201】
実施形態13として調整する際の温度及び湿度といった環境状態は実際に光学機器を使用する環境に最も近い状態である。
【0202】
本実施形態の目的は環境変化に対する調整不良の対策が目的であり、発明の意図するところは実施形態10及び実施形態11と同様である。
【0203】
実施形態10及び実施形態11における調整を行う時の温度及び湿度は、ある絶対値を基準とした値であっても良く特に限定するものではない。しかしながら実際に光学機器が使用される頻度が高い温度及び湿度に近いほど、計算による誤差が少なく済むのは明白だからである。
【0204】
また、光学機器の構成として調整を要するものであれば、本実施形態を応用することができ、環境検出手段及び環境情報手段を持たなくても良い。
【0205】
【発明の効果】
本発明は以上の構成により、移動レンズ群を備えた光学系(撮影レンズ)を有する光学機器の環境に温度変化や湿度変化等の環境変化があったとき、この環境変化に応じて該移動レンズ群の移動軌跡をその都度適切に設定することにより結像面のずれを補正し、高い光学性能を維持することのできる光学機器を達成する。
【0206】
又、調整を要する光学機器で環境が変化した場合、あるいは環境に大きく影響される構成の光学機器であっても、ピントが合焦位置に達しないといった問題や、ボケるといった問題が解決され、常に良好な合焦状態が得られる光学機器を達成する。
【図面の簡単な説明】
【図1】本発明の光学機器の実施形態1 、実施形態4 及び実施形態10の要部概略図
【図2】実施形態1 において、バリエータ102 の位置に対応するRR104 の位置を被写体距離をパラメータとして表した図
【図3】基準温度に対して温度が変化したときのカム軌跡の説明図
【図4】基準温度に対して温度が変化したときの結像面のズレ量
【図5】TELE,MIDDLE,WIDEの各焦点距離における結像面のズレ量
【図6】実施形態1 のフローチャート
【図7】本発明の光学機器の実施形態2 、実施形態5 及び実施形態11の要部概略図
【図8】本発明の光学機器の実施形態3 の要部概略図
【図9】実施形態3 の各焦点距離における温度補正係数CPRR、CMRR及び総合変化量 (総合温度補正係数) CRR によるズレ量を示す図
【図10】本発明の光学機器の実施形態6 及び実施形態8 の要部概略図
【図11】実施形態6 の動作のフローチャート
【図12】本発明の光学機器の実施形態7 及び実施形態9 の要部概略図
【図13】実施形態9 の温度補正係数データの説明図
【図14】RFZ 1 において電源投入後の各群の温度変化の説明図
【図15】RFZ 1 の各群によるピント移動量の説明図
【図16】実施形態10のカム軌跡と温度変化により変化したカム軌跡の説明図
【図17】実施形態10の動作のフローチャート
【図18】実施形態11の動作のフローチャート
【図19】実施形態12の動作のフローチャート
【図20】本発明の光学機器の実施形態13の要部概略図
【符号の説明】
1 リアフォーカスタイプのズームレンズ( 光学系、RFZ レンズ)
2 鏡筒
3 絞り部材
4 フィルタユニット
5 レンズ駆動手段
6 レンズ駆動手段
7 駆動手段
8a,10a フォトインタラプター
8b,10b 遮光板
9 絞りエンコーダ
11 ズームスイッチ
12 温度検出手段
13 制御回路 (制御手段)
14 記憶手段 (第一記憶手段)
15,16,17 駆動回路
18 光電変換素子
21,22,23 検出回路
24 検出回路
25 電源
26 湿度検出手段
27 検出回路
28 書き換え可能の記憶手段 (第二記憶手段)
101 第1 のレンズ群 (前玉)
101a 保持部材
102 第2 のレンズ群 (バリエータ、移動レンズ群V )
102a V移動環
103 第3 のレンズ群 (アフォーカル)
104 第4 のレンズ群 (RRレンズ、移動レンズ群RR)
104a RR移動環
CMRR 保持部材の温度補正係数
CPRR プラスティックレンズの温度補正係数
CRR 総合温度補正係数
ΔPRR RR位置補正量
PRR RRの代表位置データ
PRRT 補正位置データ
T0 基準温度
T 検出温度
HMRR 保持部材の湿度補正係数
HPRR プラスティックレンズの湿度補正係数
H0 基準湿度
H 検出湿度
CC 係数補正データ
DRR 総合湿度補正係数

Claims (8)

  1. 移動レンズ群RR及びバリエータレンズ群を含む複数のレンズ群を有する光学系により結像面上に物体像を形成する光学機器において、
    該移動レンズ群 RR 及びバリエータレンズ群を駆動するレンズ駆動手段と
    該光学系の構造部材に関する温度情報を検出する温度検出手段と、
    所定の基準温度における前記移動レンズ群RRとバリエータレンズ群の代表位置データと、前記構造部材の温度変化による結像面の変動を補正すべく、前記バリエータの移動範囲を所定幅で分割した分割領域毎のバリエータレンズ位置に対応する移動レンズ群 RR の位置データの補正をするための基準温度補正係数データを記憶した第一の記憶手段と、
    該基準の温度補正係数データ群を補正する係数補正データを記憶した書き換え可能な第二の記憶手段と、を有し、
    構造部材に関する基準の温度補正係数データと該係数補正データと該温度情報に基づいて結像面位置の変動を補正するための該移動レンズ群RRの補正位置データを算出し、前記算出結果に基づいて前記レンズ駆動手段を制御して結像面位置の変動を補正する制御手段を有することを特徴とする光学機器。
  2. 前記構造部材に関する温度情報はレンズの保持部材に関する温度情報であることを特徴とする請求項の光学機器。
  3. 前記光学系はリアフォーカスタイプのズームレンズであることを特徴とする請求項1又は2の光学機器。
  4. 前記構造部材に関する温度補正係数データは変倍機能を有する移動レンズ群V の位置の関数として定義されることを特徴とする請求項の光学機器。
  5. 前記補正位置データは前記温度検出手段から検出された温度と前記基準温度との差分値に、前記構造部材に関する温度補正係数データを掛け合せた結果に前記代表位置データを足し合わせたもので定義されることを特徴とする請求項又はの光学機器。
  6. 前記光学系は少なくとも一部にプラスティックレンズを有することを特徴とする請求項3〜のいずれか1項に記載の光学機器。
  7. 移動レンズ群RR及びバリエータレンズ群を含む複数のレンズ群を有する光学系により結像面上に物体像を形成する光学機器において、
    該移動レンズ群 RR 及びバリエータレンズ群を駆動するレンズ駆動手段と
    該光学系の構造部材に関する湿度情報を検出する湿度検出手段と、
    所定の基準温度における前記移動レンズ群RRとバリエータレンズ群の代表位置データと、前記構造部材の湿度変化による結像面の変動を補正すべく、前記バリエータの移動範囲を所定幅で分割した分割領域毎のバリエータレンズ位置に対応する移動レンズ群 RR の位置データの補正をするための基準湿度補正係数データを記憶した第一の記憶手段と、
    該基準の湿度補正係数データを補正する係数補正データを記憶した書き換え可能な第二の記憶手段と、を有し、
    構造部材に関する基準の湿度補正係数データと該係数補正データと該湿度情報に基づいて結像面位置の変動を補正するための該移動レンズ群RRの補正位置データを算出し、前記算出結果に基づいて前記レンズ駆動手段を制御して結像面位置の変動を補正する制御手段を有することを特徴とする光学機器。
  8. 前記湿度検出手段は静電容量式のセンサを少なくとも1個有することを特徴とする請求項の光学機器。
JP02438197A 1997-01-23 1997-01-23 光学機器 Expired - Fee Related JP3581513B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP02438197A JP3581513B2 (ja) 1997-01-23 1997-01-23 光学機器
US09/009,931 US5895129A (en) 1997-01-23 1998-01-21 Optical apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02438197A JP3581513B2 (ja) 1997-01-23 1997-01-23 光学機器

Publications (2)

Publication Number Publication Date
JPH10206722A JPH10206722A (ja) 1998-08-07
JP3581513B2 true JP3581513B2 (ja) 2004-10-27

Family

ID=12136615

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02438197A Expired - Fee Related JP3581513B2 (ja) 1997-01-23 1997-01-23 光学機器

Country Status (2)

Country Link
US (1) US5895129A (ja)
JP (1) JP3581513B2 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7697218B2 (en) 2007-12-26 2010-04-13 Canon Kabushiki Kaisha Lens control apparatus, lens barrel, imaging apparatus, and optical apparatus
US7710661B2 (en) 2007-12-19 2010-05-04 Canon Kabushiki Kaisha Optical apparatus

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6268885B1 (en) * 1996-01-31 2001-07-31 Canon Kabushiki Kaisha Optical apparatus for correcting focus based on temperature and humidity
JP3647223B2 (ja) * 1997-09-29 2005-05-11 キヤノン株式会社 焦点検出装置および光学機器
EP1141427A4 (en) * 1998-12-23 2002-04-17 United Technologies Corp DIE CASTED TITANIUM ALLOY ITEM
JP4724294B2 (ja) * 2000-12-05 2011-07-13 キヤノン株式会社 レンズ鏡筒及びレンズ鏡筒の組立方法
JP4360851B2 (ja) * 2003-07-02 2009-11-11 株式会社リコー 画像入力装置
US7330211B2 (en) * 2003-07-08 2008-02-12 Micron Technology, Inc. Camera module with focus adjustment structure and systems and methods of making the same
JP2005101911A (ja) * 2003-09-25 2005-04-14 Konica Minolta Opto Inc 撮像装置及び携帯端末
US8159561B2 (en) * 2003-10-10 2012-04-17 Nikon Corporation Digital camera with feature extraction device
US7411729B2 (en) * 2004-08-12 2008-08-12 Olympus Corporation Optical filter, method of manufacturing optical filter, optical system, and imaging apparatus
US7616877B2 (en) * 2004-08-25 2009-11-10 Panavision Imaging, Llc Method and apparatus for controlling a lens, and camera module incorporating same
DE102004049871B4 (de) * 2004-10-13 2017-05-24 Robert Bosch Gmbh Verfahren zur Herstellung einer Objektivaufnahme für ein Objektiv einer Kamera und Kamera für Kraftfahrzeuganwendungen
US20070182940A1 (en) * 2006-02-09 2007-08-09 Hiromi Asai Projection display apparatus
WO2008078150A1 (en) * 2006-12-22 2008-07-03 Nokia Corporation Calculating camera lens position information
JP4483881B2 (ja) * 2007-03-20 2010-06-16 カシオ計算機株式会社 投影装置、投影制御方法及びプログラム
EP2006733B1 (en) * 2007-06-19 2013-05-22 Samsung Electronics Co., Ltd. Auto focus apparatus and method for camera
KR101295433B1 (ko) * 2007-06-19 2013-08-09 삼성전자주식회사 카메라의 자동초점조절 장치 및 방법
KR101420425B1 (ko) * 2007-09-03 2014-07-16 삼성전자주식회사 카메라의 자동 초점 조절 장치 및 방법
JP4857256B2 (ja) * 2007-12-26 2012-01-18 キヤノン株式会社 レンズ制御装置、レンズ鏡筒、撮像装置および光学機器
JP4857257B2 (ja) * 2007-12-26 2012-01-18 キヤノン株式会社 レンズ制御装置、レンズ鏡筒、撮像装置および光学機器
KR100890590B1 (ko) * 2008-10-02 2009-03-25 주식회사 세코닉스 카메라 모듈 및 그의 구동 방법
US8190012B2 (en) * 2009-09-10 2012-05-29 Raytheon Company Optical system with adjustable shims
JP2011248181A (ja) * 2010-05-28 2011-12-08 Hitachi Ltd 撮像装置
US8817384B2 (en) * 2011-06-10 2014-08-26 Yamano Optical Co., Ltd. Zoom lens device
JP6347582B2 (ja) * 2013-07-19 2018-06-27 キヤノン株式会社 回転検出装置、モータ制御装置、モータ被駆動装置、回転検出装置の補正方法および補正プログラム
JP6331124B2 (ja) * 2014-03-11 2018-05-30 株式会社リコー ズームレンズ、撮像装置および監視用ビデオカメラ
JP6873765B2 (ja) * 2016-05-31 2021-05-19 キヤノン株式会社 レンズ制御装置及びその制御方法
US10859788B2 (en) * 2016-05-31 2020-12-08 Canon Kabushiki Kaisha Lens control apparatus and control method thereof
US10705312B2 (en) * 2017-02-02 2020-07-07 Canon Kabushiki Kaisha Focus control apparatus, image capturing apparatus, and focus control method
WO2018179318A1 (ja) * 2017-03-31 2018-10-04 Cbc株式会社 プログラムおよびレンズ制御装置
KR102418995B1 (ko) * 2017-09-27 2022-07-11 마이크로엑츄에이터(주) 카메라 모듈
EP3703357A3 (en) * 2019-02-27 2020-10-21 Canon Kabushiki Kaisha Imaging apparatus and method for controlling the same
CN110673338B (zh) * 2019-10-15 2021-09-21 河南平原光电有限公司 一种减小高低温下变焦镜头光轴跳动量的方法
CN112764298B (zh) * 2021-01-31 2022-10-11 迪擎光电(台州)有限责任公司 一种投影镜头系统
CN113985559B (zh) * 2021-10-27 2023-08-22 河南平原光电有限公司 一种宽光谱长焦距高分辨率镜头及装调方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616231B1 (fr) * 1987-06-04 1990-11-16 Trt Telecom Radio Electr Systeme optique a focale variable et commande electromecanique associee
JPH01288806A (ja) * 1988-05-16 1989-11-21 Minolta Camera Co Ltd カメラにおけるレンズバック変動補正装置
JPH0387801A (ja) * 1989-08-31 1991-04-12 Hirakawa Kogyosha:Kk 焦点位置の温度補償装置
JP3289856B2 (ja) * 1993-10-14 2002-06-10 ミノルタ株式会社 温度補正装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7710661B2 (en) 2007-12-19 2010-05-04 Canon Kabushiki Kaisha Optical apparatus
US7697218B2 (en) 2007-12-26 2010-04-13 Canon Kabushiki Kaisha Lens control apparatus, lens barrel, imaging apparatus, and optical apparatus

Also Published As

Publication number Publication date
JPH10206722A (ja) 1998-08-07
US5895129A (en) 1999-04-20

Similar Documents

Publication Publication Date Title
JP3581513B2 (ja) 光学機器
US6822688B2 (en) Movable-lens position control apparatus
EP0694799B1 (en) Optical apparatus
US5570236A (en) Lens drive controlling apparatus
JP3893203B2 (ja) 光学機器
JP2773310B2 (ja) ピント調整手段を有したズームレンズ
JP3412990B2 (ja) 光学機器
JP3584088B2 (ja) 光学機器
JPH0440405A (ja) ズームレンズ装置
JP3782484B2 (ja) 光学機器
JPH11183775A (ja) 光学機器及びコンピュータ読み取り可能な記憶媒体
JPH09222544A (ja) 光学機器
JP3359201B2 (ja) 光学機器
JP2003185908A (ja) 光学機器
JP3599463B2 (ja) 光学機器
JP4441018B2 (ja) 光学機器
US5493361A (en) Focus correcting apparatus for an auto focus camera
JP3599483B2 (ja) 光学機器
JPH09159896A (ja) 光学機器
JP5288913B2 (ja) 光学機器
JP3048165B2 (ja) 光学制御装置
KR100211775B1 (ko) 줌 렌즈의 초점 거리 보상 장치 및 그 방법
JPH0968635A (ja) 光学機器
JP2010066456A (ja) 光学機器
JPH0968638A (ja) 光学機器

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040723

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080730

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090730

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100730

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110730

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120730

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130730

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees