JP2023086799A - 光検出素子 - Google Patents

光検出素子 Download PDF

Info

Publication number
JP2023086799A
JP2023086799A JP2023065142A JP2023065142A JP2023086799A JP 2023086799 A JP2023086799 A JP 2023086799A JP 2023065142 A JP2023065142 A JP 2023065142A JP 2023065142 A JP2023065142 A JP 2023065142A JP 2023086799 A JP2023086799 A JP 2023086799A
Authority
JP
Japan
Prior art keywords
substrate
wiring
imaging device
semiconductor substrate
pixel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023065142A
Other languages
English (en)
Inventor
圭一 中澤
Keiichi Nakazawa
良昭 北野
Yoshiaki Kitano
浩史 山下
Hiroshi Yamashita
実 石田
Minoru Ishida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Semiconductor Solutions Corp
Original Assignee
Sony Semiconductor Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Semiconductor Solutions Corp filed Critical Sony Semiconductor Solutions Corp
Publication of JP2023086799A publication Critical patent/JP2023086799A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14638Structures specially adapted for transferring the charges across the imager perpendicular to the imaging plane
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/778Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising amplifiers shared between a plurality of pixels, i.e. at least one part of the amplifier must be on the sensor array itself
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Vehicle Body Suspensions (AREA)
  • Studio Devices (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

【課題】今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子を提供する。【解決手段】本開示の一実施の形態に係る撮像素子は、第1基板、第2基板および第3基板をこの順に積層して構成されている。光電変換を行うセンサ画素を有する第1基板と、読み出し回路を有する第2基板とが、層間絶縁膜内に設けられた第1貫通配線によって互いに電気的に接続されている。第2基板と、ロジック回路を有する第3基板とが、パッド電極同士の接合、または半導体基板を貫通させた第2貫通配線によって、互いに電気的に接続されている。【選択図】図1

Description

本開示は、撮像素子に関する。
従来、2次元構造の撮像素子の1画素あたりの面積の微細化は、微細プロセスの導入と実装密度の向上によって実現されてきた。近年、撮像素子の更なる小型化および画素の高密度化を実現するため、3次元構造の撮像素子が開発されている。3次元構造の撮像素子では、例えば、複数のセンサ画素を有する半導体基板と、各センサ画素で得られた信号を処理する信号処理回路を有する半導体基板とが互いに積層されている。
特開2010-245506号公報
ところで、3次元構造の撮像素子において、半導体チップを3層積層する場合には、全ての半導体基板を表面側の面同士で貼り合わせることができない。漫然と半導体基板を3層積層した場合には、半導体基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまう可能性がある。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子を提供することが望ましい。
本開示の一実施の形態に係る撮像素子は、第1基板、第2基板および第3基板をこの順に積層して構成されている。第1基板は、第1半導体基板に、光電変換を行うセンサ画素を有している。第2基板は、第2半導体基板に、センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路を有している。第3基板は、第3半導体基板に、画素信号を処理するロジック回路を有している。第1基板および第2基板は、それぞれ、層間絶縁膜と、層間絶縁膜内に設けられた第1貫通配線とを有している。第1基板および第2基板は、第1貫通配線によって互いに電気的に接続されている。第2基板および第3基板は、第2基板および第3基板がそれぞれ、パッド電極を有する場合にはパッド電極同士の接合によって、互いに電気的に接続されている。第2基板および第3基板は、第3基板が第3半導体基板を貫通する第2貫通配線を有する場合には第2貫通配線によって、互いに電気的に接続されている。
本開示の一実施の形態に係る撮像素子では、光電変換を行うセンサ画素を有する第1基板と、読み出し回路を有する第2基板とが、層間絶縁膜内に設けられた第1貫通配線によって互いに電気的に接続されている。これにより、パッド電極同士の接合や、半導体基板を貫通させた貫通配線によって、第1基板と第2基板とを互いに電気的に接続した場合と比べて、チップサイズをより小型化することができ、また、1画素あたりの面積を微細化することができる。また、本開示の一実施の形態に係る撮像素子では、読み出し回路およびロジック回路が互いに異なる基板(第2基板および第3基板)に形成されている。これにより、読み出し回路およびロジック回路を同一基板に形成した場合と比べて、読み出し回路およびロジック回路の面積を拡大することができる。また、本開示の一実施の形態に係る撮像素子では、第2基板および第3基板は、パッド電極同士の接合、または半導体基板を貫通させた第2貫通配線によって、互いに電気的に接続されている。ここで、読み出し回路は第2基板に形成され、ロジック回路は第3基板に形成されていることから、第2基板と第3基板とを互いに電気的に接続するための構造を、第1基板と第2基板とを互いに電気的に接続するための構造と比べて、配置や接続のためのコンタクトの数などをより自由なレイアウトで形成することが可能である。従って、第2基板と第3基板との電気的な接続に、パッド電極同士の接合、または半導体基板を貫通させた第2貫通配線を用いることができる。このように、本開示の一実施の形態に係る撮像素子では、基板の集積度に応じて基板同士の電気的な接続がなされている。
本開示の一実施の形態に係る撮像素子の概略構成の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 複数の読み出し回路と複数の垂直信号線との接続態様の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図7の撮像素子における第1基板および第2基板の接続箇所を拡大して表す図である。 図7の撮像素子における第2基板および第3基板の接続箇所を拡大して表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平面内での配線レイアウトの一例を表す図である。 図1の撮像素子の水平面内での配線レイアウトの一例を表す図である。 図1の撮像素子の水平面内での配線レイアウトの一例を表す図である。 図1の撮像素子の水平面内での配線レイアウトの一例を表す図である。 図1の撮像素子の製造過程の一例を表す図である。 図16Aに続く製造過程の一例を表す図である。 図16Bに続く製造過程の一例を表す図である。 図16Cに続く製造過程の一例を表す図である。 図16Dに続く製造過程の一例を表す図である。 図16Eに続く製造過程の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図24の断面構成を備えた撮像素子の水平面内での配線レイアウトの一例を表す図である。 図24の断面構成を備えた撮像素子の水平面内での配線レイアウトの一例を表す図である。 図24の断面構成を備えた撮像素子の水平面内での配線レイアウトの一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の製造過程の一変形例を表す図である。 図40Aに続く製造過程の一例を表す図である。 図40Bに続く製造過程の一例を表す図である。 図40Cに続く製造過程の一例を表す図である。 図40Dに続く製造過程の一例を表す図である。 図40Eに続く製造過程の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の水平方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 図1の撮像素子の垂直方向の断面構成の一例を表す図である。 上記実施の形態およびその変形例に係る撮像素子の回路構成の一例を表す図である。 図64の撮像素子を3つの基板を積層して構成した例を表す図である。 ロジック回路を、センサ画素の設けられた基板と、読み出し回路の設けられた基板とに分けて形成した例を表す図である。 ロジック回路を、第3基板に形成した例を表す図である。 上記実施の形態およびその変形例に係る撮像素子を備えた撮像装置の概略構成の一例を表す図である。 図68の撮像装置における撮像手順の一例を表す図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
以下、本開示を実施するための形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.実施の形態(撮像素子)…図1~図16
縦型TGと、Cu-Cu接合を用いた例
2.変形例(撮像素子)
変形例A:平面型TGを用いた例…図17
変形例B:TSVを用いた例…図18、図19
変形例C:パネル外縁でCu-Cu接合を用いた例…図20
変形例D:パネル外縁でTSVを用いた例…図21、図22
変形例E:センサ画素と読み出し回路との間にオフセットを
設けた例…図23~図27
変形例F:読み出し回路の設けられたシリコン基板が
島状となっている例:図28
変形例G:読み出し回路の設けられたシリコン基板が
島状となっている例:図29
変形例H:TGを下基板内の配線に接続した例…図30、図31
変形例I:FDを下基板内の配線に接続した例…図32~図39
変形例J:読み出し回路の形成後に中基板を下基板に
貼り合わせた例:図40A~図40F
変形例K:FDを4つのセンサ画素で共有した例:図41~図43
変形例L:下基板と中基板とを貼り合わせた箇所における絶縁層
において一部の比誘電率を他の箇所の比誘電率とは
異ならせた例:図44、図45
変形例M:読み出し回路を共有するセンサ画素の共有数を
2つにした例:図46、図47
変形例N:読み出し回路が1つのセンサ画素だけに
接続されている例:図48、図49
変形例O:第1基板と第2基板とでトランジスタの設計条件を
異ならせた例:図50
変形例P:第1基板と第2基板とをつなぐ配線の
バリエーション:図51~図63
変形例Q:カラム信号処理回路を一般的なカラムADC回路で
構成した例:図64
変形例R:撮像素子を、3つの基板を積層して構成した例:図65
変形例S:ロジック回路を第1基板、第2基板に設けた例:図66
変形例T:ロジック回路を第3基板に設けた例:図67
3.適用例
上記実施の形態およびその変形例に係る撮像素子を
撮像装置に適用した例…図68、図69
4.応用例
応用例1…上記実施の形態およびその変形例に係る撮像素子を
移動体に応用した例…図70、図71
応用例2…上記実施の形態およびその変形例に係る撮像素子を
手術システムに応用した例…図72、図73
<1.実施の形態>
[構成]
図1は、本開示の一実施の形態に係る撮像素子1の概略構成の一例を表したものである。撮像素子1は、3つの基板(第1基板10、第2基板20、第3基板30)を備えている。撮像素子1は、3つの基板(第1基板10、第2基板20、第3基板30)を貼り合わせて構成された3次元構造となっている。第1基板10、第2基板20および第3基板30は、この順に積層されている。
第1基板10は、半導体基板11に、光電変換を行う複数のセンサ画素12を有している。半導体基板11は、本開示の「第1半導体基板」の一具体例に相当する。複数のセンサ画素12は、第1基板10における画素領域13内に行列状に設けられている。第2基板20は、半導体基板21に、センサ画素12から出力された電荷に基づく画素信号を出力する読み出し回路22を4つのセンサ画素12ごとに1つずつ有している。半導体基板21は、本開示の「第2半導体基板」の一具体例に相当する。第2基板20は、行方向に延在する複数の画素駆動線23と、列方向に延在する複数の垂直信号線24とを有している。第3基板30は、半導体基板31に、画素信号を処理するロジック回路32を有している。半導体基板31は、本開示の「第3半導体基板」の一具体例に相当する。ロジック回路32は、例えば、垂直駆動回路33、カラム信号処理回路34、水平駆動回路35およびシステム制御回路36を有している。ロジック回路32(具体的には水平駆動回路35)は、センサ画素12ごとの出力電圧Voutを外部に出力する。ロジック回路32では、例えば、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域が形成されていてもよい。
垂直駆動回路33は、例えば、複数のセンサ画素12を行単位で順に選択する。カラム信号処理回路34は、例えば、垂直駆動回路33によって選択された行の各センサ画素12から出力される画素信号に対して、相関二重サンプリング(Correlated Double Sampling:CDS)処理を施す。カラム信号処理回路34は、例えば、CDS処理を施すことにより、画素信号の信号レベルを抽出し、各センサ画素12の受光量に応じた画素データを保持する。水平駆動回路35は、例えば、カラム信号処理回路34に保持されている画素データを順次、外部に出力する。システム制御回路36は、例えば、ロジック回路32内の各ブロック(垂直駆動回路33、カラム信号処理回路34および水平駆動回路35)の駆動を制御する。
図2は、センサ画素12および読み出し回路22の一例を表したものである。以下では、図2に示したように、4つのセンサ画素12が1つの読み出し回路22を共有している場合について説明する。ここで、「共有」とは、4つのセンサ画素12の出力が共通の読み出し回路22に入力されることを指している。
各センサ画素12は、互いに共通の構成要素を有している。図2には、各センサ画素12の構成要素を互いに区別するために、各センサ画素12の構成要素の符号の末尾に識別番号(1,2,3,4)が付与されている。以下では、各センサ画素12の構成要素を互いに区別する必要のある場合には、各センサ画素12の構成要素の符号の末尾に識別番号を付与するが、各センサ画素12の構成要素を互いに区別する必要のない場合には、各センサ画素12の構成要素の符号の末尾の識別番号を省略するものとする。
各センサ画素12は、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTRと、転送トランジスタTRを介してフォトダイオードPDから出力された電荷を一時的に保持するフローティングディフュージョンFDとを有している。フォトダイオードPDは、本開示の「光電変換素子」の一具体例に相当する。フォトダイオードPDは、光電変換を行って受光量に応じた電荷を発生する。フォトダイオードPDのカソードが転送トランジスタTRのソースに電気的に接続されており、フォトダイオードPDのアノードが基準電位線(例えばグラウンド)に電気的に接続されている。転送トランジスタTRのドレインがフローティングディフュージョンFDに電気的に接続され、転送トランジスタTRのゲートは画素駆動線23に電気的に接続されている。転送トランジスタTRは、例えば、CMOS(Complementary Metal Oxide Semiconductor)トランジスタである。
1つの読み出し回路22を共有する各センサ画素12のフローティングディフュージョンFDは、互いに電気的に接続されるとともに、共通の読み出し回路22の入力端に電気的に接続されている。読み出し回路22は、例えば、リセットトランジスタRSTと、選択トランジスタSELと、増幅トランジスタAMPとを有している。なお、選択トランジスタSELは、必要に応じて省略してもよい。リセットトランジスタRSTのソース(読み出し回路22の入力端)がフローティングディフュージョンFDに電気的に接続されており、リセットトランジスタRSTのドレインが電源線VDDおよび増幅トランジスタAMPのドレインに電気的に接続されている。リセットトランジスタRSTのゲートは画素駆動線23(図1参照)に電気的に接続されている。増幅トランジスタAMPのソースが選択トランジスタSELのドレインに電気的に接続されており、増幅トランジスタAMPのゲートがリセットトランジスタRSTのソースに電気的に接続されている。選択トランジスタSELのソース(読み出し回路22の出力端)が垂直信号線24に電気的に接続されており、選択トランジスタSELのゲートが画素駆動線23(図1参照)に電気的に接続されている。
転送トランジスタTRは、転送トランジスタTRがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFDに転送する。転送トランジスタTRのゲート(転送ゲートTG)は、例えば、後述の図7に示したように、半導体基板11の表面からウェル層42を貫通してPD41に達する深さまで延在している。リセットトランジスタRSTは、フローティングディフュージョンFDの電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFDの電位を電源線VDDの電位にリセットする。選択トランジスタSELは、読み出し回路22からの画素信号の出力タイミングを制御する。増幅トランジスタAMPは、画素信号として、フローティングディフュージョンFDに保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMPは、ソースフォロア型のアンプを構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMPは、選択トランジスタSELがオン状態となると、フローティングディフュージョンFDの電位を増幅して、その電位に応じた電圧を、垂直信号線24を介してカラム信号処理回路34に出力する。リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELは、例えば、CMOSトランジスタである。
なお、図3に示したように、選択トランジスタSELが、電源線VDDと増幅トランジスタAMPとの間に設けられていてもよい。この場合、リセットトランジスタRSTのドレインが電源線VDDおよび選択トランジスタSELのドレインに電気的に接続されている。選択トランジスタSELのソースが増幅トランジスタAMPのドレインに電気的に接続されており、選択トランジスタSELのゲートが画素駆動線23(図1参照)に電気的に接続されている。増幅トランジスタAMPのソース(読み出し回路22の出力端)が垂直信号線24に電気的に接続されており、増幅トランジスタAMPのゲートがリセットトランジスタRSTのソースに電気的に接続されている。また、図4、図5に示したように、FD転送トランジスタFDGが、リセットトランジスタRSTのソースと増幅トランジスタAMPのゲートとの間に設けられていてもよい。
FD転送トランジスタFDGは、変換効率を切り替える際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFDの容量(FD容量C)が大きければ、増幅トランジスタAMPで電圧に変換した際のVが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、FD容量Cが大きくなければ、フローティングディフュージョンFDで、フォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタAMPで電圧に変換した際のVが大きくなりすぎないように(言い換えると、小さくなるように)、FD容量Cが大きくなっている必要がある。これらを踏まえると、FD転送トランジスタFDGをオンにしたときには、FD転送トランジスタFDG分のゲート容量が増えるので、全体のFD容量Cが大きくなる。一方、FD転送トランジスタFDGをオフにしたときには、全体のFD容量Cが小さくなる。このように、FD転送トランジスタFDGをオンオフ切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。
図6は、複数の読み出し回路22と、複数の垂直信号線24との接続態様の一例を表したものである。複数の読み出し回路22が、垂直信号線24の延在方向(例えば列方向)に並んで配置されている場合、複数の垂直信号線24は、読み出し回路22ごとに1つずつ割り当てられていてもよい。例えば、図6に示したように、4つの読み出し回路22が、垂直信号線24の延在方向(例えば列方向)に並んで配置されている場合、4つの垂直信号線24が、読み出し回路22ごとに1つずつ割り当てられていてもよい。なお、図6では、各垂直信号線24を区別するために、各垂直信号線24の符号の末尾に識別番号(1,2,3,4)が付与されている。
図7は、撮像素子1の垂直方向の断面構成の一例を表したものである。図7には、撮像素子1において、センサ画素12と対向する箇所の断面構成が例示されている。図8は、撮像素子1における第1基板10および第2基板20の接続箇所(図7中で丸で囲んだ箇所)を拡大して表したものである。図9は、撮像素子1における第2基板20および第3基板30の接続箇所(図7中で丸で囲んだ箇所)を拡大して表したものである。撮像素子1は、第1基板10、第2基板20および第3基板30をこの順に積層して構成されており、さらに、第1基板10の裏面側(光入射面側)に、カラーフィルタ40および受光レンズ50を備えている。カラーフィルタ40および受光レンズ50は、それぞれ、例えば、センサ画素12ごとに1つずつ設けられている。つまり、撮像素子1は、裏面照射型となっている。
第1基板10は、半導体基板11上に絶縁層46を積層して構成されている。絶縁層46は、本開示の「第1絶縁層」の一具体例に相当する。第1基板10は、層間絶縁膜51の一部として、絶縁層46を有している。絶縁層46は、半導体基板11と、後述の半導体基板21との間隙に設けられている。半導体基板11は、シリコン基板で構成されている。半導体基板11は、例えば、表面の一部およびその近傍に、pウェル層42を有しており、それ以外の領域(pウェル層42よりも深い領域)に、pウェル層42とは異なる導電型のPD41を有している。pウェル層42は、p型の半導体領域で構成されている。PD41は、pウェル層42とは異なる導電型(具体的にはn型)の半導体領域で構成されている。半導体基板11は、pウェル層42内に、pウェル層42とは異なる導電型(具体的にはn型)の半導体領域として、フローティングディフュージョンFDを有している。
第1基板10は、フォトダイオードPD、転送トランジスタTRおよびフローティングディフュージョンFDをセンサ画素12ごとに有している。第1基板10は、半導体基板11の表面側(光入射面側とは反対側、第2基板20側)の部分に、転送トランジスタTRおよびフローティングディフュージョンFDが設けられた構成となっている。第1基板10は、各センサ画素12を分離する素子分離部43を有している。素子分離部43は、半導体基板11の法線方向(半導体基板11の表面に対して垂直な方向)に延在して形成されている。素子分離部43は、互いに隣接する2つのセンサ画素12の間に設けられている。素子分離部43は、互いに隣接するセンサ画素12同士を電気的に分離する。素子分離部43は、例えば、酸化シリコンによって構成されている。素子分離部43は、例えば、半導体基板11を貫通している。第1基板10は、例えば、さらに、素子分離部43の側面であって、かつ、フォトダイオードPD側の面に接するpウェル層44を有している。pウェル層44は、フォトダイオードPDとは異なる導電型(具体的にはp型)の半導体領域で構成されている。第1基板10は、例えば、さらに、半導体基板11の裏面に接する固定電荷膜45を有している。固定電荷膜45は、半導体基板11の受光面側の界面準位に起因する暗電流の発生を抑制するため、負に帯電している。固定電荷膜45は、例えば、負の固定電荷を有する絶縁膜によって形成されている。そのような絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタンまたは酸化タンタルが挙げられる。固定電荷膜45が誘起する電界により、半導体基板11の受光面側の界面にホール蓄積層が形成される。このホール蓄積層によって、界面からの電子の発生が抑制される。カラーフィルタ40は、半導体基板11の裏面側に設けられている。カラーフィルタ40は、例えば、固定電荷膜45に接して設けられており、固定電荷膜45を介してセンサ画素12と対向する位置に設けられている。受光レンズ50は、例えば、カラーフィルタ40に接して設けられており、カラーフィルタ40および固定電荷膜45を介してセンサ画素12と対向する位置に設けられている。
第2基板20は、半導体基板21上に絶縁層52を積層して構成されている。絶縁層52は、本開示の「第3絶縁層」の一具体例に相当する。第2基板20は、層間絶縁膜51の一部として、絶縁層52を有している。絶縁層52は、半導体基板21と、半導体基板31との間隙に設けられている。半導体基板21は、シリコン基板で構成されている。第2基板20は、4つのセンサ画素12ごとに、1つの読み出し回路22を有している。第2基板20は、半導体基板21の表面側(第3基板30側)の部分に読み出し回路22が設けられた構成となっている。第2基板20は、半導体基板11の表面側に半導体基板21の裏面を向けて第1基板10に貼り合わされている。つまり、第2基板20は、第1基板10に、フェイストゥーバックで貼り合わされている。第2基板20は、さらに、半導体基板21と同一の層内に、半導体基板21を貫通する絶縁層53を有している。絶縁層53は、本開示の「第2絶縁層」の一具体例に相当する。第2基板20は、層間絶縁膜51の一部として、絶縁層53を有している。絶縁層53は、後述の貫通配線54の側面を覆うように設けられている。
第1基板10および第2基板20からなる積層体は、層間絶縁膜51と、層間絶縁膜51内に設けられた貫通配線54を有している。貫通配線54は、本開示の「第1貫通配線」の一具体例に相当する。上記積層体は、センサ画素12ごとに、1つの貫通配線54を有している。貫通配線54は、半導体基板21の法線方向に延びており、層間絶縁膜51のうち、絶縁層53を含む箇所を貫通して設けられている。第1基板10および第2基板20は、貫通配線54によって互いに電気的に接続されている。具体的には、貫通配線54は、フローティングディフュージョンFDおよび後述の接続配線55に電気的に接続されている。
第1基板10および第2基板20からなる積層体は、さらに、層間絶縁膜51内に設けられた貫通配線47,48(後述の図10参照)を有している。貫通配線48は、本開示の「第1貫通配線」の一具体例に相当する。上記積層体は、センサ画素12ごとに、1つの貫通配線47と、1つの貫通配線48とを有している。貫通配線47,48は、それぞれ、半導体基板21の法線方向に延びており、層間絶縁膜51のうち、絶縁層53を含む箇所を貫通して設けられている。第1基板10および第2基板20は、貫通配線47,48によって互いに電気的に接続されている。具体的には、貫通配線47は、半導体基板11のpウェル層42と、第2基板20内の配線とに電気的に接続されている。貫通配線48は、転送ゲートTGおよび画素駆動線23に電気的に接続されている。
第2基板20は、例えば、絶縁層52内に、読み出し回路22や半導体基板21と電気的に接続された複数の接続部59を有している。第2基板20は、さらに、例えば、絶縁層52上に配線層56を有している。配線層56は、例えば、絶縁層57と、絶縁層57内に設けられた複数の画素駆動線23および複数の垂直信号線24を有している。配線層56は、さらに、例えば、絶縁層57内に複数の接続配線55を4つのセンサ画素12ごとに1つずつ有している。接続配線55は、読み出し回路22を共有する4つのセンサ画素12に含まれるフローティングディフュージョンFDに電気的に接続された各貫通配線54を互いに電気的に接続している。ここで、貫通配線54,48の総数は、第1基板10に含まれるセンサ画素12の総数よりも多く、第1基板10に含まれるセンサ画素12の総数の2倍となっている。また、貫通配線54,48,47の総数は、第1基板10に含まれるセンサ画素12の総数よりも多く、第1基板10に含まれるセンサ画素12の総数の3倍となっている。
配線層56は、さらに、例えば、絶縁層57内に複数のパッド電極58を有している。各パッド電極58は、例えば、Cu(銅)、Al(アルミニウム)などの金属で形成されている。各パッド電極58は、配線層56の表面に露出している。各パッド電極58は、第2基板20と第3基板30との電気的な接続と、第2基板20と第3基板30との貼り合わせに用いられる。複数のパッド電極58は、例えば、画素駆動線23および垂直信号線24ごとに1つずつ設けられている。ここで、パッド電極58の総数(または、パッド電極58とパッド電極64(後述)との接合の総数は、第1基板10に含まれるセンサ画素12の総数よりも少ない。
第3基板30は、例えば、半導体基板31上に層間絶縁膜61を積層して構成されている。なお、第3基板30は、後述するように、第2基板20に、表面側の面同士で貼り合わされていることから、第3基板30内の構成について説明する際には、上下の説明が、図面での上下方向とは逆となっている。半導体基板31は、シリコン基板で構成されている。第3基板30は、半導体基板31の表面側の部分にロジック回路32が設けられた構成となっている。第3基板30は、さらに、例えば、層間絶縁膜61上に配線層62を有している。配線層62は、例えば、絶縁層63と、絶縁層63内に設けられた複数のパッド電極64を有している。複数のパッド電極64は、ロジック回路32と電気的に接続されている。各パッド電極64は、例えば、Cu(銅)で形成されている。各パッド電極64は、配線層62の表面に露出している。各パッド電極64は、第2基板20と第3基板30との電気的な接続と、第2基板20と第3基板30との貼り合わせに用いられる。また、パッド電極64は、必ずしも複数でなくてもよく、1つでもロジック回路32と電気的に接続が可能である。第2基板20および第3基板30は、パッド電極58,64同士の接合によって、互いに電気的に接続されている。つまり、転送トランジスタTRのゲート(転送ゲートTG)は、貫通配線54と、パッド電極58,64とを介して、ロジック回路32に電気的に接続されている。第3基板30は、半導体基板21の表面側に半導体基板31の表面を向けて第2基板20に貼り合わされている。つまり、第3基板30は、第2基板20に、フェイストゥーフェイスで貼り合わされている。
図8に示したように、第1基板10と第2基板20とは、貫通配線54によって互いに電気的に接続されている。また、図9に示したように、第2基板20と第3基板30とは、パッド電極58,64同士の接合によって互いに電気的に接続されている。ここで、貫通配線54の幅D1は、パッド電極58,64同士の接合箇所の幅D3よりも狭くなっている。つまり、貫通配線54の断面積は、パッド電極58,64同士の接合箇所の断面積よりも小さくなっている。従って、貫通配線54は、第1基板10における1画素あたりの面積の微細化を妨げることがない。また、読み出し回路22は第2基板20に形成され、ロジック回路32は第3基板30に形成されていることから、第2基板20と第3基板30とを互いに電気的に接続するための構造を、第1基板10と第2基板20とを互いに電気的に接続するための構造と比べて、配置や接続のためのコンタクトの数などをより自由なレイアウトで形成することが可能である。従って、第2基板20と第3基板30とを互いに電気的に接続するための構造として、パッド電極58,64同士の接合を用いることができる。
図10、図11は、撮像素子1の水平方向の断面構成の一例を表したものである。図10、図11の上側の図は、図7の断面Sec1での断面構成の一例を表す図であり、図10、図11の下側の図は、図7の断面Sec2での断面構成の一例を表す図である。図10には、2×2の4つのセンサ画素12を2組、第2方向Hに並べた構成が例示されており、図11には、2×2の4つのセンサ画素12を4組、第1方向Vおよび第2方向Hに並べた構成が例示されている。なお、図10、図11の上側の断面図では、図7の断面Sec1での断面構成の一例を表す図に、半導体基板11の表面構成の一例を表す図が重ね合わされるとともに、絶縁層46が省略されている。また、図10、図11の下側の断面図では、図7の断面Sec2での断面構成の一例を表す図に、半導体基板21の表面構成の一例を表す図が重ね合わされている。
図10、図11に示したように、複数の貫通配線54、複数の貫通配線48および複数の貫通配線47は、第1基板10の面内において第1方向V(図10の上下方向、図11の左右方向)に帯状に並んで配置されている。なお、図10、図11には、複数の貫通配線54、複数の貫通配線48および複数の貫通配線47が第1方向Vに2列に並んで配置されている場合が例示されている。第1方向Vは、マトリクス状の配置された複数のセンサ画素12の2つの配列方向(例えば行方向および列方向)のうち一方の配列方向(例えば列方向)と平行となっている。読み出し回路22を共有する4つのセンサ画素12において、4つのフローティングディフュージョンFDは、例えば、素子分離部43を介して互いに近接して配置されている。読み出し回路22を共有する4つのセンサ画素12において、4つの転送ゲートTGは、4つのフローティングディフュージョンFDを囲むように配置されており、例えば、4つの転送ゲートTGによって円環形状となる形状となっている。
絶縁層53は、第1方向Vに延在する複数のブロックで構成されている。半導体基板21は、第1方向Vに延在するとともに、絶縁層53を介して第1方向Vと直交する第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、複数組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と対向する領域内にある、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、絶縁層53の左隣りのブロック21A内の増幅トランジスタAMPと、絶縁層53の右隣りのブロック21A内のリセットトランジスタRSTおよび選択トランジスタSELとによって構成されている。
図12、図13、図14、図15は、撮像素子1の水平面内での配線レイアウトの一例を表したものである。図12~図15には、4つのセンサ画素12によって共有される1つの読み出し回路22が4つのセンサ画素12と対向する領域内に設けられている場合が例示されている。図12~図15に記載の配線は、例えば、配線層56において互いに異なる層内に設けられている。
互いに隣接する4つの貫通配線54は、例えば、図12に示したように、接続配線55と電気的に接続されている。互いに隣接する4つの貫通配線54は、さらに、例えば、図12に示したように、接続配線55および接続部59を介して、絶縁層53の左隣りブロック21Aに含まれる増幅トランジスタAMPのゲートと、絶縁層53の右隣りブロック21Aに含まれるリセットトランジスタRSTのゲートとに電気的に接続されている。
電源線VDDは、例えば、図13に示したように、第2方向Hに並んで配置された各読み出し回路22と対向する位置に配置されている。電源線VDDは、例えば、図13に示したように、接続部59を介して、第2方向Hに並んで配置された各読み出し回路22の増幅トランジスタAMPのドレインおよびリセットトランジスタRSTのドレインに電気的に接続されている。2本の画素駆動線23が、例えば、図13に示したように、第2方向Hに並んで配置された各読み出し回路22と対向する位置に配置されている。一方の画素駆動線23(第2制御線)は、例えば、図13に示したように、第2方向Hに並んで配置された各読み出し回路22のリセットトランジスタRSTのゲートに電気的に接続された配線RSTGである。他方の画素駆動線23(第3制御線)は、例えば、図13に示したように、第2方向Hに並んで配置された各読み出し回路22の選択トランジスタSELのゲートに電気的に接続された配線SELGである。各読み出し回路22において、増幅トランジスタAMPのソースと、選択トランジスタSELのドレインとが、例えば、図13に示したように、配線25を介して、互いに電気的に接続されている。
2本の電源線VSSが、例えば、図14に示したように、第2方向Hに並んで配置された各読み出し回路22と対向する位置に配置されている。各電源線VSSは、例えば、図14に示したように、第2方向Hに並んで配置された各センサ画素12と対向する位置において、複数の貫通配線47に電気的に接続されている。4本の画素駆動線23が、例えば、図14に示したように、第2方向Hに並んで配置された各読み出し回路22と対向する位置に配置されている。4本の画素駆動線23の各々は、例えば、図14に示したように、第2方向Hに並んで配置された各読み出し回路22に対応する4つのセンサ画素12のうちの1つのセンサ画素12の貫通配線48に電気的に接続された配線TRGである。つまり、4本の画素駆動線23(第1制御線)は、第2方向Hに並んで配置された各センサ画素12の転送トランジスタTRのゲート(転送ゲートTG)に電気的に接続されている。図14では、各配線TRGを区別するために、各配線TRGの末尾に識別子(1,2,3,4)が付与されている。
垂直信号線24は、例えば、図15に示したように、第1方向Vに並んで配置された各読み出し回路22と対向する位置に配置されている。垂直信号線24(出力線)は、例えば、図15に示したように、第1方向Vに並んで配置された各読み出し回路22の出力端(増幅トランジスタAMPのソース)に電気的に接続されている。
[製造方法]
次に、撮像素子1の製造方法について説明する。図16A~図16Fは、撮像素子1の製造過程の一例を表したものである。
まず、半導体基板11に、pウェル層42や、素子分離部43、pウェル層44を形成する。次に、半導体基板11に、フォトダイオードPD、転送トランジスタTRおよびフローティングディフュージョンFDを形成する(図16A)。これにより、半導体基板11に、センサ画素12が形成される。このとき、センサ画素12に用いる電極材料として、サリサイドプロセスによるCoSi2やNiSiなどの耐熱性の低い材料を用いないことが好ましい。むしろ、センサ画素12に用いる電極材料としては、耐熱性の高い材料を用いることが好ましい。耐熱性の高い材料としては、例えば、ポリシリコンが挙げられる。その後、半導体基板11上に、絶縁層46を形成する(図16A)。このようにして、第1基板10が形成される。
次に、第1基板10(絶縁層46)上に、半導体基板21を貼り合わせる(図16B)。このとき、必要に応じて、半導体基板21を薄肉化する。この際、半導体基板21の厚さを、読み出し回路22の形成に必要な膜厚にする。半導体基板21の厚さは、一般的には数百nm程度である。しかし、読み出し回路22のコンセプトによっては、FD(Fully Depletion)型も可能であるので、その場合には、半導体基板21の厚さとしては、数nm~数μmの範囲を採り得る。
次に、半導体基板21と同一の層内に、絶縁層53を形成する(図16C)。絶縁層53を、例えば、フローティングディフュージョンFDと対向する箇所に形成する。例えば、半導体基板21に対して、半導体基板21を貫通するスリットを形成して、半導体基板21を複数のブロック21Aに分離する。その後、スリットを埋め込むように、絶縁層53を形成する。その後、半導体基板21の各ブロック21Aに、増幅トランジスタAMPなどを含む読み出し回路22を形成する(図16C)。このとき、センサ画素12の電極材料として、耐熱性の高い金属材料が用いられている場合には、読み出し回路22のゲート絶縁膜を、熱酸化により形成することが可能である。
次に、半導体基板21上に絶縁層52を形成する。このようにして、絶縁層46,52,53からなる層間絶縁膜51を形成する。続いて、層間絶縁膜51に貫通孔51A,51Bを形成する(図16D)。具体的には、絶縁層52のうち、読み出し回路22と対向する箇所に、絶縁層52を貫通する貫通孔51Bを形成する。また、層間絶縁膜51のうち、フローティングディフュージョンFDと対向する箇所(つまり、絶縁層53と対向する箇所)に、層間絶縁膜51を貫通する貫通孔51Aを形成する。
次に、貫通孔51A,51Bに導電性材料を埋め込むことにより、貫通孔51A内に貫通配線54を形成するとともに、貫通孔51B内に接続部59を形成する(図16E)。さらに、絶縁層52上に、貫通配線54と接続部59とを互いに電気的に接続する接続配線55を形成する(図16E)。その後、パッド電極58を含む配線層56を、絶縁層52上に形成する。このようにして、第2基板20が形成される。
次に、第2基板20を、半導体基板31の表面側に半導体基板21の表面を向けて、ロジック回路32や配線層62が形成された第3基板30に貼り合わせる(図16F)。このとき、第2基板20のパッド電極58と、第3基板30のパッド電極64とを互いに接合することにより、第2基板20と第3基板30とを互いに電気的に接続する。このようにして、撮像素子1が製造される。
[効果]
従来、2次元構造の撮像素子の1画素あたりの面積の微細化は、微細プロセスの導入と実装密度の向上によって実現されてきた。近年、撮像素子の更なる小型化および1画素あたりの面積の微細化を実現するため、3次元構造の撮像素子が開発されている。3次元構造の撮像素子では、例えば、複数のセンサ画素を有する半導体基板と、各センサ画素で得られた信号を処理する信号処理回路を有する半導体基板とが互いに積層されている。これにより、今までと同等のチップサイズで、センサ画素の集積度をより高くしたり、信号処理回路のサイズをより大きくしたりすることができる。
ところで、3次元構造の撮像素子において、半導体チップを3層積層する場合には、全ての半導体基板を表面側の面同士(フェイストゥーフェイス)で貼り合わせることができない。漫然と半導体基板を3層積層した場合には、半導体基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまう可能性がある。
一方、本実施の形態では、センサ画素12および読み出し回路22が互いに異なる基板(第1基板10および第2基板20)に形成されている。これにより、センサ画素12および読み出し回路22を同一基板に形成した場合と比べて、センサ画素12および読み出し回路22の面積を拡大することができる。その結果、光電変換効率を向上させたり、トランジスタノイズを低減したりすることができる。また、センサ画素12を有する第1基板10と、読み出し回路22を有する第2基板20とが、層間絶縁膜51内に設けられた貫通配線54によって互いに電気的に接続されている。これにより、パッド電極同士の接合や、半導体基板を貫通させた貫通配線(例えばTSV(Thorough Si Via))によって、第1基板10と第2基板20とを互いに電気的に接続した場合と比べて、チップサイズをより小型化することができる。また、1画素あたりの面積の更なる微細化により、解像度をより高くすることができる。また、従前と同様のチップサイズとした場合には、センサ画素12の形成領域を拡大することができる。また、本実施の形態では、読み出し回路22およびロジック回路32が互いに異なる基板(第2基板20および第3基板30)に形成されている。これにより、読み出し回路22およびロジック回路32を同一基板に形成した場合と比べて、読み出し回路22およびロジック回路32の面積を拡大することができる。また、読み出し回路22およびロジック回路32の面積が素子分離部43によって律束されないので、ノイズ特性を向上させることができる。また、本実施の形態では、第2基板20および第3基板30は、パッド電極58,64同士の接合によって、互いに電気的に接続されている。ここで、読み出し回路22は第2基板20に形成され、ロジック回路32は第3基板30に形成されていることから、第2基板20と第3基板30とを互いに電気的に接続するための構造を、第1基板10と第2基板20とを互いに電気的に接続するための構造と比べて、配置や接続のためのコンタクトの数などをより自由なレイアウトで形成することが可能である。従って、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いることができる。このように、本実施の形態では、基板の集積度に応じて基板同士の電気的な接続がなされている。これにより、基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
また、本実施の形態では、フォトダイオードPD、転送トランジスタTRおよびフローティングディフュージョンFDを有するセンサ画素12が第1基板10に形成され、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELを有する読み出し回路22が第2基板20に形成されている。これにより、センサ画素12および読み出し回路22を同一基板に形成した場合と比べて、センサ画素12および読み出し回路22の面積を拡大することができる。その結果、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。具体的には、第1基板10に設けるトランジスタが少なくなることにより、特にセンサ画素12のフォトダイオードPDの面積を拡大することができる。それにより、光電変換における飽和信号電荷量を増加させ、光電変換効率を高めることができる。第2基板20では、読み出し回路22における各トランジスタのレイアウトの自由度を確保することができる。また、各トランジスタの面積を拡大することができるので、特に増幅トランジスタAMPの面積を拡大することで、画素信号に影響するノイズを低減することができる。第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
また、本実施の形態では、第2基板20は、半導体基板11の表面側に半導体基板21の裏面を向けて第1基板10に貼り合わされており、第3基板30は、半導体基板21の表面側に半導体基板31の表面側を向けて第2基板20に貼り合わされている。これにより、第1基板10と第2基板20との電気的な接続に貫通配線54を用い、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いることにより、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
また、本実施の形態では、貫通配線54の断面積は、パッド電極58,64同士の接合箇所の断面積よりも小さくなっている。これにより、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
また、本実施の形態のロジック回路32では、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域が形成されている。シリサイドからなる低抵抗領域は、半導体基板の材料と金属との化合物で形成されている。ここで、ロジック回路32は、第3基板30に設けられている。そのため、センサ画素12や読み出し回路22を形成するプロセスとは別のプロセスで、ロジック回路32を形成することができる。その結果、センサ画素12や読み出し回路22を形成する際に、熱酸化などの高温プロセスを用いることができる。また、ロジック回路32には、耐熱性の低い材料であるシリサイドを用いることもできる。従って、ロジック回路32のソース電極およびドレイン電極と接する不純物拡散領域の表面に、シリサイドからなる低抵抗領域を設けた場合には、接触抵抗を低減することができ、その結果、ロジック回路32での演算速度を高速化することができる。
また、本実施の形態では、第1基板10には、各センサ画素12を分離する素子分離部43が設けられている。しかし、本実施の形態では、フォトダイオードPD、転送トランジスタTRおよびフローティングディフュージョンFDを有するセンサ画素12が第1基板10に形成され、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELを有する読み出し回路22が第2基板20に形成されている。これにより、1画素あたりの面積の微細化によって素子分離部43で囲まれた面積が小さくなった場合であっても、センサ画素12および読み出し回路22の面積を拡大することができる。その結果、素子分離部43を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
また、本実施の形態では、素子分離部43は、半導体基板11を貫通している。これにより、1画素あたりの面積の微細化によってセンサ画素12同士の距離が近づいた場合であっても、隣接するセンサ画素12間での信号クロストークを抑制でき、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
また、本実施の形態では、第1基板10および第2基板20からなる積層体は、センサ画素12ごとに、3つの貫通配線54,47,48を有している。貫通配線48は、転送トランジスタTRのゲート(転送ゲートTG)に電気的に接続され、貫通配線47は、半導体基板11のpウェル層42に電気的に接続され、貫通配線54は、フローティングディフュージョンFDに電気的に接続されている。つまり、貫通配線54,47,48の数は、第1基板10に含まれるセンサ画素12の数よりも多くなっている。しかし、本実施の形態では、第1基板10と第2基板20との電気的な接続には、断面積の小さな貫通配線54が用いられている。これにより、チップサイズをより小型化することができ、また、第1基板10における1画素あたりの面積をより微細化することができる。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
<2.変形例>
以下に、上記実施の形態に係る撮像素子1の変形例について説明する。なお、以下の変形例において、上記実施の形態と共通の構成に対しては、同一の符号が付与されている。
[変形例A]
図17は、上記実施の形態に係る撮像素子1の垂直方向の断面構成の一変形例を表したものである。図17には、図7に記載の断面構成の一変形例が示されている。本変形例では、転送トランジスタTRが、平面型の転送ゲートTGを有している。そのため、転送ゲートTGは、ウェル層42を貫通しておらず、半導体基板11の表面だけに形成されている。転送トランジスタTRに平面型の転送ゲートTGが用いられる場合であっても、撮像素子1は、上記実施の形態と同様の効果を有する。
[変形例B]
図18、図19は、上記実施の形態およびその変形例に係る撮像素子1の垂直方向の断面構成の一変形例を表したものである。図18には、図7に記載の断面構成の一変形例が示されている。図19には、図17に記載の断面構成の一変形例が示されている。本変形例では、第2基板20と第3基板30とを電気的に接続する構造として、パッド電極58,64同士の接合の代わりに、半導体基板31を貫通する貫通配線65が用いられている。つまり、第3基板30は、第2基板20と第3基板30との電気的接続に用いられる貫通配線65を有しており、第2基板20および第3基板30は、貫通配線65によって、互いに電気的に接続されている。つまり、転送トランジスタTRのゲート(転送ゲートTG)は、貫通配線48と、パッド電極58と、貫通配線65とを介して、ロジック回路32に電気的に接続されている。ここで、貫通配線65の総数は、第1基板10に含まれるセンサ画素12の総数よりも少ない。貫通配線65は、本開示の「第2貫通配線」の一具体例に相当する。
貫通配線65は、例えば、いわゆるTSV(Thorough Silicon Via)によって構成されている。貫通配線54の幅D1は、貫通配線65の幅D3よりも狭くなっている。つまり、貫通配線54の断面積は、貫通配線65の断面積よりも小さくなっている。これにより、貫通配線54は、第1基板10における1画素あたりの面積の微細化を妨げることがない。また、読み出し回路22は第2基板20に形成され、ロジック回路32は第3基板30に形成されていることから、第2基板20と第3基板30とを互いに電気的に接続するための構造を、第1基板10と第2基板20とを互いに電気的に接続するための構造と比べて、配置や接続のためのコンタクトの数などをより自由なレイアウトで形成することが可能である。これにより、第2基板20と第3基板30とを互いに電気的に接続するための構造として、貫通配線65を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
[変形例C]
図20は、上記実施の形態に係る撮像素子1の垂直方向の断面構成の一変形例を表すものである。本変形例では、第2基板20と第3基板30との電気的な接続が、第1基板10における周辺領域14と対向する領域でなされている。周辺領域14は、第1基板10の額縁領域に相当しており、画素領域13の周縁に設けられている。本変形例では、第2基板20は、周辺領域14と対向する領域に、複数のパッド電極58を有しており、第3基板30は、周辺領域14と対向する領域に、複数のパッド電極64を有している。第2基板20および第3基板30は、周辺領域14と対向する領域に設けられたパッド電極58,64同士の接合によって、互いに電気的に接続されている。
このように、本変形例では、第2基板20および第3基板30が、周辺領域14と対向する領域に設けられたパッド電極58,64同士の接合によって、互いに電気的に接続されている。これにより、画素領域13と対向する領域で、パッド電極58,64同士を接合する場合と比べて、1画素あたりの面積の微細化を阻害するおそれを低減することができる。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
[変形例D]
図21、図22は、上記変形例Cに係る撮像素子1の垂直方向の断面構成の一変形例を表すものである。本変形例では、第2基板20と第3基板30との電気的な接続が、周辺領域14と対向する領域でなされている。
本変形例では、撮像素子1は、例えば、図21に示したように、周辺領域14と対向する領域に、貫通配線66を備えている。貫通配線66は、第2基板20と第3基板30とを互いに電気的に接続している。貫通配線66は、半導体基板11,21の法線方向に延びており、第1基板10および第2基板20を貫通するとともに、第3基板30の配線層62内に達している。貫通配線66は、第2基板20の配線層56内の配線と、第3基板30の配線層62内の配線とを互いに電気的に接続している。
本変形例において、撮像素子1は、例えば、図22に示したように、周辺領域14と対向する領域に、貫通配線67,68と、接続配線69とを備えていてもよい。貫通配線67,68および接続配線69からなる配線は、第2基板20と第3基板30とを互いに電気的に接続している。貫通配線67は、半導体基板11,21の法線方向に延びており、第1基板10および第2基板20を貫通するとともに、第3基板30の配線層62内に達している。貫通配線68は、半導体基板11,21の法線方向に延びており、第1基板10を貫通するとともに、第2基板20の配線層56内に達している。接続配線69は、半導体基板11の裏面に接して設けられており、貫通配線67と、貫通配線68とに接して設けられている。貫通配線67,68は、接続配線69を介して、第2基板20の配線層56内の配線と、第3基板30の配線層62内の配線とを互いに電気的に接続している。
このように、本変形例では、第2基板20および第3基板30が、周辺領域14と対向する領域に設けられた貫通配線66、または、貫通配線67,68および接続配線69からなる配線によって、互いに電気的に接続されている。これにより、画素領域13と対向する領域で、第2基板20と第3基板30とを互いに電気的に接続する場合と比べて、1画素あたりの面積の微細化を阻害するおそれを低減することができる。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
[変形例E]
図23、図24は、上記実施の形態に係る撮像素子1の水平方向の断面構成の一変形例を表すものである。図23、図24の上側の図は、図7の断面Sec1での断面構成の一変形例であり、図23の下側の図は、図7の断面Sec2での断面構成の一変形例である。なお、図23、図24の上側の断面図では、図7の断面Sec1での断面構成の一変形例を表す図に、図7の半導体基板11の表面構成の一変形例を表す図が重ね合わされるとともに、絶縁層46が省略されている。また、図23、図24の下側の断面図では、図7の断面Sec2での断面構成の一変形例を表す図に、半導体基板21の表面構成の一変形例を表す図が重ね合わされている。
図23、図24に示したように、複数の貫通配線54、複数の貫通配線48および複数の貫通配線47(図中の行列状に配置された複数のドット)は、第1基板10の面内において第1方向V(図23、図24の左右方向)に帯状に並んで配置されている。なお、図23、図24には、複数の貫通配線54、複数の貫通配線48および複数の貫通配線47が第1方向Vに2列に並んで配置されている場合が例示されている。読み出し回路22を共有する4つのセンサ画素12において、4つのフローティングディフュージョンFDは、例えば、素子分離部43を介して互いに近接して配置されている。読み出し回路22を共有する4つのセンサ画素12において、4つの転送ゲートTG(TG1,TG2,TG3,TG4)は、4つのフローティングディフュージョンFDを囲むように配置されており、例えば、4つの転送ゲートTGによって円環形状となる形状となっている。
絶縁層53は、第1方向Vに延在する複数のブロックで構成されている。半導体基板21は、第1方向Vに延在するとともに、絶縁層53を介して第1方向Vと直交する第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と正対して配置されておらず、第2方向Hにずれて配置されている。
図23では、4つのセンサ画素12によって共有される1つの読み出し回路22は、第2基板20において、4つのセンサ画素12と対向する領域を第2方向Hにずらした領域内にある、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、1つのブロック21A内の増幅トランジスタAMP、リセットトランジスタRSTおよび選択トランジスタSELによって構成されている。
図24では、4つのセンサ画素12によって共有される1つの読み出し回路22は、第2基板20において、4つのセンサ画素12と対向する領域を第2方向Hにずらした領域内にある、リセットトランジスタRST、増幅トランジスタAMP、選択トランジスタSELおよびFD転送トランジスタFDGによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、1つのブロック21A内の増幅トランジスタAMP、リセットトランジスタRST、選択トランジスタSELおよびFD転送トランジスタFDGによって構成されている。
本変形例では、4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と正対して配置されておらず、4つのセンサ画素12と正対する位置から第2方向Hにずれて配置されている。このようにした場合には、配線25を短くすることができ、または、配線25を省略して、増幅トランジスタAMPのソースと、選択トランジスタSELのドレインとを共通の不純物領域で構成することもできる。その結果、読み出し回路22のサイズを小さくしたり、読み出し回路22内の他の箇所のサイズを大きくしたりすることができる。
図25、図26、図27は、図24に記載の撮像素子1の水平面内での配線レイアウトの一例を表したものである。図25~図27には、4つのセンサ画素12によって共有される1つの読み出し回路22が4つのセンサ画素12と対向する領域を第2方向Hにずらした領域内に設けられている場合が例示されている。図25~図27に記載の配線は、例えば、配線層56において互いに異なる層内に設けられている。
互いに隣接する4つの貫通配線54は、例えば、図25に示したように、接続配線55と電気的に接続されている。互いに隣接する4つの貫通配線54は、さらに、例えば、図25に示したように、接続配線55および接続部59を介して、絶縁層53の下隣りのブロック21Aに含まれる増幅トランジスタAMPのゲートと、絶縁層53の下隣りのブロック21Aに含まれるFD転送トランジスタFDGのソースとに電気的に接続されている。
例えば、図26に示したように、各ブロック21Aと対向する領域には、配線SELG,配線Vout,配線RSTG,配線FDGおよび電源線VSSが配置されている。また、例えば、図26に示したように、各絶縁層53と対向する領域には、配線TRG1,TRG2,TRG3,TRG4が配置されている。
さらに、例えば、図27に示したように、電源線VDDと電気的に接続された電源線VDDxが設けられている。電源線VDDxは、第1方向Vに延在する電源線VDDと直交する第2方向Hに延在している。また、例えば、図27に示したように、電源線VSSと電気的に接続された電源線VSSxが設けられている。電源線VSSxは、第1方向Vに延在する電源線VSSと直交する第2方向Hに延在している。
また、例えば、図27に示したように、配線VOUT1と電気的に接続された配線VOUT1xが設けられている。配線VOUT1xは、第1方向Vに延在する配線VOUT1と直交する第2方向Hに延在している。また、例えば、図27に示したように、配線VOUT2と電気的に接続された配線VOUT2xが設けられている。配線VOUT2xは、第1方向Vに延在する配線VOUT2と直交する第2方向Hに延在している。また、例えば、図27に示したように、配線VOUT3と電気的に接続された配線VOUT3xが設けられている。配線VOUT3xは、第1方向Vに延在する配線VOUT3と直交する第2方向Hに延在している。また、例えば、図27に示したように、配線VOUT4と電気的に接続された配線VOUT4xが設けられている。配線VOUT4xは、第1方向Vに延在する配線VOUT4と直交する第2方向Hに延在している。
本変形例では、配線層56内に、電源線VDDx,VSSx、配線VOUT1x~VOUT4xが設けられている。これにより、配線の引出方向を柔軟に設定することが可能となる。
[変形例F]
図28は、上記実施の形態に係る撮像素子1の水平方向の断面構成の一変形例を表すものである。図28には、図10の断面構成の一変形例が示されている。
本変形例では、半導体基板21が、絶縁層53を介して第1方向Vおよび第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、一組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。このようにした場合には、互いに隣接する読み出し回路22同士のクロストークを、絶縁層53によって抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
[変形例G]
図29は、上記実施の形態に係る撮像素子1の水平方向の断面構成の一変形例を表すものである。図29には、図28の断面構成の一変形例が示されている。
本変形例では、4つのセンサ画素12によって共有される1つの読み出し回路22が、例えば、4つのセンサ画素12と正対して配置されておらず、第1方向Vにずれて配置されている。本変形例では、さらに、変形例Fと同様、半導体基板21が、絶縁層53を介して第1方向Vおよび第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、一組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。本変形例では、さらに、複数の貫通配線47および複数の貫通配線54が、第2方向Hにも配列されている。具体的には、複数の貫通配線47が、ある読み出し回路22を共有する4つの貫通配線54と、その読み出し回路22の第2方向Hに隣接する他の読み出し回路22を共有する4つの貫通配線54との間に配置されている。このようにした場合には、互いに隣接する読み出し回路22同士のクロストークを、絶縁層53および貫通配線47によって抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
[変形例H]
図30は、上記実施の形態およびその変形例に係る撮像素子1の垂直方向の断面構成の一変形例を表すものである。図30には、図7、図17~図24、図28、図29における第1基板10および第2基板20の接続箇所の断面構成の一変形例が拡大して示されている。
本変形例では、転送ゲートTGが、貫通配線48に接続されておらず、層間絶縁膜51(具体的には絶縁層46)内に設けられた、第1基板10の表面と平行な方向に延在するゲート配線49に電気的に接続されている。つまり、本変形例では、第1基板10は、層間絶縁膜51(具体的には絶縁層46)内に設けられたゲート配線49を有している。ゲート配線49は、例えば、第1基板10および第2基板20からなる積層体において、画素領域13と非対向の領域(額縁領域)に設けられた貫通配線を介して、ロジック回路32に電気的に接続されている。つまり、転送トランジスタTRのゲート(転送ゲートTG)は、ゲート配線49を介して、ロジック回路32に電気的に接続されている。これにより、貫通配線48を設ける必要がないので、貫通配線48を設けた場合と比べて、読み出し回路22の面積をより大きくすることができる。
ゲート配線49は、例えば、耐熱性の高い金属材料によって形成されていてもよい。耐熱性の高い金属材料としては、例えば、W(タングステン)、または、Ru(ルテニウム)などが挙げられる。ゲート配線49が耐熱性の高い金属材料によって形成されている場合には、例えば、半導体基板21を第1基板10に貼り合わせた後に、読み出し回路22を形成する際に、ゲート絶縁膜として熱酸化膜を用いることができる。
図31は、本変形例に係る撮像素子1の水平方向の断面構成の一変形例を表すものである。図31には、図30の断面構成を備えた撮像素子1の断面構成の一例が示されている。各ゲート配線49は、例えば、第1方向Vと平行な方向に延在している。このとき、各ゲート配線49は、例えば、半導体基板21の各ブロック21Aと対向する箇所に配置されている。
本変形例では、貫通配線48が省略され、層間絶縁膜51(具体的には絶縁層46)内に設けられた、第1基板10の表面と平行な方向に延在するゲート配線49に転送ゲートTGが電気的に接続されている。これにより、複数のゲート配線49は、互いに異なる読み出し回路22に接続されるとともに第2方向Hにおいて互いに隣接する2つの貫通配線54の間に配置されている。その結果、互いに異なる読み出し回路22に接続されるとともに第2方向Hにおいて互いに隣接する2つの貫通配線54の間に生じる電気力線密度を、複数のゲート配線49によって低減することができる。その結果、隣接するセンサ画素12間の信号クロストークを抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
[変形例I]
図32は、上記変形例Hに係る撮像素子1の垂直方向の断面構成の一変形例を表すものである。図32には、図30の断面構成の一変形例が示されている。
本変形例では、転送ゲートTGが、層間絶縁膜51(具体的には絶縁層46)内に設けられたゲート配線49に電気的に接続されている。本変形例では、さらに、読み出し回路22を共有する4つのフローティングディフュージョンFDが、層間絶縁膜51(具体的には絶縁層46)内に設けられた接続部71および接続配線72に電気的に接続されている。接続配線72は、貫通配線54に電気的に接続されている。つまり、本変形例では、センサ画素12ごとに、貫通配線54が設けられておらず、読み出し回路22(接続配線72)を共有する4つのセンサ画素12ごとに、1つの貫通配線54が設けられている。なお、図32において、接続部71および接続配線72は、一体に形成されていてもよい。
図33、図34は、本変形例に係る撮像素子1の水平方向の断面構成の一例を表すものである。図33、図34には、図32の断面構成を備えた撮像素子1の断面構成の一例が示されている。
本変形例では、上述したように、読み出し回路22を共有する4つのフローティングディフュージョンFDごとに、1つの貫通配線54が設けられている。本変形例では、さらに、貫通配線47についても、貫通配線54と同様の省略化がなされている。具体的には、互いに隣接する4つの貫通配線47の代わりに、例えば、図35に示したように、層間絶縁膜51(具体的には絶縁層46)内に設けられた4つの接続部73がそれぞれ、各センサ画素12の半導体基板11のpウェル層42に電気的に接続されている。これら4つの接続部73は、層間絶縁膜51(具体的には絶縁層46)内に設けられた接続配線74に電気的に接続されている。接続配線74が貫通配線47および電源線VSSに電気的に接続されている。つまり、本変形例では、センサ画素12ごとに、貫通配線47が設けられておらず、接続配線74を共有する4つのセンサ画素12ごとに、1つの貫通配線47が設けられている。
接続配線74を共有する4つのセンサ画素12は、読み出し回路22(接続配線72)を共有する4つのセンサ画素12とは完全に一致していない。ここで、マトリクス状に配置された複数のセンサ画素12において、1つのフローティングディフュージョンFDを共有する4つのセンサ画素12に対応する単位領域を、1つのセンサ画素12分だけ第1方向Vにずらすことにより得られる領域に対応する4つのセンサ画素12を、便宜的に、4つのセンサ画素12Aと称することとする。このとき、本変形例では、第1基板10は、貫通配線47を4つのセンサ画素12Aごとに共有している。従って、本変形例では、4つのセンサ画素12Aごとに、1つの貫通配線47が設けられている。
また、第1方向Vにおいて互いに隣接する2つの読み出し回路22を、便宜的に、第1の読み出し回路22Aおよび第2の読み出し回路22Bとする。第1の読み出し回路22Aを共有する4つのセンサ画素12のうち、第2の読み出し回路22Bに隣接する2つのセンサ画素12と、第2の読み出し回路22Bを共有する4つのセンサ画素12のうち、第1の読み出し回路22Aに隣接する2つのセンサ画素12とが、1つの接続配線74を共有している。つまり、接続配線74を共有する4つのセンサ画素12と、読み出し回路22(接続配線72)を共有する4つのセンサ画素12とは、第1方向Vにおいて1つのセンサ画素12分だけずれている。
これにより、例えば、図34に示したように、第1方向Vに延在する絶縁層53には、貫通配線54,47を一列に配置することが可能となる。このとき、貫通配線54,47,48を2列に並べていた場合と比べて、絶縁層53の、第2方向Hの幅を狭くすることができる。さらに、絶縁層53の、第2方向Hの幅を狭くした分だけ、第1方向Vに延在する半導体基板21の各ブロック21Aの、第2方向Hの幅を広くすることができる。半導体基板21の各ブロック21Aを大きくした場合、各ブロック21A内の読み出し回路22のサイズも大きくすることができる。その結果、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
図36は、本変形例に係る撮像素子1の水平方向の断面構成の一例を表すものである。図36には、図34の断面構成の一変形例が示されている。図36に記載の撮像素子1においても、読み出し回路22(接続配線72)を共有する4つのセンサ画素12ごとに、1つの貫通配線54が設けられおり、接続配線74を共有する4つのセンサ画素12ごとに、1つの貫通配線47が設けられている。
これにより、例えば、図36に示したように、絶縁層53のうち、第1方向Vに延在する部分に、貫通配線54,47を一列に配置することが可能となる。このとき、貫通配線54,47,48を2列に並べていた場合と比べて、絶縁層53のうち、第1方向Vに延在する部分の、第2方向Hの幅を狭くすることができる。さらに、絶縁層53のうち、第1方向Vに延在する部分の、第2方向Hの幅を狭くした分だけ、半導体基板21の各ブロック21Aの、第2方向Hの幅を広くすることができる。半導体基板21の各ブロック21Aを大きくした場合、各ブロック21A内の読み出し回路22のサイズも大きくすることができる。その結果、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
図37、図38は、本変形例に係る撮像素子1の水平方向の断面構成の一例を表すものである。図37、図38には、図32の断面構成を備えた撮像素子1の水平方向の断面構成の一例であって、かつ、図33、図34の断面構成の一変形例が示されている。
本変形例では、上述したように、読み出し回路22を共有する4つのフローティングディフュージョンFDごとに、1つの貫通配線54が設けられている。本変形例では、さらに、貫通配線47についても、貫通配線54と類似した省略化がなされている。具体的には、互いに隣接する2つの貫通配線47の代わりに、例えば、図39に示したように、層間絶縁膜51(具体的には絶縁層46)内に設けられた2つの接続部73がそれぞれ、各センサ画素12の半導体基板11のpウェル層42に電気的に接続されている。これら2つの接続部73は、層間絶縁膜51(具体的には絶縁層46)内に設けられた接続配線74に電気的に接続されている。接続配線74が貫通配線47および電源線VSSに電気的に接続されている。つまり、本変形例では、センサ画素12ごとに、貫通配線47が設けられておらず、接続配線74を共有する2つのセンサ画素12ごとに、1つの貫通配線47が設けられている。
これにより、例えば、図38に示したように、絶縁層53のうち、第1方向Vに延在する部分に、貫通配線54,47を一列に配置することが可能となる。さらに、例えば、図38に示したように、絶縁層53のうち、第2方向Hに延在する部分にも、貫通配線54,47を一列に配置することが可能となる。このとき、貫通配線54,47,48を2列に並べていた場合と比べて、絶縁層53のうち、第1方向Vに延在する部分の、第2方向Hの幅を狭くすることができ、絶縁層53のうち、第2方向Hに延在する部分の、第1方向Vの幅を狭くすることができる。さらに、絶縁層53のうち、第1方向Vに延在する部分の、第2方向Hの幅を狭くした分だけ、半導体基板21の各ブロック21Aの、第2方向Hの幅を広くすることができ、絶縁層53のうち、第2方向Hに延在する部分の、第1方向Vの幅を狭くした分だけ、半導体基板21の各ブロック21Aの、第1方向Vの幅を広くすることができる。半導体基板21の各ブロック21Aを大きくした場合、各ブロック21A内の読み出し回路22のサイズも大きくすることができる。その結果、第2基板20と第3基板30との電気的な接続に、パッド電極58,64同士の接合を用いた場合であっても、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。
[変形例J]
図40A~図40Fは、上記実施の形態およびその変形例に係る撮像素子1の製造過程の一変形例を表すものである。
まず、半導体基板21に、増幅トランジスタAMPなどを含む読み出し回路22を形成する(図40A)。次に、半導体基板21の表面のうち所定の箇所に窪みを形成し、その窪みを埋め込むように絶縁層53を形成する(図40A)。次に、半導体基板21上に、絶縁層52を形成する(図40A)。このようにして、基板110を形成する。次に、絶縁層52に接するように、支持基板120を基板110に貼り合わせる(図40B)。続いて、半導体基板21の裏面を研磨することにより、半導体基板21の厚さを薄くする(図40C)。このとき、半導体基板21の窪みに到達するまで半導体基板21の裏面を研磨する。その後、研磨面に接合層130を形成する(図40D)。
次に、第1基板10の半導体基板11の表面側に接合層130を向けて、基板110を第1基板10に貼り合わせる(図40E)。続いて、基板110を第1基板10に貼り合わせた状態で、支持基板120を基板110から剥離する(図40F)。その後は、上述の図16D~図16Fに記載の手順を実施する。このようにしても、撮像素子1を製造することができる。
このように、本変形例では、半導体基板21に、増幅トランジスタAMPなどを含む読み出し回路22を形成した上で、第1基板10に、半導体基板21が貼り合わされる。このようにした場合であっても、上記実施の形態およびその変形例に係る撮像素子1の構成を実現することができる。
[変形例K]
図41は、上記実施の形態およびその変形例に係る撮像素子1の水平方向の断面構成の一例を表したものである。図41には、図10の断面構成の一変形例が示されている。
本変形例では、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに有し、フローティングディフュージョンFDを4つのセンサ画素12ごとに共有している。従って、本変形例では、4つのセンサ画素12ごとに、1つの貫通配線54が設けられている。
マトリクス状に配置された複数のセンサ画素12において、1つのフローティングディフュージョンFDを共有する4つのセンサ画素12に対応する単位領域を、1つのセンサ画素12分だけ第1方向Vにずらすことにより得られる領域に対応する4つのセンサ画素12を、便宜的に、4つのセンサ画素12Aと称することとする。このとき、本変形例では、第1基板10は、貫通配線47を4つのセンサ画素12Aごとに共有している。従って、本変形例では、4つのセンサ画素12Aごとに、1つの貫通配線47が設けられている。
本変形例では、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに分離する素子分離部43を有している。素子分離部43は、半導体基板11の法線方向から見て、センサ画素12を完全には囲っておらず、フローティングディフュージョンFD(貫通配線54)の近傍と、貫通配線47の近傍に、隙間(未形成領域)を有している。そして、その隙間によって、4つのセンサ画素12による1つの貫通配線54の共有や、4つのセンサ画素12Aによる1つの貫通配線47の共有を可能にしている。本変形例では、第2基板20は、フローティングディフュージョンFDを共有する4つのセンサ画素12ごとに読み出し回路22を有している。
図42は、本変形例に係る撮像素子1の水平方向の断面構成の一例を表したものである。図42には、図28の断面構成の一変形例が示されている。本変形例では、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに有し、フローティングディフュージョンFDを4つのセンサ画素12ごとに共有している。さらに、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに分離する素子分離部43を有している。
図43は、本変形例に係る撮像素子1の水平方向の断面構成の一例を表したものである。図43には、図29の断面構成の一変形例が示されている。本変形例では、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに有し、フローティングディフュージョンFDを4つのセンサ画素12ごとに共有している。さらに、第1基板10は、フォトダイオードPDおよび転送トランジスタTRをセンサ画素12ごとに分離する素子分離部43を有している。
[変形例L]
図44は、上記実施の形態およびその変形例に係る撮像素子1の垂直方向の断面構成の一例を表したものである。図44には、上記実施の形態およびその変形例に係る撮像素子1における第1基板10および第2基板20の接続箇所の拡大図が示されている。
互いに異なる読み出し回路22に接続されるとともに互いに隣接する2つのセンサ画素12において、一方のセンサ画素12のフローティングディフュージョンFDと、他方のセンサ画素12のフローティングディフュージョンFDとの間隙には、2つの転送ゲートTGが設けられている。このとき、各転送ゲートTGの厚さをt1とし、一方のセンサ画素12のフローティングディフュージョンFDと、他方のセンサ画素12のフローティングディフュージョンFDとの間隙における、絶縁層46の厚さをt2とし、t1とt2の関係は、t2>t1>t2/3.5を満たすことが好ましい。
このようにすることにより、互いに異なる読み出し回路22に接続されるとともに互いに隣接する2つの貫通配線54の間に生じる電気力線密度を低減することができる。その結果、隣接するセンサ画素12間の信号クロストークを抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
図44に記載の層間絶縁膜51において、絶縁層53は、絶縁層46,52の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層53が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層46,52が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図44に記載の層間絶縁膜51において、絶縁層53,52は、絶縁層46の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層53,52が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層46が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図44に記載の層間絶縁膜51において、絶縁層46,53は、絶縁層52の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層46,53が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層52が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図44に記載の層間絶縁膜51において、絶縁層46は、絶縁層52,53の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層46が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層52,53が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図44に記載の層間絶縁膜51において、絶縁層46,52,53は、比誘電率の低い材料によって形成されていてもよい。このとき、絶縁層46,52,53が、例えば、SiOC(比誘電率2.9程度)によって形成されていてもよい。また、図44に記載の層間絶縁膜51において、絶縁層52は、絶縁層46,53の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層52が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層46,53が、SiO2(比誘電率4.1程度)によって形成されていてもよい。
このようにした場合には、互いに異なる読み出し回路22に接続されるとともに互いに隣接する2つの貫通配線54の間に生じる容量を低減することができる。その結果、隣接するセンサ画素12間の信号クロストークを抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
本変形例において、貫通配線54の側面を覆うように設けられた絶縁層53が、例えば、絶縁層46および絶縁層52の比誘電率よりも小さな比誘電率の材料によって構成されていてもよい。絶縁層46および絶縁層52は、例えば、SiO2(比誘電率4.1程度)によって形成されている。絶縁層46および絶縁層52は、例えば、TEOS(Tetraethylorthosilicate)、NSG、HDP(High Density Plasma)、BSG(Boro Silicate Glass)、PSG(Phospho Silicate Glass)、BPSG(Boro Phospho Silicate Glass)等を含むシリコン酸化膜によって形成されていてもよい。絶縁層53は、例えば、SiOC(比誘電率2.9程度)によって形成されている。このようにした場合には、互いに異なる読み出し回路22に接続されるとともに互いに隣接する2つの貫通配線54の間に生じる容量を低減することができる。その結果、変換効率を向上させることができる。
本変形例において、絶縁層46は、少なくとも2つ絶縁層の積層体で構成されていてもよい。絶縁層46は、例えば、図45に示したように、半導体基板11に接する絶縁層46Aと、絶縁層46Aおよび半導体基板21に接する絶縁層46Bとによって構成されていてもよい。ここで、絶縁層46Aは、絶縁層46の最上層であり、例えば、層間絶縁膜51の他の箇所の比誘電率よりも大きな比誘電率の材料によって構成されている。このとき、絶縁層46Aは、例えば、SiN(比誘電率7.0程度)によって形成されていてもよい。絶縁層46Bおよび絶縁層52は、例えば、SiO2(比誘電率4.1程度)によって形成されていてもよい。絶縁層46Bおよび絶縁層52は、例えば、TEOS、NSG、HDP、BSG、PSG、BPSG等を含むシリコン酸化膜によって形成されていてもよい。絶縁層53は、例えば、SiOC(比誘電率2.9程度)によって形成されていてもよい。
また、図45に記載の層間絶縁膜51において、絶縁層53が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層46B,52が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図45に記載の層間絶縁膜51において、絶縁層53,52が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層46Bが、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図45に記載の層間絶縁膜51において、絶縁層46B,53は、絶縁層52の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層46B,53が、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層52が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図45に記載の層間絶縁膜51において、絶縁層46Bは、絶縁層52,53の比誘電率よりも小さな比誘電率の材料によって形成されていてもよい。このとき、絶縁層46Bが、例えば、SiOC(比誘電率2.9程度)によって形成されており、絶縁層52,53が、SiO2(比誘電率4.1程度)によって形成されていてもよい。また、図45に記載の層間絶縁膜51において、絶縁層46B,52,53は、比誘電率の低い材料によって形成されていてもよい。このとき、絶縁層46B,52,53が、例えば、SiOC(比誘電率2.9程度)によって形成されていてもよい。
このようにした場合には、互いに異なる読み出し回路22に接続されるとともに互いに隣接する2つの貫通配線54の間に生じる容量を低減することができる。その結果、隣接するセンサ画素12間の信号クロストークを抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
なお、場合によっては、絶縁層46B,52,53は、共通の材料によって形成されていてもよい。このとき、絶縁層46B,52,53が、例えば、SiO2(比誘電率4.1程度)によって形成されていてもよい。
[変形例M]
図46、図47は、上記実施の形態およびその変形例に係る撮像素子1におけるセンサ画素12および読み出し回路22の一変形例を表したものである。図46には、図2に記載のセンサ画素12および読み出し回路22の一変形例が示されている。図47には、図3に記載のセンサ画素12および読み出し回路22の一変形例が示されている。本変形例では、第2基板20は、2つのセンサ画素12ごとに読み出し回路22を有している。このような構成にした場合であっても、撮像素子1は、上記実施の形態およびその変形例に記載の効果を有する。
[変形例N]
図48、図49は、上記実施の形態およびその変形例に係る撮像素子1におけるセンサ画素12および読み出し回路22の一変形例を表したものである。図48には、図2に記載のセンサ画素12および読み出し回路22の一変形例が示されている。図49には、図3に記載のセンサ画素12および読み出し回路22の一変形例が示されている。本変形例では、第2基板20は、1つのセンサ画素12ごとに読み出し回路22を有している。このような構成にした場合であっても、撮像素子1は、上記実施の形態およびその変形例に記載の効果を有する。
なお、上記実施の形態およびその変形例に係る撮像素子1において、第2基板20は、3つのセンサ画素12ごとに読み出し回路22を有していてもよい。また、上記実施の形態およびその変形例に係る撮像素子1において、第2基板20は、8つのセンサ画素12ごとに読み出し回路22を有していてもよい。また、上記実施の形態およびその変形例に係る撮像素子1において、第2基板20は、5つ以上のセンサ画素12ごとに読み出し回路22を有していてもよい。これらのような構成にした場合であっても、撮像素子1は、上記実施の形態およびその変形例に記載の効果を有する。
[変形例O]
図50は、上記実施の形態およびその変形例に係る撮像素子1の一部の断面構成例を表したものである。本変形例では、第1基板10内のトランジスタ(例えば、転送トランジスタTR)と、第2基板20内のトランジスタ(例えば、増幅トランジスタAMP)とが、互いに異なる設計条件で形成されている。具体的には、第1基板10内のトランジスタのゲート絶縁膜81の膜厚と、第2基板20内のトランジスタのゲート絶縁膜83の膜厚とが互いに異なっている。また、第1基板10内のトランジスタのサイドウォール幅と、第2基板20内のトランジスタのサイドウォール幅とが互いに異なっている。また、第1基板10内のトランジスタのソース/ドレイン濃度(例えば、フローティングディフュージョンFD濃度)と、第2基板20内のトランジスタのソース/ドレイン濃度とが互いに異なっている。また、第1基板10内のトランジスタを被覆する層82の膜厚と、第2基板20内のトランジスタを被覆する層84の膜厚とが互いに異なっている。
つまり、本変形例では、センサ画素12内のトランジスタと、読み出し回路22内のトランジスタとで、設計条件を互いに異ならせることができる。これにより、センサ画素12内のトランジスタに適した設計条件を設定することができ、さらに、読み出し回路22内のトランジスタに適した設計条件を設定することができる。
[変形例P]
図51、図52は、上記変形例Iに係る撮像素子1の水平方向の断面構成の一変形例を表したものである。図51には、図33の断面構成の一変形例が示されている。図52には、図34の断面構成の一変形例が示されている。
本変形例では、ゲート配線49が省略され、複数の貫通配線48が転送ゲートTGごとに1つずつ設けられている。各貫通配線48は、対応する転送ゲートTGに電気的に接続されるとともに、画素駆動線23に電気的に接続されている。図51、図52に示したように、複数の貫通配線54、複数の貫通配線48および複数の貫通配線47は、第1方向V(図51、図52の左右方向)に帯状に並んで配置されている。複数の貫通配線54および複数の貫通配線47は、第1方向V(図51、図52の左右方向)に一列に並んで配置されており、複数の貫通配線48は、第1方向V(図51、図52の左右方向)に二列に並んで配置されている。
図53は、本変形例に係る撮像素子1の垂直方向の断面構成の一例を表したものである。本変形例では、読み出し回路22を共有する4つのフローティングディフュージョンFDごとに、1つの接続配線76が設けられている。図32に記載の変形例Iにおいては、実施の形態の一例として、接続配線72の基板水平方向に延在する部位は、転送ゲートTGよりも上方(第2基板20に近い位置)に形成していた。この構造を形成する際には、例えば、転送ゲートTGを形成した後、転送ゲートTGの高さに達する絶縁膜を形成した後、接続配線72を形成する製法を取り得る。一方、図53に記載の変形例Pにおいては、実施の形態の一例として、接続配線76の基板水平方向に延在する部位の下面(第1基板10側の面)は、転送ゲートTGの上面(第2基板20側の面)よりも下方(第1基板10に近い位置)に形成している。一例として、接続配線76の基板水平方向に延在する部位を、読み出し回路22のトランジスタのゲート絶縁膜の上に形成してよい。あるいは、転送ゲートTGの上面および側面と、転送ゲートTGを配置していない第1基板10の上面とに、転送ゲートTGの高さよりも膜厚の小さな絶縁膜を形成し、その上に、接続配線76の基板水平方向に延在する部位を配置してもよい。
接続配線76は、読み出し回路22のトランジスタのゲート絶縁膜(例えば、転送トランジスタTRのゲート絶縁膜75)あるいは、転送ゲートTGの高さよりも膜厚の小さな絶縁膜に設けられた開口を介して4つのフローティングディフュージョンFDに接続されている。接続配線76は、読み出し回路22のトランジスタのゲート絶縁膜(例えば、転送トランジスタTRのゲート絶縁膜75)の表面に接して形成されている。接続配線76に用いる電極材料としては、耐熱性の高い材料を用いることが好ましい。耐熱性の高い材料としては、例えば、ポリシリコンが挙げられる。接続配線76は、例えば、タングステンや銅などの金属によって構成されていてもよい。
本変形例では、接続配線76が設けられていることにより、貫通配線54が貫通する絶縁層53の占有面積を小さくすることができる。これにより、絶縁層53の占有面積を小さくした分だけ、半導体基板21(ブロック21A)の面積を大きくすることができるので、読み出し回路22(特に増幅トランジスタAMP)の面積を拡大することができる。その結果、ランダムノイズを改善することができる。
図32に記載の接続部71の基板に対して垂直方向の長さaと、図53に記載の接続配線76の共通配線に至るまでの基板に対して垂直方向の長さ bとを比較すると、aよりもbの方が短くなっている。同様に、変形例Iの図35に記載の接続部73の基板に対して垂直方向の長さcと、変形例Pの後述する図54に記載の接続配線77の共通配線に至るまでの基板に対して垂直方向の長さdとを比較すると、cよりもdの方が短くなっている。また、接続配線76および77に備わる部位であって、基板水平方向に延在する部位の厚さe(共通配線の基板垂直方向の高さ)と、基板垂直方向に延在する部位の厚さf(=b)とを比較すると、fはeよりも小さくなっている。
ここで、N型不純物領域であるフローティングディフュージョンFDへ接続する接続配線76をN型にドーピングする製法と、pウェル層42へ接続する接続配線77をP型にドーピングする製法とに、例えばイオン注入を用いる場合について考える。接続配線76と77に備わる部位のうち、絶縁膜を貫通して基板垂直方向に延在する部位の長さが長い場合には、接続配線76と77の全体に渡って十分な濃度の不純物をドーピングするためには、接続配線76および77に備わり基板水平方向に延在する部位へのイオン注入と、接続配線76および77に備わり基板垂直方向に延在する部位へのイオン注入とを、それぞれ別々に行うことが必要になる可能性がある。これに対して、絶縁膜を貫通して基板垂直方向に延在する部位の長さが短い場合には、基板水平方向に延在する部位へイオン注入を行うと、これによって基板垂直方向に延在する部位へも十分な濃度のドーピングを行うことができる可能性がある。これにより、製造方法を簡略に出来る可能性がある。また、基板垂直方向に延在する部位において、基板垂直方向の不純物ドーピング濃度に差異が生じることなく、均一にドーピングすることができる可能性がある。さらに、基板垂直方向に延在する部位と基板水平方向に延在する部位とを、同じ濃度にドーピングすることができる可能性がある。
図54は、本変形例に係る撮像素子1の垂直方向の断面構成の一例を表したものである。本変形例では、互いに隣接する4つのセンサ画素12のウェル層42ごとに、1つの接続配線77が設けられている。図54に記載の変形例Pにおいては、実施の形態の一例として、接続配線77の下面(第1基板10側の面)は、図53に記載の転送ゲートTGの上面(第2基板20側の面)よりも下方(第1基板10に近い位置)に形成されている。一例として、接続配線77の基板水平方向に延在する部位を、読み出し回路22のトランジスタのゲート絶縁膜の上に形成してよい。あるいは、転送ゲートTGの上面および側面と、転送ゲートTGを配置していない第1基板10の上面とに、転送ゲートTGの高さよりも膜厚の小さな絶縁膜を形成し、その上に、接続配線77の基板水平方向に延在する部位を配置してもよい。
接続配線77は、読み出し回路22のトランジスタ(例えば、転送トランジスタTR)のゲート絶縁膜75あるいは、転送ゲートTGの高さよりも膜厚の小さな絶縁膜に設けられた開口を介して4つのウェル層42に接続されている。接続配線76は、読み出し回路22のトランジスタのゲート絶縁膜(例えば、転送トランジスタTRのゲート絶縁膜75)の表面に接して形成されている。接続配線77に用いる電極材料としては、耐熱性の高い材料を用いることが好ましい。耐熱性の高い材料としては、例えば、ポリシリコンが挙げられる。接続配線77は、例えば、P型不純物をドープしたポリシリコンによって構成されている。接続配線77は、例えば、タングステンや銅などの金属によって構成されていてもよい。
変形例Iの図35に記載の接続部73および接続配線74と変形例Pの図54に記載の接続配線77とを比較すると、接続配線77において絶縁膜を貫通して基板10および20に直交する方向に延在する部分の長さgが、接続部73および接続配線74において絶縁膜を貫通して基板10および20に直交する方向に延在する部分の長さhよりも短くなっている。また、接続配線77に備わる部位であって、基板水平方向に延在する部位の厚さi(基板垂直方向の高さ)と、基板垂直方向に延在する部位の厚さg(基板垂直方向の高さ)とを比較すると、gはiよりも小さくなっている。
本変形例では、接続配線77が設けられていることにより、貫通配線47が貫通する絶縁層53の占有面積を小さくすることができる。これにより、絶縁層53の占有面積を小さくした分だけ、半導体基板21(ブロック21A)の面積を大きくすることができるので、読み出し回路22(特に増幅トランジスタAMP)の面積を拡大することができる。その結果、ランダムノイズを改善することができる。
接続配線76,77の厚さは、必ずしも、読み出し回路22のトランジスタのゲート電極(例えば、転送トランジスタTRの転送ゲートTG)の厚さと同じでなくてもよい。接続配線76,77の厚さは、例えば、読み出し回路22のトランジスタのゲート電極(例えば、転送トランジスタTRの転送ゲートTG)の厚さよりも薄くなっている。なお、接続配線76,77の厚さは、例えば、図55、図56に示したように、読み出し回路22のトランジスタのゲート電極(例えば、転送トランジスタTRの転送ゲートTG)の厚さと同等か、または、それよりも厚くなっていてもよい。
接続配線76、77の厚さを、転送ゲートTGの厚さよりも小さくするに従って、例えば、フローティングディフュージョンFDに接続されている接続配線76と転送ゲートTGとの間のカップリング容量を小さくできる可能性がある。これにより、一定量の電荷をフローティングディフュージョンFDにおいて電荷-電圧変換した場合、発生する信号電圧をより大きくすることができる可能性がある。
一方、接続配線76、77への不純物のドーピングをイオン注入によって行う場合、イオンの注入射程は、ある1つの射程距離となるのではなく、プロジェクションレンジと呼ばれる射程距離の分布となって射程方向に広がる。この射程方向への不純物の広がりを考慮すると、接続配線76、77への不純物のドーピングをイオン注入によって行う場合、接続配線76、77の厚さを大きくするに従って、接続配線76、77への不純物ドーピングを制御性よく行うことができる可能性がある。
なお、本変形例において、例えば、図57、図58、図59に示したように、転送ゲートTGごとに貫通配線48を1つずつ設けず、複数の転送ゲートTGごとに貫通配線48を1つずつ設けてもよい。この場合、貫通配線48を共有する複数の転送ゲートTGを互いに電気的に接続する接続部79および接続配線78を設けてもよい。複数の接続部79は、転送ゲートTGごとに1つずつ設けられており、各接続部79は、転送ゲートTGおよび接続配線78に接続されている。複数の接続配線78は、貫通配線48を共有する複数の転送ゲートTGごとに1つずつ設けられている。接続部79および接続配線78は、例えば、N型不純物をドープしたポリシリコンによって構成されており、転送ゲートTGに接続されている。接続部73および接続配線74は、例えば、N型不純物をドープしたポリシリコンによって構成されており、N型不純物領域であるフローティングディフュージョンFDに接続されている。
このように、複数の転送ゲートTGごとに貫通配線48を1つずつ設けた場合には、例えば、図58に示したように、貫通配線48が貫通する絶縁層53の占有面積を小さくすることができる。その結果、絶縁層53の占有面積を小さくした分だけ、半導体基板21(ブロック21A)の面積を大きくすることができるので、読み出し回路22(特に増幅トランジスタAMP)の面積を拡大することができる。なお、図59において、接続部71および接続配線72は、一体に形成されていてもよい。また、貫通配線48は、第1基板10に形成され、絶縁層46に形成された配線に接続され、転送ゲートの駆動信号を受け取る構成となっていてもよい。
また、本変形例では、接続部71の高さjが、転送ゲートTGの高さkよりも高くなっている。すなわち、転送ゲートTGの上面よりも上方まで絶縁膜が形成され、この絶縁膜で基板表面が平坦化された状態で、接続配線72が形成されている。これにより、接続配線72を加工することが容易になっている。
また、本変形例において、例えば、図60、図61、図62に示したように、一組の接続部73、接続配線74および貫通配線47の代わりに、互いに隣接する4つのセンサ画素12にまたがる貫通配線80が設けられていてもよい。貫通配線80は、絶縁層53を貫通して形成されており、互いに隣接する4つのセンサ画素12のウェル層42と、電源線VSSとに電気的に接続されている。なお、pwellへのコンタクトについては、図示していないが、図54や図56の構成と同様に、ポリシリコンをp型にドーピングした構成を用いることができる。
本変形例において、貫通配線80が設けられている場合には、貫通配線80が貫通する絶縁層53の占有面積を小さくすることができる。これにより、絶縁層53の占有面積を小さくした分だけ、半導体基板21(ブロック21A)の面積を大きくすることができるので、読み出し回路22(特に増幅トランジスタAMP)の面積を拡大することができる。その結果、ランダムノイズを改善することができる。
また、本変形例において、貫通配線80を設けるとともに、例えば、図63に示したように、接続配線76が設けられていてもよい。このようにした場合には、貫通配線54,80が貫通する絶縁層53の占有面積を小さくすることができる。これにより、絶縁層53の占有面積を小さくした分だけ、半導体基板21(ブロック21A)の面積を大きくすることができるので、読み出し回路22(特に増幅トランジスタAMP)の面積を拡大することができる。その結果、ランダムノイズを改善することができる。
[変形例Q]
図64は、上記実施の形態およびその変形例に係る撮像素子1の回路構成の一例を表したものである。本変形例に係る撮像素子1は、列並列ADC搭載のCMOSイメージセンサである。
図64に示すように、本変形例に係る撮像素子1は、光電変換素子を含む複数のセンサ画素12が行列状(マトリックス状)に2次元配置されてなる画素領域13に加えて、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38、水平駆動回路35、水平出力線37およびシステム制御回路36を有する構成となっている。
このシステム構成において、システム制御回路36は、マスタークロックMCKに基づいて、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38および水平駆動回路35などの動作の基準となるクロック信号や制御信号などを生成し、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38および水平駆動回路35などに対して与える。
また、垂直駆動回路33は、画素領域13の各センサ画素12とともに、第1基板10形成されており、さらに、読み出し回路22の形成されている第2基板20にも形成される。カラム信号処理回路34、参照電圧供給部38、水平駆動回路35、水平出力線37およびシステム制御回路36は、第3基板30に形成される。
センサ画素12としては、ここでは図示を省略するが、例えば、フォトダイオードPDの他に、フォトダイオードPDで光電変換して得られる電荷をフローティングディフュージョンFDに転送する転送トランジスタTRとを有する構成のものを用いることができる。また、読み出し回路22としては、ここでは図示を省略するが、例えば、フローティングディフュージョンFDの電位を制御するリセットトランジスタRSTと、フローティングディフュージョンFDの電位に応じた信号を出力する増幅トランジスタAMPと、画素選択を行うための選択トランジスタSELとを有する3トランジスタ構成のものを用いることができる。
画素領域13には、センサ画素12が2次元配置されるとともに、このm行n列の画素配置に対して行毎に画素駆動線23が配線され、列毎に垂直信号線24が配線されている。複数の画素駆動線23の各一端は、垂直駆動回路33の各行に対応した各出力端に接続されている。垂直駆動回路33は、シフトレジスタなどによって構成され、複数の画素駆動線23を介して画素領域13の行アドレスや行走査の制御を行う。
カラム信号処理回路34は、例えば、画素領域13の画素列毎、即ち垂直信号線24毎に設けられたADC(アナログ-デジタル変換回路)34-1~34-mを有し、画素領域13の各センサ画素12から列毎に出力されるアナログ信号をデジタル信号に変換して出力する。
参照電圧供給部38は、時間が経過するにつれてレベルが傾斜状に変化する、いわゆるランプ(RAMP)波形の参照電圧Vrefを生成する手段として、例えばDAC(デジタル-アナログ変換回路)38Aを有している。なお、ランプ波形の参照電圧Vrefを生成する手段としては、DAC38Aに限られるものではない。
DAC38Aは、システム制御回路36から与えられる制御信号CS1による制御の下に、当該システム制御回路36から与えられるクロックCKに基づいてランプ波形の参照電圧Vrefを生成してカラム処理部15のADC34-1~34-mに対して供給する。
なお、ADC34-1~34-mの各々は、センサ画素12全ての情報を読み出すプログレッシブ走査方式での通常フレームレートモードと、通常フレームレートモード時に比べて、センサ画素12の露光時間を1/Nに設定してフレームレートをN倍、例えば2倍に上げる高速フレームレートモードとの各動作モードに対応したAD変換動作を選択的に行い得る構成となっている。この動作モードの切り替えは、システム制御回路36から与えられる制御信号CS2,CS3による制御によって実行される。また、システム制御回路36に対しては、外部のシステムコントローラ(図示せず)から、通常フレームレートモードと高速フレームレートモードの各動作モードとを切り替えるための指示情報が与えられる。
ADC34-1~34-mは全て同じ構成となっており、ここでは、ADC34-mを例に挙げて説明するものとする。ADC34-mは、比較器34A、計数手段である例えばアップ/ダウンカウンタ(図中、U/DCNTと記している)34B、転送スイッチ34Cおよびメモリ装置34Dを有する構成となっている。
比較器34Aは、画素領域13のn列目の各センサ画素12から出力される信号に応じた垂直信号線24の信号電圧Vxと、参照電圧供給部38から供給されるランプ波形の参照電圧Vrefとを比較し、例えば、参照電圧Vrefが信号電圧Vxよりも大なるときに出力Vcoが"H"レベルになり、参照電圧Vrefが信号電圧Vx以下のときに出力Vcoが"L"レベルになる。
アップ/ダウンカウンタ34Bは非同期カウンタであり、システム制御回路36から与えられる制御信号CS2による制御の下に、システム制御回路36からクロックCKがDAC18Aと同時に与えられ、当該クロックCKに同期してダウン(DOWN)カウントまたはアップ(UP)カウントを行うことにより、比較器34Aでの比較動作の開始から比較動作の終了までの比較期間を計測する。
具体的には、通常フレームレートモードでは、1つのセンサ画素12からの信号の読み出し動作において、1回目の読み出し動作時にダウンカウントを行うことにより1回目の読み出し時の比較時間を計測し、2回目の読み出し動作時にアップカウントを行うことにより2回目の読み出し時の比較時間を計測する。
一方、高速フレームレートモードでは、ある行のセンサ画素12についてのカウント結果をそのまま保持しておき、引き続き、次の行のセンサ画素12について、前回のカウント結果から1回目の読み出し動作時にダウンカウントを行うことで1回目の読み出し時の比較時間を計測し、2回目の読み出し動作時にアップカウントを行うことで2回目の読み出し時の比較時間を計測する。
転送スイッチ34Cは、システム制御回路36から与えられる制御信号CS3による制御の下に、通常フレームレートモードでは、ある行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオン(閉)状態となって当該アップ/ダウンカウンタ34Bのカウント結果をメモリ装置34Dに転送する。
一方、例えばN=2の高速フレームレートでは、ある行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオフ(開)状態のままであり、引き続き、次の行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオン状態となって当該アップ/ダウンカウンタ34Bの垂直2画素分についてのカウント結果をメモリ装置34Dに転送する。
このようにして、画素領域13の各センサ画素12から垂直信号線24を経由して列毎に供給されるアナログ信号が、ADC34-1~34-mにおける比較器34Aおよびアップ/ダウンカウンタ34Bの各動作により、Nビットのデジタル信号に変換されてメモリ装置34Dに格納される。
水平駆動回路35は、シフトレジスタなどによって構成され、カラム信号処理回路34におけるADC34-1~34-mの列アドレスや列走査の制御を行う。この水平駆動回路35による制御の下に、ADC34-1~34-mの各々でAD変換されたNビットのデジタル信号は順に水平出力線37に読み出され、当該水平出力線37を経由して撮像データとして出力される。
なお、本開示には直接関連しないため特に図示しないが、水平出力線37を経由して出力される撮像データに対して各種の信号処理を施す回路等を、上記構成要素以外に設けることも可能である。
上記構成の本変形例に係る列並列ADC搭載の撮像素子1では、アップ/ダウンカウンタ34Bのカウント結果を、転送スイッチ34Cを介して選択的にメモリ装置34Dに転送することができるため、アップ/ダウンカウンタ34Bのカウント動作と、当該アップ/ダウンカウンタ34Bのカウント結果の水平出力線37への読み出し動作とを独立して制御することが可能である。
[変形例R]
図65は、図64の撮像素子1を3つの基板(第1基板10,第2基板20,第3基板30)を積層して構成した例を表す。本変形例では、第1基板10において、中央部分に、複数のセンサ画素12を含む画素領域13が形成されており、画素領域13の周囲に垂直駆動回路33が形成されている。また、第2基板20において、中央部分に、複数の読み出し回路22を含む読み出し回路領域15が形成されており、読み出し回路領域15の周囲に垂直駆動回路33が形成されている。第3基板30において、カラム信号処理回路34、水平駆動回路35、システム制御回路36、水平出力線37および参照電圧供給部38が形成されている。これにより、上記実施の形態およびその変形例と同様、基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子1を提供することができる。なお、垂直駆動回路33は、第1基板10のみに形成されても、第2基板20のみに形成されてもよい。
[変形例S]
図66は、上記実施の形態およびその変形例に係る撮像素子1の断面構成の一変形例を表す。上記実施の形態およびその変形例では、撮像素子1は、3つの基板(第1基板10,第2基板20,第3基板30)を積層して構成されていた。しかし、上記実施の形態およびその変形例において、撮像素子1が、2つの基板(第1基板10,第2基板20)を積層して構成されていてもよい。このとき、ロジック回路32は、例えば、図66に示したように、第1基板10と、第2基板20とに分けて形成されている。ここで、ロジック回路32のうち、第1基板10側に設けられた回路32Aでは、高温プロセスに耐え得る材料(例えば、high-k)からなる高誘電率膜とメタルゲート電極とが積層されたゲート構造を有するトランジスタが設けられている。一方、第2基板20側に設けられた回路32Bでは、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域26が形成されている。シリサイドからなる低抵抗領域は、半導体基板の材料と金属との化合物で形成されている。これにより、センサ画素12を形成する際に、熱酸化などの高温プロセスを用いることができる。また、ロジック回路32のうち、第2基板20側に設けられた回路32Bにおいて、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、シリサイドからなる低抵抗領域26を設けた場合には、接触抵抗を低減することができる。その結果、ロジック回路32での演算速度を高速化することができる。
図67は、上記実施の形態およびその変形例に係る撮像素子1の断面構成の一変形例を表す。上記実施の形態およびその変形例に係る第3基板30のロジック回路32において、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域37が形成されていてもよい。これにより、センサ画素12を形成する際に、熱酸化などの高温プロセスを用いることができる。また、ロジック回路32において、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、シリサイドからなる低抵抗領域37を設けた場合には、接触抵抗を低減することができる。その結果、ロジック回路32での演算速度を高速化することができる。
[変形例T]
上記実施の形態およびその変形例において、導電型が逆になっていてもよい。例えば、上記実施の形態およびその変形例の記載において、p型をn型に読み替えるとともに、n型をp型に読み替えてもよい。このようにした場合であっても、上記実施の形態およびその変形例と同様の効果を得ることができる。
なお、本開示は、可視光の受光素子としてだけでなく、赤外線、紫外線、X線、電磁波など様々な放射線を検出することができる素子に適用できる。用途としても、画像の出力以外にも、測距、光量の変化、物性の検出といった多様なアプリケーションに応用できる。
<3.適用例>
図68は、上記実施の形態およびその変形例に係る撮像素子1(以下、単に「撮像素子1」と称する。)を備えた撮像装置2の概略構成の一例を表したものである。
撮像装置2は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、スマートフォンやタブレット型端末等の携帯端末装置などの電子機器である。撮像装置2は、例えば、撮像素子1、光学系141、シャッタ装置142、制御回路143、DSP回路144、フレームメモリ145、表示部146、記憶部147、操作部148および電源部149を備えている。撮像装置2において、撮像素子1、シャッタ装置142、制御回路143、DSP回路144、フレームメモリ145、表示部146、記憶部147、操作部148および電源部149は、バスライン150を介して相互に接続されている。
撮像素子1は、入射光に応じた画像データを出力する。光学系141は、1枚または複数枚のレンズを有して構成され、被写体からの光(入射光)を撮像素子1に導き、撮像素子1の受光面に結像させる。シャッタ装置142は、光学系141および撮像素子1の間に配置され、制御回路143の制御に従って、撮像素子1への光照射期間および遮光期間を制御する。撮像素子1は、光学系141およびシャッタ装置142を介して受光面に結像される光に応じて、一定期間、信号電荷を蓄積する。撮像素子1に蓄積された信号電荷は、画像データとして、制御回路143から供給される駆動信号(タイミング信号)に従って転送される。制御回路143は、撮像素子1の転送動作、および、シャッタ装置142のシャッタ動作を制御する駆動信号を出力して、撮像素子1およびシャッタ装置142を駆動する。
DSP回路144は、撮像素子1から出力される信号(画像データ)を処理する信号処理回路である。フレームメモリ145は、DSP回路144により処理された画像データを、フレーム単位で一時的に保持する。表示部146は、例えば、液晶パネルや有機EL(Electro Luminescence)パネル等のパネル型表示装置からなり、撮像素子1で撮像された動画又は静止画を表示する。記憶部147は、撮像素子1で撮像された動画又は静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。操作部148は、ユーザによる操作に従い、撮像装置2が有する各種の機能についての操作指令を発する。電源部149は、撮像素子1、シャッタ装置142、制御回路143、DSP回路144、フレームメモリ145、表示部146、記憶部147および操作部148の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
本開示の撮像素子は、特開2015-99262の従来例、または、本開示として記載されているような、レンズ、IRCF(Infrared Cut Filter:赤外光カットフィルタ)等を備えた撮像モジュールの撮像素子にも適用可能である。撮像装置2においても、本撮像素子を用いた撮像モジュールも適用可能である。
次に、撮像装置2における撮像手順について説明する。
図69は、撮像装置2における撮像動作のフローチャートの一例を表す。ユーザは、操作部148を操作することにより撮像開始を指示する(ステップS101)。すると、操作部148は、撮像指令を制御回路143に送信する(ステップS102)。制御回路143は、撮像指令を受信すると、シャッタ装置142および撮像素子1の制御を開始する。撮像素子1(具体的にはシステム制御回路32d)は、制御回路143による制御によって、所定の撮像方式での撮像を実行する(ステップS103)。シャッタ装置142は、制御回路143による制御によって、撮像素子1への光照射期間および遮光期間を制御する。
撮像素子1は、撮像により得られた画像データをDSP回路144に出力する。ここで、画像データとは、フローティングディフュージョンFDに一時的に保持された電荷に基づいて生成された画素信号の全画素分のデータである。DSP回路144は、撮像素子1から入力された画像データに基づいて所定の信号処理(例えばノイズ低減処理など)を行う(ステップS104)。DSP回路144は、所定の信号処理がなされた画像データをフレームメモリ145に保持させ、フレームメモリ145は、画像データを記憶部147に記憶させる(ステップS105)。このようにして、撮像装置2における撮像が行われる。
本適用例では、上記実施の形態およびその変形例に係る撮像素子1が撮像装置2に適用される。これにより、撮像素子1を小型化もしくは高精細化することができるので、小型もしくは高精細な撮像装置2を提供することができる。
<4.応用例>
[応用例1]
本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
図70は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図70に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図70の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
図71は、撮像部12031の設置位置の例を示す図である。
図71では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
なお、図71には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る撮像素子1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの少ない高精細な撮影画像を得ることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
[応用例2]
図72は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
図72では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
図73は、図72に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を小型化もしくは高精細化することができるので、小型もしくは高精細な内視鏡11100を提供することができる。
以上、実施の形態およびその変形例、適用例ならびに応用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
また、例えば、本開示は以下のような構成を取ることができる。
(1)
第1半導体基板に、光電変換を行うセンサ画素を有する第1基板と、
第2半導体基板に、前記センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する第2基板と、
第3半導体基板に、前記画素信号を処理するロジック回路を有する第3基板と
を備え、
前記第1基板、前記第2基板および前記第3基板は、この順に積層され、
前記第1基板および前記第2基板からなる積層体は、層間絶縁膜と、前記層間絶縁膜内に設けられた第1貫通配線とを有し、
前記第1基板および前記第2基板は、前記第1貫通配線によって互いに電気的に接続されており、
前記第2基板および前記第3基板は、前記第2基板および前記第3基板がそれぞれ、パッド電極を有する場合には前記パッド電極同士の接合によって、前記第3基板が前記第3半導体基板を貫通する第2貫通配線を有する場合には前記第2貫通配線によって、互いに電気的に接続されている
撮像素子。
(2)
前記センサ画素は、光電変換素子と、前記光電変換素子と電気的に接続された転送トランジスタと、前記転送トランジスタを介して前記光電変換素子から出力された電荷を一時的に保持するフローティングディフュージョンとを有し、
前記読み出し回路は、前記フローティングディフュージョンの電位を所定の電位にリセットするリセットトランジスタと、前記画素信号として、前記フローティングディフュージョンに保持された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタとを有する
(1)に記載の撮像素子。
(3)
前記第1基板は、前記第1半導体基板の表面側の部分に、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンが設けられた構成となっており、
前記第2基板は、前記第2半導体基板の表面側の部分に前記読み出し回路が設けられた構成となっており、かつ、前記第1半導体基板の表面側に前記第2半導体基板の裏面を向けて前記第1基板に貼り合わされており、
前記第3基板は、前記第3半導体基板の表面側の部分に前記ロジック回路が設けられた構成となっており、かつ、前記第2半導体基板の表面側に前記第3半導体基板の表面側を向けて前記第2基板に貼り合わされている
(1)または(2)に記載の撮像素子。
(4)
前記第2基板および前記第3基板がそれぞれ、前記パッド電極を有し、
前記第1貫通配線の断面積は、前記パッド電極同士の接続箇所の断面積よりも小さくなっている
(1)ないし(3)のいずれか1つに記載の撮像素子。
(5)
前記第3基板が前記第1貫通配線を有し、
前記第1貫通配線の断面積は、前記第2貫通配線の断面積よりも小さくなっている
(1)ないし(3)のいずれか1つに記載の撮像素子。
(6)
前記ロジック回路は、ソース電極またはドレイン電極と接する不純物拡散領域の表面に、シリサイドを含んで構成されている
(1)ないし(5)のいずれか1つに記載の撮像素子。
(7)
前記第1基板は、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンを前記センサ画素ごとに有し、さらに、各前記センサ画素を分離する素子分離部を有し、
前記第2基板は、前記センサ画素ごとに前記読み出し回路を有する
(2)ないし(6)のいずれか1つに記載の撮像素子。
(8)
前記第1基板は、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンを前記センサ画素ごとに有し、さらに、各前記センサ画素を分離する素子分離部を有し、
前記第2基板は、複数の前記センサ画素ごとに前記読み出し回路を有する
(2)ないし(6)のいずれか1つに記載の撮像素子。
(9)
前記第1基板は、前記光電変換素子および前記転送トランジスタを前記センサ画素ごとに有し、前記フローティングディフュージョンを複数の前記センサ画素ごとに共有し、さらに、前記光電変換素子および前記転送トランジスタを前記センサ画素ごとに分離する素子分離部を有し、
前記第2基板は、前記フローティングディフュージョンを共有する複数の前記センサ画素ごとに前記読み出し回路を有する
(2)ないし(6)のいずれか1つに記載の撮像素子。
(10)
前記素子分離部は、前記第1半導体基板を貫通している
(7)ないし(9)のいずれか1つに記載の撮像素子。
(11)
前記積層体は、前記センサ画素ごとに、少なくとも2つの前記第1貫通配線を有し、
1つ目の前記第1貫通配線は、前記転送トランジスタのゲートに電気的に接続され、
2つ目の前記第1貫通配線は、前記フローティングディフュージョンに電気的に接続されている
(8)または(9)に記載の撮像素子。
(12)
前記第2基板は、前記読み出し回路を共有する各前記フローティングディフュージョンに電気的に接続された各前記第1貫通配線を互いに電気的に接続する接続配線を更に有する
(11)に記載の撮像素子。
(13)
前記第1貫通配線の数は、前記第1基板に含まれる前記センサ画素の数よりも多く、
前記パッド電極同士の接合の数、もしくは、前記第2貫通配線の数は、前記第1基板に含まれる前記センサ画素の数よりも少ない
(12)に記載の撮像素子。
(14)
前記転送トランジスタのゲートは、前記第1貫通配線と、前記パッド電極もしくは前記第2貫通配線とを介して、前記ロジック回路に電気的に接続されている
(11)ないし(13)のいずれか1つに記載の撮像素子。
(15)
前記第1基板は、前記層間絶縁膜内に、前記第1基板と平行な方向に延在するゲート配線を更に有し、
前記転送トランジスタのゲートは、前記ゲート配線を介して、前記ロジック回路に電気的に接続されている
(8)または(9)に記載の撮像素子。
(16)
前記層間絶縁膜は、
前記第1半導体基板と前記第2半導体基板との間隙に設けられた第1絶縁層と、
前記第1貫通配線の側面を覆うように設けられた第2絶縁層と、
前記第2半導体基板と前記第3半導体基板との間隙に設けられた第3絶縁層と
を含み、
前記第2絶縁層が、前記第1絶縁層および前記第3絶縁層の比誘電率よりも小さな比誘電率の材料によって構成されている
(1)ないし(15)のいずれか1つに記載の撮像素子。
(17)
前記第1絶縁層は、少なくとも2つ絶縁層の積層体で構成され、
前記積層体の最上層である前記絶縁層が、前記層間絶縁膜の他の箇所の誘電率よりも大きな比誘電率の材料によって構成されている
(16)に記載の撮像素子。
(18)
前記第2基板は、4つの前記センサ画素ごとに前記読み出し回路を有し、
複数の前記第1貫通配線は、前記第1基板の面内において第1方向に帯状に並んで配置されている
(11)ないし(13)のいずれか1つに記載の撮像素子。
(19)
前記読み出し回路は、当該読み出し回路を共有する4つの前記センサ画素に対して、正対して配置されておらず、前記第1方向と直交する第2方向にずれて配置されている
(18)に記載の撮像素子。
(20)
各前記センサ画素は、前記第1方向と、前記第1方向と直交する第2方向とに、マトリクス状に配置され、
前記第2基板は、
前記第2方向に並んで配置された各前記センサ画素の転送トランジスタのゲートに電気的に接続された第1制御線と、
前記第2方向に並んで配置された各前記リセットトランジスタのゲートに電気的に接続された第2制御線と、
前記第2方向に並んで配置された各前記選択トランジスタのゲートに電気的に接続された第3制御線と、
前記第1方向に並んで配置された各前記読み出し回路の出力端に電気的に接続された出力線と
を更に有する
(18)または(19)に記載の撮像素子。
本開示の一実施の形態に係る撮像素子によれば、基板の集積度に応じて基板同士の電気的な接続をするようにしたので、基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の撮像素子を提供することができる。なお、本開示の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
本出願は、米国特許商標庁において2017年12月27日に出願された米国特許出願番号62/610806および日本国特許庁を受理官庁として2018年9月28日に出願された国際出願PCT/JP2018/036417を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
本開示は、光検出素子に関する。
ところで、3次元構造の撮像素子において、半導体チップを3層積層する場合には、全ての半導体基板を表面側の面同士で貼り合わせることができない。漫然と半導体基板を3層積層した場合には、半導体基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまう可能性がある。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の光検出素子を提供することが望ましい。
本開示の一実施の形態に係る第1の光検出素子は、センサ画素を有する第1半導体基板を含む第1基板と、画素信号を出力する第1回路を有する第2半導体基板を含む第2基板と、画素信号を処理する第2回路を有する第3半導体基板を含む第3基板と、層間絶縁膜とを備えている。層間絶縁膜には、第1基板および第2基板を電気的に接続する第1貫通配線が設けられている。第2基板には、第1電極が設けられ、第3基板には、第2電極が設けられている。第1電極および第2電極は互いに接合されており、これにより、第2基板および第3基板が互いに電気的に接続されている。断面視において、第1貫通配線の幅は、第1電極および第2電極の少なくとも一方の幅よりも狭くなっている。
本開示の一実施の形態に係る第2の光検出素子は、少なくとも1つのセンサ画素を有する第1半導体基板を含む第1基板と、少なくとも1つのセンサ画素の画素信号を出力する第1回路を有する第2半導体基板を含む第2基板と、少なくとも1つのセンサ画素の画素信号を処理する第2回路を有する第3半導体基板を含む第3基板とを備えている。層間絶縁膜には、第1基板および第2基板を電気的に接続する複数の貫通配線が設けられている。第2基板には、第1電極が設けられ、第3基板には、第2電極が設けられている。第1電極および第2電極は互いに接合されており、これにより、第2基板および第3基板が互いに電気的に接続されている。断面視において、各貫通配線の幅は、第1電極および第2電極の少なくとも一方の幅よりも狭くなっている。貫通配線の総数は、第1基板に含まれるセンサ画素の総数よりも多くなっている。
本開示の一実施の形態に係る第3の光検出素子は、少なくとも1つのセンサ画素を有する第1半導体基板を含む第1基板と、少なくとも1つのセンサ画素の画素信号を出力する第1回路を有する第2半導体基板を含む第2基板と、少なくとも1つのセンサ画素の画素信号を処理する第2回路を有する第3半導体基板を含む第3基板とを備えている。第1基板および第2基板からなる積層体は、層間絶縁膜を有している。層間絶縁膜には、第1基板および第2基板を電気的に接続する少なくとも1つの貫通配線が設けられている。第2基板には、少なくとも1つの第1電極が設けられ、第3基板には、少なくとも1つの第2電極が設けられている。少なくとも1つの第1電極および少なくとも1つの第2電極は互いに接合されており、これにより、第2基板および第3基板が互いに電気的に接続されている。断面視において、少なくとも1つの貫通配線の幅は、少なくとも1つの第1電極および少なくとも1つの第2電極の少なくとも1つの幅よりも狭くなっている。少なくとも1つの第1電極および少なくとも1つの第2電極の接続総数は、第1基板に含まれるセンサ画素の総数よりも少なくなっている。

Claims (20)

  1. 第1半導体基板に、光電変換を行うセンサ画素を有する第1基板と、
    第2半導体基板に、前記センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路を有する第2基板と、
    第3半導体基板に、前記画素信号を処理するロジック回路を有する第3基板と
    を備え、
    前記第1基板、前記第2基板および前記第3基板は、この順に積層され、
    前記第1基板および前記第2基板からなる積層体は、層間絶縁膜と、前記層間絶縁膜内に設けられた第1貫通配線とを有し、
    前記第1基板および前記第2基板は、前記第1貫通配線によって互いに電気的に接続されており、
    前記第2基板および前記第3基板は、前記第2基板および前記第3基板がそれぞれ、パッド電極を有する場合には前記パッド電極同士の接合によって、前記第3基板が前記第3半導体基板を貫通する第2貫通配線を有する場合には前記第2貫通配線によって、互いに電気的に接続されている
    撮像素子。
  2. 前記センサ画素は、光電変換素子と、前記光電変換素子と電気的に接続された転送トランジスタと、前記転送トランジスタを介して前記光電変換素子から出力された電荷を一時的に保持するフローティングディフュージョンとを有し、
    前記読み出し回路は、前記フローティングディフュージョンの電位を所定の電位にリセットするリセットトランジスタと、前記画素信号として、前記フローティングディフュージョンに保持された電荷のレベルに応じた電圧の信号を生成する増幅トランジスタと、前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタとを有する
    請求項1に記載の撮像素子。
  3. 前記第1基板は、前記第1半導体基板の表面側の部分に、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンが設けられた構成となっており、
    前記第2基板は、前記第2半導体基板の表面側の部分に前記読み出し回路が設けられた構成となっており、かつ、前記第1半導体基板の表面側に前記第2半導体基板の裏面を向けて前記第1基板に貼り合わされており、
    前記第3基板は、前記第3半導体基板の表面側の部分に前記ロジック回路が設けられた構成となっており、かつ、前記第2半導体基板の表面側に前記第3半導体基板の表面側を向けて前記第2基板に貼り合わされている
    請求項2に記載の撮像素子。
  4. 前記第2基板および前記第3基板がそれぞれ、前記パッド電極を有し、
    前記第1貫通配線の断面積は、前記パッド電極同士の接続箇所の断面積よりも小さくなっている
    請求項3に記載の撮像素子。
  5. 前記第3基板が前記第1貫通配線を有し、
    前記第1貫通配線の断面積は、前記第2貫通配線の断面積よりも小さくなっている
    請求項3に記載の撮像素子。
  6. 前記ロジック回路は、ソース電極またはドレイン電極と接する不純物拡散領域の表面に、シリサイドを含んで構成されている
    請求項1に記載の撮像素子。
  7. 前記第1基板は、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンを前記センサ画素ごとに有し、さらに、各前記センサ画素を分離する素子分離部を有し、
    前記第2基板は、前記センサ画素ごとに前記読み出し回路を有する
    請求項2に記載の撮像素子。
  8. 前記第1基板は、前記光電変換素子、前記転送トランジスタおよび前記フローティングディフュージョンを前記センサ画素ごとに有し、さらに、各前記センサ画素を分離する素子分離部を有し、
    前記第2基板は、複数の前記センサ画素ごとに前記読み出し回路を有する
    請求項2に記載の撮像素子。
  9. 前記第1基板は、前記光電変換素子および前記転送トランジスタを前記センサ画素ごとに有し、前記フローティングディフュージョンを複数の前記センサ画素ごとに共有し、さらに、前記光電変換素子および前記転送トランジスタを前記センサ画素ごとに分離する素子分離部を有し、
    前記第2基板は、前記フローティングディフュージョンを共有する複数の前記センサ画素ごとに前記読み出し回路を有する
    請求項2に記載の撮像素子。
  10. 前記素子分離部は、前記第1半導体基板を貫通している
    請求項8に記載の撮像素子。
  11. 前記積層体は、前記センサ画素ごとに、少なくとも2つの前記第1貫通配線を有し、
    1つ目の前記第1貫通配線は、前記転送トランジスタのゲートに電気的に接続され、
    2つ目の前記第1貫通配線は、前記フローティングディフュージョンに電気的に接続されている
    請求項8に記載の撮像素子。
  12. 前記第2基板は、前記読み出し回路を共有する各前記フローティングディフュージョンに電気的に接続された各前記第1貫通配線を互いに電気的に接続する接続配線を更に有する
    請求項11に記載の撮像素子。
  13. 前記第1貫通配線の数は、前記第1基板に含まれる前記センサ画素の数よりも多く、
    前記パッド電極同士の接合の数、もしくは、前記第2貫通配線の数は、前記第1基板に含まれる前記センサ画素の数よりも少ない
    請求項12に記載の撮像素子。
  14. 前記転送トランジスタのゲートは、前記第1貫通配線と、前記パッド電極もしくは前記第2貫通配線とを介して、前記ロジック回路に電気的に接続されている
    請求項11に記載の撮像素子。
  15. 前記第1基板は、前記層間絶縁膜内に、前記第1基板と平行な方向に延在するゲート配線を更に有し、
    前記転送トランジスタのゲートは、前記ゲート配線を介して、前記ロジック回路に電気的に接続されている
    請求項8に記載の撮像素子。
  16. 前記層間絶縁膜は、
    前記第1半導体基板と前記第2半導体基板との間隙に設けられた第1絶縁層と、
    前記第1貫通配線の側面を覆うように設けられた第2絶縁層と、
    前記第2半導体基板と前記第3半導体基板との間隙に設けられた第3絶縁層と
    を含み、
    前記第2絶縁層が、前記第1絶縁層および前記第3絶縁層の比誘電率よりも小さな比誘電率の材料によって構成されている
    請求項1に記載の撮像素子。
  17. 前記第1絶縁層は、少なくとも2つ絶縁層の積層体で構成され、
    前記積層体の最上層である前記絶縁層が、前記層間絶縁膜の他の箇所の誘電率よりも大きな比誘電率の材料によって構成されている
    請求項16に記載の撮像素子。
  18. 前記第2基板は、4つの前記センサ画素ごとに前記読み出し回路を有し、
    複数の前記第1貫通配線は、前記第1基板の面内において第1方向に帯状に並んで配置されている
    請求項11に記載の撮像素子。
  19. 前記読み出し回路は、当該読み出し回路を共有する4つの前記センサ画素に対して、正対して配置されておらず、前記第1方向と直交する第2方向にずれて配置されている
    請求項18に記載の撮像素子。
  20. 各前記センサ画素は、前記第1方向と、前記第1方向と直交する第2方向とに、マトリクス状に配置され、
    前記第2基板は、
    前記第2方向に並んで配置された各前記センサ画素の転送トランジスタのゲートに電気的に接続された第1制御線と、
    前記第2方向に並んで配置された各前記リセットトランジスタのゲートに電気的に接続された第2制御線と、
    前記第2方向に並んで配置された各前記選択トランジスタのゲートに電気的に接続された第3制御線と、
    前記第1方向に並んで配置された各前記読み出し回路の出力端に電気的に接続された出力線と
    を更に有する
    請求項18に記載の撮像素子。
JP2023065142A 2017-12-27 2023-04-12 光検出素子 Pending JP2023086799A (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
US201762610806P 2017-12-27 2017-12-27
US62/610,806 2017-12-27
PCT/JP2018/036417 WO2019130702A1 (ja) 2017-12-27 2018-09-28 撮像装置
JPPCT/JP2018/036417 2018-09-28
JP2019562483A JPWO2019131965A1 (ja) 2017-12-27 2018-12-27 撮像素子
PCT/JP2018/048364 WO2019131965A1 (ja) 2017-12-27 2018-12-27 撮像素子

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019562483A Division JPWO2019131965A1 (ja) 2017-12-27 2018-12-27 撮像素子

Publications (1)

Publication Number Publication Date
JP2023086799A true JP2023086799A (ja) 2023-06-22

Family

ID=67066853

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019562483A Pending JPWO2019131965A1 (ja) 2017-12-27 2018-12-27 撮像素子
JP2023065142A Pending JP2023086799A (ja) 2017-12-27 2023-04-12 光検出素子

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2019562483A Pending JPWO2019131965A1 (ja) 2017-12-27 2018-12-27 撮像素子

Country Status (8)

Country Link
US (3) US11600651B2 (ja)
EP (2) EP3734660A4 (ja)
JP (2) JPWO2019131965A1 (ja)
KR (1) KR20200097716A (ja)
CN (1) CN111492484A (ja)
DE (1) DE112018006695T5 (ja)
TW (1) TWI806909B (ja)
WO (2) WO2019130702A1 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102566717B1 (ko) * 2016-12-12 2023-08-14 삼성전자 주식회사 생체 센서를 구비한 전자 장치
WO2019130702A1 (ja) 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP6986046B2 (ja) * 2019-05-30 2021-12-22 キヤノン株式会社 光電変換装置および機器
TW202109862A (zh) * 2019-06-26 2021-03-01 日商索尼半導體解決方案公司 攝像裝置
JP2021027277A (ja) * 2019-08-08 2021-02-22 キヤノン株式会社 光電変換装置、光電変換システム
JP2021034749A (ja) 2019-08-13 2021-03-01 ソニーセミコンダクタソリューションズ株式会社 情報処理装置、情報処理方法、および情報処理プログラム
JP2021040048A (ja) * 2019-09-03 2021-03-11 ソニーセミコンダクタソリューションズ株式会社 撮像装置
JP2021048303A (ja) 2019-09-19 2021-03-25 キオクシア株式会社 半導体装置
KR20220134538A (ko) * 2020-01-31 2022-10-05 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 장치 및 촬상 방법
US20230144505A1 (en) * 2020-02-14 2023-05-11 Semiconductor Energy Laboratory Co., Ltd. Imaging device
JP2021136590A (ja) * 2020-02-27 2021-09-13 ソニーセミコンダクタソリューションズ株式会社 撮像素子
KR20210145568A (ko) * 2020-05-25 2021-12-02 에스케이하이닉스 주식회사 기판들이 스택된 반도체 장치 및 제조 방법
WO2021256142A1 (ja) * 2020-06-16 2021-12-23 ソニーセミコンダクタソリューションズ株式会社 撮像装置
WO2022019155A1 (ja) * 2020-07-20 2022-01-27 ソニーセミコンダクタソリューションズ株式会社 配線構造およびその製造方法、ならびに撮像装置
JP2022049487A (ja) * 2020-09-16 2022-03-29 ソニーグループ株式会社 固体撮像装置及び電子機器
US20230411429A1 (en) 2020-10-23 2023-12-21 Sony Semiconductor Solutions Corporation Imaging device and light-receiving element
JPWO2022097427A1 (ja) 2020-11-09 2022-05-12
CN116250064A (zh) 2020-11-12 2023-06-09 索尼半导体解决方案公司 成像元件和成像装置
KR20230124566A (ko) 2020-12-25 2023-08-25 소니 세미컨덕터 솔루션즈 가부시키가이샤 촬상 소자 및 촬상 장치
US20220217295A1 (en) * 2021-01-05 2022-07-07 Facebook Technologies, Llc Image sub-sampling with a color grid array
DE112022001031T5 (de) 2021-02-12 2023-11-23 Sony Semiconductor Solutions Corporation Fotoelektrisches umwandlungselement und elektronische vorrichtung
DE112022001486T5 (de) 2021-03-15 2024-01-25 Sony Semiconductor Solutions Corporation Festkörperbildgebungsvorrichtung
WO2023047631A1 (ja) 2021-09-27 2023-03-30 ソニーセミコンダクタソリューションズ株式会社 光検出素子及び光検出装置
WO2023106215A1 (ja) * 2021-12-09 2023-06-15 ソニーセミコンダクタソリューションズ株式会社 光検出装置及び電子機器
WO2023135934A1 (ja) * 2022-01-11 2023-07-20 ソニーセミコンダクタソリューションズ株式会社 撮像素子および撮像素子の製造方法
WO2023153300A1 (ja) * 2022-02-14 2023-08-17 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子および製造方法、並びに電子機器
WO2023171008A1 (ja) * 2022-03-09 2023-09-14 ソニーセミコンダクタソリューションズ株式会社 光検出装置および電子機器ならびに光検出システム
JP2023132147A (ja) * 2022-03-10 2023-09-22 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置

Family Cites Families (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3713418B2 (ja) * 2000-05-30 2005-11-09 光正 小柳 3次元画像処理装置の製造方法
JP4408006B2 (ja) * 2001-06-28 2010-02-03 富士通マイクロエレクトロニクス株式会社 半導体装置およびその製造方法
JP4298276B2 (ja) * 2002-12-03 2009-07-15 キヤノン株式会社 光電変換装置
KR100610481B1 (ko) 2004-12-30 2006-08-08 매그나칩 반도체 유한회사 수광영역을 넓힌 이미지센서 및 그 제조 방법
TW201101476A (en) * 2005-06-02 2011-01-01 Sony Corp Semiconductor image sensor module and method of manufacturing the same
FR2888989B1 (fr) * 2005-07-21 2008-06-06 St Microelectronics Sa Capteur d'images
JP2007228460A (ja) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi 集積センサを搭載した積層型半導体装置
JP2009123865A (ja) * 2007-11-14 2009-06-04 Sony Corp 固体撮像装置およびその製造方法
US7781716B2 (en) * 2008-03-17 2010-08-24 Eastman Kodak Company Stacked image sensor with shared diffusion regions in respective dropped pixel positions of a pixel array
JP5412662B2 (ja) * 2008-03-31 2014-02-12 独立行政法人産業技術総合研究所 低容量貫通電極を持つ3次元積層構造体コンピュータシステム
JP2010010402A (ja) * 2008-06-27 2010-01-14 Sony Corp 半導体装置の製造方法および固体撮像装置の製造方法
JP5985136B2 (ja) 2009-03-19 2016-09-06 ソニー株式会社 半導体装置とその製造方法、及び電子機器
JP4987917B2 (ja) * 2009-08-19 2012-08-01 株式会社東芝 固体撮像装置の製造方法
JP2012015400A (ja) 2010-07-02 2012-01-19 Canon Inc 固体撮像装置
JP5500007B2 (ja) * 2010-09-03 2014-05-21 ソニー株式会社 固体撮像素子およびカメラシステム
JP2013090127A (ja) * 2011-10-18 2013-05-13 Olympus Corp 固体撮像装置および撮像装置
US10090349B2 (en) * 2012-08-09 2018-10-02 Taiwan Semiconductor Manufacturing Company, Ltd. CMOS image sensor chips with stacked scheme and methods for forming the same
US8629524B2 (en) * 2012-04-27 2014-01-14 Taiwan Semiconductor Manufacturing Company, Ltd. Apparatus for vertically integrated backside illuminated image sensors
JP2014022561A (ja) * 2012-07-18 2014-02-03 Sony Corp 固体撮像装置、及び、電子機器
US8669135B2 (en) * 2012-08-10 2014-03-11 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for fabricating a 3D image sensor structure
JP5619093B2 (ja) * 2012-08-21 2014-11-05 キヤノン株式会社 固体撮像装置及び固体撮像システム
JP2014099582A (ja) * 2012-10-18 2014-05-29 Sony Corp 固体撮像装置
US20140240207A1 (en) 2013-02-27 2014-08-28 Motorola Mobility Llc Low-power display and corresponding lighting apparatus and methods of operation
JP2014236183A (ja) * 2013-06-05 2014-12-15 株式会社東芝 イメージセンサ装置及びその製造方法
JP2015032687A (ja) * 2013-08-02 2015-02-16 ソニー株式会社 撮像素子、電子機器、および撮像素子の製造方法
JP2015099262A (ja) 2013-11-19 2015-05-28 ソニー株式会社 固体撮像装置およびカメラモジュール、並びに電子機器
JP6299406B2 (ja) * 2013-12-19 2018-03-28 ソニー株式会社 半導体装置、半導体装置の製造方法、及び電子機器
JP5784167B2 (ja) * 2014-03-14 2015-09-24 キヤノン株式会社 固体撮像装置の製造方法
JP6048482B2 (ja) * 2014-11-28 2016-12-21 株式会社ニコン 撮像素子
TWI692859B (zh) * 2015-05-15 2020-05-01 日商新力股份有限公司 固體攝像裝置及其製造方法、以及電子機器
US20170138752A1 (en) 2015-06-19 2017-05-18 Yakov Z. Mermelstein Method and System for Providing Personalized Navigation Services and Crowd-Sourced Location-Based Data
US10014333B2 (en) * 2015-08-26 2018-07-03 Semiconductor Components Industries, Llc Back-side illuminated pixels with interconnect layers
JP6650719B2 (ja) * 2015-09-30 2020-02-19 キヤノン株式会社 撮像装置、撮像システムおよび半導体装置の製造方法
US9728575B1 (en) * 2016-02-08 2017-08-08 Semiconductor Components Industries, Llc Pixel and circuit design for image sensors with hole-based photodiodes
WO2019130702A1 (ja) 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 撮像装置

Also Published As

Publication number Publication date
CN111492484A (zh) 2020-08-04
US11600651B2 (en) 2023-03-07
TW201931584A (zh) 2019-08-01
WO2019130702A1 (ja) 2019-07-04
EP3734660A1 (en) 2020-11-04
KR20200097716A (ko) 2020-08-19
US11798972B2 (en) 2023-10-24
DE112018006695T5 (de) 2020-09-03
US20210084249A1 (en) 2021-03-18
JPWO2019131965A1 (ja) 2021-01-14
US20230154964A1 (en) 2023-05-18
WO2019131965A1 (ja) 2019-07-04
EP4372821A2 (en) 2024-05-22
TWI806909B (zh) 2023-07-01
US20230420478A1 (en) 2023-12-28
EP3734660A4 (en) 2021-02-24

Similar Documents

Publication Publication Date Title
JP2023086799A (ja) 光検出素子
JP2023130505A (ja) 撮像装置及び電子機器
JP7399105B2 (ja) 固体撮像素子および映像記録装置
WO2020170936A1 (ja) 撮像装置
WO2020100607A1 (ja) 撮像装置
WO2020100577A1 (ja) 固体撮像装置および電子機器
WO2020241717A1 (ja) 固体撮像装置
WO2020179494A1 (ja) 半導体装置および撮像装置
JP7472032B2 (ja) 撮像素子および電子機器
WO2020129712A1 (ja) 撮像装置
WO2022254824A1 (ja) 撮像素子
WO2022014400A1 (ja) 配線構造およびその製造方法、ならびに撮像装置
US12009381B2 (en) Solid-state imaging device
WO2023248925A1 (ja) 撮像素子及び電子機器
WO2023135934A1 (ja) 撮像素子および撮像素子の製造方法

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230512

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240408