WO2020100577A1 - 固体撮像装置および電子機器 - Google Patents

固体撮像装置および電子機器 Download PDF

Info

Publication number
WO2020100577A1
WO2020100577A1 PCT/JP2019/042356 JP2019042356W WO2020100577A1 WO 2020100577 A1 WO2020100577 A1 WO 2020100577A1 JP 2019042356 W JP2019042356 W JP 2019042356W WO 2020100577 A1 WO2020100577 A1 WO 2020100577A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
floating diffusion
photoelectric conversion
solid
imaging device
Prior art date
Application number
PCT/JP2019/042356
Other languages
English (en)
French (fr)
Inventor
洋一 江尻
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to KR1020217012707A priority Critical patent/KR20210092725A/ko
Priority to US17/291,316 priority patent/US20220077207A1/en
Priority to CN201980073018.5A priority patent/CN112970115A/zh
Priority to JP2020555983A priority patent/JPWO2020100577A1/ja
Priority to EP19885232.9A priority patent/EP3882973A4/en
Publication of WO2020100577A1 publication Critical patent/WO2020100577A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/40Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled
    • H04N25/42Extracting pixel data from image sensors by controlling scanning circuits, e.g. by modifying the number of pixels sampled or to be sampled by switching between different modes of operation using different resolutions or aspect ratios, e.g. switching between interlaced and non-interlaced mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/58Control of the dynamic range involving two or more exposures
    • H04N25/587Control of the dynamic range involving two or more exposures acquired sequentially, e.g. using the combination of odd and even image fields
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/50Control of the SSIS exposure
    • H04N25/57Control of the dynamic range
    • H04N25/59Control of the dynamic range by controlling the amount of charge storable in the pixel, e.g. modification of the charge conversion ratio of the floating node capacitance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/771Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising storage means other than floating diffusion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/77Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components
    • H04N25/772Pixel circuitry, e.g. memories, A/D converters, pixel amplifiers, shared circuits or shared components comprising A/D, V/T, V/F, I/T or I/F converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/79Arrangements of circuitry being divided between different or multiple substrates, chips or circuit boards, e.g. stacked image sensors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements

Definitions

  • the present disclosure relates to solid-state imaging devices and electronic devices.
  • the solid-state imaging device is used, for example, in an imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device having an imaging function.
  • an imaging device such as a digital still camera or a video camera
  • an electronic device such as a mobile terminal device having an imaging function.
  • a solid-state imaging device there is a CMOS (complementary MOS) image sensor that reads out charges accumulated in a photodiode, which is a photoelectric conversion element, via a MOS (Metal Oxide Semiconductor) transistor.
  • CMOS complementary MOS
  • MOS Metal Oxide Semiconductor
  • CMOS image sensors it is desirable that the sensitivity is high so that the imaging signal can be acquired even in low illuminance. Further, in order to increase the dynamic range, it is desirable that the photodiode is hard to saturate.
  • high sensitivity there is a trade-off relationship between high sensitivity and the fact that the photodiode is difficult to saturate, and it is difficult to expand the dynamic range while maintaining high sensitivity. Therefore, for example, in Patent Document 1, a small-capacity floating diffusion and a large-capacity floating diffusion are provided, the small-capacity floating diffusion is connected to a photodiode when the illuminance is low, and the large-capacity floating diffusion is connected when the illuminance is high. It is disclosed.
  • Patent Document 1 when the invention described in Patent Document 1 is applied to high-definition applications, there is a problem that it is difficult to secure a sufficient space for providing two floating diffusions. Therefore, it is desirable to provide a solid-state imaging device that can achieve both high sensitivity and high dynamic range even in high-definition applications, and an electronic device including the solid-state imaging device.
  • the solid-state imaging device includes a photoelectric conversion unit, a first signal path including a first floating diffusion and a first amplification transistor, and a second signal including a second floating diffusion and a second amplification transistor. And a route.
  • This solid-state imaging device electrically connects the first signal path to the photoelectric conversion section and electrically disconnects the second signal path from the photoelectric conversion section when in the first mode, and when the second mode is in the first signal path and the photoelectric conversion section. It further includes a mode changeover switch unit that electrically connects both of the second signal paths to the photoelectric conversion unit.
  • This solid-state imaging device further includes a first substrate and a second substrate.
  • At least a photoelectric conversion unit is formed on the first substrate among the photoelectric conversion unit, the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit.
  • the second substrate is laminated on the first substrate.
  • At least a second amplification transistor of the photoelectric conversion unit, the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit is formed on the second substrate.
  • the electronic device includes a solid-state imaging device that outputs a pixel signal according to incident light, and a signal processing circuit that processes the pixel signal.
  • the solid-state imaging device provided in this electronic device has the same configuration as the solid-state imaging device according to the first aspect of the present disclosure.
  • a solid-state imaging device includes a photoelectric conversion unit, a first signal path including a first floating diffusion and a first amplification transistor, and a second signal including a second floating diffusion and a second amplification transistor. And a route.
  • This solid-state imaging device electrically connects the first signal path to the photoelectric conversion section and electrically disconnects the second signal path from the photoelectric conversion section when in the first mode, and when the second mode is in the first signal path and the photoelectric conversion section. It further includes a mode changeover switch unit that electrically connects both of the second signal paths to the photoelectric conversion unit.
  • This solid-state imaging device further includes a first substrate, a second substrate, and a third substrate.
  • a photoelectric conversion unit and a first floating diffusion are formed on the first substrate.
  • the second substrate is laminated on the first substrate.
  • a first amplification transistor, a second floating diffusion, and a mode changeover switch section are formed on the second substrate.
  • the third substrate is laminated on the second substrate.
  • a second amplification transistor is formed on the third substrate.
  • the electronic device includes a solid-state imaging device that outputs a pixel signal according to incident light, and a signal processing circuit that processes the pixel signal.
  • the solid-state imaging device provided in this electronic device has the same configuration as the solid-state imaging device according to the second aspect of the present disclosure.
  • the amplification transistor to be used is selected according to the mode. This makes it possible to expand the dynamic range while maintaining high sensitivity. Further, in the solid-state imaging device and the electronic device according to the first aspect of the present disclosure, and the solid-state imaging device and the electronic device according to the second aspect of the present disclosure, at least the amplification transistor and the substrate on which the photoelectric conversion unit is formed are provided. Are formed on another substrate. As a result, even a high-definition solid-state imaging device can secure a sufficient space for providing the floating diffusion and the amplification transistor.
  • FIG. 3 is a diagram illustrating an example of a schematic configuration of a solid-state imaging device according to an embodiment of the present disclosure. It is a figure showing an example of the sensor pixel and read-out circuit of FIG. It is a figure showing an example of the vertical cross-section structure of the solid-state imaging device of FIG. It is a figure showing an example of a horizontal cross-sectional structure of the solid-state imaging device of FIG. It is a figure showing an example of a horizontal cross-sectional structure of the solid-state imaging device of FIG. It is a figure showing an example of a structure when the cross-sectional structure of FIG. 4 and the cross-sectional structure of FIG. 5 are mutually overlapped.
  • FIG. 9 is a diagram illustrating an example of a method for manufacturing the solid-state imaging device in FIG. 1. It is a figure for demonstrating the manufacturing process following FIG. 8A. It is a figure for demonstrating the manufacturing process following FIG. 8B. It is a figure for demonstrating the manufacturing process following FIG. 8C. It is a figure for demonstrating the manufacturing process following FIG. 8D. It is a figure for demonstrating the manufacturing process following FIG. 8E. It is a figure for demonstrating the manufacturing process following FIG. 8F. It is a figure showing the sensor pixel of FIG. 1, and a modified example of a read-out circuit.
  • FIG. 16 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device having the configuration of FIG. 15.
  • FIG. 16 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device having the configuration of FIG. 15.
  • FIG. 24 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device including the configurations of FIGS. 15, 21, 22, and 23.
  • FIG. 24 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device including the configurations of FIGS. 15, 21, 22, and 23.
  • FIG. 26 is a diagram illustrating a modification of a horizontal cross-sectional configuration of a solid-state imaging device including the configurations of FIGS. 15, 21, 22, and 23 to 25.
  • FIG. 24 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device including the configurations of FIGS. 15, 21, 22, and 23 to 25.
  • FIG. 27 is a diagram illustrating a modified example of a horizontal cross-sectional configuration of a solid-state imaging device having the configurations of FIGS. 15, 21, 22, and 23 to 26. It is a figure showing an example of the circuit composition of the imaging device provided with the solid-state imaging device concerning the above-mentioned embodiment and the modification.
  • FIG. 29 is a diagram illustrating an example in which the solid-state imaging device in FIG. 28 is configured by stacking three substrates.
  • FIG. 6 is a diagram illustrating an example in which a logic circuit is divided into a substrate provided with a sensor pixel and a substrate provided with a reading circuit. It is a figure showing the example which formed the logic circuit in the 3rd board
  • FIG. 1 It is a figure showing an example of a schematic structure of an imaging system provided with a solid imaging device concerning the above-mentioned embodiment and its modification. It is a figure showing an example of the imaging procedure in the imaging system of FIG. It is a block diagram showing an example of a schematic structure of a vehicle control system. It is explanatory drawing which shows an example of the installation position of a vehicle exterior information detection part and an imaging part. It is a figure which shows an example of a schematic structure of an endoscopic surgery system. It is a block diagram showing an example of functional composition of a camera head and CCU.
  • Embodiment solid-state imaging device
  • FIGS. 1 to 8G Modification (solid-state imaging device)
  • FIGS. 9 to 31 3.
  • Application example imaging system
  • FIGS. 32 and 33 Example of application Example of application to mobile unit ... Figs. 34 and 35
  • Example of application to endoscopic surgery system ... Figs. 36 and 37
  • the solid-state imaging device 1 is, for example, a backside illumination type image sensor including a CMOS (Complementary Metal Oxide Semiconductor) image sensor or the like.
  • the solid-state imaging device 1 receives light from a subject, photoelectrically converts the light, and generates an image signal to capture an image.
  • the solid-state imaging device 1 outputs a pixel signal according to incident light.
  • CMOS Complementary Metal Oxide Semiconductor
  • a backside illumination type image sensor receives light from a subject between a light receiving surface on which light from the subject is incident and a wiring layer provided with wiring such as a transistor for driving each pixel, and outputs an electric signal.
  • the image sensor has a configuration in which a photoelectric conversion unit such as a photodiode for converting into
  • the present disclosure is not limited to the application to the CMOS image sensor.
  • FIG. 1 illustrates an example of a schematic configuration of a solid-state imaging device 1 according to an embodiment of the present disclosure.
  • the solid-state imaging device 1 includes three substrates (first substrate 10, second substrate 20, third substrate 30).
  • the solid-state imaging device 1 is an imaging device having a three-dimensional structure configured by bonding three substrates (first substrate 10, second substrate 20, third substrate 30).
  • the first substrate 10, the second substrate 20, and the third substrate 30 are laminated in this order.
  • the first substrate 10 has a pixel region 13 in which a plurality of sensor pixels 12 that perform photoelectric conversion are arranged in a matrix.
  • the pixel region 13 is formed on the semiconductor substrate 11.
  • the second substrate 20 has a plurality of readout circuits 22 that output pixel signals based on the charges output from the sensor pixels 12.
  • the plurality of readout circuits 22 are formed on the semiconductor substrate 21, and are assigned to each sensor pixel 12, for example.
  • the second substrate 20 has a plurality of pixel drive lines 23 extending in the row direction and a plurality of vertical signal lines 24 extending in the column direction.
  • the third substrate 30 has a logic circuit 32 that processes pixel signals.
  • the logic circuit 32 is formed on the semiconductor substrate 31.
  • the logic circuit 32 has, for example, a vertical drive circuit 33, a column signal processing circuit 34, a horizontal drive circuit 35, and a system control circuit 36.
  • the logic circuit 32 (specifically, the horizontal drive circuit 35) outputs the output voltage Vout for each sensor pixel 12 to the outside.
  • the vertical drive circuit 33 sequentially selects a plurality of sensor pixels 12 row by row, for example.
  • the column signal processing circuit 34 performs, for example, a correlated double sampling (CDS) process on the pixel signals output from the sensor pixels 12 in the row selected by the vertical drive circuit 33.
  • the column signal processing circuit 34 extracts the signal level of the pixel signal by performing CDS processing, for example, and holds pixel data according to the amount of light received by each sensor pixel 12.
  • the horizontal drive circuit 35 sequentially outputs the pixel data held in the column signal processing circuit 34 to the outside, for example.
  • the system control circuit 36 controls the drive of each block (vertical drive circuit 33, column signal processing circuit 34, and horizontal drive circuit 35) in the logic circuit 32, for example.
  • FIG. 2 shows an example of the circuit configuration of the sensor pixel 12 and the readout circuit 22. Below, as shown in FIG. 2, a case where one readout circuit 22 is assigned to one sensor pixel 12 will be described.
  • Each sensor pixel 12 has, for example, a photodiode PD, a transfer transistor TRG electrically connected to the photodiode PD, and two temporarily holding charges output from the photodiode PD via the transfer transistor TRG. It has floating diffusions FD1 and FD2.
  • the photodiode PD corresponds to a specific but not limitative example of “photoelectric conversion unit” in the present disclosure.
  • the floating diffusion FD1 corresponds to a specific but not limitative example of “first floating diffusion” of the present disclosure.
  • the floating diffusion FD2 corresponds to a specific but not limitative example of “second floating diffusion” of the present disclosure.
  • the photodiode PD performs photoelectric conversion to generate electric charge according to the amount of received light.
  • the cathode of the photodiode PD is electrically connected to the source of the transfer transistor TRG, and the anode of the photodiode PD is electrically connected to a reference potential line (for example, ground GND).
  • the drain of the transfer transistor TRG is electrically connected to the floating diffusion FD1, and the gate of the transfer transistor TRG is electrically connected to the pixel drive line 23.
  • the transfer transistor TR is, for example, an NMOS (Metal Oxide Semiconductor) transistor.
  • Each sensor pixel 12 further includes, for example, a switching transistor FDG that switches between two floating diffusions FD1 and FD2.
  • the switching transistor FDG corresponds to a specific but not limitative example of “mode switching switch unit” in one embodiment of the present disclosure.
  • the switching transistor FDG is, for example, an NMOS transistor.
  • the source of the switching transistor FDG is the floating diffusion FD1 and is electrically connected to the drain of the transfer transistor TRG.
  • the drain of the switching transistor FDG serves as a floating diffusion FD2 and is electrically connected to the source of a reset transistor RST described later.
  • the read circuit 22 has, for example, a reset transistor RST, two amplification transistors AMP1 and AMP2, and two selection transistors SEL1 and SEL.
  • the amplification transistor AMP1 corresponds to a specific but not limitative example of “first amplification transistor” of the present disclosure.
  • the amplification transistor AMP2 corresponds to a specific but not limitative example of “second amplification transistor” of the present disclosure.
  • the reset transistor RST, the amplification transistors AMP1 and AMP2, and the selection transistors SEL1 and SEL2 are, for example, NMOS transistors.
  • the source of the reset transistor RST (the input end of the read circuit 22) is electrically connected to the floating diffusion FD2, and the drain of the reset transistor RST is electrically connected to the power supply line VDD and the drains of the two amplification transistors AMP1 and AMP2. Has been done.
  • the gate of the reset transistor RST is electrically connected to the pixel drive line 23 (see FIG. 1).
  • the source of the amplification transistor AMP1 is electrically connected to the drain of the selection transistor SEL1, and the gate of the amplification transistor AMP1 is electrically connected to the floating diffusion FD1.
  • the source of the selection transistor SEL1 (the output end of the readout circuit 22) is electrically connected to the vertical signal line 24, and the gate of the selection transistor SEL1 is electrically connected to the pixel drive line 23 (see FIG. 1). ..
  • the source of the amplification transistor AMP2 is electrically connected to the drain of the selection transistor SEL2, and the gate of the amplification transistor AMP2 is electrically connected to the floating diffusion FD2.
  • the source of the selection transistor SEL2 (the output end of the readout circuit 22) is electrically connected to the vertical signal line 24, and the gate of the selection transistor SEL2 is electrically connected to the pixel drive line 23 (see FIG. 1). ..
  • the read circuit 22 has a signal path P1 including the floating diffusion FD1 and the amplification transistor AMP1, and a signal path P2 including the floating diffusion FD2 and the amplification transistor AMP2.
  • the signal path P1 corresponds to a specific but not limitative example of “first signal path” of the present disclosure.
  • the signal path P2 corresponds to a specific but not limitative example of “second signal path” in one embodiment of the present disclosure.
  • One end of each of the signal paths P1 and P2 is electrically connected to the vertical signal line 24, the other end of the signal path P1 is electrically connected to the floating diffusion FD1, and the other end of the signal path P2 is connected. It is electrically connected to the floating diffusion FD2.
  • the signal paths P1 and P2 are connected in parallel with each other when the switching transistor FDG is on. Further, the signal path P1 is electrically connected to the transfer transistor TRG regardless of whether the switching transistor FDG is on or off.
  • One signal path P2 is electrically connected to the transfer transistor TRG when the switching transistor FDG is on, but is electrically separated from the transfer transistor TRG when the switching transistor FDG is off. To be done. That is, no current flows in the signal path P2 when the switching transistor FDG is off.
  • the transfer transistor TRG transfers the charges of the photodiode PD to the floating diffusion FD1 or the floating diffusion FD2 when the transfer transistor TRG is turned on.
  • the gate of the transfer transistor TRG extends, for example, as shown in FIG. 3, from the upper surface of the semiconductor substrate 11 to the depth reaching the PD 41 through the well layer 42.
  • the reset transistor RST resets the potentials of the floating diffusions FD1 and FD2 to a predetermined potential.
  • the reset transistor RST is turned on, the potentials of the floating diffusions FD1 and FD2 are reset to the potential of the power supply line VDD.
  • the selection transistors SEL1 and SEL2 control the output timing of the pixel signal from the readout circuit 22.
  • the amplification transistor AMP1 generates, as a pixel signal, a signal having a voltage corresponding to the level of electric charges held in the floating diffusion FD1.
  • the amplification transistor AMP2 generates, as a pixel signal, a signal having a voltage corresponding to the level of the charge held in the floating diffusion FD2.
  • the amplification transistors AMP1 and AMP2 constitute a source follower type amplifier, and output a pixel signal having a voltage corresponding to the level of electric charge generated in the photodiode PD.
  • the selection transistor SEL1 When the selection transistor SEL1 is turned on, the amplification transistor AMP1 amplifies the potential of the floating diffusion FD1 and outputs a voltage corresponding to the potential to the column signal processing circuit 34 via the vertical signal line 24.
  • the selection transistor SEL2 When the selection transistor SEL2 is turned on, the amplification transistor AMP2 amplifies the potential of the floating diffusion FD2 and outputs a voltage corresponding to the potential to the
  • the switching transistor FDG is used when switching the conversion efficiency.
  • the switching transistor FDG when the switching transistor FDG is turned on, the gate capacitance corresponding to the switching transistor FDG increases, so that the entire FD capacitance C increases. On the other hand, when the switching transistor FDG is turned off, the entire FD capacitance C becomes small. In this way, by switching the switching transistor FDG on and off, the FD capacitance C can be made variable and the conversion efficiency can be switched.
  • the switching transistor FDG switches the FD capacitance C between the high-sensitivity low-illuminance mode (first mode) and the low-sensitivity high-illuminance mode (second mode). Specifically, the switching transistor FDG is in the off state in the first mode to make the FD capacitance C relatively small, and in the second mode to be in the on state to make the FD capacitance C relatively large.
  • the switching transistor FDG, the reset transistor RST, the amplification transistors AMP1 and AMP2, and the selection transistors SEL1 and SEL2 are, for example, NMOS transistors.
  • the switching transistor FDG electrically connects the signal path P1 to the photodiode PD and electrically disconnects the signal path P2 from the photodiode PD under the control of the second driving mode in the first mode. At times, both the signal path P1 and the signal path P2 are electrically connected to the photodiode PD. Specifically, the switching transistor FDG is turned off in the first mode and turned on in the second mode.
  • FIG. 3 shows an example of a vertical cross-sectional configuration of the solid-state imaging device 1.
  • FIG. 3 illustrates a cross-sectional configuration of a portion of the solid-state imaging device 1 that faces the sensor pixel 12.
  • the solid-state imaging device 1 is configured by laminating a first substrate 10, a second substrate 20, and a third substrate 30 in this order, and further, a color filter 40 and a light receiving lens 50 on the back surface side of the first substrate 10. I have it.
  • the color filter 40 and the light receiving lens 50 are provided, for example, one for each sensor pixel 12. That is, the solid-state imaging device 1 is an imaging device on the backside illumination side.
  • the first substrate 10 is configured by laminating an insulating layer 46 on the semiconductor substrate 11.
  • the first substrate 10 has an insulating layer 46 as a part of the interlayer insulating film 51.
  • the insulating layer 46 is provided in the gap between the semiconductor substrate 11 and the semiconductor substrate 21.
  • the semiconductor substrate 11 is composed of a silicon substrate.
  • the semiconductor substrate 11 has, for example, a p-well layer 42 in a part of the upper surface and in the vicinity thereof, and in the other region (a region deeper than the p-well layer 42), conductivity different from that of the p-well layer 42 is provided.
  • Type PD41 The conductivity type of the p-well layer 42 is, for example, p-type.
  • the conductivity type of the PD 41 is different from that of the p well layer 42, and is, for example, n type.
  • the semiconductor substrate 11 has, in the p-well layer 42, floating diffusions FD1 and FD2 having a conductivity type different from that of the p-well layer 42.
  • the first substrate 10 has a photodiode PD, a transfer transistor TRG, a switching transistor FDG, and floating diffusions FD1 and FD2 for each sensor pixel 12.
  • the first substrate 10 has a configuration in which a photodiode PD, a transfer transistor TR, a switching transistor FDG, and floating diffusions FD1 and FD2 are provided on the upper surface of a semiconductor substrate 11.
  • the first substrate 10 has an element isolation portion 43 that isolates each sensor pixel 12.
  • the element isolation portion 43 is formed so as to extend in the normal direction (thickness direction) of the semiconductor substrate 11.
  • the element separating unit 43 is provided between two sensor pixels 12 adjacent to each other.
  • the element separating unit 43 electrically separates the sensor pixels 12 adjacent to each other.
  • the element isolation portion 43 is made of, for example, silicon oxide.
  • the element isolation portion 43 penetrates the semiconductor substrate 11, for example.
  • the first substrate 10 further includes, for example, a p-well layer 44 that is in contact with the side surface of the element isolation portion 43 and the surface on the photodiode PD side.
  • the conductivity type of the p well layer 44 is different from that of the photodiode PD, and is, for example, p type.
  • the first substrate 10 further has, for example, a fixed charge film 45 in contact with the back surface of the semiconductor substrate 11.
  • the fixed charge film 45 has a negative fixed charge in order to suppress the generation of dark current due to the interface state on the light receiving surface side of the semiconductor substrate 11.
  • the fixed charge film 45 is formed of, for example, an insulating film having a negative fixed charge.
  • the material of such an insulating film examples include hafnium oxide, zircon oxide, aluminum oxide, titanium oxide, and tantalum oxide.
  • An electric field induced by the fixed charge film 45 forms a hole accumulation layer at the interface of the semiconductor substrate 11 on the light receiving surface side.
  • the hole accumulation layer suppresses the generation of electrons from the interface.
  • the color filter 40 is provided on the back surface side of the semiconductor substrate 11.
  • the color filter 40 is provided, for example, in contact with the fixed charge film 45, and is provided at a position facing the sensor pixel 12 via the fixed charge film 45.
  • the light receiving lens 50 is provided, for example, in contact with the color filter 40, and is provided at a position facing the sensor pixel 12 via the color filter 40 and the fixed charge film 45.
  • the second substrate 20 is configured by laminating the insulating layer 52 on the semiconductor substrate 21.
  • the second substrate 20 has an insulating layer 52 as a part of the interlayer insulating film 51.
  • the insulating layer 52 is provided in the gap between the semiconductor substrate 21 and the semiconductor substrate 31.
  • the semiconductor substrate 21 is composed of a silicon substrate.
  • the second substrate 20 has, for example, one readout circuit 22 for each one sensor pixel 12.
  • the second substrate 20 has a configuration in which the read circuit 22 is provided on the upper surface of the semiconductor substrate 21.
  • the second substrate 20 is attached to the first substrate 10 with the back surface of the semiconductor substrate 21 facing the upper surface side of the semiconductor substrate 11. That is, the second substrate 20 is bonded to the first substrate 10 by face-to-back.
  • the second substrate 20 further has an insulating layer 53 penetrating the semiconductor substrate 21 in the same layer as the semiconductor substrate 21.
  • the second substrate 20 has an insulating layer 53 as a part of the interlayer insulating film 51.
  • the insulating layer 53 is provided so as to cover the side surface of the through wiring 54 described later.
  • the laminated body including the first substrate 10 and the second substrate 20 has an interlayer insulating film 51 and a plurality of through wirings 54 provided in the interlayer insulating film 51.
  • the plurality of through wirings 54 extend in the normal line direction of the semiconductor substrate 21, and are provided so as to penetrate a portion of the interlayer insulating film 51 including the insulating layer 53.
  • the first substrate 10 and the second substrate 20 are electrically connected to each other by a plurality of through wirings 54.
  • the two through wirings 54 are electrically connected to the floating diffusions FD1 and FD2 and a connection wiring 55 described later.
  • the second substrate 20 has, for example, a plurality of connecting portions 59 electrically connected to the read circuit 22 and the semiconductor substrate 21 in the insulating layer 52.
  • the second substrate 20 further includes, for example, a wiring layer 56 on the insulating layer 52.
  • the wiring layer 56 has, for example, an insulating layer 57, a plurality of pixel drive lines 23 and a plurality of vertical signal lines 24 provided in the insulating layer 57.
  • the wiring layer 56 further includes a plurality of connection wirings 55 in the insulating layer 57, for example.
  • the plurality of connection wirings 55 are electrically connected to the respective through wirings 54 electrically connected to the floating diffusions FD1 and FD2 and the read circuit 22.
  • the floating diffusion FD1 and the gate of the amplification transistor AMP1 are electrically connected by the connection wiring 55 and the through wiring 54.
  • the floating diffusion FD2 and the gate of the amplification transistor AMP2 are electrically connected by the connection wiring 55 and the through wiring 54.
  • the wiring layer 56 further has, for example, a plurality of pad electrodes 58 in the insulating layer 57.
  • Each pad electrode 58 is made of, for example, Cu (copper).
  • Each pad electrode 58 is exposed on the upper surface of the wiring layer 56.
  • Each pad electrode 58 is used to electrically connect the second substrate 20 and the third substrate 30 and to bond the second substrate 20 and the third substrate 30 together.
  • one pad electrode 58 is provided for each of the pixel drive line 23 and the vertical signal line 24.
  • the third substrate 30 is formed by stacking an interlayer insulating film 61 on the semiconductor substrate 31, for example.
  • the third substrate 30 is attached to the second substrate 20 face-to-face. Therefore, when describing the configuration inside the third substrate 30, the description above and below is opposite to the up and down direction in the drawings.
  • the semiconductor substrate 31 is composed of a silicon substrate.
  • the third substrate 30 has a structure in which the logic circuit 32 is provided on the upper surface of the semiconductor substrate 31.
  • the third substrate 30 further has, for example, a wiring layer 62 on the interlayer insulating film 61.
  • the wiring layer 62 has, for example, an insulating layer 63 and a plurality of pad electrodes 64 provided in the insulating layer 63.
  • the plurality of pad electrodes 64 are electrically connected to the logic circuit 32.
  • Each pad electrode 64 is formed of Cu (copper), for example. Each pad electrode 64 is exposed on the upper surface of the wiring layer 62. Each pad electrode 64 is used to electrically connect the second substrate 20 and the third substrate 30 and to bond the second substrate 20 and the third substrate 30 together.
  • the second substrate 20 and the third substrate 30 are electrically connected to each other by bonding the pad electrodes 58 and 64 to each other. That is, the gate of the transfer transistor TRG (transfer gate TG) is electrically connected to the logic circuit 32 via, for example, the through wiring 54, the connection wiring 55, the connection portion 59, and the pad electrodes 58 and 64. ing.
  • the third substrate 30 is attached to the second substrate 20 with the upper surface of the semiconductor substrate 31 facing the upper surface side of the semiconductor substrate 21. That is, the third substrate 30 is attached to the second substrate 20 face-to-face.
  • the first substrate 10 and the second substrate 20 are electrically connected to each other by the through wiring 54.
  • the second substrate 20 and the third substrate 30 are electrically connected to each other by bonding the pad electrodes 58 and 64 to each other.
  • the width of the through wiring 54 is narrower than the width of the joint portion between the pad electrodes 58 and 64. That is, the cross-sectional area of the through wiring 54 is smaller than the cross-sectional area of the joint portion between the pad electrodes 58 and 64. Therefore, the through wiring 54 does not hinder high integration of the sensor pixel 12 in the first substrate 10.
  • the read circuit 22 is formed on the second substrate 20 and the logic circuit 32 is formed on the third substrate 30, a structure for electrically connecting the second substrate 20 and the third substrate 30 to each other.
  • FIG. 4 and 5 show an example of a horizontal cross-sectional configuration of the solid-state imaging device 1.
  • FIG. 4 shows an example of the upper surface configuration of the semiconductor substrate 11
  • FIG. 5 shows an example of the upper surface configuration of the semiconductor substrate 21.
  • FIG. 6 shows an example of a configuration in which the configuration shown in FIG. 4 and the configuration shown in FIG. 5 are superimposed on each other.
  • the transfer transistor TRG, the switching transistor FDG, and the floating diffusions FD1 and FD2 are provided on the upper surface of the semiconductor substrate 11. That is, the transfer transistor TRG, the switching transistor FDG, and the floating diffusions FD1 and FD2 are provided on the first substrate 10.
  • a reset transistor RST On the upper surface of the semiconductor substrate 21, for example, a reset transistor RST, amplification transistors AMP1 and AMP2, and selection transistors SEL1 and SEL2 are provided. That is, the reset transistor RST, the amplification transistors AMP1 and AMP2, and the selection transistors SEL1 and SEL2 are provided on the second substrate 20.
  • the solid-state imaging device 1 compared with the case where the transfer transistor TRG, the switching transistor FDG, the floating diffusions FD1 and FD2, the reset transistor RST, the amplification transistors AMP1 and AMP2, and the selection transistors SEL1 and SEL2 are provided on the common substrate. It can be seen that the solid-state imaging device 1 is downsized by the amount of the overlapping area ⁇ .
  • the L lengths b1 and b2 of the amplification transistors AMP1 and AMP2 are, for example, equal to each other.
  • the W lengths of the amplification transistors AMP1 and AMP2 for example, the W length a2 of the amplification transistor AMP2 is larger than the W length a1 of the amplification transistor AMP1.
  • the W length a2 of the amplification transistor AMP2 is, for example, twice or three times the W length a1 of the amplification transistor AMP1.
  • the W length of the amplification transistor as the read circuit 22 is a total value of the W length a1 of the amplification transistor AMP1 and the W length a2 of the amplification transistor AMP2. Therefore, by switching the switching transistor FDG on and off, the W length of the amplification transistor as the read circuit 22 can be tripled or quadrupled, for example.
  • each amplification transistor AMP2 may be provided for the read circuit 22.
  • the W length a2 of each amplification transistor AMP2 may be equal to the W length a1 of the amplification transistor AMP1 or may be larger than the W length a1 of the amplification transistor AMP1.
  • the p-well layer 42, the element isolation portion 43, and the p-well layer 44 are formed on the semiconductor substrate 11.
  • the photodiode PD, the transfer transistor TRG, the switching transistor FDG, and the floating diffusions FD1 and FD2 are formed on the semiconductor substrate 11 (FIG. 8A).
  • the sensor pixel 12 is formed on the semiconductor substrate 11.
  • a material having high heat resistance include polysilicon.
  • the insulating layer 46 is formed on the semiconductor substrate 11 (FIG. 8A). In this way, the first substrate 10 is formed.
  • the semiconductor substrate 21 is bonded onto the first substrate 10 (insulating layer 46) (FIG. 8B). At this time, the semiconductor substrate 21 is thinned if necessary. At this time, the thickness of the semiconductor substrate 21 is set to a film thickness required for forming the readout circuit 22.
  • the thickness of the semiconductor substrate 21 is generally about several hundred nm. However, an FD (Fully Depletion) type is also possible depending on the concept of the read circuit 22, and in that case, the thickness of the semiconductor substrate 21 is several n. The range of m to several ⁇ m can be adopted.
  • the insulating layer 53 is formed in the same layer as the semiconductor substrate 21 (FIG. 8C).
  • the insulating layer 53 is formed, for example, at a position facing the floating diffusions FD1 and FD2.
  • a slit penetrating the semiconductor substrate 21 is formed in the semiconductor substrate 21 to divide the semiconductor substrate 21 into a plurality of blocks.
  • the insulating layer 53 is formed so as to fill the slit.
  • the read circuit 22 including the amplification transistors AMP1 and AMP2 and the selection transistors SEL1 and SEL2 is formed in each block of the semiconductor substrate 21 (FIG. 8D).
  • the gate insulating film of the readout circuit 22 can be formed by thermal oxidation.
  • the electrodes of the respective transistors included in the read circuit 22 may be configured to include silicide.
  • the readout circuit 22 is formed after forming the sensor pixels 12. Therefore, silicide having low heat resistance can be used for the surface of the impurity diffusion region in contact with the source electrode and the drain electrode of each transistor included in the reading circuit 22.
  • the insulating layer 52 is formed on the semiconductor substrate 21.
  • the interlayer insulating film 51 including the insulating layers 46, 52 and 53 is formed.
  • through holes 51A, 51B, 51C and 51D are formed in the interlayer insulating film 51 (FIG. 8E).
  • through holes 51C and 51D penetrating the insulating layer 52 are formed in the insulating layer 52, which is a part of the interlayer insulating film 51, at positions facing the read circuit 22 (for example, the amplification transistors AMP1 and AMP2).
  • through holes 51A and 51B penetrating the interlayer insulating film 51 are formed in the interlayer insulating film 51 at positions facing the floating diffusions FD1 and FD2 (that is, positions facing the insulating layer 53).
  • the through wiring 54 is formed in the through holes 51A and 51B, and the connecting portion 59 is formed in the through holes 51C and 51D ( FIG. 8F).
  • the connection wiring 55 that electrically connects the through wiring 54 and the connection portion 59 to each other is formed on the insulating layer 52 (FIG. 8F).
  • the wiring layer 56 including the pad electrode 58 is formed on the insulating layer 52. In this way, the second substrate 20 is formed.
  • the second substrate 20 is attached to the third substrate 30 on which the logic circuit 32 and the wiring layer 62 are formed, with the upper surface of the semiconductor substrate 21 facing the upper surface side of the semiconductor substrate 31 (FIG. 8G).
  • the pad electrode 58 of the second substrate 20 and the pad electrode 64 of the third substrate 30 are electrically connected to each other. In this way, the solid-state imaging device 1 is manufactured.
  • CMOS image sensors it is desirable that the sensitivity is high so that the imaging signal can be acquired even in low illuminance. Further, in order to increase the dynamic range, it is desirable that the photodiode is hard to saturate.
  • high sensitivity there is a trade-off relationship between high sensitivity and the fact that the photodiode is difficult to saturate, and it is difficult to expand the dynamic range while maintaining high sensitivity. Therefore, for example, in Patent Document 1 described above, a small-capacity floating diffusion and a large-capacity floating diffusion are provided, the small-capacity floating diffusion is connected to a photodiode when the illuminance is low, and the large-capacity floating diffusion is connected when the illuminance is high. It is disclosed to do. However, when the invention described in Patent Document 1 is applied to high-definition applications, there is a problem in that it is difficult to secure a sufficient space for providing two floating diffusions.
  • the amplification transistors AMP1 and AMP2 to be used are selected according to the mode. This makes it possible to expand the dynamic range while maintaining high sensitivity.
  • at least the amplification transistors AMP1 and AMP2 are formed on the second substrate 20 different from the first substrate 10 on which the photodiode PD is formed. Specifically, the photodiode PD, the transfer transistor TRG, the floating diffusions FD1 and FD2, and the switching transistor FDG are formed on the first substrate 10, and the reset transistor RST, the amplification transistors AMP1 and AMP2, and the selection transistors SEL1 and SEL2 are formed on the second substrate. 20 is formed.
  • the electrode of each transistor included in the read circuit 22 is configured to include silicide, the parasitic resistance of each transistor included in the read circuit 22 can be reduced. As a result, noise reduction can be achieved.
  • the vertical drive circuit 33 changes the drive current according to the size of the amplification transistors AMP1 and AMP2 that is converted by switching by the switching transistor FDG under the control of the system control circuit 36. May be. In this case, it is possible to prevent the driving current per unit amplification transistor from decreasing, and suppress the deterioration of noise characteristics.
  • FIG. 9 illustrates a modification of the circuit configurations of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to the above embodiment.
  • the photodiode PD, the transfer transistor TRG, the floating diffusions FD1 and FD2, the switching transistor FDG, the amplification transistor AMP1 and the selection transistor SEL1 are formed on the first substrate 10.
  • the reset transistor RST, the amplification transistor AMP2, and the selection transistor SEL2 are formed on the second substrate 20. Even in this case, it is possible to secure a sufficient space for providing the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2, as in the above embodiment. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 10 shows an example of a top surface structure of the semiconductor substrate 11 in the solid-state imaging device 1 having the structure shown in FIG. 11 and 12 show an example of a top surface structure of the semiconductor substrate 21 in the solid-state imaging device 1 having the structure shown in FIG.
  • the photodiode PD, the transfer transistor TRG, the floating diffusions FD1 and FD2, the switching transistor FDG, the amplification transistor AMP1 and the selection transistor SEL1 can be accommodated in a small area as shown in FIG. 10, for example. is there.
  • the reset transistor RST, the amplification transistor AMP2, and the selection transistor SEL2 can be housed in a small area as shown in FIGS. 11 and 12, for example.
  • the solid-state imaging device 1 can be downsized.
  • FIG. 13 illustrates a modified example of the circuit configuration of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to the above embodiment.
  • two sensor pixels 12 (12A, 12B) share one read circuit 22.
  • “shared” means that the outputs of the two sensor pixels 12 (12A, 12B) are input to the common readout circuit 22.
  • one reading circuit 22 is formed in the region of the semiconductor substrate 21 that faces the two sensor pixels 12. Therefore, as compared with the above-described embodiment, the formation area of one read circuit 22 can be doubled, so that a sufficient space can be secured to provide the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2. It becomes possible. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 14 shows a modification of the circuit configurations of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to Modification B above.
  • the photodiode PD and the transfer transistor TRG are formed on the first substrate 10.
  • floating diffusions FD1 and FD2 two switching transistors FDG, amplification transistors AMP1 and AMP2, and selection transistors SEL1 and SEL2 are formed. Even in this case, it is possible to secure a sufficient space for providing the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2, as in the modification B. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 15 shows a modification of the circuit configurations of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to Modification B.
  • four sensor pixels 12 (12A, 12B, 12C, 12D) share one read circuit 22.
  • one reading circuit 22 is formed in the area of the second substrate 20 facing the four sensor pixels 12. Therefore, as compared with the above-described embodiment, the formation area of one read circuit 22 can be expanded four times, and a sufficient space can be secured for providing the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2. It becomes possible. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 16 shows a modification of the circuit configurations of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to Modification C above.
  • four sensor pixels 12 (12A, 12B, 12C, 12D) share one read circuit 22.
  • one reading circuit 22 is formed in the area of the second substrate 20 facing the four sensor pixels 12. Therefore, as compared with the above-described embodiment, the formation area of one read circuit 22 can be expanded four times, and a sufficient space can be secured for providing the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2. It becomes possible. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 17 illustrates a modification of the circuit configurations of the sensor pixel 12 and the readout circuit 22 of the solid-state imaging device 1 according to the above embodiment.
  • a switching transistor FDGa having the same configuration as the switching transistor FDG is provided at the location where the switching transistor FDG was provided, and further switching is performed in the middle of the wiring that connects the floating diffusion FD1 and the gate of the amplification transistor AMP1.
  • a transistor FDGb is provided.
  • the switching transistors FDGa and FDGb are, for example, NMOS transistors.
  • the FD capacity C is switched between the high sensitivity low illuminance mode (first mode) and the low sensitivity high illuminance mode (second mode).
  • the vertical drive circuit 33 electrically connects the signal path P1 to the photodiode PD and electrically connects the signal path P2 from the photodiode PD under the control of the system control circuit 36. Detach. Under the control of the system control circuit 36, the vertical drive circuit 33 electrically connects both the signal path P1 and the signal path P2 to the photodiode PD in the second mode.
  • the vertical drive circuit 33 turns off the switching transistor FDGa and turns on the switching transistor FDGb.
  • the vertical drive circuit 33 further turns on the switching transistor FDGa and turns on the switching transistor FDGb in the second mode, for example.
  • two sensor pixels 12 may share one read circuit 22. Further, in this modification, the four sensor pixels 12 may share the one readout circuit 22. In this case, high sensitivity and high dynamic range can be achieved at the same time even in high-definition applications, as in Modifications B to E above.
  • FIG. 18 shows a modification of the cross-sectional configuration of the solid-state imaging device 1 according to the above-described embodiment and its modification.
  • two photodiodes PD are provided for one light receiving lens 50, and these two photodiodes PD are separated from each other by the element separating unit 43.
  • the two photodiodes PD provided corresponding to one light receiving lens 50 are referred to as photodiodes PDa and PDb.
  • one floating diffusion FD1 is provided for each of the photodiodes PDa and PDb.
  • one switching transistor FDG is assigned to the photodiodes PDa and PDb. Therefore, the floating diffusion FD1 provided for the photodiode PDa and the floating diffusion FD1 provided for the photodiode PDb are electrically connected by the connection wiring 49 provided in the insulating layer 46.
  • the photodiodes PDa and PDb, two transfer transistors TRG, two floating diffusions FD1, one floating diffusion FD2, the switching transistor FDG, the amplification transistor AMP1, and the selection transistor SEL1 are provided on the first substrate 10. It is formed.
  • the reset transistor RST, the amplification transistor AMP2, and the selection transistor SEL2 are formed on the second substrate 20. Even in this case, it is possible to secure a sufficient space for providing the floating diffusions FD1 and FD2 and the amplification transistors AMP1 and AMP2, as in the above embodiment. As a result, both high sensitivity and high dynamic range can be achieved even in high definition applications.
  • FIG. 19 illustrates a modified example of the cross-sectional configuration of the solid-state imaging device 1 according to the modified example G.
  • one floating diffusion FD1 is provided for each of the photodiodes PDa and PDb.
  • one switching transistor FDG is assigned to the photodiodes PDa and PDb. Therefore, the floating diffusion FD1 provided for the photodiode PDa and the floating diffusion FD1 provided for the photodiode PDb are electrically connected by the connection wiring 55 provided in the insulating layer 52.
  • the floating diffusion FD1 provided for the photodiode PDa and the floating diffusion FD1 provided for the photodiode PDb are connected to the switching transistor FDG and the gate of the amplification transistor AMP1 via the connection wiring 55 and the through wiring 54. It is connected.
  • the second substrate 20 has two semiconductor substrates 21 and 26.
  • the semiconductor substrate 26 is stacked on the semiconductor substrate 21 via the interlayer insulating film 51 (insulating layer 52).
  • the semiconductor substrate 26 is provided between the interlayer insulating film 51 (insulating layer 52) and the insulating layer 57.
  • the semiconductor substrate 26 has an opening, and a part of the insulating layer 57 (hereinafter, referred to as “insulating layer 28”) is provided in the opening.
  • the through wiring 54 penetrates through the insulating layer 28.
  • the through wiring 54 penetrating the insulating layer 28 electrically connects the floating diffusion FD2 and the gate of the amplification transistor AMP2 to each other through the connection wiring 55 and another through wiring 54.
  • the photodiodes PDa and PDb and the two floating diffusions FD1 are formed on the first substrate 10, and the amplification transistor AMP1, the floating diffusion FD2 and the switching transistor FDG are formed on the semiconductor substrate 21 of the second substrate 20, and the amplification is performed.
  • the transistor AMP2 is formed on the semiconductor substrate 26 of the second substrate 20.
  • the electrodes of the transistors formed on the semiconductor substrates 21 and 26 may be configured to include silicide.
  • the transistors formed on the semiconductor substrates 21 and 26 are formed after forming the sensor pixels 12. Therefore, silicide having low heat resistance can be used for the surface of the impurity diffusion region in contact with the source electrode and the drain electrode of each transistor included in the reading circuit 22.
  • FIG. 20 illustrates an example of a connection mode between the plurality of read circuits 22 and the plurality of vertical signal lines 24.
  • the plurality of vertical signal lines 24 are arranged in the read circuit 22.
  • One may be assigned to each.
  • the four vertical signal lines 24 are read.
  • One may be assigned to each.
  • [Modification J] 21 and 22 show a modified example of the horizontal sectional configuration of the solid-state imaging device 1 having the configuration of FIG. 15, for example.
  • 21 and 22 are diagrams showing an example of the cross-sectional configuration of the first substrate 10 in the solid-state imaging device 1 having the configuration of Modification D.
  • the upper diagrams of FIGS. 21 and 22 exemplify a cross-sectional configuration of a portion corresponding to the cross-section Sec1 of FIG. 3 in the first substrate 10 of the solid-state imaging device 1 having the configuration of Modification D.
  • the drawings showing an example of the surface structure of the semiconductor substrate 11 are overlapped and the insulating layer 46 is omitted.
  • FIGS. 21 and 22 are diagrams illustrating an example of a cross-sectional configuration of the second substrate 20 in the solid-state imaging device 1 including the configuration of the modification D.
  • the lower diagrams of FIGS. 21 and 22 illustrate the cross-sectional configuration of a portion corresponding to the cross section Sec2 of FIG. 3 in the second substrate 20 of the solid-state imaging device 1 having the configuration of the modification D.
  • the drawings showing the surface configuration examples of the semiconductor substrate 21 and the insulating layer 53 are overlapped with each other, and the insulating layer 52 is omitted.
  • FIG. 21 illustrates a configuration in which two 2 ⁇ 2 four sensor pixels 12 are arranged in the second direction H.
  • FIG. 22 illustrates a configuration in which four 2 ⁇ 2 four sensor pixels 12 are arranged in the first direction V and the second direction H.
  • the laminated body including the first substrate 10 and the second substrate 20 has through wirings 67 and 68 provided in the interlayer insulating film 51.
  • the stacked body has one through wiring 67 and one through wiring 68 for each sensor pixel 12.
  • the through wires 67 and 68 extend in the normal direction of the semiconductor substrate 21, respectively, and are provided so as to penetrate a portion of the interlayer insulating film 51 including the insulating layer 53.
  • the first substrate 10 and the second substrate 20 are electrically connected to each other by through wirings 67 and 68.
  • the through wiring 67 is electrically connected to the p well layer 42 of the semiconductor substrate 11 and the wiring in the second substrate 20.
  • the through wiring 68 is electrically connected to the transfer gate TG and the pixel drive line 23. As shown in FIGS.
  • the plurality of through wirings 54, the plurality of through wirings 68, and the plurality of through wirings 67 are arranged in the first direction V (the vertical direction in FIG. 22) are arranged side by side in a strip shape.
  • 21 and 22 exemplify a case where the plurality of through wirings 54, the plurality of through wirings 68, and the plurality of through wirings 67 are arranged side by side in two rows in the first direction V.
  • the first direction V is parallel to one of the two arrangement directions (for example, the row direction and the column direction) of the plurality of sensor pixels 12 arranged in a matrix (for example, the column direction).
  • the four floating diffusions FD are arranged close to each other, for example, with the element separating unit 43 interposed therebetween.
  • the four transfer gates TG are arranged so as to surround the four floating diffusions FD, and for example, the four transfer gates TG form a ring shape. ing.
  • the insulating layer 53 is composed of a plurality of blocks extending in the first direction V.
  • the semiconductor substrate 21 includes a plurality of island-shaped blocks 21A that extend in the first direction V and are arranged side by side in the second direction H that is orthogonal to the first direction V with the insulating layer 53 interposed therebetween. ..
  • Each block 21A is provided with, for example, a plurality of sets of reset transistors RST, amplification transistors AMP, and selection transistors SEL.
  • One readout circuit 22 shared by the four sensor pixels 12 is configured of, for example, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL in a region facing the four sensor pixels 12.
  • One readout circuit 22 shared by the four sensor pixels 12 is, for example, an amplification transistor AMP in the block 21A adjacent to the left of the insulating layer 53, a reset transistor RST in the block 21A adjacent to the right of the insulating layer 53, and a selection transistor. It is composed of a transistor SEL.
  • FIG. 23 shows a modification of the vertical cross-sectional configuration of the solid-state imaging device 1 according to the above-described embodiment and its modification.
  • the second substrate 20 and the third substrate 30 are electrically connected to each other in a region of the first substrate 10 facing the peripheral region 14.
  • the peripheral region 14 corresponds to the frame region of the first substrate 10 and is provided on the periphery of the pixel region 13.
  • the second substrate 20 has a plurality of pad electrodes 58 in the region facing the peripheral region 14
  • the third substrate 30 has a plurality of pad electrodes 58 in the region facing the peripheral region 14. 64.
  • the second substrate 20 and the third substrate 30 are electrically connected to each other by the bonding of the pad electrodes 58 and 64 provided in the region facing the peripheral region 14.
  • the second substrate 20 and the third substrate 30 are electrically connected to each other by the bonding of the pad electrodes 58 and 64 provided in the region facing the peripheral region 14.
  • the pad electrodes 58 and 64 are bonded to each other in the region facing the pixel region 13. Therefore, it is possible to provide the solid-state imaging device 1 having a three-layer structure with the same chip size as before, and which does not hinder the miniaturization of the area per pixel.
  • [Modification L] 24 and 25 show a modification of the horizontal cross-sectional configuration of the solid-state imaging device 1 according to Modifications D, J, and K.
  • the upper diagrams of FIGS. 24 and 25 are diagrams showing a modification of the cross-sectional configuration of the first substrate 10 in the solid-state imaging device 1 having the configurations of Modifications D, J, and K.
  • the upper diagrams of FIGS. 24 and 25 illustrate the cross-sectional configuration of a portion corresponding to the cross-section Sec1 of FIG. 3 in the first substrate 10 of the solid-state imaging device 1 having the configurations of the modified examples D, J, and K.
  • FIGS. 24 and 25 are diagrams showing a modified example of the cross-sectional configuration of the second substrate 20 in the solid-state imaging device 1 having the configurations of the modified examples D, J, and K.
  • the lower diagrams of FIGS. 24 and 25 illustrate the cross-sectional configuration of a portion corresponding to the cross-section Sec2 of FIG. 3 in the second substrate 20 of the solid-state imaging device 1 having the configurations of Modifications D, J, and K.
  • the drawings showing the surface configuration examples of the semiconductor substrate 21 and the insulating layer 53 are overlapped with each other, and the insulating layer 52 is omitted.
  • the plurality of through wirings 54, the plurality of through wirings 68, and the plurality of through wirings 67 are formed on the surface of the first substrate 10. Inside, they are arranged side by side in a strip shape in the first direction V (the left-right direction in FIGS. 24 and 25). 24 and 25, the case where the plurality of through wirings 54, the plurality of through wirings 68, and the plurality of through wirings 67 are arranged side by side in two rows in the first direction V is illustrated.
  • the four floating diffusions FD are arranged close to each other, for example, with the element separating unit 43 interposed therebetween.
  • the four transfer gates TG (TG1, TG2, TG3, TG4) are arranged so as to surround the four floating diffusions FD, and for example, the four transfer gates TG. It has a ring shape.
  • the insulating layer 53 is composed of a plurality of blocks extending in the first direction V.
  • the semiconductor substrate 21 includes a plurality of island-shaped blocks 21A that extend in the first direction V and are arranged side by side in the second direction H that is orthogonal to the first direction V with the insulating layer 53 interposed therebetween. ..
  • Each block 21A is provided with, for example, a reset transistor RST, an amplification transistor AMP, and a selection transistor SEL.
  • the one readout circuit 22 shared by the four sensor pixels 12 is, for example, not arranged so as to face the four sensor pixels 12 but is displaced in the second direction H.
  • one read circuit 22 shared by the four sensor pixels 12 is a reset transistor in a region of the second substrate 20 which is opposed to the four sensor pixels 12 in the second direction H. It is composed of an RST, an amplification transistor AMP and a selection transistor SEL.
  • One readout circuit 22 shared by the four sensor pixels 12 is configured by, for example, the amplification transistor AMP, the reset transistor RST, and the selection transistor SEL in one block 21A.
  • one readout circuit 22 shared by the four sensor pixels 12 is a reset transistor in a region of the second substrate 20 that is opposed to the four sensor pixels 12 in the second direction H.
  • One readout circuit 22 shared by the four sensor pixels 12 is configured by, for example, the amplification transistor AMP, the reset transistor RST, the selection transistor SEL, and the FD transfer transistor FDG in one block 21A.
  • the one readout circuit 22 shared by the four sensor pixels 12 is not arranged, for example, so as to face the four sensor pixels 12, but is arranged from the position directly facing the four sensor pixels 12 to the second position. They are arranged so as to be displaced in the direction H.
  • the wiring 25 can be shortened, or the wiring 25 can be omitted and the source of the amplification transistor AMP and the drain of the selection transistor SEL can be configured by a common impurity region. .
  • FIG. 26 shows a modification of the horizontal cross-sectional configuration of the solid-state imaging device 1 according to Modifications D, J, K, and L.
  • the upper diagram of FIG. 26 is a diagram illustrating an example of a cross-sectional configuration of the first substrate 10 in the solid-state imaging device 1 having the configurations of Modifications D, J, K, and L.
  • the upper diagram of FIG. 26 illustrates a cross-sectional configuration of a portion corresponding to the cross-section Sec1 of FIG. 3 in the first substrate 10 of the solid-state imaging device 1 having the configurations of Modifications D, J, K, and L. .. Note that in the cross-sectional view on the upper side of FIG.
  • FIG. 26 drawings showing an example of the surface configuration of the semiconductor substrate 11 are overlapped and the insulating layer 46 is omitted.
  • the drawing on the lower side of FIG. 26 is a diagram illustrating an example of a cross-sectional configuration of the second substrate 20 in the solid-state imaging device 1 having the configurations of Modifications D, J, K, and L.
  • the lower side of FIG. 26 illustrates a cross-sectional configuration of a portion corresponding to the cross section Sec2 of FIG. 3 in the second substrate 20 of the solid-state imaging device 1 having the configurations of Modifications D, J, K, and L. There is.
  • FIG. 26 illustrates a configuration in which two 2 ⁇ 2 four sensor pixels 12 are arranged in the second direction H.
  • the semiconductor substrate 21 is composed of a plurality of island-shaped blocks 21A arranged side by side in the first direction V and the second direction H with the insulating layer 53 interposed therebetween.
  • Each block 21A is provided with, for example, a set of reset transistor RST, amplification transistor AMP, and selection transistor SEL.
  • RST reset transistor
  • AMP amplification transistor
  • SEL selection transistor
  • FIG. 27 shows a modification of the horizontal sectional configuration of the solid-state imaging device 1 according to the modifications D, J, K, L, and M.
  • the upper diagram of FIG. 27 is a diagram illustrating an example of a cross-sectional configuration of the first substrate 10 in the solid-state imaging device 1 having the configurations of Modifications D, J, K, L, and M.
  • the upper diagram of FIG. 27 illustrates a cross-sectional configuration of a portion corresponding to the cross-section Sec1 of FIG. 3 in the first substrate 10 of the solid-state imaging device 1 having the configurations of Modifications D, J, K, L, and M. ing. Note that in the cross-sectional view on the upper side of FIG.
  • FIG. 27 is a diagram illustrating an example of a cross-sectional configuration of the second substrate 20 in the solid-state imaging device 1 having the configurations of Modifications D, J, K, L, and M.
  • the lower diagram of FIG. 27 illustrates a cross-sectional configuration of a portion corresponding to the cross-section Sec2 of FIG. 3 in the second substrate 20 of the solid-state imaging device 1 having the configurations of Modifications D, J, K, L, and M. Has been done. Note that in the cross-sectional view on the lower side of FIG.
  • FIG. 27 illustrates a configuration in which two 2 ⁇ 2 four sensor pixels 12 are arranged in the second direction H.
  • one read circuit 22 shared by the four sensor pixels 12 is not arranged, for example, directly facing the four sensor pixels 12, but is arranged in the first direction V with a shift.
  • the semiconductor substrate 21 is configured by a plurality of island-shaped blocks 21A arranged side by side in the first direction V and the second direction H with the insulating layer 53 interposed therebetween.
  • Each block 21A is provided with, for example, a set of reset transistor RST, amplification transistor AMP, and selection transistor SEL.
  • the plurality of through wirings 67 and the plurality of through wirings 54 are also arranged in the second direction H.
  • the plurality of through-wirings 67 share the four through-wirings 54 that share a certain read circuit 22 and the four through-wirings that share another read circuit 22 adjacent to the read circuit 22 in the second direction H. 54 and 54.
  • the crosstalk between the read circuits 22 adjacent to each other can be suppressed by the insulating layer 53 and the through wiring 67, and the deterioration of resolution on the reproduced image and the deterioration of image quality due to color mixture can be suppressed.
  • FIG. 28 shows an example of a circuit configuration of the solid-state imaging device 1 according to the above-described embodiment and its modification.
  • the solid-state imaging device 1 according to this modification is a CMOS image sensor equipped with a column parallel ADC.
  • the configuration includes a drive circuit 33, a column signal processing circuit 34, a reference voltage supply unit 38, a horizontal drive circuit 35, a horizontal output line 37, and a system control circuit 36.
  • the system control circuit 36 uses the master clock MCK as a reference clock signal or control for operations of the vertical drive circuit 33, the column signal processing circuit 34, the reference voltage supply unit 38, the horizontal drive circuit 35, and the like.
  • a signal or the like is generated and given to the vertical drive circuit 33, the column signal processing circuit 34, the reference voltage supply unit 38, the horizontal drive circuit 35, and the like.
  • the vertical drive circuit 33 is also formed on the first substrate 10 together with the sensor pixels 12 in the pixel region 13, and is also formed on the second substrate 20 on which the readout circuit 22 is formed.
  • the column signal processing circuit 34, the reference voltage supply unit 38, the horizontal drive circuit 35, the horizontal output line 37, and the system control circuit 36 are formed on the third substrate 30.
  • the sensor pixel 12 has, for example, a configuration including a photodiode PD and a transfer transistor TR that transfers charges obtained by photoelectric conversion by the photodiode PD to the floating diffusion FD.
  • the read circuit 22 includes, for example, a reset transistor RST that controls the potential of the floating diffusion FD, an amplification transistor AMP that outputs a signal corresponding to the potential of the floating diffusion FD, and a pixel selection.
  • a three-transistor configuration having a selection transistor SEL for performing the above can be used.
  • the sensor pixels 12 are two-dimensionally arranged, and the pixel drive lines 23 are arranged in each row and the vertical signal lines 24 are arranged in each column with respect to the pixel arrangement of m rows and n columns. There is.
  • One end of each of the plurality of pixel drive lines 23 is connected to each output end corresponding to each row of the vertical drive circuit 33.
  • the vertical drive circuit 33 is configured by a shift register or the like, and controls the row address and the row scan of the pixel region 13 via the plurality of pixel drive lines 23.
  • the column signal processing circuit 34 has, for example, ADCs (analog-digital conversion circuits) 34-1 to 34-m provided for each pixel column of the pixel region 13, that is, for each vertical signal line 24, and the column signal processing circuit 34 The analog signal output from each sensor pixel 12 for each column is converted into a digital signal and output.
  • ADCs analog-digital conversion circuits
  • the reference voltage supply unit 38 has, for example, a DAC (digital-analog conversion circuit) 38A as means for generating a reference voltage Vref having a so-called ramp (RAMP) waveform, the level of which changes in an inclined manner as time passes. There is.
  • the means for generating the reference voltage Vref having the ramp waveform is not limited to the DAC 38A.
  • the DAC 38A under the control of the control signal CS1 given from the system control circuit 36, generates the reference voltage Vref of the ramp waveform based on the clock CK given from the system control circuit 36 to generate the ADC 34- of the column signal processing circuit 34-. Supply for 1 to 34-m.
  • each of the ADCs 34-1 to 34-m has an exposure time of 1 / N of the sensor pixel 12 as compared with the normal frame rate mode in the progressive scanning method for reading out all the information of the sensor pixel 12 and the normal frame rate mode. Is set so that the AD conversion operation corresponding to each operation mode such as the high-speed frame rate mode for increasing the frame rate N times, for example, twice, can be selectively performed.
  • the switching of the operation mode is executed by the control by the control signals CS2 and CS3 provided from the system control circuit 36. Further, the system control circuit 36 is provided with instruction information for switching between the normal frame rate mode and each operation mode of the high frame rate mode from an external system controller (not shown).
  • the ADCs 34-1 to 34-m have the same configuration, and the ADC 34-m will be described as an example here.
  • the ADC 34-m has a configuration including a comparator 34A, counting means such as an up / down counter (denoted as U / DCNT in the drawing) 34B, a transfer switch 34C, and a memory device 34D.
  • the comparator 34A includes a signal voltage Vx of the vertical signal line 24 corresponding to a signal output from each sensor pixel 12 in the nth column of the pixel region 13 and a reference voltage Vref of a ramp waveform supplied from the reference voltage supply unit 38. And the output voltage Vco becomes "H” level when the reference voltage Vref is higher than the signal voltage Vx, and the output voltage Vco becomes “L” level when the reference voltage Vref is equal to or lower than the signal voltage Vx. .
  • the up / down counter 34B is an asynchronous counter, and under the control of the control signal CS2 given from the system control circuit 36, the clock CK is given from the system control circuit 36 at the same time as the DAC 18A, and is down in synchronization with the clock CK ( By performing the DOWN) count or the UP (UP) count, the comparison period from the start of the comparison operation in the comparator 34A to the end of the comparison operation is measured.
  • the comparison time at the first read time is measured by counting down during the first read operation, and the second read operation is performed.
  • the comparison time at the second read is measured by counting up during the read operation.
  • the count result for the sensor pixel 12 in a certain row is held as it is, and then the sensor pixel 12 in the next row is down-counted at the first read operation from the previous count result.
  • the comparison time at the time of the first read is measured, and by counting up at the time of the second read operation, the comparison time at the time of the second read is measured.
  • the transfer switch 34C is turned on when the count operation of the up / down counter 34B for the sensor pixel 12 in a certain row is completed in the normal frame rate mode ( In the closed state, the count result of the up / down counter 34B is transferred to the memory device 34D.
  • the analog signal supplied from each sensor pixel 12 in the pixel region 13 via the vertical signal line 24 for each column is supplied to the comparator 34A and the up / down counter 34B in the ADCs 34-1 to 34-m. By each operation, it is converted into an N-bit digital signal and stored in the memory device 34D.
  • the horizontal drive circuit 35 is composed of a shift register or the like, and controls the column address and column scan of the ADCs 34-1 to 34-m in the column signal processing circuit 34. Under the control of the horizontal drive circuit 35, the N-bit digital signal AD-converted by each of the ADCs 34-1 to 34-m is sequentially read out to the horizontal output line 37, and passes through the horizontal output line 37. It is output as imaging data.
  • a circuit or the like for performing various kinds of signal processing on the imaging data output via the horizontal output line 37 may be provided in addition to the above-described constituent elements. Is.
  • the count result of the up / down counter 34B can be selectively transferred to the memory device 34D via the transfer switch 34C. It is possible to independently control the count operation of the / down counter 34B and the read operation of the count result of the up / down counter 34B to the horizontal output line 37.
  • FIG. 29 shows an example in which the solid-state imaging device 1 of FIG. 28 is configured by stacking three substrates (first substrate 10, second substrate 20, third substrate 30).
  • a pixel region 13 including a plurality of sensor pixels 12 is formed in the central portion of the first substrate 10, and a vertical drive circuit 33 is formed around the pixel region 13.
  • a read circuit area 15 including a plurality of read circuits 22 is formed in the central portion, and a vertical drive circuit 33 is formed around the read circuit area 15.
  • a column signal processing circuit 34, a horizontal drive circuit 35, a system control circuit 36, a horizontal output line 37, and a reference voltage supply unit 38 are formed on the third substrate 30.
  • the structure in which the substrates are electrically connected to each other increases the chip size and hinders the miniaturization of the area per pixel.
  • the vertical drive circuit 33 may be formed only on the first substrate 10 or only on the second substrate 20.
  • FIG. 30 shows a modification of the cross-sectional configuration of the solid-state imaging device 1 according to the above-described embodiment and its modification.
  • the third substrate 30 is omitted, and the logic circuit 32 provided on the third substrate 30 includes the first substrate 10 and the first substrate 10 as shown in FIG. 30, for example. It may be formed separately from the second substrate 20.
  • a high dielectric constant film made of a material (for example, high-k) that can withstand a high temperature process and a metal gate electrode are laminated.
  • a transistor having a gate structure is provided.
  • a silicide formed by using a salicide (Self Aligned Silicide) process such as CoSi 2 or NiSi on the surface of the impurity diffusion region in contact with the source electrode and the drain electrode The low resistance region 27 is formed.
  • the low resistance region 27 made of silicide is formed of a compound of a material of the semiconductor substrate and a metal. This allows a high temperature process such as thermal oxidation to be used when forming the sensor pixel 12.
  • contact is made in the circuit 32B provided on the second substrate 20 side of the logic circuit 32. The resistance can be reduced. As a result, the calculation speed in the logic circuit 32 can be increased.
  • FIG. 31 shows a modification of the cross-sectional configuration of the solid-state imaging device 1 according to the above-described embodiment and its modification.
  • a salicide (Self Aligned Silicide) process such as CoSi 2 or NiSi is formed on the surface of the impurity diffusion region in contact with the source electrode and the drain electrode.
  • the low resistance region 39 made of silicide may be formed. This allows a high temperature process such as thermal oxidation to be used when forming the sensor pixel 12.
  • the contact resistance can be reduced. As a result, the calculation speed in the logic circuit 32 can be increased.
  • the conductivity types may be reversed in the above-described embodiment and its modifications.
  • the p-type may be read as the n-type and the n-type may be read as the p-type. Even in this case, it is possible to obtain the same effects as those of the above-described embodiment and its modifications.
  • FIG. 32 illustrates an example of a schematic configuration of an imaging system 2 including the solid-state imaging device 1 according to the above-mentioned embodiment and its modification.
  • the imaging system 2 is, for example, a solid-state imaging device such as a digital still camera or a video camera, or an electronic device such as a mobile terminal device such as a smartphone or a tablet type terminal.
  • the imaging system 2 includes, for example, the solid-state imaging device 1 according to the above-described embodiment and its modification, the DSP circuit 141, the frame memory 142, the display unit 143, the storage unit 144, the operation unit 145, and the power supply unit 146.
  • the solid-state imaging device 1 the DSP circuit 141, the frame memory 142, the display unit 143, the storage unit 144, the operation unit 145, and the power supply unit 146 according to the above-described embodiment and its modification are connected via the bus line 147. Are connected to each other.
  • the solid-state imaging device 1 outputs image data according to incident light.
  • the DSP circuit 141 is a signal processing circuit that processes a signal (image data) output from the solid-state imaging device 1 according to each of the embodiments and the modifications thereof.
  • the frame memory 142 temporarily holds the image data processed by the DSP circuit 141 in frame units.
  • the display unit 143 is composed of, for example, a panel-type display device such as a liquid crystal panel or an organic EL (Electro Luminescence) panel, and displays a moving image or a still image captured by the solid-state imaging device 1 according to each of the embodiments and the modifications thereof. indicate.
  • the storage unit 144 records image data of a moving image or a still image captured by the solid-state imaging device 1 according to each of the above-described embodiments and its modifications in a recording medium such as a semiconductor memory or a hard disk.
  • the operation unit 145 issues operation commands for various functions of the imaging system 2 in accordance with the user's operation.
  • the power supply unit 146 uses various power supplies as operating power supplies for the solid-state imaging device 1, the DSP circuit 141, the frame memory 142, the display unit 143, the storage unit 144, and the operation unit 145 according to the above-described embodiments and the modifications thereof. It is appropriately supplied to these supply targets.
  • FIG. 33 shows an example of a flowchart of the imaging operation in the imaging system 2.
  • the user operates the operation unit 145 to give an instruction to start imaging (step S101). Then, the operation unit 145 transmits an imaging command to the solid-state imaging device 1 (step S102).
  • the solid-state imaging device 1 specifically, the system control circuit 36
  • the solid-state imaging device 1 executes imaging by a predetermined imaging method (step S103).
  • the solid-state imaging device 1 outputs the image data obtained by imaging to the DSP circuit 141.
  • the image data is data for all pixels of the pixel signal generated based on the charges temporarily held in the floating diffusion FD.
  • the DSP circuit 141 performs predetermined signal processing (for example, noise reduction processing) based on the image data input from the solid-state imaging device 1 (step S104).
  • the DSP circuit 141 causes the frame memory 142 to hold the image data subjected to the predetermined signal processing, and the frame memory 142 causes the storage unit 144 to store the image data (step S105). In this way, the image pickup by the image pickup system 2 is performed.
  • the solid-state imaging device 1 according to each of the above-described embodiments and its modifications is applied to the imaging system 2.
  • the solid-state image pickup device 1 can be miniaturized or made highly precise, so that it is possible to provide a compact or high definition image pickup system 2.
  • the technology according to the present disclosure (this technology) can be applied to various products.
  • the technology according to the present disclosure is realized as a device mounted on any type of moving body such as an automobile, an electric vehicle, a hybrid electric vehicle, a motorcycle, a bicycle, personal mobility, an airplane, a drone, a ship, and a robot. May be.
  • FIG. 34 is a block diagram showing a schematic configuration example of a vehicle control system that is an example of a mobile body control system to which the technology according to the present disclosure can be applied.
  • the vehicle control system 12000 includes a plurality of electronic control units connected via a communication network 12001.
  • the vehicle control system 12000 includes a drive system control unit 12010, a body system control unit 12020, a vehicle exterior information detection unit 12030, a vehicle interior information detection unit 12040, and an integrated control unit 12050.
  • a microcomputer 12051, an audio / video output unit 12052, and an in-vehicle network I / F (interface) 12053 are illustrated as a functional configuration of the integrated control unit 12050.
  • the drive system control unit 12010 controls the operation of devices related to the drive system of the vehicle according to various programs.
  • the drive system control unit 12010 includes a drive force generation device for generating a drive force of a vehicle such as an internal combustion engine or a drive motor, a drive force transmission mechanism for transmitting the drive force to wheels, and a steering angle of the vehicle. It functions as a steering mechanism for adjusting and a control device such as a braking device for generating a braking force of the vehicle.
  • the body system control unit 12020 controls the operation of various devices mounted on the vehicle body according to various programs.
  • the body system control unit 12020 functions as a keyless entry system, a smart key system, a power window device, or a control device for various lamps such as a head lamp, a back lamp, a brake lamp, a winker, or a fog lamp.
  • the body system control unit 12020 can be input with radio waves or signals of various switches transmitted from a portable device that substitutes for a key.
  • the body system control unit 12020 receives input of these radio waves or signals and controls the vehicle door lock device, power window device, lamp, and the like.
  • the vehicle exterior information detection unit 12030 detects information outside the vehicle equipped with the vehicle control system 12000.
  • the image pickup unit 12031 is connected to the vehicle exterior information detection unit 12030.
  • the vehicle exterior information detection unit 12030 causes the image capturing unit 12031 to capture an image of the vehicle exterior and receives the captured image.
  • the vehicle exterior information detection unit 12030 may perform object detection processing or distance detection processing such as people, vehicles, obstacles, signs, or characters on the road surface based on the received image.
  • the image pickup unit 12031 is an optical sensor that receives light and outputs an electric signal according to the amount of received light.
  • the image pickup unit 12031 can output the electric signal as an image or as distance measurement information.
  • the light received by the imaging unit 12031 may be visible light or invisible light such as infrared light.
  • the in-vehicle information detection unit 12040 detects in-vehicle information.
  • a driver state detection unit 12041 that detects the state of the driver is connected.
  • the driver state detection unit 12041 includes, for example, a camera that images the driver, and the in-vehicle information detection unit 12040 determines the degree of fatigue or concentration of the driver based on the detection information input from the driver state detection unit 12041. It may be calculated or it may be determined whether or not the driver is asleep.
  • the microcomputer 12051 calculates the control target value of the driving force generation device, the steering mechanism or the braking device based on the information on the inside and outside of the vehicle acquired by the outside information detection unit 12030 or the inside information detection unit 12040, and the drive system control unit.
  • a control command can be output to 12010.
  • the microcomputer 12051 realizes a function of ADAS (Advanced Driver Assistance System) that includes collision avoidance or impact mitigation of a vehicle, follow-up traveling based on an inter-vehicle distance, vehicle speed maintenance traveling, a vehicle collision warning, or a vehicle lane departure warning. It is possible to perform cooperative control for the purpose.
  • ADAS Advanced Driver Assistance System
  • the microcomputer 12051 controls the driving force generation device, the steering mechanism, the braking device, or the like on the basis of the information around the vehicle acquired by the vehicle exterior information detection unit 12030 or the vehicle interior information detection unit 12040, so that the driver's It is possible to perform cooperative control for the purpose of autonomous driving or the like that autonomously travels without depending on the operation.
  • the microcomputer 12051 can output a control command to the body system control unit 12020 based on the information outside the vehicle acquired by the outside information detection unit 12030.
  • the microcomputer 12051 controls the headlamp according to the position of the preceding vehicle or the oncoming vehicle detected by the vehicle exterior information detection unit 12030, and performs cooperative control for the purpose of antiglare such as switching the high beam to the low beam. It can be carried out.
  • the voice image output unit 12052 transmits an output signal of at least one of a voice and an image to an output device capable of visually or audibly notifying information to a passenger of the vehicle or the outside of the vehicle.
  • an audio speaker 12061, a display unit 12062, and an instrument panel 12063 are illustrated as output devices.
  • the display unit 12062 may include at least one of an on-board display and a head-up display, for example.
  • FIG. 35 is a diagram showing an example of the installation position of the imaging unit 12031.
  • the vehicle 12100 has imaging units 12101, 12102, 12103, 12104, 12105 as the imaging unit 12031.
  • the imaging units 12101, 12102, 12103, 12104, 12105 are provided at positions such as the front nose of the vehicle 12100, the side mirrors, the rear bumper, the back door, and the upper part of the windshield inside the vehicle.
  • the image capturing unit 12101 provided on the front nose and the image capturing unit 12105 provided on the upper part of the windshield in the vehicle interior mainly acquire an image in front of the vehicle 12100.
  • the imaging units 12102 and 12103 included in the side mirrors mainly acquire images of the side of the vehicle 12100.
  • the image capturing unit 12104 provided in the rear bumper or the back door mainly acquires an image behind the vehicle 12100.
  • the front images acquired by the image capturing units 12101 and 12105 are mainly used for detecting a preceding vehicle, a pedestrian, an obstacle, a traffic signal, a traffic sign, a lane, or the like.
  • FIG. 35 shows an example of the shooting range of the imaging units 12101 to 12104.
  • the imaging range 12111 indicates the imaging range of the imaging unit 12101 provided on the front nose
  • the imaging ranges 12112 and 12113 indicate the imaging ranges of the imaging units 12102 and 12103 provided on the side mirrors
  • the imaging range 12114 indicates The imaging range of the imaging part 12104 provided in a rear bumper or a back door is shown.
  • a bird's-eye view image of the vehicle 12100 viewed from above can be obtained.
  • At least one of the imaging units 12101 to 12104 may have a function of acquiring distance information.
  • at least one of the image capturing units 12101 to 12104 may be a stereo camera including a plurality of image capturing elements or may be an image capturing element having pixels for phase difference detection.
  • the microcomputer 12051 based on the distance information obtained from the imaging units 12101 to 12104, the distance to each three-dimensional object in the imaging range 12111 to 12114 and the temporal change of this distance (relative speed with respect to the vehicle 12100). It is possible to extract the closest three-dimensional object on the traveling path of the vehicle 12100, which is traveling in a substantially same direction as the vehicle 12100 at a predetermined speed (for example, 0 km / h or more), as a preceding vehicle. it can. Further, the microcomputer 12051 can set an inter-vehicle distance to be secured in front of the preceding vehicle in advance, and can perform automatic braking control (including follow-up stop control), automatic acceleration control (including follow-up start control), and the like. In this way, it is possible to perform cooperative control for the purpose of autonomous driving, which autonomously travels without depending on the operation of the driver.
  • automatic braking control including follow-up stop control
  • automatic acceleration control including follow-up start control
  • the microcomputer 12051 uses the distance information obtained from the image capturing units 12101 to 12104 to convert three-dimensional object data regarding a three-dimensional object to other three-dimensional objects such as two-wheeled vehicles, ordinary vehicles, large vehicles, pedestrians, telephone poles, and the like. It can be classified, extracted, and used for automatic avoidance of obstacles. For example, the microcomputer 12051 distinguishes obstacles around the vehicle 12100 into obstacles visible to the driver of the vehicle 12100 and obstacles difficult to see. Then, the microcomputer 12051 determines the collision risk indicating the risk of collision with each obstacle, and when the collision risk is equal to or more than the set value and there is a possibility of collision, the microcomputer 12051 outputs the audio through the audio speaker 12061 and the display unit 12062. A driver can be assisted for avoiding a collision by outputting an alarm to the driver and performing forced deceleration or avoidance steering through the drive system control unit 12010.
  • At least one of the image capturing units 12101 to 12104 may be an infrared camera that detects infrared rays.
  • the microcomputer 12051 can recognize a pedestrian by determining whether or not the pedestrian is present in the images captured by the imaging units 12101 to 12104. To recognize such a pedestrian, for example, a procedure for extracting a feature point in an image captured by the image capturing units 12101 to 12104 as an infrared camera and pattern matching processing on a series of feature points indicating the contour of an object are performed to determine whether or not the pedestrian is a pedestrian.
  • the voice image output unit 12052 causes the recognized pedestrian to have a rectangular contour line for emphasis.
  • the display unit 12062 is controlled so as to superimpose. Further, the audio image output unit 12052 may control the display unit 12062 to display an icon indicating a pedestrian or the like at a desired position.
  • the above has described an example of the mobile control system to which the technology according to the present disclosure can be applied.
  • the technology according to the present disclosure can be applied to the imaging unit 12031 among the configurations described above.
  • the solid-state imaging device 1 according to the above-described embodiment and its modification can be applied to the imaging unit 12031.
  • the technology according to the present disclosure to the image capturing unit 12031, a high-definition captured image with less noise can be obtained, so that highly accurate control using a captured image can be performed in the mobile body control system.
  • FIG. 36 is a diagram showing an example of a schematic configuration of an endoscopic surgery system to which the technology according to the present disclosure (the present technology) can be applied.
  • FIG. 36 illustrates a situation in which an operator (doctor) 11131 is operating on a patient 11132 on a patient bed 11133 using the endoscopic surgery system 11000.
  • the endoscopic surgery system 11000 includes an endoscope 11100, other surgical tools 11110 such as a pneumoperitoneum tube 11111 and an energy treatment tool 11112, and a support arm device 11120 that supports the endoscope 11100.
  • a cart 11200 on which various devices for endoscopic surgery are mounted.
  • the endoscope 11100 includes a lens barrel 11101 into which a region of a predetermined length from the distal end is inserted into the body cavity of the patient 11132, and a camera head 11102 connected to the base end of the lens barrel 11101.
  • the endoscope 11100 configured as a so-called rigid endoscope having the rigid barrel 11101 is illustrated, but the endoscope 11100 may be configured as a so-called flexible mirror having a flexible barrel. Good.
  • An opening in which an objective lens is fitted is provided at the tip of the lens barrel 11101.
  • a light source device 11203 is connected to the endoscope 11100, and the light generated by the light source device 11203 is guided to the tip of the lens barrel by a light guide extending inside the lens barrel 11101. It is irradiated toward the observation target in the body cavity of the patient 11132 via the lens.
  • the endoscope 11100 may be a direct-viewing endoscope, or may be a perspective or side-viewing endoscope.
  • An optical system and an image pickup device are provided inside the camera head 11102, and the reflected light (observation light) from the observation target is condensed on the image pickup device by the optical system.
  • the observation light is photoelectrically converted by the imaging element, and an electric signal corresponding to the observation light, that is, an image signal corresponding to the observation image is generated.
  • the image signal is transmitted to the camera control unit (CCU: Camera Control Unit) 11201 as RAW data.
  • the CCU 11201 is composed of a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), and the like, and controls the operations of the endoscope 11100 and the display device 11202 in a centralized manner. Further, the CCU 11201 receives the image signal from the camera head 11102, and performs various image processing such as development processing (demosaic processing) on the image signal for displaying an image based on the image signal.
  • image processing such as development processing (demosaic processing)
  • the display device 11202 displays an image based on the image signal subjected to the image processing by the CCU 11201 under the control of the CCU 11201.
  • the light source device 11203 is composed of a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light when photographing a surgical site or the like.
  • a light source such as an LED (Light Emitting Diode), for example, and supplies the endoscope 11100 with irradiation light when photographing a surgical site or the like.
  • the input device 11204 is an input interface for the endoscopic surgery system 11000.
  • the user can input various kinds of information and instructions to the endoscopic surgery system 11000 via the input device 11204.
  • the user inputs an instruction to change the imaging conditions (type of irradiation light, magnification, focal length, etc.) by the endoscope 11100.
  • the treatment instrument control device 11205 controls driving of the energy treatment instrument 11112 for cauterization of tissue, incision, sealing of blood vessel, or the like.
  • the pneumoperitoneum device 11206 is used to inflate the body cavity of the patient 11132 through the pneumoperitoneum tube 11111 in order to inflate the body cavity of the patient 11132 for the purpose of securing the visual field by the endoscope 11100 and the working space of the operator.
  • the recorder 11207 is a device capable of recording various information regarding surgery.
  • the printer 11208 is a device capable of printing various information regarding surgery in various formats such as text, images, and graphs.
  • the light source device 11203 that supplies irradiation light to the endoscope 11100 when imaging a surgical site can be configured by, for example, an LED, a laser light source, or a white light source configured by a combination thereof.
  • a white light source is formed by a combination of RGB laser light sources
  • the output intensity and output timing of each color (each wavelength) can be controlled with high accuracy, so that the light source device 11203 adjusts the white balance of the captured image. It can be carried out.
  • the laser light from each of the RGB laser light sources is time-divided to the observation target, and the drive of the image pickup device of the camera head 11102 is controlled in synchronization with the irradiation timing, so that each of the RGB colors can be handled. It is also possible to take the captured image in time division. According to this method, a color image can be obtained without providing a color filter on the image sensor.
  • the drive of the light source device 11203 may be controlled so as to change the intensity of the output light at predetermined time intervals.
  • the drive of the image sensor of the camera head 11102 in synchronization with the timing of changing the intensity of the light to acquire an image in a time-division manner and synthesizing the images, a high dynamic without so-called blackout and whiteout. Images of the range can be generated.
  • the light source device 11203 may be configured to be able to supply light in a predetermined wavelength band corresponding to special light observation.
  • the special light observation for example, the wavelength dependence of the absorption of light in body tissues is used to irradiate a narrow band of light as compared with the irradiation light (that is, white light) at the time of normal observation, so that the mucosal surface layer
  • the so-called narrow band imaging is performed in which a predetermined tissue such as blood vessels is imaged with high contrast.
  • fluorescence observation in which an image is obtained by fluorescence generated by irradiating the excitation light may be performed.
  • the body tissue is irradiated with excitation light to observe the fluorescence from the body tissue (autofluorescence observation), or a reagent such as indocyanine green (ICG) is locally injected into the body tissue and the body tissue is also injected.
  • the excitation light corresponding to the fluorescence wavelength of the reagent can be irradiated to obtain a fluorescence image and the like.
  • the light source device 11203 can be configured to be capable of supplying narrowband light and / or excitation light compatible with such special light observation.
  • FIG. 37 is a block diagram showing an example of the functional configuration of the camera head 11102 and the CCU 11201 shown in FIG.
  • the camera head 11102 includes a lens unit 11401, an imaging unit 11402, a driving unit 11403, a communication unit 11404, and a camera head control unit 11405.
  • the CCU 11201 has a communication unit 11411, an image processing unit 11412, and a control unit 11413.
  • the camera head 11102 and the CCU 11201 are communicably connected to each other via a transmission cable 11400.
  • the lens unit 11401 is an optical system provided at the connecting portion with the lens barrel 11101.
  • the observation light taken in from the tip of the lens barrel 11101 is guided to the camera head 11102 and enters the lens unit 11401.
  • the lens unit 11401 is configured by combining a plurality of lenses including a zoom lens and a focus lens.
  • the image pickup unit 11402 is composed of an image pickup element.
  • the number of image pickup elements forming the image pickup section 11402 may be one (so-called single-plate type) or plural (so-called multi-plate type).
  • image signals corresponding to RGB are generated by each image pickup element, and a color image may be obtained by combining them.
  • the image capturing unit 11402 may be configured to include a pair of image capturing elements for respectively acquiring image signals for the right eye and the left eye that correspond to 3D (Dimensional) display. By performing the 3D display, the operator 11131 can more accurately grasp the depth of the living tissue in the operation site.
  • a plurality of lens units 11401 may be provided corresponding to each image pickup element.
  • the image pickup unit 11402 does not necessarily have to be provided in the camera head 11102.
  • the imaging unit 11402 may be provided inside the lens barrel 11101 immediately after the objective lens.
  • the drive unit 11403 is composed of an actuator, and moves the zoom lens and the focus lens of the lens unit 11401 by a predetermined distance along the optical axis under the control of the camera head control unit 11405. Accordingly, the magnification and focus of the image captured by the image capturing unit 11402 can be adjusted appropriately.
  • the communication unit 11404 is composed of a communication device for transmitting and receiving various information to and from the CCU11201.
  • the communication unit 11404 transmits the image signal obtained from the imaging unit 11402 as RAW data to the CCU 11201 via the transmission cable 11400.
  • the communication unit 11404 receives a control signal for controlling the driving of the camera head 11102 from the CCU 11201 and supplies it to the camera head control unit 11405.
  • the control signal includes, for example, information that specifies the frame rate of the captured image, information that specifies the exposure value at the time of capturing, and / or information that specifies the magnification and focus of the captured image. Contains information about the condition.
  • the image capturing conditions such as the frame rate, the exposure value, the magnification, and the focus may be appropriately designated by the user, or may be automatically set by the control unit 11413 of the CCU 11201 based on the acquired image signal. Good. In the latter case, the so-called AE (Auto Exposure) function, AF (Auto Focus) function, and AWB (Auto White Balance) function are installed in the endoscope 11100.
  • AE Auto Exposure
  • AF Auto Focus
  • AWB Auto White Balance
  • the camera head control unit 11405 controls driving of the camera head 11102 based on a control signal from the CCU 11201 received via the communication unit 11404.
  • the communication unit 11411 is composed of a communication device for transmitting and receiving various information to and from the camera head 11102.
  • the communication unit 11411 receives the image signal transmitted from the camera head 11102 via the transmission cable 11400.
  • the communication unit 11411 transmits a control signal for controlling the driving of the camera head 11102 to the camera head 11102.
  • the image signal and the control signal can be transmitted by electric communication, optical communication, or the like.
  • the image processing unit 11412 performs various types of image processing on the image signal that is the RAW data transmitted from the camera head 11102.
  • the control unit 11413 performs various controls regarding imaging of a surgical site or the like by the endoscope 11100 and display of a captured image obtained by imaging the surgical site or the like. For example, the control unit 11413 generates a control signal for controlling the driving of the camera head 11102.
  • control unit 11413 causes the display device 11202 to display a captured image of the surgical site or the like based on the image signal subjected to the image processing by the image processing unit 11412.
  • the control unit 11413 may recognize various objects in the captured image using various image recognition techniques.
  • the control unit 11413 detects a surgical instrument such as forceps, a specific body part, bleeding, and a mist when the energy treatment instrument 11112 is used by detecting the shape and color of the edge of the object included in the captured image. Can be recognized.
  • the control unit 11413 may superimpose and display various types of surgery support information on the image of the operation unit using the recognition result. By displaying the surgery support information in a superimposed manner and presenting it to the operator 11131, the burden on the operator 11131 can be reduced, and the operator 11131 can proceed with the operation reliably.
  • the transmission cable 11400 that connects the camera head 11102 and the CCU 11201 is an electric signal cable compatible with electric signal communication, an optical fiber compatible with optical communication, or a composite cable of these.
  • wired communication is performed using the transmission cable 11400, but communication between the camera head 11102 and the CCU 11201 may be performed wirelessly.
  • the technology according to the present disclosure can be suitably applied to the imaging unit 11402 provided in the camera head 11102 of the endoscope 11100 among the configurations described above.
  • the image capturing unit 11402 can be downsized or high definition, and thus the small or high definition endoscope 11100 can be provided.
  • a photoelectric conversion unit A first signal path including a first floating diffusion and a first amplification transistor; A second signal path including a second floating diffusion and a second amplification transistor; In the first mode, the first signal path is electrically connected to the photoelectric conversion unit, and the second signal path is electrically disconnected from the photoelectric conversion unit.
  • the first signal path and the A mode changeover switch section for electrically connecting both of the second signal paths to the photoelectric conversion section;
  • the photoelectric conversion unit the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit, at least the first substrate on which the photoelectric conversion unit is formed; , Laminated on the first substrate, at least the second amplifier among the photoelectric conversion unit, the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit.
  • a second substrate having a transistor formed thereon, and a solid-state imaging device.
  • the photoelectric conversion unit, the first floating diffusion, the second floating diffusion, and the mode changeover switch unit are formed on the first substrate, The solid-state imaging device according to (1), wherein the first amplification transistor and the second amplification transistor are formed on the second substrate.
  • the photoelectric conversion unit, the first floating diffusion, the first amplification transistor, the second floating diffusion, and the mode changeover switch unit are formed on the first substrate, The solid-state imaging device according to (1), wherein the second amplification transistor is formed on the second substrate.
  • the photoelectric conversion unit is formed on the first substrate, The solid-state imaging device according to (1), wherein the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit are formed on the second substrate.
  • the solid-state imaging device in which the electrode of the transistor formed on the second substrate includes silicide.
  • the solid-state imaging device further including a drive circuit that changes a drive current according to a size of a transistor that is converted by switching by the mode changeover switch unit. .. (7)
  • a photoelectric conversion unit A first signal path including a first floating diffusion and a first amplification transistor; A second signal path including a second floating diffusion and a second amplification transistor; In the first mode, the first signal path is electrically connected to the photoelectric conversion unit, and the second signal path is electrically disconnected from the photoelectric conversion unit.
  • the first signal path and the A mode changeover switch section for electrically connecting both of the second signal paths to the photoelectric conversion section;
  • a solid-state imaging device that outputs a pixel signal according to incident light;
  • a signal processing circuit for processing the pixel signal The solid-state imaging device,
  • a photoelectric conversion unit A first signal path including a first floating diffusion and a first amplification transistor;
  • a second signal path including a second floating diffusion and a second amplification transistor;
  • the first signal path is electrically connected to the photoelectric conversion unit, and the second signal path is electrically disconnected from the photoelectric conversion unit.
  • the first signal path and the A mode changeover switch section for electrically connecting both of the second signal paths to the photoelectric conversion section;
  • the photoelectric conversion unit the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit, at least the first substrate on which the photoelectric conversion unit is formed; , Laminated on the first substrate, at least the second amplifier among the photoelectric conversion unit, the first floating diffusion, the first amplification transistor, the second floating diffusion, the second amplification transistor, and the mode changeover switch unit.
  • An electronic device having a second substrate on which a transistor is formed.
  • a solid-state imaging device that outputs a pixel signal according to incident light;
  • a signal processing circuit for processing the pixel signal The solid-state imaging device,
  • a photoelectric conversion unit A first signal path including a first floating diffusion and a first amplification transistor;
  • a second signal path including a second floating diffusion and a second amplification transistor;
  • the first signal path is electrically connected to the photoelectric conversion unit, and the second signal path is electrically disconnected from the photoelectric conversion unit.
  • the first signal path and the A mode changeover switch unit electrically connecting both of the second signal paths to the photoelectric conversion unit;
  • the amplifying transistor to be used is selected according to the mode, and at least the amplification is performed. Since the transistor is formed on a substrate different from the substrate on which the photoelectric conversion unit is formed, it is possible to achieve both high sensitivity and high dynamic range even in high definition applications. Note that the effect of the present technology is not necessarily limited to the effect described here, and may be any effect described in the present specification.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本開示の一実施の形態に係る固体撮像装置は、第1モードのときには第1信号経路を光電変換部に電気的に接続するとともに第2信号経路を光電変換部から電気的に切り離し、第2モードのときには第1信号経路および第2信号経路の双方を光電変換部に電気的に接続するモード切り換えスイッチ部を備えている。少なくとも光電変換部が、互いに積層された第1基板および第2基板のうち、第1基板に形成され、少なくとも第2増幅トランジスタが第2基板に形成される。

Description

固体撮像装置および電子機器
 本開示は、固体撮像装置および電子機器に関する。
 固体撮像装置は、例えば、デジタルスチルカメラやビデオカメラ等の撮像装置や、撮像機能を有する携帯端末装置などの電子機器に用いられている。固体撮像装置としては、光電変換素子であるフォトダイオードに蓄積された電荷を、MOS(Metal Oxide Semiconductor)トランジスタを介して読み出すCMOS(complementary MOS)イメージセンサがある。
 CMOSイメージセンサでは、低照度時にも撮像信号を取得することができるように、感度は高い方が望ましい。また、ダイナミックレンジを大きくするためには、フォトダイオードは飽和しにくい方が望ましい。しかしながら、感度が高いことと、フォトダイオードが飽和しにくいことはトレードオフの関係にあり、高感度を維持しつつ、ダイナミックレンジを拡大することは難しい。そこで、例えば、特許文献1では、小容量のフローティングディフュージョンと、大容量のフローティングディフュージョンを設け、低照度時には小容量のフローティングディフュージョンをフォトダイオードに接続し、高照度時には大容量のフローティングディフュージョンを接続することが開示されている。
特開2003-134396号公報
 しかし、特許文献1に記載の発明を、高精細な用途に適用した場合、2つのフローティングディフュージョンを設けるのに十分なスペースを確保することが難しいという問題がある。従って、高精細な用途においても、高感度および高ダイナミックレンジを両立することの可能な固体撮像装置およびそれを備えた電子機器を提供することが望ましい。
 本開示の第1の側面である固体撮像装置は、光電変換部と、第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路とを備えている。この固体撮像装置は、第1モードのときには第1信号経路を光電変換部に電気的に接続するとともに第2信号経路を光電変換部から電気的に切り離し、第2モードのときには第1信号経路および第2信号経路の双方を光電変換部に電気的に接続するモード切り換えスイッチ部を更に備えている。この固体撮像装置は、第1基板および第2基板を更に備えている。第1基板には、光電変換部、第1フローティングディフュージョン、第1増幅トランジスタ、第2フローティングディフュージョン、第2増幅トランジスタおよびモード切り換えスイッチ部のうち、少なくとも光電変換部が形成されている。第2基板は、第1基板に積層されている。第2基板には、光電変換部、第1フローティングディフュージョン、第1増幅トランジスタ、第2フローティングディフュージョン、第2増幅トランジスタおよびモード切り換えスイッチ部のうち、少なくとも第2増幅トランジスタが形成されている。
 本開示の第1の側面である電子機器は、入射光に応じた画素信号を出力する固体撮像装置と、画素信号を処理する信号処理回路とを備えている。この電子機器に設けられた固体撮像装置は、本開示の第1の側面である固体撮像装置と同様の構成を備えている。
 本開示の第2の側面である固体撮像装置は、光電変換部と、第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路とを備えている。この固体撮像装置は、第1モードのときには第1信号経路を光電変換部に電気的に接続するとともに第2信号経路を光電変換部から電気的に切り離し、第2モードのときには第1信号経路および第2信号経路の双方を光電変換部に電気的に接続するモード切り換えスイッチ部とを更に備えている。この固体撮像装置は、第1基板、第2基板および第3基板を更に備えている。第1基板には、光電変換部および第1フローティングディフュージョンが形成されている。第2基板は、第1基板に積層されている。第2基板には、第1増幅トランジスタ、第2フローティングディフュージョンおよびモード切り換えスイッチ部が形成されている。第3基板は、第2基板に積層されている。第3基板には、第2増幅トランジスタが形成されている。
 本開示の第2の側面である電子機器は、入射光に応じた画素信号を出力する固体撮像装置と、画素信号を処理する信号処理回路とを備えている。この電子機器に設けられた固体撮像装置は、本開示の第2の側面である固体撮像装置と同様の構成を備えている。
 本開示の第1の側面である固体撮像装置および電子機器、ならびに本開示の第2の側面である固体撮像装置および電子機器では、使用する増幅トランジスタがモードに応じて選択される。これにより、高感度を維持しつつ、ダイナミックレンジを拡大することが可能となる。また、本開示の第1の側面である固体撮像装置および電子機器、ならびに本開示の第2の側面である固体撮像装置および電子機器では、少なくとも増幅トランジスタが、光電変換部の形成された基板とは別の基板に形成される。これにより、高精細な固体撮像装置であっても、フローティングディフュージョンや増幅トランジスタを設けるのに十分なスペースを確保することが可能となる。
本開示の一実施の形態に係る固体撮像装置の概略構成の一例を表す図である。 図1のセンサ画素および読み出し回路の一例を表す図である。 図1の固体撮像装置の垂直方向の断面構成の一例を表す図である。 図1の固体撮像装置の水平方向の断面構成の一例を表す図である。 図1の固体撮像装置の水平方向の断面構成の一例を表す図である。 図4の断面構成と図5の断面構成とを互いに重ね合わせたときの構成の一例を表す図である。 図1の固体撮像装置の水平方向の断面構成の一変形例を表す図である。 図1の固体撮像装置の製造方法の一例を表す図である。 図8Aに続く製造過程を説明するための図である。 図8Bに続く製造過程を説明するための図である。 図8Cに続く製造過程を説明するための図である。 図8Dに続く製造過程を説明するための図である。 図8Eに続く製造過程を説明するための図である。 図8Fに続く製造過程を説明するための図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図4の断面構成の一変形例を表す図である。 図5の断面構成の一変形例を表す図である。 図7の断面構成の一変形例を表す図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図1のセンサ画素および読み出し回路の一変形例を表す図である。 図1の固体撮像装置の垂直方向の断面構成の一変形例を表す図である。 図1の固体撮像装置の垂直方向の断面構成の一変形例を表す図である。 複数の読み出し回路と複数の垂直信号線との接続態様の一変形例を表す図である。 図15の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 図15の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 上記実施の形態およびその変形例に係る固体撮像装置の垂直方向の断面構成の一変形例を表す図である。 図15、図21、図22、図23の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 図15、図21、図22、図23の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 図15、図21、図22、図23~図25の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 図15、図21、図22、図23~図26の構成を備えた固体撮像装置の水平方向の断面構成の一変形例を表す図である。 上記実施の形態およびその変形例に係る固体撮像装置を備えた撮像装置の回路構成の一例を表す図である。 図28の固体撮像装置を3つの基板を積層して構成した例を表す図である。 ロジック回路を、センサ画素の設けられた基板と、読み出し回路の設けられた基板とに分けて形成した例を表す図である。 ロジック回路を、第3基板に形成した例を表す図である。 上記実施の形態およびその変形例に係る固体撮像装置を備えた撮像システムの概略構成の一例を表す図である。 図32の撮像システムにおける撮像手順の一例を表す図である。 車両制御システムの概略的な構成の一例を示すブロック図である。 車外情報検出部及び撮像部の設置位置の一例を示す説明図である。 内視鏡手術システムの概略的な構成の一例を示す図である。 カメラヘッド及びCCUの機能構成の一例を示すブロック図である。
 以下、本開示の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。

1.実施の形態(固体撮像装置)…図1~図8G
2.変形例(固体撮像装置)…図9~図31
3.適用例(撮像システム)…図32、図33
4.応用例
    移動体への応用例…図34、図35
    内視鏡手術システムへの応用例…図36、図37
<1.実施の形態>
[構成]
 本開示の一実施の形態に係る固体撮像装置1について説明する。固体撮像装置1は、例えば、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等からなる裏面照射型のイメージセンサである。固体撮像装置1は、被写体からの光を受光して光電変換し、画像信号を生成することで画像を撮像する。固体撮像装置1は、入射光に応じた画素信号を出力する。
 裏面照射型のイメージセンサとは、被写体からの光が入射する受光面と、各画素を駆動させるトランジスタ等の配線が設けられた配線層との間に、被写体からの光を受光し、電気信号に変換するフォトダイオード等の光電変換部が設けられている構成のイメージセンサである。なお、本開示は、CMOSイメージセンサへの適用に限られるものではない。
 図1は、本開示の一実施の形態に係る固体撮像装置1の概略構成の一例を表したものである。固体撮像装置1は、3つの基板(第1基板10、第2基板20、第3基板30)を備えている。固体撮像装置1は、3つの基板(第1基板10、第2基板20、第3基板30)を貼り合わせて構成された3次元構造の撮像装置である。第1基板10、第2基板20および第3基板30は、この順に積層されている。
 第1基板10は、光電変換を行う複数のセンサ画素12が行列状に配置された画素領域13を有している。画素領域13は、半導体基板11上に形成されている。第2基板20は、センサ画素12から出力された電荷に基づく画素信号を出力する複数の読み出し回路22を有している。複数の読み出し回路22は、半導体基板21上に形成されており、例えば、1つのセンサ画素12ごとに1つずつ割り当てられている。第2基板20は、行方向に延在する複数の画素駆動線23と、列方向に延在する複数の垂直信号線24とを有している。第3基板30は、画素信号を処理するロジック回路32を有している。ロジック回路32は、半導体基板31上に形成されている。ロジック回路32は、例えば、垂直駆動回路33、カラム信号処理回路34、水平駆動回路35およびシステム制御回路36を有している。ロジック回路32(具体的には水平駆動回路35)は、センサ画素12ごとの出力電圧Voutを外部に出力する。
 垂直駆動回路33は、例えば、複数のセンサ画素12を行単位で順に選択する。カラム信号処理回路34は、例えば、垂直駆動回路33によって選択された行の各センサ画素12から出力される画素信号に対して、相関二重サンプリング(Correlated Double Sampling:CDS)処理を施す。カラム信号処理回路34は、例えば、CDS処理を施すことにより、画素信号の信号レベルを抽出し、各センサ画素12の受光量に応じた画素データを保持する。水平駆動回路35は、例えば、カラム信号処理回路34に保持されている画素データを順次、外部に出力する。システム制御回路36は、例えば、ロジック回路32内の各ブロック(垂直駆動回路33、カラム信号処理回路34および水平駆動回路35)の駆動を制御する。
 図2は、センサ画素12および読み出し回路22の回路構成の一例を表したものである。以下では、図2に示したように、1つのセンサ画素12に1つの読み出し回路22が割り当てられている場合について説明する。
 各センサ画素12は、例えば、フォトダイオードPDと、フォトダイオードPDと電気的に接続された転送トランジスタTRGと、転送トランジスタTRGを介してフォトダイオードPDから出力された電荷を一時的に保持する2つのフローティングディフュージョンFD1,FD2とを有している。フォトダイオードPDは、本開示の「光電変換部」の一具体例に相当する。フローティングディフュージョンFD1は、本開示の「第1フローティングディフュージョン」の一具体例に相当する。フローティングディフュージョンFD2は、本開示の「第2フローティングディフュージョン」の一具体例に相当する。
 フォトダイオードPDは、光電変換を行って受光量に応じた電荷を発生する。フォトダイオードPDのカソードが転送トランジスタTRGのソースに電気的に接続されており、フォトダイオードPDのアノードが基準電位線(例えばグラウンドGND)に電気的に接続されている。転送トランジスタTRGのドレインがフローティングディフュージョンFD1に電気的に接続され、転送トランジスタTRGのゲートは画素駆動線23に電気的に接続されている。転送トランジスタTRは、例えば、NMOS(Metal Oxide Semiconductor)トランジスタである。
 各センサ画素12は、例えば、2つのフローティングディフュージョンFD1,FD2を切り替える切り換えトランジスタFDGを更に有している。切り換えトランジスタFDGは、本開示の「モード切り換えスイッチ部」の一具体例に相当する。切り換えトランジスタFDGは、例えば、NMOSトランジスタである。切り換えトランジスタFDGのソースがフローティングディフュージョンFD1となっており、転送トランジスタTRGのドレインに電気的に接続されている。切り換えトランジスタFDGのドレインがフローティングディフュージョンFD2となっており、後述のリセットトランジスタRSTのソースに電気的に接続されている。
 読み出し回路22は、例えば、リセットトランジスタRSTと、2つの増幅トランジスタAMP1,AMP2と、2つの選択トランジスタSEL1,SELとを有している。増幅トランジスタAMP1は、本開示の「第1増幅トランジスタ」の一具体例に相当する。増幅トランジスタAMP2は、本開示の「第2増幅トランジスタ」の一具体例に相当する。リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2は、例えば、NMOSトランジスタである。
 リセットトランジスタRSTのソース(読み出し回路22の入力端)がフローティングディフュージョンFD2に電気的に接続されており、リセットトランジスタRSTのドレインが電源線VDDおよび2つの増幅トランジスタAMP1,AMP2のドレインに電気的に接続されている。リセットトランジスタRSTのゲートは画素駆動線23(図1参照)に電気的に接続されている。増幅トランジスタAMP1のソースが選択トランジスタSEL1のドレインに電気的に接続されており、増幅トランジスタAMP1のゲートがフローティングディフュージョンFD1に電気的に接続されている。選択トランジスタSEL1のソース(読み出し回路22の出力端)が垂直信号線24に電気的に接続されており、選択トランジスタSEL1のゲートが画素駆動線23(図1参照)に電気的に接続されている。増幅トランジスタAMP2のソースが選択トランジスタSEL2のドレインに電気的に接続されており、増幅トランジスタAMP2のゲートがフローティングディフュージョンFD2に電気的に接続されている。選択トランジスタSEL2のソース(読み出し回路22の出力端)が垂直信号線24に電気的に接続されており、選択トランジスタSEL2のゲートが画素駆動線23(図1参照)に電気的に接続されている。
 読み出し回路22は、フローティングディフュージョンFD1および増幅トランジスタAMP1を含む信号経路P1と、フローティングディフュージョンFD2および増幅トランジスタAMP2を含む信号経路P2とを有している。信号経路P1は、本開示の「第1信号経路」の一具体例に相当する。信号経路P2は、本開示の「第2信号経路」の一具体例に相当する。信号経路P1,P2では、それぞれの一端が垂直信号線24に電気的に接続されており、信号経路P1の他端がフローティングディフュージョンFD1に電気的に接続されており、信号経路P2の他端がフローティングディフュージョンFD2に電気的に接続されている。従って、信号経路P1,P2は、切り換えトランジスタFDGがオンしている時、互いに並列に接続される。また、切り換えトランジスタFDGのオンオフに拘わらず、信号経路P1は、転送トランジスタTRGに電気的に接続されている。一方の信号経路P2は、切り換えトランジスタFDGがオンしている時は、転送トランジスタTRGに電気的に接続されるが、切り換えトランジスタFDGがオフしている時は、転送トランジスタTRGとは電気的に分離される。つまり、切り換えトランジスタFDGがオフしている時は、信号経路P2には電流は流れない。
 転送トランジスタTRGは、転送トランジスタTRGがオン状態となると、フォトダイオードPDの電荷をフローティングディフュージョンFD1またはフローティングディフュージョンFD2に転送する。転送トランジスタTRGのゲート(転送ゲートTG)は、例えば、図3に示したように、半導体基板11の上面からウェル層42を貫通してPD41に達する深さまで延在している。
 リセットトランジスタRSTは、フローティングディフュージョンFD1,FD2の電位を所定の電位にリセットする。リセットトランジスタRSTがオン状態となると、フローティングディフュージョンFD1,FD2の電位を電源線VDDの電位にリセットする。選択トランジスタSEL1,SEL2は、読み出し回路22からの画素信号の出力タイミングを制御する。
 増幅トランジスタAMP1は、画素信号として、フローティングディフュージョンFD1に保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMP2は、画素信号として、フローティングディフュージョンFD2に保持された電荷のレベルに応じた電圧の信号を生成する。増幅トランジスタAMP1,AMP2は、ソースフォロア型のアンプを構成しており、フォトダイオードPDで発生した電荷のレベルに応じた電圧の画素信号を出力するものである。増幅トランジスタAMP1は、選択トランジスタSEL1がオン状態となると、フローティングディフュージョンFD1の電位を増幅して、その電位に応じた電圧を、垂直信号線24を介してカラム信号処理回路34に出力する。増幅トランジスタAMP2は、選択トランジスタSEL2がオン状態となると、フローティングディフュージョンFD2の電位を増幅して、その電位に応じた電圧を、垂直信号線24を介してカラム信号処理回路34に出力する。
 切り換えトランジスタFDGは、変換効率を切り替える際に用いられる。一般に、暗い場所での撮影時には画素信号が小さい。Q=CVに基づき、電荷電圧変換を行う際に、フローティングディフュージョンFD1の容量(FD容量C)が大きければ、増幅トランジスタで電圧に変換した際のVが小さくなってしまう。一方、明るい場所では、画素信号が大きくなるので、FD容量Cが大きくなければ、フローティングディフュージョンFD1で、フォトダイオードPDの電荷を受けきれない。さらに、増幅トランジスタで電圧に変換した際のVが大きくなりすぎないように(言い換えると、小さくなるように)、FD容量Cが大きくなっている必要がある。これらを踏まえると、切り換えトランジスタFDGをオンにしたときには、切り換えトランジスタFDG分のゲート容量が増えるので、全体のFD容量Cが大きくなる。一方、切り換えトランジスタFDGをオフにしたときには、全体のFD容量Cが小さくなる。このように、切り換えトランジスタFDGをオンオフ切り替えることで、FD容量Cを可変にし、変換効率を切り替えることができる。
 切り換えトランジスタFDGは、高感度低照度モード(第1モード)のときと、低感度高照度モード(第2モード)のときとで、FD容量Cを切り替える。具体的には、切り換えトランジスタFDGは、第1モードのときには、オフ状態となり、FD容量Cを相対的に小さくし、第2モードのときには、オン状態となり、FD容量Cを相対的に大きくする。切り換えトランジスタFDG、リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2は、例えば、NMOSトランジスタである。切り換えトランジスタFDGは、垂直駆動回路33の制御によって、第1モードのときには、信号経路P1をフォトダイオードPDに電気的に接続するとともに信号経路P2をフォトダイオードPDから電気的に切り離し、第2モードのときには、信号経路P1および信号経路P2の双方をフォトダイオードPDに電気的に接続する。具体的には、切り換えトランジスタFDGは、第1モードのときにはオフ状態となり、第2モードのときにはオン状態となる。
 図3は、固体撮像装置1の垂直方向の断面構成の一例を表したものである。図3には、固体撮像装置1において、センサ画素12と対向する箇所の断面構成が例示されている。固体撮像装置1は、第1基板10、第2基板20および第3基板30をこの順に積層して構成されており、さらに、第1基板10の裏面側に、カラーフィルタ40および受光レンズ50を備えている。カラーフィルタ40および受光レンズ50は、それぞれ、例えば、センサ画素12ごとに1つずつ設けられている。つまり、固体撮像装置1は、裏面照射側の撮像装置である。
 第1基板10は、半導体基板11上に絶縁層46を積層して構成されている。第1基板10は、層間絶縁膜51の一部として、絶縁層46を有している。絶縁層46は、半導体基板11と、半導体基板21との間隙に設けられている。半導体基板11は、シリコン基板で構成されている。半導体基板11は、例えば、上面の一部およびその近傍に、pウェル層42を有しており、それ以外の領域(pウェル層42よりも深い領域)に、pウェル層42とは異なる導電型のPD41を有している。pウェル層42の導電型は、例えば、p型となっている。PD41の導電型は、pウェル層42とは異なる導電型となっており、例えば、n型となっている。半導体基板11は、pウェル層42内に、pウェル層42とは異なる導電型のフローティングディフュージョンFD1,FD2を有している。
 第1基板10は、フォトダイオードPD、転送トランジスタTRG、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2をセンサ画素12ごとに有している。第1基板10は、半導体基板11の上面に、フォトダイオードPD、転送トランジスタTR、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2が設けられた構成となっている。第1基板10は、各センサ画素12を分離する素子分離部43を有している。素子分離部43は、半導体基板11の法線方向(厚さ方向)に延在して形成されている。素子分離部43は、互いに隣接する2つのセンサ画素12の間に設けられている。素子分離部43は、互いに隣接するセンサ画素12同士を電気的に分離する。素子分離部43は、例えば、酸化シリコンによって構成されている。素子分離部43は、例えば、半導体基板11を貫通している。
 第1基板10は、例えば、さらに、素子分離部43の側面であって、かつ、フォトダイオードPD側の面に接するpウェル層44を有している。pウェル層44の導電型は、フォトダイオードPDとは異なる導電型となっており、例えば、p型となっている。第1基板10は、例えば、さらに、半導体基板11の裏面に接する固定電荷膜45を有している。固定電荷膜45は、半導体基板11の受光面側の界面準位に起因する暗電流の発生を抑制するため、負の固定電荷を有している。固定電荷膜45は、例えば、負の固定電荷を有する絶縁膜によって形成されている。そのような絶縁膜の材料としては、例えば、酸化ハフニウム、酸化ジルコン、酸化アルミニウム、酸化チタンまたは酸化タンタルが挙げられる。固定電荷膜45が誘起する電界により、半導体基板11の受光面側の界面にホール蓄積層が形成される。このホール蓄積層によって、界面からの電子の発生が抑制される。カラーフィルタ40は、半導体基板11の裏面側に設けられている。カラーフィルタ40は、例えば、固定電荷膜45に接して設けられており、固定電荷膜45を介してセンサ画素12と対向する位置に設けられている。受光レンズ50は、例えば、カラーフィルタ40に接して設けられており、カラーフィルタ40および固定電荷膜45を介してセンサ画素12と対向する位置に設けられている。
 第2基板20は、半導体基板21上に絶縁層52を積層して構成されている。第2基板20は、層間絶縁膜51の一部として、絶縁層52を有している。絶縁層52は、半導体基板21と、半導体基板31との間隙に設けられている。半導体基板21は、シリコン基板で構成されている。第2基板20は、例えば、1のセンサ画素12ごとに、1つの読み出し回路22を有している。第2基板20は、半導体基板21の上面に読み出し回路22が設けられた構成となっている。第2基板20は、半導体基板11の上面側に半導体基板21の裏面を向けて第1基板10に貼り合わされている。つまり、第2基板20は、第1基板10に、フェイストゥーバックで貼り合わされている。第2基板20は、さらに、半導体基板21と同一の層内に、半導体基板21を貫通する絶縁層53を有している。第2基板20は、層間絶縁膜51の一部として、絶縁層53を有している。絶縁層53は、後述の貫通配線54の側面を覆うように設けられている。
 第1基板10および第2基板20からなる積層体は、層間絶縁膜51と、層間絶縁膜51内に設けられた複数の貫通配線54を有している。複数の貫通配線54は、半導体基板21の法線方向に延びており、層間絶縁膜51のうち、絶縁層53を含む箇所を貫通して設けられている。第1基板10および第2基板20は、複数の貫通配線54によって互いに電気的に接続されている。例えば、2つの貫通配線54は、フローティングディフュージョンFD1,FD2および後述の接続配線55に電気的に接続されている。
 第2基板20は、例えば、絶縁層52内に、読み出し回路22や半導体基板21と電気的に接続された複数の接続部59を有している。第2基板20は、さらに、例えば、絶縁層52上に配線層56を有している。配線層56は、例えば、絶縁層57と、絶縁層57内に設けられた複数の画素駆動線23および複数の垂直信号線24を有している。配線層56は、さらに、例えば、絶縁層57内に複数の接続配線55を有している。複数の接続配線55は、フローティングディフュージョンFD1,FD2に電気的に接続された各貫通配線54と、読み出し回路22とに電気的に接続されている。例えば、フローティングディフュージョンFD1と増幅トランジスタAMP1のゲートとが接続配線55および貫通配線54によって電気的に接続されている。また、例えば、フローティングディフュージョンFD2と増幅トランジスタAMP2のゲートとが接続配線55および貫通配線54によって電気的に接続されている。
 配線層56は、さらに、例えば、絶縁層57内に複数のパッド電極58を有している。各パッド電極58は、例えば、Cu(銅)で形成されている。各パッド電極58は、配線層56の上面に露出している。各パッド電極58は、第2基板20と第3基板30との電気的な接続と、第2基板20と第3基板30との貼り合わせに用いられる。複数のパッド電極58は、例えば、画素駆動線23および垂直信号線24ごとに1つずつ設けられている。
 第3基板30は、例えば、半導体基板31上に層間絶縁膜61を積層して構成されている。第3基板30は、第2基板20に、フェイストゥーフェイスで貼り合わされている。そのため、第3基板30内の構成について説明する際には、上下の説明が、図面での上下方向とは逆となっている。半導体基板31は、シリコン基板で構成されている。第3基板30は、半導体基板31の上面にロジック回路32が設けられた構成となっている。第3基板30は、さらに、例えば、層間絶縁膜61上に配線層62を有している。配線層62は、例えば、絶縁層63と、絶縁層63内に設けられた複数のパッド電極64を有している。複数のパッド電極64は、ロジック回路32と電気的に接続されている。各パッド電極64は、例えば、Cu(銅)で形成されている。各パッド電極64は、配線層62の上面に露出している。各パッド電極64は、第2基板20と第3基板30との電気的な接続と、第2基板20と第3基板30との貼り合わせに用いられる。第2基板20および第3基板30は、パッド電極58,64同士の接合によって、互いに電気的に接続されている。つまり、転送トランジスタTRGのゲート(転送ゲートTG)は、例えば、貫通配線54と、接続配線55と、接続部59と、パッド電極58,64とを介して、ロジック回路32に電気的に接続されている。第3基板30は、半導体基板21の上面側に半導体基板31の上面を向けて第2基板20に貼り合わされている。つまり、第3基板30は、第2基板20に、フェイストゥーフェイスで貼り合わされている。
 第1基板10と第2基板20とは、貫通配線54によって互いに電気的に接続されている。また、第2基板20と第3基板30とは、パッド電極58,64同士の接合によって互いに電気的に接続されている。ここで、貫通配線54の幅は、パッド電極58,64同士の接合箇所の幅よりも狭くなっている。つまり、貫通配線54の断面積は、パッド電極58,64同士の接合箇所の断面積よりも小さくなっている。従って、貫通配線54は、第1基板10内のセンサ画素12の高集積化を妨げることがない。また、読み出し回路22は第2基板20に形成され、ロジック回路32は第3基板30に形成されていることから、第2基板20と第3基板30とを互いに電気的に接続するための構造を、第1基板10と第2基板20とを互いに電気的に接続するための構造と比べて、低密度に形成することが可能である。従って、第2基板20と第3基板30とを互いに電気的に接続するための構造として、パッド電極58,64同士の接合を用いることができる。
 図4、図5は、固体撮像装置1の水平方向の断面構成の一例を表したものである。図4には、半導体基板11の上面構成の一例が示されており、図5には、半導体基板21の上面構成の一例が示されている。図6は、図4に記載の構成と、図5に記載の構成とを互いい重ね合わせた構成の一例を表したものである。半導体基板11の上面には、転送トランジスタTRG、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2が設けられている。つまり、転送トランジスタTRG、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2は、第1基板10に設けられている。一方、半導体基板21の上面には、例えば、リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2が設けられている。つまり、リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2は、第2基板20に設けられている。
 このとき、例えば、図6に示したように、図4に記載の構成と、図5に記載の構成とを互いに重ね合わせると、重なり領域αが存在する。このことから、固体撮像装置1では、転送トランジスタTRG、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2、リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2を共通の基板に設けた場合と比べて、重なり領域αの分だけ、固体撮像装置1が小型化されていることがわかる。
 ところで、増幅トランジスタAMP1,AMP2のL長b1,b2は、例えば、互いに等しい大きさとなっている。一方、増幅トランジスタAMP1,AMP2のW長については、例えば、増幅トランジスタAMP2のW長a2が、増幅トランジスタAMP1のW長a1よりも大きくなっている。増幅トランジスタAMP2のW長a2は、例えば、増幅トランジスタAMP1のW長a1の2倍、または3倍の長さとなっている。切り換えトランジスタFDGがオン状態となった時、読み出し回路22としての増幅トランジスタのW長は、増幅トランジスタAMP1のW長a1と、増幅トランジスタAMP2のW長a2との合計値となる。従って、切り換えトランジスタFDGをオンオフ切り換えることにより、読み出し回路22としての増幅トランジスタのW長を、例えば、3倍、または4倍にすることが可能となる。
 なお、図7に示したように、読み出し回路22に対して、複数の増幅トランジスタAMP2が設けられていてもよい。この場合、各増幅トランジスタAMP2のW長a2が、増幅トランジスタAMP1のW長a1と等しくなっていてもよいし、増幅トランジスタAMP1のW長a1よりも大きくなっていてもよい。
[製造方法]
 次に、固体撮像装置1の製造方法について説明する。図8A~図8Gは、固体撮像装置1の製造過程の一例を表したものである。
 まず、半導体基板11に、pウェル層42や、素子分離部43、pウェル層44を形成する。次に、半導体基板11に、フォトダイオードPD、転送トランジスタTRG、切り換えトランジスタFDGおよびフローティングディフュージョンFD1,FD2を形成する(図8A)。これにより、半導体基板11に、センサ画素12が形成される。このとき、センサ画素12に用いる電極材料として、サリサイドプロセスによるCoSi2やNiSiなどの耐熱性の低い材料を用いないことが好ましい。むしろ、センサ画素12に用いる電極材料としては、耐熱性の高い材料を用いることが好ましい。耐熱性の高い材料としては、例えば、ポリシリコンが挙げられる。その後、半導体基板11上に、絶縁層46を形成する(図8A)。このようにして、第1基板10が形成される。
 次に、第1基板10(絶縁層46)上に、半導体基板21を貼り合わせる(図8B)。このとき、必要に応じて、半導体基板21を薄肉化する。この際、半導体基板21の厚さを、読み出し回路22の形成に必要な膜厚にする。半導体基板21の厚さは、一般的には数百nm程度である。しかし、読み出し回路22のコンセプトによっては、FD(Fully Depletion)型も可能であるので、その場合には、半導体基板21の厚さとしては、数n
m~数μmの範囲を採り得る。
 次に、半導体基板21と同一の層内に、絶縁層53を形成する(図8C)。絶縁層53を、例えば、フローティングディフュージョンFD1、FD2と対向する箇所に形成する。例えば、半導体基板21に対して、半導体基板21を貫通するスリットを形成して、半導体基板21を複数のブロックに分離する。その後、スリットを埋め込むように、絶縁層53を形成する。その後、半導体基板21の各ブロックに、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2などを含む読み出し回路22を形成する(図8D)。このとき、センサ画素12の電極材料として、耐熱性の高い金属材料が用いられている場合には、読み出し回路22のゲート絶縁膜を、熱酸化により形成することが可能である。また、読み出し回路22に含まれる各トランジスタの電極が、シリサイドを含んで構成されていてもよい。読み出し回路22は、センサ画素12を形成した後に形成される。そのため、耐熱性の低いシリサイドを、読み出し回路22に含まれる各トランジスタのソース電極およびドレイン電極と接する不純物拡散領域の表面に用いることができる。
 次に、半導体基板21上に絶縁層52を形成する。このようにして、絶縁層46,52,53からなる層間絶縁膜51を形成する。続いて、層間絶縁膜51に貫通孔51A,51B,51C,51Dを形成する(図8E)。具体的には、層間絶縁膜51の一部である絶縁層52のうち、読み出し回路22(例えば、増幅トランジスタAMP1,AMP2)と対向する箇所に、絶縁層52を貫通する貫通孔51C,51Dを形成する。また、層間絶縁膜51のうち、フローティングディフュージョンFD1,FD2と対向する箇所(つまり、絶縁層53と対向する箇所)に、層間絶縁膜51を貫通する貫通孔51A,51Bを形成する。
 次に、貫通孔51A,51B,51C,51Dに導電性材料を埋め込むことにより、貫通孔51A,51B内に貫通配線54を形成するとともに、貫通孔51C,51D内に接続部59を形成する(図8F)。さらに、絶縁層52上に、貫通配線54と接続部59とを互いに電気的に接続する接続配線55を形成する(図8F)。その後、パッド電極58を含む配線層56を、絶縁層52上に形成する。このようにして、第2基板20が形成される。
 次に、第2基板20を、半導体基板31の上面側に半導体基板21の上面を向けて、ロジック回路32や配線層62が形成された第3基板30に貼り合わせる(図8G)。このとき、第2基板20のパッド電極58と、第3基板30のパッド電極64とを互いに接合することにより、第2基板20と第3基板30とを互いに電気的に接続する。このようにして、固体撮像装置1が製造される。
[効果]
 次に、本実施の形態に係る固体撮像装置1の効果について説明する。
 CMOSイメージセンサでは、低照度時にも撮像信号を取得することができるように、感度は高い方が望ましい。また、ダイナミックレンジを大きくするためには、フォトダイオードは飽和しにくい方が望ましい。しかしながら、感度が高いことと、フォトダイオードが飽和しにくいことはトレードオフの関係にあり、高感度を維持しつつ、ダイナミックレンジを拡大することは難しい。そこで、例えば、上記特許文献1では、小容量のフローティングディフュージョンと、大容量のフローティングディフュージョンを設け、低照度時には小容量のフローティングディフュージョンをフォトダイオードに接続し、高照度時には大容量のフローティングディフュージョンを接続することが開示されている。しかし、特許文献1に記載の発明を、高精細な用途に適用した場合、2つのフローティングディフュージョンを設けるのに十分なスペースを確保することが難しいという問題がある。
 一方、本実施の形態では、使用する増幅トランジスタAMP1,AMP2がモードに応じて選択される。これにより、高感度を維持しつつ、ダイナミックレンジを拡大することが可能となる。また、本実施の形態では、少なくとも増幅トランジスタAMP1,AMP2が、フォトダイオードPDの形成された第1基板10とは別の第2基板20に形成される。具体的には、フォトダイオードPD、転送トランジスタTRG、フローティングディフュージョンFD1,FD2、切り換えトランジスタFDGが第1基板10に形成され、リセットトランジスタRST、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2が第2基板20に形成される。これにより、これにより、固体撮像装置1が高精細であったとしても、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
 また、本実施の形態において、読み出し回路22に含まれる各トランジスタの電極がシリサイドを含んで構成されている場合には、読み出し回路22に含まれる各トランジスタの寄生抵抗を低減することができ、その結果、低ノイズ化を図ることができる。
 なお、本実施の形態において、垂直駆動回路33は、システム制御回路36による制御によって、切り換えトランジスタFDGによる切り換えによって変換する、増幅トランジスタAMP1,AMP2のサイズの大きさに応じて、駆動電流を変化させてもよい。このようにした場合には、単位増幅トランジスタ当りの駆動する電流の低下を防ぐことができ、ノイズ特性劣化の抑制が可能となる。
<2.変形例>
 以下に、上記実施の形態に係る固体撮像装置1の変形例について説明する。
[[変形例A]]
 図9は、上記実施の形態に係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、第1基板10には、フォトダイオードPD、転送トランジスタTRG、フローティングディフュージョンFD1,FD2、切り換えトランジスタFDG、増幅トランジスタAMP1および選択トランジスタSEL1が形成される。一方、第2基板20には、リセットトランジスタRST、増幅トランジスタAMP2および選択トランジスタSEL2が形成される。このようにした場合であっても、上記実施の形態と同様、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
 図10は、図9に記載の構成を備えた固体撮像装置1における半導体基板11の上面構成の一例を表したものである。図11、図12は、図9に記載の構成を備えた固体撮像装置1における半導体基板21の上面構成の一例を表したものである。本変形例では、フォトダイオードPD、転送トランジスタTRG、フローティングディフュージョンFD1,FD2、切り換えトランジスタFDG、増幅トランジスタAMP1および選択トランジスタSEL1を、例えば、図10に示したように、小さな面積に収めることが可能である。同様に、リセットトランジスタRST、増幅トランジスタAMP2および選択トランジスタSEL2を、例えば、図11、図12に示したように、小さな面積に収めることが可能である。このように、占有面積を小さくした場合には、固体撮像装置1を小型化することができる。
[[変形例B]]
 図13は、上記実施の形態に係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、2つのセンサ画素12(12A,12B)が1つの読み出し回路22を共有している。ここで、「共有」とは、2つのセンサ画素12(12A,12B)の出力が共通の読み出し回路22に入力されることを指している。このようにした場合には、半導体基板21のうち、2つのセンサ画素12と対向する領域に1つの読み出し回路22が形成されることになる。従って、上記実施の形態と比べて、1つの読み出し回路22の形成面積を2倍に拡大することができるので、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例C]]
 図14は、上記変形例Bに係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、第1基板10には、フォトダイオードPDおよび転送トランジスタTRGが形成される。一方、第2基板20には、フローティングディフュージョンFD1,FD2、2つの切り換えトランジスタFDG、増幅トランジスタAMP1,AMP2および選択トランジスタSEL1,SEL2が形成される。このようにした場合であっても、上記変形例Bと同様、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例D]]
 図15は、上記変形例Bに係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、4つのセンサ画素12(12A,12B,12C,12D)が1つの読み出し回路22を共有している。このようにした場合には、第2基板20のうち、4つのセンサ画素12と対向する領域に1つの読み出し回路22が形成されることになる。従って、上記実施の形態と比べて、1つの読み出し回路22の形成面積を4倍に拡大することができるので、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例E]]
 図16は、上記変形例Cに係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、4つのセンサ画素12(12A,12B,12C,12D)が1つの読み出し回路22を共有している。このようにした場合には、第2基板20のうち、4つのセンサ画素12と対向する領域に1つの読み出し回路22が形成されることになる。従って、上記実施の形態と比べて、1つの読み出し回路22の形成面積を4倍に拡大することができるので、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例F]]
 図17は、上記実施の形態に係る固体撮像装置1のセンサ画素12および読み出し回路22の回路構成の一変形例を表したものである。本変形例では、切り換えトランジスタFDGが設けられていた箇所に、切り換えトランジスタFDGと同一構成の切り換えトランジスタFDGaが設けられ、さらに、フローティングディフュージョンFD1と増幅トランジスタAMP1のゲートとをつなぐ配線の途中に、切り換えトランジスタFDGbが設けられている。切り換えトランジスタFDGa,FDGbは、例えば、NMOSトランジスタである。
 本変形例においても、高感度低照度モード(第1モード)のときと、低感度高照度モード(第2モード)のときとで、FD容量Cを切り替える。具体的には、垂直駆動回路33は、システム制御回路36の制御によって、第1モードのときには、信号経路P1をフォトダイオードPDに電気的に接続するとともに信号経路P2をフォトダイオードPDから電気的に切り離す。垂直駆動回路33は、システム制御回路36の制御によって、第2モードのときには、信号経路P1および信号経路P2の双方をフォトダイオードPDに電気的に接続する。垂直駆動回路33は、例えば、第1モードのときには、切り換えトランジスタFDGaをオフ状態とするとともに、切り換えトランジスタFDGbをオン状態とする。垂直駆動回路33は、さらに、例えば、第2モードのときには、切り換えトランジスタFDGaをオン状態とするとともに、切り換えトランジスタFDGbもオン状態とする。このようにすることにより、上記実施の形態と同様、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
 本変形例において、2つのセンサ画素12が1つの読み出し回路22を共有していてもよい。また、本変形例において、4つのセンサ画素12が1つの読み出し回路22を共有していてもよい。このようにした場合には、上記変形例B~Eと同様、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例G]]
 図18は、上記実施の形態およびその変形例に係る固体撮像装置1の断面構成の一変形例を表したものである。本変形例では、1つの受光レンズ50に対して2つのフォトダイオードPDが設けられており、これら2つのフォトダイオードPDは、素子分離部43によって互いに分離されている。以下では、1つの受光レンズ50に対応して設けられた2つのフォトダイオードPDを、フォトダイオードPDa,PDbと称する。
 本変形例では、フローティングディフュージョンFD1がフォトダイオードPDa,PDbごとに1つずつ設けられる。一方で、切り換えトランジスタFDGはフォトダイオードPDa,PDbに対して1つ、割り当てられる。そのため、フォトダイオードPDaに対して設けられたフローティングディフュージョンFD1と、フォトダイオードPDbに対して設けられたフローティングディフュージョンFD1とが、絶縁層46内に設けられた接続配線49で電気的に接続される。
 また、本変形例では、第1基板10には、フォトダイオードPDa,PDb、2つの転送トランジスタTRG、2つのフローティングディフュージョンFD1、1つのフローティングディフュージョンFD2、切り換えトランジスタFDG、増幅トランジスタAMP1および選択トランジスタSEL1が形成される。一方、第2基板20には、リセットトランジスタRST、増幅トランジスタAMP2および選択トランジスタSEL2が形成される。このようにした場合であっても、上記実施の形態と同様、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
[[変形例H]]
 図19は、上記変形例Gに係る固体撮像装置1の断面構成の一変形例を表したものである。本変形例では、フローティングディフュージョンFD1がフォトダイオードPDa,PDbごとに1つずつ設けられる。一方で、切り換えトランジスタFDGはフォトダイオードPDa,PDbに対して1つ、割り当てられる。そのため、フォトダイオードPDaに対して設けられたフローティングディフュージョンFD1と、フォトダイオードPDbに対して設けられたフローティングディフュージョンFD1とが、絶縁層52内に設けられた接続配線55で電気的に接続される。フォトダイオードPDaに対して設けられたフローティングディフュージョンFD1およびフォトダイオードPDbに対して設けられたフローティングディフュージョンFD1は、接続配線55および貫通配線54を介して、切り換えトランジスタFDGと、増幅トランジスタAMP1のゲートとに接続されている。
 本変形例では、第2基板20は、2つの半導体基板21,26を有している。半導体基板26は、層間絶縁膜51(絶縁層52)を介して半導体基板21に積層されている。半導体基板26は、層間絶縁膜51(絶縁層52)と絶縁層57との間に設けられている。半導体基板26は、開口を有しており、その開口には、絶縁層57の一部(以下、「絶縁層28」と称する。)が設けられている。絶縁層28には、貫通配線54が貫通している。絶縁層28を貫通する貫通配線54は、接続配線55や、他の貫通配線54を介して、フローティングディフュージョンFD2と、増幅トランジスタAMP2のゲートとを互いに電気的に接続している。
 本変形例では、フォトダイオードPDa,PDbおよび2つのフローティングディフュージョンFD1が第1基板10に形成され、増幅トランジスタAMP1、フローティングディフュージョンFD2および切り換えトランジスタFDGが第2基板20の半導体基板21に形成され、増幅トランジスタAMP2が第2基板20の半導体基板26に形成される。このようにした場合であっても、上記実施の形態と同様、フローティングディフュージョンFD1,FD2や増幅トランジスタAMP1,AMP2を設けるのに十分なスペースを確保することが可能となる。その結果、高精細な用途においても、高感度および高ダイナミックレンジを両立することができる。
 本変形例において、半導体基板21,26に形成された各トランジスタの電極が、シリサイドを含んで構成されていてもよい。この場合、半導体基板21,26に形成された各トランジスタは、センサ画素12を形成した後に形成される。そのため、耐熱性の低いシリサイドを、読み出し回路22に含まれる各トランジスタのソース電極およびドレイン電極と接する不純物拡散領域の表面に用いることができる。
[[変形例I]]
 図20は、複数の読み出し回路22と、複数の垂直信号線24との接続態様の一例を表したものである。上記実施の形態およびその変形例において、複数の読み出し回路22が、垂直信号線24の延在方向(例えば列方向)に並んで配置されている場合、複数の垂直信号線24は、読み出し回路22ごとに1つずつ割り当てられていてもよい。例えば、図20に示したように、4つの読み出し回路22が、垂直信号線24の延在方向(例えば列方向)に並んで配置されている場合、4つの垂直信号線24が、読み出し回路22ごとに1つずつ割り当てられていてもよい。
[変形例J]
 図21、図22は、例えば、図15の構成を備えた固体撮像装置1の水平方向の断面構成の一変形例を表したものである。図21、図22の上側の図は、変形例Dの構成を備えた固体撮像装置1における第1基板10の断面構成の一例を表す図である。図21、図22の上側の図は、変形例Dの構成を備えた固体撮像装置1の第1基板10において、図3の断面Sec1に対応する箇所の断面構成が例示されている。なお、図21、図22の上側の断面図では、半導体基板11の表面構成の一例を表す図が重ね合わされるとともに、絶縁層46が省略されている。図21、図22の下側の図は、変形例Dの構成を備えた固体撮像装置1における第2基板20の断面構成の一例を表す図である。図21、図22の下側の図は、変形例Dの構成を備えた固体撮像装置1の第2基板20において、図3の断面Sec2に対応する箇所の断面構成が例示されている。なお、図21、図22の下側の断面図では、半導体基板21および絶縁層53の表面構成例を表す図が重ね合わされるとともに、絶縁層52が省略されている。図21には、2×2の4つのセンサ画素12を2組、第2方向Hに並べた構成が例示されている。図22には、2×2の4つのセンサ画素12を4組、第1方向Vおよび第2方向Hに並べた構成が例示されている。
 第1基板10および第2基板20からなる積層体は、層間絶縁膜51内に設けられた貫通配線67,68を有している。上記積層体は、センサ画素12ごとに、1つの貫通配線67と、1つの貫通配線68とを有している。貫通配線67,68は、それぞれ、半導体基板21の法線方向に延びており、層間絶縁膜51のうち、絶縁層53を含む箇所を貫通して設けられている。第1基板10および第2基板20は、貫通配線67,68によって互いに電気的に接続されている。具体的には、貫通配線67は、半導体基板11のpウェル層42と、第2基板20内の配線とに電気的に接続されている。貫通配線68は、転送ゲートTGおよび画素駆動線23に電気的に接続されている。図21、図22に示したように、複数の貫通配線54、複数の貫通配線68および複数の貫通配線67は、第1基板10の面内において第1方向V(図21の上下方向、図22の左右方向)に帯状に並んで配置されている。なお、図21、図22には、複数の貫通配線54、複数の貫通配線68および複数の貫通配線67が第1方向Vに2列に並んで配置されている場合が例示されている。第1方向Vは、マトリクス状の配置された複数のセンサ画素12の2つの配列方向(例えば行方向および列方向)のうち一方の配列方向(例えば列方向)と平行となっている。読み出し回路22を共有する4つのセンサ画素12において、4つのフローティングディフュージョンFDは、例えば、素子分離部43を介して互いに近接して配置されている。読み出し回路22を共有する4つのセンサ画素12において、4つの転送ゲートTGは、4つのフローティングディフュージョンFDを囲むように配置されており、例えば、4つの転送ゲートTGによって円環形状となる形状となっている。
 絶縁層53は、第1方向Vに延在する複数のブロックで構成されている。半導体基板21は、第1方向Vに延在するとともに、絶縁層53を介して第1方向Vと直交する第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、複数組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と対向する領域内にある、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、絶縁層53の左隣りのブロック21A内の増幅トランジスタAMPと、絶縁層53の右隣りのブロック21A内のリセットトランジスタRSTおよび選択トランジスタSELとによって構成されている。
[変形例K]
 図23は、上記実施の形態およびその変形例に係る固体撮像装置1の垂直方向の断面構成の一変形例を表すものである。本変形例では、第2基板20と第3基板30との電気的な接続が、第1基板10における周辺領域14と対向する領域でなされている。周辺領域14は、第1基板10の額縁領域に相当しており、画素領域13の周縁に設けられている。本変形例では、第2基板20は、周辺領域14と対向する領域に、複数のパッド電極58を有しており、第3基板30は、周辺領域14と対向する領域に、複数のパッド電極64を有している。第2基板20および第3基板30は、周辺領域14と対向する領域に設けられたパッド電極58,64同士の接合によって、互いに電気的に接続されている。
 このように、本変形例では、第2基板20および第3基板30が、周辺領域14と対向する領域に設けられたパッド電極58,64同士の接合によって、互いに電気的に接続されている。これにより、画素領域13と対向する領域で、パッド電極58,64同士を接合する場合と比べて、1画素あたりの面積の微細化を阻害するおそれを低減することができる。従って、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の固体撮像装置1を提供することができる。
[変形例L]
 図24、図25は、変形例D,J,Kに係る固体撮像装置1の水平方向の断面構成の一変形例を表すものである。図24、図25の上側の図は、変形例D,J,Kの構成を備えた固体撮像装置1における第1基板10の断面構成の一変形例を表す図である。図24、図25の上側の図は、変形例D,J,Kの構成を備えた固体撮像装置1の第1基板10において、図3の断面Sec1に対応する箇所の断面構成が例示されている。なお、図24、図25の上側の図では、半導体基板11の表面構成例を表す図が重ね合わされるとともに、絶縁層46が省略されている。図24、図25の下側の図は、変形例D,J,Kの構成を備えた固体撮像装置1における第2基板20の断面構成の一変形例を表す図である。図24、図25の下側の図は、変形例D,J,Kの構成を備えた固体撮像装置1の第2基板20において、図3の断面Sec2に対応する箇所の断面構成が例示されている。なお、図24、図25の下側の断面図では、半導体基板21および絶縁層53の表面構成例を表す図が重ね合わされるとともに、絶縁層52が省略されている。
 図24、図25に示したように、複数の貫通配線54、複数の貫通配線68および複数の貫通配線67(図中の行列状に配置された複数のドット)は、第1基板10の面内において第1方向V(図24、図25の左右方向)に帯状に並んで配置されている。なお、図24、図25には、複数の貫通配線54、複数の貫通配線68および複数の貫通配線67が第1方向Vに2列に並んで配置されている場合が例示されている。読み出し回路22を共有する4つのセンサ画素12において、4つのフローティングディフュージョンFDは、例えば、素子分離部43を介して互いに近接して配置されている。読み出し回路22を共有する4つのセンサ画素12において、4つの転送ゲートTG(TG1,TG2,TG3,TG4)は、4つのフローティングディフュージョンFDを囲むように配置されており、例えば、4つの転送ゲートTGによって円環形状となる形状となっている。
 絶縁層53は、第1方向Vに延在する複数のブロックで構成されている。半導体基板21は、第1方向Vに延在するとともに、絶縁層53を介して第1方向Vと直交する第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と正対して配置されておらず、第2方向Hにずれて配置されている。
 図24では、4つのセンサ画素12によって共有される1つの読み出し回路22は、第2基板20において、4つのセンサ画素12と対向する領域を第2方向Hにずらした領域内にある、リセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、1つのブロック21A内の増幅トランジスタAMP、リセットトランジスタRSTおよび選択トランジスタSELによって構成されている。
 図25では、4つのセンサ画素12によって共有される1つの読み出し回路22は、第2基板20において、4つのセンサ画素12と対向する領域を第2方向Hにずらした領域内にある、リセットトランジスタRST、増幅トランジスタAMP、選択トランジスタSELおよびFD転送トランジスタFDGによって構成されている。4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、1つのブロック21A内の増幅トランジスタAMP、リセットトランジスタRST、選択トランジスタSELおよびFD転送トランジスタFDGによって構成されている。
 本変形例では、4つのセンサ画素12によって共有される1つの読み出し回路22は、例えば、4つのセンサ画素12と正対して配置されておらず、4つのセンサ画素12と正対する位置から第2方向Hにずれて配置されている。このようにした場合には、配線25を短くすることができ、または、配線25を省略して、増幅トランジスタAMPのソースと、選択トランジスタSELのドレインとを共通の不純物領域で構成することもできる。その結果、読み出し回路22のサイズを小さくしたり、読み出し回路22内の他の箇所のサイズを大きくしたりすることができる。
[変形例M]
 図26は、変形例D,J,K,Lに係る固体撮像装置1の水平方向の断面構成の一変形例を表すものである。図26の上側の図は、変形例D,J,K,Lの構成を備えた固体撮像装置1における第1基板10の断面構成の一例を表す図である。図26の上側の図は、変形例D,J,K,Lの構成を備えた固体撮像装置1の第1基板10において、図3の断面Sec1に対応する箇所の断面構成が例示されている。なお、図26の上側の断面図では、半導体基板11の表面構成の一例を表す図が重ね合わされるとともに、絶縁層46が省略されている。図26の下側の図は、変形例D,J,K,Lの構成を備えた固体撮像装置1における第2基板20の断面構成の一例を表す図である。図26の下側の図は、変形例D,J,K,Lの構成を備えた固体撮像装置1の第2基板20において、図3の断面Sec2に対応する箇所の断面構成が例示されている。なお、図26の下側の断面図では、半導体基板21および絶縁層53の表面構成例を表す図が重ね合わされるとともに、絶縁層52が省略されている。図26には、2×2の4つのセンサ画素12を2組、第2方向Hに並べた構成が例示されている。
 本変形例では、半導体基板21が、絶縁層53を介して第1方向Vおよび第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、一組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。このようにした場合には、互いに隣接する読み出し回路22同士のクロストークを、絶縁層53によって抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
[変形例N]
 図27は、変形例D,J,K,L,Mに係る固体撮像装置1の水平方向の断面構成の一変形例を表すものである。図27の上側の図は、変形例D,J,K,L,Mの構成を備えた固体撮像装置1における第1基板10の断面構成の一例を表す図である。図27の上側の図は、変形例D,J,K,L,Mの構成を備えた固体撮像装置1の第1基板10において、図3の断面Sec1に対応する箇所の断面構成が例示されている。なお、図27の上側の断面図では、半導体基板11の表面構成の一例を表す図が重ね合わされるとともに、絶縁層46が省略されている。図27の下側の図は、変形例D,J,K,L,Mの構成を備えた固体撮像装置1における第2基板20の断面構成の一例を表す図である。図27の下側の図は、変形例D,J,K,L,Mの構成を備えた固体撮像装置1の第2基板20において、図3の断面Sec2に対応する箇所の断面構成が例示されている。なお、図27の下側の断面図では、半導体基板21および絶縁層53の表面構成例を表す図が重ね合わされるとともに、絶縁層52が省略されている。図27には、2×2の4つのセンサ画素12を2組、第2方向Hに並べた構成が例示されている。
 本変形例では、4つのセンサ画素12によって共有される1つの読み出し回路22が、例えば、4つのセンサ画素12と正対して配置されておらず、第1方向Vにずれて配置されている。本変形例では、さらに、変形例Fと同様、半導体基板21が、絶縁層53を介して第1方向Vおよび第2方向Hに並んで配置された複数の島状のブロック21Aで構成されている。各ブロック21Aには、例えば、一組のリセットトランジスタRST、増幅トランジスタAMPおよび選択トランジスタSELが設けられている。本変形例では、さらに、複数の貫通配線67および複数の貫通配線54が、第2方向Hにも配列されている。具体的には、複数の貫通配線67が、ある読み出し回路22を共有する4つの貫通配線54と、その読み出し回路22の第2方向Hに隣接する他の読み出し回路22を共有する4つの貫通配線54との間に配置されている。このようにした場合には、互いに隣接する読み出し回路22同士のクロストークを、絶縁層53および貫通配線67によって抑制することができ、再生画像上での解像度低下や混色による画質劣化を抑制することができる。
[変形例O]
 図28は、上記実施の形態およびその変形例に係る固体撮像装置1の回路構成の一例を表したものである。本変形例に係る固体撮像装置1は、列並列ADC搭載のCMOSイメージセンサである。
 図28に示すように、本変形例に係る固体撮像装置1は、光電変換素子を含む複数のセンサ画素12が行列状(マトリックス状)に2次元配置されてなる画素領域13に加えて、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38、水平駆動回路35、水平出力線37およびシステム制御回路36を有する構成となっている。
 このシステム構成において、システム制御回路36は、マスタークロックMCKに基づいて、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38および水平駆動回路35などの動作の基準となるクロック信号や制御信号などを生成し、垂直駆動回路33、カラム信号処理回路34、参照電圧供給部38および水平駆動回路35などに対して与える。
 また、垂直駆動回路33は、画素領域13の各センサ画素12とともに、第1基板10形成されており、さらに、読み出し回路22の形成されている第2基板20にも形成される。カラム信号処理回路34、参照電圧供給部38、水平駆動回路35、水平出力線37およびシステム制御回路36は、第3基板30に形成される。
 センサ画素12としては、ここでは図示を省略するが、例えば、フォトダイオードPDの他に、フォトダイオードPDで光電変換して得られる電荷をフローティングディフュージョンFDに転送する転送トランジスタTRとを有する構成のものを用いることができる。また、読み出し回路22としては、ここでは図示を省略するが、例えば、フローティングディフュージョンFDの電位を制御するリセットトランジスタRSTと、フローティングディフュージョンFDの電位に応じた信号を出力する増幅トランジスタAMPと、画素選択を行うための選択トランジスタSELとを有する3トランジスタ構成のものを用いることができる。
 画素領域13には、センサ画素12が2次元配置されるとともに、このm行n列の画素配置に対して行毎に画素駆動線23が配線され、列毎に垂直信号線24が配線されている。複数の画素駆動線23の各一端は、垂直駆動回路33の各行に対応した各出力端に接続されている。垂直駆動回路33は、シフトレジスタなどによって構成され、複数の画素駆動線23を介して画素領域13の行アドレスや行走査の制御を行う。
 カラム信号処理回路34は、例えば、画素領域13の画素列毎、即ち垂直信号線24毎に設けられたADC(アナログ-デジタル変換回路)34-1~34-mを有し、画素領域13の各センサ画素12から列毎に出力されるアナログ信号をデジタル信号に変換して出力する。
 参照電圧供給部38は、時間が経過するにつれてレベルが傾斜状に変化する、いわゆるランプ(RAMP)波形の参照電圧Vrefを生成する手段として、例えばDAC(デジタル-アナログ変換回路)38Aを有している。なお、ランプ波形の参照電圧Vrefを生成する手段としては、DAC38Aに限られるものではない。
 DAC38Aは、システム制御回路36から与えられる制御信号CS1による制御の下に、当該システム制御回路36から与えられるクロックCKに基づいてランプ波形の参照電圧Vrefを生成してカラム信号処理回路34のADC34-1~34-mに対して供給する。
 なお、ADC34-1~34-mの各々は、センサ画素12全ての情報を読み出すプログレッシブ走査方式での通常フレームレートモードと、通常フレームレートモード時に比べて、センサ画素12の露光時間を1/Nに設定してフレームレートをN倍、例えば2倍に上げる高速フレームレートモードとの各動作モードに対応したAD変換動作を選択的に行い得る構成となっている。この動作モードの切り替えは、システム制御回路36から与えられる制御信号CS2,CS3による制御によって実行される。また、システム制御回路36に対しては、外部のシステムコントローラ(図示せず)から、通常フレームレートモードと高速フレームレートモードの各動作モードとを切り替えるための指示情報が与えられる。
 ADC34-1~34-mは全て同じ構成となっており、ここでは、ADC34-mを例に挙げて説明するものとする。ADC34-mは、比較器34A、計数手段である例えばアップ/ダウンカウンタ(図中、U/DCNTと記している)34B、転送スイッチ34Cおよびメモリ装置34Dを有する構成となっている。
 比較器34Aは、画素領域13のn列目の各センサ画素12から出力される信号に応じた垂直信号線24の信号電圧Vxと、参照電圧供給部38から供給されるランプ波形の参照電圧Vrefとを比較し、例えば、参照電圧Vrefが信号電圧Vxよりも大なるときに出力Vcoが“H”レベルになり、参照電圧Vrefが信号電圧Vx以下のときに出力Vcoが“L”レベルになる。
 アップ/ダウンカウンタ34Bは非同期カウンタであり、システム制御回路36から与えられる制御信号CS2による制御の下に、システム制御回路36からクロックCKがDAC18Aと同時に与えられ、当該クロックCKに同期してダウン(DOWN)カウントまたはアップ(UP)カウントを行うことにより、比較器34Aでの比較動作の開始から比較動作の終了までの比較期間を計測する。
 具体的には、通常フレームレートモードでは、1つのセンサ画素12からの信号の読み出し動作において、1回目の読み出し動作時にダウンカウントを行うことにより1回目の読み出し時の比較時間を計測し、2回目の読み出し動作時にアップカウントを行うことにより2回目の読み出し時の比較時間を計測する。
 一方、高速フレームレートモードでは、ある行のセンサ画素12についてのカウント結果をそのまま保持しておき、引き続き、次の行のセンサ画素12について、前回のカウント結果から1回目の読み出し動作時にダウンカウントを行うことで1回目の読み出し時の比較時間を計測し、2回目の読み出し動作時にアップカウントを行うことで2回目の読み出し時の比較時間を計測する。
 転送スイッチ34Cは、システム制御回路36から与えられる制御信号CS3による制御の下に、通常フレームレートモードでは、ある行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオン(閉)状態となって当該アップ/ダウンカウンタ34Bのカウント結果をメモリ装置34Dに転送する。
 一方、例えばN=2の高速フレームレートでは、ある行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオフ(開)状態のままであり、引き続き、次の行のセンサ画素12についてのアップ/ダウンカウンタ34Bのカウント動作が完了した時点でオン状態となって当該アップ/ダウンカウンタ34Bの垂直2画素分についてのカウント結果をメモリ装置34Dに転送する。
 このようにして、画素領域13の各センサ画素12から垂直信号線24を経由して列毎に供給されるアナログ信号が、ADC34-1~34-mにおける比較器34Aおよびアップ/ダウンカウンタ34Bの各動作により、Nビットのデジタル信号に変換されてメモリ装置34Dに格納される。
 水平駆動回路35は、シフトレジスタなどによって構成され、カラム信号処理回路34におけるADC34-1~34-mの列アドレスや列走査の制御を行う。この水平駆動回路35による制御の下に、ADC34-1~34-mの各々でAD変換されたNビットのデジタル信号は順に水平出力線37に読み出され、当該水平出力線37を経由して撮像データとして出力される。
 なお、本開示には直接関連しないため特に図示しないが、水平出力線37を経由して出力される撮像データに対して各種の信号処理を施す回路等を、上記構成要素以外に設けることも可能である。
 上記構成の本変形例に係る列並列ADC搭載の固体撮像装置1では、アップ/ダウンカウンタ34Bのカウント結果を、転送スイッチ34Cを介して選択的にメモリ装置34Dに転送することができるため、アップ/ダウンカウンタ34Bのカウント動作と、当該アップ/ダウンカウンタ34Bのカウント結果の水平出力線37への読み出し動作とを独立して制御することが可能である。
[変形例P]
 図29は、図28の固体撮像装置1を3つの基板(第1基板10,第2基板20,第3基板30)を積層して構成した例を表す。本変形例では、第1基板10において、中央部分に、複数のセンサ画素12を含む画素領域13が形成されており、画素領域13の周囲に垂直駆動回路33が形成されている。また、第2基板20において、中央部分に、複数の読み出し回路22を含む読み出し回路領域15が形成されており、読み出し回路領域15の周囲に垂直駆動回路33が形成されている。第3基板30において、カラム信号処理回路34、水平駆動回路35、システム制御回路36、水平出力線37および参照電圧供給部38が形成されている。これにより、上記実施の形態およびその変形例と同様、基板同士を電気的に接続する構造に起因して、チップサイズが大きくなったり、1画素あたりの面積の微細化を阻害したりしてしまうことがない。その結果、今までと同等のチップサイズで、1画素あたりの面積の微細化を阻害することのない3層構造の固体撮像装置1を提供することができる。なお、垂直駆動回路33は、第1基板10のみに形成されても、第2基板20のみに形成されてもよい。
[変形例Q]
 図30は、上記実施の形態およびその変形例に係る固体撮像装置1の断面構成の一変形例を表す。上記実施の形態およびその変形例において、第3基板30が省略されるとともに、第3基板30に設けられていたロジック回路32が、例えば、図30に示したように、第1基板10と、第2基板20とに分けて形成されていてもよい。このとき、ロジック回路32のうち、第1基板10側に設けられた回路32Aでは、高温プロセスに耐え得る材料(例えば、high-k)からなる高誘電率膜とメタルゲート電極とが積層されたゲート構造を有するトランジスタが設けられている。一方、第2基板20側に設けられた回路32Bでは、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域27が形成されている。シリサイドからなる低抵抗領域27は、半導体基板の材料と金属との化合物で形成されている。これにより、センサ画素12を形成する際に、熱酸化などの高温プロセスを用いることができる。また、ロジック回路32のうち、第2基板20側に設けられた回路32Bにおいて、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、シリサイドからなる低抵抗領域27を設けた場合には、接触抵抗を低減することができる。その結果、ロジック回路32での演算速度を高速化することができる。
 図31は、上記実施の形態およびその変形例に係る固体撮像装置1の断面構成の一変形例を表す。上記実施の形態およびその変形例に係る第3基板30に設けられたロジック回路32において、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、CoSi2やNiSiなどのサリサイド (Self Aligned Silicide)プロセスを用いて形成されたシリサイドからなる低抵抗領域39が形成されていてもよい。これにより、センサ画素12を形成する際に、熱酸化などの高温プロセスを用いることができる。また、ロジック回路32において、ソース電極およびドレイン電極と接する不純物拡散領域の表面に、シリサイドからなる低抵抗領域39を設けた場合には、接触抵抗を低減することができる。その結果、ロジック回路32での演算速度を高速化することができる。
 なお、上記実施の形態およびその変形例において、導電型が逆になっていてもよい。例えば、上記実施の形態およびその変形例の記載において、p型をn型に読み替えるとともに、n型をp型に読み替えてもよい。このようにした場合であっても、上記実施の形態およびその変形例と同様の効果を得ることができる。
 <3.適用例>
 図32は、上記実施の形態およびその変形例に係る固体撮像装置1を備えた撮像システム2の概略構成の一例を表したものである。
 撮像システム2は、例えば、デジタルスチルカメラやビデオカメラ等の固体撮像装置や、スマートフォンやタブレット型端末等の携帯端末装置などの電子機器である。撮像システム2は、例えば、上記実施の形態およびその変形例に係る固体撮像装置1、DSP回路141、フレームメモリ142、表示部143、記憶部144、操作部145および電源部146を備えている。撮像システム2において、上記実施の形態およびその変形例に係る固体撮像装置1、DSP回路141、フレームメモリ142、表示部143、記憶部144、操作部145および電源部146は、バスライン147を介して相互に接続されている。
 上記実施の形態およびその変形例に係る固体撮像装置1は、入射光に応じた画像データを出力する。DSP回路141は、上記各実施の形態およびその変形例に係る固体撮像装置1から出力される信号(画像データ)を処理する信号処理回路である。フレームメモリ142は、DSP回路141により処理された画像データを、フレーム単位で一時的に保持する。表示部143は、例えば、液晶パネルや有機EL(Electro Luminescence)パネ
ル等のパネル型表示装置からなり、上記各実施の形態およびその変形例に係る固体撮像装置1で撮像された動画又は静止画を表示する。記憶部144は、上記各実施の形態およびその変形例に係る固体撮像装置1で撮像された動画又は静止画の画像データを、半導体メモリやハードディスク等の記録媒体に記録する。操作部145は、ユーザによる操作に従い、撮像システム2が有する各種の機能についての操作指令を発する。電源部146は、上記各実施の形態およびその変形例に係る固体撮像装置1、DSP回路141、フレームメモリ142、表示部143、記憶部144および操作部145の動作電源となる各種の電源を、これら供給対象に対して適宜供給する。
 次に、撮像システム2における撮像手順について説明する。
 図33は、撮像システム2における撮像動作のフローチャートの一例を表す。ユーザは、操作部145を操作することにより撮像開始を指示する(ステップS101)。すると、操作部145は、撮像指令を固体撮像装置1に送信する(ステップS102)。固体撮像装置1(具体的にはシステム制御回路36)は、撮像指令を受けると、所定の撮像方式での撮像を実行する(ステップS103)。
 固体撮像装置1は、撮像により得られた画像データをDSP回路141に出力する。ここで、画像データとは、フローティングディフュージョンFDに一時的に保持された電荷に基づいて生成された画素信号の全画素分のデータである。DSP回路141は、固体撮像装置1から入力された画像データに基づいて所定の信号処理(例えばノイズ低減処理など)を行う(ステップS104)。DSP回路141は、所定の信号処理がなされた画像データをフレームメモリ142に保持させ、フレームメモリ142は、画像データを記憶部144に記憶させる(ステップS105)。このようにして、撮像システム2における撮像が行われる。
 本適用例では、上記各実施の形態およびその変形例に係る固体撮像装置1が撮像システム2に適用される。これにより、固体撮像装置1を小型化もしくは高精細化することができるので、小型もしくは高精細な撮像システム2を提供することができる。
 <4.応用例>
[応用例1]
 本開示に係る技術(本技術)は、様々な製品へ応用することができる。例えば、本開示に係る技術は、自動車、電気自動車、ハイブリッド電気自動車、自動二輪車、自転車、パーソナルモビリティ、飛行機、ドローン、船舶、ロボット等のいずれかの種類の移動体に搭載される装置として実現されてもよい。
 図34は、本開示に係る技術が適用され得る移動体制御システムの一例である車両制御システムの概略的な構成例を示すブロック図である。
 車両制御システム12000は、通信ネットワーク12001を介して接続された複数の電子制御ユニットを備える。図34に示した例では、車両制御システム12000は、駆動系制御ユニット12010、ボディ系制御ユニット12020、車外情報検出ユニット12030、車内情報検出ユニット12040、及び統合制御ユニット12050を備える。また、統合制御ユニット12050の機能構成として、マイクロコンピュータ12051、音声画像出力部12052、及び車載ネットワークI/F(interface)12053が図示されている。
 駆動系制御ユニット12010は、各種プログラムにしたがって車両の駆動系に関連する装置の動作を制御する。例えば、駆動系制御ユニット12010は、内燃機関又は駆動用モータ等の車両の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、車両の舵角を調節するステアリング機構、及び、車両の制動力を発生させる制動装置等の制御装置として機能する。
 ボディ系制御ユニット12020は、各種プログラムにしたがって車体に装備された各種装置の動作を制御する。例えば、ボディ系制御ユニット12020は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、あるいは、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカー又はフォグランプ等の各種ランプの制御装置として機能する。この場合、ボディ系制御ユニット12020には、鍵を代替する携帯機から発信される電波又は各種スイッチの信号が入力され得る。ボディ系制御ユニット12020は、これらの電波又は信号の入力を受け付け、車両のドアロック装置、パワーウィンドウ装置、ランプ等を制御する。
 車外情報検出ユニット12030は、車両制御システム12000を搭載した車両の外部の情報を検出する。例えば、車外情報検出ユニット12030には、撮像部12031が接続される。車外情報検出ユニット12030は、撮像部12031に車外の画像を撮像させるとともに、撮像された画像を受信する。車外情報検出ユニット12030は、受信した画像に基づいて、人、車、障害物、標識又は路面上の文字等の物体検出処理又は距離検出処理を行ってもよい。
 撮像部12031は、光を受光し、その光の受光量に応じた電気信号を出力する光センサである。撮像部12031は、電気信号を画像として出力することもできるし、測距の情報として出力することもできる。また、撮像部12031が受光する光は、可視光であっても良いし、赤外線等の非可視光であっても良い。
 車内情報検出ユニット12040は、車内の情報を検出する。車内情報検出ユニット12040には、例えば、運転者の状態を検出する運転者状態検出部12041が接続される。運転者状態検出部12041は、例えば運転者を撮像するカメラを含み、車内情報検出ユニット12040は、運転者状態検出部12041から入力される検出情報に基づいて、運転者の疲労度合い又は集中度合いを算出してもよいし、運転者が居眠りをしていないかを判別してもよい。
 マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車内外の情報に基づいて、駆動力発生装置、ステアリング機構又は制動装置の制御目標値を演算し、駆動系制御ユニット12010に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車両の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両の衝突警告、又は車両のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030又は車内情報検出ユニット12040で取得される車両の周囲の情報に基づいて駆動力発生装置、ステアリング機構又は制動装置等を制御することにより、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 また、マイクロコンピュータ12051は、車外情報検出ユニット12030で取得される車外の情報に基づいて、ボディ系制御ユニット12020に対して制御指令を出力することができる。例えば、マイクロコンピュータ12051は、車外情報検出ユニット12030で検知した先行車又は対向車の位置に応じてヘッドランプを制御し、ハイビームをロービームに切り替える等の防眩を図ることを目的とした協調制御を行うことができる。
 音声画像出力部12052は、車両の搭乗者又は車外に対して、視覚的又は聴覚的に情報を通知することが可能な出力装置へ音声及び画像のうちの少なくとも一方の出力信号を送信する。図34の例では、出力装置として、オーディオスピーカ12061、表示部12062及びインストルメントパネル12063が例示されている。表示部12062は、例えば、オンボードディスプレイ及びヘッドアップディスプレイの少なくとも一つを含んでいてもよい。
 図35は、撮像部12031の設置位置の例を示す図である。
 図35では、車両12100は、撮像部12031として、撮像部12101,12102,12103,12104,12105を有する。
 撮像部12101,12102,12103,12104,12105は、例えば、車両12100のフロントノーズ、サイドミラー、リアバンパ、バックドア及び車室内のフロントガラスの上部等の位置に設けられる。フロントノーズに備えられる撮像部12101及び車室内のフロントガラスの上部に備えられる撮像部12105は、主として車両12100の前方の画像を取得する。サイドミラーに備えられる撮像部12102,12103は、主として車両12100の側方の画像を取得する。リアバンパ又はバックドアに備えられる撮像部12104は、主として車両12100の後方の画像を取得する。撮像部12101及び12105で取得される前方の画像は、主として先行車両又は、歩行者、障害物、信号機、交通標識又は車線等の検出に用いられる。
 なお、図35には、撮像部12101ないし12104の撮影範囲の一例が示されている。撮像範囲12111は、フロントノーズに設けられた撮像部12101の撮像範囲を示し、撮像範囲12112,12113は、それぞれサイドミラーに設けられた撮像部12102,12103の撮像範囲を示し、撮像範囲12114は、リアバンパ又はバックドアに設けられた撮像部12104の撮像範囲を示す。例えば、撮像部12101ないし12104で撮像された画像データが重ね合わせられることにより、車両12100を上方から見た俯瞰画像が得られる。
 撮像部12101ないし12104の少なくとも1つは、距離情報を取得する機能を有していてもよい。例えば、撮像部12101ないし12104の少なくとも1つは、複数の撮像素子からなるステレオカメラであってもよいし、位相差検出用の画素を有する撮像素子であってもよい。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を基に、撮像範囲12111ないし12114内における各立体物までの距離と、この距離の時間的変化(車両12100に対する相対速度)を求めることにより、特に車両12100の進行路上にある最も近い立体物で、車両12100と略同じ方向に所定の速度(例えば、0km/h以上)で走行する立体物を先行車として抽出することができる。さらに、マイクロコンピュータ12051は、先行車の手前に予め確保すべき車間距離を設定し、自動ブレーキ制御(追従停止制御も含む)や自動加速制御(追従発進制御も含む)等を行うことができる。このように運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行うことができる。
 例えば、マイクロコンピュータ12051は、撮像部12101ないし12104から得られた距離情報を元に、立体物に関する立体物データを、2輪車、普通車両、大型車両、歩行者、電柱等その他の立体物に分類して抽出し、障害物の自動回避に用いることができる。例えば、マイクロコンピュータ12051は、車両12100の周辺の障害物を、車両12100のドライバが視認可能な障害物と視認困難な障害物とに識別する。そして、マイクロコンピュータ12051は、各障害物との衝突の危険度を示す衝突リスクを判断し、衝突リスクが設定値以上で衝突可能性がある状況であるときには、オーディオスピーカ12061や表示部12062を介してドライバに警報を出力することや、駆動系制御ユニット12010を介して強制減速や回避操舵を行うことで、衝突回避のための運転支援を行うことができる。
 撮像部12101ないし12104の少なくとも1つは、赤外線を検出する赤外線カメラであってもよい。例えば、マイクロコンピュータ12051は、撮像部12101ないし12104の撮像画像中に歩行者が存在するか否かを判定することで歩行者を認識することができる。かかる歩行者の認識は、例えば赤外線カメラとしての撮像部12101ないし12104の撮像画像における特徴点を抽出する手順と、物体の輪郭を示す一連の特徴点にパターンマッチング処理を行って歩行者か否かを判別する手順によって行われる。マイクロコンピュータ12051が、撮像部12101ないし12104の撮像画像中に歩行者が存在すると判定し、歩行者を認識すると、音声画像出力部12052は、当該認識された歩行者に強調のための方形輪郭線を重畳表示するように、表示部12062を制御する。また、音声画像出力部12052は、歩行者を示すアイコン等を所望の位置に表示するように表示部12062を制御してもよい。
 以上、本開示に係る技術が適用され得る移動体制御システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、撮像部12031に適用され得る。具体的には、上記実施の形態およびその変形例に係る固体撮像装置1は、撮像部12031に適用することができる。撮像部12031に本開示に係る技術を適用することにより、ノイズの少ない高精細な撮影画像を得ることができるので、移動体制御システムにおいて撮影画像を利用した高精度な制御を行うことができる。
[応用例2]
 図36は、本開示に係る技術(本技術)が適用され得る内視鏡手術システムの概略的な構成の一例を示す図である。
 図36では、術者(医師)11131が、内視鏡手術システム11000を用いて、患者ベッド11133上の患者11132に手術を行っている様子が図示されている。図示するように、内視鏡手術システム11000は、内視鏡11100と、気腹チューブ11111やエネルギー処置具11112等の、その他の術具11110と、内視鏡11100を支持する支持アーム装置11120と、内視鏡下手術のための各種の装置が搭載されたカート11200と、から構成される。
 内視鏡11100は、先端から所定の長さの領域が患者11132の体腔内に挿入される鏡筒11101と、鏡筒11101の基端に接続されるカメラヘッド11102と、から構成される。図示する例では、硬性の鏡筒11101を有するいわゆる硬性鏡として構成される内視鏡11100を図示しているが、内視鏡11100は、軟性の鏡筒を有するいわゆる軟性鏡として構成されてもよい。
 鏡筒11101の先端には、対物レンズが嵌め込まれた開口部が設けられている。内視鏡11100には光源装置11203が接続されており、当該光源装置11203によって生成された光が、鏡筒11101の内部に延設されるライトガイドによって当該鏡筒の先端まで導光され、対物レンズを介して患者11132の体腔内の観察対象に向かって照射される。なお、内視鏡11100は、直視鏡であってもよいし、斜視鏡又は側視鏡であってもよい。
 カメラヘッド11102の内部には光学系及び撮像素子が設けられており、観察対象からの反射光(観察光)は当該光学系によって当該撮像素子に集光される。当該撮像素子によって観察光が光電変換され、観察光に対応する電気信号、すなわち観察像に対応する画像信号が生成される。当該画像信号は、RAWデータとしてカメラコントロールユニット(CCU: Camera Control Unit)11201に送信される。
 CCU11201は、CPU(Central Processing Unit)やGPU(Graphics Processing Unit)等によって構成され、内視鏡11100及び表示装置11202の動作を統括的に制御する。さらに、CCU11201は、カメラヘッド11102から画像信号を受け取り、その画像信号に対して、例えば現像処理(デモザイク処理)等の、当該画像信号に基づく画像を表示するための各種の画像処理を施す。
 表示装置11202は、CCU11201からの制御により、当該CCU11201によって画像処理が施された画像信号に基づく画像を表示する。
 光源装置11203は、例えばLED(Light Emitting Diode)等の光源から構成され、術部等を撮影する際の照射光を内視鏡11100に供給する。
 入力装置11204は、内視鏡手術システム11000に対する入力インタフェースである。ユーザは、入力装置11204を介して、内視鏡手術システム11000に対して各種の情報の入力や指示入力を行うことができる。例えば、ユーザは、内視鏡11100による撮像条件(照射光の種類、倍率及び焦点距離等)を変更する旨の指示等を入力する。
 処置具制御装置11205は、組織の焼灼、切開又は血管の封止等のためのエネルギー処置具11112の駆動を制御する。気腹装置11206は、内視鏡11100による視野の確保及び術者の作業空間の確保の目的で、患者11132の体腔を膨らめるために、気腹チューブ11111を介して当該体腔内にガスを送り込む。レコーダ11207は、手術に関する各種の情報を記録可能な装置である。プリンタ11208は、手術に関する各種の情報を、テキスト、画像又はグラフ等各種の形式で印刷可能な装置である。
 なお、内視鏡11100に術部を撮影する際の照射光を供給する光源装置11203は、例えばLED、レーザ光源又はこれらの組み合わせによって構成される白色光源から構成することができる。RGBレーザ光源の組み合わせにより白色光源が構成される場合には、各色(各波長)の出力強度及び出力タイミングを高精度に制御することができるため、光源装置11203において撮像画像のホワイトバランスの調整を行うことができる。また、この場合には、RGBレーザ光源それぞれからのレーザ光を時分割で観察対象に照射し、その照射タイミングに同期してカメラヘッド11102の撮像素子の駆動を制御することにより、RGBそれぞれに対応した画像を時分割で撮像することも可能である。当該方法によれば、当該撮像素子にカラーフィルタを設けなくても、カラー画像を得ることができる。
 また、光源装置11203は、出力する光の強度を所定の時間ごとに変更するようにその駆動が制御されてもよい。その光の強度の変更のタイミングに同期してカメラヘッド11102の撮像素子の駆動を制御して時分割で画像を取得し、その画像を合成することにより、いわゆる黒つぶれ及び白とびのない高ダイナミックレンジの画像を生成することができる。
 また、光源装置11203は、特殊光観察に対応した所定の波長帯域の光を供給可能に構成されてもよい。特殊光観察では、例えば、体組織における光の吸収の波長依存性を利用して、通常の観察時における照射光(すなわち、白色光)に比べて狭帯域の光を照射することにより、粘膜表層の血管等の所定の組織を高コントラストで撮影する、いわゆる狭帯域光観察(Narrow Band Imaging)が行われる。あるいは、特殊光観察では、励起光を照射することにより発生する蛍光により画像を得る蛍光観察が行われてもよい。蛍光観察では、体組織に励起光を照射し当該体組織からの蛍光を観察すること(自家蛍光観察)、又はインドシアニングリーン(ICG)等の試薬を体組織に局注するとともに当該体組織にその試薬の蛍光波長に対応した励起光を照射し蛍光像を得ること等を行うことができる。光源装置11203は、このような特殊光観察に対応した狭帯域光及び/又は励起光を供給可能に構成され得る。
 図37は、図36に示すカメラヘッド11102及びCCU11201の機能構成の一例を示すブロック図である。
 カメラヘッド11102は、レンズユニット11401と、撮像部11402と、駆動部11403と、通信部11404と、カメラヘッド制御部11405と、を有する。CCU11201は、通信部11411と、画像処理部11412と、制御部11413と、を有する。カメラヘッド11102とCCU11201とは、伝送ケーブル11400によって互いに通信可能に接続されている。
 レンズユニット11401は、鏡筒11101との接続部に設けられる光学系である。鏡筒11101の先端から取り込まれた観察光は、カメラヘッド11102まで導光され、当該レンズユニット11401に入射する。レンズユニット11401は、ズームレンズ及びフォーカスレンズを含む複数のレンズが組み合わされて構成される。
 撮像部11402は、撮像素子で構成される。撮像部11402を構成する撮像素子は、1つ(いわゆる単板式)であってもよいし、複数(いわゆる多板式)であってもよい。撮像部11402が多板式で構成される場合には、例えば各撮像素子によってRGBそれぞれに対応する画像信号が生成され、それらが合成されることによりカラー画像が得られてもよい。あるいは、撮像部11402は、3D(Dimensional)表示に対応する右目用及び左目用の画像信号をそれぞれ取得するための1対の撮像素子を有するように構成されてもよい。3D表示が行われることにより、術者11131は術部における生体組織の奥行きをより正確に把握することが可能になる。なお、撮像部11402が多板式で構成される場合には、各撮像素子に対応して、レンズユニット11401も複数系統設けられ得る。
 また、撮像部11402は、必ずしもカメラヘッド11102に設けられなくてもよい。例えば、撮像部11402は、鏡筒11101の内部に、対物レンズの直後に設けられてもよい。
 駆動部11403は、アクチュエータによって構成され、カメラヘッド制御部11405からの制御により、レンズユニット11401のズームレンズ及びフォーカスレンズを光軸に沿って所定の距離だけ移動させる。これにより、撮像部11402による撮像画像の倍率及び焦点が適宜調整され得る。
 通信部11404は、CCU11201との間で各種の情報を送受信するための通信装置によって構成される。通信部11404は、撮像部11402から得た画像信号をRAWデータとして伝送ケーブル11400を介してCCU11201に送信する。
 また、通信部11404は、CCU11201から、カメラヘッド11102の駆動を制御するための制御信号を受信し、カメラヘッド制御部11405に供給する。当該制御信号には、例えば、撮像画像のフレームレートを指定する旨の情報、撮像時の露出値を指定する旨の情報、並びに/又は撮像画像の倍率及び焦点を指定する旨の情報等、撮像条件に関する情報が含まれる。
 なお、上記のフレームレートや露出値、倍率、焦点等の撮像条件は、ユーザによって適宜指定されてもよいし、取得された画像信号に基づいてCCU11201の制御部11413によって自動的に設定されてもよい。後者の場合には、いわゆるAE(Auto Exposure)機能、AF(Auto Focus)機能及びAWB(Auto White Balance)機能が内視鏡11100に搭載されていることになる。
 カメラヘッド制御部11405は、通信部11404を介して受信したCCU11201からの制御信号に基づいて、カメラヘッド11102の駆動を制御する。
 通信部11411は、カメラヘッド11102との間で各種の情報を送受信するための通信装置によって構成される。通信部11411は、カメラヘッド11102から、伝送ケーブル11400を介して送信される画像信号を受信する。
 また、通信部11411は、カメラヘッド11102に対して、カメラヘッド11102の駆動を制御するための制御信号を送信する。画像信号や制御信号は、電気通信や光通信等によって送信することができる。
 画像処理部11412は、カメラヘッド11102から送信されたRAWデータである画像信号に対して各種の画像処理を施す。
 制御部11413は、内視鏡11100による術部等の撮像、及び、術部等の撮像により得られる撮像画像の表示に関する各種の制御を行う。例えば、制御部11413は、カメラヘッド11102の駆動を制御するための制御信号を生成する。
 また、制御部11413は、画像処理部11412によって画像処理が施された画像信号に基づいて、術部等が映った撮像画像を表示装置11202に表示させる。この際、制御部11413は、各種の画像認識技術を用いて撮像画像内における各種の物体を認識してもよい。例えば、制御部11413は、撮像画像に含まれる物体のエッジの形状や色等を検出することにより、鉗子等の術具、特定の生体部位、出血、エネルギー処置具11112の使用時のミスト等を認識することができる。制御部11413は、表示装置11202に撮像画像を表示させる際に、その認識結果を用いて、各種の手術支援情報を当該術部の画像に重畳表示させてもよい。手術支援情報が重畳表示され、術者11131に提示されることにより、術者11131の負担を軽減することや、術者11131が確実に手術を進めることが可能になる。
 カメラヘッド11102及びCCU11201を接続する伝送ケーブル11400は、電気信号の通信に対応した電気信号ケーブル、光通信に対応した光ファイバ、又はこれらの複合ケーブルである。
 ここで、図示する例では、伝送ケーブル11400を用いて有線で通信が行われていたが、カメラヘッド11102とCCU11201との間の通信は無線で行われてもよい。
 以上、本開示に係る技術が適用され得る内視鏡手術システムの一例について説明した。本開示に係る技術は、以上説明した構成のうち、内視鏡11100のカメラヘッド11102に設けられた撮像部11402に好適に適用され得る。撮像部11402に本開示に係る技術を適用することにより、撮像部11402を小型化もしくは高精細化することができるので、小型もしくは高精細な内視鏡11100を提供することができる。
 以上、実施の形態およびその変形例、適用例ならびに応用例を挙げて本開示を説明したが、本開示は上記実施の形態等に限定されるものではなく、種々変形が可能である。なお、本明細書中に記載された効果は、あくまで例示である。本開示の効果は、本明細書中に記載された効果に限定されるものではない。本開示が、本明細書中に記載された効果以外の効果を持っていてもよい。
 また、本開示は、以下のような構成を取ることも可能である。
(1)
 光電変換部と、
 第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
 第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
 第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
 前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記光電変換部が形成された第1基板と、
 前記第1基板に積層され、前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記第2増幅トランジスタが形成された第2基板と
 を備えた
 固体撮像装置。
(2)
 前記光電変換部、前記第1フローティングディフュージョン、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部は、前記第1基板に形成され、
 前記第1増幅トランジスタおよび前記第2増幅トランジスタは、前記第2基板に形成されている
 (1)に記載の固体撮像装置。
(3)
 前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部は、前記第1基板に形成され、
 前記第2増幅トランジスタは、前記第2基板に形成されている
 (1)に記載の固体撮像装置。
(4)
 前記光電変換部は、前記第1基板に形成され、
 前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部は、前記第2基板に形成されている
 (1)に記載の固体撮像装置。
(5)
 前記第2基板に形成されたトランジスタの電極は、シリサイドを含んで構成されている
 (1)ないし(4)のいずれか1つに記載の固体撮像装置。
(6)
 前記モード切り換えスイッチ部による切り換えによって変換する、トランジスタのサイズの大きさに応じて、駆動電流を変化させる駆動回路を更に備えた
 (1)ないし(5)のいずれか1つに記載の固体撮像装置。
(7)
 光電変換部と、
 第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
 第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
 第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
 前記光電変換部および前記第1フローティングディフュージョンが形成された第1基板と、
 前記第1基板に積層され、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部が形成された第2基板と、
 前記第2基板に積層され、前記第2増幅トランジスタが形成された第3基板と
 を備えた
 固体撮像装置。
(8)
 前記第2基板および前記第3基板に形成されたトランジスタの電極は、シリサイドを含んで構成されている
 (7)に記載の固体撮像装置。
(9)
 入射光に応じた画素信号を出力する固体撮像装置と、
 前記画素信号を処理する信号処理回路と
 を備え、
 前記固体撮像装置は、
 光電変換部と、
 第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
 第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
 第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
 前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記光電変換部が形成された第1基板と、
 前記第1基板に積層され、前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記第2増幅トランジスタが形成された第2基板と
 を有する
 電子機器。
(10)
 入射光に応じた画素信号を出力する固体撮像装置と、
 前記画素信号を処理する信号処理回路と
 を備え、
 前記固体撮像装置は、
 光電変換部と、
 第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
 第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
 第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
 前記光電変換部および前記第1フローティングディフュージョンが形成された第1基板と、
 前記第1基板に積層され、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部が形成された第2基板と、
 前記第2基板に積層され、前記第2増幅トランジスタが形成された第3基板と
 を有する
 電子機器。
 本開示の第1の側面である固体撮像装置および電子機器、ならびに本開示の第2の側面である固体撮像装置および電子機器によれば、使用する増幅トランジスタをモードに応じて選択し、少なくとも増幅トランジスタを、光電変換部の形成された基板とは別の基板に形成するようにしたので、高精細な用途においても、高感度および高ダイナミックレンジを両立することが可能である。なお、本技術の効果は、ここに記載された効果に必ずしも限定されず、本明細書中に記載されたいずれの効果であってもよい。
 本出願は、日本国特許庁において2018年11月13日に出願された日本特許出願番号第2018-213147号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
 当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。

Claims (10)

  1.  光電変換部と、
     第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
     第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
     第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
     前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記光電変換部が形成された第1基板と、
     前記第1基板に積層され、前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記第2増幅トランジスタが形成された第2基板と
     を備えた
     固体撮像装置。
  2.  前記光電変換部、前記第1フローティングディフュージョン、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部は、前記第1基板に形成され、
     前記第1増幅トランジスタおよび前記第2増幅トランジスタは、前記第2基板に形成されている
     請求項1に記載の固体撮像装置。
  3.  前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部は、前記第1基板に形成され、
     前記第2増幅トランジスタは、前記第2基板に形成されている
     請求項1に記載の固体撮像装置。
  4.  前記光電変換部は、前記第1基板に形成され、
     前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部は、前記第2基板に形成されている
     請求項1に記載の固体撮像装置。
  5.  前記第2基板に形成されたトランジスタの電極は、シリサイドを含んで構成されている
     請求項1に記載の固体撮像装置。
  6.  前記モード切り換えスイッチ部による切り換えによって変換する、トランジスタのサイズの大きさに応じて、駆動電流を変化させる駆動回路を更に備えた
     請求項1に記載の固体撮像装置。
  7.  光電変換部と、
     第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
     第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
     第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
     前記光電変換部および前記第1フローティングディフュージョンが形成された第1基板と、
     前記第1基板に積層され、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部が形成された第2基板と、
     前記第2基板に積層され、前記第2増幅トランジスタが形成された第3基板と
     を備えた
     固体撮像装置。
  8.  前記第2基板および前記第3基板に形成されたトランジスタの電極は、シリサイドを含んで構成されている
     請求項7に記載の固体撮像装置。
  9.  入射光に応じた画素信号を出力する固体撮像装置と、
     前記画素信号を処理する信号処理回路と
     を備え、
     前記固体撮像装置は、
     光電変換部と、
     第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
     第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
     第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
     前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記光電変換部が形成された第1基板と、
     前記第1基板に積層され、前記光電変換部、前記第1フローティングディフュージョン、前記第1増幅トランジスタ、前記第2フローティングディフュージョン、前記第2増幅トランジスタおよび前記モード切り換えスイッチ部のうち、少なくとも前記第2増幅トランジスタが形成された第2基板と
     を有する
     電子機器。
  10.  入射光に応じた画素信号を出力する固体撮像装置と、
     前記画素信号を処理する信号処理回路と
     を備え、
     前記固体撮像装置は、
     光電変換部と、
     第1フローティングディフュージョンおよび第1増幅トランジスタを含む第1信号経路と、
     第2フローティングディフュージョンおよび第2増幅トランジスタを含む第2信号経路と、
     第1モードのときには前記第1信号経路を前記光電変換部に電気的に接続するとともに前記第2信号経路を前記光電変換部から電気的に切り離し、第2モードのときには前記第1信号経路および前記第2信号経路の双方を前記光電変換部に電気的に接続するモード切り換えスイッチ部と、
     前記光電変換部および前記第1フローティングディフュージョンが形成された第1基板と、
     前記第1基板に積層され、前記第1増幅トランジスタ、前記第2フローティングディフュージョンおよび前記モード切り換えスイッチ部が形成された第2基板と、
     前記第2基板に積層され、前記第2増幅トランジスタが形成された第3基板と
     を有する
     電子機器。
PCT/JP2019/042356 2018-11-13 2019-10-29 固体撮像装置および電子機器 WO2020100577A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020217012707A KR20210092725A (ko) 2018-11-13 2019-10-29 고체 촬상 장치 및 전자 기기
US17/291,316 US20220077207A1 (en) 2018-11-13 2019-10-29 Solid-state imaging device and electronic apparatus
CN201980073018.5A CN112970115A (zh) 2018-11-13 2019-10-29 固态摄像装置和电子设备
JP2020555983A JPWO2020100577A1 (ja) 2018-11-13 2019-10-29 固体撮像装置および電子機器
EP19885232.9A EP3882973A4 (en) 2018-11-13 2019-10-29 SEMICONDUCTOR IMAGING DEVICE AND ELECTRONIC APPARATUS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018213147 2018-11-13
JP2018-213147 2018-11-13

Publications (1)

Publication Number Publication Date
WO2020100577A1 true WO2020100577A1 (ja) 2020-05-22

Family

ID=70731995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042356 WO2020100577A1 (ja) 2018-11-13 2019-10-29 固体撮像装置および電子機器

Country Status (7)

Country Link
US (1) US20220077207A1 (ja)
EP (1) EP3882973A4 (ja)
JP (1) JPWO2020100577A1 (ja)
KR (1) KR20210092725A (ja)
CN (1) CN112970115A (ja)
TW (1) TW202029733A (ja)
WO (1) WO2020100577A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4075506A1 (fr) * 2021-04-15 2022-10-19 Pyxalis Matrice de pixel à sommation analogique à obturation globale
WO2022244328A1 (ja) * 2021-05-17 2022-11-24 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020088480A (ja) * 2018-11-19 2020-06-04 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子、および、撮像装置
JP2024066609A (ja) * 2022-11-02 2024-05-16 ソニーセミコンダクタソリューションズ株式会社 固体撮像素子

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339057A (ja) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi 3次元画像処理装置の製造方法
JP2003134396A (ja) 2001-10-29 2003-05-09 Canon Inc 撮像素子、撮像素子の駆動方法、その撮像素子を用いた放射線撮像装置及びそれを用いた放射線撮像システム
JP2007150361A (ja) * 2007-03-07 2007-06-14 Matsushita Electric Ind Co Ltd 固体撮像装置の製造方法
JP2007228460A (ja) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi 集積センサを搭載した積層型半導体装置
JP2012248952A (ja) * 2011-05-25 2012-12-13 Olympus Corp 固体撮像装置、撮像装置、および信号読み出し方法
JP2013009301A (ja) * 2011-05-25 2013-01-10 Olympus Corp 固体撮像装置、撮像装置、および信号読み出し方法
JP2013090127A (ja) * 2011-10-18 2013-05-13 Olympus Corp 固体撮像装置および撮像装置
JP2016149387A (ja) * 2015-02-10 2016-08-18 ルネサスエレクトロニクス株式会社 撮像装置およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775058B1 (ko) * 2005-09-29 2007-11-08 삼성전자주식회사 픽셀 및 이를 이용한 이미지 센서, 그리고 상기 이미지센서를 포함하는 이미지 처리 시스템
JP5347283B2 (ja) * 2008-03-05 2013-11-20 ソニー株式会社 固体撮像装置およびその製造方法
US8773562B1 (en) * 2013-01-31 2014-07-08 Apple Inc. Vertically stacked image sensor
US11924573B2 (en) * 2016-03-15 2024-03-05 Trustees Of Dartmouth College Stacked backside-illuminated quanta image sensor with cluster-parallel readout
US10044960B2 (en) * 2016-05-25 2018-08-07 Omnivision Technologies, Inc. Systems and methods for detecting light-emitting diode without flickering
US9888197B1 (en) * 2017-01-04 2018-02-06 Semiconductor Components Industries, Llc Methods and apparatus for a CMOS image sensor with an in-pixel amplifier
CN108337409B (zh) * 2017-01-19 2021-06-22 松下知识产权经营株式会社 摄像装置及照相机系统
US11431926B2 (en) * 2018-11-09 2022-08-30 Semiconductor Components Industries, Llc Image sensors having high dynamic range imaging pixels

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001339057A (ja) * 2000-05-30 2001-12-07 Mitsumasa Koyanagi 3次元画像処理装置の製造方法
JP2003134396A (ja) 2001-10-29 2003-05-09 Canon Inc 撮像素子、撮像素子の駆動方法、その撮像素子を用いた放射線撮像装置及びそれを用いた放射線撮像システム
JP2007228460A (ja) * 2006-02-27 2007-09-06 Mitsumasa Koyanagi 集積センサを搭載した積層型半導体装置
JP2007150361A (ja) * 2007-03-07 2007-06-14 Matsushita Electric Ind Co Ltd 固体撮像装置の製造方法
JP2012248952A (ja) * 2011-05-25 2012-12-13 Olympus Corp 固体撮像装置、撮像装置、および信号読み出し方法
JP2013009301A (ja) * 2011-05-25 2013-01-10 Olympus Corp 固体撮像装置、撮像装置、および信号読み出し方法
JP2013090127A (ja) * 2011-10-18 2013-05-13 Olympus Corp 固体撮像装置および撮像装置
JP2016149387A (ja) * 2015-02-10 2016-08-18 ルネサスエレクトロニクス株式会社 撮像装置およびその製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4075506A1 (fr) * 2021-04-15 2022-10-19 Pyxalis Matrice de pixel à sommation analogique à obturation globale
FR3122057A1 (fr) * 2021-04-15 2022-10-21 Pyxalis Matrice de Pixel à sommation analogique à obturation globale
US11800247B2 (en) 2021-04-15 2023-10-24 Pyxalis Global-shutter analogue-binning pixel matrix
WO2022244328A1 (ja) * 2021-05-17 2022-11-24 ソニーセミコンダクタソリューションズ株式会社 固体撮像装置および電子機器

Also Published As

Publication number Publication date
US20220077207A1 (en) 2022-03-10
JPWO2020100577A1 (ja) 2021-09-30
TW202029733A (zh) 2020-08-01
KR20210092725A (ko) 2021-07-26
CN112970115A (zh) 2021-06-15
EP3882973A1 (en) 2021-09-22
EP3882973A4 (en) 2022-01-12

Similar Documents

Publication Publication Date Title
WO2019130702A1 (ja) 撮像装置
JP2023130505A (ja) 撮像装置及び電子機器
JP7399105B2 (ja) 固体撮像素子および映像記録装置
WO2020100577A1 (ja) 固体撮像装置および電子機器
WO2020170936A1 (ja) 撮像装置
JP7452962B2 (ja) 撮像装置
WO2020189534A1 (ja) 撮像素子および半導体素子
WO2020090403A1 (ja) 固体撮像素子および撮像装置
WO2020100607A1 (ja) 撮像装置
WO2020241717A1 (ja) 固体撮像装置
WO2020179494A1 (ja) 半導体装置および撮像装置
JP7472032B2 (ja) 撮像素子および電子機器
WO2020189473A1 (ja) 撮像装置および撮像装置の製造方法ならびに半導体装置
WO2020129712A1 (ja) 撮像装置
JP2024061777A (ja) 撮像装置
CN113940058A (zh) 摄像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19885232

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019885232

Country of ref document: EP

Effective date: 20210614