WO2021256142A1 - 撮像装置 - Google Patents

撮像装置 Download PDF

Info

Publication number
WO2021256142A1
WO2021256142A1 PCT/JP2021/018655 JP2021018655W WO2021256142A1 WO 2021256142 A1 WO2021256142 A1 WO 2021256142A1 JP 2021018655 W JP2021018655 W JP 2021018655W WO 2021256142 A1 WO2021256142 A1 WO 2021256142A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
image pickup
wiring
substrate portion
pickup apparatus
Prior art date
Application number
PCT/JP2021/018655
Other languages
English (en)
French (fr)
Inventor
恭輔 山田
敦彦 山本
貴志 町田
英男 城戸
僚 福井
由宇 椎原
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Priority to US18/001,299 priority Critical patent/US20230254608A1/en
Publication of WO2021256142A1 publication Critical patent/WO2021256142A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14621Colour filter arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • H01L27/14627Microlenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1463Pixel isolation structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14634Assemblies, i.e. Hybrid structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14636Interconnect structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1464Back illuminated imager structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/1469Assemblies, i.e. hybrid integration

Definitions

  • This disclosure relates to an imaging device and the like.
  • CMOS Complementary Metal Oxide Sensor
  • a structure is known in which a pixel circuit is arranged on two layers of an upper substrate and an intermediate substrate, and a logic circuit is arranged on one layer of a lower substrate (for example, a patent document). 1). Further, it has a first semiconductor substrate on which a photodiode and a floating diffusion are formed and a second semiconductor substrate on which an amplification transistor is formed, and electrodes are bonded to each other on the bonding surface between the first semiconductor substrate and the second semiconductor substrate.
  • a solid-state imaging device having a structure described above is known (see, for example, Patent Document 2).
  • CMOS image sensor with a small number of shared pixels and an image pickup device having an MEM (memory) unit in a pixel circuit
  • MEM memory
  • MOS gate structures to be arranged in the pixels. For this reason, as the miniaturization and high density of sensor pixels progress, it becomes difficult to secure a sufficient area for the amplification transistor, and there is a possibility that the characteristics of the image pickup device will deteriorate, such as an increase in noise and a decrease in conversion efficiency. be.
  • the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an image pickup apparatus capable of suppressing deterioration of characteristics.
  • the image pickup apparatus includes a first substrate portion and a second substrate portion provided on one surface side of the first substrate portion.
  • the first substrate portion is provided on the first semiconductor substrate, the sensor pixels provided on the first semiconductor substrate for photoelectric conversion, and the first semiconductor substrate provided on the surface side facing the second substrate portion. It has a one-layer insulating film and a first electrode portion provided on the surface side of the first interlayer insulating film facing the second substrate portion.
  • the second substrate portion includes a second semiconductor substrate, a readout circuit provided on the second semiconductor substrate and outputting a pixel signal based on the charge output from the sensor pixel, and the first semiconductor substrate.
  • the reading circuit has an amplification transistor that amplifies a voltage signal according to the level of charge output from the sensor pixel.
  • the first element region provided with the amplification transistor, the second element region provided with an element other than the amplification transistor, and the second semiconductor substrate are penetrated in the thickness direction. It has a penetrating area and a penetrating area. The first element region and the second element region are separated by the penetration region.
  • the amplification transistor is isolated from other elements by the penetration region, it can be a source follower type in which the source region and the well region are connected. As a result, the amplification transistor can increase the gain and improve the conversion efficiency. As a result, the image pickup apparatus can suppress the deterioration of the characteristics.
  • FIG. 1 is a schematic diagram showing a configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 3 is an enlarged cross-sectional view showing an amplification transistor and its peripheral portion in the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 4A is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4B is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 1 is a schematic diagram showing a configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus according to the first embodiment of the present disclosure.
  • FIG. 3 is an enlarged cross-
  • FIG. 4C is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4D is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4E is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4F is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4G is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 4H is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the first embodiment of the present disclosure in the order of processes.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the image pickup apparatus according to the modified example of the first embodiment of the present disclosure.
  • FIG. 6 is an enlarged cross-sectional view showing the amplification transistor and its peripheral portion in the image pickup apparatus according to the modified example of the first embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram showing a configuration example of the image pickup apparatus according to the second embodiment of the present disclosure.
  • FIG. 8 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus according to the second embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view showing a photodiode provided on the first semiconductor substrate and a peripheral portion thereof in the image pickup apparatus according to the second embodiment of the present disclosure.
  • FIG. 10 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus according to the third embodiment of the present disclosure.
  • FIG. 11 is a plan view schematically showing a configuration example of a second substrate portion in the image pickup apparatus according to the third embodiment of the present disclosure.
  • FIG. 12 is a plan view schematically showing a configuration example of the first substrate portion in the image pickup apparatus according to the third embodiment of the present disclosure.
  • FIG. 13A is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 13A is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 13B is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 13C is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 13D is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 13E is a cross-sectional view showing the manufacturing method of the image pickup apparatus according to the third embodiment of the present disclosure in the order of processes.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the image pickup apparatus according to the first modification of the third embodiment of the present disclosure.
  • FIG. 15 is a plan view schematically showing the configuration of the second substrate portion in the image pickup apparatus according to the first modification of the third embodiment of the present disclosure.
  • FIG. 16 is a cross-sectional view schematically showing the configuration of the image pickup apparatus according to the second modification of the third embodiment of the present disclosure.
  • FIG. 17 is a plan view schematically showing the configuration of the second substrate portion in the image pickup apparatus according to the second modification of the third embodiment of the present disclosure.
  • the direction may be explained using the words in the X-axis direction, the Y-axis direction, and the Z-axis direction.
  • the X-axis direction and the Y-axis direction are directions parallel to the main surfaces (front surface, back surface) of the first semiconductor substrate 11, the second semiconductor substrate 21, and the third semiconductor substrate 31.
  • the X-axis direction and the Y-axis direction are also referred to as horizontal directions.
  • the Z-axis direction is a direction that intersects the horizontal direction perpendicularly.
  • the X-axis direction, the Y-axis direction, and the Z-axis direction are orthogonal to each other.
  • FIG. 1 is a schematic diagram showing a configuration example of the image pickup apparatus 1 according to the first embodiment of the present disclosure.
  • the image pickup apparatus 1 is an image pickup apparatus having a three-layer laminated structure, which is configured by laminating a first substrate portion 10, a second substrate portion 20, and a third substrate portion 30.
  • the first substrate portion 10, the second substrate portion 20, and the third substrate portion 30 are laminated in this order.
  • the first substrate portion 10 has a plurality of sensor pixels 12 that perform photoelectric conversion.
  • the plurality of sensor pixels 12 are provided in a matrix in the pixel region RA of the first substrate portion 10.
  • the sensor pixel 12 includes a photodiode PD (an example of the “photoelectric conversion element” of the present disclosure), a transfer transistor TG, a floating diffusion FD, and an overflow transistor OFG.
  • the photodiode PD is a photoelectric conversion unit that converts incident light into electric charge by photoelectric conversion and stores it.
  • the anode terminal is grounded and the cathode terminal is connected to the transfer transistor TG and the overflow transistor OFG. ..
  • the transfer transistor TG is driven according to a drive signal supplied from the drive circuit 36 described later.
  • the transfer transistor TG is turned on, the electric charge stored in the photodiode PD is transferred to the floating diffusion FD.
  • the floating diffusion FD is a floating diffusion region having a predetermined storage capacity, and temporarily stores the electric charge transferred from the photodiode PD.
  • the floating diffusion FD is connected to the gate electrode of the amplification transistor AMP described later.
  • the overflow transistor OFG is driven according to a drive signal supplied from the drive circuit 36 described later. When the overflow transistor OFG is turned on, the electric charge remaining in the photodiode PD in the initial state is discharged to the power supply line VDD.
  • the drive wiring DL that drives the transfer transistor TG and the overflow transistor OFG is drawn from the pixel region RA of the first substrate portion 10 to the peripheral region RB located around the pixel region RA.
  • the drive wiring DL is connected to the drive circuit 36 of the third substrate portion 30 via the wirings LB1 to LB3 provided in the peripheral region RB and the electrode junctions JB12 and JB23 provided in the peripheral region RB. ing.
  • Each of the wirings LB1 to LB3 includes a portion extending in the thickness direction of the substrate (for example, the Z-axis direction). Further, the wirings LB1 to LB3 may each include a portion extending in the horizontal direction (for example, the X-axis direction and the Y-axis direction) orthogonal to the thickness direction of the substrate.
  • the wiring LB1 is the wiring provided in the peripheral region RB of the first board portion 10
  • the wiring LB2 is the wiring provided in the peripheral region RB of the second board portion 20
  • the wiring LB3 is the peripheral region of the third substrate portion 30. It is a wiring provided in the area RB.
  • the electrode joints JB12 and JB23 are joints in which two electrode portions made of, for example, copper (Cu) or a Cu alloy containing Cu as a main component are bonded to each other in the thickness direction of the substrate.
  • the electrode joining portion JB12 connects the wirings LB1 and LB2 to each other between the first substrate portion 10 and the second substrate portion 20.
  • the electrode joining portion JB23 connects the wiring LB2 and LB3 to each other between the second substrate portion 20 and the third substrate portion 30.
  • the floating diffusion FD provided on the first board portion 10 the power supply line VDD and the reference potential line VSS (for example, the ground potential line GND) provided on the first board portion are the wiring LA1 provided in the pixel region RA. , LA2 and the electrode junction JA12 provided in the pixel region RA are connected to the readout circuit 22 described later of the second substrate portion 20.
  • the wiring LA1 is the wiring provided in the pixel region RA of the first substrate portion 10
  • the wiring LA2 is the wiring provided in the pixel region RA of the second substrate portion 20
  • the wiring LA3 is the wiring provided in the pixel region RA of the third substrate portion 30. This is the wiring provided in the area RA.
  • the electrode junction JA12 and the electrode junction JA23, which will be described later, provided in the pixel region RA are, respectively, a junction in which two electrode portions made of, for example, Cu or a Cu alloy are bonded to each other in the thickness direction of the substrate. be.
  • the electrode joining portion JA12 connects the wirings LA1 and LA2 to each other between the first substrate portion 10 and the second substrate portion 20.
  • the electrode joining portion JA23 connects the wirings LA2 and LA3 to each other between the second substrate portion 20 and the third substrate portion 30.
  • the second substrate unit 20 has a readout circuit 22 that outputs a pixel signal based on the electric charge output from the sensor pixel 12.
  • the readout circuit 22 is provided in a matrix in the pixel region RA of the second substrate portion 20.
  • the readout circuit 22 may be provided one for each sensor pixel 12, or may be provided one for each of a plurality of (for example, two or four) sensor pixels 12.
  • the second substrate portion 20 has a plurality of pixel drive lines extending in the row direction and a plurality of vertical signal lines VSL extending in the column direction.
  • the read circuit 22 has an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST.
  • the amplification transistor AMP outputs a pixel signal at a level corresponding to the charge stored in the floating diffusion FD (that is, the potential of the floating diffusion FD) to the vertical signal line VSL via the selection transistor SEL. That is, due to the configuration in which the floating diffusion FD is connected to the gate electrode of the amplification transistor AMP, the floating diffusion FD and the amplification transistor AMP amplify the electric charge generated in the photodiode PD and convert it into a pixel signal at a level corresponding to the electric charge. Functions as a conversion unit.
  • the amplification transistor AMP has a source follower type in which a source region and a well region are connected, and the back bias effect is reduced to zero (0) or a value close to zero.
  • the SF (source follower) gain of the amplification transistor AMP becomes 1 or a value close to 1, and the conversion efficiency is improved.
  • the selection transistor SEL is driven according to the selection signal supplied from the drive circuit 36.
  • the selection transistor SEL is turned on, the pixel signal output from the amplification transistor AMP can be output to the vertical signal line VSL.
  • the reset transistor RST is driven according to the reset signal supplied from the drive circuit 36. When the reset transistor RST is turned on, the electric charge accumulated in the floating diffusion FD is discharged to the power supply line VDD, and the floating diffusion FD is reset.
  • the vertical signal line VSL is connected to the logic circuit 35 of the third substrate portion 30 via the wirings LA2 and LA3 provided in the pixel region RA and the electrode junction JA23 provided in the pixel region RA.
  • the pixel signal output to the vertical signal line VSL is output to the logic circuit 35 via the wirings LA2 and LA3 and the electrode junction JA23.
  • the third board unit 30 has a logic circuit 35 that processes a pixel signal.
  • the logic circuit 35 includes, for example, a drive circuit 36, a comparator 37, and a control circuit 38.
  • the drive circuit 36 selects, for example, a plurality of sensor pixels 12 in order in row units.
  • the comparator 37 performs a correlated double sampling (CDS) process on the pixel signal output from each sensor pixel 12 in the row selected by the drive circuit 36, for example.
  • CDS correlated double sampling
  • the comparator 37 extracts the signal level of the pixel signal by performing CDS processing, for example, holds the pixel data corresponding to the received light amount of each sensor pixel 12, and sequentially outputs the held pixel data to the outside.
  • the control circuit 38 controls the drive of each block (for example, the drive circuit 36 and the comparator 37) in the logic circuit 35.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus 1 according to the first embodiment of the present disclosure.
  • the second substrate portion 20 is laminated on the third substrate portion 30, and the first substrate portion 10 is laminated on the second substrate portion 20.
  • the color filter CF and the microlens ML are arranged in this order on the first substrate portion 10 via the translucent insulating film 102.
  • the image pickup apparatus 1 is, for example, a back-illuminated CMOS image in which light is incident from the back surface (upper side in FIG. 1).
  • a microlens ML and a color filter CF are arranged on the back surface side.
  • the microlens ML and the color filter CF are provided for each sensor pixel 12, respectively.
  • the first substrate portion 10 includes, for example, a first semiconductor substrate 11 made of a silicon substrate and an interlayer insulating film 101 provided on the front surface side (lower surface side in FIG. 2) of the first semiconductor substrate 11 (“1” of the present disclosure.
  • the first semiconductor substrate 11 is provided with a photodiode PD, a transfer transistor TG, and a floating diffusion FD.
  • the interlayer insulating film 101 is, for example, one of a silicon oxide film (SiO 2 film), a silicon nitride film (SiN film), a silicon acid nitride film (SiON film), or a silicon carbon dioxide film (SiCN film), or these. Includes two or more of them.
  • the interlayer insulating film 101 is composed of a laminated film in which a plurality of films are laminated.
  • the wirings LA1 and LB1 include a portion VL extending in the thickness direction of the substrate (for example, the Z-axis direction) and a portion HL extending in the horizontal direction (for example, the X-axis direction and the Y-axis direction). including.
  • the partial VL extending in the thickness direction is made of, for example, tungsten (W)
  • the partial HL extending in the horizontal direction is made of, for example, Cu or a Cu alloy. ..
  • the portion HL extending in the horizontal direction of the wirings LA1 and LB1 is composed of a total of two layers of metal layers M11 and M12.
  • the electrode portion E11 is made of, for example, Cu or a Cu alloy.
  • the second substrate portion 20 includes, for example, a second semiconductor substrate 21 made of a silicon substrate and an interlayer insulating film 201 provided on the front surface side (lower surface side in FIG. 2) of the second semiconductor substrate 21 (“1” of the present disclosure.
  • the insulating separating film 202 penetrating between the front surface and the back surface of the second semiconductor substrate 21, the wirings LA2 and LB2 (see FIG.
  • the electrode portion E21 (an example of the "second electrode portion” of the present disclosure) provided on the opposite side of the surface facing the second semiconductor substrate 21 in the interlayer insulating film 201 and the opposite side of the surface facing the second semiconductor substrate 21 in the interlayer insulating film 201. It has an electrode portion E22 (an example of the "third electrode portion” of the present disclosure) provided in the above.
  • the second semiconductor substrate 21 is provided with an amplification transistor AMP, a selection transistor SEL, and a reset transistor RST (see FIG. 1).
  • amplification transistor AMP As an example, one sensor pixel 12 (see FIG. 1) is provided with one amplification transistor AMP, one selection transistor SEL, and one reset transistor RST.
  • the interlayer insulating film 201 includes one of a SiO 2 film, a SiN film, a SiON film, or a SiCN film, or two or more of these.
  • the interlayer insulating film 201 is composed of a laminated film in which a plurality of films are laminated.
  • the interlayer insulating film 201 and the insulating separation film 202 are composed of, for example, one layer of SiO 2 film, SiN film, SiON film or SiCN film.
  • the interlayer insulating film 201 and the insulating separation film 202 may each be composed of a laminated film in which a plurality of films are laminated.
  • the wirings LA2 and LB2 include a portion VL extending in the thickness direction of the substrate (for example, the Z-axis direction) and a portion HL extending in the horizontal direction (for example, the X-axis direction and the Y-axis direction). including.
  • the partial VL extending in the thickness direction is made of, for example, tungsten (W)
  • the partial HL extending in the horizontal direction is made of, for example, Cu or a Cu alloy. ..
  • the portion HL extending in the horizontal direction may be made of aluminum (Al) or an Al alloy containing Al as a main component.
  • the portion HL extending in the horizontal direction of the wirings LA2 and LB2 is composed of a total of five layers, the metal layers M21 to M25.
  • the metal layers M21 to M24 are made of Cu or Cu alloy, and the metal layer M25 is made of Al or Al alloy.
  • the electrode portions E21 and E22 are made of, for example, Cu or a Cu alloy.
  • the third substrate portion 30 includes, for example, a third semiconductor substrate 31 made of a silicon substrate and an interlayer insulating film 301 covering the surface side of the third semiconductor substrate 31 facing the second substrate portion 20 (“fourth interlayer” of the present disclosure.
  • the third semiconductor substrate 31 is provided with a plurality of transistors and an impurity diffusion layer constituting the logic circuit 35 (see FIG. 1).
  • the interlayer insulating film 301 covers a plurality of transistors and an impurity diffusion layer constituting the logic circuit 35.
  • the interlayer insulating film 201 includes one of a SiO 2 film, a SiN film, a SiON film, or a SiCN film, or two or more of these.
  • the interlayer insulating film 301 is composed of a laminated film in which a plurality of films are laminated.
  • the wirings LA3 and LB3 include a portion VL extending in the thickness direction of the substrate (for example, the Z-axis direction) and a portion HL extending in the horizontal direction (for example, the X-axis direction and the Y-axis direction). including.
  • the partial VL extending in the thickness direction is made of, for example, tungsten (W)
  • the partial HL extending in the horizontal direction is made of, for example, Cu or a Cu alloy. ..
  • the portion HL extending in the horizontal direction of the wirings LA3 and LB3 is composed of a total of three layers of metal layers M31, M32, and M33.
  • the electrode portion E31 is made of, for example, Cu or a Cu alloy.
  • the electrode portions E11, E21, E22, and E31 are made of Cu or a Cu alloy.
  • the electrode portions E11 and E21 are directly bonded to each other in a state of facing each other, and are, for example, Cu-Cu bonded and integrated.
  • the first substrate portion 10 and the second substrate portion 20 are electrically connected, and the strength of the bonding between the first substrate portion 10 and the second substrate portion 20 is increased.
  • the electrode portions E22 and E31 are directly bonded to each other in a state of facing each other, and are, for example, Cu-Cu bonded and integrated.
  • the second substrate portion 20 and the third substrate portion 30 are electrically connected, and the strength of the bonding between the second substrate portion 20 and the third substrate portion 30 is increased.
  • FIG. 3 is an enlarged cross-sectional view showing the amplification transistor AMP and its peripheral portion in the image pickup apparatus 1 according to the first embodiment of the present disclosure.
  • the second semiconductor substrate 21 has a first element region R1 provided with an amplification transistor AMP and a second element provided with an element other than the amplification transistor AMP (for example, a reset transistor RST). It has a region R2 and a penetration region R3 through which the second semiconductor substrate 21 is penetrated in the thickness direction.
  • the penetration region R3 is embedded with an insulating separation membrane 202.
  • the insulating separation membrane 202 embedded in the penetration region R3 isolates and separates between two adjacent first element regions R1 and between adjacent first element regions R1 and second element region R2.
  • the floating diffusion FD provided in the first substrate portion 10 is connected to the gate electrode of the amplification transistor AMP via the wirings LA1 and LA2 provided in the pixel region RA and the electrode junction JA12 (FIG. 1). , See Figure 2).
  • the wiring LA1 includes the first wiring FL1 provided on the first substrate portion 10.
  • the first wiring FL1 is a wiring for connecting the floating diffusion FD and the electrode portion E11.
  • the wiring LA2 includes the second wiring FL2 provided in the second substrate portion 20.
  • the second wiring FL2 is a wiring for connecting the electrode portion E21 and the gate electrode AMP-G of the amplification transistor AMP.
  • the first wiring FL1 and the second wiring FL2 arranged in the pixel region are connected to each other via a Cu-Cu bonded electrode portion E11 and an electrode portion E21 (electrode joining portion JA12). Further, the second wiring FL2 is connected to the gate electrode AMP-G of the amplification transistor AMP through the penetration region R3.
  • the portion of the second wiring FL2 that passes through the penetration region R3 may be referred to as a penetration via (Via).
  • the penetrating region R3 may be referred to as a Si penetrating region, and the penetrating via may be referred to as a Si penetrating via (TSV) or a Si penetrating FD via. good.
  • the image pickup device 1 includes various film forming devices (including CVD (Chemical Vapor Deposition) devices and sputtering devices), ion implantation devices, heat treatment devices, etching devices, CMP (Chemical Vapor Deposition) devices, substrate bonding devices, and the like. Manufactured using the equipment of. Hereinafter, these devices are collectively referred to as manufacturing devices.
  • CVD Chemical Vapor Deposition
  • sputtering devices ion implantation devices
  • heat treatment devices heat treatment devices
  • etching devices etching devices
  • CMP Chemical Vapor Deposition
  • FIGS. 4A to 4H are cross-sectional views showing the manufacturing method of the image pickup apparatus 1 according to the first embodiment of the present disclosure in the order of processes.
  • the manufacturing apparatus separately manufactures the first substrate portion 10', the second substrate portion 20', and the third substrate portion 30 by using the CMOS process.
  • the difference between the first substrate portion 10'shown in FIG. 4A and the first substrate portion 10 shown in FIG. 2 is that the insulating film 102 is not formed.
  • the insulating film 102 is formed after the first substrate portion 10'is attached to the second substrate portion 20.
  • the upper surface 10'a of the first substrate portion 10'shown in FIG. 4A serves as a bonding surface with respect to the second substrate portion 20.
  • the difference between the second substrate portion 20'shown in FIG. 4B and the second substrate portion 20 shown in FIG. 2 is that the through region R3 and the like are not formed in the second semiconductor substrate 21, and the insulating separation film 202 is formed. ,
  • the interlayer insulating film 203 and the like are not provided.
  • the penetration region R3 and the like are formed after the second substrate portion 20'is attached to the third substrate portion 30.
  • the upper surface 20'a of the second substrate portion 20'shown in FIG. 4B serves as a bonding surface with respect to the third substrate portion 30.
  • the upper surface 30a of the third substrate portion 30 shown in FIG. 4C serves as a bonding surface with respect to the second substrate portion 20'.
  • the manufacturing apparatus attaches the second substrate portion 20'to the third substrate portion 30.
  • the interlayer insulating film 201 and the interlayer insulating film 301 are bonded, and the electrode portion E22 and the electrode portion E31 are Cu-Cu bonded, and as shown in FIG. 4E, the second substrate portion 20'and It is integrated with the third substrate portion 30.
  • the manufacturing apparatus grinds the back surface 21a (upper surface in FIG. 4E) side of the second semiconductor substrate 21 to thin the second semiconductor substrate 21.
  • the manufacturing apparatus partially etches and removes the second semiconductor substrate 21 from the back surface 21a side.
  • the first element region R1, the second element region R2, and the penetration region R3 are formed on the second semiconductor substrate 21.
  • well separation of the amplification transistor AMP and penetration separation of the second semiconductor substrate 21 are performed simultaneously in the same step. As a result, the number of steps can be reduced as compared with the case where the well separation and the penetration separation are performed separately.
  • the manufacturing apparatus forms an insulating film on the second semiconductor substrate 21, and the formed insulating film is subjected to CMP treatment. As a result, the first element region R1 and the second element region R2 are exposed from under the insulating film, and the insulating separation membrane 202 is formed in the through region R3.
  • the manufacturing apparatus forms the interlayer insulating film 203, the wirings LA2 and LB2 (see FIG. 1), and the electrode portion E21.
  • the second wiring FL2 which is a part of the wiring connecting the floating diffusion FD and the gate electrode AMP-G of the amplification transistor AMP, is formed.
  • the manufacturing apparatus attaches the third substrate portion 30 to the second substrate portion 20.
  • the manufacturing apparatus forms the insulating film 102 on the first substrate portion 10, forms the color filter CF on the insulating film 102, and mounts the microlens ML on the color filter CF.
  • the image pickup apparatus 1 shown in FIGS. 1 to 3 is completed.
  • the image pickup apparatus 1 includes a first substrate portion 10 and a second substrate portion 20 provided on one surface side of the first substrate portion 10.
  • the first substrate portion 10 is provided on the first semiconductor substrate 11, the sensor pixel 12 which is provided on the first semiconductor substrate 11 and performs photoelectric conversion, and is provided on the surface side of the first semiconductor substrate 11 facing the second substrate portion 20. It has an interlayer insulating film 101 and an electrode portion E11 provided on the surface side of the interlayer insulating film 101 facing the second substrate portion 20.
  • the second substrate portion 20 is provided in the second semiconductor substrate 21, the readout circuit 22 provided on the second semiconductor substrate 21 and outputting a pixel signal based on the charge output from the sensor pixel 12, and the second semiconductor substrate 21. It has an interlayer insulating film 203 provided on the surface side facing the substrate portion 10, and an electrode portion E21 provided on the surface side of the interlayer insulating film 203 facing the first substrate portion 10. The electrode portion E11 and the electrode portion E21 are directly bonded to each other.
  • the read circuit has an amplification transistor AMP that amplifies a voltage signal according to the level of charge output from the sensor pixel 12.
  • the second semiconductor substrate 21 has a first element region R1 provided with an amplification transistor AMP, a second element region R2 provided with an element other than the amplification transistor AMP, and a second semiconductor substrate 21 in the thickness direction. It has a penetration region R3 that has been penetrated. The first element region R1 and the second element region R2 are separated by a penetration region R3.
  • the amplification transistor AMP is stacked and arranged on the sensor pixel 12, it is easy to secure a large area and it is possible to suppress an increase in noise. Further, since the amplification transistor AMP is isolated from other elements by the penetration region R3, it can be a source follower type in which the source region and the well region are connected. As a result, the amplification transistor AMP can increase the SF gain and improve the conversion efficiency. As a result, the image pickup apparatus 1 can suppress the deterioration of the characteristics even if the miniaturization and the density increase progress.
  • the second substrate portion 20 has an insulating separation membrane 202 provided in the penetration region R3 and a penetration wiring penetrating the insulation separation membrane 202.
  • a part of the second wiring FL2 connected to the gate electrode AMP-G of the amplification transistor AMP penetrates the insulation separation membrane 202.
  • the penetration region R3 is not only used as a separation region for separating the amplification transistor AMP from other elements, but also the second wiring FL2 is placed in the thickness direction (Z) of the second substrate portion 20. It is also used as a wiring area for extending in the axial direction). Compared with the case where these separation areas and wiring areas are provided separately, it is possible to reduce the area of the pixel area while maintaining the area of the amplification transistor.
  • the gate electrode, the source region, and the drain region of the amplification transistor AMP are provided on the surface side facing the third substrate portion 30.
  • the present disclosure is not limited to this.
  • the gate electrode, source region, and drain region of the amplification transistor AMP may be provided on the side of the first substrate portion 10.
  • FIG. 5 is a cross-sectional view schematically showing the configuration of the image pickup apparatus 1A according to the modified example of the first embodiment of the present disclosure.
  • FIG. 6 is an enlarged cross-sectional view showing the amplification transistor AMP and its peripheral portion in the image pickup apparatus 1A according to the modified example of the first embodiment of the present disclosure.
  • the gate electrode AMP-G, the source region, and the drain region of the amplification transistor AMP are provided on the side of the first substrate portion 10.
  • the amplification transistor AMP is stacked and arranged on the sensor pixel 12, it is easy to secure a large area and it is possible to suppress an increase in noise. Further, since the amplification transistor AMP is isolated from other elements by the penetration region R3, it can be a source follower type. As a result, the amplification transistor AMP can increase the SF gain and improve the conversion efficiency. As a result, the image pickup apparatus 1A can suppress deterioration of characteristics due to miniaturization and high density.
  • FIG. 7 is a schematic diagram showing a configuration example of the image pickup apparatus 1B according to the second embodiment of the present disclosure.
  • the sensor pixel 12 of the first substrate portion 10 includes a photodiode PD, a transfer transistor TG, a floating diffusion FD, an overflow transistor OFG, and a first memory transistor MEM1. It has a second memory transistor MEM2.
  • the transfer transistor TG, the second memory transistor MEM2, and the first memory transistor MEM1 are connected in series in this order.
  • the connection region (source region or drain region) between the transfer transistor TG and the second memory transistor MEM2 is the MEM unit (storage unit).
  • One of the first memory transistor MEM1 and the second memory transistor MEM2 is used for the purpose of holding the noise charge caused by the stray light while holding the signal charge converted by the photodiode PD. Further, the other of the first memory transistor MEM1 and the second memory transistor MEM2 is used for holding the noise charge caused by the stray light in a state where the signal charge converted by the photodiode PD is not held.
  • an embedded channel CCD Charge Coupled Device
  • the electric charges stored in the first memory transistor MEM1 and the second memory transistor MEM2 can be completely transferred to the subsequent stage.
  • FIG. 8 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus 1B according to the second embodiment of the present disclosure.
  • FIG. 9 is an enlarged cross-sectional view showing the photodiode PD provided on the first semiconductor substrate 11 and its peripheral portion in the image pickup apparatus 1B according to the second embodiment of the present disclosure.
  • the first semiconductor substrate 11 of the image pickup apparatus 1B includes a MEM section 17 composed of the same conductive type impure diffusion layer as the floating diffusion, and a light shielding section 19 covering the MEM section 17. Is provided.
  • the light-shielding portion 19 prevents light from entering the MEM section 17 from the microlens ML side.
  • a light-shielding unit 19 is also arranged between the adjacent MEM units 17.
  • the light-shielding portion 19 is made of a material having a light-shielding property such as aluminum (Al) or tungsten (W).
  • a plurality of sensor pixels may share one floating diffusion. Further, in the insulating separation membrane 202 that fills the penetration region R3, a gap portion may be provided between the wiring and the side surface of the second semiconductor substrate 21.
  • FIG. 10 is a cross-sectional view schematically showing a configuration example of the image pickup apparatus 1C according to the third embodiment of the present disclosure.
  • FIG. 11 is a plan view schematically showing a configuration example of the second substrate portion 20 in the image pickup apparatus 1C according to the third embodiment of the present disclosure.
  • FIG. 12 is a plan view schematically showing a configuration example of the first substrate portion 10 in the image pickup apparatus 1C according to the third embodiment of the present disclosure.
  • the cross section of the plan view of FIG. 11 cut along the X11-X11'line corresponds to the cross section of the second substrate portion 20 shown in FIG.
  • the reference numerals “FD” and “VDD” are added to a part of the source region or the drain region.
  • the NWL attached to the second semiconductor substrate 21 means that it is an N-type well region.
  • the amplification transistor AMP is provided in the first element region R1 of the second semiconductor substrate 21, and the reset transistor RST provided in the second element region R2 of the second semiconductor substrate 21. However, they are adjacent to each other with the penetration region R3 in between.
  • the amplification transistor AMP is of the source follower type by connecting the source region (S) and the P-type well region PWL. Further, the source region (S) of the amplification transistor AMP is connected to the drain region (D) of the selection transistor SEL via wiring.
  • the second wiring FL2 connected to the floating diffusion passes through the insulating separation membrane 202 embedded in the penetration region R3 between the amplification transistor AMP and the reset transistor RST.
  • a first gap AG1 is provided between the amplification transistor AMP and the second wiring FL2.
  • a second gap portion AG2 is provided between the reset transistor and the second wiring FL2.
  • the potential of the second wiring FL2 is the same as or almost the same as that of the floating diffusion, and is different from the potential of the P-type well region PWL of the amplification transistor AMP. Therefore, a capacitance is generated between the second wiring FL2 and the well region PWL of the amplification transistor AMP. Similarly, since the potential of the second wiring FL2 is different from the potential of the well region PWL of the reset transistor RST, a capacitance is also generated between the second wiring FL2 and the well region PWL of the amplification transistor AMP. Due to these capacitances, the conversion efficiency of the amplification transistor AMP may decrease.
  • the first gap portion AG1 is provided between the second wiring FL2 and the well region PWL of the amplification transistor AMP. Further, a second gap portion AG2 is provided between the second wiring FL2 and the well region PWL of the reset transistor RST.
  • the air constituting the void portion has a higher dielectric constant than the silicon oxide film (SiO 2 film) which is an example of the interlayer insulating film 201. Therefore, the capacitance between the second wiring FL2 and the well region PWL of the amplification transistor AMP is reduced by the first void portion AG1, and the capacitance between the second wiring FL2 and the well region PWL of the reset transistor RST is the second. It is reduced by the gap AG2. As a result, the image pickup apparatus 1C can suppress a decrease in the conversion efficiency of the amplification transistor AMP.
  • the first gap portion AG1 is a second semiconductor to such an extent that it can face all of the portions exposed on the side surface of the second semiconductor substrate 21 in the well region PWL of the amplification transistor AMP. It is preferable that the substrate 21 is formed deeply in the thickness direction (for example, the Z-axis direction). Further, as shown in FIG. 11, even in the gate width direction (Y-axis direction) of the amplification transistor AMP, the first gap portion AG1 is formed as long as the well region under the drain region (D) of the amplification transistor AMP. It is preferable that it is. As a result, the first gap portion AG1 can be widely interposed between the well region PWL of the amplification transistor AMP and the second wiring FL2, so that the capacity of the second wiring FL2 can be effectively reduced.
  • the thickness of the second semiconductor substrate 21 is such that the second gap portion AG2 can face all of the portion of the well region PWL of the reset transistor RST exposed on the side surface of the second semiconductor substrate 21. It is preferably formed deeply in the vertical direction (for example, the Z-axis direction). Further, as shown in FIG. 11, even in the gate width direction (Y-axis direction) of the reset transistor RST, the second gap portion AG2 is formed as long as the well region under the drain region of the reset transistor RST. Is preferable. As a result, the second gap portion AG2 can be widely interposed between the well region PWL of the reset transistor RST and the second wiring FL2, so that the capacity of the second wiring FL2 can be effectively reduced.
  • FIGS. 4A to 4F are cross-sectional views showing the manufacturing method of the image pickup apparatus 1C according to the third embodiment of the present disclosure in the order of processes.
  • the back surface of the second semiconductor substrate 21 is ground, the second semiconductor substrate 21 is etched to form the first element region R1, the second element region R2, and the penetration region R3, and the insulating separation membrane is formed in the penetration region R3.
  • the steps up to the step of forming the 202 are, for example, the same as in the first embodiment (see FIGS. 4A to 4F).
  • the manufacturing apparatus After forming the insulating separation membrane 202, as shown in FIG. 13B, the manufacturing apparatus partially etches the insulating separation membrane 202 of the penetration region R3 to form the first void portion AG1 and the second void portion AG2.
  • the manufacturing apparatus forms the interlayer insulating film 203 on the back surface side of the second semiconductor substrate 21. Each opening end of the first void portion AG1 and the second void portion AG2 is closed (pinched off) by the interlayer insulating film 203.
  • the manufacturing apparatus forms a penetrating via that becomes a part of the second wiring FL2 between the first gap portion AG1 and the second gap portion AG2.
  • the manufacturing apparatus forms the electrode portion E21. Subsequent steps are the same as in the first embodiment (see FIG. 4H). Through the above steps, the image pickup apparatus 1C is completed.
  • the image pickup apparatus 1C according to the third embodiment has the same configuration as the image pickup apparatus 1 according to the first embodiment, it has the same effect as the image pickup apparatus 1.
  • the second substrate portion 20 of the image pickup apparatus 1C has a first gap portion AG1 and a second gap portion AG2 provided in the insulating separation film 202.
  • the first gap portion AG1 is located between the second wiring FL2 and the side surface of the first element region R1.
  • the second gap portion AG2 is located between the second wiring FL2 and the side surface of the second element region R2.
  • the image pickup apparatus 1C can reduce the capacity of the second wiring FL2, so that it is possible to suppress a decrease in the conversion efficiency of the amplification transistor AMP due to the wiring capacity.
  • the first void portion AG1 and the second void portion AG2 may be long so as to cover not only the side surface of the well region PWL but also the side surface of the source region or the side surface of the drain region of the transistor. good. That is, the first gap portion AG1 and the second gap portion AG2 may be formed to have the same thickness as the second semiconductor substrate 21.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the image pickup apparatus 1D according to the first modification of the third embodiment of the present disclosure.
  • FIG. 15 is a plan view schematically showing the configuration of the second substrate portion 20 in the image pickup apparatus 1D according to the first modification of the third embodiment of the present disclosure.
  • the cross section of the plan view of FIG. 15 cut along the X15-X15'line corresponds to the cross section of the second substrate portion 20 shown in FIG.
  • the amplification transistor AMP and the selection transistor SEL are connected in series without wiring.
  • the source region (S) of the amplification transistor AMP and the drain region (D) of the selection transistor SEL are formed of the same N-type impurity diffusion layer. Further, in the amplification transistor AMP, the high potential drain region connected to the power supply line VDD is located on the through region R3 side.
  • the first void portion AG1 and the second void portion AG2 are formed longer in the thickness direction (for example, the Z-axis direction) of the second semiconductor substrate 21 than in the image pickup apparatus 1C (see FIG. 10).
  • the length of the first gap portion AG1 and the length of the second gap portion AG2 are the same as or substantially the same as the thickness of the second semiconductor substrate 21, respectively.
  • the first void portion AG1 is formed long in the Z-axis direction so as to cover not only the side surface of the well region PWL but also the side surface of the drain region of the amplification transistor AMP.
  • the second gap AG2 is formed long in the Z-axis direction so as to cover not only the side surface of the well region PWL but also the side surface of the source region of the reset transistor RST.
  • the drain region of the amplification transistor AMP is located on the penetration region R3 side. Since there is a potential difference between the high potential drain region connected to the power line VDD and the second wiring FL2 connected to the floating diffusion FD, a capacitance is generated between the drain region and the second wiring FL2. However, in the image pickup apparatus 1D, since the first gap portion AG1 is arranged between the drain region and the second wiring FL2, the increase in capacitance is suppressed. Therefore, the image pickup apparatus 1D can suppress a decrease in the conversion efficiency of the amplification transistor AMP.
  • FIG. 16 is a cross-sectional view schematically showing the configuration of the image pickup apparatus 1E according to the second modification of the third embodiment of the present disclosure.
  • FIG. 17 is a plan view schematically showing the configuration of the second substrate portion 20 in the image pickup apparatus 1E according to the second modification of the third embodiment of the present disclosure.
  • the drain region of the reset transistor RST is connected to the power supply line VDD and has a high potential.
  • the drain region of the reset transistor RST is located on the through region R3 side.
  • the capacitance between the drain region of the reset transistor RST and the second wiring FL2. Occurs.
  • the image pickup apparatus 1E since the second gap portion AG2 is arranged between the drain region and the second wiring FL2, the increase in capacitance is suppressed. Therefore, the image pickup apparatus 1E can suppress a decrease in the conversion efficiency of the amplification transistor AMP.
  • the "through wiring" of the present disclosure is not limited to the second wiring FL2 connected to the floating diffusion FD.
  • the "through wiring" of the present disclosure may be wiring other than the second wiring FL2.
  • the present technology includes various embodiments not described here. At least one of the various omissions, substitutions and modifications of the components may be made without departing from the gist of the embodiments and modifications described above. Further, the effects described in the present specification are merely exemplary and not limited, and other effects may be obtained.
  • the present disclosure may also have the following structure.
  • the first board part and A second substrate portion provided on one surface side of the first substrate portion is provided.
  • the first substrate portion is With the first semiconductor substrate, A sensor pixel provided on the first semiconductor substrate and performing photoelectric conversion,
  • the first interlayer insulating film provided on the surface side of the first semiconductor substrate facing the second substrate portion,
  • the first interlayer insulating film has a first electrode portion provided on the surface side facing the second substrate portion.
  • the second substrate portion is With the second semiconductor substrate, A readout circuit provided on the second semiconductor substrate and outputting a pixel signal based on the charge output from the sensor pixel, and a readout circuit.
  • the second interlayer insulating film provided on the surface side of the second semiconductor substrate facing the first substrate portion,
  • the second interlayer insulating film has a second electrode portion provided on the surface side facing the first substrate portion.
  • the first electrode portion and the second electrode portion are directly bonded to each other.
  • the reading circuit is It has an amplification transistor that amplifies a voltage signal according to the level of charge output from the sensor pixel.
  • the second semiconductor substrate is The first element region provided with the amplification transistor and A second element region provided with an element other than the amplification transistor, and It has a penetration region through which the second semiconductor substrate is penetrated in the thickness direction, and has.
  • An image pickup apparatus in which the first element region and the second element region are separated by the penetration region.
  • the second substrate portion further includes a third substrate portion provided on the opposite side of the surface facing the first substrate portion.
  • the second substrate portion is A third interlayer insulating film provided on the surface side of the second semiconductor substrate facing the third substrate portion, and the third interlayer insulating film.
  • the third interlayer insulating film further includes a third electrode portion provided on the surface side facing the third substrate portion.
  • the third board portion is With the third semiconductor substrate, A logic circuit provided on the third semiconductor substrate and processing the pixel signal,
  • the fourth interlayer insulating film provided on the surface side of the third semiconductor substrate facing the second substrate portion,
  • the fourth interlayer insulating film has a fourth electrode portion provided on the surface side facing the second substrate portion.
  • the sensor pixel is Photoelectric conversion element and A transfer transistor electrically connected to the photoelectric conversion element, Further, it has a floating diffusion that temporarily holds the electric charge output from the photoelectric conversion element via the transfer transistor.
  • the read circuit is A reset transistor that resets the potential of the floating diffusion to a predetermined potential, It has a selection transistor that controls the output timing of the pixel signal from the amplification transistor.
  • the amplification transistor generates, as the pixel signal, a signal having a voltage corresponding to the level of charge held in the floating diffusion.
  • the image pickup apparatus according to any one of (1) to (3), wherein the other element provided in the second element region is the reset transistor.
  • the first substrate portion is Further having a first wire, which connects to the floating diffusion,
  • the second substrate portion further includes a second wiring, which is connected to the gate electrode of the amplification transistor.
  • the image pickup apparatus according to (4), wherein the first wiring and the second wiring are connected to each other via the first electrode portion and the second electrode portion.
  • the second substrate portion is The insulating separation membrane provided in the penetration region and The image pickup apparatus according to any one of 1 to 5, further comprising a penetrating wiring penetrating the insulating separation membrane.
  • the second substrate portion is The insulating separation membrane provided in the penetration region and Further having a penetrating wiring penetrating the insulating separation membrane, The image pickup apparatus according to (5) above, wherein a part of the second wiring penetrates the insulating separation membrane as the penetrating wiring.
  • the second substrate portion is The image pickup apparatus according to (6) or (7) above, further comprising a first gap portion provided on the insulating separation membrane and located between the through wiring and the side surface of the first element region.
  • the image pickup apparatus (9) The image pickup apparatus according to (8), wherein the first gap is located between the through wiring and the well region of the amplification transistor.
  • the second substrate portion is The image pickup according to any one of (6) to (9) above, which is provided on the insulating separation membrane and further has a second gap portion located between the through wiring and the side surface of the second element region.
  • the second substrate portion is The insulating separation membrane provided in the penetration region and Through wiring that penetrates the insulating separation membrane and The image pickup apparatus according to (4 or 5), further comprising a second gap portion provided in the insulating separation membrane and located between the through wiring and the well region of the reset transistor.

Abstract

特性の低下を抑制可能な撮像装置を提供する。撮像装置は、第1基板部と、第1基板部の一方の面側に設けられた第2基板部と、を備える。第1基板部は、第1半導体基板に設けられたセンサ画素と、第1半導体基板に設けられた第1層間絶縁膜と、第1層間絶縁膜に設けられた第1電極部と、を有する。第2基板部は、第2半導体基板に設けられた読み出し回路と、第2半導体基板に設けられた第2層間絶縁膜と、第2層間絶縁膜に設けられた第2電極部と、を有する。第1電極部と第2電極部は互いに直接接合されている。第2半導体基板は、増幅トランジスタが設けられた第1素子領域と、増幅トランジスタ以外の他の素子が設けられた第2素子領域と、第2半導体基板が厚さ方向に貫通された貫通領域と、を有する。第1素子領域と第2素子領域との間は貫通領域によって分離されている。

Description

撮像装置
 本開示は、撮像装置及に関する。
 CMOS(Complementary Metal Oxide Semiconductor)イメージセンサとして、上側基板及び中間基板の2層に画素回路が配置され、下側基板の1層にロジック回路が配置された構造が知られている(例えば、特許文献1参照)。また、フォトダイオード及びフローティングディフュージョンが形成された第1半導体基板と、増幅トランジスタが形成された第2半導体基板とを有し、第1半導体基体と第2半導体基体との接合面において電極同士が接合された構造の固体撮像装置が知られている(例えば、特許文献2参照)。
国際公開第2016/009832号 特開2014-22561号公報
 例えば、共有画素数が少ないCMOSイメージセンサや、画素回路にMEM(メモリ)部を有する撮像装置では、画素内に配置すべきトランジスタやMOSゲート構造が多い。このため、センサ画素の微細化、高密度化が進展すると、増幅トランジスタの面積を十分に確保することが難しくなり、ノイズの増大や変換効率の低下など、撮像装置の特性が低下する可能性がある。
 本開示はこのような事情に鑑みてなされたもので、特性の低下を抑制可能な撮像装置を提供することを目的とする。
 本開示の一態様に係る撮像装置は、第1基板部と、前記第1基板部の一方の面側に設けられた第2基板部と、を備える。前記第1基板部は、第1半導体基板と、前記第1半導体基板に設けられ、光電変換を行うセンサ画素と、前記第1半導体基板において前記第2基板部と向かい合う面側に設けられた第1層間絶縁膜と、前記第1層間絶縁膜において前記第2基板部と向かい合う面側に設けられた第1電極部と、を有する。前記第2基板部は、第2半導体基板と、前記第2半導体基板に設けられ、前記センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路と、前記第2半導体基板において前記第1基板部と向かい合う面側に設けられた第2層間絶縁膜と、前記第2層間絶縁膜において前記第1基板部と向かい合う面側に設けられた第2電極部と、を有する。前記第1電極部と前記第2電極部は互いに直接接合されている。前記読し出し回路は、前記センサ画素から出力された電荷のレベルに応じた電圧の信号を増幅する増幅トランジスタを有する。前記第2半導体基板は、前記増幅トランジスタが設けられた第1素子領域と、前記増幅トランジスタ以外の他の素子が設けられた第2素子領域と、前記第2半導体基板が厚さ方向に貫通された貫通領域と、を有する。前記第1素子領域と前記第2素子領域との間は前記貫通領域によって分離されている。
 このような構成であれば、増幅トランジスタは、センサ画素に積層して配置される面積を広く確保することが容易となり、ノイズの増大を抑制することが可能となる。また、増幅トランジスタは、貫通領域によって他の素子から絶縁分離されるため、ソース領域とウェル領域とが接続されたソースフォロワ型とすることができる。これにより、増幅トランジスタは、ゲインを増加させることができ、変換効率を向上させることができる。これにより、撮像装置は、特性の低下を抑制することができる。
図1は、本開示の実施形態1に係る撮像装置の構成例を示す模式図である。 図2は、本開示の実施形態1に係る撮像装置の構成例を模式的に示す断面図である。 図3は、本開示の実施形態1に係る撮像装置において、増幅トランジスタとその周辺部を拡大して示す断面図である。 図4Aは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Bは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Cは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Dは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Eは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Fは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Gは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図4Hは、本開示の実施形態1に係る撮像装置の製造方法を工程順に示す断面図である。 図5は、本開示の実施形態1の変形例に係る撮像装置の構成を模式的に示す断面図である。 図6は、本開示の実施形態1の変形例に係る撮像装置において、増幅トランジスタとその周辺部を拡大して示す断面図である。 図7は、本開示の実施形態2に係る撮像装置の構成例を示す模式図である。 図8は、本開示の実施形態2に係る撮像装置の構成例を模式的に示す断面図である。 図9は、本開示の実施形態2に係る撮像装置において、第1半導体基板に設けられたフォトダイオードとその周辺部を拡大して示す断面図である。 図10は、本開示の実施形態3に係る撮像装置の構成例を模式的に示す断面図である。 図11は、本開示の実施形態3に係る撮像装置において、第2基板部の構成例を模式的に示す平面図である。 図12は、本開示の実施形態3に係る撮像装置において、第1基板部の構成例を模式的に示す平面図である。 図13Aは、本開示の実施形態3に係る撮像装置の製造方法を工程順に示す断面図である。 図13Bは、本開示の実施形態3に係る撮像装置の製造方法を工程順に示す断面図である。 図13Cは、本開示の実施形態3に係る撮像装置の製造方法を工程順に示す断面図である。 図13Dは、本開示の実施形態3に係る撮像装置の製造方法を工程順に示す断面図である。 図13Eは、本開示の実施形態3に係る撮像装置の製造方法を工程順に示す断面図である。 図14は、本開示の実施形態3の変形例1に係る撮像装置の構成を模式的に示す断面図である。 図15は、本開示の実施形態3の変形例1に係る撮像装置において、第2基板部の構成を模式的に示す平面図である。 図16は、本開示の実施形態3の変形例2に係る撮像装置の構成を模式的に示す断面図である。 図17は、本開示の実施形態3の変形例2に係る撮像装置において、第2基板部の構成を模式的に示す平面図である。
 以下において、図面を参照して本開示の実施形態を説明する。以下の説明で参照する図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。ただし、図面は模式的なものであり、厚みと平面寸法との関係、各層の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
 以下の説明における上下等の方向の定義は、単に説明の便宜上の定義であって、本開示の技術的思想を限定するものではない。例えば、対象を90°回転して観察すれば上下は左右に変換して読まれ、180°回転して観察すれば上下は反転して読まれることは勿論である。
 以下の説明では、X軸方向、Y軸方向及びZ軸方向の文言を用いて、方向を説明する場合がある。例えば、X軸方向及びY軸方向は、第1半導体基板11、第2半導体基板21及び第3半導体基板31の各主面(表面、裏面)に平行な方向である。X軸方向及びY軸方向を水平方向ともいう。Z軸方向は、水平方向と垂直に交わる方向である。X軸方向、Y軸方向及びZ軸方向は、互いに直交する。
<実施形態1>
(構成例)
 図1は、本開示の実施形態1に係る撮像装置1の構成例を示す模式図である。図1に示すように、撮像装置1は、第1基板部10と、第2基板部20と、第3基板部30とを貼り合わせて構成された、3層積層構造の撮像装置である。第1基板部10と、第2基板部20と、第3基板部30は、この順に積層されている。
 第1基板部10は、光電変換を行う複数のセンサ画素12を有する。複数のセンサ画素12は、第1基板部10における画素領域RA内に行列状に設けられている。センサ画素12は、フォトダイオードPD(本開示の「光電変換素子」の一例)と、転送トランジスタTGと、フローティングディフュージョンFDと、オーバーフロートランジスタOFGと、を有する。
 フォトダイオードPDは、入射した光を光電変換により電荷に変換して蓄積する光電変換部であり、アノード端子が接地されているとともに、カソード端子が転送トランジスタTGとオーバーフロートランジスタOFGとに接続されている。転送トランジスタTGは、後述の駆動回路36から供給される駆動信号に従って駆動する。転送トランジスタTGがオンになると、フォトダイオードPDに蓄積されている電荷がフローティングディフュージョンFDに転送される。フローティングディフュージョンFDは、所定の蓄積容量を有する浮遊拡散領域であり、フォトダイオードPDから転送される電荷を一時的に蓄積する。フローティングディフュージョンFDは、後述の増幅トランジスタAMPのゲート電極に接続されている。オーバーフロートランジスタOFGは、後述の駆動回路36から供給される駆動信号に従って駆動する。オーバーフロートランジスタOFGがオンになると、初期状態のフォトダイオードPDに残存する電荷が電源線VDDに排出される。
 転送トランジスタTG及びオーバーフロートランジスタOFGを駆動する駆動配線DLは、第1基板部10の画素領域RAから、画素領域RAの周辺に位置する周辺領域RBに引き出さている。そして、駆動配線DLは、周辺領域RBに設けられた配線LB1からLB3と、周辺領域RBに設けられた電極接合部JB12、JB23とを介して、第3基板部30の駆動回路36に接続されている。
 配線LB1からLB3は、それぞれ、基板の厚さ方向(例えば、Z軸方向)に延設されている部分を含む。また、配線LB1からLB3は、それぞれ、基板の厚さ方向と直交する水平方向(例えば、X軸方向、Y軸方向)に延設されている部分を含んでもよい。配線LB1は第1基板部10の周辺領域RBに設けられた配線であり、配線LB2は第2基板部20の周辺領域RBに設けられた配線であり、配線LB3は第3基板部30の周辺領域RBに設けられた配線である。
 電極接合部JB12、JB23は、それぞれ、例えば銅(Cu)又はCuを主成分とするCu合金で構成された2つの電極部が基板の厚さ方向で互いに接合された接合体である。電極接合部JB12は、第1基板部10と第2基板部20との間で、配線LB1、LB2を互いに接続している。電極接合部JB23は、第2基板部20と第3基板部30の間で、配線LB2、LB3を互いに接続している。
 第1基板部10に設けられたフローティングディフュージョンFDと、第1基板部に設けられた電源線VDD及び基準電位線VSS(一例として、接地電位線GND)は、画素領域RAに設けられた配線LA1、LA2と、画素領域RAに設けられた電極接合部JA12とを介して、第2基板部20の後述する読み出し回路22に接続されている。
 配線LA1、LA2と後述の配線LA3は、それぞれ、基板の厚さ方向(例えば、Z軸方向)に延設されている部分を含む。また、配線LA1からLA3は、それぞれ、基板の水平方向(例えば、X軸方向、Y軸方向)に延設されている部分を含んでもよい。配線LA1は第1基板部10の画素領域RAに設けられた配線であり、配線LA2は第2基板部20の画素領域RAに設けられた配線であり、配線LA3は第3基板部30の画素領域RAに設けられた配線である。
 電極接合部JA12と、画素領域RAに設けられた後述の電極接合部JA23は、それぞれ、例えばCu又はCu合金で構成された2つの電極部が基板の厚さ方向で互いに接合された接合体である。電極接合部JA12は、第1基板部10と第2基板部20との間で、配線LA1、LA2を互いに接続している。電極接合部JA23は、第2基板部20と第3基板部30の間で、配線LA2、LA3を互いに接続している。
 第2基板部20は、センサ画素12から出力された電荷に基づく画素信号を出力する読み出し回路22を有する。読み出し回路22は、第2基板部20における画素領域RA内に行列状に設けられている。読み出し回路22は、1つのセンサ画素12ごとに1つずつ設けられていてもよいし、複数(例えば、2つ又は4つ)のセンサ画素12ごとに1つずつ設けられていてもよい。第2基板部20は、行方向に延在する複数の画素駆動線と、列方向に延在する複数の垂直信号線VSLとを有する。
 読み出し回路22は、増幅トランジスタAMP、選択トランジスタSEL及びリセットトランジスタRSTを有する。増幅トランジスタAMPは、フローティングディフュージョンFDに蓄積されている電荷に応じたレベル(即ち、フローティングディフュージョンFDの電位)の画素信号を、選択トランジスタSELを介して垂直信号線VSLに出力する。つまり、フローティングディフュージョンFDが増幅トランジスタAMPのゲート電極に接続される構成により、フローティングディフュージョンFDおよび増幅トランジスタAMPは、フォトダイオードPDにおいて発生した電荷を増幅し、その電荷に応じたレベルの画素信号に変換する変換部として機能する。
 増幅トランジスタAMPは、ソース領域とウェル領域とが接続されてソースフォロア型となっており、バックバイアス効果がゼロ(0)又はゼロに近い値に低減されている。これにより、増幅トランジスタAMPは、SF(ソースフォロワ)ゲインが1又は1に近い値となり、変換効率の向上が図られている。
 選択トランジスタSELは、駆動回路36から供給される選択信号に従って駆動する。選択トランジスタSELがオンになると、増幅トランジスタAMPから出力される画素信号が垂直信号線VSLに出力可能な状態となる。リセットトランジスタRSTは、駆動回路36から供給されるリセット信号に従って駆動する。リセットトランジスタRSTがオンになると、フローティングディフュージョンFDに蓄積されている電荷が電源線VDDに排出されて、フローティングディフュージョンFDがリセットされる。
 垂直信号線VSLは、画素領域RAに設けられた配線LA2、LA3と、画素領域RAに設けられた電極接合部JA23とを介して、第3基板部30のロジック回路35に接続されている。垂直信号線VSLに出力された画素信号は、配線LA2、LA3と電極接合部JA23とを介して、ロジック回路35に出力される。
 第3基板部30は、画素信号を処理するロジック回路35を有する。ロジック回路35は、例えば、駆動回路36、コンパレータ37及び制御回路38を有する。駆動回路36は、例えば、複数のセンサ画素12を行単位で順に選択する。コンパレータ37は、例えば、駆動回路36によって選択された行の各センサ画素12から出力される画素信号に対して、相関二重サンプリング(Correlated Double Sampling:CDS)処理を施す。コンパレータ37は、例えば、CDS処理を施すことにより、画素信号の信号レベルを抽出し、各センサ画素12の受光量に応じた画素データを保持し、保持した画素データを順次、外部に出力する。制御回路38は、ロジック回路35内の各ブロック(例えば、駆動回路36、コンパレータ37)の駆動を制御する。
 図2は、本開示の実施形態1に係る撮像装置1の構成例を模式的に示す断面図である。図2に示すように、撮像装置1では、第3基板部30上に第2基板部20が積層され、第2基板部20上に第1基板部10が積層されている。また、第1基板部10上に透光性を有する絶縁膜102を介して、カラーフィルタCFとマイクロレンズMLとがこの順で配置されている。撮像装置1は、例えば、裏面(図1では上側)側から光が入射する裏面照射型のCMOSイメージである。裏面側にマイクロレンズMLとカラーフィルタCFとが配置されている。マイクロレンズMLとカラーフィルタCFは、それぞれ、センサ画素12ごとに設けられている。
 第1基板部10は、例えばシリコン基板で構成された第1半導体基板11と、第1半導体基板11の表面側(図2では、下面側)に設けられた層間絶縁膜101(本開示の「第1層間絶縁膜」の一例)と、層間絶縁膜101に埋設された配線LA1、LB1(図1参照)と、層間絶縁膜101において第1半導体基板11と向かい合う面の反対側に設けられた電極部E11(本開示の「第1電極部」の一例)と、を有する。
 第1半導体基板11には、フォトダイオードPDと、転送トランジスタTGと、フローティングディフュージョンFDとが設けられている。層間絶縁膜101は、例えばシリコン酸化膜(SiO膜)、シリコン窒化膜(SiN膜)、シリコン酸窒化膜(SiON膜)又はシリコン炭窒化膜(SiCN膜)のうちの1種、又は、これらのうち2種以上を含む。層間絶縁膜101は、複数の膜を積層した積層膜で構成されている。配線LA1、LB1は、基板の厚さ方向(例えば、Z軸方向)に延設されている部分VLと、水平方向(例えば、X軸方向、Y軸方向)に延設されている部分HLとを含む。配線LA1、LB1において、厚さ方向に延設されている部分VLは例えばタングステン(W)で構成されており、水平方向に延設されている部分HLは例えばCu又はCu合金で構成されている。一例として、配線LA1、LB1の水平方向に延設されている部分HLは、金属層M11、M12の計2層で構成されている。電極部E11は、例えばCu又はCu合金で構成されている。
 第2基板部20は、例えばシリコン基板で構成された第2半導体基板21と、第2半導体基板21の表面側(図2では、下面側)に設けられた層間絶縁膜201(本開示の「第3層間絶縁膜」の一例)と、第2半導体基板21の裏面側(図2では、上面側)に設けられた層間絶縁膜203(本開示の「第2層間絶縁膜」の一例)と、第2半導体基板21の表面と裏面との間を貫通する絶縁分離膜202と、層間絶縁膜201、203の少なくとも一方に埋設された配線LA2、LB2(図1参照)と、層間絶縁膜203において第2半導体基板21と向かい合う面の反対側に設けられた電極部E21(本開示の「第2電極部」の一例)と、層間絶縁膜201において第2半導体基板21と向かい合う面の反対側に設けられた電極部E22(本開示の「第3電極部」の一例)と、を有する。
 第2半導体基板21には、増幅トランジスタAMPと、選択トランジスタSEL及びリセットトランジスタRST(図1参照)が設けられている。一例として、1つのセンサ画素12(図1参照)に、1つの増幅トランジスタAMPと、1つの選択トランジスタSELと、1つのリセットトランジスタRSTとが設けられている。
 例えば、層間絶縁膜201は、SiO膜、SiN膜、SiON膜又はSiCN膜のうちの1種、又は、これらのうち2種以上を含む。層間絶縁膜201は、複数の膜を積層した積層膜で構成されている。層間絶縁膜201と絶縁分離膜202は、例えば、1層のSiO膜、SiN膜、SiON膜又はSiCN膜で構成されている。なお、層間絶縁膜201と同様に、層間絶縁膜201と絶縁分離膜202も、それぞれ、複数の膜を積層した積層膜で構成されていてもよい。
 配線LA2、LB2は、基板の厚さ方向(例えば、Z軸方向)に延設されている部分VLと、水平方向(例えば、X軸方向、Y軸方向)に延設されている部分HLとを含む。配線LA2、LB2において、厚さ方向に延設されている部分VLは例えばタングステン(W)で構成されており、水平方向に延設されている部分HLは例えばCu又はCu合金で構成されている。あるいは、配線LA2、LB2において、水平方向に延設されている部分HLは、アルミニウム(Al)又はAlを主成分とするAl合金で構成されていてもよい。一例として、配線LA2、LB2の水平方向に延設されている部分HLは、金属層M21からM25の計5層で構成されている。金属層M21からM24はCu又はCu合金で構成されており、金属層M25はAl又はAl合金で構成されている。電極部E21、E22は、例えばCu又はCu合金で構成されている。
 第3基板部30は、例えばシリコン基板で構成された第3半導体基板31と、第3半導体基板31において第2基板部20と向かい合う面側を覆う層間絶縁膜301(本開示の「第4層間絶縁膜」の一例)と、層間絶縁膜301に埋設された配線LA3、LB3(図1参照)と、層間絶縁膜301において第3半導体基板31と向かい合う面の反対側に設けられた電極部E31(本開示の「第4電極部」の一例)と、を有する。
 第3半導体基板31には、ロジック回路35(図1参照)を構成する複数のトランジスタや不純物拡散層が設けられている。層間絶縁膜301は、ロジック回路35を構成する複数のトランジスタや不純物拡散層を覆っている。例えば、層間絶縁膜201は、SiO膜、SiN膜、SiON膜又はSiCN膜のうちの1種、又は、これらのうち2種以上を含む。層間絶縁膜301は、複数の膜を積層した積層膜で構成されている。
 配線LA3、LB3は、基板の厚さ方向(例えば、Z軸方向)に延設されている部分VLと、水平方向(例えば、X軸方向、Y軸方向)に延設されている部分HLとを含む。配線LA3、LB3において、厚さ方向に延設されている部分VLは例えばタングステン(W)で構成されており、水平方向に延設されている部分HLは例えばCu又はCu合金で構成されている。一例として、配線LA3、LB3の水平方向に延設されている部分HLは、金属層M31、M32、M33の計3層で構成されている。電極部E31は、例えばCu又はCu合金で構成されている。
 また、電極部E11、E21、E22、E31は、Cu又はCu合金で構成されている。電極部E11、E21は、互いに向かい合った状態で直接接合されており、例えばCu-Cu接合されて一体化している。これにより、第1基板部10と第2基板部20とが電気的に接続されるとともに、第1基板部10と第2基板部20との貼り合わせの強度が高められている。同様に、電極部E22、E31は、互いに向かい合った状態で直接接合されており、例えばCu-Cu接合されて一体化している。これにより、第2基板部20と第3基板部30とが電気的に接続されるとともに、第2基板部20と第3基板部30との貼り合わせの強度が高められている。
 図3は、本開示の実施形態1に係る撮像装置1において、増幅トランジスタAMPとその周辺部を拡大して示す断面図である。図3に示すように、第2半導体基板21は、増幅トランジスタAMPが設けられた第1素子領域R1と、増幅トランジスタAMP以外の他の素子(例えば、リセットトランジスタRST)が設けられた第2素子領域R2と、第2半導体基板21が厚さ方向に貫通された貫通領域R3と、を有する。貫通領域R3は、絶縁分離膜202で埋め込まれている。貫通領域R3に埋め込まれた絶縁分離膜202によって、隣り合う2つの第1素子領域R1間や、隣り合う第1素子領域R1と第2素子領域R2との間が絶縁分離されている。
 第1基板部10に設けられたフローティングディフュージョンFDは、画素領域RA内に設けられた配線LA1、LA2と電極接合部JA12とを介して、増幅トランジスタAMPのゲート電極に接続している(図1、図2参照)。例えば、配線LA1は、第1基板部10に設けられた第1配線FL1を含む。第1配線FL1は、フローティングディフュージョンFDと電極部E11とを接続する配線である。また、配線LA2は、第2基板部20に設けられた第2配線FL2を含む。第2配線FL2は、電極部E21と増幅トランジスタAMPのゲート電極AMP-Gとを接続する配線である。画素領域に配置された第1配線FL1と第2配線FL2は、Cu-Cu接合された電極部E11及び電極部E21(電極接合部JA12)を介して、互いに接続されている。また、第2配線FL2は、貫通領域R3を通って、増幅トランジスタAMPのゲート電極AMP-Gに接続している。
 なお、第2配線FL2のうち、貫通領域R3を通る部分を貫通ビア(Via)と呼んでもよい。また、第2半導体基板21がシリコン(Si)で構成されている場合、貫通領域R3はSi貫通領域と呼んでもよく、上記の貫通ビアはSi貫通ビア(TSV)又はSi貫通FDビアと呼んでもよい。
(製造方法)
 次に、撮像装置1の製造方法について説明する。なお、撮像装置1は、成膜装置(CVD(Chemical Vapor Deposition)装置、スパッタ装置を含む)、イオン注入装置、熱処理装置、エッチング装置、CMP(Chemical Mechanical Polishing)装置、基板貼り合わせ装置など、各種の装置を用いて製造される。以下、これらの装置を、製造装置と総称する。
 図4Aから図4Hは、本開示の実施形態1に係る撮像装置1の製造方法を工程順に示す断面図である。図4Aから図4Bに示すように、製造装置は、CMOSプロセスを用いて、第1基板部10´と、第2基板部20´と、第3基板部30と、をそれぞれ別個に製造する。
 図4Aに示す第1基板部10´において、図2に示した第1基板部10との違いは、絶縁膜102が形成されていない点である。この例では、第1基板部10´を第2基板部20に貼り合わせた後で、絶縁膜102が形成される。図4Aに示す第1基板部10´の上面10´aが、第2基板部20に対する貼り合わせ面となる。また、図4Bに示す第2基板部20´において、図2に示した第2基板部20との違いは、第2半導体基板21に貫通領域R3等が形成されておらず、絶縁分離膜202、層間絶縁膜203等が設けられていない点である。この例では、第2基板部20´を第3基板部30に貼り合わせた後で、貫通領域R3等が形成される。図4Bに示す第2基板部20´の上面20´aが、第3基板部30に対する貼り合わせ面となる。また、図4Cに示す第3基板部30の上面30aが、第2基板部20´に対する貼り合わせ面となる。
 次に、図4Dに示すように、製造装置は、第3基板部30に第2基板部20´を貼り合わせる。この貼り合わせにより、層間絶縁膜201と層間絶縁膜301とが接合されると共に、電極部E22と電極部E31とがCu-Cu接合され、図4Eに示すように、第2基板部20´と第3基板部30とが一体化する。
 次に、製造装置は、第2半導体基板21の裏面21a(図4Eでは、上面)側を研削して、第2半導体基板21を薄膜化する。次に、製造装置は、第2半導体基板21を裏面21aの側から部分的にエッチングして除去する。これにより、図4Fに示すように、第2半導体基板21に、第1素子領域R1と、第2素子領域R2と、貫通領域R3とが形成される。この例では、増幅トランジスタAMPのウェル分離と第2半導体基板21の貫通分離とを同一工程で同時に行う。これにより、ウェル分離と貫通分離とを別々に行う場合と比べて、工程数を削減することができる。
 次に、製造装置は、第2半導体基板21上に絶縁膜を形成し、形成した絶縁膜にCMP処理を施す。これにより、絶縁膜下から第1素子領域R1と第2素子領域R2とを露出させると共に、貫通領域R3に絶縁分離膜202を形成する。
 次に、図4Gに示すように、製造装置は、層間絶縁膜203と、配線LA2、LB2(図1参照)と、電極部E21とを形成する。この工程で、フローティングディフュージョンFDと増幅トランジスタAMPのゲート電極AMP-Gとを接続する配線の一部である、第2配線FL2が形成される。これにより、第2基板部20が完成する。次に、図4Hに示すように、製造装置は、第2基板部20に第3基板部30を貼り合わせる。
 その後、製造装置は、第1基板部10に絶縁膜102を形成し、絶縁膜102上にカラーフィルタCFを形成し、カラーフィルタCF上にマイクロレンズMLを取り付ける。以上の工程を経て、図1から3に示した撮像装置1が完成する。
(実施形態1の効果)
 以上説明したように、本開示の実施形態に係る撮像装置1は、第1基板部10と、第1基板部10の一方の面側に設けられた第2基板部20と、を備える。第1基板部10は、第1半導体基板11と、第1半導体基板11に設けられ、光電変換を行うセンサ画素12と、第1半導体基板11において第2基板部20と向かい合う面側に設けられた層間絶縁膜101と、層間絶縁膜101において第2基板部20と向かい合う面側に設けられた電極部E11と、を有する。第2基板部20は、第2半導体基板21と、第2半導体基板21に設けられ、センサ画素12から出力された電荷に基づく画素信号を出力する読み出し回路22と、第2半導体基板21において第1基板部10と向かい合う面側に設けられた層間絶縁膜203と、層間絶縁膜203において第1基板部10と向かい合う面側に設けられた電極部E21と、を有する。電極部E11と電極部E21は互いに直接接合されている。読し出し回路は、センサ画素12から出力された電荷のレベルに応じた電圧の信号を増幅する増幅トランジスタAMPを有する。第2半導体基板21は、増幅トランジスタAMPが設けられた第1素子領域R1と、増幅トランジスタAMP以外の他の素子が設けられた第2素子領域R2と、第2半導体基板21が厚さ方向に貫通された貫通領域R3と、を有する。第1素子領域R1と第2素子領域R2との間は貫通領域R3によって分離されている。
 このような構成であれば、増幅トランジスタAMPは、センサ画素12に積層して配置されるため、面積を広く確保することが容易となり、ノイズの増大を抑制することが可能となる。また、増幅トランジスタAMPは、貫通領域R3によって他の素子から絶縁分離されるため、ソース領域とウェル領域とが接続されたソースフォロワ型とすることができる。これにより、増幅トランジスタAMPは、SFゲインを増加させることができ、変換効率を向上させることができる。これにより、撮像装置1は、微細化、高密度化が進展しても、特性の低下を抑制することができる。
 また、第2基板部20は、貫通領域R3内に設けられた絶縁分離膜202と、絶縁分離膜202を貫通する貫通配線と、を有する。例えば、貫通配線として、増幅トランジスタAMPのゲート電極AMP-Gに接続する第2配線FL2の一部が、絶縁分離膜202を貫通する。このような構成であれば、貫通領域R3は、増幅トランジスタAMPを他の素子から分離するための分離領域として用いられるだけでなく、第2配線FL2を第2基板部20の厚さ方向(Z軸方向)に延設するための配線領域としても用いられる。これら分離領域と配線領域とを別々に設ける場合と比べて、増幅トランジスタの面積を維持しつつ、画素領域の小面積化が可能となる。
(実施形態1の変形例)
 上位の実施形態1では、図2に示したように、第2半導体基板21において、第3基板部30と対向する面側に増幅トランジスタAMPのゲート電極、ソース領域及びドレイン領域が設けられている場合を示した。しかしながら、本開示はこれに限定されない。増幅トランジスタAMPのゲート電極、ソース領域及びドレイン領域は、第1基板部10の側に設けられていてもよい。
 図5は、本開示の実施形態1の変形例に係る撮像装置1Aの構成を模式的に示す断面図である。図6は、本開示の実施形態1の変形例に係る撮像装置1Aにおいて、増幅トランジスタAMPとその周辺部を拡大して示す断面図である。図5及び図6に示すように、撮像装置1Aにおいて、増幅トランジスタAMPのゲート電極AMP-G、ソース領域及びドレイン領域は、第1基板部10の側に設けられている。
 このような構成であっても、増幅トランジスタAMPは、センサ画素12に積層して配置されるため、面積を広く確保することが容易であり、ノイズの増大を抑制することが可能となる。また、増幅トランジスタAMPは、貫通領域R3によって他の素子から絶縁分離されるため、ソースフォロワ型とすることができる。これにより、増幅トランジスタAMPは、SFゲインを増加させることができ、変換効率を向上させることができる。これにより、撮像装置1Aは、微細化、高密度化に伴う特性の低下を抑制することができる。
<実施形態2>
(構成例)
 本開示の実施形態に係る撮像装置は、例えば、メモリ保持型のグローバルシャッタであってもよい。図7は、本開示の実施形態2に係る撮像装置1Bの構成例を示す模式図である。図7に示すように、撮像装置1Aにおいて、第1基板部10のセンサ画素12は、フォトダイオードPDと、転送トランジスタTGと、フローティングディフュージョンFDと、オーバーフロートランジスタOFGと、第1メモリトランジスタMEM1と、第2メモリトランジスタMEM2と、を有する。
 転送トランジスタTG、第2メモリトランジスタMEM2、第1メモリトランジスタMEM1は、この順で直列に接続されている。転送トランジスタTGと第2メモリトランジスタMEM2との接続領域(ソース領域又はドレイン領域)が、MEM部(記憶部)である。
 第1メモリトランジスタMEM1及び第2メモリトランジスタMEM2の一方は、フォトダイオードPDにて変換された信号電荷を保持している状態で、迷光に起因するノイズ電荷も保持する用途に使用される。また、第1メモリトランジスタMEM1及び第2メモリトランジスタMEM2の他方は、フォトダイオードPDにて変換された信号電荷を保持していない状態で、迷光に起因するノイズ電荷を保持する用途に使用される。
 第1メモリトランジスタMEM1及び第2メモリトランジスタMEM2には、例えば埋め込みチャネルのCCD(Charge Coupled Device)を用いてもよい。第1メモリトランジスタMEM1及び第2メモリトランジスタMEM2にCCDを用いることにより、第1メモリトランジスタMEM1及び第2メモリトランジスタMEM2にそれぞれに蓄積される電荷を後段に完全転送することができる。
 図8は、本開示の実施形態2に係る撮像装置1Bの構成例を模式的に示す断面図である。図9は、本開示の実施形態2に係る撮像装置1Bにおいて、第1半導体基板11に設けられたフォトダイオードPDとその周辺部を拡大して示す断面図である。図8及び図9に示すように、撮像装置1Bの第1半導体基板11には、フローティングディフュージョンと同じ導電型の不純拡散層で構成されるMEM部17と、MEM部17を覆う遮光部19とが設けられている。遮光部19によって、マイクロレンズML側からMEM部17への光の入射が妨げられている。また、隣り合うMEM部17間にも、遮光部19が配置されている。遮光部19は、例えばアルミニウム(Al)又はタングステン(W)等の遮光性を有する材料で構成されている。
(実施形態2の効果)
 実施形態2に係る撮像装置1Bは、実施形態1に係る撮像装置1と同様の構成を有するため、撮像装置1と同様の効果を奏する。また、撮像装置1Bのセンサ画素12は、MEM部17を有するため、迷光に起因するノイズを低減することができる。
<実施形態3>
(構成例)
 本開示の実施形態に係る撮像装置では、複数のセンサ画素が1つのフローティングディフュージョンを共有してもよい。また、貫通領域R3を埋める絶縁分離膜202において、配線と第2半導体基板21の側面との間に空隙部が設けられていてもよい。
 図10は、本開示の実施形態3に係る撮像装置1Cの構成例を模式的に示す断面図である。図11は、本開示の実施形態3に係る撮像装置1Cにおいて、第2基板部20の構成例を模式的に示す平面図である。図12は、本開示の実施形態3に係る撮像装置1Cにおいて、第1基板部10の構成例を模式的に示す平面図である。図11の平面図をX11-X11´線で切断した断面が、図10に示す第2基板部20の断面に対応している。図12の平面図をX12-X12´線で切断した断面が、図10に示す第1基板部10の断面に対応している。なお、図10及び図11では、トランジスタのソース領域又はドレイン領域の電位(接続先)を示すために、ソース領域又はドレイン領域の一部に符号「FD」、「VDD」を付している。また、第2半導体基板21に付しているNWLは、N型のウェル領域であることを意味する。
 図10及び図12に示すように、撮像装置1Cは、2つのセンサ画素が1つのフローティングディフュージョンFDを共有している。また、図10に示すように、撮像装置1Cでは、第2半導体基板21の第1素子領域R1に増幅トランジスタAMPと、第2半導体基板21の第2素子領域R2に設けられたリセットトランジスタRSTとが、貫通領域R3を挟んで隣り合っている。
 増幅トランジスタAMPは、ソース領域(S)とP型のウェル領域PWLとが接続されてソースフォロア型となっている。また、増幅トランジスタAMPのソース領域(S)は、選択トランジスタSELのドレイン領域(D)と配線を介して接続されている。
 また、増幅トランジスタAMPとリセットトランジスタRSTとの間の貫通領域R3に埋め込まれている絶縁分離膜202には、フローティングディフュージョンに接続する第2配線FL2が通っている。増幅トランジスタAMPと第2配線FL2との間には第1空隙部AG1が設けられている。リセットトランジスタと第2配線FL2との間には第2空隙部AG2が設けられている。
 第2配線FL2の電位は、フローティングディフュージョンと同じ又はほぼ同じであり、増幅トランジスタAMPのP型のウェル領域PWLの電位とは異なる。このため、第2配線FL2と増幅トランジスタAMPのウェル領域PWLとの間には容量が生じる。同様に、第2配線FL2の電位はリセットトランジスタRSTのウェル領域PWLの電位とは異なるため、第2配線FL2と増幅トランジスタAMPのウェル領域PWLとの間にも容量が生じる。これらの容量が原因で、増幅トランジスタAMPの変換効率が低下する可能性がある。
 しかしながら、撮像装置1Cでは、第2配線FL2と増幅トランジスタAMPのウェル領域PWLとの間に、第1空隙部AG1が設けられている。また、第2配線FL2とリセットトランジスタRSTのウェル領域PWLとの間に、第2空隙部AG2が設けられている。空隙部を構成している空気は、層間絶縁膜201の一例となるシリコン酸化膜(SiO膜)よりも誘電率が高い。このため、第2配線FL2と増幅トランジスタAMPのウェル領域PWLとの間の容量は第1空隙部AG1によって低減され、第2配線FL2とリセットトランジスタRSTのウェル領域PWLとの間の容量は第2空隙部AG2によって低減される。これにより、撮像装置1Cは、増幅トランジスタAMPの変換効率の低下を抑制することができる。
 図10に示すように、第1空隙部AG1は、増幅トランジスタAMPのウェル領域PWLのうち、第2半導体基板21の側面に露出している部分の全てと向かい合うことができる程度に、第2半導体基板21の厚さ方向(例えば、Z軸方向)に深く形成されていることが好ましい。また、図11に示すように、増幅トランジスタAMPのゲート幅方向(Y軸方向)においても、第1空隙部AG1は、増幅トランジスタAMPのドレイン領域(D)下のウェル領域と同じ程度に長く形成されていることが好ましい。これにより、第1空隙部AG1は、増幅トランジスタAMPのウェル領域PWLと第2配線FL2との間に広く介在することができるので、第2配線FL2の容量を効果的に低減することができる。
 同様に、第2空隙部AG2は、リセットトランジスタRSTのウェル領域PWLのうち、第2半導体基板21の側面に露出している部分の全てと向かい合うことができる程度に、第2半導体基板21の厚さ方向(例えば、Z軸方向)に深く形成されていることが好ましい。また、図11に示すように、リセットトランジスタRSTのゲート幅方向(Y軸方向)においても、第2空隙部AG2は、リセットトランジスタRSTのドレイン領域下のウェル領域と同じ程度に長く形成されていることが好ましい。これにより、第2空隙部AG2は、リセットトランジスタRSTのウェル領域PWLと第2配線FL2との間に広く介在することができるので、第2配線FL2の容量を効果的に低減することができる。
(製造方法)
 次に、撮像装置1Cの製造方法について説明する。図13Aから図13Eは、本開示の実施形態3に係る撮像装置1Cの製造方法を工程順に示す断面図である。図13Aにおいて、第2半導体基板21の裏面を研削し、第2半導体基板21をエッチングして第1素子領域R1、第2素子領域R2及び貫通領域R3を形成し、貫通領域R3に絶縁分離膜202を形成する工程までは、例えば実施形態1と同様である(図4Aから図4F参照)。絶縁分離膜202の形成後、図13Bに示すように、製造装置は、貫通領域R3の絶縁分離膜202を部分的にエッチングして第1空隙部AG1及び第2空隙部AG2を形成する。
 次に、図13Cに示すように、製造装置は、第2半導体基板21の裏面側に層間絶縁膜203を形成する。層間絶縁膜203によって、第1空隙部AG1及び第2空隙部AG2の各開口端が閉じられる(ピンチオフされる)。次に、図13Dに示すように、製造装置は、第1空隙部AG1と第2空隙部AG2との間に、第2配線FL2の一部となる貫通ビアを形成する。次に、図13Eに示すように、製造装置は、電極部E21を形成する。これ以降の工程は、実施形態1と同様である(図4H参照)。以上の工程を経て、撮像装置1Cが完成する。
(実施形態3の効果)
 実施形態3に係る撮像装置1Cは、実施形態1に係る撮像装置1と同様の構成を有するため、撮像装置1と同様の効果を奏する。また、撮像装置1Cの第2基板部20は、絶縁分離膜202に設けられた第1空隙部AG1及び第2空隙部AG2を有する。第1空隙部AG1は、第2配線FL2と第1素子領域R1の側面との間に位置する。第2空隙部AG2は、第2配線FL2と第2素子領域R2の側面との間に位置する。これにより、撮像装置1Cは、第2配線FL2の容量を低減することができるので、配線容量を原因とする増幅トランジスタAMPの変換効率の低下を抑制することができる。
(実施形態3の変形例1)
 本開示の実施形態において、第1空隙部AG1及び第2空隙部AG2は、ウェル領域PWLの側面だけでなく、トランジスタのソース領域の側面又はドレイン領域の側面も覆うように長く形成されていてもよい。すなわち、第1空隙部AG1及び第2空隙部AG2は、第2半導体基板21と同じ厚さに形成されてもよい。
 図14は、本開示の実施形態3の変形例1に係る撮像装置1Dの構成を模式的に示す断面図である。図15は、本開示の実施形態3の変形例1に係る撮像装置1Dにおいて、第2基板部20の構成を模式的に示す平面図である。図15の平面図をX15-X15´線で切断した断面が、図14に示す第2基板部20の断面に対応している。
 図14及び図15に示すように、撮像装置1Dでは、増幅トランジスタAMPと選択トランジスタSELとが配線を介さずに直列に接続されている。増幅トランジスタAMPのソース領域(S)と選択トランジスタSELのドレイン領域(D)とが同一のN型不純物拡散層で構成されている。また、増幅トランジスタAMPにおいて、電源線VDDに接続されている高電位のドレイン領域は、貫通領域R3側に位置する。
 撮像装置1Dでは、撮像装置1C(図10参照)と比べて、第1空隙部AG1及び第2空隙部AG2が第2半導体基板21の厚さ方向(例えば、Z軸方向)に長く形成されている。Z軸方向において、第1空隙部AG1の長さ及び第2空隙部AG2の長さは、それぞれ、第2半導体基板21の厚さと同じ又はほぼ同じ長さとなっている。第1空隙部AG1は、ウェル領域PWLの側面だけでなく、増幅トランジスタAMPのドレイン領域の側面も覆うようにZ軸方向に長く形成されている。同様に、第2空隙部AG2は、ウェル領域PWLの側面だけでなく、リセットトランジスタRSTのソース領域の側面も覆うようにZ軸方向に長く形成されている。
 撮像装置1Dでは、増幅トランジスタAMPのドレイン領域が貫通領域R3側に位置する。電源線VDDに接続された高電位のドレイン領域と、フローティングディフュージョンFDに接続された第2配線FL2との間には電位差があるため、ドレイン領域と第2配線FL2との間に容量が生じる。しかしながら、撮像装置1Dでは、このドレイン領域と第2配線FL2との間に第1空隙部AG1が配置されているため、容量の増大が抑制される。したがって、撮像装置1Dは、増幅トランジスタAMPの変換効率の低下を抑制することができる。
(実施形態3の変形例2)
 図16は、本開示の実施形態3の変形例2に係る撮像装置1Eの構成を模式的に示す断面図である。図17は、本開示の実施形態3の変形例2に係る撮像装置1Eにおいて、第2基板部20の構成を模式的に示す平面図である。図17の平面図をX17-X17´線で切断した断面が、図16に示す第2基板部20の断面に対応している。
 図16及び図17に示すように、リセットトランジスタRSTのドレイン領域は、電源線VDDに接続されて高電位となる。撮像装置1Eは、撮像装置1D(図14参照)とは異なり、リセットトランジスタRSTのドレイン領域が貫通領域R3側に位置する。撮像装置1Eでは、リセットトランジスタRSTのドレイン領域と、フローティングディフュージョンFDに接続された第2配線FL2との間には電位差があるため、リセットトランジスタRSTのドレイン領域と第2配線FL2との間に容量が生じる。しかしながら、撮像装置1Eでは、このドレイン領域と第2配線FL2との間に第2空隙部AG2が配置されているため、容量の増大が抑制される。したがって、撮像装置1Eは、増幅トランジスタAMPの変換効率の低下を抑制することができる。
<その他の実施形態>
 上記のように、本開示は実施形態及び変形例によって記載したが、この開示の一部をなす論述及び図面は本開示を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。例えば、本開示の「貫通配線」はフローティングディフュージョンFDに接続する第2配線FL2に限定されない。本開示の「貫通配線」は、第2配線FL2以外の他の配線であってもよい。このように、本技術はここでは記載していない様々な実施形態等を含むことは勿論である。上述した実施形態及び変形例の要旨を逸脱しない範囲で、構成要素の種々の省略、置換及び変更のうち少なくとも1つを行うことができる。また、本明細書に記載された効果はあくまでも例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本開示は以下のような構成も取ることができる。
(1)
 第1基板部と、
 前記第1基板部の一方の面側に設けられた第2基板部と、を備え、
 前記第1基板部は、
 第1半導体基板と、
 前記第1半導体基板に設けられ、光電変換を行うセンサ画素と、
 前記第1半導体基板において前記第2基板部と向かい合う面側に設けられた第1層間絶縁膜と、
 前記第1層間絶縁膜において前記第2基板部と向かい合う面側に設けられた第1電極部と、を有し、
 前記第2基板部は、
 第2半導体基板と、
 前記第2半導体基板に設けられ、前記センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路と、
 前記第2半導体基板において前記第1基板部と向かい合う面側に設けられた第2層間絶縁膜と、
 前記第2層間絶縁膜において前記第1基板部と向かい合う面側に設けられた第2電極部と、を有し、
 前記第1電極部と前記第2電極部は互いに直接接合されており、
 前記読し出し回路は、
 前記センサ画素から出力された電荷のレベルに応じた電圧の信号を増幅する増幅トランジスタを有し、
 前記第2半導体基板は、
 前記増幅トランジスタが設けられた第1素子領域と、
 前記増幅トランジスタ以外の他の素子が設けられた第2素子領域と、
 前記第2半導体基板が厚さ方向に貫通された貫通領域と、を有し、
 前記第1素子領域と前記第2素子領域との間は前記貫通領域によって分離されている、撮像装置。
(2)
 前記増幅トランジスタのソース領域と前記増幅トランジスタのウェル領域とが接続されている、前記(1)に記載の撮像装置。
(3)
 前記第2基板部において前記第1基板部と向かい合う面の反対側に設けられた第3基板部、をさらに備え、
 前記第2基板部は、
 前記第2半導体基板において前記第3基板部と向かい合う面側に設けられた第3層間絶縁膜と、
 前記第3層間絶縁膜において前記第3基板部と向かい合う面側に設けられた第3電極部と、をさらに有し、
 前記第3基板部は、
 第3半導体基板と、
 前記第3半導体基板に設けられ、前記画素信号を処理するロジック回路と、
 前記第3半導体基板において前記第2基板部と向かい合う面側に設けられた第4層間絶縁膜と、
 前記第4層間絶縁膜において前記第2基板部と向かい合う面側に設けられた第4電極部と、を有し、
 前記第3電極部と前記第4電極部は互いに直接接合されている、前記(1)又は(2)に記載の撮像装置。
(4)
 前記センサ画素は、
 光電変換素子と、
 前記光電変換素子と電気的に接続された転送トランジスタと、
 前記転送トランジスタを介して前記光電変換素子から出力された電荷を一時的に保持するフローティングディフュージョンと、をさらに有し、
 前記読み出し回路は、
 前記フローティングディフュージョンの電位を所定の電位にリセットするリセットトランジスタと、
 前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、を有し、
 前記増幅トランジスタは、前記画素信号として、前記フローティングディフュージョンに保持された電荷のレベルに応じた電圧の信号を生成し、
 前記第2素子領域に設けられた前記他の素子は前記リセットトランジスタである、前記(1)から(3)のいずれか1項に記載の撮像装置。
(5)
 前記第1基板部は、
 前記フローティングディフュージョンに接続する第1配線、をさらに有し、
 前記第2基板部は
 前記前記増幅トランジスタのゲート電極に接続する第2配線、をさらに有し、
 前記第1配線及び前記第2配線は、前記第1電極部及び前記第2電極部を介して、互いに接続されている、前記(4)に記載の撮像装置。
(6)
 前記第2基板部は、
 前記貫通領域内に設けられた絶縁分離膜と、
 前記絶縁分離膜を貫通する貫通配線と、をさらに有する前記(1から5のいずれか1項に記載の撮像装置。
(7)
 前記第2基板部は、
 前記貫通領域内に設けられた絶縁分離膜と、
 前記絶縁分離膜を貫通する貫通配線と、をさらに有し、
 前記貫通配線として、前記第2配線の一部が前記絶縁分離膜を貫通する、前記(5)に記載の撮像装置。
(8)
 前記第2基板部は、
 前記絶縁分離膜に設けられ、前記貫通配線と前記第1素子領域の側面との間に位置する第1空隙部、をさらに有する前記(6)又は(7)に記載の撮像装置。
(9)
 前記第1空隙部は、前記貫通配線と前記増幅トランジスタのウェル領域との間に位置する、前記(8)に記載の撮像装置。
(10)
 前記第2基板部は、
 前記絶縁分離膜に設けられ、前記貫通配線と前記第2素子領域の側面との間に位置する第2空隙部、をさらに有する前記(6)から(9)のいずれか1項に記載の撮像装置。
(11)
 前記第2素子領域に設けられた前記他の素子は前記リセットトランジスタであり、
 前記第2基板部は、
 前記貫通領域内に設けられた絶縁分離膜と、
 前記絶縁分離膜を貫通する貫通配線と、
 前記絶縁分離膜に設けられ、前記貫通配線と前記リセットトランジスタのウェル領域との間に位置する第2空隙部と、をさらに有する前記(4又は5に記載の撮像装置。
(12)
 画素領域と、
 画素領域の周辺に位置する周辺領域と、をさらに備え、
 前記第1配線及び前記第2配線は前記画素領域に配置されている、前記(5)に記載の撮像装置。
(13)
 前記センサ画素は、MEM部をさらに有する、前記(1)から(12)のいずれか1項に記載の撮像装置。
1、1A、1B、1C、1D、1E 撮像装置
10、10´ 第1基板部
10´a 上面
11 第1半導体基板
12 センサ画素
17 MEM部
19 遮光部
20、20´ 第2基板部
20´a 上面
21 第2半導体基板
21a 裏面
22 回路
30 第3基板部
30a 上面
31 第3半導体基板
35 ロジック回路
36 駆動回路
37 コンパレータ
38 制御回路
101、201、203、301 層間絶縁膜
102 絶縁膜
202 絶縁分離膜
AG1 第1空隙部
AG2 第2空隙部
AMP 増幅トランジスタ
AMP-G ゲート電極
CF カラーフィルタ
D ドレイン領域
DL 駆動配線
E11、E21、E22、E31 電極部
FD フローティングディフュージョン
FL1 第1配線
FL2 第2配線
GND 接地電位線
JA12、JA23、JB12、JB23 電極接合部
LA1、LA2、LA3、LB1、LB2、LB3 配線
M11、M12、M21からM25、M31、M32、M33 金属層
ML マイクロレンズ
OFG オーバーフロートランジスタ
PD フォトダイオード
PWL ウェル領域
R1 第1素子領域
R2 第2素子領域
R3 貫通領域
RA 画素領域
RB 周辺領域
RST リセットトランジスタ
S ソース領域
SEL 選択トランジスタ
TG 転送トランジスタ
MEM1 第1メモリトランジスタ
MEM2 第2メモリトランジスタ
VDD 電源線
VSL 垂直信号線
VSS 基準電位線
 

Claims (13)

  1.  第1基板部と、
     前記第1基板部の一方の面側に設けられた第2基板部と、を備え、
     前記第1基板部は、
     第1半導体基板と、
     前記第1半導体基板に設けられ、光電変換を行うセンサ画素と、
     前記第1半導体基板において前記第2基板部と向かい合う面側に設けられた第1層間絶縁膜と、
     前記第1層間絶縁膜において前記第2基板部と向かい合う面側に設けられた第1電極部と、を有し、
     前記第2基板部は、
     第2半導体基板と、
     前記第2半導体基板に設けられ、前記センサ画素から出力された電荷に基づく画素信号を出力する読み出し回路と、
     前記第2半導体基板において前記第1基板部と向かい合う面側に設けられた第2層間絶縁膜と、
     前記第2層間絶縁膜において前記第1基板部と向かい合う面側に設けられた第2電極部と、を有し、
     前記第1電極部と前記第2電極部は互いに直接接合されており、
     前記読し出し回路は、
     前記センサ画素から出力された電荷のレベルに応じた電圧の信号を増幅する増幅トランジスタを有し、
     前記第2半導体基板は、
     前記増幅トランジスタが設けられた第1素子領域と、
     前記増幅トランジスタ以外の他の素子が設けられた第2素子領域と、
     前記第2半導体基板が厚さ方向に貫通された貫通領域と、を有し、
     前記第1素子領域と前記第2素子領域との間は前記貫通領域によって分離されている、撮像装置。
  2.  前記増幅トランジスタのソース領域と前記増幅トランジスタのウェル領域とが接続されている、請求項1に記載の撮像装置。
  3.  前記第2基板部において前記第1基板部と向かい合う面の反対側に設けられた第3基板部、をさらに備え、
     前記第2基板部は、
     前記第2半導体基板において前記第3基板部と向かい合う面側に設けられた第3層間絶縁膜と、
     前記第3層間絶縁膜において前記第3基板部と向かい合う面側に設けられた第3電極部と、をさらに有し、
     前記第3基板部は、
     第3半導体基板と、
     前記第3半導体基板に設けられ、前記画素信号を処理するロジック回路と、
     前記第3半導体基板において前記第2基板部と向かい合う面側に設けられた第4層間絶縁膜と、
     前記第4層間絶縁膜において前記第2基板部と向かい合う面側に設けられた第4電極部と、を有し、
     前記第3電極部と前記第4電極部は互いに直接接合されている、請求項1に記載の撮像装置。
  4.  前記センサ画素は、
     光電変換素子と、
     前記光電変換素子と電気的に接続された転送トランジスタと、
     前記転送トランジスタを介して前記光電変換素子から出力された電荷を一時的に保持するフローティングディフュージョンと、をさらに有し、
     前記読み出し回路は、
     前記フローティングディフュージョンの電位を所定の電位にリセットするリセットトランジスタと、
     前記増幅トランジスタからの前記画素信号の出力タイミングを制御する選択トランジスタと、を有し、
     前記増幅トランジスタは、前記画素信号として、前記フローティングディフュージョンに保持された電荷のレベルに応じた電圧の信号を生成し、
     前記第2素子領域に設けられた前記他の素子は前記リセットトランジスタである、請求項1に記載の撮像装置。
  5.  前記第1基板部は、
     前記フローティングディフュージョンに接続する第1配線、をさらに有し、
     前記第2基板部は
     前記前記増幅トランジスタのゲート電極に接続する第2配線、をさらに有し、
     前記第1配線及び前記第2配線は、前記第1電極部及び前記第2電極部を介して、互いに接続されている、請求項4に記載の撮像装置。
  6.  前記第2基板部は、
     前記貫通領域内に設けられた絶縁分離膜と、
     前記絶縁分離膜を貫通する貫通配線と、をさらに有する請求項1に記載の撮像装置。
  7.  前記第2基板部は、
     前記貫通領域内に設けられた絶縁分離膜と、
     前記絶縁分離膜を貫通する貫通配線と、をさらに有し、
     前記貫通配線として、前記第2配線の一部が前記絶縁分離膜を貫通する、請求項5に記載の撮像装置。
  8.  前記第2基板部は、
     前記絶縁分離膜に設けられ、前記貫通配線と前記第1素子領域の側面との間に位置する第1空隙部、をさらに有する請求項6に記載の撮像装置。
  9.  前記第1空隙部は、前記貫通配線と前記増幅トランジスタのウェル領域との間に位置する、請求項8に記載の撮像装置。
  10.  前記第2基板部は、
     前記絶縁分離膜に設けられ、前記貫通配線と前記第2素子領域の側面との間に位置する第2空隙部、をさらに有する請求項6に記載の撮像装置。
  11.  前記第2素子領域に設けられた前記他の素子は前記リセットトランジスタであり、
     前記第2基板部は、
     前記貫通領域内に設けられた絶縁分離膜と、
     前記絶縁分離膜を貫通する貫通配線と、
     前記絶縁分離膜に設けられ、前記貫通配線と前記リセットトランジスタのウェル領域との間に位置する第2空隙部と、をさらに有する請求項4に記載の撮像装置。
  12.  画素領域と、
     画素領域の周辺に位置する周辺領域と、をさらに備え、
     前記第1配線及び前記第2配線は前記画素領域に配置されている、請求項5に記載の撮像装置。
  13.  前記センサ画素は、MEM部をさらに有する、請求項1に記載の撮像装置。
     
PCT/JP2021/018655 2020-06-16 2021-05-17 撮像装置 WO2021256142A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/001,299 US20230254608A1 (en) 2020-06-16 2021-05-17 Imaging device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103558 2020-06-16
JP2020103558 2020-06-16

Publications (1)

Publication Number Publication Date
WO2021256142A1 true WO2021256142A1 (ja) 2021-12-23

Family

ID=79267821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018655 WO2021256142A1 (ja) 2020-06-16 2021-05-17 撮像装置

Country Status (2)

Country Link
US (1) US20230254608A1 (ja)
WO (1) WO2021256142A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223743A1 (ja) * 2022-05-17 2023-11-23 ソニーセミコンダクタソリューションズ株式会社 光検出素子

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077580A1 (ja) * 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2014022561A (ja) * 2012-07-18 2014-02-03 Sony Corp 固体撮像装置、及び、電子機器
JP2015095468A (ja) * 2013-11-08 2015-05-18 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法、並びに電子機器
WO2018016570A1 (ja) * 2016-07-20 2018-01-25 ソニー株式会社 固体撮像素子および固体撮像装置
WO2019131965A1 (ja) * 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 撮像素子

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016009832A1 (ja) * 2014-07-14 2016-01-21 ソニー株式会社 比較器、ad変換器、固体撮像装置、電子機器、および比較器の制御方法
TWI692859B (zh) * 2015-05-15 2020-05-01 日商新力股份有限公司 固體攝像裝置及其製造方法、以及電子機器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011077580A1 (ja) * 2009-12-26 2011-06-30 キヤノン株式会社 固体撮像装置および撮像システム
JP2014022561A (ja) * 2012-07-18 2014-02-03 Sony Corp 固体撮像装置、及び、電子機器
JP2015095468A (ja) * 2013-11-08 2015-05-18 ソニー株式会社 固体撮像素子および固体撮像素子の製造方法、並びに電子機器
WO2018016570A1 (ja) * 2016-07-20 2018-01-25 ソニー株式会社 固体撮像素子および固体撮像装置
WO2019131965A1 (ja) * 2017-12-27 2019-07-04 ソニーセミコンダクタソリューションズ株式会社 撮像素子

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023223743A1 (ja) * 2022-05-17 2023-11-23 ソニーセミコンダクタソリューションズ株式会社 光検出素子

Also Published As

Publication number Publication date
US20230254608A1 (en) 2023-08-10

Similar Documents

Publication Publication Date Title
US10777600B2 (en) Semiconductor device, manufacturing method thereof, and electronic apparatus
JP5853351B2 (ja) 半導体装置、半導体装置の製造方法、及び電子機器
JP5985136B2 (ja) 半導体装置とその製造方法、及び電子機器
JP5664205B2 (ja) 半導体装置とその製造方法、及び電子機器
JP6774393B2 (ja) 固体撮像装置、及び、電子機器
JP4792821B2 (ja) 固体撮像装置およびその製造方法
JP6256562B2 (ja) 固体撮像装置及び電子機器
JP5915636B2 (ja) 半導体装置とその製造方法
WO2021256142A1 (ja) 撮像装置
JP6233376B2 (ja) 固体撮像装置及び電子機器
JP5229354B2 (ja) 固体撮像装置
JP2018078305A (ja) 固体撮像装置及び電子機器
JP7001120B2 (ja) 固体撮像装置及び電子機器
JP2022036438A (ja) 固体撮像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825893

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP