JP2022020818A - 発光装置 - Google Patents

発光装置 Download PDF

Info

Publication number
JP2022020818A
JP2022020818A JP2021187726A JP2021187726A JP2022020818A JP 2022020818 A JP2022020818 A JP 2022020818A JP 2021187726 A JP2021187726 A JP 2021187726A JP 2021187726 A JP2021187726 A JP 2021187726A JP 2022020818 A JP2022020818 A JP 2022020818A
Authority
JP
Japan
Prior art keywords
layer
light emitting
type host
host
organic compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021187726A
Other languages
English (en)
Other versions
JP7308908B2 (ja
Inventor
舜平 山崎
Shunpei Yamazaki
哲史 瀬尾
Tetsushi Seo
智子 沼田
Tomoko Numata
信晴 大澤
Nobuharu Osawa
英子 吉住
Eiko Yoshizumi
裕史 門間
Hiroshi Kadoma
晴恵 尾坂
Harue Ozaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2022020818A publication Critical patent/JP2022020818A/ja
Priority to JP2023109865A priority Critical patent/JP2023118841A/ja
Application granted granted Critical
Publication of JP7308908B2 publication Critical patent/JP7308908B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/32Stacked devices having two or more layers, each emitting at different wavelengths
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/80Composition varying spatially, e.g. having a spatial gradient
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Indole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】外部量子効率が高い発光素子を提供する。【解決手段】ゲスト、N型ホスト及びP型ホストを含む発光層102を一対の電極間に有し、発光層102と負極の間に第1の層(N型ホストの層103)、発光層102と正極の間に第2の層(P型ホストの層104)を形成する。電子や正孔が発光層102に注入されるに際しては、エネルギー障壁がない。一方、電子が正極へ、あるいは正孔が負極へ向うに際しては、途中にエネルギー障壁が存在し、電子や正孔は発光層に閉じ込められる。このため、エネルギーの利用効率が高まる。N型ホストの層103と発光層102の間あるいは、P型ホストの層104と発光層102の間には、N型ホスト及びP型ホストの濃度が連続的に変化する領域が設けられてもよい。【選択図】図1

Description

有機エレクトロルミネッセンス(EL:Electroluminescence)現象
を利用した発光素子(以下、有機EL素子とも記す)に関する。
有機EL素子の研究開発が盛んにおこなわれている。有機EL素子の基本的な構成は、一
対の電極間に発光性の有機化合物を含む層(以下、発光層とも記す)を挟んだものであり
、薄型軽量化できる、入力信号に高速に応答できる、直流低電圧駆動が可能である、など
の特性から、次世代のフラットパネルディスプレイ素子として注目されている。また、こ
のような発光素子を用いたディスプレイは、コントラストや画質に優れ、視野角が広いと
いう特徴も有している。さらに、有機EL素子は面光源であるため、液晶ディスプレイの
バックライトや照明等の光源としての応用も考えられている。
有機EL素子の発光機構は、キャリア注入型である。すなわち、電極間に発光層を挟んで
電圧を印加することにより、電極から注入された電子および正孔が再結合して発光物質が
励起状態となり、その励起状態が基底状態に戻る際に発光する。そして、励起状態の種類
としては、一重項励起状態と三重項励起状態が可能である。また、発光素子におけるその
統計的な生成比率は、前者は後者の3分の1であると考えられている。
発光性の有機化合物では通常、基底状態が一重項状態である。したがって、一重項励起状
態からの発光は、同じスピン多重度間の電子遷移であるため蛍光と呼ばれる。一方、三重
項励起状態からの発光は、異なるスピン多重度間の電子遷移であるため燐光と呼ばれる。
ここで、蛍光を発する化合物(以下、蛍光性化合物と記す)は室温において、通常、燐光
は観測されず蛍光のみが観測される。したがって、蛍光性化合物を用いた発光素子におけ
る内部量子効率(注入したキャリアに対して発生するフォトンの割合)の理論的限界は、
上記の一重項励起状態と三重項励起状態の比率を根拠に25%とされている。
一方、燐光を発する化合物(以下、燐光性化合物と記す)を用いれば、理論上、内部量子
効率は100%にまで高めることが可能となる。つまり、蛍光性化合物に比べて高い発光
効率を得ることが可能になる。このような理由から、高効率な発光素子を実現するために
、燐光性化合物を用いた発光素子の開発が近年盛んにおこなわれている。
特に、燐光性化合物としては、その燐光量子効率の高さゆえに、イリジウム等を中心金属
とする有機金属錯体が注目されており、例えば、特許文献1には、イリジウムを中心金属
とする有機金属錯体が燐光材料として開示されている。
上述した燐光性化合物を用いて発光素子の発光層を形成する場合、燐光性化合物の濃度消
光や三重項-三重項消滅による消光を抑制するために、他の化合物からなるマトリクス中
に該燐光性化合物が分散するように形成することが多い。この時、マトリクスとなる化合
物はホスト、燐光性化合物のようにマトリクス中に分散される化合物はゲストと呼ばれる
このような、燐光性化合物をゲストとして用いる発光素子における発光の一般的な素過程
はいくつかあるが、それらについて以下に説明する。
(1)電子及び正孔がゲスト分子において再結合し、ゲスト分子が励起状態となる場合(
直接再結合過程)。
(1-1)ゲスト分子の励起状態が三重項励起状態のとき
ゲスト分子は燐光を発する。
(1-2)ゲスト分子の励起状態が一重項励起状態のとき
一重項励起状態のゲスト分子は三重項励起状態に項間交差し、燐光を発する。
つまり、上記(1)の直接再結合過程においては、ゲスト分子の項間交差効率、及び燐光
量子効率さえ高ければ、高い発光効率が得られることになる。
(2)電子及び正孔がホスト分子において再結合し、ホスト分子が励起状態となる場合(
エネルギー移動過程)。
(2-1)ホスト分子の励起状態が三重項励起状態のとき
ホスト分子の三重項励起のエネルギー準位(T1準位)がゲスト分子のT1準位よりも
高い場合、ホスト分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が三重項励
起状態となる。三重項励起状態となったゲスト分子は燐光を発する。ここで、ホスト分子
の三重項励起エネルギーの準位(T1準位)への逆エネルギー移動も考慮しなければなら
ず、したがって、ホスト分子のT1準位はゲスト分子のT1準位よりも高いことが必要で
ある。
(2-2)ホスト分子の励起状態が一重項励起状態のとき
ホスト分子のS1準位がゲスト分子のS1準位およびT1準位よりも高い場合、ホスト
分子からゲスト分子に励起エネルギーが移動し、ゲスト分子が一重項励起状態又は三重項
励起状態となる。三重項励起状態となったゲスト分子は燐光を発する。また、一重項励起
状態となったゲスト分子は、三重項励起状態に項間交差し、燐光を発する。
つまり、上記(2)のエネルギー移動過程においては、ホスト分子の三重項励起エネルギ
ーだけでなく、一重項励起エネルギーがいかにゲスト分子に効率良く移動できるかが重要
となる。
このエネルギー移動過程を鑑みれば、ホスト分子からゲスト分子に励起エネルギーが移動
する前に、ホスト分子自体がその励起エネルギーを光又は熱として放出して失活してしま
うと、発光効率が低下することになる。
<エネルギー移動過程>
以下では、分子間のエネルギー移動過程について詳述する。
まず、分子間のエネルギー移動の機構として、以下の2つの機構が提唱されている。ここ
で、励起エネルギーを与える側の分子をホスト分子、励起エネルギーを受け取る側の分子
をゲスト分子と記す。
≪フェルスター機構(双極子-双極子相互作用)≫
フェルスター機構は、エネルギー移動に、分子間の直接的接触を必要としない。ホスト分
子及びゲスト分子間の双極子振動の共鳴現象を通じてエネルギー移動が起こる。双極子振
動の共鳴現象によってホスト分子がゲスト分子にエネルギーを受け渡し、ホスト分子が基
底状態になり、ゲスト分子が励起状態になる。フェルスター機構の速度定数k →g
数式(1)に示す。
Figure 2022020818000002
数式(1)において、νは振動数を表し、f’(ν)はホスト分子の規格化された発光
スペクトル(一重項励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重
項励起状態からのエネルギー移動を論じる場合は燐光スペクトル)を表し、ε(ν)は
ゲスト分子のモル吸光係数を表し、Nはアボガドロ数を表し、nは媒体の屈折率を表し、
Rはホスト分子とゲスト分子の分子間距離を表し、τは実測される励起状態の寿命(蛍光
寿命や燐光寿命)を表し、cは光速を表し、φはホスト分子の発光量子効率(一重項励起
状態からのエネルギー移動を論じる場合は蛍光量子効率、三重項励起状態からのエネルギ
ー移動を論じる場合は燐光量子効率)を表し、Kは、ホスト分子とゲスト分子の遷移双
極子モーメントの配向を表す係数(0~4)である。なお、ランダム配向の場合はK
2/3である。
≪デクスター機構(電子交換相互作用)≫
デクスター機構は、ホスト分子とゲスト分子が軌道の重なりを生じる接触有効距離に近づ
き、励起状態のホスト分子の電子と基底状態のゲスト分子の電子の交換を通じてエネルギ
ー移動が起こる。デクスター機構の速度定数k →gを数式(2)に示す。
Figure 2022020818000003
数式(2)において、hはプランク定数であり、Kはエネルギーの次元を持つ定数であり
、νは振動数を表し、f’(ν)はホスト分子の規格化された発光スペクトル(一重項
励起状態からのエネルギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエ
ネルギー移動を論じる場合は燐光スペクトル)を表し、ε’(ν)はゲスト分子の規格
化された吸収スペクトルを表し、Lは実効分子半径を表し、Rはホスト分子とゲスト分子
の分子間距離を表す。
ここで、ホスト分子からゲスト分子へのエネルギー移動効率ΦETは、数式(3)で表さ
れると考えられる。kはホスト分子の発光過程(ホスト分子の一重項励起状態からのエ
ネルギー移動を論じる場合は蛍光、ホスト分子の三重項励起状態からのエネルギー移動を
論じる場合は燐光)の速度定数を表し、kは非発光過程(熱失活や項間交差)の速度定
数を表し、τはホスト分子の実測される励起状態の寿命を表す。
Figure 2022020818000004
まず、数式(3)より、エネルギー移動効率ΦETを高くするためには、エネルギー移動
の速度定数k →gを、他の競合する速度定数k+k(=1/τ)に比べて遙かに
大きくすれば良いことがわかる。そして、そのエネルギー移動の速度定数k →gを大
きくするためには、数式(1)及び数式(2)より、フェルスター機構、デクスター機構
のどちらの機構においても、ホスト分子の発光スペクトル(一重項励起状態からのエネル
ギー移動を論じる場合は蛍光スペクトル、三重項励起状態からのエネルギー移動を論じる
場合は燐光スペクトル)とゲスト分子の吸収スペクトル(通常は、燐光であるので、三重
項励起状態と基底状態とのエネルギー差)との重なりが大きい方が良いことがわかる。
国際公開第2000/070655号明細書 米国特許第7572522号公報
上述したように、燐光性化合物を用いることで高効率の発光素子を得ることができる。エ
ネルギー移動過程を考慮すると、高効率の発光素子の実現のためには、ホスト分子の発光
スペクトルとゲスト分子の吸収スペクトルの重なりを大きくする必要がある。またさらに
、ゲスト分子のT1準位からホスト分子のT1準位への逆エネルギー移動を抑制するため
に、ホスト分子のT1準位はゲスト分子のT1準位よりも高くすることが必要である。
一般に、燐光性のゲスト分子として用いられる有機金属錯体(例えばイリジウム錯体)は
比較的長波長の領域に三重項MLCT(Metal to Ligand Charge
Transfer)遷移に由来する吸収を有しており、励起スペクトルからも、この長
波長領域(主に450nm近辺)の吸収がゲスト分子の発光に大きく寄与すると言える。
したがって、この長波長領域の吸収とホスト分子の燐光スペクトルが大きく重なることが
好ましい。これは、ホスト分子の三重項励起状態から効率よくエネルギー移動が起こり、
ゲスト分子の三重項励起状態が効率よく生成するからである。
一方、ホスト分子のS1準位はT1準位よりも高いため、S1準位に対応する蛍光スペク
トルはT1準位に対応する燐光スペクトルと比較してかなり短波長領域に観察される。こ
のことはすなわち、ホスト分子の蛍光スペクトルとゲスト分子の長波長領域の吸収(三重
項MLCT遷移に由来する吸収)との重なりが小さくなることを意味しており、ホスト分
子の一重項励起状態からゲスト分子へのエネルギー移動が十分に利用できないことになる
すなわち、従来の燐光発光素子では、ホスト分子の一重項励起状態から燐光性ゲスト分子
にエネルギー移動して励起一重項状態を生成し、引き続く項間交差による燐光性化合物の
三重項励起状態の生成という過程を経る確率が非常に低い。
本発明はこのような問題点に鑑みてなされるものであり、本発明の一態様は、新しい原理
に基づいた発光素子を提供する。また、本発明の一態様は、外部量子効率が高い発光素子
を提供する。
本発明の一態様は、燐光性化合物(ゲスト)、第1の有機化合物、及び第2の有機化合物
を含む発光層を一対の電極(第1の電極および第2の電極)間に有し、また、発光層と第
1の電極の間には第1の有機化合物を含有するが、第2の有機化合物を含有しない層(第
1の層)を有し、また、発光層と第2の電極の間には第2の有機化合物を含有するが、第
1の有機化合物を含有しない層(第2の層)を有する発光素子である。
上記において、第1の有機化合物は電子輸送性が正孔輸送性よりも優れており、第2の有
機化合物は正孔輸送性が電子輸送性よりも優れている。そして、第1の有機化合物と第2
の有機化合物は、励起錯体(エキシプレックス)を形成する材料である。この構成では、
エキシプレックスからゲストへのエネルギー移動を経てゲストが励起され、ゲストの励起
状態からの発光が得られる。なお、発光層以外の層が電流の注入により発光する能力を有
してもよい。
エキシプレックスは一重項励起エネルギーと三重項励起エネルギーの差が極めて小さいと
考えられる。換言すれば、エキシプレックスの一重項状態からの発光と三重項状態からの
発光は、極めて近い波長領域に現れる。また、エキシプレックスの発光は通常モノマー状
態と比較して長波長側に観察されるので、長波長領域に現れる燐光性化合物の三重項ML
CT遷移に由来する吸収と、エキシプレックスの発光の重なりを大きくすることができる
。このことはすなわち、エキシプレックスの一重項状態、及び三重項状態の双方から、燐
光性化合物に対して効率よくエネルギー移動できることを意味し、発光素子の効率の向上
に寄与することとなる。
さらに、エキシプレックスには基底状態が存在しない。したがって、ゲスト分子の三重項
状態からホスト分子のエキシプレックスへ逆エネルギー移動する過程は存在しないので、
この過程による発光素子の効率低下は起こりえない。
本明細書では、第1の有機化合物および、第2の有機化合物の電子輸送性あるいは正孔輸
送性の特色に着目して、第1の有機化合物、及び第2の有機化合物をそれぞれ、N型ホス
ト、P型ホストとも称する。N型ホスト、P型ホストのいずれか一方は蛍光を発する材料
であってもよい。また、発光層におけるN型ホストおよびP型ホストの比率は、いずれも
10%以上であることが好ましい。
第1の層と発光層あるいは第2の層と発光層との間には、N型ホストとP型ホストの比率
が連続的に変化する領域が設けられていてもよい。なお、発光層内においても、N型ホス
トとP型ホストの比率が連続的に変化するように設定されてもよい。
本発明の他の一態様は、N型ホストを含むN型ホストの層と、P型ホストを含むP型ホス
トの層と、N型ホストの層とP型ホストの層に挟まれ、かつN型ホストとP型ホストとゲ
ストとを有する領域とを有し、N型ホストとP型ホストがエキシプレックスを形成する材
料であることを特徴とする発光素子である。
また、上記発光素子において、燐光性化合物は、有機金属錯体であることが好ましい。燐
光性化合物は、発光層以外に、第1の層あるいは第2の層、あるいは、発光層と第1の層
との間の領域や発光層と第2の層との間の領域に含まれていてもよい。
本発明の一態様では、発光層は、N型ホスト分子とP型ホスト分子とゲスト分子を有する
。もちろん、分子は規則正しく配列している必要は無く、規則性が極めて少ない状態であ
ってもよい。特に発光層を50nm以下の薄膜とする場合には、アモルファス状態となる
ことが好ましく、そのために、結晶化しづらい材料の組み合わせを選択することが好まし
い。また、N型ホストの層やP型ホストの層は2種類以上の異なる化合物より構成されて
もよい。
本発明の一態様の発光素子は、発光装置、電子機器、及び照明装置に適用することができ
る。
適切なN型ホストとP型ホストの組み合わせにおいては、励起状態となった際にエキシプ
レックスを形成する。なお、エキシプレックスを形成する必要条件は、N型ホストのHO
MO準位<P型ホストのHOMO準位<N型ホストのLUMO準位<P型ホストのLUM
O準位であるが、これは十分条件ではない。例えば、AlqとNPBは、上記の条件を
満たすが、エキシプレックスを形成することはない。
これに対し、N型ホストとP型ホストがエキシプレックスを形成できる場合には、上述し
たように、エキシプレックスの一重項状態と三重項状態の双方からゲスト分子へエネルギ
ー移動が生じ、これによってゲスト分子を励起させることが可能であるため、従来の燐光
素子と比較して発光効率が向上する。
ところで、発光素子においては、異なる層の接合を有する場合、界面にエネルギーギャッ
プが生じるため、駆動電圧が増大し、パワー効率が低下する(特許文献2参照)。そこで
、発光素子での異種材料の接合を極力減らすことが好ましい。
上記の態様のいずれかにおいては、後述のようにN型ホストとP型ホストを混合した発光
層とN型ホストの層の界面では正孔に対してバリヤとなる一方、電子に対してはほとんど
障害がなく、また、発光層とP型ホストの層の界面では電子に対してバリヤとなる一方、
正孔に対してはほとんど障害がない。このため、電子と正孔は、発光層内あるいはN型ホ
ストの層とP型ホストの層の間に閉じ込められる。その結果、電子が正極まで到達するこ
とや、正孔が負極まで到達することを阻止でき、発光効率が改善できる。また、エキシプ
レックスは一般的にブロードな発光スペクトルを与えるが、本発明の実施の形態では、ゲ
スト分子が発光するので、半値幅の狭いスペクトルが得られ、その結果、発光の色純度の
高い発光素子が得られる。
本発明の概念図。 本発明の原理を説明する図。 本発明の実施の形態の例を説明する図。 本発明の実施の形態の例を説明する図。 本発明の実施の形態の例を説明する図。 本発明の実施の形態の例を説明する図。 実施例1で得られた発光素子の特性を説明する図。 実施例2で得られた発光素子の特性を説明する図。
実施の形態について、図面を用いて詳細に説明する。但し、本発明は以下の説明に限定さ
れず、本発明の趣旨及びその範囲から逸脱することなくその形態及び詳細を様々に変更し
得ることは当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の
記載内容に限定して解釈されるものではない。なお、以下に説明する発明の構成において
、同一部分又は同様な機能を有する部分には同一の符号を異なる図面間で共通して用い、
その繰り返しの説明は省略する。
(実施の形態1)
本実施の形態の一例である発光素子101aは、図1(A)に示されるように、N型ホス
トを含むN型ホストの層103と、P型ホストを含むP型ホストの層104と、それらに
挟まれたN型ホストとP型ホストを共に有する層(以下、発光層102という)を有する
。発光層102にはゲスト分子105が分散している。
図1(B)には発光素子101aにおける、N型ホストの濃度(図中にNと表記)とP型
ホストの濃度(図中にPと表記)の分布を示す。発光素子101aにおいては、発光層1
02でのN型ホストの濃度は80%で、P型ホストの濃度は20%である。すなわち、発
光層102では、N型ホスト:P型ホスト=4:1である。この比率は、N型ホスト、P
型ホストの輸送特性等を考慮して決定されるとよいが、発光層においては、N型ホスト、
P型ホストの濃度はいずれも10%以上であることが好ましい。
ゲスト分子105は、図1(C)に示されるように、発光層102に分散しているが、こ
れに限らず、N型ホストの層103の一部やP型ホストの層104の一部に分散されてい
ても良い。なお、図中、Gはゲストの濃度分布を表す。
また、N型ホストの層103においては、P型ホストの濃度は極めて低く、0.1%以下
であり、P型ホストの層104においては、N型ホストの濃度は極めて低く、0.1%以
下である。もちろん、発光層102とN型ホストの層103との界面、および発光層10
2とP型ホストの層104との界面は必ずしも濃度変化が急峻なものである必要は無い。
図1(D)には、本実施の形態の別の発光素子101bの例を示す。発光素子101bは
、発光素子101aと同様な、N型ホストの層103と、P型ホストの層104と、発光
層102を有し、発光層102にはゲスト分子105が分散している。
発光素子101aと異なる点は、発光層102とN型ホストの層103との間に、N型ホ
ストの濃度とP型ホストの濃度が緩やかに変化する領域(以下、N型遷移領域106とい
う)が設けられていることと、発光層102とP型ホストの層104との間に、N型ホス
トの濃度とP型ホストの濃度が緩やかに変化する領域(以下、P型遷移領域107という
)が設けられていることである。
なお、N型遷移領域106とP型遷移領域107のいずれか一方を有しない構造であって
もよい。また、N型遷移領域106やP型遷移領域107は発光機能を有する場合もある
。したがって、N型遷移領域106やP型遷移領域107も広い意味での発光層と考えて
もよい。その場合には発光層102は、主たる発光層と考えてもよい。N型遷移領域10
6やP型遷移領域107の厚さは、1nm以上50nm以下とするとよい。
図1(E)にはN型ホストおよびP型ホストの濃度分布を示すが、N型遷移領域106や
P型遷移領域107では、N型ホストの濃度およびP型ホストの濃度は連続的に変化する
。また、ゲスト分子105は、図1(F)に示されるように、発光層102のみならず、
N型遷移領域106やP型遷移領域107中に含まれていても良く、さらには、N型ホス
トの層103やP型ホストの層104の一部に含まれるように設けてもよい。もちろん、
ゲスト分子105を発光層102にのみ設けてもよい。
図1(G)には、本実施の形態の他の発光素子101cを示す。発光素子101cでは、
図1(H)に示すようにN型ホストの層103とP型ホストの層104に挟まれた領域に
おいて、N型ホストの濃度とP型ホストの濃度が連続的に変化する。この場合、発光素子
101aや発光素子101bにおける発光層(あるいは主たる発光層)を定義することは
困難であるが、N型ホストとP型ホストが混合されており、かつ、N型ホスト、P型ホス
トのいずれの濃度も10%以上である領域は広い意味での発光層と呼べる。
また、ゲストの濃度は、図1(I)に示されるように、広い意味での発光層に含まれるよ
うに設定すればよい。なお、図1においてはP型ホスト層104は発光層102を挟んで
N型ホスト層103の上に設けられている。しかしながらこの構造は便宜的であり、逆の
構成、すなわち、N型ホスト層103がP型ホスト層104の上に位置する構造も本発明
の形態に含まれることが容易に理解される。
上記の発光素子101aのエネルギー準位を図2(A)を用いて説明する。上述のように
N型ホスト、P型ホストのHOMO準位およびLUMO準位には、N型ホストのHOMO
準位<P型ホストのHOMO準位<N型ホストのLUMO準位<P型ホストのLUMO準
位という関係がある。
一方、N型ホストとP型ホストが混合された発光層102においては、ホールはP型ホス
トのHOMO準位を利用して輸送され、電子はN型ホストのLUMO準位を利用して輸送
されるので、キャリア移動の観点から見ると、HOMO準位はP型ホストのHOMO準位
と、LUMO準位はN型ホストのLUMO準位と見なすことができる。その結果、発光層
102とP型ホストの層104の界面においては、LUMO準位にギャップが生じるため
、電子の移動にとって障壁となる。同様に、発光層102とN型ホストの層103の界面
においては、HOMO準位にギャップが生じるため、正孔の移動にとって障壁となる。
一方で、発光層102とP型ホストの層104の界面においては、HOMO準位が連続で
あるため、正孔の移動にとっては障壁が無く、発光層102とN型ホストの層103の界
面においても、LUMO準位が連続であるため、電子の移動にとっては障壁が無い。
その結果、電子は、N型ホストの層103から発光層102へは移動しやすいが、発光層
102とP型ホストの層104との間にあるLUMO準位のギャップにより、発光層10
2からP型ホストの層104への移動は妨げられる。
同様に、正孔は、P型ホストの層104から発光層102へは移動しやすいが、発光層1
02とN型ホストの層103との間にあるHOMO準位のギャップにより、発光層102
からN型ホストの層103への移動は妨げられる。この結果、発光層102に電子と正孔
を閉じ込めることができる。
また、上記の発光素子101bのエネルギー準位を図2(B)を用いて説明する。上述の
ように発光層102、N型ホストの層103、P型ホストの層104のHOMO準位およ
びLUMO準位は図2(A)と同じであるが、N型遷移領域106、P型遷移領域107
には注意が必要である。これらの領域では、N型ホストの濃度とP型ホストの濃度が連続
的に変化する。
しかしながら、無機半導体材料(例えば、GaIn1-xN(0<x<1))の伝導帯
や価電子帯が組成の変化に伴って連続的に変化する場合とは異なり、混合有機化合物のL
UMO準位やHOMO準位が連続的に変化することはほとんど無い。これは、有機化合物
の電気伝導がホッピング伝導という無機半導体とは異なる方式であるためである。
例えば、N型ホストの濃度が低下し、P型ホストの濃度が上昇すると、電子は伝導しにく
くなるが、それは、LUMO準位が連続的に上昇するためではなく、N型ホスト分子同士
の距離が長くなるために移動確率が低下するため、および、近傍のP型ホストの高いLU
MO準位へホッピングするためのエネルギーがさらに必要とされるためであると理解され
る。
したがって、N型遷移領域106においては、そのHOMOはN型ホストのHOMOとP
型ホストのHOMOの混合状態であり、より詳細には、発光層102に近い部分では、P
型ホストのHOMOである確率が高いが、N型ホストの層103に近づくにつれ、N型ホ
ストのHOMOである確率が高くなる。P型遷移領域でも同様である。
しかし、このようなN型遷移領域106、P型遷移領域107があったとしても、発光層
102とP型ホストの層104の界面においては、LUMO準位にギャップが生じるため
、電子の移動にとって障壁となり、発光層102とN型ホストの層103の界面において
は、HOMO準位にギャップが生じるため、正孔の移動にとって障壁となることは図2(
A)と同じである。
ただし、図2(A)のような濃度変化が急峻な界面では、例えば、電子はその界面に集中
的に滞留する確率が高いため、界面付近が劣化しやすくなるという問題がある。これに対
し、図2(B)のように界面があいまいな状態では、電子の滞留する部分は確率的に決ま
るため、特定の部分が劣化することはない。すなわち、発光素子の劣化を緩和し、信頼性
を高めることができる。
一方、発光層102とP型遷移領域107の界面、およびP型遷移領域107とP型ホス
トの層104の界面においては、HOMO準位が連続であるため、正孔の移動にとっては
障壁が無く、発光層102とN型遷移領域106の界面、およびN型遷移領域106とN
型ホストの層103の界面においては、LUMO準位が連続であるため、電子の移動にと
っては障壁が無い。
その結果、電子は、N型ホストの層103から発光層102へは移動しやすいが、P型遷
移領域107にあるLUMO準位のギャップにより、発光層102からP型ホストの層1
04への移動は妨げられる。同様に、正孔は、P型ホストの層104から発光層102へ
は移動しやすいが、N型遷移領域106にあるHOMO準位のギャップにより、発光層1
02からN型ホストの層103への移動は妨げられる。
この結果、発光層102に電子と正孔を閉じ込めることができる。また、N型ホストの層
103とP型ホストの層104との間のN型ホストの濃度とP型ホストの濃度が連続的に
変化する発光素子101cでも、同様な考えにより、効率的に電子と正孔をN型ホストの
層103とP型ホストの層104との間に閉じ込めることができる。
次に、ゲスト分子105の励起過程について説明する。ここでは、発光素子101aを例
に取り説明するが、発光素子101bおよび発光素子101cでも同様である。上述の通
り、励起過程には、直接再結合過程とエネルギー移動過程がある。
図2(C)は直接再結合過程を説明する図であるが、負極に接続したN型ホストの層10
3からは電子が、正極に接続したP型ホストの層104からは正孔が、ぞれぞれ、発光層
102のLUMOおよびHOMOに注入される。発光層102にはゲスト分子105が存
在するため、適切な条件の下では、ゲスト分子のLUMOおよびHOMOに電子および正
孔を注入することでゲスト分子を励起状態(分子内励起子、エキシトン)とすることがで
きる。
しかしながら、発光層102にまばらに存在するゲスト分子のLUMOとHOMOに電子
と正孔を効率よく注入することは技術的に困難であるため、その過程の確率は十分に高く
ない。効率をより高めるには、ゲストのLUMOをN型ホストのLUMOよりも0.1電
子ボルト乃至0.3電子ボルト低くすることにより、ゲスト分子に電子を優先的にトラッ
プさせるとよい。ゲストのHOMOをP型ホストのHOMOよりも0.1電子ボルト乃至
0.3電子ボルト高くしても同様の効果が得られる。なお図2(C)では、ゲストのHO
MOはP型ホストのHOMOよりも低いが、ゲストのLUMOはN型ホストとP型ホスト
のLUMOよりも十分に低いので、電子は効率よくトラップされる。
ゲストのLUMOをN型ホストのLUMOよりも0.5電子ボルト以上低くする(あるい
はゲストのHOMOをP型ホストのHOMOよりも0.5電子ボルト以上高くする)と、
電子(正孔)のトラップの確率は高まるが、発光層102の導電性が低下し、また、負極
側(正極側)のゲスト分子のみが集中的に励起されるため好ましくない。
図2(D)は、本発明にしたがってN型ホストとP型ホストを適切に選択し、エキシプレ
ックスを形成させる場合を説明する図である。発光層102に、上記と同様に電子と正孔
が注入された場合、電子と正孔がゲスト分子で出会う確率よりも、発光層102内の隣接
しているN型ホスト分子とP型ホスト分子で出会う確率の方が高い。そのような場合には
、エキシプレックスを形成する。ここで、エキシプレックスに関して詳説する。
エキシプレックスは、励起状態における異種分子間の相互作用によって形成される。エキ
シプレックスは、比較的深いLUMO準位をもつ有機化合物(N型ホスト)と、浅いHO
MO準位をもつ有機化合物(P型ホスト)間との間で形成しやすいことが一般に知られて
いる。
エキシプレックスからの発光波長は、N型ホストとP型ホストのHOMO準位とLUMO
準位間のエネルギー差に依存する。エネルギー差が大きいと発光波長は短くなり、エネル
ギー差が小さいと発光波長は長くなる。そして、N型ホストの分子とP型ホストの分子に
よりエキシプレックスが形成された場合、エキシプレックスのLUMO準位はN型ホスト
に由来し、HOMO準位はP型ホストに由来する。
したがって、エキシプレックスのエネルギー差は、N型ホストのエネルギー差、及びP型
ホストのエネルギー差よりも小さくなる。つまり、N型ホスト、P型ホストのそれぞれの
発光波長に比べて、エキシプレックスの発光波長は長波長となる。
エキシプレックスの形成過程は大きく分けて2つの過程が考えられる。
≪エレクトロプレックス(electroplex)≫
本明細書において、エレクトロプレックスとは、基底状態のN型ホスト及び基底状態のP
型ホストから、直接、形成されたエキシプレックスを指す。例えば、N型ホストのアニオ
ンとP型ホストのカチオンから、直接、形成されたエキシプレックスがエレクトロプレッ
クスである。
前述の通り、従来の有機化合物の発光過程のうちエネルギー移動過程においては、電子及
びホールがホスト分子中で再結合(励起)し、励起状態のホスト分子からゲスト分子に励
起エネルギーが移動し、ゲスト分子が励起状態に至り、発光する。
ここで、ホスト分子からゲスト分子に励起エネルギーが移動する前に、ホスト分子自体が
発光する、又は励起エネルギーが熱エネルギーとなると、励起エネルギーを失活する。特
に、ホスト分子が一重項励起状態である場合は、三重項励起状態である場合に比べて励起
寿命が短いため励起エネルギーの失活が起こりやすい。励起エネルギーの失活は、発光素
子の劣化および寿命の低下につながる要因の一つである。
しかし、N型ホスト分子及びP型ホスト分子がキャリアを持った状態(カチオン又はアニ
オン)からエレクトロプレックスを形成すれば、励起寿命の短い一重項励起子の形成を抑
制することができる。つまり、一重項励起子を形成することなく、直接エキシプレックス
を形成する過程が存在しうる。これにより、N型ホスト分子あるいはP型ホスト分子の一
重項励起エネルギーの失活も抑制することができる。したがって、寿命が長い発光素子を
実現することができる。
このようにしてホスト分子の一重項励起状態の発生を抑制し、その代わりに生じたエレク
トロプレックスからゲスト分子にエネルギー移動をおこなって発光効率が高い発光素子を
得る概念はこれまでにないものである。
≪励起子によるエキシプレックスの形成≫
もう一つの過程としては、N型ホスト分子及びP型ホスト分子の一方が一重項励起子を形
成した後、基底状態の他方と相互作用してエキシプレックスを形成する素過程が考えられ
る。エレクトロプレックスとは異なり、この場合は一旦、N型ホスト分子あるいはP型ホ
スト分子の一重項励起状態が生成してしまうが、これは速やかにエキシプレックスに変換
されるため、一重項励起エネルギーの失活を抑制することができる。したがって、ホスト
分子が励起エネルギーを失活することを抑制することができる。
なお、N型ホスト、P型ホストのHOMO準位の差、及びLUMO準位の差が大きい場合
(具体的には差が0.3eV以上)、電子は優先的にN型ホスト分子に入り、ホールは優
先的にP型ホスト分子に入る。この場合、一重項励起子を経てエキシプレックスが形成さ
れる過程よりも、エレクトロプレックスが形成される過程の方が優先されると考えられる
なお、エネルギー移動過程の効率を高めるには、MLCT遷移に由来する吸収の重要性を
考慮すると、上述のフェルスター機構、デクスター機構のいずれにおいても、N型ホスト
(又はP型ホスト)単独の発光スペクトル(あるいはそれに相当するエネルギー差)とゲ
ストの吸収スペクトルとの重なりよりも、エレクトロプレックス、及びあるいはエキシプ
レックスの発光スペクトルとゲストの吸収スペクトルとの重なりを大きくすることがよい
また、エネルギー移動効率を高めるためには、濃度消光が問題とならない程度にゲストの
濃度を高めることが好ましく、N型ホストとP型ホストの総量に対して、ゲストの濃度は
重量比で1%乃至9%とするとよい。
なお、上述の直接励起再結合過程でも、エネルギー移動過程でも、N型ホストおよびP型
ホスト中に存在するゲスト分子を、N型ホストとP型ホストのエキシプレックス及びある
いはエレクトロプレックスからのエネルギー移動によって励起状態とする概念は従来知ら
れておらず、本明細書ではこの概念をGuest Coupled with Comp
lementary Hosts(GCCH)と呼ぶ。この概念を利用することで、本実
施の形態においては、キャリアの閉じこめと発光層へのキャリア注入障壁の低減が同時に
達成されるのみならず、ホスト分子のエキシプレックスを形成し、その一重項励起状態と
三重項励起状態の双方からのエネルギー移動過程を利用することができるので、高効率か
つ低電圧駆動(すなわちパワー効率の非常に高い)の発光素子が得られる。
(実施の形態2)
本実施の形態の発光装置の一例を図3(A)に示す。図3(A)に示される発光装置は実
施の形態1で説明した発光素子101(実施の形態1で説明した発光素子101a、発光
素子101b、発光素子101c等)を負極108、正極109ではさんだものである。
なお、負極108と正極109の少なくとも一方は透明であることが好ましい。この発光
装置は適切な基板上に設けられてもよい。
発光素子101においては、発光層102をはさむN型ホストの層103、P型ホストの
層104が、それぞれ電子輸送層、正孔輸送層として機能し、また、上述の通り、それぞ
れ正孔、電子を阻止する機能を有するため、電子輸送層や正孔輸送層に相当する層を別途
設ける必要が無い。そのため、図3(A)に示す発光装置は作製工程を簡略化できる。
発光素子101は、実施の形態1で説明したようにゲストとN型ホスト及びP型ホストを
有する。N型ホスト(あるいはP型ホスト)は、2種以上の物質を用いることができる。
ゲストとしては、有機金属錯体が好ましく、イリジウム錯体が特に好ましい。なお、上述
のフェルスター機構によるエネルギー移動を考慮すると、燐光性化合物の最も長波長側に
位置する吸収帯のモル吸光係数は、2000M-1・cm-1以上が好ましく、5000
-1・cm-1以上が特に好ましい。
このような大きなモル吸光係数を有する化合物としては、例えば、ビス(3,5-ジメチ
ル-2-フェニルピラジナト)(ジピバロイルメタナト)イリジウム(III)(略称:
[Ir(mppr-Me)(dpm)]、下記化学式、化1参照)や、(アセチルアセ
トナト)ビス(4,6-ジフェニルピリミジナト)イリジウム(III)(略称:[Ir
(dppm)(acac)]、下記化学式、化2参照)などが挙げられる。特に、[I
r(dppm)(acac)]のように、モル吸光係数が5000M-1・cm-1
上に達する材料を用いると、外部量子効率が30%程度に達する発光素子が得られる。
Figure 2022020818000005
Figure 2022020818000006
N型ホストとしては、π電子欠如型複素芳香環を有する化合物が挙げられる。すなわち、
炭素よりも電気陰性度の大きいヘテロ原子(窒素やリンなど)を環の構成元素として含有
する、6員環の芳香環を有する化合物が挙げられる。例えば、2-[3-(ジベンゾチオ
フェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:2mDBTPD
Bq-II)、2-[4-(ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f、
h]キノキサリン(略称:2DBTPDBq-II)、2-[4-(3,6-ジフェニル
-9H-カルバゾール-9-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:
2CzPDBq-III)、7-[3-(ジベンゾチオフェン-4-イル)フェニル]ジ
ベンゾ[f,h]キノキサリン(略称:7mDBTPDBq-II)及び、6-[3-(
ジベンゾチオフェン-4-イル)フェニル]ジベンゾ[f,h]キノキサリン(略称:6
mDBTPDBq-II)のような電子を受け取りやすいベンゾキノキサリン骨格を有す
る化合物(ベンゾキノキサリン誘導体)のうちいずれか一を用いればよい。
またP型ホストとしては、芳香族アミン(窒素原子に少なくとも一つの芳香環が結合した
化合物)やカルバゾール誘導体が挙げられる。例えば、4,4’-ジ(1-ナフチル)-
4’’-(9-フェニル-9H-カルバゾール-3-イル)トリフェニルアミン(略称:
PCBNBB)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェ
ニル(略称:NPBまたはα-NPD)、及び、4-フェニル-4’-(9-フェニル-
9H-カルバゾール-3-イル)トリフェニルアミン(略称:PCBA1BP)のような
正孔を受け取りやすい化合物を用いればよい。ただし、これらに限定されることなく、P
型ホストとN型ホストがエキシプレックスを形成できる組み合わせであればよい。
正極109としては、仕事関数の大きい(具体的には4.0eV以上の)金属、合金、導
電性化合物、及びこれらの混合物などを用いることが好ましい。具体的には、例えば、酸
化インジウム-酸化スズ(ITO:Indium Tin Oxide)、珪素又は酸化
珪素を含有した酸化インジウム-酸化スズ、酸化インジウム-酸化亜鉛、酸化タングステ
ン及び酸化亜鉛を含有した酸化インジウム(IWZO)等が挙げられる。これらの導電性
金属酸化物膜は、通常スパッタリング法により成膜されるが、ゾル-ゲル法などを応用し
て作製しても構わない。
例えば、酸化インジウム-酸化亜鉛膜は、酸化インジウムに対し1~20wt%の酸化亜
鉛を加えたターゲットを用いてスパッタリング法により形成することができる。また、I
WZO膜は、酸化インジウムに対し酸化タングステンを0.5~5wt%、酸化亜鉛を0
.1~1wt%含有したターゲットを用いてスパッタリング法により形成することができ
る。この他、グラフェン、金、白金、ニッケル、タングステン、クロム、モリブデン、鉄
、コバルト、銅、パラジウム、又は金属材料の窒化物(例えば、窒化チタン)等が挙げら
れる。
但し、発光素子101のうち、正極に接して形成される層が、後述する有機化合物と電子
受容体(アクセプター)とを混合してなる複合材料を用いて形成される場合には、正極に
用いる物質は、仕事関数の大小に関わらず、様々な金属、合金、電気伝導性化合物、およ
びこれらの混合物などを用いることができる。例えば、アルミニウム、銀、アルミニウム
を含む合金(例えば、Al-Si)等も用いることもできる。正極は、例えばスパッタリ
ング法や蒸着法(真空蒸着法を含む)等により形成することができる。
負極108は、仕事関数の小さい(好ましくは3.8eV以下の)金属、合金、電気伝導
性化合物、及びこれらの混合物などを用いて形成することが好ましい。具体的には、元素
周期表の第1族または第2族に属する元素、すなわちリチウムやセシウム等のアルカリ金
属、およびカルシウム、ストロンチウム等のアルカリ土類金属、マグネシウム、およびこ
れらを含む合金(例えば、Mg-Ag、Al-Li)、ユーロピウム、イッテルビウム等
の希土類金属およびこれらを含む合金などを用いることができる。
但し、発光素子101のうち、負極に接して形成される層が、後述する有機化合物と電子
供与体(ドナー)とを混合してなる複合材料を用いる場合には、仕事関数の大小に関わら
ず、Al、Ag、ITO、珪素若しくは酸化珪素を含有した酸化インジウム-酸化スズ等
様々な導電性材料を用いることができる。なお、負極を形成する場合には、真空蒸着法や
スパッタリング法を用いることができる。また、銀ペーストなどを用いる場合には、塗布
法やインクジェット法などを用いることができる。
本実施の形態の発光装置の一例を図3(B)に示す。図3(B)に示す発光装置は、図3
(A)に示す発光装置において発光素子101と負極108の間に電子注入層113を、
また、発光素子101と正極109の間に正孔注入層114を設けたものである。
電子注入層113、正孔注入層114を設けることにより負極108、正極109から発
光素子101に電子および正孔を効率よく注入でき、エネルギー利用効率が高まる。ここ
で、発光素子101と電子注入層113、正孔注入層114を有する積層体をEL層11
0という。
正孔注入層114は、正孔注入性の高い物質を含む層である。正孔注入性の高い物質とし
ては、モリブデン酸化物、チタン酸化物、バナジウム酸化物、レニウム酸化物、ルテニウ
ム酸化物、クロム酸化物、ジルコニウム酸化物、ハフニウム酸化物、タンタル酸化物、銀
酸化物、タングステン酸化物、マンガン酸化物等の金属酸化物を用いることができる。ま
た、フタロシアニン(略称:HPc)、銅(II)フタロシアニン(略称:CuPc)
等のフタロシアニン系の化合物を用いることができる。
また、低分子の有機化合物である4,4’,4’’-トリス(N,N-ジフェニルアミノ
)トリフェニルアミン(略称:TDATA)、4,4’,4’’-トリス[N-(3-メ
チルフェニル)-N-フェニルアミノ]トリフェニルアミン(略称:MTDATA)、4
,4’-ビス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミノ]ビフェニ
ル(略称:DPAB)、4,4’-ビス(N-{4-[N’-(3-メチルフェニル)-
N’-フェニルアミノ]フェニル}-N-フェニルアミノ)ビフェニル(略称:DNTP
D)、1,3,5-トリス[N-(4-ジフェニルアミノフェニル)-N-フェニルアミ
ノ]ベンゼン(略称:DPA3B)、3-[N-(9-フェニルカルバゾール-3-イル
)-N-フェニルアミノ]-9-フェニルカルバゾール(略称:PCzPCA1)、3,
6-ビス[N-(9-フェニルカルバゾール-3-イル)-N-フェニルアミノ]-9-
フェニルカルバゾール(略称:PCzPCA2)、3-[N-(1-ナフチル)-N-(
9-フェニルカルバゾール-3-イル)アミノ]-9-フェニルカルバゾール(略称:P
CzPCN1)等の芳香族アミン化合物等を用いることができる。
さらに、高分子化合物(オリゴマー、デンドリマーを含む)を用いることもできる。例え
ば、ポリ(N-ビニルカルバゾール)(略称:PVK)、ポリ(4-ビニルトリフェニル
アミン)(略称:PVTPA)、ポリ[N-(4-{N’-[4-(4-ジフェニルアミ
ノ)フェニル]フェニル-N’-フェニルアミノ}フェニル)メタクリルアミド](略称
:PTPDMA)、ポリ[N,N’-ビス(4-ブチルフェニル)-N,N’-ビス(フ
ェニル)ベンジジン](略称:Poly-TPD)などの高分子化合物が挙げられる。ま
た、ポリ(3,4-エチレンジオキシチオフェン)/ポリ(スチレンスルホン酸)(PE
DOT/PSS)、ポリアニリン/ポリ(スチレンスルホン酸)(PAni/PSS)等
の酸を添加した高分子化合物を用いることができる。
また、正孔注入層114として、有機化合物と電子受容体(アクセプター)とを混合して
なる複合材料を用いてもよい。このような複合材料は、電子受容体によって有機化合物に
正孔が発生するため、正孔注入性および正孔輸送性に優れている。この場合、有機化合物
としては、発生した正孔の輸送に優れた材料(正孔輸送性の高い物質)であることが好ま
しい。
複合材料に用いる有機化合物としては、芳香族アミン化合物、カルバゾール誘導体、芳香
族炭化水素、ポリマー(オリゴマー、デンドリマーを含む)など、種々の化合物を用いる
ことができる。なお、複合材料に用いる有機化合物としては、正孔輸送性の高い有機化合
物であることが好ましい。具体的には、10-6cm/Vs以上の正孔移動度を有する
物質であることが好ましい。但し、電子よりも正孔の輸送性の高い物質であれば、これら
以外のものを用いてもよい。以下では、複合材料に用いることのできる有機化合物を具体
的に列挙する。
複合材料に用いることのできる有機化合物としては、例えば、TDATA、MTDATA
、DPAB、DNTPD、DPA3B、PCzPCA1、PCzPCA2、PCzPCN
1、1,3,5-トリ(ジベンゾチオフェン-4-イル)ベンゼン(略称:DBT3P-
II)、4,4’-ビス[N-(1-ナフチル)-N-フェニルアミノ]ビフェニル(略
称:NPBまたはα-NPD)、N,N’-ビス(3-メチルフェニル)-N,N’-ジ
フェニル-[1,1’-ビフェニル]-4,4’-ジアミン(略称:TPD)、4-フェ
ニル-4’-(9-フェニルフルオレン-9-イル)トリフェニルアミン(略称:BPA
FLP)等の芳香族アミン化合物や、4,4’-ジ(N-カルバゾリル)ビフェニル(略
称:CBP)、1,3,5-トリス[4-(N-カルバゾリル)フェニル]ベンゼン(略
称:TCPB)、9-[4-(N-カルバゾリル)]フェニル-10-フェニルアントラ
セン(略称:CzPA)、9-フェニル-3-[4-(10-フェニル-9-アントリル
)フェニル]-9H-カルバゾール(略称:PCzPA)、1,4-ビス[4-(N-カ
ルバゾリル)フェニル]-2,3,5,6-テトラフェニルベンゼン等のカルバゾール誘
導体を用いることができる。
また、2-tert-ブチル-9,10-ジ(2-ナフチル)アントラセン(略称:t-
BuDNA)、2-tert-ブチル-9,10-ジ(1-ナフチル)アントラセン、9
,10-ビス(3,5-ジフェニルフェニル)アントラセン(略称:DPPA)、2-t
ert-ブチル-9,10-ビス(4-フェニルフェニル)アントラセン(略称:t-B
uDBA)、9,10-ジ(2-ナフチル)アントラセン(略称:DNA)、9,10-
ジフェニルアントラセン(略称:DPAnth)、2-tert-ブチルアントラセン(
略称:t-BuAnth)、9,10-ビス(4-メチル-1-ナフチル)アントラセン
(略称:DMNA)、9,10-ビス[2-(1-ナフチル)フェニル]-2-tert
-ブチルアントラセン、9,10-ビス[2-(1-ナフチル)フェニル]アントラセン
、2,3,6,7-テトラメチル-9,10-ジ(1-ナフチル)アントラセン等の芳香
族炭化水素化合物を用いることができる。
さらに、2,3,6,7-テトラメチル-9,10-ジ(2-ナフチル)アントラセン、
9,9’-ビアントリル、10,10’-ジフェニル-9,9’-ビアントリル、10,
10’-ビス(2-フェニルフェニル)-9,9’-ビアントリル、10,10’-ビス
[(2,3,4,5,6-ペンタフェニル)フェニル]-9,9’-ビアントリル、アン
トラセン、テトラセン、ルブレン、ペリレン、2,5,8,11-テトラ(tert-ブ
チル)ペリレン、ペンタセン、コロネン、4,4’-ビス(2,2-ジフェニルビニル)
ビフェニル(略称:DPVBi)、9,10-ビス[4-(2,2-ジフェニルビニル)
フェニル]アントラセン(略称:DPVPA)等の芳香族炭化水素化合物を用いることが
できる。
また、電子受容体としては、7,7,8,8-テトラシアノ-2,3,5,6-テトラフ
ルオロキノジメタン(略称:F-TCNQ)、クロラニル等の有機化合物や、周期表に
おける第4族乃至第8族に属する金属などの遷移金属の酸化物を挙げることができる。具
体的には、酸化バナジウム、酸化ニオブ、酸化タンタル、酸化クロム、酸化モリブデン、
酸化タングステン、酸化マンガン、酸化レニウムは電子受容性が高いため好ましい。中で
も特に、酸化モリブデンは大気中でも安定であり、吸湿性が低く、扱いやすいため好まし
い。
なお、上述したPVK、PVTPA、PTPDMA、Poly-TPD等のポリマーと、
上述した電子受容体を用いて複合材料を形成し、正孔注入層114に用いてもよい。
電子注入層113は、電子注入性の高い物質を含む層である。電子注入層113には、リ
チウム、セシウム、カルシウム、フッ化リチウム、フッ化セシウム、フッ化カルシウム、
リチウム酸化物等のようなアルカリ金属、アルカリ土類金属、またはそれらの化合物を用
いることができる。また、フッ化エルビウムのような希土類金属化合物を用いることがで
きる。
また、電子注入層113には、電子輸送性の高い物質を用いることもできる。電子輸送性
の高い物質としては、Alq、トリス(4-メチル-8-キノリノラト)アルミニウム
(略称:Almq)、ビス(10-ヒドロキシベンゾ[h]キノリナト)ベリリウム(
略称:BeBq)、BAlq、Zn(BOX)、ビス[2-(2-ヒドロキシフェニ
ル)ベンゾチアゾラト]亜鉛(略称:Zn(BTZ))などの金属錯体が挙げられる。
また、2-(4-ビフェニリル)-5-(4-tert-ブチルフェニル)-1,3,4
-オキサジアゾール(略称:PBD)、1,3-ビス[5-(p-tert-ブチルフェ
ニル)-1,3,4-オキサジアゾール-2-イル]ベンゼン(略称:OXD-7)、3
-(4-tert-ブチルフェニル)-4-フェニル-5-(4-ビフェニリル)-1,
2,4-トリアゾール(略称:TAZ)、3-(4-tert-ブチルフェニル)-4-
(4-エチルフェニル)-5-(4-ビフェニリル)-1,2,4-トリアゾール(略称
:p-EtTAZ)、バソフェナントロリン(略称:BPhen)、バソキュプロイン(
略称:BCP)、4,4’-ビス(5-メチルベンゾオキサゾール-2-イル)スチルベ
ン(略称:BzOs)などの複素芳香族化合物も用いることができる。
また、ポリ(2,5-ピリジン-ジイル)(略称:PPy)、ポリ[(9,9-ジヘキシ
ルフルオレン-2,7-ジイル)-co-(ピリジン-3,5-ジイル)](略称:PF
-Py)、ポリ[(9,9-ジオクチルフルオレン-2,7-ジイル)-co-(2,2
’-ビピリジン-6,6’-ジイル)](略称:PF-BPy)のようなポリマーを用い
ることもできる。ここに述べた物質は、主に10-6cm/Vs以上の電子移動度を有
する物質である。
なお、正孔よりも電子の輸送性の高い物質であれば、上記以外の物質を電子注入層113
として用いてもよい。これらの電子輸送性の高い物質は、後述する電子輸送層にも用いる
ことができる。
あるいは、電子注入層113に、有機化合物と電子供与体(ドナー)とを混合してなる複
合材料を用いてもよい。このような複合材料は、電子供与体によって有機化合物に電子が
発生するため、電子注入性および電子輸送性に優れている。この場合、有機化合物として
は、発生した電子の輸送に優れた材料であることが好ましく、具体的には、例えば上述し
た電子輸送層を構成する物質(金属錯体や複素芳香族化合物等)を用いることができる。
電子供与体としては、有機化合物に対し電子供与性を示す物質であればよい。具体的には
、アルカリ金属やアルカリ土類金属や希土類金属が好ましく、リチウム、セシウム、マグ
ネシウム、カルシウム、エルビウム、イッテルビウム等が挙げられる。また、アルカリ金
属酸化物やアルカリ土類金属酸化物が好ましく、リチウム酸化物、カルシウム酸化物、バ
リウム酸化物等が挙げられる。また、酸化マグネシウムのようなルイス塩基を用いること
もできる。また、テトラチアフルバレン(略称:TTF)等の有機化合物を用いることも
できる。
本実施の形態の発光装置の一例を図3(C)に示す。図3(C)に示す発光装置は、図3
(B)に示す発光装置において発光素子101と電子注入層113の間に電子輸送層11
1を、また、発光素子101と正孔注入層114の間に正孔輸送層112を設けたもので
ある。
上述のように、発光素子101内のN型ホストの層103およびP型ホストの層104は
、それぞれ、電子輸送層および正孔輸送層としての機能も有するが、発光素子101に、
より効果的に電子や正孔を注入するには、別途、電子輸送層111と正孔輸送層112を
設けるとよい。
電子輸送層111は、電子輸送性の高い物質を含む層である。電子輸送層111には、上
述した電子輸送性の高い物質を用いることができる。また、電子輸送層は、単層のものだ
けでなく、上記物質からなる層が二層以上積層したものとしてもよい。
正孔輸送層112は、正孔輸送性の高い物質を含む層である。正孔輸送性の高い物質とし
ては、NPB、TPD、BPAFLP、4,4’-ビス[N-(9,9-ジメチルフルオ
レン-2-イル)-N-フェニルアミノ]ビフェニル(略称:DFLDPBi)、4,4
’-ビス[N-(スピロ-9,9’-ビフルオレン-2-イル)-N―フェニルアミノ]
ビフェニル(略称:BSPB)などの芳香族アミン化合物を用いることができる。ここに
述べた物質は、主に10-6cm/Vs以上の正孔移動度を有する物質である。但し、
電子よりも正孔の輸送性の高い物質であれば、これら以外のものを用いてもよい。なお、
正孔輸送性の高い物質を含む層は、単層のものだけでなく、上記物質からなる層が二層以
上積層したものとしてもよい。
また、正孔輸送層112には、CBP、CzPA、PCzPAのようなカルバゾール誘導
体や、t-BuDNA、DNA、DPAnthのようなアントラセン誘導体を用いても良
い。また、正孔輸送層112には、PVK、PVTPA、PTPDMA、Poly-TP
Dなどの高分子化合物を用いることもできる。
上述した正孔注入層114、正孔輸送層112、発光素子101、電子輸送層111、電
子注入層113は、蒸着法(真空蒸着法を含む)、インクジェット法、塗布法等の方法で
形成することができる。なお、EL層110は必ずしもこれらの層を全て有する必要は無
い。
また、図3(D)に示すように、正極109と負極108との間に複数のEL層110a
、110bが積層されていても良い。この場合、EL層110a、110bはそれぞれ少
なくとも図3(A)に示した発光素子101、あるいは図3(B)乃び図3(C)で説明
した構造を有する。積層されたEL層110aとEL層110bとの間には、電荷発生層
115を設ける。電荷発生層115は上述の正孔注入性の高い物質や複合材料で形成する
ことができる。また、電荷発生層115は複合材料からなる層と他の材料からなる層との
積層構造でもよい。
この場合、他の材料からなる層としては、電子供与性物質と電子輸送性の高い物質とを含
む層や、透明導電膜からなる層などを用いることができる。また、一方のEL層で燐光発
光、他方で蛍光発光を得ても良い。この燐光発光は上述のEL層の構造を用いて得ること
ができる。
また、それぞれのEL層の発光色を異なるものにすることで、発光装置全体として、所望
の色の発光を得ることができる。例えば、EL層110aの発光色とEL層110bの発
光色を補色の関係になるようにすることで、全体として白色発光する発光装置を得ること
も可能である。また、3つ以上のEL層を有する発光装置の場合でも同様である。
あるいは、図3(E)に示すように、正極109と負極108との間に、正孔注入層11
4、正孔輸送層112、発光素子101、電子輸送層111、電子注入バッファー層11
6、電子リレー層117、及び負極108と接する複合材料層118を有するEL層11
0を形成しても良い。
負極108と接する複合材料層118を設けることで、特にスパッタリング法を用いて負
極108を形成する場合には、EL層110が受けるダメージを低減することができるた
め好ましい。複合材料層118は、前述の、正孔輸送性の高い有機化合物にアクセプター
性物質を含有させた複合材料を用いることができる。
さらに、電子注入バッファー層116を設けることで、複合材料層118と電子輸送層1
11との間の注入障壁を緩和することができるため、複合材料層118で生じた電子を電
子輸送層111に容易に注入することができる。
電子注入バッファー層116には、アルカリ金属、アルカリ土類金属、希土類金属、およ
びこれらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸
リチウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲ
ン化物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を
含む))等の電子注入性の高い物質を用いることが可能である。
また、電子注入バッファー層116が、電子輸送性の高い物質とドナー性物質を含んで形
成される場合には、電子輸送性の高い物質に対して質量比で、0.001以上0.1以下
の比率でドナー性物質を添加することが好ましい。電子輸送性の高い物質としては、先に
説明した電子輸送層111の材料と同様の材料を用いて形成することができる。
また、ドナー性物質としては、アルカリ金属、アルカリ土類金属、希土類金属、およびこ
れらの化合物(アルカリ金属化合物(酸化リチウム等の酸化物、ハロゲン化物、炭酸リチ
ウムや炭酸セシウム等の炭酸塩を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化
物、炭酸塩を含む)、または希土類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む
))の他、テトラチアナフタセン(略称:TTN)、ニッケロセン、デカメチルニッケロ
セン等の有機化合物を用いることもできる。
さらに、電子注入バッファー層116と複合材料層118との間に、電子リレー層117
を形成することが好ましい。電子リレー層117は、必ずしも設ける必要は無いが、電子
輸送性の高い電子リレー層117を設けることで、電子注入バッファー層116へ電子を
速やかに送ることが可能となる。
複合材料層118と電子注入バッファー層116との間に電子リレー層117が挟まれた
構造は、複合材料層118に含まれるアクセプター性物質と、電子注入バッファー層11
6に含まれるドナー性物質とが相互作用を受けにくく、互いの機能を阻害しにくい構造で
ある。したがって、駆動電圧の上昇を防ぐことができる。
電子リレー層117は、電子輸送性の高い物質を含み、電子輸送性の高い物質のLUMO
準位は、複合材料層118に含まれるアクセプター性物質のLUMO準位と、電子輸送層
111に含まれる電子輸送性の高い物質のLUMO準位との間となるように形成する。
また、電子リレー層117がドナー性物質を含む場合には、当該ドナー性物質のドナー準
位も複合材料層118におけるアクセプター性物質のLUMO準位と、電子輸送層111
に含まれる電子輸送性の高い物質のLUMO準位との間となるようにする。具体的なエネ
ルギー準位の数値としては、電子リレー層117に含まれる電子輸送性の高い物質のLU
MO準位は-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下とするとよ
い。
電子リレー層117に含まれる電子輸送性の高い物質としてはフタロシアニン系の材料又
は金属-酸素結合と芳香族配位子を有する金属錯体を用いることが好ましい。
電子リレー層117に含まれるフタロシアニン系材料としては、具体的にはCuPc、S
nPc(Phthalocyanine tin(II) complex)、ZnPc
(Phthalocyanine zinc complex)、CoPc(Cobal
t(II)phthalocyanine, β-form)、FePc(Phthal
ocyanine Iron)及びPhO-VOPc(Vanadyl 2,9,16,
23-tetraphenoxy-29H,31H-phthalocyanine)の
いずれかを用いることが好ましい。
電子リレー層117に含まれる金属-酸素結合と芳香族配位子を有する金属錯体としては
、金属-酸素の二重結合を有する金属錯体を用いることが好ましい。金属-酸素の二重結
合はアクセプター性(電子を受容しやすい性質)を有するため、電子の移動(授受)がよ
り容易になる。また、金属-酸素の二重結合を有する金属錯体は安定であると考えられる
。したがって、金属-酸素の二重結合を有する金属錯体を用いることにより発光装置の寿
命を向上させることができる。
金属-酸素結合と芳香族配位子を有する金属錯体としてはフタロシアニン系材料が好まし
い。具体的には、VOPc(Vanadyl phthalocyanine)、SnO
Pc(Phthalocyanine tin(IV) oxide complex)
及びTiOPc(Phthalocyanine titanium oxide co
mplex)などは、アクセプター性が高いため好ましい。
なお、上述したフタロシアニン系材料としては、フェノキシ基を有するものが好ましい。
具体的にはPhO-VOPcのような、フェノキシ基を有するフタロシアニン誘導体が好
ましい。フェノキシ基を有するフタロシアニン誘導体は、溶媒に容易に溶けるため、扱い
やすく、また、成膜に用いる装置のメンテナンスが容易になるという利点を有する。
電子リレー層117はさらにドナー性物質を含んでいても良い。ドナー性物質としては、
アルカリ金属、アルカリ土類金属、希土類金属及びこれらの化合物(アルカリ金属化合物
(酸化リチウムなどの酸化物、ハロゲン化物、炭酸リチウムや炭酸セシウムなどの炭酸塩
を含む)、アルカリ土類金属化合物(酸化物、ハロゲン化物、炭酸塩を含む)、又は希土
類金属の化合物(酸化物、ハロゲン化物、炭酸塩を含む))の他、テトラチアナフタセン
(略称:TTN)、ニッケロセン、デカメチルニッケロセンなどの有機化合物を用いるこ
とができる。電子リレー層117にこれらドナー性物質を含ませることによって、電子の
移動が容易となり、発光装置をより低電圧で駆動することが可能になる。
電子リレー層117にドナー性物質を含ませる場合、電子輸送性の高い物質としては上記
した材料の他、複合材料層118に含まれるアクセプター性物質のアクセプター準位より
高いLUMO準位を有する物質を用いることができる。具体的なエネルギー準位としては
、-5.0eV以上、好ましくは-5.0eV以上-3.0eV以下の範囲にLUMO準
位を有する物質を用いることが好ましい。このような物質としては例えば、ペリレン誘導
体や、含窒素縮合芳香族化合物などが挙げられる。なお、含窒素縮合芳香族化合物は、安
定であるため、電子リレー層117を形成する為に用いる材料として、好ましい材料であ
る。
ペリレン誘導体の具体例としては、3,4,9,10-ペリレンテトラカルボン酸二無水
物(略称:PTCDA)、3,4,9,10-ペリレンテトラカルボキシリックビスベン
ゾイミダゾール(略称:PTCBI)、N,N’-ジオクチル-3,4,9,10-ペリ
レンテトラカルボン酸ジイミド(略称:PTCDI-C8H)、N,N’-ジヘキシル-
3,4,9,10-ペリレンテトラカルボン酸ジイミド(略称:Hex PTC)等が挙
げられる。
また、含窒素縮合芳香族化合物の具体例としては、ピラジノ[2,3-f][1,10]
フェナントロリン-2,3-ジカルボニトリル(略称:PPDN)、2,3,6,7,1
0,11-ヘキサシアノ-1,4,5,8,9,12-ヘキサアザトリフェニレン(略称
:HAT(CN))、2,3-ジフェニルピリド[2,3-b]ピラジン(略称:2P
YPR)、2,3-ビス(4-フルオロフェニル)ピリド[2,3-b]ピラジン(略称
:F2PYPR)等が挙げられる。
その他にも、7,7,8,8-テトラシアノキノジメタン(略称:TCNQ)、1,4,
5,8-ナフタレンテトラカルボン酸二無水物(略称:NTCDA)、パーフルオロペン
タセン、銅ヘキサデカフルオロフタロシアニン(略称:F16CuPc)、N,N’-ビ
ス(2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオ
ロオクチル)-1,4,5,8-ナフタレンテトラカルボン酸ジイミド(略称:NTCD
I-C8F)、3’,4’-ジブチル-5,5’’-ビス(ジシアノメチレン)-5,5
’’-ジヒドロ-2,2’:5’,2’’-テルチオフェン)(略称:DCMT)、メタ
ノフラーレン(例えば、[6,6]-フェニルC61酪酸メチルエステル)等を用いるこ
とができる。
なお、電子リレー層117にドナー性物質を含ませる場合、電子輸送性の高い物質とドナ
ー性物質との共蒸着などの方法によって電子リレー層117を形成すれば良い。
なお、先に説明したように、発光素子101内のN型ホストの層103およびP型ホスト
の層104は、それぞれ、電子輸送層および正孔輸送層としての機能も有するため、電子
輸送層111、正孔輸送層112の一方あるいは双方を設けなくともよい。その際には、
N型ホストの層103が電子輸送層111として機能する。
上述した発光装置は、正極と負極との間に与えられた電位差により電流が流れ、EL層1
10(あるいは110a、110b)において正孔と電子とが再結合することにより発光
する。そして、この発光は、正極または負極のいずれか一方または両方を通って外部に取
り出される。従って、正極または負極のいずれか一方、または両方が可視光に対する透光
性を有する電極となる。
なお、正孔ブロック層を発光素子101に組み合わせてもよい。
本実施の形態で示した発光装置を用いて、パッシブマトリクス型の発光装置や、トランジ
スタによって発光装置の駆動が制御されたアクティブマトリクス型の発光装置を作製する
ことができる。また、該発光装置を電子機器又は照明装置等に適用することができる。
(実施の形態3)
本実施の形態では、実施の形態1で説明した発光素子101a等を製造するための装置と
作製方法について説明する。図4(A)に示す製造装置は、真空チャンバー201内に、
第1の蒸発源202、第2の蒸発源203、第3の蒸発源204を有する。第1乃至第3
の蒸発源202~204は、いずれも図4(C)に示されるように線状の開口部223を
有し、抵抗加熱方式で内部の有機化合物を蒸発させることができる。
ここでは、第1の蒸発源202はN型ホストを蒸発させ、第2の蒸発源203はゲストを
蒸発させ、第3の蒸発源204はP型ホストを蒸発させるものとする。また、第1乃至第
3の蒸発源202~204には、それぞれシャッターを設けてもよい。さらに、各蒸発源
の温度は独立に制御して有機化合物の蒸気圧を適切に制御できるようにするとよい。例え
ば、N型ホストの蒸発量を、P型ホストの蒸発量の4倍とし、また、ゲストの蒸発量をP
型ホストの蒸発量の1%となるように設定してもよい。
さらに、例えば、第1の蒸発源202と第3の蒸発源204では有機化合物を比較的、広
い角度範囲に飛散させ、これに対し、第2の蒸発源203では、より狭い範囲に飛散させ
るように、各蒸発源の開口部223の形状や大きさ等を異ならせてもよい。あるいは、図
4(A)に示すように各蒸発源の開口部223の向きを異なるように設定してもよい。
また、真空チャンバー201内には1枚以上の基板、好ましくは2枚以上の基板(図2(
A)では基板205~207)を配置し、図のように左から右へ(すなわち、蒸発源の開
口部223の方向と略直角な方向に)適切な速度で移動するようにするとよい。なお、各
蒸発源と基板205~207の距離を異ならせてもよい。
図4(A)に示す製造装置において、208に示す部分では主として、第1の蒸発源20
2から飛散するN型ホストが堆積する。また、209に示す部分では第1の蒸発源202
から飛散するN型ホスト、第2の蒸発源203から飛散するゲスト、第3の蒸発源204
から飛散するP型ホストが一定の比率で堆積する。さらに、210に示す部分では、主と
して、第3の蒸発源204から飛散するP型ホストが堆積する。
したがって、基板205~207が左から右へ移動する間に、最初にN型ホストの層10
3が形成され、次いで、発光層102が形成され、さらにP型ホストの層104が形成さ
れる。発光素子101bのように、N型ホストの層103と発光層102の間にN型遷移
領域106、P型ホストの層104と発光層102の間にP型遷移領域107が形成され
ることもある。あるいは、発光素子101cのように、発光層とN型ホストの層103の
間、あるいは発光層とP型ホストの層104の間に明確な境界が形成されない場合もある
図4(B)に示す製造装置は、図4(A)に示す製造装置を改良したものである。すなわ
ち、真空チャンバー211内に、第1の蒸発源212、第2の蒸発源213、第3の蒸発
源214、第4の蒸発源215、第5の蒸発源216を有する。ここでは、第1の蒸発源
212および第2の蒸発源213はN型ホストを蒸発させ、第3の蒸発源214はゲスト
を蒸発させ、第4の蒸発源215および第5の蒸発源216はP型ホストを蒸発させるも
のとする。
図4(A)に示す製造装置と同様に、各蒸着源の開口部223の形状や大きさ、各蒸着源
の位置や向きは互いに異なってもよい。また、真空チャンバー211内には1枚以上の基
板、好ましくは2枚以上の基板(図2(B)では基板217~219)を配置し、図のよ
うに左から右へ適切な速度で移動するようにするとよい。
図4(B)に示す製造装置において、220に示す部分では主として、第1の蒸発源21
2から飛散するN型ホストが堆積する。また、221に示す部分では第2の蒸発源213
から飛散するN型ホスト、第3の蒸発源214から飛散するゲスト、第4の蒸発源215
から飛散するP型ホストが一定の比率で堆積する。さらに、222に示す部分では、主と
して、第5の蒸発源216から飛散するP型ホストが堆積する。
図4(B)に示す製造装置では、発光素子101aのように発光層102とN型ホストの
層103との界面や発光層102とP型ホストの層104との界面における、濃度変化を
急峻にすることができる。
(実施の形態4)
本実施の形態では、N型ホストとして用いることのできる2mDBTPDBq-IIとP
型ホストとして用いることのできるPCBNBBと、そのエキシプレックスについて説明
する。2mDBTPDBq-II、PCBNBB、およびこれらを用いる際にゲストとし
て適切な[Ir(dppm)(acac)]、[Ir(mppr-Me)(dpm)
]の主な物性値は表1の通りである。
Figure 2022020818000007
2mDBTPDBq-IIとPCBNBBが混合された領域では、LUMO準位は、-2
.78eV、HOMO準位は-5.46eVとなる。これらは、それぞれ、2mDBTP
DBq-IIとPCBNBBのエキシプレックスのLUMO準位、HOMO準位と同じで
ある。そして、ゲストである[Ir(mppr-Me)(dpm)]のLUMO準位、
HOMO準位も同じレベルである。
一方、[Ir(dppm)(acac)]のLUMO準位、HOMO準位は、ともにこ
れより低いため、[Ir(dppm)(acac)]は電子をトラップしやすいことが
わかる。このため、[Ir(dppm)(acac)]をゲストに用いた場合には、[
Ir(mppr-Me)(dpm)]を用いた場合より直接再結合過程の確率が高いこ
とが示唆される。
また、[Ir(mppr-Me)(dpm)]も[Ir(dppm)(acac)]
も三重項励起状態のエネルギー準位(T1準位)は2mDBTPDBq-IIやPCBN
BBの三重項励起状態のエネルギー準位よりも0.1電子ボルト以上低いので、[Ir(
mppr-Me)(dpm)]や[Ir(dppm)(acac)]が三重項励起状
態となった後、その状態が2mDBTPDBq-IIやPCBNBBの三重項励起状態に
移動する確率は小さい。特に[Ir(dppm)(acac)]では、0.18電子ボ
ルト以上も低いので、[Ir(dppm)(acac)]の方が[Ir(mppr-M
e)(dpm)]よりも発光効率が高いことが示唆される。
図5(A)は2mDBTPDBq-IIの分子構造を示す。一般に、ベンゼン環のような
6員環芳香環の構成原子に、窒素原子のような炭素よりも電気陰性度が大きい原子(ヘテ
ロ原子)を導入するとヘテロ原子に環上のπ電子が引きつけられ、芳香環は電子不足とな
りやすい。図の点線で囲まれた部分Aはπ電子が不足している部位を示し、この部分で電
子をトラップしやすい。一般に6員環のヘテロ芳香族化合物はN型ホストとなりやすい。
図5(B)はPCBNBBの分子構造を示す。一般に、窒素原子が、ベンゼン環のような
芳香環の外側にあって環と結合すると、窒素原子の非共有電子対がベンゼン環に供与され
て電子過剰となり電子を放出しやすくなる(すなわち、正孔をトラップしやすくなる)。
図において点線で囲まれた部分Bはπ電子が過剰となっている部位を示し、この部分で電
子を放出(正孔をトラップ)しやすい。一般に芳香族アミン化合物はP型ホストとなりや
すい。
また、2mDBTPDBq-IIとPCBNBBのLUMOの間には0.47電子ボルト
、HOMOの間には0.42電子ボルトという比較的大きなギャップが存在する。このギ
ャップが電子や正孔の障壁となり、キャリアが再結合することなく発光層を突き抜けるこ
とを防ぐことができる。このような障壁の高さは0.3電子ボルト以上、好ましくは、0
.4電子ボルト以上あるとよい。
N型ホストとP型ホストがエキシプレックスを形成するかどうかはフォトルミネッセンス
を測定すればよい。また、得られるエキシプレックスのフォトルミネセンスのスペクトル
がゲストの吸収スペクトルと重なるとフェルスター機構によるエネルギー移動過程が起こ
りやすいといえる。
図6(A)および図6(B)に[Ir(dppm)(acac)]のジクロロメタン溶
液の紫外可視吸収スペクトル(吸収スペクトル0)を示す。吸収スペクトルの測定には、
紫外可視分光光度計((株)日本分光製 V550型)を用い、ジクロロメタン溶液(0
.093mmol/L)を石英セルに入れ、室温で測定をおこなった。
また、同じく図6(A)および図6(B)に、2mDBTPDBq-IIの薄膜のフォト
ルミネッセンス・スペクトル(発光スペクトル1)、PCBNBBの薄膜のフォトルミネ
ッセンス・スペクトル(発光スペクトル2)、及び2mDBTPDBq-IIとPCBN
BBの混合材料の薄膜のフォトルミネッセンス・スペクトル(発光スペクトル3)を示す
。混合材料の薄膜における2mDBTPDBq-IIとPCBNBBの比は0.8:0.
2であった。
図6(A)において、横軸は、波長(nm)を示し、縦軸は、モル吸光係数ε(M-1
cm-1)及び発光強度(任意単位)を示す。図6(B)において、横軸は、エネルギー
(eV)を示し、縦軸は、モル吸光係数ε(M-1・cm-1)及び発光強度(任意単位
)を示す。
図6(A)の吸収スペクトル0から、[Ir(dppm)(acac)]が、520n
m付近にブロードな吸収帯を有することがわかる。この吸収帯が、発光に強く寄与する吸
収帯であると考えられる。
発光スペクトル3は、発光スペクトル1、発光スペクトル2よりも長波長(低エネルギー
)側にピークを有する。そして、発光スペクトル3のピークは、発光スペクトル1、発光
スペクトル2のピークに比べて、[Ir(dppm)(acac)]の吸収帯と近い位
置に存在する。具体的には、[Ir(dppm)(acac)]の吸収スペクトル0の
ピークと発光スペクトル3のピークの差は0.02eVであった。
2mDBTPDBq-II及びPCBNBBの混合材料の発光スペクトルは、単体の発光
スペクトルよりも長波長(低エネルギー)側にピークを有することがわかった。このこと
から、2mDBTPDBq-IIとPCBNBBを混合することで、エキシプレックスが
形成されることが示唆された。また、2mDBTPDBq-II及びPCBNBB単体に
由来する発光ピークは観測されず、2mDBTPDBq-II及びPCBNBBが個別に
励起されたとしても、ただちにエキシプレックスを形成することを意味する。
該混合材料の発光スペクトルのピークは、[Ir(dppm)(acac)]の吸収ス
ペクトル0において発光に強く寄与すると考えられる吸収帯と重なりが大きい。よって、
2mDBTPDBq-IIとPCBNBBと[Ir(dppm)(acac)]を有す
る発光素子では、エキシプレックスからゲスト分子へのエネルギー移動効率が高いことが
示唆される。
本実施例では、本発明の一態様の発光素子を作製し、その特性評価をおこなった。本実施
例の発光素子では、N型ホストとして2DBTPDBq-IIを用い、P型ホストとして
はPCBA1BPを用いた。
本実施例で作製した発光素子の層構造は、上方より基板に向って、負極、電子注入層、電
子輸送層、第1の層(N型ホストの層)、発光層(N型ホストとP型ホストを共に有する
層)、第2の層(P型ホストの層)、正孔注入層、正極という構造を有する。
これらを含めて、本実施例で用いた材料の化学式(構造式)を以下に示す。なお、既に説
明した材料については省略する。
Figure 2022020818000008
以下に、本実施例の発光素子の作製方法を示す。まず、ガラス基板上に、酸化珪素を含む
インジウム錫酸化物(ITSO)をスパッタリング法にて成膜し、正極を形成した。なお
、その膜厚は110nmとし、電極面積は2mm×2mmとした。
次に、基板上に発光素子を形成するための前処理として、基板表面を水で洗浄し、200
℃で1時間焼成した後、UVオゾン処理を370秒おこなった。その後、10-4Pa程
度まで内部が減圧された真空蒸着装置に基板を導入し、真空蒸着装置内の加熱室において
、170℃で30分間の真空焼成をおこなった後、基板を30分程度放冷した。
次に、正極が形成された面が下方となるように、正極が形成された基板を真空蒸着装置内
に設けられた基板ホルダーに固定し、約10-4Paの減圧下、正極上に、DBT3P-
IIと酸化モリブデン(VI)を共蒸着することで、正孔注入層を形成した。その膜厚は
、40nmとし、DBT3P-IIと酸化モリブデンの比率は、重量比で4:2(=DB
T3P-II:酸化モリブデン)となるように調節した。
次に、正孔注入層上にPCBA1BPよりなる第2の層を20nmの膜厚となるように蒸
着法により成膜した。
さらに、PCBA1BPと2DBTPDBq-IIと[Ir(dppm)(acac)
])を共蒸着し、第2の層上に発光層を形成した。ここで、2DBTPDBq-II、P
CBA1BP及び[Ir(dppm)(acac)]]の重量比は、0.8:0.2:
0.05となるように調節した。また、発光層の膜厚は40nmとした。
次に、発光層上に各発光素子の2DBTPDBq-IIを膜厚10nmとなるよう蒸着法
により成膜し、第1の層を形成した。
次に、第1の層上に、バソフェナントロリン(略称:BPhen)を膜厚20nmとなる
ように成膜し、電子輸送層を形成した。
さらに、電子輸送層上に、フッ化リチウム(LiF)を1nmの膜厚で蒸着し、電子注入
層を形成した。
最後に、負極として、アルミニウムを200nmの膜厚となるように蒸着した。このよう
にして、発光素子を作製した。なお、上述した蒸着過程において、蒸着は全て抵抗加熱法
を用いた。以上により得られた発光素子の素子構造を表2に示す。
Figure 2022020818000009
窒素雰囲気のグローブボックス内において、発光素子が大気に曝されないように封止する
作業をおこなった後、発光素子の動作特性について測定をおこなった。なお、測定は室温
(25℃に保たれた雰囲気)でおこなった。
図7(A)に得られた発光素子の輝度の電流密度依存性を、図7(B)に輝度の電圧依存
性を、図7(C)に電流効率の輝度依存性を示す。また、得られた発光素子の主要な特性
を表3に示す。約1000cd/mの輝度を得るための電圧が極めて低く(2.6V
)、また、パワー効率が70%以上の高効率な発光素子が得られた。
Figure 2022020818000010
本実施例では、本発明の一態様の発光素子を作製し、その測定をおこなった。本実施例で
は、N型ホストとして2mDBTPDBq-IIを用い、P型ホストとしてはPCBA1
BPを用い、発光素子を作製した。
本実施例で作製した発光素子の層構造は、実施例1の発光素子と同じである。また、用い
る材料は既に説明した材料である。さらに、作製方法はN型ホストが異なる以外の点は実
施例1と同様である(すなわち、実施例1の2DBTPDBq-IIを2mDBTPDB
q-IIで置き換えただけである)ので詳細は省略する。なお、2mDBTPDBq-I
Iの構造を以下に示す。
Figure 2022020818000011
得られた発光素子の素子構造を表4に示す。
Figure 2022020818000012
図8(A)に得られた発光素子の輝度の電流密度依存性を、図8(B)に輝度の電圧依存
性を、図8(C)に電流効率の輝度依存性を示す。また、得られた発光素子の主要な特性
を表5に示す。約1000cd/mの輝度を得るための電圧が極めて低く(2.7V
)、また、外部量子効率が25%以上の高効率な発光素子が得られた。従来の発光素子で
は、取り出し効率に起因して外部量子効率の上限は20%程度であると言われているが、
GCCHというコンセプトを用いることで、25%を超える外部量子効率の発光素子が得
られる。
Figure 2022020818000013
101 発光素子
101a 発光素子
101b 発光素子
101c 発光素子
102 発光層
103 N型ホストの層
104 P型ホストの層
105 ゲスト分子
106 N型遷移領域
107 P型遷移領域
108 負極
109 正極
110 EL層
110a EL層
110b EL層
111 電子輸送層
112 正孔輸送層
113 電子注入層
114 正孔注入層
115 電荷発生層
116 電子注入バッファー層
117 電子リレー層
118 複合材料層
201 真空チャンバー
202 第1の蒸発源
203 第2の蒸発源
204 第3の蒸発源
205 基板
206 基板
207 基板
211 真空チャンバー
212 第1の蒸発源
213 第2の蒸発源
214 第3の蒸発源
215 第4の蒸発源
216 第5の蒸発源
217 基板
218 基板
219 基板
223 開口部

Claims (5)

  1. 第1の電極と第2の電極との間に、発光層と、第1の層と、第2の層と、を有し、
    前記第1の層は、前記第1の電極と前記発光層との間に設けられ、
    前記第2の層は、前記第2の電極と前記発光層との間に設けられ、
    前記発光層は、燐光性化合物と、第1の有機化合物と、第2の有機化合物と、を有し、
    前記第1の有機化合物は、ヘテロ原子を環の構成元素として含有する6員環の芳香環を有する化合物であり、
    前記第2の有機化合物は、芳香族アミンまたはカルバゾール誘導体であり、
    前記第1の層は、前記第1の有機化合物を有し、
    前記第2の層は、前記第2の有機化合物を有し、
    前記第1の層は、前記第2の有機化合物を有さず、
    前記第2の層は、前記第1の有機化合物を有さず、
    前記第1の有機化合物と前記第2の有機化合物とは、励起状態においてエキシプレックスを形成する組み合わせである発光装置。
  2. 請求項1において、
    前記第1の層と前記発光層との間あるいは前記第2の層と前記発光層との間には、前記第1の有機化合物と前記第2の有機化合物の比率が連続的に変化する領域が設けられている発光装置。
  3. 第1の電極と第2の電極との間に、第1の層と、第2の層と、を有し、
    前記第1の層は、第1の有機化合物を有し、
    前記第2の層は、第2の有機化合物を有し、
    前記第1の層は、前記第2の有機化合物を有さず、
    前記第2の層は、前記第1の有機化合物を有さず、
    前記第1の層と前記第2の層との間に、前記第1の有機化合物と前記第2の有機化合物と燐光性化合物とを有する領域を有し、
    前記第1の有機化合物は、ヘテロ原子を環の構成元素として含有する6員環の芳香環を有する化合物であり、
    前記第2の有機化合物は、芳香族アミンまたはカルバゾール誘導体であり、
    前記第1の有機化合物と前記第2の有機化合物とは、励起状態においてエキシプレックスを形成する組み合わせである発光装置。
  4. 請求項1乃至請求項3のいずれか一項において、
    前記第1の有機化合物及び前記第2の有機化合物の少なくとも一方が、蛍光性化合物である発光装置。
  5. 請求項1乃至請求項4のいずれか一項において、
    前記燐光性化合物が、有機金属錯体である発光装置。
JP2021187726A 2011-03-30 2021-11-18 発光装置 Active JP7308908B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023109865A JP2023118841A (ja) 2011-03-30 2023-07-04 発光装置

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011074272 2011-03-30
JP2011074272 2011-03-30
JP2020070855A JP2020174178A (ja) 2011-03-30 2020-04-10 発光装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2020070855A Division JP2020174178A (ja) 2011-03-30 2020-04-10 発光装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023109865A Division JP2023118841A (ja) 2011-03-30 2023-07-04 発光装置

Publications (2)

Publication Number Publication Date
JP2022020818A true JP2022020818A (ja) 2022-02-01
JP7308908B2 JP7308908B2 (ja) 2023-07-14

Family

ID=46926024

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2012076169A Active JP6033567B2 (ja) 2011-03-30 2012-03-29 発光素子
JP2016209373A Active JP6415511B2 (ja) 2011-03-30 2016-10-26 発光素子、発光装置
JP2018187384A Active JP6691587B2 (ja) 2011-03-30 2018-10-02 発光装置
JP2020070855A Withdrawn JP2020174178A (ja) 2011-03-30 2020-04-10 発光装置
JP2021187726A Active JP7308908B2 (ja) 2011-03-30 2021-11-18 発光装置
JP2023109865A Pending JP2023118841A (ja) 2011-03-30 2023-07-04 発光装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2012076169A Active JP6033567B2 (ja) 2011-03-30 2012-03-29 発光素子
JP2016209373A Active JP6415511B2 (ja) 2011-03-30 2016-10-26 発光素子、発光装置
JP2018187384A Active JP6691587B2 (ja) 2011-03-30 2018-10-02 発光装置
JP2020070855A Withdrawn JP2020174178A (ja) 2011-03-30 2020-04-10 発光装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023109865A Pending JP2023118841A (ja) 2011-03-30 2023-07-04 発光装置

Country Status (7)

Country Link
US (2) US8853680B2 (ja)
JP (6) JP6033567B2 (ja)
KR (3) KR102255816B1 (ja)
CN (2) CN103518268B (ja)
DE (2) DE112012001504B4 (ja)
TW (2) TWI517472B (ja)
WO (1) WO2012132809A1 (ja)

Families Citing this family (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116056479A (zh) 2011-02-16 2023-05-02 株式会社半导体能源研究所 发光元件
DE202012013753U1 (de) 2011-02-16 2021-03-01 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
US8969854B2 (en) 2011-02-28 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting layer and light-emitting element
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
CN105789468B (zh) 2011-03-23 2018-06-08 株式会社半导体能源研究所 发光元件、发光装置、照明装置及电子设备
KR20230154099A (ko) 2011-04-07 2023-11-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
TWI532822B (zh) 2011-04-29 2016-05-11 半導體能源研究所股份有限公司 利用磷光之發光裝置,電子裝置及照明裝置
CN103502256B (zh) 2011-04-29 2017-06-20 株式会社半导体能源研究所 有机金属配合物、发光元件、发光装置、电子设备及照明装置
JP2013147490A (ja) 2011-12-23 2013-08-01 Semiconductor Energy Lab Co Ltd イリジウム錯体、発光素子、発光装置、電子機器、及び照明装置
KR101803537B1 (ko) 2012-02-09 2017-11-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
CN104471733B (zh) 2012-03-14 2017-06-09 株式会社半导体能源研究所 发光元件、发光装置、电子设备及照明装置
JP2013232629A (ja) 2012-04-06 2013-11-14 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、および照明装置
JP6158543B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
JP6158542B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
KR102264577B1 (ko) 2012-04-20 2021-06-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20230035438A (ko) 2012-04-20 2023-03-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP6076153B2 (ja) 2012-04-20 2017-02-08 株式会社半導体エネルギー研究所 発光素子、発光装置、表示装置、電子機器及び照明装置
US8994013B2 (en) 2012-05-18 2015-03-31 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
JP6117618B2 (ja) 2012-06-01 2017-04-19 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、及び照明装置
TWI651878B (zh) 2012-08-03 2019-02-21 日商半導體能源研究所股份有限公司 發光元件、發光裝置、顯示裝置、電子裝置及照明設備
JP2014043437A (ja) 2012-08-03 2014-03-13 Semiconductor Energy Lab Co Ltd 有機化合物、発光素子、発光装置、電子機器、及び照明装置
DE112013003843B4 (de) 2012-08-03 2022-03-31 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element, lichtemittierende Vorrichtung, elektronische Vorrichtung und Beleuchtungsvorrichtung
KR102579507B1 (ko) 2012-08-03 2023-09-19 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
TWI666299B (zh) 2012-08-03 2019-07-21 日商半導體能源研究所股份有限公司 發光元件
JP6312960B2 (ja) 2012-08-03 2018-04-18 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、照明装置及び複素環化合物
US9142710B2 (en) 2012-08-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR20140038886A (ko) * 2012-09-21 2014-03-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR102151394B1 (ko) 2013-01-10 2020-09-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기 및 조명 장치
KR102034819B1 (ko) * 2013-03-26 2019-10-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 표시 장치, 전자 기기 및 조명 장치
JP6137898B2 (ja) * 2013-03-26 2017-05-31 株式会社半導体エネルギー研究所 発光素子、照明装置、発光装置、表示装置、電子機器
KR102178256B1 (ko) 2013-03-27 2020-11-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US10043982B2 (en) 2013-04-26 2018-08-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device
KR102407604B1 (ko) 2013-05-16 2022-06-13 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
CN105283461B (zh) 2013-06-14 2018-07-17 株式会社半导体能源研究所 有机金属铱配合物、发光元件、发光装置以及照明装置
KR102327025B1 (ko) 2013-08-26 2021-11-16 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
DE112014005483B4 (de) 2013-12-02 2022-01-20 Semiconductor Energy Laboratory Co., Ltd. Licht emittierendes Element, Anzeigemodul, Beleuchtungsmodul, Licht emittierende Vorrichtung, Anzeigevorrichtung, elektronisches Gerät und Beleuchtungsvorrichtung
KR102088883B1 (ko) * 2013-12-02 2020-03-16 엘지디스플레이 주식회사 유기전계발광표시장치
KR102289329B1 (ko) 2013-12-02 2021-08-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US9666822B2 (en) * 2013-12-17 2017-05-30 The Regents Of The University Of Michigan Extended OLED operational lifetime through phosphorescent dopant profile management
KR20150130224A (ko) 2014-05-13 2015-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
CN117119820A (zh) 2014-05-30 2023-11-24 株式会社半导体能源研究所 发光装置、显示装置及电子设备
TWI682563B (zh) 2014-05-30 2020-01-11 日商半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置以及照明裝置
DE102015213426B4 (de) 2014-07-25 2022-05-05 Semiconductor Energy Laboratory Co.,Ltd. Licht emittierendes Element, Licht emittierende Vorrichtung, elekronisches Gerät, Beleuchtungsvorrichtung und organische Verbindung
KR102353647B1 (ko) 2014-08-29 2022-01-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
CN111293226B (zh) 2014-09-30 2022-10-28 株式会社半导体能源研究所 发光元件、显示装置、电子设备以及照明装置
KR102409803B1 (ko) 2014-10-10 2022-06-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
KR102344729B1 (ko) * 2014-12-15 2021-12-31 엘지디스플레이 주식회사 유기전계발광표시장치
KR101706752B1 (ko) * 2015-02-17 2017-02-27 서울대학교산학협력단 호스트, 인광 도펀트 및 형광 도펀트를 포함하는 유기발광소자
US10903440B2 (en) 2015-02-24 2021-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10062861B2 (en) 2015-02-24 2018-08-28 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
TWI779405B (zh) * 2015-03-09 2022-10-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
TWI749726B (zh) 2015-03-09 2021-12-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
JP6697299B2 (ja) 2015-04-01 2020-05-20 株式会社半導体エネルギー研究所 有機金属錯体、発光素子、発光装置、電子機器、および照明装置
CN104795432A (zh) 2015-05-04 2015-07-22 京东方科技集团股份有限公司 一种有机发光二极管器件及显示装置
TWI757234B (zh) 2015-05-21 2022-03-11 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置、及照明裝置
CN107534090B (zh) 2015-05-21 2019-10-18 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
KR20180013958A (ko) 2015-05-29 2018-02-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
DE102015108826A1 (de) * 2015-06-03 2016-12-08 Osram Oled Gmbh Organisches lichtemittierendes Bauelement und Verfahren zur Herstellung eines organisch lichtemittierenden Bauelements
WO2017013526A1 (en) 2015-07-21 2017-01-26 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
KR102404096B1 (ko) 2015-07-23 2022-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10700288B2 (en) 2015-07-24 2020-06-30 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, lighting device, and lighting system
CN107851729B (zh) 2015-08-07 2020-07-28 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
TWI564294B (zh) 2015-08-24 2017-01-01 國立清華大學 載子產生材料與有機發光二極體
KR20170038681A (ko) 2015-09-30 2017-04-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US10405217B2 (en) * 2015-09-30 2019-09-03 The Nielsen Company (Us), Llc Methods and apparatus to measure wireless networks indoors
TW201721922A (zh) * 2015-09-30 2017-06-16 半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,及照明裝置
US9967884B2 (en) * 2015-11-10 2018-05-08 Netgear, Inc. Dedicated backhaul for whole home coverage
KR102431636B1 (ko) * 2015-11-26 2022-08-10 엘지디스플레이 주식회사 유기발광 표시장치
KR20180088818A (ko) 2015-12-01 2018-08-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
US10096658B2 (en) * 2016-04-22 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
US10756286B2 (en) 2016-05-06 2020-08-25 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN109075260B (zh) * 2016-05-06 2021-05-07 株式会社半导体能源研究所 发光元件、显示装置、电子设备及照明装置
WO2017199163A1 (en) 2016-05-20 2017-11-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
CN105895821B (zh) 2016-07-01 2017-12-29 京东方科技集团股份有限公司 有机发光二极管及其制造方法和显示装置
KR20180010136A (ko) 2016-07-20 2018-01-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기 화합물, 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
WO2018033820A1 (en) 2016-08-17 2018-02-22 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
US10270039B2 (en) * 2016-11-17 2019-04-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, display device, electronic device, and lighting device
WO2018100476A1 (en) 2016-11-30 2018-06-07 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
US10276801B2 (en) 2017-01-25 2019-04-30 Industrial Technology Research Institute Triazine-based compound and light emitting device
KR20190122704A (ko) * 2017-02-24 2019-10-30 베스텔 일렉트로닉 사나이 베 티카레트 에이에스 음향-광 변환기, 어레이 및 방법
US10600981B2 (en) * 2017-08-24 2020-03-24 Universal Display Corporation Exciplex-sensitized fluorescence light emitting system
KR20200072546A (ko) 2017-11-02 2020-06-22 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 장치, 전자 기기, 및 조명 장치
US11462696B2 (en) 2018-01-19 2022-10-04 Semiconductor Energy Laboratory Co., Ltd. Organic compound, light-emitting element, light-emitting device, electronic device, and lighting device
WO2019171197A1 (ja) 2018-03-07 2019-09-12 株式会社半導体エネルギー研究所 発光素子、表示装置、電子機器、有機化合物及び照明装置
CN110920253B (zh) 2018-09-19 2021-01-22 精工爱普生株式会社 打印头控制电路、打印头及液体喷出装置
JP7341172B2 (ja) 2019-02-06 2023-09-08 株式会社半導体エネルギー研究所 発光デバイス、電子機器及び照明装置
CN109904351B (zh) * 2019-03-18 2021-11-09 苏州大学 白色有机发光二极管,其制备方法以及有机发光显示器
CN110148677A (zh) * 2019-06-05 2019-08-20 京东方科技集团股份有限公司 一种有机电致发光器件、显示面板及显示装置
US11659758B2 (en) 2019-07-05 2023-05-23 Semiconductor Energy Laboratory Co., Ltd. Display unit, display module, and electronic device
CN110635061A (zh) * 2019-10-23 2019-12-31 昆山国显光电有限公司 一种显示面板及显示装置
KR20210056259A (ko) 2019-11-08 2021-05-18 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 장치, 전자 기기, 및 조명 장치
KR20210076220A (ko) * 2019-12-12 2021-06-24 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함하는 장치
CN111584728B (zh) * 2020-05-22 2022-08-19 京东方科技集团股份有限公司 一种显示基板及其制备方法和显示面板
CN111883680B (zh) * 2020-08-06 2023-08-01 京东方科技集团股份有限公司 有机电致发光器件和显示装置
CN113013344B (zh) * 2021-02-24 2023-09-29 京东方科技集团股份有限公司 有机电致发光器件及其制备方法
CN113299844B (zh) * 2021-05-31 2023-03-17 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN114373877B (zh) * 2021-12-31 2023-08-29 昆山国显光电有限公司 一种有机电致发光器件和显示装置
CN115696944B (zh) * 2022-10-31 2024-01-05 京东方科技集团股份有限公司 一种发光层、发光器件及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785972A (ja) * 1993-09-20 1995-03-31 Toshiba Corp 有機el素子
JP2002305085A (ja) * 2001-02-01 2002-10-18 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた表示装置
JP2006203172A (ja) * 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
JP2007042875A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 有機電界発光素子
JP2007134677A (ja) * 2005-10-11 2007-05-31 Fujifilm Corp 有機電界発光素子

Family Cites Families (79)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2773297B2 (ja) * 1989-09-28 1998-07-09 日本電気株式会社 有機薄膜el素子
US5420288A (en) 1992-04-14 1995-05-30 Ricoh Company, Ltd. Electroluminescent device comprising oxadiazole compounds luminescent material, oxadiazole compounds for the device, and method of producing oxadiazole compounds
JPH06145658A (ja) 1992-04-14 1994-05-27 Ricoh Co Ltd 電界発光素子
JPH06107648A (ja) 1992-09-29 1994-04-19 Ricoh Co Ltd 新規なオキサジアゾール化合物
JPH0665569A (ja) 1992-06-20 1994-03-08 Ricoh Co Ltd 電界発光素子
JP3341090B2 (ja) 1992-07-27 2002-11-05 株式会社リコー オキサジアゾール誘導体ならびにその製造法
US5597890A (en) 1993-11-01 1997-01-28 Research Corporation Technologies, Inc. Conjugated polymer exciplexes and applications thereof
US5409783A (en) 1994-02-24 1995-04-25 Eastman Kodak Company Red-emitting organic electroluminescent device
US5709492A (en) 1994-04-27 1998-01-20 Sakura Color Products Corp. Liquid applicator
JPH0963770A (ja) * 1995-08-24 1997-03-07 Kemipuro Kasei Kk 単層型白色発光有機el素子
DE19638770A1 (de) * 1996-09-21 1998-03-26 Philips Patentverwaltung Organisches elektrolumineszentes Bauelement mit Exciplex
US6097147A (en) 1998-09-14 2000-08-01 The Trustees Of Princeton University Structure for high efficiency electroluminescent device
JP2000133453A (ja) * 1998-10-22 2000-05-12 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子およびその製造方法
KR100744199B1 (ko) 1999-05-13 2007-08-01 더 트러스티즈 오브 프린스턴 유니버시티 전계인광에 기초한 고 효율의 유기 발광장치
JP4076769B2 (ja) * 2000-12-28 2008-04-16 株式会社半導体エネルギー研究所 発光装置及び電気器具
SG2009086778A (en) 2000-12-28 2016-11-29 Semiconductor Energy Lab Co Ltd Luminescent device
JP4047015B2 (ja) * 2001-01-18 2008-02-13 株式会社半導体エネルギー研究所 発光素子、発光装置、電気器具
TW519770B (en) * 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
TWI225312B (en) * 2001-02-08 2004-12-11 Semiconductor Energy Lab Light emitting device
ITTO20010692A1 (it) 2001-07-13 2003-01-13 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico basato sull'emissione di ecciplessi od elettroplessi e sua realizzazione.
US6863997B2 (en) 2001-12-28 2005-03-08 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
US6869695B2 (en) * 2001-12-28 2005-03-22 The Trustees Of Princeton University White light emitting OLEDs from combined monomer and aggregate emission
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
ITBO20020165A1 (it) * 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
US6951694B2 (en) 2002-03-29 2005-10-04 The University Of Southern California Organic light emitting devices with electron blocking layers
TWI314947B (en) 2002-04-24 2009-09-21 Eastman Kodak Compan Organic light emitting diode devices with improved operational stability
US20030205696A1 (en) 2002-04-25 2003-11-06 Canon Kabushiki Kaisha Carbazole-based materials for guest-host electroluminescent systems
KR100902988B1 (ko) 2002-08-26 2009-06-15 라이트온 테크놀러지 코포레이션 백색광 발광 다이오드의 제조 방법
JP4574606B2 (ja) 2002-11-13 2010-11-04 株式会社半導体エネルギー研究所 電界発光素子
AU2003275704A1 (en) * 2002-11-13 2004-06-03 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, organic semiconductor device and electroluminescent element
TWI316827B (en) 2003-02-27 2009-11-01 Toyota Jidoshokki Kk Organic electroluminescent device
JP4531342B2 (ja) 2003-03-17 2010-08-25 株式会社半導体エネルギー研究所 白色有機発光素子および発光装置
TW588568B (en) * 2003-05-06 2004-05-21 Au Optronics Corp Organic light emitting device
US20080217604A1 (en) 2003-08-29 2008-09-11 Matsushita Electric Industrial Co., Ltd. Organic Semiconductor Film, Electron Device Using the Same and Manufacturing Method Therefor
US7175922B2 (en) * 2003-10-22 2007-02-13 Eastman Kodak Company Aggregate organic light emitting diode devices with improved operational stability
WO2005073338A2 (en) 2003-12-04 2005-08-11 Massachusetts Institute Of Technology Fluorescent, semi-conductive polymers, and devices comprising them
KR100773524B1 (ko) * 2003-12-24 2007-11-07 삼성에스디아이 주식회사 이핵 유기 금속 착물 및 이를 이용한 유기 전계 발광 소자
DE102004038199A1 (de) 2004-08-05 2006-03-16 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH LED mit niedriger Farbtemperatur
US20060134464A1 (en) 2004-12-22 2006-06-22 Fuji Photo Film Co. Ltd Organic electroluminescent element
JP2007073620A (ja) 2005-09-05 2007-03-22 Fujifilm Corp 有機電界発光素子
EP1963346B1 (en) 2005-12-05 2012-08-22 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex and light-emitting element, light-emitting device and electronic device using the same
CN101326165B (zh) * 2005-12-12 2013-08-07 保土谷化学工业株式会社 间咔唑基苯基化合物
KR101255233B1 (ko) * 2006-02-20 2013-04-16 삼성디스플레이 주식회사 유기 금속 착물 및 이를 이용한 유기 전계 발광 소자
EP2004616B1 (en) 2006-03-21 2014-05-21 Semiconductor Energy Laboratory Co., Ltd. Quinoxaline derivative, and light-emitting element, light-emitting device, electronic device using the quinoxaline derivative
TWI423981B (zh) 2006-03-21 2014-01-21 Semiconductor Energy Lab 有機金屬錯合物及使用該有機金屬錯合物之發光元件,發光裝置和電子裝置
JP5238227B2 (ja) 2006-12-27 2013-07-17 株式会社半導体エネルギー研究所 有機金属錯体および有機金属錯体を用いた発光素子、発光装置、並びに電子機器
EP2573075B1 (en) * 2007-02-21 2014-08-27 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and quinoxaline derivative
US8513678B2 (en) * 2007-05-18 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device
KR101324155B1 (ko) 2007-05-18 2013-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기금속 착체
US8034465B2 (en) * 2007-06-20 2011-10-11 Global Oled Technology Llc Phosphorescent oled having double exciton-blocking layers
CN102655223B (zh) * 2007-10-19 2015-07-22 株式会社半导体能源研究所 发光元件、发光设备和电子设备
TWI479712B (zh) * 2007-10-19 2015-04-01 Semiconductor Energy Lab 發光裝置
US20090191427A1 (en) * 2008-01-30 2009-07-30 Liang-Sheng Liao Phosphorescent oled having double hole-blocking layers
WO2009157498A1 (en) * 2008-06-25 2009-12-30 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, and lighting apparatus, and electronic device using the organometallic complex
JP5325707B2 (ja) 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
JP5497284B2 (ja) 2008-12-08 2014-05-21 ユー・ディー・シー アイルランド リミテッド 白色有機電界発光素子
WO2010085676A1 (en) 2009-01-22 2010-07-29 University Of Rochester Hybrid host materials for electrophosphorescent devices
JP2010254671A (ja) 2009-03-31 2010-11-11 Semiconductor Energy Lab Co Ltd カルバゾール誘導体、発光素子用材料、発光素子、発光装置、電子機器、及び照明装置
JP2010238937A (ja) 2009-03-31 2010-10-21 Semiconductor Energy Lab Co Ltd 発光素子、発光装置、電子機器、及び照明装置
JP5609256B2 (ja) 2009-05-20 2014-10-22 東ソー株式会社 2−アミノカルバゾール化合物及びその用途
US20100295445A1 (en) * 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
US8766269B2 (en) 2009-07-02 2014-07-01 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device, lighting device, and electronic device
KR101351410B1 (ko) * 2009-09-29 2014-01-14 엘지디스플레이 주식회사 백색 유기 발광 소자
EP2471116B1 (en) 2009-10-05 2013-12-11 Thorn Lighting Ltd Multilayer organic device
JP2011153269A (ja) 2010-01-28 2011-08-11 Nara Institute Of Science & Technology 白色発光性高分子複合材料およびその製造方法
EP2363398B1 (en) 2010-03-01 2017-10-18 Semiconductor Energy Laboratory Co., Ltd. Heterocyclic compound, light-emitting element, light-emitting device, electronic device, and lighting device
EP2366753B1 (en) 2010-03-02 2015-06-17 Semiconductor Energy Laboratory Co., Ltd. Light-Emitting Element and Lighting Device
JP2010140917A (ja) 2010-03-25 2010-06-24 Fujifilm Corp 有機電界発光素子
JP5324513B2 (ja) 2010-03-31 2013-10-23 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子
JP5602555B2 (ja) 2010-05-17 2014-10-08 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器及び照明装置
DE112011106096B3 (de) 2010-10-22 2023-07-27 Semiconductor Energy Laboratory Co., Ltd. Metallorganischer Komplex, Licht emittierendes Element und Licht emittierende Vorrichtung
WO2012111680A1 (en) 2011-02-16 2012-08-23 Semiconductor Energy Laboratory Co., Ltd. Light-emitting body, light-emitting layer, and light-emitting device
DE202012013753U1 (de) 2011-02-16 2021-03-01 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
CN116056479A (zh) 2011-02-16 2023-05-02 株式会社半导体能源研究所 发光元件
US8969854B2 (en) 2011-02-28 2015-03-03 Semiconductor Energy Laboratory Co., Ltd. Light-emitting layer and light-emitting element
TWI743606B (zh) 2011-02-28 2021-10-21 日商半導體能源研究所股份有限公司 發光元件
CN105789468B (zh) 2011-03-23 2018-06-08 株式会社半导体能源研究所 发光元件、发光装置、照明装置及电子设备
KR20230154099A (ko) 2011-04-07 2023-11-07 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
TWI613195B (zh) 2011-08-25 2018-02-01 半導體能源研究所股份有限公司 發光元件,發光裝置,電子裝置,照明裝置以及新穎有機化合物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0785972A (ja) * 1993-09-20 1995-03-31 Toshiba Corp 有機el素子
JP2002305085A (ja) * 2001-02-01 2002-10-18 Semiconductor Energy Lab Co Ltd 有機発光素子および前記素子を用いた表示装置
JP2006203172A (ja) * 2004-12-22 2006-08-03 Fuji Photo Film Co Ltd 有機電界発光素子
JP2007042875A (ja) * 2005-08-03 2007-02-15 Fujifilm Holdings Corp 有機電界発光素子
JP2007134677A (ja) * 2005-10-11 2007-05-31 Fujifilm Corp 有機電界発光素子

Also Published As

Publication number Publication date
US20120248421A1 (en) 2012-10-04
JP7308908B2 (ja) 2023-07-14
WO2012132809A1 (en) 2012-10-04
JP2012216829A (ja) 2012-11-08
JP2023118841A (ja) 2023-08-25
US9269920B2 (en) 2016-02-23
JP2017038079A (ja) 2017-02-16
DE112012001504T5 (de) 2014-05-15
TWI517472B (zh) 2016-01-11
CN105702873A (zh) 2016-06-22
JP2020174178A (ja) 2020-10-22
TWI553934B (zh) 2016-10-11
JP6033567B2 (ja) 2016-11-30
JP6691587B2 (ja) 2020-04-28
KR20200078708A (ko) 2020-07-01
US8853680B2 (en) 2014-10-07
CN103518268B (zh) 2016-05-18
TW201244211A (en) 2012-11-01
KR20190071002A (ko) 2019-06-21
DE112012001504B4 (de) 2017-09-21
KR102255816B1 (ko) 2021-05-24
JP6415511B2 (ja) 2018-10-31
CN105702873B (zh) 2017-11-24
US20150021579A1 (en) 2015-01-22
KR20140051124A (ko) 2014-04-30
JP2019036739A (ja) 2019-03-07
KR101994671B1 (ko) 2019-07-02
DE112012007314B3 (de) 2018-05-03
CN103518268A (zh) 2014-01-15
KR102128592B1 (ko) 2020-06-30
TW201605093A (zh) 2016-02-01

Similar Documents

Publication Publication Date Title
JP7308908B2 (ja) 発光装置
KR102248531B1 (ko) 발광 소자
JP6935481B2 (ja) 発光素子

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20221212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230224

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230704

R150 Certificate of patent or registration of utility model

Ref document number: 7308908

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150