KR102178256B1 - 발광 소자, 발광 장치, 전자 기기, 및 조명 장치 - Google Patents

발광 소자, 발광 장치, 전자 기기, 및 조명 장치 Download PDF

Info

Publication number
KR102178256B1
KR102178256B1 KR1020140032343A KR20140032343A KR102178256B1 KR 102178256 B1 KR102178256 B1 KR 102178256B1 KR 1020140032343 A KR1020140032343 A KR 1020140032343A KR 20140032343 A KR20140032343 A KR 20140032343A KR 102178256 B1 KR102178256 B1 KR 102178256B1
Authority
KR
South Korea
Prior art keywords
light
layer
emitting
electron transport
emitting element
Prior art date
Application number
KR1020140032343A
Other languages
English (en)
Other versions
KR20140118790A (ko
Inventor
츠네노리 스즈키
나오아키 하시모토
에리코 사이조
사토시 세오
Original Assignee
가부시키가이샤 한도오따이 에네루기 켄큐쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 한도오따이 에네루기 켄큐쇼 filed Critical 가부시키가이샤 한도오따이 에네루기 켄큐쇼
Publication of KR20140118790A publication Critical patent/KR20140118790A/ko
Priority to KR1020200137487A priority Critical patent/KR102460892B1/ko
Application granted granted Critical
Publication of KR102178256B1 publication Critical patent/KR102178256B1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/27Combination of fluorescent and phosphorescent emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/30Highest occupied molecular orbital [HOMO], lowest unoccupied molecular orbital [LUMO] or Fermi energy values
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Abstract

본 발명은 한 쌍의 전극 사이에 복수의 발광층을 갖는 발광 소자이고, 상기 복수의 발광층 각각에서, 구동 전압이 낮으며 발광 효율이 높은 발광 소자를 제공한다.
음극과 양극 사이에 제 1 발광층~제 3 발광층을 구비하는 발광 소자이고, 제 1 발광층은 제 1 인광성 재료와 제 1 전자 수송성 재료를 갖고, 제 2 발광층은 제 2 인광성 재료와 제 2 전자 수송성 재료를 갖고, 제 3 발광층은 형광성 재료와 제 3 전자 수송성 재료를 갖고, 제 1 발광층~제 3 발광층의 각각은 음극 측에 배치된 전자 수송층에 접하여 제공되고, 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 삼중항 여기 에너지 준위보다 전자 수송층을 형성하는 재료의 삼중항 여기 에너지 준위가 낮다.

Description

발광 소자, 발광 장치, 전자 기기, 및 조명 장치{LIGHT-EMITTING ELEMENT, LIGHT-EMITTING DEVICE, ELECTRONIC APPLIANCE, AND LIGHTING DEVICE}
본 발명의 일 형태는, 전계를 인가함으로써 발광이 얻어지는 발광층을 한 쌍의 전극 사이에 끼운 발광 소자, 또한 이와 같은 발광 소자를 갖는 발광 장치, 전자 기기, 및 조명 장치에 관한 것이다.
박형 경량, 고속 응답성, 직류 저전압 구동 등의 특징을 갖는 유기 화합물을 발광층으로서 사용한 발광 소자는, 차세대 플랫 패널 디스플레이에 응용될 것으로 기대되고 있다. 특히, 발광 소자가 매트릭스 형상으로 배치된 표시 장치는 종래의 액정 표시 장치에 비하여 시인성이 뛰어나고 시야각이 넓은 점에서 뛰어나다고 생각되고 있다.
발광 소자의 발광 기구는 한 쌍의 전극 사이에 발광체를 포함한 발광층을 끼워 전압을 인가함으로써, 음극으로부터 주입된 전자, 및 양극으로부터 주입된 정공이 발광층의 발광 중심에서 재결합하여 분자 여기자를 형성하고, 그 분자 여기자가 기저 상태로 완화될 때 에너지를 방출하여 발광한다고 알려져 있다. 여기 상태에는 일중항 여기 상태와 삼중항 여기 상태가 있는 것이 알려져 있으며, 발광은 둘 중 어느 여기 상태를 거쳐도 가능한 것으로 생각되고 있고, 일중항 여기 상태(S*)로부터의 발광이 형광이고, 삼중항 여기 상태(T*)로부터의 발광이 인광이라고 불리고 있다.
상술한 바와 같은 발광 소자의 소자 특성 또는 생산성을 향상시키기 위하여 소자 구조의 개량이나 재료 개발 등이 활발히 진행되고 있다. 또한, 발광 소자로서는 유기 EL 소자의 연구 개발이 정력적으로 진행되고 있고 풀 컬러화를 위하여 활발히 개발되고 있다.
풀 컬러화를 위한 방법 중 하나로서 예를 들어, 발광층을 화소마다 구분하여 형성하는 방법이 있다. 상기 발광층은 섀도 마스크를 사용하여 필요한 화소에만 증착된다. 이 경우, 공정을 줄여 비용을 삭감하기 위하여 발광층 외의 층, 예를 들어, 정공 수송층, 전자 수송층, 및 음극을 복수의 화소에서 공통적으로 형성하는 구성이 기재되어 있다(특허 문헌 1 참조).
(특허 문헌 1) 일본국 특개 2004-6362호 공보
특허 문헌 1에 기재된 구성의 경우, 복수의 화소가 정공 수송층 또는 전자 수송층을 공통적으로 사용하기 때문에 상이한 색을 표시하는 화소마다 구동 전압 등의 소자 특성이 상이하다. 또한, 이와 같은 구성의 경우, 상이한 색을 표시하는 화소끼리 정공 수송층 또는 전자 수송층이 공통적으로 사용되기 때문에 화소마다 최적의 소자 구성을 가질 수 없고 복수의 화소 중 적어도 어느 한 화소에서 소자 특성의 이상, 예를 들어, 구동 전압의 상승 또는 신뢰성의 저하 등이 발생한다는 과제가 있다.
상술한 과제를 감안하여 본 발명의 일 형태에서는 한 쌍의 전극 사이에 복수의 발광층을 갖는 발광 소자이고, 상기 복수의 발광층 각각에서, 구동 전압이 낮으며 발광 효율이 높은 발광 소자를 제공하는 것을 목적 중 하나로 한다.
본 발명의 일 형태는 음극과 양극 사이에 제 1 발광층~제 3 발광층을 구비하는 발광 소자이고, 제 1 발광층은 제 1 인광성 재료와 제 1 전자 수송성 재료를 갖고, 제 2 발광층은 제 2 인광성 재료와 제 2 전자 수송성 재료를 갖고, 제 3 발광층은 형광성 재료와 제 3 전자 수송성 재료를 갖고, 제 1 발광층~제 3 발광층의 각각은 음극 측에 배치된 전자 수송층에 접하여 제공되고, 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 삼중항 여기 에너지 준위보다 전자 수송층을 형성하는 재료의 삼중항 여기 에너지 준위가 낮은 것을 특징으로 하는 발광 소자다.
상술한 바와 같이, 전자 수송층이 제 1 발광층~제 3 발광층에 공통적으로 접하는 구성으로 함으로써 발광 소자를 형성할 때의 생산성을 높일 수 있다. 또한, 상기 전자 수송층은 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 삼중항 여기 에너지 준위(T1 준위)보다 낮은 T1 준위를 갖는 재료로 형성된다. 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 전자 수송성이 높기 때문에 본 발명의 일 형태에 따른 발광 소자의 발광 영역은 발광층의 정공 수송층 측에 형성된다. 따라서 제 1 발광층 및 제 2 발광층은 전자 수송층이 갖는 낮은 T1 준위에 의한 영향을 받지 않고 구동 전압이 낮고 발광 효율이 높은 소자 구성을 갖는다.
또한, 본 발명의 다른 일 형태는 음극과 양극 사이에 제 1 발광층~제 3 발광층을 구비하는 발광 소자이고, 제 1 발광층은 제 1 인광성 재료와 제 1 전자 수송성 재료를 갖고, 제 2 발광층은 제 2 인광성 재료와 제 2 전자 수송성 재료를 갖고, 제 3 발광층은 형광성 재료와 제 3 전자 수송성 재료를 가지며 제 3 발광층은 제 1 발광층 및 제 2 발광층의 음극 측에 접하여 제공되고, 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 삼중항 여기 에너지 준위보다 제 3 전자 수송성 재료의 삼중항 여기 에너지 준위가 낮은 것을 특징으로 하는 발광 소자다.
상술한 바와 같이, 제 3 발광층이 제 1 발광층 및 제 2 발광층의 음극 측에 접하여 제공됨으로써 제 3 발광층은 제 1 발광층 위 및 제 2 발광층 위에서는 전자 수송층으로서 기능하고, 제 3 발광층에서는 발광층으로서 기능한다. 또한, 제 1 전자 수송성 재료 및 제 2 전자 수송성 재료의 전자 수송성이 높기 때문에 제 3 발광층에 포함되는 형광성 재료(도펀트, 또는 게스트 재료라고도 함)는 제 1 발광층 위 및 제 2 발광층 위에서는 발광에 기여하지 않는다. 한편, 제 3 발광층에서는 형광성 재료로부터 발광을 얻을 수 있다. 즉, 제 3 발광층이 전자 수송층의 기능과 발광층의 기능을 함께 구비하기 때문에 제 1 발광층 위 및 제 2 발광층 위에서는 전자 수송층으로서 공통적으로 사용할 수 있고 제 3 발광층에서는 발광층으로서 사용할 수 있다. 따라서 발광 소자를 형성할 때의 생산성을 높일 수 있다.
또한, 본 발명의 일 형태는 발광 소자를 갖는 발광 장치, 발광 장치를 갖는 전자 기기 및 조명 장치도 그 범주에 포함된다. 따라서, 본 명세서 중에서의 발광 장치란, 화상 표시 디바이스, 또는 광원(조명 장치도 포함함)을 가리킨다. 또한, 발광 장치에 커넥터, 예를 들어 FPC(Flexible Printed Circuit) 또는 TCP(Tape Carrier Package)가 장착된 모듈, TCP 끝에 프린트 배선판이 제공된 모듈, 또는 발광 소자에 COG(Chip On Glass) 방식으로 IC(집적 회로)가 직접 실장된 모듈도 모두 발광 장치의 범주에 포함되는 것으로 한다.
본 발명의 일 형태에 따른 발광 소자는 한 쌍의 전극 사이에 복수의 발광층을 갖는 발광 소자이고, 상기 복수의 발광층 각각에서, 구동 전압이 낮으며 발광 효율이 높은 발광 소자를 제공할 수 있다. 또한, 상기 발광 소자를 형성할 때의 생산성을 향상시킬 수 있다.
도 1은 본 발명의 일 형태에 따른 발광 소자를 설명하기 위한 도면.
도 2는 본 발명의 일 형태에 따른 발광 소자를 설명하기 위한 도면.
도 3은 본 발명의 일 형태에 따른 발광 소자를 설명하기 위한 도면.
도 4는 본 발명의 일 형태에 따른 발광 소자를 사용한 발광 장치를 설명하기 위한 도면.
도 5는 본 발명의 일 형태에 따른 발광 소자 및 발광 장치를 사용한 전자 기기를 설명하기 위한 도면.
도 6은 실시예에 따른 발광 소자를 설명하기 위한 도면.
도 7은 발광 소자 1 및 비교 발광 소자 2의 전류 밀도-휘도 특성을 나타낸 그래프.
도 8은 발광 소자 1 및 비교 발광 소자 2의 전압-휘도 특성을 나타낸 그래프.
도 9는 발광 소자 1 및 비교 발광 소자 2의 휘도-전류 효율 특성을 나타낸 그래프.
도 10은 발광 소자 1 및 비교 발광 소자 2의 전압-전류 특성을 나타낸 그래프.
도 11은 발광 소자 1 및 비교 발광 소자 2의 발광 스펙트럼을 나타낸 그래프.
도 12는 발광 소자 3 및 비교 발광 소자 4의 전류 밀도-휘도 특성을 나타낸 그래프.
도 13은 발광 소자 3 및 비교 발광 소자 4의 전압-휘도 특성을 나타낸 그래프.
도 14는 발광 소자 3 및 비교 발광 소자 4의 휘도-전류 효율 특성을 나타낸 그래프.
도 15는 발광 소자 3 및 비교 발광 소자 4의 전압-전류 특성을 나타낸 그래프.
도 16은 발광 소자 3 및 비교 발광 소자 4의 발광 스펙트럼을 나타낸 그래프.
도 17은 발광 소자 5 및 비교 발광 소자 6의 전류 밀도-휘도 특성을 나타낸 그래프.
도 18은 발광 소자 5 및 비교 발광 소자 6의 전압-휘도 특성을 나타낸 그래프.
도 19는 발광 소자 5 및 비교 발광 소자 6의 휘도-전류 효율 특성을 나타낸 그래프.
도 20은 발광 소자 5 및 비교 발광 소자 6의 전압-전류 특성을 나타낸 그래프.
도 21은 발광 소자 5 및 비교 발광 소자 6의 발광 스펙트럼을 나타낸 그래프.
도 22는 발광 소자 7 및 발광 소자 8의 전류 밀도-휘도 특성을 나타낸 그래프.
도 23은 발광 소자 7 및 발광 소자 8의 전압-휘도 특성을 나타낸 그래프.
도 24는 발광 소자 7 및 발광 소자 8의 휘도-전류 효율 특성을 나타낸 그래프.
도 25는 발광 소자 7 및 발광 소자 8의 전압-전류 특성을 나타낸 그래프.
도 26은 발광 소자 7 및 발광 소자 8의 발광 스펙트럼을 나타낸 그래프.
도 27은 발광 소자 1, 3, 7, 및 8과 비교 발광 소자 2 및 4의 신뢰성 시험 결과를 나타낸 그래프.
이하, 본 발명의 실시형태에 대하여 도면을 사용하여 자세히 설명한다. 다만, 본 발명은 이하에 기재된 설명에 한정되지 않고, 본 발명의 취지 및 그 범위에서 벗어남이 없이 그 형태 및 자세한 사항을 다양하게 변경할 수 있다. 따라서, 본 발명은 이하에 기재된 실시형태의 내용에 한정되어 해석되는 것이 아니다.
또한, 도면 등에 나타낸 각 구성의 위치, 크기, 범위 등은, 이해하기 쉽게 하기 위하여 실제의 위치, 크기, 범위 등을 나타내지 않은 경우가 있다. 그러므로, 본 발명은 반드시 도면 등에 기재된 위치, 크기, 범위 등에 한정되지 않는다.
또한, 본 명세서 등에서 '제 1', '제 2', '제 3' 등 서수사는 구성 요소가 혼동되는 것을 피하기 위하여 붙인 것이며, 수적으로 한정하는 것이 아니라는 것을 부기한다.
(실시형태 1)
본 실시형태에서는 본 발명의 일 형태에 따른 발광 소자를 구성하는 데의 개념 및 구체적인 발광 소자의 구성에 대하여 설명한다. 먼저 본 발명의 일 형태에 따른 발광 소자에 대하여 도 1을 사용하여 설명한다.
도 1의 (A)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)의 각각은 음극(103) 측에 배치된 전자 수송층(117)과 접하여 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
제 1 발광층(115a)에서 제 1 전자 수송성 재료(122a)는 호스트 재료로서 기능하고, 제 1 인광성 재료(121a)는 게스트 재료(도펀트라고도 함)로서 기능한다. 또한, 제 1 정공 수송성 재료(123a)는 어시스트 재료로서 기능한다. 즉 호스트 재료로서 기능하는 제 1 전자 수송성 재료(122a)에 제 1 인광성 재료(121a) 및 제 1 정공 수송성 재료(123a)가 분산된 구성을 갖는다. 또한, 제 2 발광층(115b)에서 제 2 전자 수송성 재료(132a)는 호스트 재료로서 기능하고, 제 2 인광성 재료(131a)는 게스트 재료로서 기능한다. 또한, 제 2 정공 수송성 재료(133a)는 어시스트 재료로서 기능한다. 즉 호스트 재료로서 기능하는 제 2 전자 수송성 재료(132a)에 제 2 인광성 재료(131a) 및 제 2 정공 수송성 재료(133a)가 분산된 구성을 갖는다. 또한, 제 3 발광층(115c)에서 제 3 전자 수송성 재료(142a)는 호스트 재료로서 기능하고, 형광성 재료(141a)는 게스트 재료로서 기능한다. 즉, 호스트 재료로서 기능하는 제 3 전자 수송성 재료(142a)에 형광성 재료(141a)가 분산된 구성을 갖는다.
예를 들어, 제 1 인광성 재료(121a)의 발광 물질로서는, 적색 발광을 나타내는 인광성 재료를 사용할 수 있다. 또한, 제 2 인광성 재료(131a)의 발광 물질로서는, 녹색 발광을 나타내는 인광성 재료를 사용할 수 있다. 또한, 형광성 재료(141a)의 발광 물질로서는, 청색 발광을 나타내는 형광성 재료를 사용할 수 있다. 또한, 본 명세서 중에서 적색 발광을 나타내는 인광성 재료의 최대 발광 파장은 570nm보다 크고 740nm 이하이고, 녹색 발광을 나타내는 인광성 재료의 최대 발광 파장은 500nm보다 크고 570nm 이하이고, 청색 발광을 나타내는 형광성 재료의 최대 발광 파장은 400nm 이상 500nm 이하다.
또한, 도 1의 (A)에서 한 쌍의 전극 사이에는 발광층(115) 및 전자 수송층(117)에 더하여 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 3 정공 수송층(113c), 및 전자 주입층(119)이 형성된다.
더 구체적으로는 도 1의 (A)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 제 1 정공 수송층(113a)과, 정공 주입층(111) 위의 제 2 정공 수송층(113b)과, 정공 주입층(111) 위의 제 3 정공 수송층(113c)과, 제 1 정공 수송층(113a) 위의 제 1 발광층(115a)과, 제 2 정공 수송층(113b) 위의 제 2 발광층(115b)과, 제 3 정공 수송층(113c) 위의 제 3 발광층(115c)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c) 위의 전자 수송층(117)과, 전자 수송층(117) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
상술한 바와 같이, 한 쌍의 전극 사이에 발광층(115) 및 전자 수송층(117) 외의 층, 예를 들어, 정공 주입성 또는 전자 주입성 물질, 정공 수송성 또는 전자 수송성 물질, 또는 바이폴러성 물질(전자 수송성 및 정공 수송성이 높은 물질) 등을 포함하는 층을 필요에 따라 형성하여도 좋다. 다만 이들을 반드시 형성할 필요는 없다.
또한, 도 1의 (A)에 도시된 발광 소자에서는 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)이 각 발광층(제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c))마다 각각 배치된다. 다만, 이 구성에 한정되지 않고 정공 수송층은 각 발광층에 대하여 공통적으로 형성되어도 좋다. 또한, 도 1의 (A)에 도시된 발광 소자에서는 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)의 막 두께를 조정함으로써 각 발광층으로부터 사출되는 광의 광학 거리를 조정할 수 있다.
또한, 도 1의 (A)에 도시된 발광 소자에서, 발광층(115)(제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c))은 전자 수송층(117), 전자 주입층(119), 및 음극(103)을 공통적으로 사용한다. 이와 같이, 발광층(115)이 전자 수송층(117), 전자 주입층(119), 및 음극(103)을 공통적으로 사용함으로써 발광 소자를 형성할 때의 생산성을 높일 수 있다. 또한, 도 1의 (A)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)을 정공 주입층(111) 위에 형성하고, 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c) 위에 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)을 각각 형성한다. 또한, 각 정공 수송층 및 각 발광층을 연속적으로 형성함으로써 구분 형성할 횟수를 저감할 수 있다. 예를 들어, 제 1 정공 수송층(113a)과 제 1 발광층(115a)을 연속적으로 형성하고, 제 2 정공 수송층(113b)과 제 2 발광층(115b)을 연속적으로 형성하고, 제 3 정공 수송층(113c)과 제 3 발광층(115c)을 연속적으로 형성한다. 따라서 총 3회의 구분 형성 공정으로 도 1의 (A)에 도시된 발광 소자를 형성할 수 있다.
또한, 도 1의 (A)에 도시된 발광 소자는 제 1 전자 수송성 재료(122a) 및 제 2 전자 수송성 재료(132a)의 전자 수송성이 굉장히 높기 때문에 제 1 발광층(115a) 및 제 2 발광층(115b)의 발광 영역은 제 1 정공 수송층(113a) 및 제 2 정공 수송층(113b) 근방의 영역에 형성된다. 따라서, 제 1 전자 수송성 재료(122a) 및 제 2 전자 수송성 재료(132a)의 삼중항 여기 에너지 준위보다 전자 수송층(117)의 삼중항 여기 에너지 준위가 낮지만 제 1 발광층(115a) 및 제 2 발광층(115b)으로부터의 발광은 전자 수송층(117)의 삼중항 여기 에너지 준위의 영향을 받지 않거나 또는 거의 영향을 받지 않는다.
즉, 본 발명의 일 형태에 따른 발광 소자에서는 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)이 전자 수송층(117)을 공통적으로 사용하더라도 각 발광층에서 최적화된 소자 구성을 가질 수 있고 생산성이 높고 발광 효율이 높은 발광 소자를 구현할 수 있다.
다음에 도 1의 (B)에 도시된 발광 소자에 대하여 이하에서 설명한다.
도 1의 (B)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 제 1 발광층(115a) 및 제 2 발광층(115b)을 덮고 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 3 발광층(115c)은 제 1 발광층(115a) 및 제 2 발광층(115b)의 음극(103) 측에 접하도록 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
또한, 도 1의 (B)에서 한 쌍의 전극 사이에는 발광층(115)에 더하여 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 3 정공 수송층(113c), 및 전자 주입층(119)이 형성된다. 다만, 이들은 필요에 따라 제공하면 좋다.
더 구체적으로는 도 1의 (B)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 제 1 정공 수송층(113a)과, 정공 주입층(111) 위의 제 2 정공 수송층(113b)과, 정공 주입층(111) 위의 제 3 정공 수송층(113c)과, 제 1 정공 수송층(113a) 위의 제 1 발광층(115a)과, 제 2 정공 수송층(113b) 위의 제 2 발광층(115b)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 정공 수송층(113c) 위의 제 3 발광층(115c)과, 제 3 발광층(115c) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
도 1의 (B)에 도시된 발광 소자에서는 제 3 발광층(115c)은 발광층과 제 1 발광층(115a) 및 제 2 발광층(115b)의 전자 수송층으로서 기능한다.
또한, 제 1 전자 수송성 재료(122a) 및 제 2 전자 수송성 재료(132a)의 전자 수송성이 높기 때문에 제 3 발광층(115c)에 포함되는 형광성 재료(141a)는 제 1 발광층(115a) 및 제 2 발광층(115b)에서의 발광에 기여하지 않는다. 한편, 제 3 정공 수송층(113c) 위의 제 3 발광층(115c)에서는 제 3 발광층(115c)에 포함되는 형광성 재료(141a)로부터 발광을 얻을 수 있다.
즉, 본 발명의 일 형태에 따른 발광 소자에서는 제 3 발광층(115c)이 전자 수송층의 기능과 발광층의 기능을 함께 구비하기 때문에 제 1 발광층(115a) 위 및 제 2 발광층(115b) 위에서는 제 3 발광층(115c)을 전자 수송층으로서 공통적으로 사용할 수 있고, 제 3 정공 수송층(113c) 위에서는 제 3 발광층(115c)을 발광층으로서 사용할 수 있다. 따라서 생산성이 높고 발광 효율이 높은 발광 소자를 구현할 수 있다. 또한, 도 1의 (B)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)을 정공 주입층(111) 위에 형성하고, 제 1 정공 수송층(113a) 위에 제 1 발광층(115a)을 형성하고, 제 2 정공 수송층(113b) 위에 제 2 발광층(115b)을 형성하고, 제 3 정공 수송층(113c), 제 1 발광층(115a), 및 제 2 발광층(115b) 위에 제 3 발광층(115c)을 형성한다. 또한, 각 정공 수송층 및 각 발광층을 연속적으로 형성함으로써 구분 형성할 횟수를 저감할 수 있다. 예를 들어, 제 1 정공 수송층(113a)과 제 1 발광층(115a)을 연속적으로 형성하고, 제 2 정공 수송층(113b)과 제 2 발광층(115b)을 연속적으로 형성하고, 제 3 정공 수송층(113c)을 형성한다. 그 후, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 정공 수송층(113c) 위에 제 3 발광층(115c)을 형성한다. 따라서 총 3회의 구분 형성 공정으로 도 1의 (B)에 도시된 발광 소자를 형성할 수 있다. 또한, 도 1의 (A)에 도시된 발광 소자에 비하여 도 1의 (B)에 도시된 발광 소자에서는 전자 수송층(117)을 형성하는 공정을 생략할 수 있다.
여기서, 도 1에 도시된 발광 소자의 기타 구성 요소에 대하여 이하에 자세히 설명한다.
<기판>
기판(100)은 발광 소자의 지지체로서 사용된다. 기판(100)으로서는, 예를 들어 유리, 석영, 또는 플라스틱 등을 사용할 수 있다. 또한, 가요성 기판을 사용하여도 좋다. 가요성 기판이란, 구부릴 수 있는(플렉시블) 기판을 말하며, 예를 들어, 폴리카보네이트, 폴리아릴레이트, 폴리에테르 설폰으로 이루어진 플라스틱 기판 등을 들 수 있다. 또한, 필름(폴리프로필렌, 폴리에스테르, 폴리불화 비닐, 폴리염화 비닐 등으로 이루어짐), 무기 증착 필름 등을 사용할 수도 있다. 또한, 발광 소자의 제작 공정에서 지지체로서 기능하는 것이면 이들 외의 것을 사용하여도 좋다.
<양극>
양극(101)은 도전성을 갖는 금속, 합금, 도전성 화합물 등을 1종류 또는 복수 종류 사용하여 형성할 수 있다. 특히, 일함수가 큰(4.0eV 이상) 재료를 사용하는 것이 바람직하다. 예를 들어, 인듐 주석 산화물(ITO: Indium Tin Oxide), 실리콘 또는 산화 실리콘을 함유한 인듐 주석 산화물, 인듐 아연 산화물, 산화 텅스텐 및 산화 아연을 함유한 산화 인듐, 그래핀, 금, 백금, 니켈, 텅스텐, 크로뮴, 몰리브데넘, 철, 코발트, 구리, 팔라듐, 또는 금속 재료의 질화물(예를 들어, 질화 티타늄) 등을 들 수 있다. 또는, 은, 구리, 알루미늄, 티타늄 등을 나노 와이어 형상(또는 세선 형상)으로 형성하고, 그 위에 도전성 물질(도전성 유기 재료나 그래핀 등)을 도포법 또는 인쇄법 등에 의하여 형성함으로써 양극(101)을 형성하여도 좋다.
<음극>
음극(103)은 도전성을 갖는 금속, 합금, 도전성 화합물 등을 1종류 또는 복수 종류 사용하여 형성할 수 있다. 특히, 일함수가 작은(3.8eV 이하) 재료를 사용하는 것이 바람직하다. 예를 들어, 원소 주기율표의 제 1족 또는 제 2족에 속하는 원소(예를 들어, 리튬, 세슘 등의 알칼리 금속, 칼슘, 스트론튬 등의 알칼리 토금속, 마그네슘 등), 이들 원소를 포함한 합금(예를 들어, Mg-Ag, Al-Li), 유로퓸, 이테르븀 등의 희토류 금속, 이들 희토류 금속을 포함한 합금, 알루미늄, 은 등을 사용할 수 있다.
<정공 주입층 및 정공 수송층>
정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)에 사용하는 정공 수송성이 높은 물질로서는 예를 들어, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]바이페닐(약칭: NPB 또는 α-NPD)이나 N,N'-비스(3-메틸페닐)-N,N'-다이페닐-[1,1'-바이페닐]-4,4'-다이아민(약칭: TPD), 4,4',4''-트리스(카바졸-9-일)트라이페닐아민(약칭: TCTA), 4,4',4''-트리스(N,N-다이페닐아미노)트라이페닐아민(약칭: TDATA), 4,4',4''-트리스[N-(3-메틸페닐)-N-페닐아미노]트라이페닐아민(약칭: MTDATA), 4,4'-비스[N-(스피로-9,9'-바이플루오렌-2-일)-N―페닐아미노]바이페닐(약칭: BSPB) 등의 방향족 아민 화합물, 3-[N-(9-페닐카바졸-3-일)-N-페닐아미노]-9-페닐카바졸(약칭: PCzPCA1), 3,6-비스[N-(9-페닐카바졸-3-일)-N-페닐아미노]-9-페닐카바졸(약칭: PCzPCA2), 3-[N-(1-나프틸)-N-(9-페닐카바졸-3-일)아미노]-9-페닐카바졸(약칭: PCzPCN1) 등을 들 수 있다. 그 외에, 4,4'-다이(N-카바졸일)바이페닐(약칭: CBP), 1,3,5-트리스[4-(N-카바졸일)페닐]벤젠(약칭: TCPB), 9-[4-(10-페닐-9-안트라센일)페닐]-9H-카바졸(약칭: CzPA) 등의 카바졸 유도체 등을 사용할 수 있다. 여기에 제시된 물질은, 주로 10-6cm2/Vs 이상의 정공 이동도를 갖는 물질이다. 다만, 전자보다 정공의 수송성이 높은 물질이라면 이들 외의 물질을 사용하여도 좋다.
또한, 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)에 사용할 수 있는 재료로서, 폴리(N-비닐카바졸)(약칭: PVK), 폴리(4-비닐트라이페닐아민)(약칭: PVTPA), 폴리[N-(4-{N'-[4-(4-다이페닐아미노)페닐]페닐-N'-페닐아미노}페닐)메타크릴아마이드](약칭: PTPDMA), 폴리[N,N'-비스(4-부틸페닐)-N,N'-비스(페닐)벤지딘](약칭: Poly-TPD) 등의 고분자 화합물을 사용할 수도 있다.
또한, 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 3 정공 수송층(113c)에 사용할 수 있는 억셉터성 물질로서는 천이 금속 산화물을 들 수 있다. 상기 천이 금속 산화물로서는 원소 주기율표의 제 4족~제 8족에 속하는 금속의 산화물이 바람직하다. 구체적으로는 산화 몰리브데넘이 특히 바람직하다.
<제 1 발광층>
제 1 발광층(115a)은 제 1 인광성 재료(121a)(게스트 재료), 제 1 전자 수송성 재료(122a)(호스트 재료), 및 제 1 정공 수송성 재료(123a)(어시스트 재료)를 갖는다. 또한, 제 1 발광층(115a)은 적색 발광을 나타내면 바람직하다.
또한, 게스트 재료의 T1 준위보다 호스트 재료(또는 어시스트 재료)의 T1 준위가 높은 것이 바람직하다. 이는 게스트 재료의 T1 준위보다 호스트 재료의 T1 준위가 낮으면, 발광에 기여하는 게스트 재료의 삼중항 여기 에너지가 호스트 재료에 의하여 소광(퀀칭)되어, 발광 효율이 저하될 수 있기 때문이다.
또한, 제 1 인광성 재료(121a)(게스트 재료), 제 1 전자 수송성 재료(122a)(호스트 재료), 및 제 1 정공 수송성 재료(123a)(어시스트 재료)는 여기 착체를 형성할 수 있는 조합이고 여기 착체의 발광 스펙트럼이 제 1 인광성 재료(121a)(게스트 재료)의 흡수 스펙트럼과 중첩되고 여기 착체의 발광 스펙트럼의 피크가 제 1 인광성 재료(121a)(게스트 재료)의 흡수 스펙트럼의 피크보다 장파장이라면 바람직하다.
여기서, 호스트 재료로부터 게스트 재료로의 에너지 이동 효율을 높이기 위하여, 분자 사이의 이동 기구로서 알려져 있는 푀스터 기구(
Figure 112014026533413-pat00001
mechanism)(쌍극자-쌍극자 상호 작용) 및 덱스터 기구(Dexter Mechanism)(전자 교환 상호 작용)를 고려하여, 호스트 재료의 발광 스펙트럼(일중항 여기 상태로부터의 에너지 이동을 논하는 경우에는 형광 스펙트럼, 삼중항 여기 상태로부터의 에너지 이동을 논하는 경우에는 인광 스펙트럼)과 게스트 재료의 흡수 스펙트럼(더 자세하게 말하면, 가장 장파장(저에너지) 측의 흡수대에서의 스펙트럼)과의 중첩이 커지는 것이 바람직하다.
그러나 일반적으로, 호스트 재료의 형광 스펙트럼을 게스트 재료의 가장 장파장(저에너지) 측의 흡수대에서의 흡수 스펙트럼과 중첩시키는 것은 어렵다. 왜냐하면, 그렇게 하면, 호스트 재료의 인광 스펙트럼은 형광 스펙트럼보다도 장파장(저에너지) 측에 위치하기 때문에, 호스트 재료의 T1 준위가 인광성 화합물의 T1 준위를 밑돌아, 상술한 퀀칭의 문제가 발생하기 때문이다. 한편, 퀀칭의 문제를 회피하기 위하여, 호스트 재료의 T1 준위가 인광성 화합물의 T1 준위를 웃돌도록 설계하면, 이번에는 호스트 재료의 형광 스펙트럼이 단파장(고에너지) 측으로 시프트하기 때문에, 그 형광 스펙트럼은 게스트 재료의 가장 장파장(저에너지) 측의 흡수대에서의 흡수 스펙트럼과 중첩되지 않게 된다. 따라서, 호스트 재료의 형광 스펙트럼을 게스트 재료의 가장 장파장(저에너지) 측의 흡수대에서의 흡수 스펙트럼과 중첩하여, 호스트 재료의 일중항 여기 상태로부터의 에너지 이동을 최대한으로 높이는 것은, 일반적으로 어려운 일이다.
그래서, 본 발명의 일 형태에 따른 발광 소자가 갖는 제 1 발광층(115a)은 게스트 재료인 제 1 인광성 재료(121a)(제 1 물질로 함)와 호스트 재료인 제 1 전자 수송성 재료(122a)(제 2 물질로 함)에 더하여 제 1 정공 수송성 재료(123a)(제 3 물질로 함)를 포함하고, 호스트 재료와 제 3 물질은 여기 착체(엑시플렉스라고도 함)를 형성하는 조합인 것이 바람직하다. 이 경우, 발광층에서 캐리어(전자 및 정공)가 재결합될 때 호스트 재료와 제 3 물질이 여기 착체를 형성한다.
이에 의하여 발광층에서 호스트 재료의 형광 스펙트럼 및 제 3 물질의 형광 스펙트럼은 더 장파장 측에 위치하는 여기 착체의 발광 스펙트럼으로 변환된다. 그리고, 여기 착체의 발광 스펙트럼과 게스트 재료의 흡수 스펙트럼이 크게 중첩되도록 호스트 재료와 제 3 물질을 선택하면 일중항 여기 상태로부터의 에너지 이동을 최대한 높일 수 있다. 또한, 삼중항 여기 상태에 관해서도, 호스트 재료가 아니라 여기 착체로부터 에너지 이동이 발생할 것으로 생각된다. 이와 같은 구성을 적용한 본 발명의 일 형태에서는 여기 착체의 발광 스펙트럼과 인광성 화합물의 흡수 스펙트럼의 중첩을 이용한 에너지 이동에 의하여 에너지 이동 효율을 높일 수 있기 때문에 외부 양자 효율이 높은 발광 소자를 구현할 수 있다.
또한, 제 1 전자 수송성 재료(122a)(호스트 재료)와 제 1 정공 수송성 재료(123a)(어시스트 재료)를 사용하는 경우, 그 혼합비율에 따라 캐리어 밸런스를 제어할 수 있다. 구체적으로는 제 1 전자 수송성 재료(122a):제 1 정공 수송성 재료(123a)=1:9~9:1(중량비)의 범위로 하는 것이 바람직하다.
또한, 여기 착체끼리의 에너지 이동(여기자 확산)은 일어나기 어렵기 때문에 상술한 바와 같이 여기 착체를 이용함으로써 전자 수송층(117)으로 여기자가 확산되는 것을 막을 수 있다.
제 1 발광층(115a)에 사용할 수 있는 제 1 인광성 재료(121a)로서는 예를 들어, 600nm~700nm에 발광 피크를 갖는 인광성 재료를 들 수 있다. 상기 인광성 재료로서는, 예를 들어, (다이아이소부티릴메타나토)비스[4,6-비스(3-메틸페닐)피리미디나토]이리듐(III)(약칭: [Ir(5mdppm)2(dibm)]), 비스[4,6-비스(3-메틸페닐)피리미디나토](다이피발로일메타나토)이리듐(III)(약칭: [Ir(5mdppm)2(dpm)]), 비스[4,6-다이(나프탈렌-1-일)피리미디나토](다이피발로일메타나토)이리듐(III)(약칭: [Ir(d1npm)2(dpm)])과 같은 피리미딘 골격을 갖는 유기 금속 이리듐 착체나, (아세틸아세토나토)비스(2,3,5-트라이페닐피라지나토)이리듐(III)(약칭: [Ir(tppr)2(acac)]), 비스(2,3,5-트라이페닐피라지나토)(다이피발로일메타나토)이리듐(III)(약칭: [Ir(tppr)2(dpm)]), (아세틸아세토나토)비스[2,3-비스(4-플루오로페닐)퀴녹살리나토]이리듐(III)(약칭: [Ir(Fdpq)2(acac)])과 같은 피라진 골격을 갖는 유기 금속 이리듐 착체나, 트리스(1-페닐아이소퀴놀리나토-N,C2')이리듐(III)(약칭: [Ir(piq)3]), 비스(1-페닐아이소퀴놀리나토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(piq)2(acac)])와 같은 피리딘 골격을 갖는 유기 금속 이리듐 착체를 들 수 있다. 상술한 것들 중에서도 피리미딘 골격을 갖는 유기 금속 이리듐 착체는 신뢰성이나 발광 효율이 매우 뛰어나기 때문에 특히 바람직하다. 또한, 피라진 골격을 갖는 유기 금속 이리듐 착체는 색도가 좋은 적색 발광을 얻을 수 있다.
제 1 발광층(115a)에 사용할 수 있는 제 1 전자 수송성 재료(122a)로서는 질소 함유 복소 방향족 화합물과 같은 π전자 부족형 복소 방향족 화합물이 바람직하고, 예를 들어, 2-(4-바이페닐일)-5-(4-tert-부틸페닐)-1,3,4-옥사다이아졸(약칭: PBD), 3-(4-바이페닐일)-4-페닐-5-(4-tert-부틸페닐)-1,2,4-트라이아졸(약칭: TAZ), 1,3-비스[5-(p-tert-부틸페닐)-1,3,4-옥사다이아졸-2-일]벤젠(약칭: OXD-7), 9-[4-(5-페닐-1,3,4-옥사다이아졸-2-일)페닐]-9H-카바졸(약칭: CO11), 2,2',2''-(1,3,5-벤젠트리일)트리스(1-페닐-1H-벤즈이미다졸(약칭: TPBI), 2-[3-(다이벤조티오펜-4-일)페닐]-1-페닐-1H-벤즈이미다졸(약칭: mDBTBIm-II) 등 폴리아졸 골격을 갖는 복소환 화합물(옥사다이아졸 유도체, 이미다졸 유도체, 트라이아졸 유도체 등)이나, 2-[3-(다이벤조티오펜-4-일)페닐]다이벤조[f,h]퀴녹살린(약칭: 2mDBTPDBq-II), 2-[3'-(다이벤조티오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II), 2-[3'-(9H-카바졸-9-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mCzBPDBq), 4,6-비스[3-(페난트렌-9-일)페닐]피리미딘(약칭: 4,6mPnP2Pm), 4,6-비스[3-(4-다이벤조티에닐)페닐]피리미딘(약칭: 4,6mDBTP2Pm-II) 등 다이아진 골격을 갖는 복소환 화합물(피라진 유도체, 피리미딘 유도체, 피리다진 유도체, 퀴녹살린 유도체, 다이벤조퀴녹살린 유도체 등)이나, 3,5-비스(9H-카바졸-9-일)페닐]피리딘(약칭: 3,5DCzPPy), 1,3,5-트라이[(3-피리딜)-펜-3-일]벤젠(약칭: TmPyPB) 등 피리딘 골격을 갖는 복소환 화합물(피리딘 유도체, 퀴놀린 유도체, 다이벤조퀴놀린 유도체 등)을 들 수 있다. 상술한 재료 중에서도 다이아진 골격을 갖는 복소환 화합물이나 피리딘 골격을 갖는 복소환 화합물은 신뢰성이 양호하여 바람직하다. 특히 다이아진(피리미딘이나 피라진) 골격을 갖는 복소환 화합물은 전자 수송성이 높고, 구동 전압 저감에도 기여한다.
또한, 제 1 발광층(115a)에 사용할 수 있는 제 1 정공 수송성 재료(123a)로서는 π전자 과잉형 복소 방향족 화합물(예를 들어, 카바졸 유도체나 인돌 유도체)이나 방향족 아민 화합물이 바람직하며, 예를 들어, 4,4'-비스[N-(1-나프틸)-N-페닐아미노]바이페닐(약칭: NPB), N,N'-비스(3-메틸페닐)-N,N'-다이페닐-[1,1'-바이페닐]-4,4'-다이아민(약칭: TPD), 4,4'-비스[N-(스피로-9,9'-바이플루오렌-2-일)-N-페닐아미노]바이페닐(약칭: BSPB), 4-페닐-4'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: BPAFLP), 4-페닐-3'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: mBPAFLP), 4-페닐-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBA1BP), 4,4'-다이페닐-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBBi1BP), 4-(1-나프틸)-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBANB), 4,4'-다이(1-나프틸)-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBNBB), 9,9-다이메틸-N-페닐-N-[4-(9-페닐-9H-카바졸-3-일)페닐]-플루오렌-2-아민(약칭: PCBAF), N-페닐-N-[4-(9-페닐-9H-카바졸-3-일)페닐]스피로-9,9'-바이플루오렌-2-아민(약칭: PCBASF) 등 방향족 아민 골격을 갖는 화합물이나, 1,3-비스(N-카바졸일)벤젠(약칭: mCP), 4,4'-다이(N-카바졸일)바이페닐(약칭: CBP), 3,6-비스(3,5-다이페닐페닐)-9-페닐-카바졸(약칭: CzTP), 3,3'-비스(9-페닐-9H-카바졸)(약칭: PCCP) 등 카바졸 골격을 갖는 화합물이나, 4,4',4''-(벤젠-1,3,5-트리일)트라이(다이벤조티오펜)(약칭: DBT3P-II), 2,8-다이페닐-4-[4-(9-페닐-9H-플루오렌-9-일)페닐]다이벤조티오펜(약칭: DBTFLP-III), 4-[4-(9-페닐-9H-플루오렌-9-일)페닐]-6-페닐다이벤조티오펜(약칭: DBTFLP-IV) 등 티오펜 골격을 갖는 화합물이나, 4,4',4''-(벤젠-1,3,5-트리일)트라이(다이벤조퓨란)(약칭: DBF3P-II), 4-{3-[3-(9-페닐-9H-플루오렌-9-일)페닐]페닐}다이벤조퓨란(약칭: mmDBFFLBi-II) 등 퓨란 골격을 갖는 화합물을 들 수 있다. 상술한 재료 중에서도 방향족 아민 골격을 갖는 화합물이나 카바졸 골격을 갖는 화합물은 신뢰성이 양호하고 정공 수송성이 높고, 구동 전압 저감에도 기여하기 때문에 바람직하다.
<제 2 발광층>
제 2 발광층(115b)은 제 2 인광성 재료(131a)(게스트 재료), 제 2 전자 수송성 재료(132a)(호스트 재료), 및 제 2 정공 수송성 재료(133a)(어시스트 재료)를 갖는다. 또한, 제 2 발광층(115b)은 녹색 발광을 나타내면 바람직하다.
또한, 제 2 인광성 재료(131a)(게스트 재료), 제 2 전자 수송성 재료(132a)(호스트 재료), 및 제 2 정공 수송성 재료(133a)(어시스트 재료)는 여기 착체를 형성할 수 있는 조합이고 여기 착체의 발광 스펙트럼이 제 2 인광성 재료(131a)(게스트 재료)의 흡수 스펙트럼과 중첩되고 여기 착체의 발광 스펙트럼의 피크가 제 2 인광성 재료(131a)(게스트 재료)의 흡수 스펙트럼의 피크보다 장파장이라면 바람직하다. 또한, 여기 착체의 구성에 대해서는 제 1 발광층(115a)과 같은 구성을 제 2 발광층(115b)에도 적용할 수 있다.
또한, 제 2 전자 수송성 재료(132a)(호스트 재료)와 제 2 정공 수송성 재료(133a)(어시스트 재료)를 사용하는 경우, 그 혼합비율에 의하여 캐리어 밸런스를 제어할 수 있다. 구체적으로는 제 2 전자 수송성 재료(132a):제 2 정공 수송성 재료(133a)=1:9~9:1(중량비)의 범위로 하는 것이 바람직하다.
또한, 여기 착체끼리의 에너지 이동(여기자 확산)은 일어나기 어렵기 때문에 상술한 바와 같이 여기 착체를 이용함으로써 전자 수송층(117)으로 여기자가 확산되는 것을 막을 수 있다.
제 2 발광층(115b)에 사용할 수 있는 제 2 인광성 재료(131a)로서는 예를 들어, 520nm~600nm에 발광 피크를 갖는 인광성 재료를 들 수 있다. 상기 인광성 재료로서는, 예를 들어, 트리스(4-메틸-6-페닐피리미디나토)이리듐(III)(약칭: [Ir(mppm)3]), 트리스(4-t-부틸-6-페닐피리미디나토)이리듐(III)(약칭: [Ir(tBuppm)3]), (아세틸아세토나토)비스(6-메틸-4-페닐피리미디나토)이리듐(III)(약칭: [Ir(mppm)2(acac)]), (아세틸아세토나토)비스(6-tert-부틸-4-페닐피리미디나토)이리듐(III)(약칭: [Ir(tBuppm)2(acac)]), (아세틸아세토나토)비스[4-(2-노르보르닐)-6-페닐피리미디나토]이리듐(III)(endo-, exo-혼합물)(약칭: Ir(nbppm)2(acac)), (아세틸아세토나토)비스[5-메틸-6-(2-메틸페닐)-4-페닐피리미디나토)이리듐(III)(약칭: [Ir(mpmppm)2(acac)]), (아세틸아세토나토)비스(4,6-다이페닐피리미디나토)이리듐(III)(약칭: [Ir(dppm)2(acac)])과 같은 피리미딘 골격을 갖는 유기 금속 이리듐 착체나, (아세틸아세토나토)비스(3,5-다이메틸-2-페닐피라지나토)이리듐(III)(약칭: [Ir(mppr-Me)2(acac)]), (아세틸아세토나토)비스(5-아이소프로필-3-메틸-2-페닐피라지나토)이리듐(III)(약칭: [Ir(mppr-iPr)2(acac)])과 같은 피라진 골격을 갖는 유기 금속 이리듐 착체나, 트리스(2-페닐피리디나토-N,C2')이리듐(III)(약칭: [Ir(ppy)3]), 비스(2-페닐피리디나토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(ppy)2(acac)]), 비스(벤조[h]퀴놀리나토)이리듐(III)아세틸아세토네이트(약칭: [Ir(bzq)2(acac)]), 트리스(벤조[h]퀴놀리나토)이리듐(III)(약칭: [Ir(bzq)3]), 트리스(2-페닐퀴놀리나토-N,C2')이리듐(III)(약칭: [Ir(pq)3]), 비스(2-페닐퀴놀리나토-N,C2')이리듐(III)아세틸아세토네이트(약칭: [Ir(pq)2(acac)])와 같은 피리딘 골격을 갖는 유기 금속 이리듐 착체를 들 수 있다. 상술한 재료 중에서도 피리미딘 골격을 갖는 유기 금속 이리듐 착체는 신뢰성이나 발광 효율도 매우 뛰어나기 때문에 특히 바람직하다.
제 2 발광층(115b)에 사용할 수 있는 제 2 전자 수송성 재료(132a)로서는 제 1 전자 수송성 재료(122a)로서 제시한 재료와 같은 재료를 사용할 수 있다. 또한, 제 2 발광층(115b)에 사용할 수 있는 제 2 정공 수송성 재료(133a)로서는 제 1 정공 수송성 재료(123a)로서 제시한 재료와 같은 재료를 사용할 수 있다.
<제 3 발광층>
제 3 발광층(115c)은 형광성 재료(141a)(게스트 재료) 및 제 3 전자 수송성 재료(142a)(호스트 재료)를 갖는다. 또한, 제 3 발광층(115c)은 청색 발광을 나타내면 바람직하다.
제 3 발광층(115c)에 사용할 수 있는 형광성 재료(141a)로서는 N,N'-비스[4-(9-페닐-9H-플루오렌-9-일)페닐]-N,N'-다이페닐-피렌-1,6-다이아민(약칭: 1,6FLPAPrn), N,N'-비스(3-메틸페닐)-N,N'-비스[3-(9-페닐-9H-플루오렌-9-일)페닐]-피렌-1,6-다이아민(약칭: 1,6mMemFLPAPrn), N,N'-비스[4-(9H-카바졸-9-일)페닐]-N,N'-다이페닐스틸벤-4,4'-다이아민(약칭: YGA2S), 4-(9H-카바졸-9-일)-4'-(10-페닐-9-안트릴)트라이페닐아민(약칭: YGAPA), 4-(9H-카바졸-9-일)-4'-(9,10-다이페닐-2-안트릴)트라이페닐아민(약칭: 2YGAPPA), N,9-다이페닐-N-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸-3-아민(약칭: PCAPA), 페릴렌, 2,5,8,11-테트라-tert-부틸페릴렌(약칭: TBP), 4-(10-페닐-9-안트릴)-4'-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBAPA) 등을 들 수 있다. 특히, 피렌 골격을 갖는 형광성 화합물은 정공 트랩성이 높고 발광 효율이나 신뢰성이 뛰어나기 때문에 바람직하다. 또한, 1,6FLPAPrn이나 1,6mMemFLPAPrn과 같은 피렌다이아민 화합물로 대표되는 축합 방향족 다이아민 화합물은 정공 트랩성이 높고 발광 효율이나 신뢰성이 뛰어나기 때문에 바람직하다.
제 3 발광층(115c)에 사용할 수 있는 제 3 전자 수송성 재료(142a)로서는 예를 들어, 안트라센 골격을 포함하는 유기 화합물이 바람직하다. 상기 안트라센 골격을 포함하는 유기 화합물로서는 예를 들어, 9-[4-(10-페닐-9-안트라센일)페닐]-9H-카바졸(약칭: CzPA), 9-페닐-3-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸(약칭: PCzPA), 3,6-다이페닐-9-[4-(10-페닐-9-안트릴)페닐]-9H-카바졸(약칭: DPCzPA), 9,10-비스(3,5-다이페닐페닐)안트라센(약칭: DPPA), 9,10-다이(2-나프틸)안트라센(약칭: DNA), 2-tert-부틸-9,10-다이(2-나프틸)안트라센(약칭: t-BuDNA) 등 전자 수송성을 가지면서 정공을 받기 쉬운 화합물을 바람직하게 사용할 수 있다. 본 발명의 일 형태에 따른 발광 소자에서, 제 3 전자 수송성 재료(142a)가 안트라센 골격을 가지면 전자 수송성을 가질 뿐만 아니라 정공을 받기 쉽게 되기 때문에 바람직하다.
<전자 수송층>
전자 수송층(117)은 전자 수송성이 높은 물질을 포함하는 층이다. 또한, 제 1 발광층(115a) 및 제 2 발광층(115b)에 사용하는 제 1 전자 수송성 재료(122a) 및 제 2 전자 수송성 재료(132a)의 삼중항 여기 에너지 준위보다 전자 수송층(117)을 형성하는 재료의 삼중항 여기 에너지 준위가 낮게 되는 재료를 사용한다. 이와 같은 재료로서는 제 3 발광층(115c)에 사용할 수 있는 제 3 전자 수송성 재료(142a)와 같은 재료를 사용할 수 있다.
<전자 주입층>
전자 주입층(119)은 전자 주입성이 높은 물질을 포함하는 층이다. 전자 주입층(119)에는 불화 리튬(LiF), 불화 세슘(CsF), 불화 칼슘(CaF2), 리튬 산화물(LiOx) 등과 같은 알칼리 금속 또는 알칼리 토금속의 화합물을 사용할 수 있다. 또한, 불화 에르븀(ErF3)과 같은 희토류 금속 화합물을 사용할 수 있다.
또는, 유기 화합물과 전자 공여체(도너)를 혼합함으로써 이루어진 복합 재료를 전자 주입층(119)에 사용하여도 좋다. 이와 같은 복합 재료는, 전자 공여체에 의하여 유기 화합물에 전자가 발생하기 때문에, 전자 주입성 및 전자 수송성이 뛰어나다. 이 경우, 유기 화합물로서는 발생한 전자의 수송에 뛰어난 재료인 것이 바람직하고 전자 공여체로서는 유기 화합물에 대하여 전자 공여성을 나타내는 물질이라면 좋다. 구체적으로는, 알칼리 금속이나 알칼리 토금속이나 희토류 금속이 바람직하고, 리튬, 세슘, 마그네슘, 칼슘, 에르븀, 이테르븀 등을 들 수 있다. 또한, 알칼리 금속 산화물이나 알칼리 토금속 산화물이 바람직하고, 리튬 산화물, 칼슘 산화물, 바륨 산화물 등을 들 수 있다. 또한, 산화 마그네슘과 같은 루이스 염기를 사용할 수도 있다. 또한, 테트라티아풀발렌(약칭: TTF) 등의 유기 화합물을 사용할 수도 있다.
또한, 상술한 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 3 정공 수송층(113c), 제 1 발광층(115a), 제 2 발광층(115b), 제 3 발광층(115c), 전자 수송층(117), 및 전자 주입층(119)은 각각 증착법(진공 증착법을 포함함), 잉크젯법, 도포법 등의 방법으로 형성할 수 있다.
또한, 상술한 발광 소자의 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)으로 얻어진 발광은 양극(101) 및 음극(103) 중 어느 한쪽 또는 양쪽을 통하여 외부로 추출된다. 따라서 본 실시형태에 따른 양극(101) 및 음극(103) 중 어느 한쪽 또는 양쪽은 투광성을 갖는 전극이다.
또한, 본 실시형태에 기재된 구성은 다른 실시형태 또는 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시형태 2)
본 실시형태에서는 도 1에 도시된 본 발명의 일 형태에 따른 발광 소자의 변형예에 대하여 도 2 및 도 3을 사용하여 설명한다. 또한, 상술한 실시형태에 기재된 것과 같은 개소, 또는 같은 기능을 갖는 부분에 대해서는 같은 부호를 붙이고, 그 자세한 설명은 생략한다.
도 2의 (A)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)의 각각은 음극(103) 측에 배치된 전자 수송층(117)과 접하여 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
또한, 도 2의 (A)에서 한 쌍의 전극 사이에는 발광층(115) 및 전자 수송층(117)에 더하여 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 4 정공 수송층(113d), 및 전자 주입층(119)이 형성된다.
더 구체적으로는 도 2의 (A)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 제 4 정공 수송층(113d)과, 제 4 정공 수송층(113d) 위의 제 1 정공 수송층(113a)과, 제 4 정공 수송층(113d) 위의 제 2 정공 수송층(113b)과, 제 1 정공 수송층(113a) 위의 제 1 발광층(115a)과, 제 2 정공 수송층(113b) 위의 제 2 발광층(115b)과, 제 4 정공 수송층(113d) 위의 제 3 발광층(115c)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c) 위의 전자 수송층(117)과, 전자 수송층(117) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
다음에 도 2의 (B)에 도시된 발광 소자에 대하여 이하에서 설명한다.
도 2의 (B)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 제 1 발광층(115a) 및 제 2 발광층(115b)을 덮고 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 3 발광층(115c)은 제 1 발광층(115a) 및 제 2 발광층(115b)의 음극(103) 측에 접하도록 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
또한, 도 2의 (B)에서 한 쌍의 전극 사이에는 발광층(115)에 더하여 정공 주입층(111), 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 4 정공 수송층(113d), 및 전자 주입층(119)이 형성된다.
더 구체적으로는 도 2의 (B)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 제 4 정공 수송층(113d)과, 제 4 정공 수송층(113d) 위의 제 1 정공 수송층(113a)과, 제 4 정공 수송층(113d) 위의 제 2 정공 수송층(113b)과, 제 1 정공 수송층(113a) 위의 제 1 발광층(115a)과, 제 2 정공 수송층(113b) 위의 제 2 발광층(115b)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 4 정공 수송층(113d) 위의 제 3 발광층(115c)과, 제 3 발광층(115c) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
도 2에 도시된 발광 소자는, 정공 주입층(111) 위에 제 4 정공 수송층(113d)이 제공되는 점에서 도 1에 도시된 발광 소자와 다르다. 또한, 제 3 발광층(115c)에는 제 3 정공 수송층(113c)이 제공되지 않는다. 즉, 제 3 발광층(115c)은 제 4 정공 수송층(113d)에 접하여 제공된다. 또한, 제 4 정공 수송층(113d)에 사용할 수 있는 재료는 제 3 정공 수송층(113c)과 같은 재료를 사용할 수 있다.
제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)이 제 4 정공 수송층(113d)을 공통적으로 사용할 수 있다. 따라서 도 2에 도시된 발광 소자는 도 1에 도시된 본 발명의 일 형태에 따른 발광 소자가 갖는 뛰어난 효과에 더하여 발광 소자를 형성할 때의 생산성을 더 높일 수 있다. 또한, 도 2의 (A)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)을 형성할 때에 수행된다. 또한, 각 정공 수송층 및 각 발광층을 연속적으로 형성함으로써 구분 형성할 횟수를 저감할 수 있다. 예를 들어, 제 1 정공 수송층(113a)과 제 1 발광층(115a)을 연속적으로 형성하고, 제 2 정공 수송층(113b)과 제 2 발광층(115b)을 연속적으로 형성하고, 제 3 발광층(115c)을 형성한다. 따라서 총 3회의 구분 형성 공정으로 도 2의 (A)에 도시된 발광 소자를 형성할 수 있다. 또한, 도 2의 (B)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 1 발광층(115a), 및 제 2 발광층(115b)을 형성할 때에 수행된다. 또한, 각 정공 수송층 및 각 발광층을 연속적으로 형성함으로써 구분 형성할 횟수를 저감할 수 있다. 예를 들어, 제 1 정공 수송층(113a)과 제 1 발광층(115a)을 연속적으로 형성하고, 제 2 정공 수송층(113b)과 제 2 발광층(115b)을 연속적으로 형성한다. 따라서 총 2회의 구분 형성 공정으로 도 2의 (B)에 도시된 발광 소자를 형성할 수 있다.
또한, 도 2에 도시된 발광 소자에서, 제 1 발광층(115a)은 제 1 정공 수송층(113a)에 접하고 제 2 발광층(115b)은 제 2 정공 수송층(113b)에 접하도록 각각 독립적으로 형성된다. 따라서 각 발광층에서 최적의 소자 구성으로 할 수 있고, 각 발광층에서 발광 효율이 높은 발광 소자를 구현할 수 있다.
또한, 도 2에 도시된 발광 소자에서, 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 및 제 4 정공 수송층(113d)의 막 두께를 조정함으로써 각 발광층으로부터 사출되는 광의 광학 거리를 조정할 수 있다.
다음에 도 3의 (A)에 도시된 발광 소자에 대하여 이하에서 설명한다.
도 3의 (A)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)의 각각은 음극(103) 측에 배치된 전자 수송층(117)과 접하여 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
또한, 도 3의 (A)에서 한 쌍의 전극 사이에는 발광층(115) 외에도 정공 주입층(111), 정공 수송층(113), 및 전자 주입층(119)이 형성된다.
더 구체적으로는 도 3의 (A)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 정공 수송층(113)과, 정공 수송층(113) 위의 제 1 발광층(115a)과, 정공 수송층(113) 위의 제 2 발광층(115b)과, 정공 수송층(113) 위의 제 3 발광층(115c)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
다음에 도 3의 (B)에 도시된 발광 소자에 대하여 이하에서 설명한다.
도 3의 (B)에 도시된 발광 소자는 한 쌍의 전극(양극(101)과 음극(103)) 사이에 발광층(115)을 갖고, 발광층(115)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)를 포함하는 제 1 발광층(115a)과, 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)를 포함하는 제 2 발광층(115b)과, 제 1 발광층(115a) 및 제 2 발광층(115b)을 덮고 형광성 재료(141a)와 제 3 전자 수송성 재료(142a)를 포함하는 제 3 발광층(115c)을 갖는다.
또한, 제 3 발광층(115c)은 제 1 발광층(115a) 및 제 2 발광층(115b)의 음극(103) 측에 접하도록 제공된다.
또한, 제 1 발광층(115a)은 제 1 인광성 재료(121a)와 제 1 전자 수송성 재료(122a)에 더하여 제 1 정공 수송성 재료(123a)를 더 포함하는 구성으로 하여도 좋다. 또한, 제 2 발광층(115b)은 제 2 인광성 재료(131a)와 제 2 전자 수송성 재료(132a)에 더하여 제 2 정공 수송성 재료(133a)를 더 포함하는 구성으로 하여도 좋다.
또한, 도 3의 (B)에서 한 쌍의 전극 사이에는 발광층(115) 외에도 정공 주입층(111), 정공 수송층(113), 및 전자 주입층(119)이 형성되어 있다.
더 구체적으로는 도 3의 (B)에 도시된 발광 소자는 기판(100) 위의 양극(101)과, 양극(101) 위의 정공 주입층(111)과, 정공 주입층(111) 위의 정공 수송층(113)과, 정공 수송층(113) 위의 제 1 발광층(115a)과, 정공 수송층(113) 위의 제 2 발광층(115b)과, 제 1 발광층(115a), 제 2 발광층(115b), 및 정공 수송층(113) 위의 제 3 발광층(115c)과, 제 3 발광층(115c) 위의 전자 주입층(119)과, 전자 주입층(119) 위의 음극(103)을 갖는다.
도 3에 도시된 발광 소자는, 정공 주입층(111) 위에 정공 수송층(113)이 제공되는 점에서 도 1에 도시된 발광 소자와 다르다. 즉, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)이 정공 수송층(113)을 공통적으로 사용할 수 있다. 또한, 정공 수송층(113)에 사용할 수 있는 재료는 제 3 정공 수송층(113c)과 같은 재료를 사용할 수 있다. 따라서 도 3에 도시된 발광 소자는 도 1에 도시된 본 발명의 일 형태에 따른 발광 소자가 갖는 뛰어난 효과에 더하여 발광 소자를 형성할 때의 생산성을 더 높일 수 있다. 또한 도 3의 (A)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)을 형성할 때에 수행되어 총 3회가 된다. 또한 도 3의 (B)에 도시된 발광 소자를 형성할 때의 구분 형성 공정은 제 1 발광층(115a) 및 제 2 발광층(115b)을 형성할 때에 수행되어 총 2회가 된다.
다만 도 3에 도시된 소자 구성에서는 정공 수송층(113)을 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)이 공통적으로 사용하기 때문에 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c) 중 어느 하나 또는 둘에서는 소자 특성이 저하될 수 있다. 하지만, 소자 특성보다 생산성을 우선하는 경우에서는 도 3에 도시된 구성을 적용하여도 좋다. 또한, 도 3에 도시된 구성에서는 제 1 전자 수송성 재료(122a), 제 2 전자 수송성 재료(132a), 및 제 3 발광층(115c)의 전자 수송성이 매우 높다. 따라서 각 발광층이 정공 수송층을 공통적으로 사용하더라도 전자 수송층 측에서의 소자 특성이 저하되지 않거나 또는 저하되기 어렵기 때문에 복수의 발광층 전체에서 균형이 잡힌 발광 소자를 형성할 수 있다.
또한, 도 3에 도시된 발광 소자에서, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)은 아래쪽에 양극(101)을 공통적으로 사용하는 구성에 대하여 예시하였지만, 이것에 한정되지 않는다. 예를 들어, 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)은 각각 독립적으로 상이한 막 두께를 갖는 양극(101)을 아래쪽에 갖는 구성으로 하여도 좋다. 예를 들어, 상이한 막 두께를 갖는 양극(101)의 구성으로서는 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)의 차례로 양극(101)의 막 두께를 두껍게 할 수 있다.
도 3에 도시된 발광 소자에서는, 각 발광층이 정공 수송층(113)을 공통적으로 사용하였지만, 양극(101)의 막 두께에 의하여 광학 거리를 조정하는 구성은 각 발광층의 소자 특성을 향상시키기 위한 유용한 구성 중 하나라고 할 수 있다.
또한, 본 실시형태에 기재된 구성은 다른 실시형태 또는 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시형태 3)
본 실시형태에서는 본 발명의 일 형태에 따른 발광 소자를 적용하여 제작된 발광 장치에 대하여 도 4를 사용하여 설명한다.
도 4는, 음극과 양극 사이에 제 1 발광층~제 3 발광층을 갖는 발광 장치(250) 및 발광 장치(260)의 단면도다.
먼저, 도 4의 (A)에 도시된 발광 장치(250)에 대하여 이하에서 설명한다.
발광 장치(250)는 기판(200) 측(도 4의 (A)에 도시된 화살표 측)으로부터 광을 추출할 수 있는, 소위 보텀 이미션 구조의 발광 장치다.
또한, 발광 장치(250)는 기판(200) 위에 각각 섬 형상으로 분리된 양극(201a), 양극(201b), 및 양극(201c)을 갖는다. 기판(200)은 실시형태 1에 기재된 기판(100)과 같은 재료를 사용할 수 있다. 양극(201a), 양극(201b), 및 양극(201c)은 실시형태 1에 기재된 양극(101)과 같은 재료를 사용할 수 있다. 또한, 양극(201a), 양극(201b), 및 양극(201c)은 상이한 색을 발하는 소자마다 두께를 상이하게 하여 제공하여도 좋다. 또한, 발광 장치(250)는 보텀 이미션 구조를 갖는 발광 장치이기 때문에 양극(201a), 양극(201b), 및 양극(201c)은 가시광에 대한 투광성을 갖는 재료(예를 들어, ITO 등)를 사용하여 형성하면 좋다.
또한, 발광 장치(250)는 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)을 갖는다. 격벽(251a)은 양극(201a)의 한쪽 단부를 덮는다. 또한, 격벽(251b)은 양극(201a)의 다른 한쪽 단부 및 양극(201b)의 한쪽 단부를 덮는다. 또한, 격벽(251c)은 양극(201b)의 다른 한쪽 단부 및 양극(201c)의 한쪽 단부를 덮는다. 또한, 격벽(251d)은 양극(201c)의 다른 한쪽 단부를 덮는다. 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)은 유기 수지 또는 무기 절연 재료를 사용할 수 있다. 유기 수지로서는 예를 들어, 폴리이미드 수지, 폴리아마이드 수지, 아크릴 수지, 실록산 수지, 에폭시 수지, 또는 페놀 수지 등을 사용할 수 있다. 무기 절연 재료로서는 산화 실리콘, 산화 질화 실리콘 등을 사용할 수 있다. 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)을 쉽게 형성할 수 있는 감광성 수지를 사용하는 것이 특히 바람직하다.
또한, 발광 장치(250)는 양극(201a), 양극(201b), 및 양극(201c)과, 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d) 위에 정공 주입층(211)을 갖는다. 정공 주입층(211)은 실시형태 1에 기재된 정공 주입층(111)과 같은 재료를 사용할 수 있다.
또한, 발광 장치(250)는 정공 주입층(211) 위에 각각 섬 형상으로 분리된 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c)을 갖는다. 또한, 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c) 위에 각각 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c)을 갖는다. 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 제 3 정공 수송층(213c), 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c)은 각각 실시형태 1에 기재된 제 1 정공 수송층(113a), 제 2 정공 수송층(113b), 제 3 정공 수송층(113c), 제 1 발광층(115a), 제 2 발광층(115b), 및 제 3 발광층(115c)과 같은 재료를 사용할 수 있다.
또한, 제 1 발광층(215a)은 도 1의 (A)에 도시된 제 1 발광층(115a)과 마찬가지로, 제 1 인광성 재료와, 제 1 전자 수송성 재료와, 제 1 정공 수송성 재료를 갖는다. 또한, 제 2 발광층(215b)은 도 1의 (A)에 도시된 제 2 발광층(115b)과 마찬가지로, 제 2 인광성 재료와, 제 2 전자 수송성 재료와, 제 2 정공 수송성 재료를 갖는다. 또한, 제 3 발광층(215c)은 도 1의 (A)에 도시된 제 3 발광층(115c)과 마찬가지로, 형광성 재료와, 제 3 전자 수송성 재료를 갖는다. 다만 도 4의 (A)에서 도면이 번잡해지는 것을 피하기 위하여 제 1 인광성 재료, 제 1 전자 수송성 재료, 제 1 정공 수송성 재료, 제 2 인광성 재료, 제 2 전자 수송성 재료, 제 2 정공 수송성 재료, 형광성 재료, 및 제 3 전자 수송성 재료는 생략하여 도시하였다.
또한, 발광 장치(250)는 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c) 위에 전자 수송층(217)을 갖는다. 또한, 전자 수송층(217) 위에 전자 주입층(219)을 갖는다. 또한, 전자 주입층(219) 위에 음극(203)을 갖는다. 전자 수송층(217)은 실시형태 1에 기재된 전자 수송층(117)과 같은 재료를 사용할 수 있다. 전자 주입층(219)은 실시형태 1에 기재된 전자 주입층(119)과 같은 재료를 사용할 수 있다. 음극(203)은 실시형태 1에 기재된 음극(103)과 같은 재료를 사용할 수 있다. 또한, 발광 장치(250)는 보텀 이미션 구조를 갖기 때문에 음극(203)은 특히 반사성을 갖는 재료(예를 들어, 알루미늄 등)를 사용하여 형성하면 좋다.
또한, 도 4의 (A)에서는 양극을 아래쪽에 배치하고 음극을 위쪽에 배치하는 구성을 도시하였지만 이것에 한정되지 않고 예를 들어, 양극을 위쪽에 배치하고 음극을 아래쪽에 배치하는 구성으로 하여도 좋다. 이 경우, 양극과 음극 사이의 정공 주입층, 정공 수송층, 발광층, 전자 주입층, 및 전자 수송층의 적층 순서를 바꾸면 좋다.
발광 장치(250)의 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c)은 전자 수송층(217)에 접하여 제공되고, 제 1 발광층(215a)에 포함되는 전자 수송성 재료 및 제 2 발광층(215b)에 포함되는 제 2 전자 수송성 재료의 삼중항 여기 에너지보다 전자 수송층(217)을 형성하는 재료의 삼중항 여기 에너지 준위가 낮다. 이와 같이, 발광 장치(250)가 갖는 각 발광 소자에서는 각 발광층이 전자 수송층을 공통적으로 사용하더라도 최적의 소자 구성을 가질 수 있기 때문에 낮은 구동 전압, 높은 전류 효율, 또는 장수명이 된다. 따라서 저소비 전력 또는 장수명의 발광 장치(250)를 제공할 수 있다. 또한, 전자 수송층을 공통적으로 사용하므로 생산성이 높은 발광 장치(250)를 제공할 수 있다.
다음에 도 4의 (B)에 도시된 발광 장치(260)에 대하여 이하에서 설명한다.
발광 장치(260)는 발광 장치(250)의 변형예이며 도 4의 (B)에 도시된 화살표 측으로부터 광을 추출할 수 있는, 소위 톱 이미션 구조의 발광 장치다.
또한, 발광 장치(260)는 기판(200) 위에 각각 섬 형상으로 분리된 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)을 갖는다. 또한, 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c) 위에 각각 섬 형상으로 분리된 양극(201a), 양극(201b), 및 양극(201c)을 갖는다. 발광 장치(260)는 톱 이미션 구조의 발광 장치이기 때문에 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)은 반사성을 갖는 재료(예를 들어, 알루미늄 또는 은 등)를 사용하여 형성하면 좋다.
또한, 발광 장치(260)는 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)을 갖는다. 격벽(251a)은 반사 전극(253a) 및 양극(201a)의 한쪽 단부를 덮는다. 또한, 격벽(251b)은 반사 전극(253a) 및 양극(201a)의 다른 한쪽 단부와, 반사 전극(253b) 및 양극(201b)의 한쪽 단부를 덮는다. 또한, 격벽(251c)은 반사 전극(253b) 및 양극(201b)의 다른 한쪽 단부와, 반사 전극(253c) 및 양극(201c)의 한쪽 단부를 덮는다. 또한, 격벽(251d)은 반사 전극(253c) 및 양극(201c)의 다른 한쪽 단부를 덮는다.
또한, 발광 장치(260)는 양극(201a), 양극(201b), 및 양극(201c)과, 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d) 위에 정공 주입층(211)을 갖는다.
또한, 발광 장치(260)는 정공 주입층(211) 위에 각각 섬 형상으로 분리된 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c)을 갖는다. 또한, 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c) 위에 각각 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c)을 갖는다.
또한, 제 1 발광층(215a)은 도 1의 (A)에 도시된 제 1 발광층(115a)과 마찬가지로, 제 1 인광성 재료와, 제 1 전자 수송성 재료와, 제 1 정공 수송성 재료를 갖는다. 또한, 제 2 발광층(215b)은 도 1의 (A)에 도시된 제 2 발광층(115b)과 마찬가지로, 제 2 인광성 재료와, 제 2 전자 수송성 재료와, 제 2 정공 수송성 재료를 갖는다. 또한, 제 3 발광층(215c)은 도 1의 (A)에 도시된 제 3 발광층(115c)과 마찬가지로, 형광성 재료와, 제 3 전자 수송성 재료를 갖는다. 다만 도 4의 (B)에서 도면이 번잡해지는 것을 피하기 위하여 제 1 인광성 재료, 제 1 전자 수송성 재료, 제 1 정공 수송성 재료, 제 2 인광성 재료, 제 2 전자 수송성 재료, 제 2 정공 수송성 재료, 형광성 재료, 및 제 3 전자 수송성 재료는 생략하여 도시하였다.
또한, 발광 장치(260)는 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c) 위에 전자 수송층(217)을 갖는다. 또한, 전자 수송층(217) 위에 전자 주입층(219)을 갖는다. 또한, 전자 주입층(219) 위에 음극으로서 기능하는 반투과·반반사 전극(253)을 갖는다. 반투과·반반사 전극(253)은 예를 들어, 얇은 금속막(바람직하게는 20nm 이하, 더 바람직하게는 10nm 이하)과 도전성 금속 산화물을 적층하여 형성할 수 있다. 얇은 금속막으로서는, 은, 마그네슘, 또는 이들 금속 재료를 포함한 합금 등을 단층 또는 적층으로 형성할 수 있다. 도전성 금속 산화물로서는 산화 인듐(In2O3), 산화 주석(SnO2), 산화 아연(ZnO), ITO, 산화 인듐 산화 아연(In2O3-ZnO), 또는 이들 금속 산화물 재료에 산화 실리콘을 포함시킨 것을 사용할 수 있다.
발광 장치(260)는 톱 이미션 구조의 발광 장치이기 때문에 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)과 반투과·반반사 전극(253) 사이에서 광의 공진 효과를 이용한 미소광 공진기(마이크로캐비티)를 채용하여 특정 파장에서의 광 강도를 증가시킬 수 있다. 또한, 이 마이크로캐비티로서의 기능은 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)과 반투과·반반사 전극(253) 사이에 끼워지는 재료 또는 광로 길이 등으로 조정할 수 있다. 예를 들어, 양극(201a), 양극(201b), 양극(201c), 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c)의 막 두께를 조정함으로써 각 발광층으로부터 발하는 특정 파장의 광 강도를 증가시키면 좋다. 또한, 발광 장치(260)는 제 1 정공 수송층(213a), 제 2 정공 수송층(213b), 및 제 3 정공 수송층(213c)의 막 두께에 의하여 광로 길이를 조정하는 구성을 예시한 것이다.
또한, 도 4의 (B)에서는 양극을 아래쪽에 배치하고 음극을 위쪽에 배치하는 구성을 도시하였지만 이것에 한정되지 않고 예를 들어, 양극을 위쪽에 배치하고 음극을 아래쪽에 배치하는 구성으로 하여도 좋다. 이 경우, 양극과 음극 사이의 정공 주입층, 정공 수송층, 발광층, 전자 주입층, 및 전자 수송층의 적층 순서를 바꾸면 좋다.
발광 장치(260)의 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c)은 전자 수송층(217)에 접하여 제공되고, 제 1 발광층(215a)에 포함되는 전자 수송성 재료 및 제 2 발광층(215b)에 포함되는 제 2 전자 수송성 재료의 삼중항 여기 에너지 준위보다 전자 수송층(217)을 형성하는 재료의 삼중항 여기 에너지 준위가 낮다. 이와 같이, 발광 장치(260)가 갖는 각 발광 소자는 각 발광층이 전자 수송층을 공통적으로 사용하더라도 최적의 소자 구성을 가질 수 있기 때문에 낮은 구동 전압, 높은 전류 효율, 또는 장수명이 된다. 따라서 저소비 전력 또는 장수명의 발광 장치(260)를 제공할 수 있다. 또한, 전자 수송층을 공통적으로 사용하므로 생산성이 높은 발광 장치(260)를 제공할 수 있다.
또한, 도 4의 (A)에 도시된 발광 장치(250) 및 도 4의 (B)에 도시된 발광 장치(260)는 기판(200) 위에 발광 소자만이 형성된 구성을 예시하였지만 이것에 한정되지 않고 예를 들어, 기판(200) 위에 트랜지스터(예를 들어, TFT 등)를 별도로 형성하고 상기 트랜지스터와 양극(201a), 양극(201b), 및 양극(201c) 또는 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)을 전기적으로 접속시키는 구성으로 하면 바람직하다.
여기서 도 4의 (A)에 도시된 발광 장치(250)의 제작 방법에 대하여 이하에서 설명한다.
먼저, 기판(200) 위에 도전막을 형성하고 상기 도전막을 원하는 형상으로 가공함으로써 양극(201a), 양극(201b), 및 양극(201c)을 형성한다. 다음에 기판(200), 양극(201a), 양극(201b), 및 양극(201c) 위에 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)을 형성한다. 또한, 양극(201a), 양극(201b), 및 양극(201c)과, 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d)은 트랜지스터의 제작 공정으로 형성하면 바람직하다.
또한, 상기 트랜지스터의 구조는 상술한 것에 한정되지 않고 톱 게이트형 트랜지스터를 사용하여도 좋고, 역 스태거형 등의 보텀 게이트형 트랜지스터를 사용하여도 좋다. 또한, n채널형 트랜지스터를 사용하여도 좋고 p채널형 트랜지스터를 사용하여도 좋다. 또한, 트랜지스터에 사용하는 재료도 특별히 한정되지 않는다. 예를 들어, 실리콘이나 In-Ga-Zn계 금속 산화물 등의 산화물 반도체가 채널 형성 영역에 사용된 트랜지스터를 적용할 수 있다.
다음에 양극(201a), 양극(201b), 및 양극(201c)과, 격벽(251a), 격벽(251b), 격벽(251c), 및 격벽(251d) 위에 정공 주입층(211)을 형성한다. 양극(201a), 양극(201b), 및 양극(201c)은 증착법(진공 증착법을 포함함), 스퍼터링법, 도포법, 또는 잉크젯법을 사용하여 형성할 수 있다. 또한, 정공 주입층(211)은 증착법(진공 증착법을 포함함), 전사법, 인쇄법, 잉크젯법, 도포법 등의 방법으로 형성할 수 있다.
다음에 정공 주입층(211)과 접하여 양극(201a)과 중첩되는 위치에 제 1 정공 수송층(213a)을 형성한다. 제 1 정공 수송층(213a)은 증착법(진공 증착법을 포함함), 전사법, 인쇄법, 잉크젯법, 도포법 등의 방법으로 형성할 수 있다. 본 실시형태에서는 증착법으로 증착 마스크(메탈 마스크, 파인 메탈 마스크, 또는 섀도 마스크라고도 함)를 사용하여 원하는 영역에 형성한다.
다음에 제 1 정공 수송층(213a) 위에 제 1 발광층(215a)을 형성한다. 제 1 발광층(215a)은 증착법(진공 증착법을 포함함), 전사법, 인쇄법, 잉크젯법, 도포법 등의 방법으로 형성할 수 있다. 본 실시형태에서는 증착법으로 증착 마스크(메탈 마스크, 파인 메탈 마스크, 또는 섀도 마스크라고도 함)를 사용하여 원하는 영역에 형성한다. 또한, 제 1 정공 수송층(213a) 및 제 1 발광층(215a)은 동일한 증착 마스크를 사용하여 연속적으로 형성하면 바람직하다.
다음에 정공 주입층(211)과 접하며 양극(201b)과 중첩되는 위치에 제 2 정공 수송층(213b)을 형성한다. 제 2 정공 수송층(213b)은 제 1 정공 수송층(213a)과 같은 방법을 사용하여 형성할 수 있다.
다음에 제 2 정공 수송층(213b) 위에 제 2 발광층(215b)을 형성한다. 제 2 발광층(215b)은 제 1 발광층(215a)과 같은 방법을 사용하여 형성할 수 있다. 또한, 제 2 정공 수송층(213b) 및 제 2 발광층(215b)은 동일한 증착 마스크를 사용하여 연속적으로 형성하면 바람직하다.
다음에 정공 주입층(211)과 접하며 양극(201c)과 중첩되는 위치에 제 3 정공 수송층(213c)을 형성한다. 제 3 정공 수송층(213c)은 제 1 정공 수송층(213a)과 같은 방법을 사용하여 형성할 수 있다.
다음에 제 3 정공 수송층(213c) 위에 제 3 발광층(215c)을 형성한다. 제 3 발광층(215c)은 제 1 발광층(215a)과 같은 방법을 사용하여 형성할 수 있다. 또한, 제 3 정공 수송층(213c) 및 제 3 발광층(215c)은 동일한 증착 마스크를 사용하여 연속적으로 형성하면 바람직하다.
다음에 정공 주입층(211), 제 1 발광층(215a), 제 2 발광층(215b), 및 제 3 발광층(215c) 위에 전자 수송층(217)을 형성하고 나서 전자 수송층(217) 위에 전자 주입층(219)을 형성한다. 전자 수송층(217) 및 전자 주입층(219)은 증착법(진공 증착법을 포함함), 전사법, 인쇄법, 잉크젯법, 도포법 등의 방법을 사용하여 형성할 수 있다.
다음에 전자 주입층(219) 위에 음극(203)을 형성한다. 음극(203)은 증착법(진공 증착법을 포함함), 스퍼터링법, 도포법, 또는 잉크젯법을 사용하여 형성할 수 있다.
상술한 공정을 거쳐 도 4의 (A)에 도시된 발광 장치(250)를 제작할 수 있다.
또한, 도 4의 (B)에 도시된 발광 장치(260)는 상술한 발광 장치(250)의 제작 공정에 더하여 양극(201a), 양극(201b), 및 양극(201c) 아래에 반사 전극(253a), 반사 전극(253b), 및 반사 전극(253c)을 형성하는 공정과 음극(203) 대신에 반투과·반반사 전극(253)을 형성하는 공정을 추가함으로써 형성할 수 있다.
또한, 본 실시형태에 기재된 구성은 다른 실시형태 또는 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시형태 4)
본 실시형태에서는 본 발명의 일 형태에 따른 발광 소자 또는 발광 장치를 사용하여 완성시킨 다양한 전자 기기 및 조명 장치의 일례에 대하여 도 5를 사용하여 설명한다.
전자 기기로서는, 예를 들어, 텔레비전 장치(텔레비전, 또는 텔레비전 수신기라고도 함), 컴퓨터용 등의 모니터, 디지털 카메라, 디지털 비디오 카메라, 디지털 포토 프레임, 휴대 전화기(휴대 전화, 휴대 전화 장치라고도 함), 휴대형 게임기, 휴대 정보 단말, 음향 재생 장치, 파칭코기 등의 대형 게임기 등을 들 수 있다.
본 발명의 일 형태에 따른 발광 소자를 가요성을 갖는 기판 위에 제작함으로써 곡면을 갖는 발광부를 포함하는 전자 기기, 조명 장치를 구현할 수 있다.
또한, 본 발명의 일 형태에 따른 발광 소자가 구비하는 한 쌍의 전극을 가시광에 대하여 투광성을 갖는 재료를 사용하여 형성함으로써, 시스루(see-through) 발광부를 갖는 전자 기기, 조명 장치를 구현할 수 있다.
또한 본 발명의 일 형태를 적용한 발광 장치는 자동차의 조명에도 적용할 수 있고, 예를 들어 대쉬보드나 프론트 유리, 천장 등에 조명을 설치할 수도 있다.
도 5의 (A)는 텔레비전 장치의 일례를 도시한 것이다. 텔레비전 장치(7100)는, 하우징(7101)에 표시부(7103)가 내장된다. 표시부(7103)에 의하여, 영상을 표시할 수 있으며, 발광 장치를 표시부(7103)에 사용할 수 있다. 또한, 여기서는, 스탠드(7105)에 의하여 하우징(7101)을 지지한 구성을 도시하였다.
텔레비전 장치(7100)는 하우징(7101)이 구비하는 조작 스위치나, 별체의 리모트 컨트롤러(7110)에 의하여 조작할 수 있다. 리모트 컨트롤러(7110)가 구비하는 조작 키(7109)에 의하여, 채널이나 음량을 조작할 수 있어, 표시부(7103)에 표시되는 영상을 조작할 수 있다. 또한, 상기 리모트 컨트롤러(7110)로부터 출력되는 정보를 표시하는 표시부(7107)를 리모트 컨트롤러(7110)가 구비하는 구성으로 하여도 좋다.
또한, 텔레비전 장치(7100)는, 수신기나 모뎀 등을 구비한 구성으로 한다. 수신기에 의하여 일반적인 텔레비전 방송을 수신할 수 있고, 또한 모뎀을 통하여 유선 또는 무선에 의한 통신 네트워크에 접속함으로써, 일 방향(송신자로부터 수신자) 또는 양 방향(송신자와 수신자 사이, 또는 수신자끼리 등)의 정보 통신을 수행할 수도 있다.
도 5의 (B)는 컴퓨터이며, 본체(7201), 하우징(7202), 표시부(7203), 키보드(7204), 외부 접속 포트(7205), 포인팅 디바이스(7206) 등을 포함한다. 또한, 컴퓨터는, 발광 장치를 그 표시부(7203)에 사용함으로써 제작된다.
도 5의 (C)는 휴대형 게임기이며, 2개의 하우징(하우징(7301)과 하우징(7302))으로 구성되어 있고, 연결부(7303)에 의하여, 개폐 가능하게 연결되어 있다. 하우징(7301)에는 표시부(7304)가 내장되고, 하우징(7302)에는 표시부(7305)가 내장되어 있다. 또한, 도 5의 (C)에 도시된 휴대형 게임기는, 기타 스피커부(7306), 기록 매체 삽입부(7307), LED 램프(7308), 입력 수단(조작 키(7309), 접속 단자(7310), 센서(7311)(힘, 변위, 위치, 속도, 가속도, 각속도, 회전수, 거리, 광, 액체, 자기, 온도, 화학 물질, 음성, 시간, 경도(硬度), 전기장, 전류, 전압, 전력, 방사선, 유량, 습도, 경도(傾度), 진동, 냄새, 또는 적외선을 측정하는 기능을 포함하는 것), 마이크로폰(7312)) 등을 구비하고 있다. 휴대형 게임기의 구성은 상술한 것들에 한정되지 않는 것은 말할 나위 없고, 적어도 표시부(7304) 및 표시부(7305)의 양쪽, 또는 한쪽에 발광 장치를 사용하면 좋고, 기타 부속 설비가 적절히 제공된 구성으로 할 수 있다. 도 5의 (C)에 도시된 휴대형 게임기는, 기록 매체에 기록되어 있는 프로그램 또는 데이터를 판독하여 표시부에 표시하는 기능이나, 다른 휴대형 게임기와 무선 통신을 수행하여 정보를 공유하는 기능을 갖는다. 또한, 도 5의 (C)에 도시된 휴대형 게임기가 갖는 기능은 이것에 한정되지 않고, 다양한 기능을 가질 수 있다.
도 5의 (D)는, 휴대 전화기의 일례를 도시한 것이다. 휴대 전화기(7400)는, 하우징(7401)에 내장된 표시부(7402)에 더하여, 조작 버튼(7403), 외부 접속 포트(7404), 스피커(7405), 마이크로폰(7406) 등을 구비한다. 또한, 휴대 전화기(7400)는, 발광 장치를 표시부(7402)에 사용함으로써 제작된다.
도 5의 (D)에 도시된 휴대 전화기(7400)는, 표시부(7402)를 손가락 등으로 터치함으로써, 정보를 입력할 수 있다. 또한, 전화를 걸거나, 또는 메일을 작성하는 등의 조작은, 표시부(7402)를 손가락 등으로 터치함으로써 수행할 수 있다.
표시부(7402)의 화면은 주로 3가지 모드가 있다. 제 1 모드는, 화상의 표시가 주된 표시 모드이며, 제 2 모드는, 문자 등의 정보의 입력이 주된 입력 모드다. 제 3 모드는 표시 모드와 입력 모드의 2개의 모드가 혼합된 표시+입력 모드다.
예를 들어, 전화를 걸거나, 또는 메일을 작성하는 경우에는, 표시부(7402)를 문자의 입력이 주된 문자 입력 모드로 하고, 화면에 표시시킨 문자의 입력 조작을 수행하면 좋다. 이 경우, 표시부(7402)의 화면의 대부분에 키보드 또는 번호 버튼을 표시시키는 것이 바람직하다.
또한, 휴대 전화기(7400) 내부에, 자이로(gyroscope), 가속도 센서 등 기울기를 검출하는 센서를 갖는 검출 장치를 제공함으로써, 휴대 전화기(7400)의 방향(세로인지 가로인지)을 판단하여, 표시부(7402)의 화면 표시를 자동적으로 전환하도록 할 수 있다.
또한, 화면 모드의 전환은, 표시부(7402)를 터치하거나, 또는 하우징(7401)의 조작 버튼(7403)을 조작함으로써 수행된다. 또한, 표시부(7402)에 표시되는 화상의 종류에 따라 전환하도록 할 수도 있다. 예를 들어, 표시부에 표시하는 화상 신호가 동영상의 데이터라면 표시 모드, 텍스트 데이터라면 입력 모드로 전환한다.
또한, 입력 모드에서, 표시부(7402)의 광 센서에서 검출되는 신호를 검지하여, 표시부(7402)의 터치 조작에 의한 입력이 일정 기간 없는 경우에는, 화면의 모드를 입력 모드로부터 표시 모드로 전환하도록 제어하여도 좋다.
표시부(7402)는, 이미지 센서로서 기능시킬 수도 있다. 예를 들어, 표시부(7402)를 손바닥이나 손가락으로 터치함으로써, 장문(掌紋)이나 지문 등을 촬상(撮像)하여 본인 인증을 수행할 수 있다. 또한, 표시부에 근적외광을 발광하는 백 라이트 또는 근적외광을 발광하는 센싱용 광원을 사용하면, 손가락 정맥, 손바닥 정맥 등을 촬상할 수도 있다.
도 5의 (E)는 탁상 조명 장치를 도시한 것이고, 조명부(7501), 갓(7502), 가변 암(7503), 지주(7504), 대(7505), 전원(7506)을 포함한다. 또한, 탁상 조명 장치는, 발광 장치를 조명부(7501)에 사용함으로써 제작된다. 또한, 조명 장치에는 천장 고정형의 조명 기구 또는 벽걸이형의 조명 기구 등도 포함된다.
또한, 본 실시형태에 기재된 구성은 다른 실시형태 또는 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시예 1)
본 실시예에서는 본 발명의 일 형태에 따른 발광 소자의 전자 수송층으로서 사용할 수 있는 9-[4-(10-페닐-9-안트라센일)페닐]-9H-카바졸(약칭: CzPA)의 삼중항 여기 에너지 준위(T1 준위)와, 인광성 소자의 호스트 재료(제 1 전자 수송성 재료 및 제 2 전자 수송성 재료)로서 사용할 수 있는 2-[3'-(다이벤조티오펜-4-일)바이페닐-3-일]다이벤조[f,h]퀴녹살린(약칭: 2mDBTBPDBq-II)의 삼중항 여기 에너지 준위(T1 준위)를 측정하였다. 또한, 본 실시예에서 사용하는 재료의 화학식을 이하에 나타낸다.
[화학식 1]
Figure 112014026533413-pat00002
각 물질의 인광 발광을 측정함으로써 T1 준위를 산출하였다. 측정 조건으로서는, 325nm의 여기광을 각 물질에 조사하고, 측정 온도 10K으로 측정하였다. 또한, 2mDBTBPDBq-II는 기계적 초퍼(mechanical chopper)에 의한 시간 분해 측정을 수행하였다. CzPA는 시간 분해 측정을 수행하기 어렵기 때문에 Ir(ppy)3을 증감제로서 첨가하고 시간 분해를 수행하지 않고 측정하였다. 측정 조건으로서는 CzPA:Ir(ppy)3=3:1(중량비)의 비율이 되도록 Ir(ppy)3을 첨가하였다. 또한, 삼중항 여기 에너지 준위의 측정은 발광 파장보다 흡수 파장으로부터 산출한 편이 정밀도가 높다. 하지만 T1 준위의 흡수는 매우 약해서 측정하기 어렵기 때문에 여기서는 발광 파장을 측정함으로써 T1 준위를 산출하였다. 따라서 측정 값에 약간 오차가 포함된다. 측정 결과는 표 1에 나타낸 바와 같다.
[표 1]
Figure 112014026533413-pat00003
표 1에 나타낸 바와 같이, 전자 수송층으로서 사용할 수 있는 CzPA의 삼중항 여기 에너지 준위가 인광성 소자의 호스트 재료(제 1 전자 수송성 재료 및 제 2 전자 수송성 재료)로서 사용할 수 있는 2mDBTBPDBq-II의 삼중항 여기 에너지 준위보다 0.69eV 낮은 것이 확인되었다.
(실시예 2)
본 실시예에서는 본 발명의 일 형태에 따른 발광 소자(발광 소자 1, 발광 소자 3, 및 발광 소자 5) 및 비교용 발광 소자(비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6)에 대하여 도 6의 (A)를 사용하여 설명한다. 또한, 본 실시예에서 사용하는 재료의 화학식을 이하에 나타낸다.
[화학식 2]
Figure 112014026533413-pat00004
[화학식 3]
Figure 112014026533413-pat00005
본 실시예에서 사용한 본 발명의 일 형태에 따른 발광 소자(발광 소자 1, 발광 소자 3, 및 발광 소자 5) 및 비교용 발광 소자(비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6)의 제작 방법을 기재한다.
또한, 발광 소자 1 및 비교 발광 소자 2는 적색 발광을 나타내는 발광 소자이고, 발광 소자 3 및 비교 발광 소자 4는 녹색 발광을 나타내는 발광 소자이고, 발광 소자 5 및 비교 발광 소자 6은 청색 발광을 나타내는 발광 소자이다.
(발광 소자 1)
먼저, 기판(1100) 위에 실리콘 또는 산화 실리콘을 함유한 산화 인듐-산화 주석 화합물(ITO-SiO2, 이하 ITSO라고 약기함)을 스퍼터링법으로 성막하여 양극(1101)을 형성하였다. 또한, 사용한 타깃의 조성은 In2O3:SnO2:SiO2=85:10:5[중량%]로 하였다. 또한, 양극(1101)의 막 두께를 110nm로 하고, 전극 면적을 2mm×2mm로 하였다.
다음에, 기판(1100) 위에 발광 소자를 형성하기 위한 전 처리로서, 기판 표면을 물로 세정하고, 200℃로 1시간 동안 소성한 후, UV 오존 처리를 370초 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하고, 진공 증착 장치 내의 가열실에서, 170℃로 30분 동안 진공 소성을 수행한 후, 기판(1100)을 30분 정도 방랭하였다.
다음에, 진공 증착 장치 내에 설치된 기판 홀더에, 양극(1101)이 형성된 기판(1100)을 양극(1101)이 형성된 면이 아래쪽이 되도록 고정하고, 10-4Pa 정도까지 감압한 후, 양극(1101) 위에, 저항 가열을 사용한 증착법에 의하여, 4,4',4''-(벤젠-1,3,5-트리일)트라이(다이벤조티오펜)(약칭: DBT3P-II)과 산화 몰리브데넘을 공증착함으로써 정공 주입층(1111)을 형성하였다. 그 막 두께는 40nm로 하고, DBT3P-II와 산화 몰리브데넘의 비율은 DBT3P-II:산화 몰리브데넘=4:2(중량비)가 되도록 조절하였다. 또한, 공증착법이란 하나의 처리실 내에서 복수의 증발원으로부터 동시에 증착하는 증착법이다.
다음에, 정공 주입층(1111) 위에 4-페닐-4'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: BPAFLP)을 막 두께 20nm가 되도록 성막하여 정공 수송층(1113)을 형성하였다.
다음에 2mDBTBPDBq-II와 4,4'-다이(1-나프틸)-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBNBB)과, (다이피발로일메타나토)비스(2,3,5-트라이페닐피라지나토)이리듐(III)(약칭: Ir(tppr)2dpm)을 공증착하여 정공 수송층(1113) 위에 발광층(1115)을 형성하였다. 여기서 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm의 비율은 2mDBTBPDBq-II:PCBNBB:Ir(tppr)2dpm=0.8:0.2:0.06(중량비)이 되도록 조절하였다. 또한, 발광층(1115)의 막 두께는 40nm로 하였다.
또한, 발광층(1115)에서 2mDBTBPDBq-II는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, PCBNBB는 정공 수송성 재료이며 어시스트 재료로서 기능한다. 또한, Ir(tppr)2dpm은 이리듐을 포함하는 유기 금속 착체이며 게스트 재료로서 기능한다.
또한, 발광층(1115) 위에 CzPA를 막 두께 10nm가 되도록 성막하여 전자 수송층(1117)을 형성하였다.
그 후, 전자 수송층(1117) 위에 바소페난트롤린(약칭: BPhen)을 막 두께 15nm가 되도록 성막하여 제 1 전자 주입층(1119a)을 형성하였다.
또한, 제 1 전자 주입층(1119a) 위에 불화 리튬(LiF)을 막 두께 1nm가 되도록 증착하여 제 2 전자 주입층(1119b)을 형성하였다.
마지막으로, 제 2 전자 주입층(1119b) 위에 음극(1103)으로서 알루미늄을 막 두께 200nm가 되도록 증착함으로써, 본 실시예에 따른 발광 소자 1을 제작하였다.
(비교 발광 소자 2)
비교 발광 소자 2는, 발광 소자 1과 비교하여 전자 수송층(1117)이 상이하다. 구체적으로는 비교 발광 소자 2의 전자 수송층(1117)은 발광 소자 1에 사용한 CzPA 대신에 2mDBTBPDBq-II를 사용하였다. 또한, 2mDBTBPDBq-II의 막 두께는 10nm로 하였다.
또한, 비교 발광 소자 2에서 전자 수송층(1117) 외의 구성은 발광 소자 1과 마찬가지로 제작하였다.
(발광 소자 3)
발광 소자 3은, 발광 소자 1과 비교하여 발광층(1115)이 상이하다. 구체적으로는 발광 소자 3의 발광층(1115)은 발광 소자 1에 사용한 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm 대신에 2mDBTBPDBq-II, PCBNBB, 및 (아세틸아세토나토)비스(6-tert-부틸-4-페닐피리미디나토)이리듐(III)(약칭: Ir(tBuppm)2(acac))을 사용하였다.
또한, 발광 소자 3의 발광층(1115)은 2mDBTBPDBq-II와, PCBNBB와, Ir(tBuppm)2(acac)를 공증착하여 형성하였다. 여기서 2mDBTBPDBq-II, PCBNBB, 및 Ir(tBuppm)2(acac)의 비율은 2mDBTBPDBq-II:PCBNBB:Ir(tBuppm)2(acac)=0.8:0.2:0.06(중량비)이 되도록 조절하였다. 또한, 발광 소자 3의 발광층(1115)의 막 두께는 40nm로 하였다.
또한, 발광 소자 3의 발광층(1115)에서 2mDBTBPDBq-II는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, PCBNBB는 정공 수송성 재료이며 어시스트 재료로서 기능한다. 또한, Ir(tBuppm)2(acac)는 이리듐을 포함하는 유기 금속 착체이며 게스트 재료로서 기능한다.
또한, 발광 소자 3에서 발광층(1115) 외의 구성은 발광 소자 1과 마찬가지로 제작하였다.
(비교 발광 소자 4)
비교 발광 소자 4는, 발광 소자 1과 비교하여 발광층(1115) 및 전자 수송층(1117)이 상이하다. 구체적으로는 비교 발광 소자 4의 발광층(1115)은 발광 소자 1에 사용한 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm 대신에 2mDBTBPDBq-II, PCBNBB, 및 Ir(tBuppm)2(acac)를 사용하였다. 또한, 비교 발광 소자 4의 전자 수송층(1117)은 발광 소자 1에 사용한 CzPA 대신에 2mDBTBPDBq-II를 사용하였다.
또한, 비교 발광 소자 4의 발광층(1115)은 2mDBTBPDBq-II와, PCBNBB와, Ir(tBuppm)2(acac)를 공증착하여 형성하였다. 여기서 2mDBTBPDBq-II, PCBNBB, 및 Ir(tBuppm)2(acac)의 비율은 2mDBTBPDBq-II:PCBNBB:Ir(tBuppm)2(acac)=0.8:0.2:0.06(중량비)이 되도록 조절하였다. 또한, 비교 발광 소자 4의 발광층(1115)의 막 두께는 40nm로 하였다.
또한, 비교 발광 소자 4의 전자 수송층(1117)의 막 두께는 10nm로 하였다.
또한, 비교 발광 소자 4에서 발광층(1115) 및 전자 수송층(1117) 외의 구성은 발광 소자 1과 마찬가지로 제작하였다.
(발광 소자 5)
발광 소자 5는, 발광 소자 1과 비교하여 발광층(1115)이 상이하다. 구체적으로는 발광 소자 5의 발광층(1115)은 발광 소자 1에 사용한 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm 대신에 CzPA 및 N,N'-비스(3-메틸페닐)-N,N'-비스[3-(9-페닐-9H-플루오렌-9-일)페닐]-피렌-1,6-다이아민(약칭: 1,6mMemFLPAPrn)을 사용하였다.
또한, 발광 소자 5의 발광층(1115)은 CzPA와 1,6mMemFLPAPrn을 공증착하여 형성하였다. 여기서 CzPA 및 1,6mMemFLPAPrn의 비율은 CzPA:1,6mMemFLPAPrn=1:0.05(중량비)가 되도록 조절하였다. 또한, 발광 소자 5의 발광층(1115)의 막 두께는 25nm로 하였다.
또한, 발광 소자 5의 발광층(1115)에서 CzPA는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, 1,6mMemFLPAPrn은 형광성 재료이며 게스트 재료로서 기능한다.
또한, 발광 소자 5에서 발광층(1115) 외의 구성은 발광 소자 1과 마찬가지로 제작하였다.
(비교 발광 소자 6)
비교 발광 소자 6은, 발광 소자 1과 비교하여 발광층(1115) 및 전자 수송층(1117)이 상이하다. 구체적으로는 비교 발광 소자 6의 발광층(1115)은 발광 소자 1에 사용한 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm 대신에 CzPA 및 1,6mMemFLPAPrn을 사용하였다. 또한, 비교 발광 소자 6의 전자 수송층(1117)은 발광 소자 1에 사용한 CzPA 대신에 2mDBTBPDBq-II를 사용하였다.
또한, 비교 발광 소자 6의 발광층(1115)은 CzPA와 1,6mMemFLPAPrn을 공증착하여 형성하였다. 여기서 CzPA 및 1,6mMemFLPAPrn의 비율은 CzPA:1,6mMemFLPAPrn=1:0.05(중량비)가 되도록 조절하였다. 또한, 비교 발광 소자 6의 발광층(1115)의 막 두께는 25nm로 하였다.
또한, 비교 발광 소자 6의 발광층(1115)에서 CzPA는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, 1,6mMemFLPAPrn은 형광성 재료이며 게스트 재료로서 기능한다.
또한, 비교 발광 소자 6의 전자 수송층(1117)의 막 두께는 10nm로 하였다.
또한, 비교 발광 소자 6에서 발광층(1115) 및 전자 수송층(1117) 외의 구성은 발광 소자 1과 마찬가지로 제작하였다.
또한, 상술한 본 발명의 일 형태에 따른 발광 소자(발광 소자 1, 발광 소자 3, 및 발광 소자 5) 및 비교 발광 소자(비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6)의 증착 과정은 모두 저항 가열법을 사용하였다.
상술한 바와 같이, 본 발명의 일 형태에 따른 발광 소자(발광 소자 1, 발광 소자 3, 및 발광 소자 5) 및 비교 발광 소자(비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6)는 발광층(1115) 및 전자 수송층(1117) 외의 구성이 동일하다.
상술한 공정을 거쳐 얻어진 본 발명의 일 형태에 따른 발광 소자(발광 소자 1, 발광 소자 3, 및 발광 소자 5) 및 비교 발광 소자(비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6)의 소자 구조를 표 2에 나타낸다.
[표 2]
Figure 112014026533413-pat00006
표 2에 나타낸 바와 같이, 본 발명의 일 형태에 따른 발광 소자는 인광성 재료(발광 소자 1 및 발광 소자 3)의 호스트 재료로서 2mDBTBPDBq-II를 사용하고, 형광성 재료(발광 소자 5)의 호스트 재료로서 CzPA를 사용하였다. 또한, 발광 소자 1, 발광 소자 3, 및 발광 소자 5의 전자 수송층은 CzPA를 공통적으로 사용하였다. 한편으로 비교용 발광 소자는 인광성 재료(비교 발광 소자 2 및 비교 발광 소자 4)의 호스트 재료로서 2mDBTBPDBq-II를 사용하고, 형광성 재료(비교 발광 소자 6)의 호스트 재료로서 CzPA를 사용하였다. 또한, 비교 발광 소자 2, 비교 발광 소자 4, 및 비교 발광 소자 6의 전자 수송층은 2mDBTBPDBq-II를 공통적으로 사용하였다.
다음에 질소 분위기의 글로브 박스 내에서, 상술한 공정에 따라 제작한 각 발광 소자가 대기에 노출되지 않도록 유리 기판에 의하여 밀봉되는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 80℃로 1시간 동안 가열 처리)을 수행하였다. 그 후 각 발광 소자의 동작 특성을 측정하였다. 또한, 측정은 실온(25℃로 유지된 분위기)으로 수행하였다.
도 7에 발광 소자 1 및 비교 발광 소자 2의 전류 밀도-휘도 특성을 나타냈고, 도 8에 발광 소자 1 및 비교 발광 소자 2의 전압-휘도 특성을 나타냈고, 도 9에 발광 소자 1 및 비교 발광 소자 2의 휘도-전류 효율 특성을 나타냈고, 도 10에 발광 소자 1 및 비교 발광 소자 2의 전압-전류 특성을 나타냈고, 도 11에 발광 소자 1 및 비교 발광 소자 2의 발광 스펙트럼을 나타냈다.
도 12에 발광 소자 3 및 비교 발광 소자 4의 전류 밀도-휘도 특성을 나타냈고, 도 13에 발광 소자 3 및 비교 발광 소자 4의 전압-휘도 특성을 나타냈고, 도 14에 발광 소자 3 및 비교 발광 소자 4의 휘도-전류 효율 특성을 나타냈고, 도 15에 발광 소자 3 및 비교 발광 소자 4의 전압-전류 특성을 나타냈고, 도 16에 발광 소자 3 및 비교 발광 소자 4의 발광 스펙트럼을 나타냈다.
도 17에 발광 소자 5 및 비교 발광 소자 6의 전류 밀도-휘도 특성을 나타냈고, 도 18에 발광 소자 5 및 비교 발광 소자 6의 전압-휘도 특성을 나타냈고, 도 19에 발광 소자 5 및 비교 발광 소자 6의 휘도-전류 효율 특성을 나타냈고, 도 20에 발광 소자 5 및 비교 발광 소자 6의 전압-전류 특성을 나타냈고, 도 21에 발광 소자 5 및 비교 발광 소자 6의 발광 스펙트럼을 나타냈다.
또한, 도 7, 도 12, 및 도 17에서, 가로축은 전류 밀도(mA/cm2)를 나타내고 세로축은 휘도(cd/m2)를 나타낸다. 또한, 도 8, 도 13, 및 도 18에서, 가로축은 전압(V)을 나타내고 세로축은 휘도(cd/m2)를 나타낸다. 또한, 도 9, 도 14, 및 도 19에서, 가로축은 휘도(cd/m2)를 나타내고 세로축은 전류 효율(cd/A)을 나타낸다. 또한, 도 10, 도 15, 및 도 20에서, 가로축은 전압(V)을 나타내고 세로축은 전류(mA)를 나타낸다. 또한, 도 11, 도 16, 및 도 21에서, 가로축은 파장(nm)을 나타내고 세로축은 강도(임의 단위)를 나타낸다. 또한, 도 11, 도 16, 및 도 21에서, 각 발광 소자의 발광 스펙트럼이 대략 중첩된다.
또한, 각 발광 소자에서의 휘도가 1000cd/m2 부근일 때의 전압(V), 전류 밀도(mA/cm2), CIE 색도 좌표(x, y), 전류 효율(cd/A), 외부 양자 효율(%)을 표 3에 나타낸다.
[표 3]
Figure 112014026533413-pat00007
표 3에 나타낸 바와 같이, 발광 소자 1의 휘도가 992cd/m2일 때의 소자 특성은 전류 효율이 27cd/A이고, 외부 양자 효율이 24%이고, CIE 색도 좌표가 (x, y)=(0.66, 0.34)이었다. 또한, 비교 발광 소자 2의 휘도가 1103cd/m2일 때의 소자 특성은 전류 효율이 27cd/A이고, 외부 양자 효율이 23%이고, CIE 색도 좌표가 (x, y)=(0.66, 0.34)이었다.
또한, 도 11에 나타낸 바와 같이, 발광 소자 1 및 비교 발광 소자 2의 발광 스펙트럼은 619nm에 피크를 갖는다.
상술한 바와 같이, 발광 소자 1과 비교 발광 소자 2를 비교한 경우, 소자 특성에 큰 차이는 확인되지 않았다. 즉 발광 소자 1의 전자 수송층(1117)(CzPA)의 전자 수송성, 및 인광성 재료의 호스트 재료인 전자 수송성 재료(2mDBTBPDBq-II)의 전자 수송성이 매우 높기 때문에 발광층(1115)에서 여기되는 발광이 전자 수송층(1117) 측에 확산되지 않거나 또는 확산되기 어려운 소자 구성을 갖는 것이 확인되었다.
또한, 표 3에 나타낸 바와 같이 발광 소자 3의 휘도가 804cd/m2일 때의 소자 특성은 전류 효율이 91cd/A이고, 외부 양자 효율이 26%이고, CIE 색도 좌표가 (x, y)=(0.43, 0.56)이었다. 또한, 비교 발광 소자 4의 휘도가 987cd/m2일 때의 소자 특성은 전류 효율이 93cd/A이고, 외부 양자 효율이 26%이고, CIE 색도 좌표가 (x, y)=(0.43, 0.56)이었다.
또한, 도 16에 나타낸 바와 같이, 발광 소자 3의 발광 스펙트럼은 549nm에 피크를 갖고, 비교 발광 소자 4의 발광 스펙트럼은 546nm에 피크를 갖는다.
상술한 바와 같이, 발광 소자 3과 비교 발광 소자 4를 비교한 경우, 소자 특성에 큰 차이는 확인되지 않았다. 즉 발광 소자 3의 전자 수송층(1117)(CzPA)의 전자 수송성, 및 인광성 재료의 호스트 재료인 전자 수송성 재료(2mDBTBPDBq-II)의 전자 수송성이 매우 높기 때문에 발광층(1115)에서 여기되는 발광이 전자 수송층(1117) 측에 확산되지 않거나 또는 확산되기 어려운 소자 구성을 갖는 것이 확인되었다.
또한, 표 3에 나타낸 바와 같이 발광 소자 5의 휘도가 905cd/m2일 때의 소자 특성은 전류 효율이 11cd/A이고, 외부 양자 효율이 9%이고, CIE 색도 좌표가 (x, y)=(0.14, 0.19)이었다. 또한, 비교 발광 소자 6의 휘도가 1115cd/m2일 때의 소자 특성은 전류 효율이 12cd/A이고, 외부 양자 효율이 9%이고, CIE 색도 좌표가 (x, y)=(0.14, 0.19)이었다.
또한, 도 21에 나타낸 바와 같이, 발광 소자 5의 발광 스펙트럼은 464nm에 피크를 갖고, 비교 발광 소자 6의 발광 스펙트럼은 465nm에 피크를 갖는다.
상술한 바와 같이, 발광 소자 5와 비교 발광 소자 6을 비교한 경우, 소자 특성이 상이하게 된다. 구체적으로는 표 3 및 도 20에 나타낸 바와 같이, 전압-전류 특성이 주로 상이하다. 발광 소자 5는 905cd/m2에서의 전압이 3.3V이고 비교 발광 소자 6은 1115cd/m2에서의 전압이 3.5V이다. 또한, 도 20에 도시된 바와 같이, 3V 부근으로부터 전압을 높게 하면 본 발명의 일 형태에 따른 발광 소자 5보다 비교 발광 소자 6의 전류 값이 낮게 된다.
이것은 비교 발광 소자 6의 전자 수송층(1117)이 인광성 재료의 호스트 재료인 전자 수송성 재료(2mDBTBPDBq-II)를 사용함에 기인한다. 이 인광성 재료의 호스트 재료는 발광층(1115)에 사용하는 전자 수송성 재료(CzPA)에 비하여 전자 수송성이 낮게 된다.
한편으로, 본 발명의 일 형태에 따른 발광 소자 5는 전자 수송층(1117)(CzPA)의 전자 수송성이 인광성 재료의 호스트 재료인 전자 수송성 재료(2mDBTBPDBq-II)의 전자 수송성보다 뛰어나기 때문에 더 낮은 구동 전압으로 뛰어난 소자 특성을 갖는다.
또한, 본 실시예에 기재된 구성은 다른 실시형태 또는 다른 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시예 3)
본 실시예에서는 본 발명의 일 형태에 따른 발광 소자(발광 소자 7 및 발광 소자 8)에 대하여 도 6의 (B)를 사용하여 설명한다. 또한, 본 실시예에서 사용하는 재료의 화학식을 이하에 나타낸다.
[화학식 4]
Figure 112014026533413-pat00008
[화학식 5]
Figure 112014026533413-pat00009
본 실시예에서 사용한 본 발명의 일 형태에 따른 발광 소자(발광 소자 7 및 발광 소자 8)의 제작 방법을 이하에 기재한다.
또한, 발광 소자 7은 적색 발광을 나타내는 발광 소자이고 발광 소자 8은 녹색 발광을 나타내는 발광 소자이다.
(발광 소자 7)
먼저, 기판(1100) 위에 실리콘 또는 산화 실리콘을 함유한 산화 인듐-산화 주석 화합물(ITSO)을 스퍼터링법으로 성막하여 양극(1101)을 형성하였다. 또한, 사용한 타깃의 조성은 In2O3:SnO2:SiO2=85:10:5[중량%]로 하였다. 또한, 양극(1101)의 막 두께를 110nm로 하고, 전극 면적을 2mm×2mm로 하였다.
다음에, 기판(1100) 위에 발광 소자를 형성하기 위한 전 처리로서, 기판 표면을 물로 세정하고, 200℃로 1시간 동안 소성한 후, UV 오존 처리를 370초 동안 수행하였다.
그 후, 10-4Pa 정도까지 내부가 감압된 진공 증착 장치에 기판을 도입하여, 진공 증착 장치 내의 가열실에서, 170℃로 30분 동안 진공 소성을 수행한 후, 기판(1100)을 30분 정도 방랭하였다.
다음에, 진공 증착 장치 내에 설치된 기판 홀더에, 양극(1101)이 형성된 기판(1100)을 양극(1101)이 형성된 면이 아래쪽이 되도록 고정하고, 10-4Pa 정도까지 감압한 후, 양극(1101) 위에, 저항 가열을 사용한 증착법에 의하여, 4,4',4''-(벤젠-1,3,5-트리일)트라이(다이벤조티오펜)(약칭: DBT3P-II)과 산화 몰리브데넘을 공증착함으로써 정공 주입층(1111)을 형성하였다. 그 막 두께는 40nm로 하고, DBT3P-II와 산화 몰리브데넘의 비율은 DBT3P-II:산화 몰리브데넘=4:2(중량비)가 되도록 조절하였다.
다음에, 정공 주입층(1111) 위에 4-페닐-4'-(9-페닐플루오렌-9-일)트라이페닐아민(약칭: BPAFLP)을 막 두께 20nm가 되도록 성막하여 정공 수송층(1113)을 형성하였다.
다음에 2mDBTBPDBq-II와, 4,4'-다이(1-나프틸)-4''-(9-페닐-9H-카바졸-3-일)트라이페닐아민(약칭: PCBNBB)과, (다이피발로일메타나토)비스(2,3,5-트라이페닐피라지나토)이리듐(III)(약칭: Ir(tppr)2dpm)을 공증착하여 정공 수송층(1113) 위에 발광층(1115)을 형성하였다. 여기서 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm의 비율은 2mDBTBPDBq-II:PCBNBB:Ir(tppr)2dpm=0.8:0.2:0.06(중량비)이 되도록 조절하였다. 또한, 발광층(1115)의 막 두께는 40nm로 하였다.
또한, 발광층(1115)에서 2mDBTBPDBq-II는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, PCBNBB는 정공 수송성 재료이며 어시스트 재료로서 기능한다. 또한, Ir(tppr)2dpm는 이리듐을 포함하는 유기 금속 착체이며 게스트 재료로서 기능한다.
또한, 발광층(1115) 위에 CzPA와 1,6mMemFLPAPrn을 공증착하여 전자 수송층(1117a)을 형성하였다. 여기서 CzPA 및 1,6mMemFLPAPrn의 비율은 CzPA:1,6mMemFLPAPrn=1:0.05(중량비)가 되도록 조절하였다. 또한, 발광 소자 7의 전자 수송층(1117a)의 막 두께는 25nm로 하였다.
또한, 발광 소자 7의 전자 수송층(1117a)은 상술한 실시예 2에 기재된 발광 소자 5 및 비교 발광 소자 6의 발광층에 사용한 구성과 같다. 즉 청색 발광을 나타내는 발광층을 발광 소자 7의 전자 수송층(1117a)으로서 사용한 구성이다.
그 후, 전자 수송층(1117) 위에 바소페난트롤린(약칭: BPhen)을 막 두께 15nm가 되도록 성막하고 제 1 전자 주입층(1119a)을 형성하였다.
또한, 제 1 전자 주입층(1119a) 위에 불화 리튬(LiF)을 막 두께 1nm로 증착하여, 제 2 전자 주입층(1119b)을 형성하였다.
마지막으로, 제 2 전자 주입층(1119b) 위에 음극(1103)으로서 알루미늄을 막 두께 200nm가 되도록 증착함으로써, 본 실시예에 따른 발광 소자 7을 제작하였다.
(발광 소자 8)
발광 소자 8은, 발광 소자 7과 비교하여 발광층(1115)이 상이하다. 구체적으로는 발광 소자 8의 발광층(1115)은 발광 소자 7에 사용한 2mDBTBPDBq-II, PCBNBB, 및 Ir(tppr)2dpm 대신에 2mDBTBPDBq-II, PCBNBB, 및 Ir(tBuppm)2(acac)를 사용하였다.
또한, 발광 소자 8의 발광층(1115)은 2mDBTBPDBq-II와, PCBNBB와, Ir(tBuppm)2(acac)를 공증착하여 정공 수송층(1113) 위에 형성하였다. 여기서 2mDBTBPDBq-II, PCBNBB, 및 Ir(tBuppm)2(acac)의 비율은 2mDBTBPDBq-II:PCBNBB:Ir(tBuppm)2(acac)=0.8:0.2:0.06(중량비)이 되도록 조절하였다. 또한, 발광 소자 8의 발광층(1115)의 막 두께는 40nm로 하였다.
또한, 발광 소자 8의 발광층(1115)에서 2mDBTBPDBq-II는 전자 수송성 재료이며 호스트 재료로서 기능한다. 또한, PCBNBB는 정공 수송성 재료이며 어시스트 재료로서 기능한다. 또한, Ir(tBuppm)2(acac)는 이리듐을 포함하는 유기 금속 착체이며 게스트 재료로서 기능한다.
또한, 발광 소자 8의 전자 수송층(1117a)은 발광 소자 7과 같이 상술한 실시예 2에 기재된 발광 소자 5 및 비교 발광 소자 6의 발광층에 사용한 구성과 같다. 즉 청색 발광을 나타내는 발광층을 발광 소자 8의 전자 수송층(1117a)으로서 사용한 구성이다.
또한, 발광 소자 8에서 발광층(1115) 외의 구성은 발광 소자 7과 마찬가지로 제작하였다.
또한, 상술한 본 발명의 일 형태에 따른 발광 소자(발광 소자 7 및 발광 소자 8)의 증착 과정은 모두 저항 가열법을 사용하였다.
상술한 공정을 거쳐 얻어진 본 발명의 일 형태에 따른 발광 소자(발광 소자 7 및 발광 소자 8)의 소자 구조를 표 4에 나타낸다.
[표 4]
Figure 112014026533413-pat00010
표 4에 나타낸 바와 같이, 본 발명의 일 형태에 따른 발광 소자는 인광성 재료(발광 소자 7 및 발광 소자 8)의 호스트 재료로서 2mDBTBPDBq-II를 사용하였다. 또한, 발광 소자 7 및 발광 소자 8의 전자 수송층은 CzPA 및 1,6mMemFLPAPrn을 공통적으로 사용하였다.
다음에 질소 분위기의 글로브 박스 내에서, 상술한 공정에 따라 제작한 각 발광 소자가 대기에 노출되지 않도록 유리 기판에 의하여 밀봉되는 작업(실재를 소자의 주위에 도포하고, 밀봉 시에 80℃로 1시간 동안 가열 처리)을 수행하였다. 그 후 각 발광 소자의 동작 특성을 측정하였다. 또한, 측정은 실온(25℃로 유지된 분위기)으로 수행하였다.
도 22에 발광 소자 7 및 발광 소자 8의 전류 밀도-휘도 특성을 나타냈고, 도 23에 발광 소자 7 및 발광 소자 8의 전압-휘도 특성을 나타냈고, 도 24에 발광 소자 7 및 발광 소자 8의 휘도-전류 효율 특성을 나타냈고, 도 25에 발광 소자 7 및 발광 소자 8의 전압-전류 특성을 나타냈고, 도 26에 발광 소자 7 및 발광 소자 8의 발광 스펙트럼을 나타냈다.
또한, 도 22에서, 가로축은 전류 밀도(mA/cm2)를 나타내고 세로축은 휘도(cd/m2)를 나타낸다. 또한, 도 23에서, 가로축은 전압(V)을 나타내고 세로축은 휘도(cd/m2)를 나타낸다. 또한, 도 24에서, 가로축은 휘도(cd/m2)를 나타내고 세로축은 전류 효율(cd/A)을 나타낸다. 또한, 도 25에서, 가로축은 전압(V)을 나타내고 세로축은 전류(mA)를 나타낸다. 또한, 도 26에서, 가로축은 파장(nm)을 나타내고 세로축은 강도(임의 단위)를 나타낸다.
또한, 각 발광 소자에서의 휘도가 1000cd/m2 부근일 때의 전압(V), 전류 밀도(mA/cm2), CIE 색도 좌표(x, y), 전류 효율(cd/A), 외부 양자 효율(%)을 표 5에 나타낸다.
[표 5]
Figure 112014026533413-pat00011
표 5에 나타낸 바와 같이 발광 소자 7의 휘도가 984cd/m2일 때의 소자 특성은 전류 효율이 27cd/A이고, 외부 양자 효율이 25%이고, CIE 색도 좌표가 (x, y)=(0.66, 0.34)이었다. 또한, 발광 소자 8의 휘도가 948cd/m2일 때의 소자 특성은 전류 효율이 76cd/A이고, 외부 양자 효율이 23%이고, CIE 색도 좌표가 (x, y)=(0.44, 0.56)이었다.
또한, 도 26에 나타낸 바와 같이, 발광 소자 7의 발광 스펙트럼은 620nm에 피크를 갖고, 발광 소자 8의 발광 스펙트럼은 548nm에 피크를 갖는다. 또한, 전자 수송층에 사용한 1,6mMemFLPAPrn으로부터의 청색 발광(도 21 참조)은 관측되지 않은 것을 알 수 있다.
상술한 바와 같이 본 발명의 일 형태에 따른 발광 소자 7은 전자 수송층(1117a)으로서 청색 발광을 나타내는 발광층을 사용하여도 실시예 2에 기재된 발광 소자 1과 같은 소자 특성을 얻을 수 있었다. 또한, 본 발명의 일 형태에 따른 발광 소자 8은 전자 수송층(1117a)으로서 청색 발광을 나타내는 발광층을 사용하여도 실시예 2에 기재된 발광 소자 3과 같은 소자 특성을 얻을 수 있었다.
따라서 전자 수송층(1117a)에 사용한 형광성 재료의 호스트 재료(CzPA)의 전자 수송성, 및 인광성 재료의 호스트 재료인 전자 수송성 재료(2mDBTBPDBq-II)의 전자 수송성이 크기 때문에 본 발광 소자의 발광 영역은 발광층(1115)의 정공 수송층(1113) 근방의 영역에 형성되고 발광층(1115)에서 여기되는 발광이 전자 수송층(1117a) 측에 확산되지 않거나 또는 확산되기 어려운 소자 구성을 갖는 것이 확인되었다. 또한, 발광 소자 7 및 발광 소자 8에 사용한 전자 수송층(1117a)에는 형광성 재료인 1,6mMemFLPAPrn이 포함된다. 하지만 도 22~도 26에 나타낸 바와 같이, 형광성 재료인 1,6mMemFLPAPrn은 소자 특성에 영향을 미치지 않는 것이 확인되었다.
또한, 본 실시예에 기재된 구성은 다른 실시형태 또는 다른 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
(실시예 4)
본 실시예에서는 실시예 2 및 실시예 3에서 제작한 본 발명의 일 형태에 따른 발광 소자인, 발광 소자 1, 발광 소자 3, 발광 소자 7, 및 발광 소자 8과 비교용 발광 소자인 비교 발광 소자 2 및 비교 발광 소자 4에 대하여 신뢰성 시험을 수행하고, 그 결과를 도 27에 나타냈다.
도 27의 (A)는 발광 소자 1, 비교 발광 소자 2, 및 발광 소자 7, 즉 적색 소자의 신뢰성 시험 결과를 나타낸 것이다. 또한, 도 27의 (B)는 발광 소자 3, 비교 발광 소자 4, 및 발광 소자 8, 즉 녹색 소자의 신뢰성 시험 결과를 나타낸 것이다. 또한, 도 27에서 신뢰성 시험의 측정 방법은 초기 휘도를 5000cd/m2로 설정하고 전류 밀도를 일정하게 한 조건으로 각 발광 소자를 구동시켰다. 가로축은 소자의 구동 시간(h)을 나타내고 세로축은 초기 휘도를 100%로 하였을 때의 정규화 휘도(%)를 나타낸다. 또한, 도 27에서 각 발광 소자의 데이터가 대략 중첩된다.
도 27의 (A)에 나타낸 결과를 보면, 발광 소자 1의 357시간 경과 후의 정규화 휘도는 68%인 것을 알 수 있고, 비교 발광 소자 2의 357시간 경과 후의 정규화 휘도는 68%인 것을 알 수 있고, 발광 소자 7의 357시간 경과 후의 정규화 휘도는 66%인 것을 알 수 있다. 또한, 도 27의 (B)에 나타낸 결과를 보면, 발광 소자 3의 688시간 경과 후의 정규화 휘도는 81%인 것을 알 수 있고, 비교 발광 소자 4의 688시간 경과 후의 정규화 휘도는 82%인 것을 알 수 있고, 발광 소자 8의 688시간 경과 후의 정규화 휘도는 80%인 것을 알 수 있다.
상술한 바와 같이, 본 발명의 일 형태에 따른 발광 소자 1 및 발광 소자 7의 신뢰성 시험의 결과는 비교 발광 소자 2의 신뢰성 시험의 결과와 거의 마찬가지였다. 또한, 본 발명의 일 형태에 따른 발광 소자 3 및 발광 소자 8의 신뢰성 시험의 결과는 비교 발광 소자 4의 신뢰성 시험의 결과와 거의 마찬가지였다.
또한, 본 실시예에 기재된 구성은 다른 실시형태 또는 다른 실시예에 기재된 구성과 적절히 조합하여 사용할 수 있다.
100: 기판
101: 양극
103: 음극
111: 정공 주입층
113: 정공 수송층
113a: 제 1 정공 수송층
113b: 제 2 정공 수송층
113c: 제 3 정공 수송층
113d: 제 4 정공 수송층
115: 발광층
115a: 제 1 발광층
115b: 제 2 발광층
115c: 제 3 발광층
117: 전자 수송층
119: 전자 주입층
121a: 제 1 인광성 재료
122a: 제 1 전자 수송성 재료
123a: 제 1 정공 수송성 재료
131a: 제 2 인광성 재료
132a: 제 2 전자 수송성 재료
133a: 제 2 정공 수송성 재료
141a: 형광성 재료
142a: 제 3 전자 수송성 재료
200: 기판
201a: 양극
201b: 양극
201c: 양극
203: 음극
211: 정공 주입층
213a: 제 1 정공 수송층
213b: 제 2 정공 수송층
213c: 제 3 정공 수송층
215a: 제 1 발광층
215b: 제 2 발광층
215c: 제 3 발광층
217: 전자 수송층
219: 전자 주입층
250: 발광 장치
251a: 격벽
251b: 격벽
251c: 격벽
251d: 격벽
253: 반투과·반반사 전극
253a: 반사 전극
253b: 반사 전극
253c: 반사 전극
260: 발광 장치
1100: 기판
1101: 양극
1103: 음극
1111: 정공 주입층
1113: 정공 수송층
1115: 발광층
1117: 전자 수송층
1117a: 전자 수송층
1119a: 전자 주입층
1119b: 전자 주입층
7100: 텔레비전 장치
7101: 하우징
7103: 표시부
7105: 스탠드
7107: 표시부
7109: 조작 키
7110: 리모트 컨트롤러
7201: 본체
7202: 하우징
7203: 표시부
7204: 키보드
7205: 외부 접속 포트
7206: 포인팅 디바이스
7301: 하우징
7302: 하우징
7303: 연결부
7304: 표시부
7305: 표시부
7306: 스피커부
7307: 기록 매체 삽입부
7308: LED 램프
7309: 조작 키
7310: 접속 단자
7311: 센서
7312: 마이크로폰
7400: 휴대 전화기
7401: 하우징
7402: 표시부
7403: 조작 버튼
7404: 외부 접속 포트
7405: 스피커
7406: 마이크로폰
7501: 조명부
7502: 갓
7503: 가변 암
7504: 지주
7505: 대
7506: 전원

Claims (22)

  1. 발광 소자에 있어서,
    음극과;
    양극과;
    상기 음극과 상기 양극 사이의, 제 1 발광층 및 제 2 발광층을 포함하고,
    상기 제 1 발광층은 제 1 인광성 재료와 제 1 전자 수송성 재료를 포함하고,
    상기 제 2 발광층은 형광성 재료와 제 2 전자 수송성 재료를 포함하고,
    상기 제 1 발광층 및 상기 제 2 발광층의 각각은 음극 측에 배치된 전자 수송층에 접하고,
    상기 제 1 전자 수송성 재료의 삼중항 여기 에너지보다 상기 전자 수송층에 포함되는 재료의 삼중항 여기 에너지가 낮고,
    상기 전자 수송층에 포함되는 재료는 제 1 안트라센 유도체이고,
    상기 제 2 전자 수송성 재료는 제 2 안트라센 유도체인, 발광 소자.
  2. 제 1 항에 있어서,
    상기 음극과 상기 양극 사이에 제 3 발광층을 더 포함하고,
    상기 제 3 발광층은 제 2 인광성 재료와 제 3 전자 수송성 재료를 포함하고,
    상기 제 3 발광층은 상기 음극 측에 배치된 상기 전자 수송층에 접하고,
    상기 제 3 전자 수송성 재료의 삼중항 여기 에너지보다 상기 전자 수송층에 포함되는 상기 재료의 상기 삼중항 여기 에너지가 낮은, 발광 소자.
  3. 제 1 항에 있어서,
    상기 전자 수송층은 상기 제 2 전자 수송성 재료를 포함하는, 발광 소자.
  4. 제 1 항에 있어서,
    상기 제 1 인광성 재료는 이리듐을 포함하는 유기 금속 착체인, 발광 소자.
  5. 발광 소자에 있어서,
    음극과;
    양극과;
    상기 음극과 상기 양극 사이의, 제 1 발광층 및 제 2 발광층을 포함하고,
    상기 제 1 발광층은 제 1 인광성 재료와 제 1 전자 수송성 재료를 포함하고,
    상기 제 2 발광층은 형광성 재료와 제 2 전자 수송성 재료를 포함하고,
    상기 제 1 발광층은 상기 제 2 발광층의 음극 측에 접하고,
    상기 제 1 전자 수송성 재료의 삼중항 여기 에너지보다 상기 제 2 전자 수송성 재료의 삼중항 여기 에너지가 낮고,
    상기 제 2 전자 수송성 재료는 안트라센 유도체인, 발광 소자.
  6. 제 5 항에 있어서,
    상기 음극과 상기 양극 사이에 제 3 발광층을 더 포함하고,
    상기 제 3 발광층은 제 2 인광성 재료와 제 3 전자 수송성 재료를 포함하고,
    상기 제 3 발광층은 상기 제 2 발광층의 상기 음극 측에 접하고,
    상기 제 3 전자 수송성 재료의 삼중항 여기 에너지보다 상기 제 2 전자 수송성 재료의 상기 삼중항 여기 에너지가 낮은, 발광 소자.
  7. 제 1 항 또는 제 5 항에 있어서,
    상기 제 1 발광층은 제 1 정공 수송성 재료를 더 포함하고,
    상기 제 1 전자 수송성 재료 및 상기 제 1 정공 수송성 재료는 여기 착체를 형성하는, 발광 소자.
  8. 제 6 항에 있어서,
    상기 제 3 발광층은 제 2 정공 수송성 재료를 더 포함하고,
    상기 제 3 전자 수송성 재료 및 상기 제 2 정공 수송성 재료는 여기 착체를 형성하는, 발광 소자.
  9. 제 1 항 또는 제 5 항에 있어서,
    상기 제 1 인광성 재료는 이리듐을 포함하는 유기 금속 착체인, 발광 소자.
  10. 제 2 항 또는 제 6 항에 있어서,
    상기 제 2 인광성 재료는 이리듐을 포함하는 유기 금속 착체인, 발광 소자.
  11. 제 1 항 또는 제 5 항에 있어서,
    상기 제 1 발광층은 적색 발광 또는 녹색 발광을 나타내고,
    상기 제 2 발광층은 청색 발광을 나타내는, 발광 소자.
  12. 제 6 항에 있어서,
    상기 제 1 발광층은 적색 발광을 나타내고,
    상기 제 2 발광층은 청색 발광을 나타내고,
    상기 제 3 발광층은 녹색 발광을 나타내는, 발광 소자.
  13. 제 1 항 또는 제 5 항에 따른 발광 소자를 포함하는, 발광 장치.
  14. 제 13 항에 따른 발광 장치를 포함하는, 전자 기기.
  15. 제 13 항에 따른 발광 장치를 포함하는, 조명 장치.
  16. 삭제
  17. 삭제
  18. 삭제
  19. 삭제
  20. 삭제
  21. 삭제
  22. 삭제
KR1020140032343A 2013-03-27 2014-03-19 발광 소자, 발광 장치, 전자 기기, 및 조명 장치 KR102178256B1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020200137487A KR102460892B1 (ko) 2013-03-27 2020-10-22 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2013-065394 2013-03-27
JP2013065394 2013-03-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020200137487A Division KR102460892B1 (ko) 2013-03-27 2020-10-22 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Publications (2)

Publication Number Publication Date
KR20140118790A KR20140118790A (ko) 2014-10-08
KR102178256B1 true KR102178256B1 (ko) 2020-11-12

Family

ID=51619922

Family Applications (4)

Application Number Title Priority Date Filing Date
KR1020140032343A KR102178256B1 (ko) 2013-03-27 2014-03-19 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR1020200137487A KR102460892B1 (ko) 2013-03-27 2020-10-22 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR1020220138405A KR102595043B1 (ko) 2013-03-27 2022-10-25 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR1020230141717A KR20230150250A (ko) 2013-03-27 2023-10-23 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Family Applications After (3)

Application Number Title Priority Date Filing Date
KR1020200137487A KR102460892B1 (ko) 2013-03-27 2020-10-22 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR1020220138405A KR102595043B1 (ko) 2013-03-27 2022-10-25 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR1020230141717A KR20230150250A (ko) 2013-03-27 2023-10-23 발광 소자, 발광 장치, 전자 기기, 및 조명 장치

Country Status (3)

Country Link
US (4) US9893303B2 (ko)
JP (6) JP6411045B2 (ko)
KR (4) KR102178256B1 (ko)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9590017B2 (en) 2013-01-18 2017-03-07 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US10229956B2 (en) * 2013-01-18 2019-03-12 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US10243023B2 (en) 2013-01-18 2019-03-26 Universal Display Corporation Top emission AMOLED displays using two emissive layers
US10580832B2 (en) 2013-01-18 2020-03-03 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
US10304906B2 (en) 2013-01-18 2019-05-28 Universal Display Corporation High resolution low power consumption OLED display with extended lifetime
KR102511847B1 (ko) 2013-12-02 2023-03-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 모듈, 조명 모듈, 발광 장치, 표시 장치, 전자 기기, 및 조명 장치
WO2015083021A1 (en) 2013-12-02 2015-06-11 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic appliance, and lighting device
CN104903266A (zh) * 2013-12-26 2015-09-09 信越石英株式会社 波长变换用石英玻璃构件及其制造方法
US10700134B2 (en) 2014-05-27 2020-06-30 Universal Display Corporation Low power consumption OLED display
JP6459228B2 (ja) * 2014-06-02 2019-01-30 セイコーエプソン株式会社 発光装置、電子機器および検査方法
JP6823372B2 (ja) 2015-01-30 2021-02-03 株式会社半導体エネルギー研究所 発光装置
KR102543330B1 (ko) * 2015-02-25 2023-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자, 표시 소자, 표시 장치, 전자 기기, 및 조명 장치
TW202404148A (zh) * 2015-03-09 2024-01-16 日商半導體能源研究所股份有限公司 發光元件、顯示裝置、電子裝置及照明設備
TWI779405B (zh) * 2015-03-09 2022-10-01 日商半導體能源研究所股份有限公司 發光元件,顯示裝置,電子裝置,與照明裝置
US10388900B2 (en) * 2016-07-28 2019-08-20 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, electronic device, and lighting device
JP6888943B2 (ja) * 2016-11-17 2021-06-18 株式会社ジャパンディスプレイ 有機エレクトロルミネッセンス表示装置
CN106409879B (zh) * 2016-11-30 2018-03-09 京东方科技集团股份有限公司 一种oled单元、器件及显示装置
CN106960862B (zh) * 2017-03-15 2019-10-25 合肥鑫晟光电科技有限公司 一种显示基板及显示装置
US10522775B2 (en) 2017-03-30 2019-12-31 Sharp Kabushiki Kaisha El display device including island shaped hole injection layer and island shaped electron injection layer and method of manufacturing the same
KR20200127184A (ko) * 2018-03-06 2020-11-10 소니 세미컨덕터 솔루션즈 가부시키가이샤 발광 소자 유닛
WO2019189264A1 (en) 2018-03-28 2019-10-03 Ricoh Company, Ltd. Control device, display device, display system, moving body, control method, and recording medium
US10797112B2 (en) 2018-07-25 2020-10-06 Universal Display Corporation Energy efficient OLED TV
KR20210059153A (ko) * 2019-11-14 2021-05-25 삼성디스플레이 주식회사 유기 발광 소자 및 이를 포함한 장치
KR20210136224A (ko) 2020-05-06 2021-11-17 삼성디스플레이 주식회사 발광 소자 및 이를 포함하는 전자 장치
JPWO2021230214A1 (ko) * 2020-05-13 2021-11-18
EP3993077A1 (en) * 2020-10-29 2022-05-04 Imec VZW Contaminated interface mitigation in a semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195573A (ja) * 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光素子

Family Cites Families (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006362A (ja) 1998-12-01 2004-01-08 Sanyo Electric Co Ltd カラーel表示装置
JP2000227770A (ja) 1998-12-01 2000-08-15 Sanyo Electric Co Ltd カラーel表示装置
ITBO20020165A1 (it) * 2002-03-29 2003-09-29 Consiglio Nazionale Ricerche Dispositivo elettroluminescente organico con droganti cromofori
JP2004063277A (ja) 2002-07-29 2004-02-26 Osaka Industrial Promotion Organization りん光発光性物質用ホスト物質およびそれを用いた有機el素子
US20060257684A1 (en) 2002-10-09 2006-11-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
JP4895490B2 (ja) 2003-09-30 2012-03-14 三洋電機株式会社 有機elパネル
JP4911652B2 (ja) 2003-09-30 2012-04-04 三洋電機株式会社 有機elパネル
KR100721554B1 (ko) 2004-07-22 2007-05-23 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
JP2006128636A (ja) * 2004-09-29 2006-05-18 Fuji Photo Film Co Ltd 有機電界発光素子
US7803468B2 (en) 2004-09-29 2010-09-28 Fujifilm Corporation Organic electroluminescent element
JP4362461B2 (ja) 2004-11-05 2009-11-11 三星モバイルディスプレイ株式會社 有機電界発光素子
KR100669757B1 (ko) * 2004-11-12 2007-01-16 삼성에스디아이 주식회사 유기 전계 발광 소자
US7436113B2 (en) 2005-04-25 2008-10-14 Eastman Kodak Company Multicolor OLED displays
US7602119B2 (en) 2005-04-25 2009-10-13 Eastman Kodak Company OLED with magenta and green emissive layers
US7471041B2 (en) 2005-04-25 2008-12-30 Eastman Kodak Company OLED multicolor displays
KR101478004B1 (ko) * 2005-12-05 2015-01-02 가부시키가이샤 한도오따이 에네루기 켄큐쇼 유기금속 착체, 및 이를 사용하는 발광 소자, 발광 장치 및 전자 기기
JP2007234241A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd 有機el素子
JP4062352B2 (ja) 2006-10-26 2008-03-19 セイコーエプソン株式会社 有機el表示装置
JP2008146904A (ja) * 2006-12-07 2008-06-26 Sony Corp 有機電界発光素子および表示装置
JP5593621B2 (ja) * 2008-04-03 2014-09-24 ソニー株式会社 有機電界発光素子および表示装置
KR100953540B1 (ko) 2008-06-11 2010-04-21 삼성모바일디스플레이주식회사 유기 발광 디스플레이 장치
JP5325707B2 (ja) 2008-09-01 2013-10-23 株式会社半導体エネルギー研究所 発光素子
JP2010165510A (ja) 2009-01-14 2010-07-29 Canon Inc 有機el表示装置
US20100295027A1 (en) 2009-05-22 2010-11-25 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US8461574B2 (en) 2009-06-12 2013-06-11 Idemitsu Kosan Co., Ltd. Organic electroluminescence device
US20100314644A1 (en) * 2009-06-12 2010-12-16 Idemitsu Kosan Co., Ltd. Organic electroluminescent device
KR101182442B1 (ko) * 2010-01-27 2012-09-12 삼성디스플레이 주식회사 유기 발광 디스플레이 장치 및 그의 제조 방법
KR101137392B1 (ko) 2010-03-31 2012-04-20 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101182446B1 (ko) * 2010-04-02 2012-09-12 삼성디스플레이 주식회사 유기 발광 소자
KR20110129531A (ko) 2010-05-26 2011-12-02 삼성모바일디스플레이주식회사 유기전계발광 표시장치의 화소배열구조
JPWO2012008331A1 (ja) * 2010-07-12 2013-09-09 出光興産株式会社 有機エレクトロルミネッセンス素子
JP2012114073A (ja) 2010-11-04 2012-06-14 Sony Corp 表示装置、表示装置の製造方法および電子機器
WO2012108482A1 (en) 2011-02-11 2012-08-16 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
US8957442B2 (en) 2011-02-11 2015-02-17 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and display device
JP5778950B2 (ja) 2011-03-04 2015-09-16 株式会社Joled 有機el表示装置およびその製造方法
JP2012199231A (ja) 2011-03-04 2012-10-18 Semiconductor Energy Lab Co Ltd 表示装置
DE112012001364B4 (de) 2011-03-23 2017-09-21 Semiconductor Energy Laboratory Co., Ltd. Lichtemittierendes Element
KR102128592B1 (ko) 2011-03-30 2020-06-30 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
KR102310048B1 (ko) 2011-04-07 2021-10-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 발광 소자
JP5736935B2 (ja) * 2011-04-26 2015-06-17 セイコーエプソン株式会社 発光装置、表示装置および電子機器
TWI532822B (zh) 2011-04-29 2016-05-11 半導體能源研究所股份有限公司 利用磷光之發光裝置,電子裝置及照明裝置
KR101352121B1 (ko) * 2011-08-29 2014-01-15 엘지디스플레이 주식회사 유기 전계 발광 표시 패널 및 그의 제조 방법
US8963420B2 (en) 2011-08-29 2015-02-24 Lg Display Co., Ltd. Organic electro-luminescence display panel for preventing the display panel from degrading and a method for fabricating the same
TW201324891A (zh) * 2011-12-05 2013-06-16 Au Optronics Corp 電激發光顯示面板之畫素結構
KR101419810B1 (ko) * 2012-04-10 2014-07-15 서울대학교산학협력단 엑시플렉스를 형성하는 공동 호스트를 포함하는 유기 발광 소자
JP6158542B2 (ja) 2012-04-13 2017-07-05 株式会社半導体エネルギー研究所 発光素子、発光装置、電子機器、および照明装置
US9142710B2 (en) * 2012-08-10 2015-09-22 Semiconductor Energy Laboratory Co., Ltd. Light-emitting element, light-emitting device, display device, electronic device, and lighting device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195573A (ja) * 2011-02-28 2012-10-11 Semiconductor Energy Lab Co Ltd 発光素子

Also Published As

Publication number Publication date
US20180151815A1 (en) 2018-05-31
US20240023423A1 (en) 2024-01-18
US9893303B2 (en) 2018-02-13
JP6872064B2 (ja) 2021-05-19
JP7198953B2 (ja) 2023-01-11
JP6723305B2 (ja) 2020-07-15
KR102460892B1 (ko) 2022-10-28
JP6411045B2 (ja) 2018-10-24
JP2021103803A (ja) 2021-07-15
JP2023021434A (ja) 2023-02-10
JP7032592B2 (ja) 2022-03-08
KR20230150250A (ko) 2023-10-30
JP2014209607A (ja) 2014-11-06
JP2023081397A (ja) 2023-06-12
JP2019050378A (ja) 2019-03-28
KR20140118790A (ko) 2014-10-08
US11723264B2 (en) 2023-08-08
KR20200123764A (ko) 2020-10-30
JP7286043B1 (ja) 2023-06-02
JP2020155787A (ja) 2020-09-24
JP2022060488A (ja) 2022-04-14
US20210202866A1 (en) 2021-07-01
US20140291647A1 (en) 2014-10-02
KR20220149496A (ko) 2022-11-08
KR102595043B1 (ko) 2023-10-26

Similar Documents

Publication Publication Date Title
KR102460892B1 (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
JP7318070B2 (ja) 発光素子、照明装置、発光装置、及び電子機器
US9917271B2 (en) Light-emitting device
KR102054342B1 (ko) 발광 소자, 발광 장치, 표시 장치, 조명 장치, 및 전자 기기
JP2018198338A (ja) 発光装置、電子機器および照明装置
KR20210034702A (ko) 발광 소자, 발광 장치, 전자 장치 및 조명 장치
KR20210100753A (ko) 발광 소자, 발광 장치, 전자 기기, 및 조명 장치
KR20150002541A (ko) 발광 소자, 조명 장치, 발광 장치, 및 전자 기기
KR20200035481A (ko) 발광 장치, 전자 기기 및 조명 장치
KR20150125580A (ko) 발광 소자, 발광 장치, 조명 장치, 전자 기기
JP7472254B2 (ja) 発光装置

Legal Events

Date Code Title Description
A201 Request for examination
AMND Amendment
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)