JP2016153793A - 建造物の電力使用状況をモニタするためのシステムおよびその方法 - Google Patents

建造物の電力使用状況をモニタするためのシステムおよびその方法 Download PDF

Info

Publication number
JP2016153793A
JP2016153793A JP2016042220A JP2016042220A JP2016153793A JP 2016153793 A JP2016153793 A JP 2016153793A JP 2016042220 A JP2016042220 A JP 2016042220A JP 2016042220 A JP2016042220 A JP 2016042220A JP 2016153793 A JP2016153793 A JP 2016153793A
Authority
JP
Japan
Prior art keywords
magnetic field
panel
current
building
power lines
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016042220A
Other languages
English (en)
Other versions
JP6154504B2 (ja
Inventor
ヨギースワラン,カーシク
Yogeeswaran Karthik
ケリー,フランク
Kelly Frank
ぺテル,シュウェタック,エヌ
N Patel Shwetak
グプタ,シドハント
Gupta Sidhant
レイノルズ,マシュー,エス
S Reynolds Matthew
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Belkin International Inc
Original Assignee
Belkin International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Belkin International Inc filed Critical Belkin International Inc
Publication of JP2016153793A publication Critical patent/JP2016153793A/ja
Application granted granted Critical
Publication of JP6154504B2 publication Critical patent/JP6154504B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/06Arrangements for measuring electric power or power factor by measuring current and voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R11/00Electromechanical arrangements for measuring time integral of electric power or current, e.g. of consumption
    • G01R11/30Dynamo-electric motor meters
    • G01R11/32Watt-hour meters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/202Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/08Arrangements for measuring electric power or power factor by using galvanomagnetic-effect devices, e.g. Hall-effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/0023Electronic aspects, e.g. circuits for stimulation, evaluation, control; Treating the measured signals; calibration
    • G01R33/0035Calibration of single magnetic sensors, e.g. integrated calibration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/005Calibrating; Standards or reference devices, e.g. voltage or resistance standards, "golden" references
    • G01R35/007Standards or reference devices, e.g. voltage or resistance standards, "golden references"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass
    • G01R35/04Testing or calibrating of apparatus covered by the other groups of this subclass of instruments for measuring time integral of power or current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R21/00Arrangements for measuring electric power or power factor
    • G01R21/001Measuring real or reactive component; Measuring apparent energy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R22/00Arrangements for measuring time integral of electric power or current, e.g. electricity meters
    • G01R22/06Arrangements for measuring time integral of electric power or current, e.g. electricity meters by electronic methods
    • G01R22/061Details of electronic electricity meters
    • G01R22/063Details of electronic electricity meters related to remote communication

Abstract

【課題】建造物による電力使用状況をモニタするためのシステムを提供する。【解決手段】建造物は建造物内の第1の負荷に電力を供給する電力線を有する。建造物は電力線の一部分を覆うパネルをさらに有し得る。システムはパネルの表面の一部分と結合するよう構成された電流センサユニットであって、第2の軸に実質的に平行な長さを有する少なくとも1つの磁場センサを有し、第2の軸は第1の軸に実質的に垂直であり、少なくとも1つの磁場センサは電力線によって生成された磁場を検出する、電流センサユニットと、プロセッサ上で実行するよう構成された処理ユニットとを含み得る。電流センサユニットは少なくとも1つの磁場センサによって検出された磁場に基づいて出力信号を生成する。処理ユニットは電流センサユニットから出力信号を受信し、出力信号を処理して建造物内の第1の負荷による電力使用状況に関連する1つまたは複数のパラメータを決定する。【選択図】図1

Description

関連出願の相互参照
本願は、2010年7月2日に出願された米国仮特許出願第61/361,296号明細書および2010年9月3日に出願された米国仮特許出願第61/380,174号明細書の利益を主張する。米国仮特許出願第61/361,296号明細書および同第61/380,174号明細書は、参照により本明細書に組み込まれる。
本発明は、概して、電力をモニタするための装置、デバイス、システムおよび方法に関し、より具体的には、建造物の電気回路遮断器パネル側で1つまたは複数の主要な電力線の電力をモニタするそのような装置、デバイス、システムおよび方法に関する。
建造物は、建造物内の電気デバイス(すなわち、負荷)に電力を供給する1つまたは複数の主要な電力線を有し得る。主要な電力線は、電気回路遮断器パネルを通じて建造物に入る。電気回路遮断器パネルは、建造物内の電気のための主要な配電ポイントである。また、電気回路遮断器パネルは、建造物内の電気デバイスの火災または損傷を引き起こす可能性のある過電流からの保護も提供する。電気回路遮断器パネルは、3つの主要な電力線を有し、単相3線式電力分配システムを使用することができる。
例えば、Square−D、Eaton、Cutler−Hammer、General Electric、SiemensおよびMurrayを含む電気回路遮断器パネルの製造業者は、電気回路遮断器パネル用に異なる線間距離および構成を選択している。その上、各製造業者は、屋内設備および屋外設備用の定格電流の合計が異なる(新築では、100アンペア(A)および200Aのサービスが最も一般的である)電気回路遮断器パネルの多くの異なる構成を製作する。
特開2001−103622号公報 特開2005−195427号公報 特開2007−107972号公報 特開平04−296663号公報 特開平01−190506号公報 特開2010−112936号公報 特開平06−062512号公報 特開平09−130961号公報
多くの異なるタイプの電気回路遮断器パネルの異なる導体レイアウトは、電気回路遮断器パネルの金属表面に異なる磁場プロフィールをもたらす。その上、内部の導体のレイアウトは、遮断器パネルを開けずに見ることはできず、内部の導体レイアウトが電気回路遮断器パネルの表面で磁場プロフィールを生み出す方法は、適正に解釈してモデル化するための電磁理論の詳細な知識を必要とする。したがって、電気回路遮断器パネルの表面で1つまたは複数の主要な電力線の磁場を正確に測定することは難しい。
それに応じて、電気技術者ではない者が電気回路遮断器パネルの表面で1つまたは複数の主要な電力線の磁場を正確に判断できる装置、システムおよび/または方法に対して、利益の必要性または可能性が存在する。
いくつかの実施形態は、建造物による電力使用状況をモニタするためのシステムについて教示することができる。建造物は、建造物内の第1の負荷に電力を供給する1つまたは複数の主要な電力線を有し得る。1つまたは複数の主要な電力線の一部分は、第1の軸に実質的に平行に伸ばすことができる。建造物は、1つまたは複数の主要な電力線の一部分を覆うパネルをさらに有し得る。システムは、(a)パネルの表面の一部分と結合するよう構成された電流センサユニットであって、(a)第2の軸に実質的に平行な長さを有する少なくとも1つの磁場センサを有し、第2の軸は第1の軸に実質的に垂直であり、少なくとも1つの磁場センサは1つまたは複数の主要な電力線によって生成された磁場を検出するよう構成された、電流センサユニットと、(b)プロセッサ上で実行するよう構成された処理ユニットとを含み得る。電流センサユニットは、少なくとも1つの磁場センサによって検出された磁場に基づいて出力信号を生成するよう構成することができる。処理ユニットは、電流センサユニットから出力信号を受信し、出力信号を処理して建造物内の第1の負荷による電力使用状況に関連する1つまたは複数のパラメータを決定するようさらに構成することができる。
他の実施形態は、建造物の1つまたは複数の主要な電力線の電流を測定するための装置について教示することができる。建造物は、遮断箱を有し得る。遮断箱は、1つまたは複数の主要な電力線の少なくとも第1の部分と、1つまたは複数の主要な電力線の第1の部分の上方の金属パネルとを含み得る。装置は、(a)(1)2つ以上の電流測定値を提供するよう構成された1つまたは複数の電流センサ、および、(2)1つまたは複数の電流センサと結合された1つまたは複数の磁石を有する検知デバイスと、(b)コンピュータユニット上で実行するよう構成され、2つ以上の電流測定値を使用して1つまたは複数の主要な電力線の電流を決定するよう構成された処理モジュールとを含み得る。
さらなる他の実施形態は、建造物の電力使用状況をモニタするためのシステムを提供するための方法を開示することができる。建造物は、建造物内の第1の負荷に電力を供給する1つまたは複数の主要な電力線を有し得る。1つまたは複数の主要な電力線は、少なくとも部分的に、第1の軸に実質的に平行に伸ばすことができる。建造物は、1つまたは複数の主要な電力線の少なくとも一部を覆うパネルをさらに有し得る。本方法は、パネルの表面と結合するよう構成された電流センサユニットを設ける工程であって、電流センサユニットは、1つまたは複数の主要な電力線によって生成された磁場に基づいて出力信号を生成するよう構成された、工程と、電流センサユニットから出力信号を受信するよう構成され、出力信号を処理して建造物の電力使用状況に関連する1つまたは複数のパラメータを決定するようさらに構成された処理ユニットを設ける工程とを含み得る。電流センサユニットを設ける工程は、長さが第2の軸に沿った少なくとも1つの磁場センサを設ける工程であって、少なくとも1つの磁場センサは1つまたは複数の主要な電力線によって生成された磁場を検出するよう構成された、工程と、電流センサユニットをパネルの表面と結合する際に、少なくとも1つの磁場センサの第2の軸が第1の軸に実質的に垂直となるように電流センサユニット側に少なくとも1つの磁場センサを装着する工程とを含み得る。
さらなる実施形態は、電力モニタリングシステムを使用して、建造物の電力使用状況をモニタするための方法を開示する。建造物は、建造物内の第1の負荷に電力を供給する1つまたは複数の主要な電力線を有し得る。本方法は、電力モニタリングシステムを較正する工程であって、1つまたは複数の主要な電力線の第1の未処理の電流および第1の較正データは電力モニタシステムを較正している間に生成される、工程と、第1の較正データおよび第1の未処理の電流の測定値を格納する工程と、第2の未処理の電流を測定する工程と、第2の未処理の電流が第1の未処理の電流の既定量内にない場合に、電力モニタリングシステムの第1の再較正を実行する工程と、第2の未処理の電流が第1の未処理の電流の既定量内にある場合に、第1の較正データを使用して第1の測定電流を計算する工程と、第1の測定電流を表示する工程とを含み得る。電力モニタリングシステムの第1の再較正を実行する工程は、電力モニタリングシステムを較正する工程であって、1つまたは複数の主要な電力線の第3の未処理の電流および第2の較正データは電力モニタシステムの第1の再較正を実行している間に生成される、工程と、第2の較正データおよび第3の未処理の電流の測定値を格納する工程と、第2の較正データを使用して第1の測定電流を計算する工程とを含み得る。
実施形態の説明をさらに促進するため、以下の図面を提供する。
第1の実施形態による、電気回路遮断器パネルと結合された例示的な電力モニタリングシステムの図を示す。 第1の実施形態による、図1の電力モニタリングシステムのブロック図を示す。 一実施形態による、主要な電力線を金属パネルで覆った例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフである。 一実施形態による、主要な電力線を厚紙パネルで覆った例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフである。 一実施形態による、電気導体と磁場センサとの間に鋼板を配置した際に磁場センサを電気導体上方で電気導体から異なる高さで水平に動かした場合の測定電圧を示す三次元グラフである。 一実施形態による、磁場センサを電気導体上方で電気導体から異なる高さで水平に動かした場合の測定電圧を示す三次元グラフである。 第1の実施形態による、図1の電気回路遮断器パネルの表面に位置する例示的な磁場センサを示す。 一実施形態による、図7の磁場センサを使用して測定された、電圧に対する受信信号の位相角対位置を示すグラフである。 図7とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的な磁場センサを示す。 図7および9とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的な磁場センサを示す。 図7、9および10とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的な磁場センサを示す。 図7、9〜11とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的な磁場センサを示す。 一実施形態による、主要な電力線を金属パネルで覆った例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフである。 一実施形態による、図12の電力モニタリングシステムを使用して測定された、電圧に対する受信信号の位相角対位置を示すグラフである。 一実施形態による、磁石なしでコイル状の導体が垂直に装着された電力モニタリングシステムの実際のおよび予測電流測定値を示すグラフを示す。 一実施形態による、図12の電力モニタリングシステムの実際のおよび予測電流測定値を示すグラフを示す。 図7、9〜12とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的なコイル状の導体を示す。 図7、9〜12、17とは異なる実施形態による、図1の電気回路遮断器パネルの表面に位置する電力モニタリングシステムの例示的な磁場センサを示す。 一実施形態による、図18の電力モニタリングシステムを使用して測定された、電圧に対する受信信号の位相角対位置を示すグラフである。 一実施形態による、建造物の電力使用状況をモニタするためのシステムを提供する方法の実施形態のフローチャートを示す。 図20の実施形態による、検知デバイスを設けるアクティビティの実施形態のフローチャートを示す。 一実施形態による、建造物の電力使用状況をモニタするためのシステムを使用する方法の実施形態のフローチャートを示す。
図示を簡単かつ明確にするため、図面は一般様式の構築物を示し、周知の特徴および技法の説明および詳細は、不必要に本発明を不明瞭にすることを避けるために省略される場合がある。それに加えて、図面の要素は、必ずしも原寸に比例するとは限らない。例えば、図面の要素のいくつかの寸法は、他の要素と比べて拡大することで、本発明の実施形態に対する理解を高める際に役立てることができる。異なる図面における同じ参照番号は、同じ要素を示す。
説明内および特許請求の範囲内に「第1の」、「第2の」、「第3の」、「第4の」および同様の用語が使用される場合、これらの用語は、同様の要素を区別するために使用されるものであり、必ずしも特定の連続的または時間的順序を説明するものではない。そのように使用される用語は適切な状況下で交換可能であり、その結果、本明細書に記載される実施形態は、例えば、本明細書に図示されるまたは別の方法で記載されるもの以外の順番で動作できることを理解されたい。その上、「含む」および「有する」ならびにその任意の変形用語は、非排他的な包括を取り扱うことを意図し、その結果、要素のリストを含むプロセス、方法、システム、物品、デバイスまたは装置は、必ずしもそれらの要素に限定されるものではなく、そのようなプロセス、方法、システム、物品、デバイスまたは装置に明確に表示されていないまたは固有の他の要素を含んでもよい。
説明内および特許請求の範囲内に「左側」、「右側」、「前側」、「後側」、「上部」、「下部」、「上方」、「下方」および同様の用語が使用される場合、これらの用語は、目的を説明するために使用されるものであり、必ずしも永久的な相対位置を説明するものではない。そのように使用される用語は適切な状況下で交換可能であり、その結果、本明細書に記載される本発明の実施形態は、例えば、本明細書に図示されるまたは別の方法で記載されるもの以外の方向付けで動作できることを理解されたい。
「結合する(couple)」、「結合された(coupled)」、「結合する(couples)」、「結合している(coupling)」および同様の用語は、幅広く理解すべきであり、2つ以上の要素または信号を電気的に、機械的におよび/または別の方法で接続することを指す。2つ以上の電気要素は、電気的に結合されるが、機械的にまたは別の方法で結合されなくともよく、2つ以上の機械要素は、機械的に結合されるが、電気的にまたは別の方法で結合されなくともよく、2つ以上の電気要素は、機械的に結合されるが、電気的にまたは別の方法で結合されなくともよい。結合は、例えば、永久的もしくは半永久的またはほんの一瞬など、どのような時間長でもよい。
「電気結合」および同様の用語は、幅広く理解すべきであり、パワー信号、データ信号および/または電気信号の他のタイプもしくは組合せに関わらず、任意の電気信号に関与する結合を含む。「機械結合」および同様の用語は、幅広く理解すべきであり、すべてのタイプの機械結合を含む。
「結合された」および同様の用語に「着脱可能に」、「着脱可能な」および同様の用語が付随しなければ、問題の結合などが着脱可能であることも着脱可能でないことも意味しない。
図1は、第1の実施形態による、電気遮断器パネル190と結合された例示的な電力モニタリングシステム100の図を示す。図2は、第1の実施形態による、電力モニタリングシステム100のブロック図を示す。電力モニタリングシステム100は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム100は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム100は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。いくつかの例では、電力モニタリングシステム100は、(a)検知デバイス110と、(b)コンピュータユニット120と、(c)表示デバイス130と、(d)較正デバイス180とを含み得る。
また、図1に示されるように、従来の遮断箱または回路遮断器パネル190は、(a)2つ以上の個別の回路遮断器191と、(b)2つ以上の主要な回路遮断器192と、(c)主要な電力線193、194および195と、(d)外面198を有するパネル196と、(e)回路遮断器191および192へのアクセスを提供するドア197とを含み得る。
主要な電力線193、194および195は、主要な回路遮断器192と電気的に結合され、建造物内の電気デバイス(すなわち、負荷)に電力を供給する。パネル196は、主要な電力線193、194および195ならびに関連回路の少なくとも一部を覆い、これらの電圧が印加された導体との不注意な接触から人々を保護する。通常、パネル196は、鋼鉄または別の金属を含む。
システム100は、パネル196の表面198に検知デバイス110を配置して検知デバイス110の誘導電圧を測定することによって、主要な電力線193、194および195の負荷電流を決定することができる。電力モニタリングシステム100は、測定誘導電圧を使用して、主要な電力線193、194および195の電流および電力を計算することができる。
検知デバイス110をパネル196の表面198上のどの場所に配置しても、個々の分岐(無効負荷を含む)のそれぞれの電流を正確に決定することができる。しかし、正確な電流測定値を得るには、主要な電力線193、194および195からの磁場がパネル196と検知デバイス110から同じリアクタンスをとらえることが必要とされる。リアクタンスが同じでなければ、主要な電力線193、194および195の電流および電力を正確に計算することはさらに難しくなる。
パネル196上でセンサユニットを使用して主要な電力線193、194および195が生み出す磁場を測定する際の別の潜在的制限は、パネル196内の金属により、誘導電圧が、主要な電力線193、194および195中を通過する電流の量に非線形に変化し得ることである。その上、パネル196の金属の透過率の非線形性は、全パネル196にわたりその位置によって異なり得る。図3は、一実施形態による、主要な電力線を金属パネルで覆った例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフ300である。図4は、一実施形態による、金属パネルを厚紙パネルと置き換えた例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフ400である。
同様に、図5は、導体と磁場センサとの間に鋼板を配置した際に磁場センサを電気導体上方で導体から異なる高さ(y軸)で水平(x軸)に動かして測定された電圧を示す三次元グラフ500である。図6は、導体と磁場センサとの間に鋼板がない状態で磁場センサを電気導体上方で導体から異なる高さ(y軸)で水平(x軸)に動かして測定された電圧を示す三次元グラフ600である。図2〜6に示されるように、主要な電力線を覆う金属パネル(すなわち、パネル196(図1))の使用は、非磁性材料(すなわち、厚紙)の使用または材料の未使用と比較すると、主要な電力線に対向するパネルの表面上の測定電圧の著しい非線形性をもたらす。その上、図5および6に示されるように、この非線形性は、位置依存性である。すなわち、非線形性の量は、鋼製パネル上でのセンサの位置に基づいて異なる。以下で説明されるように、電力モニタリングシステム100は、パネル196における金属の使用により生じる検知デバイス110の誘導電圧により、非線形性を相殺または解消することができる。さらに、電力モニタリングシステム100は、主要な電力線193、194および195がパネル196と検知デバイス110から同じリアクタンスをとらえることを保証することができる。
図2を再度参照すると、検知デバイス110は、(a)2つ以上の電流センサまたは磁場センサ211および212と、(b)コントローラ213と、(c)ユーザ通信モジュール214と、(d)トランシーバ215と、(e)電源216と、(f)結合メカニズム219とを含み得る。コントローラ213を使用して、磁場センサ211および212、ユーザ通信モジュール214、トランシーバ215ならびに電源216を制御することができる。いくつかの実施形態では、検知デバイス110は、2、4、6または8つの磁場センサを含み得る。さまざまな例では、磁場センサ211および212は、直径が2.5ミリメートル(mm)から12.7mmであり得る。
さまざまな例では、検知デバイス110は、結合メカニズム219を使用して、パネル196(図2)の表面198(図1)と結合するよう構成することができる。いくつかの例では、結合メカニズム219は、接着剤、Velcro(登録商標)材料、磁石または別の取付けメカニズムを含み得る。
多くの実施形態では、磁場センサ211および212は、コイル状の導体(例えば、コイル状のワイヤ)を含み得る。図7は、第1の実施形態による、パネル196下に主要な電力線193、194および195を備えた、パネル196の表面198に位置する例示的な磁場センサ211を示す。多くの実施形態では、磁場センサ211は、第1の端部752および第1の端部752の反対側に位置する第2の端部753を備えたコイル状の導体751を含み得る。いくつかの例では、コイル状の導体751は、第1の方向743(例えば、反時計回り)に巻くことができる。磁場センサ212は、第1の端部755および第1の端部755の反対側に位置する第2の端部756を備えたコイル状の導体754を含み得る。コイル状の導体754は、第2の方向744(例えば、時計回り)に巻くことができる。多くの例では、コイル状の導体751の第1の巻き方向743は、コイル状の導体754の第2の巻き方向744の逆であり得る。磁場センサ211および212内の導体をコイル状にすることで、磁場の非線形性を解消する際に役立てることができる。
さまざまな例では、コイル状の導体751および754は、直径が2ミリメートル(mm)から12mmであり得る。コイル状の導体751は、コイル状の導体754から12mm〜40mmだけ離間することができる。いくつかの例では、2つ以上の磁場センサの全幅は、最大160mmであり得る。いくつかの例では、コイル状の導体は、空心または鋼心を有し得る。
いくつかの例では、表面198の少なくとも一部分は、軸740および742に実質的に平行であり得、少なくとも軸740は軸742に実質的に垂直である。同じまたは異なる例では、主要な電力線193、194および195の少なくとも一部分は、軸740に実質的に平行に伸ばすことができる。図7に示される実施形態では、軸741は、軸740および742に実質的に垂直である。また、軸741は、コイル状の導体751の第1の端部752から第2の端部753までの長さに沿って、および、コイル状の導体754の第1の端部755から第2の端部756までの長さに沿って、伸ばすことができる。すなわち、コイル状の導体751および754は、表面198ならびに主要な電力線193、194および195に実質的に垂直であり得る。
磁場センサを図7に示される構成に配置すると、主要な電力線193、194および195は、パネル196と検知デバイス110から同じリアクタンスをとらえる。その上、電力モニタリングシステムが図7に示される構成を有すると、鋼板ならびにコイル状の導体751および754は一定のリアクタンスを有する。
図7に示されるセンサ構成が実質的に一定のリアクタンスを有することを示すため、主要な電力線193、194および195に固定電流を設定することができ、受信信号の位相角を測定しながらコイル状の導体751を主要な電力線193、194および195に対して移動させることができる。リアクタンスが一定であれば、理想的なコイル導体の測定位相角は、180度離角した2つの位相のみを有する双安定挙動を呈する。
図8は、一実施形態による、電力モニタリングシステム100の、電圧に対する受信信号の位相角対位置を示すグラフ800である。グラフ800を作成するため、主要な電力線193、194および195に固定電流を設定し、電圧に対する受信信号の位相角を測定しながらコイル状の導体751を主要な電力線193、194および195に対して約0.6センチメートル(cm)の増分で移動させた。図8に示されるように、位相角は、約180度離角した2つの異なる位相を有する双安定挙動を呈する。位相シフトは、コイル導体が主要な電力線195の中心上を通過する際に起こる。したがって、主要な電力線193、194および195がとらえるコイル状の導体751とパネル196のリアクタンスは、実質的に一定である。
図2に戻ると、トランシーバ215は、磁場センサ211および212ならびにコントローラ213と電気的に結合することができる。いくつかの例では、トランシーバ215は、電圧または磁場センサ211および212を使用して測定された他のパラメータをコンピュータユニット120のトランシーバ221に送信する。多くの例では、トランシーバ215およびトランシーバ221は、無線トランシーバであり得る。いくつかの例では、電気信号は、WI−FI(ワイヤレスフィディリティ)、IEEE(Institute of Electrical and Electronics Engineers)802.11無線プロトコルまたはBluetooth(登録商標)3.0+HS(高速)無線プロトコルを使用して送信することができる。さらなる例では、これらの信号は、Zigbee(登録商標)(802.15.4)、Z−Waveまたは独自の無線規格を介して送信することができる。他の例では、トランシーバ215およびトランシーバ221は、携帯との接続または有線接続を使用して電気信号を送信することができる。
コンピュータユニット120は、(a)トランシーバ221と、(b)処理モジュールまたはユニット222と、(c)電源223と、(d)ユーザ通信デバイス124と、(e)プロセッサ225と、(f)メモリ226と、(g)較正モジュール227と、(h)電気コネクタ128とを含み得る。コンピュータユニット120は、トランシーバ221を介して検知デバイス110から出力信号を受信し、出力信号を処理して建造物の電力使用状況に関連する1つまたは複数のパラメータ(例えば、建造物で使用される電力ならびに主要な電力線193、194および195の電流)を決定するよう構成することができる。
いくつかの例では、処理ユニット222をメモリ226に格納し、プロセッサ225上で実行するよう構成することができる。処理ユニット222は、検知デバイス110からの電流測定値を使用して、建造物の電力使用状況に関連する1つまたは複数のパラメータ(例えば、主要な電力線193、194および195の電流ならびに電力)を決定するようさらに構成することができる。コンピュータユニット120を実行すると、メモリ226に格納されたプログラム命令がプロセッサ225によって実行される。メモリ226に格納されたプログラム命令の一部分は、以下で説明されるように、方法2200(図22)の実行および/または処理ユニット222に適切であり得る。
較正モジュール227は、1つまたは複数の較正負荷を含み得る。いくつかの例では、1つまたは複数の較正負荷は、建造物の電力線インフラストラクチャの第1の位相分枝と電気的に結合して、電気コネクタ128を使用して電力モニタリングシステム100を較正する際に役立てることができる。ユーザ通信デバイス124は、ユーザに情報を表示するよう構成することができる。一例では、ユーザ通信デバイス124は、モニタ、タッチスクリーンおよび/または1つもしくは複数のLED(発光ダイオード)であり得る。
電源223は、トランシーバ221、ユーザ通信デバイス124、プロセッサ225およびメモリ226に電力を供給することができる。いくつかの例では、電源223は、電気壁コンセントと結合することができる電気プラグ129を含み得る。
表示デバイス130は、(a)ディスプレイ134、(b)制御メカニズム132、(c)トランシーバ221と通信するよう構成されたトランシーバ231、(d)電源233、および/または、(e)電気コネクタ235を含み得る。いくつかの実施形態では、電気コネクタ235は、電気コネクタ128と結合して、表示デバイス130をコンピュータユニット120と結合するよう構成することができる。
較正デバイス180は、(a)トランシーバ281と、(b)電気コネクタ182と、(c)較正モジュール283と、(d)ユーザ通信デバイス184とを含み得る。いくつかの例では、トランシーバ281は、トランシーバ215、221および/または231と同様でも同じでもよい。いくつかの例では、電気コネクタ182は、電力プラグであり得る。ユーザ通信デバイス184は、ユーザに情報を表示するよう構成することができる。一例では、ユーザ通信デバイス184は、1つまたは複数のLEDであり得る。
較正モジュール283は、1つまたは複数の較正負荷を含み得る。いくつかの例では、1つまたは複数の較正負荷は、建造物の電力線インフラストラクチャの第2の位相分枝と電気的に結合して、電力モニタリングシステム100を較正する際に役立てることができる。すなわち、いくつかの例では、電気コネクタ128は、電力の第1の位相(例えば、主要な電力線193またはL1)と結合された電気壁コンセントと結合され、電気コネクタ182は、電力の第2の位相(例えば、主要な電力線194またはL2)と結合された電気壁コンセントと結合される。これらの例では、主要な電力線195はアース線である。
図9は、一実施形態による、パネル196下に主要な電力線193、194および195を備えた、パネル196の表面198に位置する電力モニタリングシステム900の例示的な磁場センサ911および912を示す。電力モニタリングシステム900は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム900は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム900は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
図9を参照すると、いくつかの例では、電力モニタリングシステム900は、(a)検知デバイス910と、(b)コンピュータユニット120(図1および2)と、(c)表示デバイス130(図1および2)と、(d)較正デバイス180(図1および2)とを含み得る。検知デバイス910は、(a)2つ以上の電流センサまたは磁場センサ911および912と、(b)磁石または磁心961および964と、(c)コントローラ213(図2)と、(d)ユーザ通信モジュール214(図2)と、(e)トランシーバ215(図2)と、(f)電源216(図2)と、(g)結合メカニズム219(図2)とを含み得る。磁心961および964は、磁場センサ911および912の一部として考えることも、磁場センサ911および912と結合することもできる。いくつかの例では、磁心961および964は、電磁石または永久磁石を含み得る。磁心961および964は、表面198に検知デバイス910を結合する際に役立つよう構成することができる。いくつかの例では、磁心961および964のN極およびS極は、各磁心の端部に位置し得る。
多くの例では、磁場センサ911および912は、コイル状の導体(例えば、コイル状のワイヤ)を含み得る。多くの実施形態では、磁場センサ911は、第1の端部752および第1の端部752の反対側に位置する第2の端部753を備えたコイル状の導体751を含み得る。いくつかの例では、コイル状の導体751は、磁心961の周りを第1の方向743(例えば、反時計回り)に巻くことができる。磁場センサ912は、第1の端部755および第1の端部755の反対側に位置する第2の端部756を備えたコイル状の導体754を含み得る。コイル状の導体754は、磁心964の周りを第2の方向744(例えば、時計回り)に巻くことができる。多くの例では、コイル状の導体751の第1の巻き方向743は、コイル状の導体754の第2の巻き方向744の逆であり得る。
いくつかの例では、表面198の少なくとも一部分は、軸740および742に実質的に平行であり得、少なくとも軸740は軸742に実質的に垂直である。同じまたは異なる例では、主要な電力線193、194および195の少なくとも一部分は、軸740に実質的に平行に伸ばすことができる。図9に示される実施形態では、軸741は、軸740および742に実質的に垂直である。すなわち、コイル状の導体751および754は、表面198ならびに主要な電力線193、194および195に実質的に垂直であり得る。その上、磁心961および964の一端は、パネル196の表面198と結合するよう構成することができる。
いくつかの例では、磁心961および964は、磁心961および964近くのパネル196の領域において磁場を飽和させることによって、パネル196とコイル状の導体951および954のリアクタンスを等しくする際に役立てることができる。したがって、主要な電力線193、194および195がとらえるコイル状の導体951および954とパネル196のリアクタンスは、実質的に一定であり、パネル196によって生じた磁場の非線形性は、実質的に解消される。
図10は、一実施形態による、パネル196の表面198に位置する電力モニタリングシステム1000の例示的な磁場センサ1011、1012および1019を示す。電力モニタリングシステム1000は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム1000は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム1000は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
いくつかの例では、電力モニタリングシステム1000は、(a)検知デバイス1010と、(b)コンピュータユニット120(図1および2)と、(c)表示デバイス130(図1および2)と、(d)較正ユニット180(図1および2)とを含み得る。検知デバイス1010は、(a)2つ以上の電流センサまたは磁場センサ1011、1012および1019と、(b)1つまたは複数の磁石または磁心961、964および1069と、(c)コントローラ213(図2)と、(d)ユーザ通信モジュール214(図2)と、(e)トランシーバ215(図2)と、(f)電源216(図2)と、(g)結合メカニズム219(図2)と、(h)1つまたは複数の強磁性カップまたはドーム1066、1067および1068とを含み得る。多くの実施形態では、磁場センサ1011、1012および1019はそれぞれ、コイル状の導体751、754および1059を含み得る。いくつかの例では、コイル状の導体1059は、コイル状の導体751および/または754と同様でも同じでもよい。コイル状の導体751、754および1059はそれぞれ、磁心961、964および1069の周りに巻き付けることができる。さまざまな実施形態では、磁心961、964および1069は、強磁性カップまたはドーム1066、1067および1068と結合することができる。多くの実施形態では、磁心961、964および1069はそれぞれ、コイル状の導体751、754および1059を超えて延在し、強磁性カップまたはドーム1066、1067および1068と結合することができる。
ドーム1066、1067および1068はそれぞれ、コイル状の導体751、754および1059上に位置し得る。すなわち、コイル状の導体751、754および1059はそれぞれ、ドーム1066、1067および1068の内側にあるか、または、ドーム1066、1067および1068によって囲まれる。いくつかの例では、磁心961、964および1069のN極およびS極は、各磁心の端部に位置し得る。ドーム1066、1067および1068は、鋼鉄または別の強磁性材料で製作することができる。
いくつかの例では、磁心961、964および1069はそれぞれ、コイル状の導体951、954および1079近くのパネル196の領域において磁場を飽和させることによって、パネル196とコイル状の導体951、954および1079のリアクタンスを等しくする際に役立てることができる。ドーム1066、1067および1068はそれぞれ、磁心961、964および1069の周りおよび/または下方の領域において磁束線をさらに集束することができる。したがって、主要な電力線193、194および195がとらえるコイル状の導体951、954および1079とパネル196のリアクタンスは、実質的に一定であり、パネル196によって生じた磁場の非線形性は解消される。
その上、ドーム1066、1067および1068の磁場集束効果は、電力モニタリングシステム1000のコストを削減する際に役立てることができる。ドーム1066、1067および1068を使用すると磁場がさらに集束されるため、磁心961、964および1069は、より弱い磁石でもよい。それに応じて、強磁性ドームを備える電力モニタリングシステムは、より少ない磁性材料またはあまりコストのかからない(すなわち、より弱い)磁性材料を使用することができる。
図11は、一実施形態による、パネル196の表面198に位置する電力モニタリングシステム1100の例示的な磁場センサ1111、1112および1119を示す。電力モニタリングシステム1100は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム1100は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム1100は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
電力モニタリングシステム1100は、強磁性ドーム1066、1067および1068をコイル状の導体751、754、および1059を囲む単一の強磁性ドーム1166と置き換えることを除いて、電力モニタリングシステム1000と同様でも同じでもよい。いくつかの例では、それぞれのコイル状の導体上に個々の強磁性ドームを使用する代わりに1つの強磁性ドームを使用することで、電力モニタリングシステムのコストを削減することができる。
図12は、一実施形態による、パネル196の表面198に位置する電力モニタリングシステム1200の例示的な磁場センサ1211を示す。電力モニタリングシステム1200は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム1200は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム1200は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
いくつかの例では、電力モニタリングシステム1200は、(a)検知デバイス1210と、(b)コンピュータユニット120(図1および2)と、(c)表示デバイス130(図1および2)と、(d)較正ユニット180(図1および2)とを含み得る。検知デバイス1210は、(a)少なくとも1つの電流センサまたは磁場センサ1211と、(b)磁石1261と、(c)コントローラ213(図2)と、(d)ユーザ通信モジュール214(図2)と、(e)トランシーバ215(図2)と、(f)電源216(図2)と、(g)結合メカニズム219(図2)とを含み得る。磁石1261は、磁場センサ1211の一部として考えることも、磁場センサ1211と結合することもできる。いくつかの例では、磁石1261は、検知デバイス1210をパネル196と磁気的に結合するよう構成される。
多くの例では、磁場センサ1211は、コイル状の導体(例えば、コイル状のワイヤ)を含み得る。多くの実施形態では、磁場センサ1211は、コイル状の導体751を含み得る。いくつかの例では、コイル状の導体751は、第1の方向743(例えば、反時計回り)に巻くことができる。図12に示される実施形態では、軸741は、軸740および軸742に実質的に垂直である。すなわち、第1の端部752から第2の端部753まで伸びるコイル状の導体751の長さは、表面198ならびに主要な電力線193、194および195に実質的に垂直であり得る。
磁石1261は、第1の側面1248および第1の側面1248の反対側に位置する第2の側面1249を有し得る。第2の側面1249は、パネル196の表面198に隣接してもよい。いくつかの例では、コイル状の導体751の第1の端部752は、磁石1261の第1の側面1248と結合しても、隣接してもよい。第2の端部753は、磁石1261の第1の側面1248から離間することができる。
いくつかの例では、磁石1261は、コイル状の導体751近くのパネル196の領域において磁場を飽和させることによって、主要な電力線193、194および195がとらえるコイル状の導体751とパネル196のリアクタンスを等しくする際に役立てることができる。したがって、主要な電力線193、194および195がとらえるコイル状の導体751とパネル196のリアクタンスは、実質的に一定であり、パネル196によって生じた磁場の非線形性は解消される。
図13は、一実施形態による、主要な電力線を金属パネルで覆った例示的な電気回路遮断器パネルの誘導電圧対導体電流を示すグラフ1300である。すなわち、グラフ1300は、検知デバイス1210と実質的に同様な検知デバイスおよび検知デバイス1210と実質的に同様だが磁石1261なしの検知デバイスの誘導電圧対導体電流を示す。図13に示されるように、検知デバイス1210に磁石1261を使用すると、誘導電圧の線形性は大幅に増加する。
同様に、図14は、一実施形態による、受信信号(電圧に対する)の位相角対位置を示すグラフ1400である。グラフ1400を作成するため、主要な電力線193、194および195に固定電流を設定し、電圧に対する受信信号の位相角を測定しながら検知デバイスを主要な電力線193、194および195に対して約0.6センチメートルの増分で移動させた。グラフ1400は、検知デバイス1210と実質的に同様な検知デバイスおよび検知デバイス1210と実質的に同様だが磁石1261なしの検知デバイスの誘導電圧対位置を示す。図14に示されるように、磁石1261付きの検知デバイス1210を使用すると、位相角は、はるかに鋭い位相角シフトを呈する。位相角がシフトしている領域では、位相角を測定することは難しく、したがって、これらのエリアの電流測定値は、より高いエラー率を有し得る。位相角シフトの鋭度を増大することで、検知デバイス1210が使用可能な結果を提供するエリアを大幅に増加する。
図15および16は、磁石なしの電力モニタリングシステムと比較して、電力モニタリングシステム1200の向上された精度を示す2つの追加テストのシナリオの結果を示す。図15は、一実施形態による、磁石なしでコイル状の導体が垂直に装着された電力モニタリングシステムを使用した結果を示すグラフ1500を示す。図16は、一実施形態による、電力モニタリングシステム1200(すなわち、磁石付きでコイル状の導体が垂直に装着された)を使用した結果を示すグラフ1600を示す。図15および16は、電力モニタリングシステムによって位相電線(L1およびL2)のそれぞれにおいて測定された電流、ならびに、主要な電力線193(すなわち、L1)および主要な電力線195(すなわち、L2)の実際の電流を示す。図15および16に示されるように、電力モニタリングシステムの一部として磁石を使用すると、測定電流の変化量におけるエラーを劇的に減少することができる。図1、9、10、11、17および18の電力モニタリングシステム100、900、1000、1100、1700および1800のテストは、線形性における同様の増加および測定電流のエラーにおける同様の減少を示す。
図17は、一実施形態による、パネル196の表面198に位置する電力モニタリングシステム1700の例示的なコイル状の導体751を示す。電力モニタリングシステム1700は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム1700は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム1700は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
電力モニタリングシステム1700は、電力モニタリングシステム1700がコイル状の導体751上に強磁性ドーム1766を含むことを除いて、電力モニタリングシステム1200と同様でも同じでもよい。いくつかの例では、ドーム1766の端部は磁石1261側に位置する。他の例では、磁石1261もまたドーム1766によって囲まれる。いくつかの例では、電力モニタリングシステム1200にドーム1766を使用すると、コイル状の導体751の周りおよび/または下方の領域において磁束線を集束することができる。
図18は、一実施形態による、パネル196下に主要な電力線193、194および195を備えた、パネル196の表面198に位置する電力モニタリングシステム1800の例示的な磁場センサ1811を示す。電力モニタリングシステム1800は、建造物の電力使用状況をモニタするためのシステムと考えることもできる。電力モニタリングシステム1800は、単なる例示であり、本明細書に提示される実施形態に限定されない。電力モニタリングシステム1800は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。
いくつかの例では、電力モニタリングシステム1800は、(a)検知デバイス1810と、(b)コンピュータユニット120(図1および2)と、(c)表示デバイス130(図1および2)と、(d)較正ユニット180(図1および2)とを含み得る。検知デバイス1810は、(a)少なくとも1つの電流センサまたは磁場センサ1811と、(b)コントローラ213(図2)と、(c)ユーザ通信モジュール214(図2)と、(d)トランシーバ215(図2)と、(e)電源216(図2)と、(f)結合メカニズム219(図2)とを含み得る。
多くの実施形態では、磁場センサ1811は、第1の端部1852および第1の端部1852の反対側に位置する第2の端部1853を備えたコイル状の導体1851を含み得る。図18に示される実施形態では、端部1852から端部1853までのコイル状の導体1851の長さは、軸742に実質的に垂直であり得る。すなわち、コイル状の導体1851は、主要な電力線193、194および195に実質的に垂直であり得、表面198に実質的に平行であり得る。磁場センサを図18に示される構成に配置すると、主要な電力線193、194および195は、パネル196とコイル状の導体951から実質的に一定のリアクタンスをとらえる。
図19は、一実施形態による、磁場センサ1811の、電圧に対する受信信号の位相角対位置を示すグラフ1900である。グラフ1900を作成するため、主要な電力線193、194および195に固定電流を設定し、電圧に対する受信信号の位相角を測定しながらコイル導体1851を主要な電力線193、194および195に対して約0.6センチメートルの増分で移動させた。図19に示されるように、位相角は、約180度離角した2つの異なる位相を有する双安定挙動を呈する。180度の位相シフトは、コイルが主要な電力線195の中心上を通過する際に起こる。したがって、主要な電力線193、194および195がとらえるコイル導体1851とパネル196のリアクタンスは、実質的に一定であり、パネル196によって生じた磁場の非線形性は解消される。
図20は、一実施形態による、建造物の電力使用状況をモニタするためのシステムを提供する方法2000の実施形態のフローチャートを示す。方法2000は、単なる例示であり、本明細書に提示される実施形態に限定されない。方法2000は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。いくつかの実施形態では、方法2000のアクティビティ、手順および/またはプロセスは、提示される順序で実行することができる。他の実施形態では、方法2000のアクティビティ、手順および/またはプロセスは、他の任意の適切な順序で実行することができる。さらなる他の実施形態では、方法2000のアクティビティ、手順および/またはプロセスの1つまたは複数は、組み合わせることも、省略することもできる。
図20を参照すると、方法2000は、検知デバイスを設けるアクティビティ2061を含む。一例として、検知デバイスはそれぞれ、図1、9、10、12および18の検知デバイス110、910、1010、1210および1810と同様でも同一でもよい。
いくつかの例では、検知デバイスは、電気遮断箱のパネルの表面と結合するよう構成することができる。検知デバイスは、電気遮断箱内の1つまたは複数の主要な電力線によって生成された磁場に基づいて出力信号を生成するよう構成することができる。図21は、第1の実施形態による、検知デバイスを設けるアクティビティ2061の実施形態のフローチャートを示す。
図21を参照すると、アクティビティ2061は、1つまたは複数の磁場センサを設ける手順2171を含む。いくつかの例では、磁場センサは、図2の磁場センサ211および212、図9の磁場センサ911および912、図10の磁場センサ1011、1012および1019、図12の磁場センサ1211、ならびに/または、図18の磁場センサ1811と同様でもよい。いくつかの例では、1つまたは複数の磁場センサは、1つまたは複数のコイル状の導体を含み得る。
次に、図21のアクティビティ2061は、1つまたは複数の磁場センサを検知デバイスに装着する手順2172を含む。いくつかの例では、手順2172は、検知デバイスをパネルの表面と結合する際に、1つまたは複数の磁場センサの軸が1つまたは複数の主要な電力線の少なくとも一部分に実質的に垂直となり、パネルの表面に実質的に平行となるように、検知デバイス側に1つまたは複数の磁場センサを装着する工程を含み得る。
他の例では、手順2172は、検知デバイスをパネルの表面と結合する際に、1つまたは複数の磁場センサの軸が1つまたは複数の主要な電力線の少なくとも一部分に実質的に垂直となり、パネルの表面に実質的に垂直となるように、検知デバイス側に1つまたは複数の磁場センサを装着する工程を含み得る。さまざまな例では、検知デバイス側の1つまたは複数の磁場センサは、検知デバイスをパネルの表面と結合する際に、1つまたは複数の磁場センサの軸が磁場センサの真下の1つまたは複数の主要な電力線の一部分に実質的に垂直となり、パネルの表面に実質的に垂直となるように装着される。
図21のアクティビティ2061は、1つまたは複数の磁石を設ける手順2173を引き続き実行する。一例として、1つまたは複数の磁石は、図9の磁心961および964、図10の磁心1069、ならびに/または、図12の磁石1261と同様でもよい。
その後、図21のアクティビティ2061は、1つまたは複数の磁石を1つまたは複数の磁気センサと結合する手順2174を含む。いくつかの例では、1つまたは複数の磁気センサを1つまたは複数の磁石と結合する工程は、磁場センサの1つまたは複数のコイル状の導体を1つまたは複数の磁石の周りに巻き付ける工程を含み得る。例えば、1つまたは複数の磁石の周りに巻き付けることができる磁場センサのコイル状の導体は、図9、10および/または11に示される1つまたは複数の磁石の周りに巻き付けられたコイル状の導体と同様でもよい。
他の実施形態では、1つまたは複数の磁気センサを1つまたは複数の磁石と結合する工程は、磁場センサの一端を1つまたは複数の磁石と結合する工程を含み得る。例えば、磁場センサの一端を1つまたは複数の磁石と結合する工程は、図12および/または13に示される磁場センサの一端を1つまたは複数の磁石と結合する工程と同様でもよい。代替の例では、アクティビティ2061は、手順2173および2174を含まない。
次に、図21のアクティビティ2061は、1つまたは複数の強磁性ドームを設ける手順2175を含む。一例として、1つまたは複数の強磁性ドームは、図10のドーム1066、1067および1068、図11のドーム1166、ならびに/または、図16のドーム1766と同様でもよい。
図21のアクティビティ2061は、1つまたは複数の磁場センサが1つまたは複数のドーム内に位置するように、1つまたは複数の強磁性ドームを装着する手順2176を引き続き実行する。例えば、1つまたは複数のドーム内に位置する1つまたは複数の磁場センサは、図10、11および/または16に示される1つまたは複数のドーム内に位置する1つまたは複数の磁場センサと同様でもよい。代替の例では、アクティビティ2061は、手順2175および2176を含まない。
その後、図21のアクティビティ2061は、検知デバイスの1つまたは複数の追加のコンポーネントを設ける手順2177を含む。いくつかの例では、1つまたは複数の追加のコンポーネントは、コントローラ、電源、トランシーバ、ユーザ通信モジュールおよび/または結合メカニズムを含み得る。手順2174の後、アクティビティ2061が完了する。
図20を再度参照すると、図20の方法2000は、コンピュータデバイスを設けるアクティビティ2062を引き続き実行する。一例として、コンピュータデバイスは、図1および2のコンピュータユニット120と同様でも同一でもよい。いくつかの例では、アクティビティ2062は、単に処理ユニットを設ける工程を代わりに含み得る。一例として、処理ユニットは、図2の処理ユニット222と同様でも同一でもよい。いくつかの例では、処理ユニットは、検知デバイスから出力信号を受信するよう構成することができ、出力信号を処理して建造物の電力使用状況に関連する1つまたは複数のパラメータを決定するようさらに構成することができる。
その後、図20の方法2000は、較正デバイスを設けるアクティビティ2063を含む。一例として、較正デバイスは、図1および2の較正デバイス180と同様でも同一でもよい。
その後、図20の方法2000は、表示デバイスを設けるアクティビティ2064を含む。一例として、較正デバイスは、図1および2の表示デバイス130と同様でも同一でもよい。いくつかの例では、表示デバイスは、コンピュータユニット120の一部であり得る。
検知デバイスの構成を変更することによって磁場の非線形性を緩和する工程に加えて、磁場の非線形性は、電力モニタリングシステムを較正して使用する方法を修正することによって緩和することができる。図22は、建造物の第1の負荷の電力使用状況をモニタするためのシステムを使用する方法2200の実施形態のフローチャートを示す。方法2200は、単なる例示であり、本明細書に提示される実施形態に限定されない。方法2200は、本明細書に具体的に描写も記載もされない多くの異なる実施形態または実施例において使用することができる。いくつかの実施形態では、方法2200のアクティビティ、手順および/またはプロセスは、提示される順序で実行することができる。他の実施形態では、方法2200のアクティビティ、手順および/またはプロセスは、他の任意の適切な順序で実行することができる。さらなる他の実施形態では、方法2200のアクティビティ、手順および/またはプロセスの1つまたは複数は、組み合わせることも、省略することもできる。
図22を参照すると、方法2200は、電力モニタリングシステムを設けるアクティビティ2261を含む。一例として、電力モニタリングシステムはそれぞれ、図1、9、10、11、12、17および18の電力モニタリングシステム100、900、1000、1100、1200、1700および1800と同様でも同一でもよい。
図22の方法2200は、電力モニタリングシステムを較正するアクティビティ2262を引き続き実行する。いくつかの例では、第1の較正は、電力モニタリングシステムを最初に設置または起動する際に実行することができる。いくつかの例では、電力モニタリングシステムのコンピュータデバイスは、建造物の電力システムの第1の位相電線(例えば、L1)に差し込まれ、電力モニタリングシステムの較正デバイスは、建造物の電力システムの第2の位相電線(例えば、L2)に差し込まれる。
いくつかの例では、電力モニタリングシステムを較正する工程は、最初に、検知デバイスのそれぞれの電流センサの第1の電流の第1の振幅および第1の位相を決定する工程を含み得る。その後、コンピュータデバイスの第1の負荷を第1の位相分岐と結合し、検知デバイスのそれぞれの電流センサの第2の電流の第2の振幅および第2の位相を決定する。次に、較正デバイスの第2の既定の負荷を第2の位相分岐と結合し、それぞれの電流センサの第3の電流の第3の振幅および第3の位相を決定する。最後に、第1の振幅、第1の位相、第2の振幅、第2の位相、第3の振幅および第3の位相を少なくとも部分的に使用して、検知デバイスに対する1つまたは複数の較正係数を決定する。
その後、図22の方法2200は、較正データを格納するアクティビティ2263を含む。いくつかの例では、較正データは、較正係数ならびに第1の電流の第1の振幅および第1の位相を含み得る。較正データは、コンピュータデバイスのメモリに格納することができる。
次に、図22の方法2200は、未処理の電流を測定するアクティビティ2264を含む。
図22の方法2200は、未処理の電流が、格納された較正データと既定量だけ異なるかどうか判断するアクティビティ2265を引き続き実行する。電流が、格納された較正データの電流の既定量内であれば、次のアクティビティは、測定電流を計算するアクティビティ2266である。
未処理の電流が第1の電流の既定量(例えば、1パーセント(%)、5%、10%または25%)内でなければ、次のアクティビティは、電力モニタリングシステムを較正するアクティビティ2262である。新しい較正パラメータおよび新しい第1の電流をメモリに格納することができる。したがって、較正データおよび未処理の電流のデータベースを作成することができる。したがって、アクティビティ2265では、未処理の電流を、メモリに格納された較正データのすべてと比較することができる。未処理の電流が格納された較正データの既定量内でなければ、電力モニタリングシステムを再較正することができる。すなわち、電力モニタリングシステムが、以前に測定された電流から電流の大きな変化が生じたことを検出した場合は常に、新しい較正が行われることになる。したがって、磁場の非線形性は、主要な電力線の電流の大きな変化が生じた場合に常に電力モニタリングシステムを再較正することによって緩和することができる。
その後、図22の方法2200は、格納された較正データを使用して測定電流を計算するアクティビティ2266を含む。
その後、方法2200は、測定電流を表示するアクティビティ2267を引き続き実行する。いくつかの例では、測定電流は、表示デバイス130を使用して表示することができる。
本発明は、特定の実施形態を参照して説明されてきたが、当業者であれば、本発明の精神または範囲から逸脱することなくさまざまな変更を行うことができることが理解されよう。それに応じて、本発明の実施形態の開示は、本発明の範囲を例示することを意図し、限定することを意図しない。本発明の範囲は、添付の特許請求の範囲で必要とされる範囲にのみ限定されるものとすることを意図する。例えば、図20のアクティビティ2061、2062、2063、2064、図20の手順2171、2172、2173、2174、2175、2176、2177、および、図22のアクティビティ2261、2262、2263、2264、2265、2266、2267は、多くの異なるアクティビティ、手順からなり、多くの異なる順序で多くの異なるモジュールによって実行できること、図1、2、7、9、10、11、12、17および18のいかなる要素も変更できること、ならびに、これらの実施形態の前述の議論は必ずしもすべての可能な実施形態の完全な説明を表すわけではないことが当業者には容易に明らかであろう。
任意の特定の請求項において請求されるすべての要素が、その特定の請求項において請求される実施形態に不可欠なものである。結果的に、1つまたは複数の請求される要素の交換は、修理ではなく、再構築に相当する。それに加えて、利益、他の利点および問題の解決法については、特定の実施形態に対して説明してきた。しかし、利益、利点、問題の解決法、および、任意の利益、利点もしくは解決法を生じさせ得るまたはより顕著なものにし得る1つまたは複数のいかなる要素も、そのような利益、利点、解決法または要素がそのような請求項で記載されていない限り、請求項のいずれかまたはすべての重要な、必要なまたは必須の特徴または要素として解釈すべきではない。
その上、本明細書で開示される実施形態および限定事項は、それらの実施形態および/または限定事項が、(1)請求項内で明示的に請求されていない場合、ならびに、(2)均等論の下で請求項内の明確な要素および/もしくは限定事項と均等であるまたは潜在的に均等である場合、奉仕の原則の下で公に捧げられるものではない。
100 電力モニタリングシステム
110 検知デバイス
120 コンピュータユニット
128 電気コネクタ
130 表示デバイス
180 較正デバイス
190 電気遮断器パネル
192 回路遮断器
193,194,195 電力線
196 パネル
211,212 磁場センサ

Claims (20)

  1. 建造物による電力使用状況をモニタするためのシステムにおいて、前記建造物は、前記建造物内の第1の負荷に電力を供給する2つ以上の主要な電力線を有し、前記2つ以上の主要な電力線の一部分は、第1の軸に実質的に平行に伸び、前記建造物は、前記2つ以上の主要な電力線の少なくとも一部の上方に位置するパネルをさらに有し、前記システムは、
    前記2つ以上の主要な電力線の少なくとも一部の上方にある前記パネルの表面の一部分と結合するように構成される電流センサユニットを含み、前記電流センサユニットは、
    少なくとも2つの磁場センサを備え、各磁場センサが第2の軸に実質的に平行な長さを有し、前記第2の軸は前記第1の軸に実質的に垂直であり、前記少なくとも2つの磁場センサは前記2つ以上の主要な電力線によって生成される磁場を検出するために構成される、少なくとも2つの磁場センサ、および
    プロセッサ上で実行するために構成される処理ユニット、を備え、
    前記電流センサユニットは、前記少なくとも2つの磁場センサによって検出される前記磁場に基づいて出力信号を生成するために構成され、
    前記処理ユニットは、前記電流センサユニットから前記出力信号を受信し、前記出力信号を処理して前記建造物内の前記第1の負荷による前記電力使用状況に関連する1つまたは複数のパラメータを決定するためにさらに構成され、
    前記少なくとも2つの磁場センサは、
    前記少なくとも2つの磁場センサの長さに沿う第1の中心軸を備え、前記第1の中心軸の周りに巻き付けられた第1の導体を含む第1の磁場センサ、および
    前記少なくとも2つの磁場センサの長さに沿う第2の中心軸を備え、前記第2の中心軸の周りに巻き付けられた第2の導体を含む第2の磁場センサ、からなる、
    ことを特徴とするシステム。
  2. 前記第2の軸は、前記パネルの前記表面の前記一部分に実質的に垂直であり、
    前記パネルの前記表面の前記一部分の少なくとも一部は、前記2つ以上の主要な電力線の前記一部を覆う、
    ことを特徴とする請求項1記載のシステム。
  3. 前記第2の軸は、前記パネルの前記表面の前記一部分に実質的に平行であり、
    前記パネルの前記表面の前記一部分の少なくとも一部は、前記2つ以上の主要な電力線の前記一部を覆う、
    ことを特徴とする請求項1記載のシステム。
  4. 前記第1の磁場センサは、第1の方向に第1の磁心の周りに巻き付けられる前記第1の導体を備える前記第1の磁心を含み、
    前記第2の磁場センサは、第2の方向に第2の磁心の周りに巻き付けられる前記第2の導体を備える前記第2の磁心を含み、
    前記第2の方向は前記第1の方向とは逆である、
    ことを特徴とする請求項1〜3のいずれか一項記載のシステム。
  5. 前記電流センサユニットは、少なくとも1つの磁石をさらに備えることを特徴とする請求項1〜4のいずれか一項記載のシステム。
  6. 前記少なくとも2つの磁場センサのそれぞれは、第1の端部および前記第1の端部の反対側に位置する第2の端部を有し、
    前記少なくとも2つの磁場センサのそれぞれの長さは、前記第1の端部から前記第2の端部まで延在し、
    前記少なくとも2つの磁場センサのそれぞれの前記第1の端部は、前記少なくとも1つの磁石に隣接し、
    前記少なくとも1つの磁石は、前記パネルに隣接するように構成され、
    前記第2の軸は、前記パネルの前記表面の前記一部に実質的に垂直である、
    ことを特徴とする請求項5記載のシステム。
  7. 前記電流センサユニットは、前記少なくとも2つの磁場センサの上方に少なくとも1つの強磁性ドームをさらに備えることを特徴とする請求項6記載のシステム。
  8. 前記第1の磁場センサは、前記少なくとも1つの磁石の周りに巻き付けられる前記第1の導体を含むことを特徴とする請求項5または6記載のシステム。
  9. 前記建造物内の前記第1の負荷による前記電力使用状況に関連する前記1つまたは複数のパラメータは、前記建造物内の前記第1の負荷によって使用される前記電力を含み、
    前記第1の負荷は、前記2つ以上の分岐の電力線と結合される2つ以上の電気デバイスを含む、
    ことを特徴とする請求項1〜8のいずれか一項記載のシステム。
  10. 建造物の2つ以上の主要な電力線の電流を測定するための装置において、前記建造物は、遮断箱を有し、前記遮断箱は、前記2つ以上の主要な電力線の少なくとも第1の部分、および、前記2つ以上の主要な電力線の前記第1の部分の上方の金属パネルを備え、前記装置は、
    前記2つ以上の主要な電力線の前記第1の部分の上方にある前記金属パネルの表面の一部分に結合されるように構成される検知デバイスであって、
    2つ以上の電流測定値を提供するために構成される2つ以上の電流センサ、および
    前記2つ以上の電流センサの異なる1つとそれぞれが結合される2つ以上の磁石、からなる検知デバイスと、
    コンピュータユニット上で実行するために構成され、前記2つ以上の電流測定値を使用して前記2つ以上の主要な電力線の前記電流を決定するために構成される処理モジュールと、を備え、
    前記2つ以上の電流センサのそれぞれは、
    第1の側面、および
    前記第1の側面の反対側に位置する第2の側面、を備え、
    第1の軸は、前記2つ以上の電流センサのそれぞれの前記第1の側面から前記第2の側面まで延在し、
    前記第1の軸のそれぞれは、前記2つ以上の主要な電力線の前記第1の部分の長さの一部分に垂直である、
    ことを特徴とする装置。
  11. 前記2つ以上の電流センサのそれぞれの前記第1の側面は、前記2つ以上の磁石と結合され、
    前記2つ以上の電流センサのそれぞれの前記第2の側面は、前記2つ以上の磁石から離間される、
    ことを特徴とする請求項10記載の装置。
  12. 前記2つ以上の電流センサは、
    前記2つ以上の磁石の第1の磁石の周りに巻かれる第1の導体と、
    前記2つ以上の磁石の第2の磁石の周りに巻かれる第2の導体と、
    を備えることを特徴とする請求項10,11のいずれか一項記載の装置。
  13. 少なくとも1つの強磁性カップをさらに含み、
    前記2つ以上の電流センサは、前記少なくとも1つの強磁性カップによって囲まれる、
    ことを特徴とする請求項10〜12のいずれか一項記載の装置。
  14. 第1の強磁性カップ、および
    第2の強磁性カップをさらに含み、
    前記2つ以上の電流センサは、
    前記2つ以上の磁石の第1の磁石の周りに巻かれた第1の導体、および
    前記2つ以上の磁石の第2の磁石の周りに巻かれた第2の導体、を備え、
    前記第1の導体および前記2つ以上の磁石の前記第1の磁石は、前記第1の強磁性カップ内にあり、
    前記第2の導体および前記2つ以上の磁石の前記第2の磁石は、前記第2の強磁性カップ内にある、
    ことを特徴とする請求項10,11のいずれか一項記載の装置。
  15. 建造物の電力使用状況をモニタするためのシステムを提供するための方法であって、前記建造物は、前記建造物内の第1の負荷に電力を供給する2つ以上の主要な電力線を有し、前記2つ以上の主要な電力線は、少なくとも部分的に、第1の軸に実質的に平行に伸び、前記建造物は、前記2つ以上の主要な電力線の少なくとも一部の上部にあるパネルをさらに有し、前記方法は、
    前記2つ以上の主要な電力線の少なくとも一部の上部にあるパネルの表面の領域に結合されるように構成される電流センサユニットを設ける工程であって、前記電流センサユニットは、前記2つ以上の主要な電力線によって生成される磁場に基づいて出力信号を生成するために構成される、工程と、
    前記電流センサユニットから前記出力信号を受信するために構成され、前記出力信号を処理して前記建造物の前記電力使用状況に関連する1つまたは複数のパラメータを決定するためにさらに構成される処理ユニットを設ける工程と、を含み、
    前記電流センサユニットを設ける工程は、
    それらの各中心軸に沿う長さを備える少なくとも2つの磁場センサを設ける工程であって、前記少なくとも2つの磁場センサは、前記2つ以上の主要な電力線によって生成される前記磁場を検出するために構成される、工程、および、
    前記電流センサユニットを前記パネルの前記表面の領域と結合する際に、前記少なくとも2つの磁場センサの前記中心軸が前記第1の軸に実質的に垂直となるように前記電流センサユニット側に前記少なくとも2つの磁場センサを装着する工程、
    を含むことを特徴とする方法。
  16. 前記少なくとも2つの磁場センサを装着する工程は、
    前記電流センサユニットを前記パネルの前記表面と結合する際に、前記少なくとも2つの磁場センサの前記中心軸が前記第1の軸に実質的に垂直となり、前記パネルの前記表面の前記領域に実質的に垂直となるように、前記電流センサユニット側に前記少なくとも2つの磁場センサを装着する工程をさらに含む、
    ことを特徴とする請求項15記載の方法。
  17. 前記少なくとも2つの磁場センサを装着する工程は、
    前記電流センサユニットを前記パネルの前記表面と結合する際に、前記少なくとも2つの磁場センサの前記中心軸が前記第1の軸に実質的に垂直となり、前記パネルの前記表面の前記領域に実質的に平行となるように、前記電流センサユニット側に前記少なくとも2つの磁場センサを装着する工程をさらに含む、
    ことを特徴とする請求項15記載の方法。
  18. 前記少なくとも2つの磁場センサを設ける工程は、
    第1の端部および前記第1の端部の反対側に位置する第2の端部を備える前記少なくとも2つの磁場センサのそれぞれを設ける工程をさらに含み、前記磁場センサの前記中心軸は、前記第1の端部から前記第2の端部まで延在し、
    前記電流センサユニットを設ける工程は、
    前記少なくとも2つの磁場センサの第1の端部と結合される少なくとも1つの磁石を設ける工程を含む、
    ことを特徴とする請求項15〜17のいずれか一項記載の方法。
  19. 1つまたは複数の強磁性カップを設ける工程と、
    前記少なくとも2つの磁場センサが前記1つまたは複数の強磁性カップ内に位置するために、前記1つまたは複数の強磁性カップを装着する工程と、
    をさらに含むことを特徴とする請求項15〜18のいずれか一項記載の方法。
  20. 前記少なくとも2つの磁場センサを設ける工程は、
    1つまたは複数の導体を備える前記少なくとも2つの磁場センサを設ける工程と、
    前記1つまたは複数の導体を1つまたは複数の磁石の周りに巻き付ける工程と、
    をさらに含むことを特徴とする請求項15〜17のいずれか一項記載の方法。
JP2016042220A 2010-07-02 2016-03-04 建造物の電力使用状況をモニタするためのシステムおよびその方法 Expired - Fee Related JP6154504B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US36129610P 2010-07-02 2010-07-02
US61/361,296 2010-07-02
US38017410P 2010-09-03 2010-09-03
US61/380,174 2010-09-03

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2013518777A Division JP2013531802A (ja) 2010-07-02 2011-07-01 建造物の電力使用状況をモニタするためのシステムおよびその方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017109076A Division JP6505774B2 (ja) 2010-07-02 2017-06-01 建造物の電力使用状況をモニタする方法

Publications (2)

Publication Number Publication Date
JP2016153793A true JP2016153793A (ja) 2016-08-25
JP6154504B2 JP6154504B2 (ja) 2017-06-28

Family

ID=45402689

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2013518777A Pending JP2013531802A (ja) 2010-07-02 2011-07-01 建造物の電力使用状況をモニタするためのシステムおよびその方法
JP2013518776A Expired - Fee Related JP5881695B2 (ja) 2010-07-02 2011-07-01 構造物内の電力使用状況を測定するためのシステムおよび方法と、その較正を行うシステムおよび方法
JP2016017922A Expired - Fee Related JP6152437B2 (ja) 2010-07-02 2016-02-02 構造物内の電力使用状況を測定するためのシステムおよび方法と、その較正を行うシステムおよび方法
JP2016042220A Expired - Fee Related JP6154504B2 (ja) 2010-07-02 2016-03-04 建造物の電力使用状況をモニタするためのシステムおよびその方法
JP2017109076A Expired - Fee Related JP6505774B2 (ja) 2010-07-02 2017-06-01 建造物の電力使用状況をモニタする方法

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2013518777A Pending JP2013531802A (ja) 2010-07-02 2011-07-01 建造物の電力使用状況をモニタするためのシステムおよびその方法
JP2013518776A Expired - Fee Related JP5881695B2 (ja) 2010-07-02 2011-07-01 構造物内の電力使用状況を測定するためのシステムおよび方法と、その較正を行うシステムおよび方法
JP2016017922A Expired - Fee Related JP6152437B2 (ja) 2010-07-02 2016-02-02 構造物内の電力使用状況を測定するためのシステムおよび方法と、その較正を行うシステムおよび方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2017109076A Expired - Fee Related JP6505774B2 (ja) 2010-07-02 2017-06-01 建造物の電力使用状況をモニタする方法

Country Status (13)

Country Link
US (5) US8972211B2 (ja)
EP (2) EP2591372A4 (ja)
JP (5) JP2013531802A (ja)
KR (3) KR101505754B1 (ja)
CN (3) CN106093554B (ja)
AU (2) AU2011274387B2 (ja)
BR (2) BR112013000048B1 (ja)
CA (4) CA3035892C (ja)
EA (4) EA030921B1 (ja)
HK (1) HK1182177A1 (ja)
MX (4) MX338368B (ja)
NZ (3) NZ605408A (ja)
WO (2) WO2012003494A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616277A (zh) * 2022-01-10 2023-01-17 荣耀终端有限公司 监测电路及监测系统

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8094034B2 (en) 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
GB0816721D0 (en) 2008-09-13 2008-10-22 Daniel Simon R Systems,devices and methods for electricity provision,usage monitoring,analysis and enabling improvements in efficiency
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
CA3035892C (en) 2010-07-02 2021-06-29 Belkin International, Inc. Systems and methods for measuring electrical power usage in a structure and systems and methods of calibrating the same
WO2012003426A2 (en) 2010-07-02 2012-01-05 Reynolds Brett S Apparatus for calibrated non-invasive measurement of electrical current
US8738195B2 (en) * 2010-09-21 2014-05-27 Intel Corporation Inferencing energy usage from voltage droop
US8718964B2 (en) 2011-04-01 2014-05-06 Wilsun Xu Method and system for calibrating current sensors
US9256908B2 (en) * 2011-08-19 2016-02-09 International Business Machines Corporation Utility consumption disaggregation using low sample rate smart meters
CA2861414A1 (en) * 2012-01-19 2013-07-25 Awesense Wireless Inc. System and method for linear measurement of ac waveforms with low voltage non-linear sensors in high voltage environments
FR2987680B1 (fr) * 2012-03-05 2014-03-14 Smartfuture Procede de mesure de courant dans un reseau electrique
US20130271895A1 (en) * 2012-04-12 2013-10-17 Hampden Kuhns User installable branch circuit meter
US8907658B2 (en) * 2012-04-19 2014-12-09 Kohler, Inc. System and method of measuring power produced by a power source
US8442792B1 (en) * 2012-10-26 2013-05-14 Elbex Video Ltd. Method and apparatus for calibrating intelligent AC outlets
US10083255B2 (en) * 2012-12-14 2018-09-25 Honeywell International Inc. Equipment fault detection, diagnostics and disaggregation system
US20140210460A1 (en) * 2013-01-30 2014-07-31 Hampden Kuhns Contactless electric meter reading devices
US9329659B2 (en) * 2013-02-06 2016-05-03 Veris Industries, Llc Power monitoring system that determines frequency and phase relationships
US9291656B2 (en) * 2013-02-13 2016-03-22 Merck Sharp & Dohme Corp. Device for calibrating and verifying the integrity of resistivity-based sensing probes
US9869705B2 (en) * 2013-03-15 2018-01-16 Insight Energy Ventures Llc Magnetometer sampling to determine an electric power parameter
KR101458983B1 (ko) * 2013-04-29 2014-11-10 코원에너지서비스 주식회사 정류기 디지털 원격 감시제어회로
US9244116B2 (en) * 2013-05-10 2016-01-26 Alarm.Com Incorporated Indirect electrical appliance power consumption monitoring and management
US9857414B1 (en) 2013-05-10 2018-01-02 Alarm.Com Incorporated Monitoring and fault detection of electrical appliances for ambient intelligence
KR101319449B1 (ko) * 2013-05-28 2013-10-16 (주) 에코센스 무선 라우팅 역할을 수행하는 무정전 전력 측정장치
FR3007143B1 (fr) * 2013-06-17 2015-07-17 Schneider Electric Ind Sas Systeme de calcul d'une grandeur electrique, poste de transformation comprenant un tel systeme et procede de calcul d'une grandeur electrique avec un tel systeme
US20150008911A1 (en) * 2013-07-05 2015-01-08 Alan Majer Apparatus for sensing current from electrical appliances
US10707038B2 (en) * 2013-09-06 2020-07-07 Texas Instruments Incorporated System and method for energy monitoring
CN103592484B (zh) * 2013-11-04 2016-04-20 江苏林洋能源股份有限公司 一种用于防强磁铁对电子式电能表产生误差影响的防窃电方法
US8698426B1 (en) 2013-11-06 2014-04-15 Neilsen-Kuljian, Inc. Self-powered current sensing switch with digital setpoint
CN103630862A (zh) * 2013-11-19 2014-03-12 中国西电电气股份有限公司 磁场抗扰度试验的非标准方形线圈及校准方法和校准系统
US9784774B2 (en) * 2014-01-06 2017-10-10 The Nielsen Company (Us), Llc Methods and apparatus to determine an operational status of a device
US10401401B2 (en) 2014-03-31 2019-09-03 Panoramic Power Ltd. System and methods thereof for monitoring of energy consumption cycles
SG11201609023SA (en) * 2014-04-30 2016-11-29 Illinois At Singapore Pte Ltd An electric meter, an electric meter system and a method of providing branch-level readings for a power distribution network
JP6458375B2 (ja) * 2014-07-03 2019-01-30 日産自動車株式会社 インピーダンス測定装置
CA2961194A1 (en) * 2014-09-12 2016-03-17 Belkin International, Inc. Self-calibrating contactless power consumption sensing
WO2016081657A1 (en) * 2014-11-21 2016-05-26 The Regents Of The University Of California Non-contact electricity meters
US9995815B2 (en) 2014-12-30 2018-06-12 Energybox Ltd. Energy metering system and method for its calibration
US10467354B2 (en) 2014-12-30 2019-11-05 Energybox Ltd. Visualization of electrical loads
US9658264B2 (en) 2014-12-30 2017-05-23 Energybox Ltd. Energy metering system with self-powered sensors
CA2977978A1 (en) 2015-02-26 2016-09-01 Potential Labs, Llc Determining energy usage of a residence based on current monitoring
GB2538087B (en) * 2015-05-06 2019-03-06 Torro Ventures Ltd Analysing a power circuit
CN104950281B (zh) * 2015-07-03 2017-12-19 朗亿德电气股份有限公司 高压电能表修正盒、高压电能幅值修正检测系统及方法
AU2016326708A1 (en) * 2015-09-24 2018-04-19 Earth Networks, Inc. Remote sensing to derive calibrated power measurements
US20180321350A1 (en) * 2015-09-24 2018-11-08 Whisker Labs, Inc. Remote sensing to derive calibrated power measurements
US10802059B2 (en) * 2016-03-11 2020-10-13 Dius Computing Pty Ltd Power sensor and method for determining power use of an associated appliance
AU2017329013B2 (en) * 2016-09-19 2021-09-09 Panduit Corp. Voltage indicator display module
KR20180041276A (ko) * 2016-10-13 2018-04-24 주식회사 에스앤에이 도전 방지용 홀 센서를 내장한 전력 계측 장치 및 그 도전 방지 방법
CN108120920A (zh) * 2016-11-28 2018-06-05 中车大同电力机车有限公司 一种机车主断路器性能检测装置
WO2018142502A1 (ja) * 2017-02-01 2018-08-09 東京電力ホールディングス株式会社 センサー保持装置及びセンサー保持システム
CN106872759B (zh) * 2017-02-24 2019-04-05 广东顺德工业设计研究院(广东顺德创新设计研究院) 电流路径检测装置以及电流路径检测方法
US10557873B2 (en) * 2017-07-19 2020-02-11 Allegro Microsystems, Llc Systems and methods for closed loop current sensing
US10514399B1 (en) 2017-08-08 2019-12-24 II Donald P. Orofino Measurement of alternating electric current via electromagnetic dynamic sensor measurements
US11016047B2 (en) * 2017-08-25 2021-05-25 3M Innovative Properties Company Temperature-corrected control data for verifying of structural integrity of materials
US10502807B2 (en) * 2017-09-05 2019-12-10 Fluke Corporation Calibration system for voltage measurement devices
US11016129B1 (en) * 2017-10-20 2021-05-25 Alarm.Com Incorporated Voltage event tracking and classification
TWI635289B (zh) 2017-11-17 2018-09-11 財團法人工業技術研究院 電力功耗感測方法及感測裝置
WO2019099963A1 (en) * 2017-11-18 2019-05-23 Christopher Dunbar End user controlled load management system
US10879698B2 (en) * 2017-11-30 2020-12-29 Abb Schweiz Ag Systems and methods for performing building power management
KR102009578B1 (ko) * 2017-12-27 2019-08-09 (주) 씨에스엠 전기히터 제어용 하나 이상의 부하에 대한 측정 검출 방법
US10466277B1 (en) 2018-02-01 2019-11-05 John Brooks Scaled and precise power conductor and current monitoring
KR102535063B1 (ko) * 2018-04-06 2023-05-22 엘지전자 주식회사 전열 기기를 판별하여 안전 서비스를 제공하는 장치 및 클라우드 서버
CN109061524B (zh) * 2018-09-25 2021-09-17 湖南国科微电子股份有限公司 电源测试电路及方法
JP2020095029A (ja) * 2018-12-12 2020-06-18 メレキシス テクノロジーズ エス エーMelexis Technologies SA 電流センサ
KR20210094113A (ko) * 2018-12-17 2021-07-28 엑슬런트 에너지 테크놀로지스, 엘엘씨 센서 기반 에너지 관리 인클로저 및 센서 데이터에 기초한 분산 에너지 자원 관리
CN113544528A (zh) * 2019-03-13 2021-10-22 日本电产理德股份有限公司 检测值修正系统、系数计算方法以及检测值修正方法
US10983178B2 (en) * 2019-05-17 2021-04-20 Honeywell International Inc. Active sensor circuitry
EP4038397A4 (en) * 2019-10-03 2023-11-08 Selec Controls Private Limited MEASURING DEVICE AND METHOD FOR CORRECTING MEASUREMENTS PROVIDED THEREFROM
CA3175057A1 (en) * 2020-02-06 2021-08-12 Aclara Technologies Llc Magnetic field detection and interaction
CN115398249A (zh) * 2020-03-10 2022-11-25 伊顿智能动力有限公司 多个电负载的配电装置中的电力使用
CN113884755A (zh) * 2020-07-03 2022-01-04 绿铜科技公司 用于设置传感器系统的系统及方法
KR102439182B1 (ko) * 2022-02-21 2022-09-01 주식회사 한국이알이시 전기화재 초기 소화장치가 구비된 배전반(고압반, 저압반, 전동기제어반, 분전반)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212780A (ja) * 1989-02-13 1990-08-23 Nippondenso Co Ltd センサ信号の処理装置
JPH0450786A (ja) * 1990-06-19 1992-02-19 Fujitsu Ltd 磁界検出用ピックアップコイル
JPH09130961A (ja) * 1995-10-31 1997-05-16 Kyushu Electric Power Co Inc 電力線監視方法および装置
US20030216877A1 (en) * 2002-05-17 2003-11-20 Culler Mark Frederick Method and system for measuring current
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
JP2004219365A (ja) * 2003-01-17 2004-08-05 Osaki Electric Co Ltd 電流信号検出器

Family Cites Families (237)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3714516A (en) 1972-01-26 1973-01-30 P Howe Meter socket voltage recorder unit
US4012734A (en) 1974-12-23 1977-03-15 American Science & Engineering, Inc. Synchronous power communicating
US4612617A (en) 1983-03-02 1986-09-16 Siemens-Allis, Inc. Method and apparatus for monitoring instantaneous electrical parameters of a power distribution system
IN161314B (ja) 1984-09-25 1987-11-07 Oscar Vila Masot
US4667186A (en) 1985-03-13 1987-05-19 Raychem Corporation Phase difference fault detector
US4638417A (en) 1985-08-16 1987-01-20 Sperry Corporation Power density spectrum controller
US4804957A (en) 1985-11-27 1989-02-14 Triad Communications, Inc. Utility meter and submetering system
US4858141A (en) 1986-04-14 1989-08-15 Massachusetts Institute Of Technology Non-intrusive appliance monitor apparatus
US4716409A (en) 1986-07-16 1987-12-29 Homestead Products, Inc. Electrical appliance control system
GB8623435D0 (en) * 1986-09-30 1986-11-05 Squire P T Magnetic field sensor
JPH01190506A (ja) * 1988-01-26 1989-07-31 Takeshi Ikeda 自動車のタイヤの空気圧低下検知装置
DE3905060A1 (de) 1989-02-18 1990-08-23 Diehl Gmbh & Co Einrichtung zum beruehrungslosen messen eines gleichstroms
FR2645968B1 (fr) 1989-04-18 1991-07-26 Electricite De France Procede et appareil d'analyse de signaux de courant et de tension en vue du reperage de charges a usage domestique
CH678231A5 (ja) 1989-08-01 1991-08-15 Landis & Gyr Betriebs Ag
JPH0437397A (ja) 1990-06-01 1992-02-07 Pioneer Electron Corp 遠隔制御システム
JPH05509409A (ja) 1990-06-21 1993-12-22 レイノルズ ソフトウエア,インコーポレイティド 波動分析・事象認識方法およびその装置
JPH04296663A (ja) * 1991-03-27 1992-10-21 Osaka Gas Co Ltd 電流測定装置
JPH04324372A (ja) 1991-04-25 1992-11-13 Hitachi Ltd 生活パターン分析報知システム
US5229753A (en) 1991-06-10 1993-07-20 Berg Richard P Warning device for a washing apparatus which advises whether its contents are clean or soiled
FR2680875B1 (fr) 1991-08-27 1995-05-05 Geneve Services Ind Procede pour identifier des charges consommatrices d'energie electrique d'un circuit sous surveillance.
US5177560A (en) 1991-11-06 1993-01-05 Hewlett-Packard Company Optical spectrum analyzer having adjustable sensitivity
US5268666A (en) 1991-12-23 1993-12-07 At&T Bell Laboratories Appliance control system providing out-of-context usage
US5467011A (en) * 1992-05-06 1995-11-14 National Rural Electric Cooperative Assn. System for detection of the phase of an electrical signal on an alternating circuit power line
JPH0662512A (ja) * 1992-08-04 1994-03-04 Matsushita Electric Works Ltd 盤ボックス
US8078431B2 (en) 1992-11-17 2011-12-13 Health Hero Network, Inc. Home power management system
BR9405758A (pt) 1993-02-12 1995-11-28 Ekstroem Ind Inc Aparelho para medição de consumo de energia elétrica aparelho leitor de energia elétrica remota processo para medir fornecimento de energia elétrica processo para calcular energia elétrica consumida e aparelho para medição remota
JPH0712976U (ja) * 1993-05-31 1995-03-03 日新電機株式会社 電流測定装置
JP3413875B2 (ja) 1993-06-18 2003-06-09 石川島播磨重工業株式会社 圧力容器
US5441070A (en) 1993-11-10 1995-08-15 Thompson; Gary E. Fluid management system
US5483838A (en) 1993-12-29 1996-01-16 Holden; Edward S. Fluid flow connector and gauge assembly
US5635895A (en) 1994-02-14 1997-06-03 Murr; William C. Remote power cost display system
US5483153A (en) 1994-03-24 1996-01-09 Massachusetts Institute Of Technology Transient event detector for use in nonintrusive load monitoring systems
US5717325A (en) 1994-03-24 1998-02-10 Massachusetts Institute Of Technology Multiprocessing transient event detector for use in a nonintrusive electrical load monitoring system
US5409037A (en) 1994-06-06 1995-04-25 Wheeler; Jaye F. Automatic device for the detection and shutoff of excess water flow in pipes
US5495168A (en) 1994-09-12 1996-02-27 Fluke Corporation Method of signal analysis employing histograms to establish stable, scaled displays in oscilloscopes
US5534663A (en) * 1994-11-14 1996-07-09 The United States Of America As Represented By The United States Department Of Energy Electrically shielded enclosure with magnetically retained removable cover
US5600310A (en) 1994-12-02 1997-02-04 General Electric Company Serial bus control for appliances
KR100198229B1 (ko) * 1994-12-24 1999-06-15 유채준 원격제어 및 감시가 가능한 전력수급용 복합계기
US6263290B1 (en) 1995-02-22 2001-07-17 Michael K. Williams Process and machine for signal waveform analysis
US5650771A (en) 1995-04-25 1997-07-22 Lee; Chung-Cheng Electrical socket with monitoring unit for monitoring operating conditions
US6018203A (en) * 1995-05-22 2000-01-25 Target Hi-Tech Electronics Ltd. Apparatus for and method of evenly distributing an electrical load across an n-phase power distribution network
US5808846A (en) 1995-07-11 1998-09-15 Veris Industries, Inc. Combination current sensor and relay
US5714687A (en) 1995-10-31 1998-02-03 Dunegan; Harold L. Transducer for measuring acoustic emission events
US5699276A (en) 1995-12-15 1997-12-16 Roos; Charles E. Utility meter providing an interface between a digital network and home electronics
US6173613B1 (en) 1996-04-30 2001-01-16 Harold L. Dunegan Measuring crack growth by acoustic emission
US5880677A (en) 1996-10-15 1999-03-09 Lestician; Guy J. System for monitoring and controlling electrical consumption, including transceiver communicator control apparatus and alternating current control apparatus
JPH10153625A (ja) * 1996-11-20 1998-06-09 Daikin Ind Ltd カレントトランスを用いた入力電流検出回路
KR19980069423A (ko) 1997-02-28 1998-10-26 이대원 주파수특성을 이용한 전기설비 고장진단장치 및 그 방법
US5898387A (en) 1997-03-26 1999-04-27 Scientific-Atlanta, Inc. Modular meter based utility gateway enclosure
JPH10282161A (ja) 1997-04-09 1998-10-23 Matsushita Electric Ind Co Ltd 消費電力監視システム
EP0874244B1 (de) * 1997-04-19 2002-01-30 LUST ANTRIEBSTECHNIK GmbH Verfahren zum Messen von elektrischen Strömen in n Leitern sowie Vorrichtung zur Durchführung des Verfahrens
US6275168B1 (en) 1997-05-23 2001-08-14 Siemens Power Transmission And Distribution, Llc Expansion module for modular meter
JP3813330B2 (ja) * 1997-09-29 2006-08-23 日置電機株式会社 測定ケーブル
ITTO980134A1 (it) 1998-02-20 1999-08-20 Merloni Elettrodomestici Spa Sistema, dispositivo e metodo per il monitoraggio di una pluralita' di utenze elettriche, in particolare elettrodomestici, connesse in rete
US6728646B2 (en) 1998-02-23 2004-04-27 Enerwise Global Technologies, Inc. Energy information system and sub-measurement board for use therewith
US6094043A (en) * 1998-04-15 2000-07-25 Square D Company ARC detection sensor utilizing discrete inductors
US20030112370A1 (en) 2001-12-18 2003-06-19 Chris Long Adaptive expanded information capacity for communications systems
US6147484A (en) 1998-07-08 2000-11-14 Smith; Richard T. Device for measuring power using switchable impedance
DE19903404A1 (de) 1999-01-29 2000-08-03 Roemheld A Gmbh & Co Kg Hydraulikaggregat
JP2000258482A (ja) 1999-03-08 2000-09-22 Toshiba Corp 周波数検査装置
US6614211B1 (en) * 1999-04-01 2003-09-02 Santronics, Inc. Non-contact detector for sensing a periodically varying magnetic field
US6771078B1 (en) * 1999-04-12 2004-08-03 Chk Wireless Technologies Australia Pty. Ltd. Apparatus and method for fault detection on conductors
US20010003286A1 (en) 1999-07-14 2001-06-14 Jay E. Philippbar Flood control device
US6734806B1 (en) 1999-07-15 2004-05-11 Cratsley, Iii Charles W. Method and system for signaling utility usage
GB9918539D0 (en) 1999-08-06 1999-10-06 Sentec Ltd Planar current transformer
US7133729B1 (en) 1999-08-17 2006-11-07 Microsoft Corporation Pattern-and model-based power line monitoring
JP2001103622A (ja) * 1999-09-28 2001-04-13 Osaki Electric Co Ltd 宅内電気エネルギ計測システム
JP2001153895A (ja) * 1999-11-24 2001-06-08 Makome Kenkyusho:Kk 電流センサ
JP2001161009A (ja) * 1999-11-30 2001-06-12 Omron Corp 電力計測器の設置方法および住宅用分電盤
IT1314341B1 (it) * 1999-12-29 2002-12-09 Abb Ricerca Spa Dispositivo di misura di corrente per interruttori di potenza di bassatensione
JP4314710B2 (ja) 2000-01-17 2009-08-19 オムロンヘルスケア株式会社 動脈硬化評価装置
JP3955706B2 (ja) * 2000-02-02 2007-08-08 三菱電機株式会社 通電情報計測装置付き回路遮断器およびその補正方法
US6947854B2 (en) 2000-02-29 2005-09-20 Quadlogic Controls Corporation System and method for on-line monitoring and billing of power consumption
FR2806806B1 (fr) 2000-03-22 2002-11-29 Conseil En Technologies Innova Procede de mesure de la consommation electrique d'un element connecte a un reseau de distribution d'electricite
US6330516B1 (en) 2000-03-27 2001-12-11 Power Distribution, Inc. Branch circuit monitor
US6873144B2 (en) * 2000-04-07 2005-03-29 Landis+Gyr Inc. Electronic meter having random access memory with passive nonvolatility
ES2290121T3 (es) 2000-04-12 2008-02-16 Central Res Inst Elect Sistema y metodo para estimar el consumo de energia de un aparato electrico y sistema de alarma para anomalias utilizando dichos sistema y metodo.
US6420969B1 (en) 2000-05-10 2002-07-16 Kirk Campbell Appliance alarm system
US7330796B2 (en) 2000-06-05 2008-02-12 Aqua Conserve, Inc. Methods and apparatus for using water use signatures and water pressure in improving water use efficiency
US6320968B1 (en) 2000-06-28 2001-11-20 Esion-Tech, Llc Adaptive noise rejection system and method
US6906617B1 (en) 2000-11-17 2005-06-14 Koninklijke Philips Electronics N.V. Intelligent appliance home network
US6418083B1 (en) 2001-01-12 2002-07-09 The United States Of America As Represented By The Secretary Of The Navy Phase fluctuation based signal processor
US6842706B1 (en) 2001-01-17 2005-01-11 Smart Disaster Response Technologies, Inc. Methods, apparatus, media, and signals for managing utility usage
JP3904404B2 (ja) * 2001-04-06 2007-04-11 アイホン株式会社 住宅監視システム
AUPR441401A0 (en) * 2001-04-12 2001-05-17 Gladwin, Paul Utility usage rate monitor
US6622097B2 (en) 2001-06-28 2003-09-16 Robert R. Hunter Method and apparatus for reading and controlling electric power consumption
WO2003017724A2 (en) * 2001-08-09 2003-02-27 Astropower, Inc. Power and/or energy monitor, method of using, and display device
US6993417B2 (en) 2001-09-10 2006-01-31 Osann Jr Robert System for energy sensing analysis and feedback
US6892144B2 (en) * 2001-09-25 2005-05-10 Landis+Gyr, Inc. Arrangement for providing sensor calibration information in a modular utility meter
JP2003111215A (ja) * 2001-09-27 2003-04-11 Nitto Electric Works Ltd 分電盤
US7106048B1 (en) 2001-10-26 2006-09-12 Schweitzer Engineering Laboratories, Inc. Fault indicator with auto-configuration for overhead or underground application
US20030088527A1 (en) 2001-11-06 2003-05-08 General Electric Company Methods and systems for monitoring water usage
US6910025B2 (en) 2001-11-20 2005-06-21 Freescale Semiconductor, Inc. Modeling behavior of an electrical circuit
US6678209B1 (en) 2001-11-21 2004-01-13 Luc Peng Apparatus and method for detecting sonar signals in a noisy environment
CA2366731A1 (en) * 2001-11-30 2003-05-30 Veris Industries, Llc Power monitoring system
US6860288B2 (en) 2001-12-21 2005-03-01 Kenneth J. Uhler System and method for monitoring and controlling utility systems
AU2003237796A1 (en) 2002-01-24 2003-09-02 Matsushita Electric Industrial Co., Ltd. Method of and system for power line carrier communications
US6984978B2 (en) * 2002-02-11 2006-01-10 Honeywell International Inc. Magnetic field sensor
US6839644B1 (en) 2002-04-01 2005-01-04 The Texas A&M University System Plumbing supply monitoring, modeling and sizing system and method
US7049976B2 (en) 2002-04-15 2006-05-23 Hunt Power, L.P. User-installable power consumption monitoring system
US7019666B2 (en) 2002-06-10 2006-03-28 Tantalus Systems Corp. Adapter for a meter
US7271575B2 (en) 2002-08-07 2007-09-18 Tektronix, Inc. Oscilloscope based return loss analyzer
ITBG20020027A1 (it) 2002-09-12 2004-03-13 Abb Service Srl Dispositivo per la misura di correnti e relativo metodo
US6781359B2 (en) 2002-09-20 2004-08-24 Allegro Microsystems, Inc. Integrated current sensor
US6766835B1 (en) 2002-09-23 2004-07-27 Raoul G. Fima Tank monitor system
US20040128034A1 (en) 2002-12-11 2004-07-01 Lenker Jay A. Method and apparatus for water flow sensing and control
US20040206405A1 (en) 2003-01-17 2004-10-21 Smith Lee Anthony Residential water management system (RWMS)
US8634993B2 (en) 2003-03-20 2014-01-21 Agjunction Llc GNSS based control for dispensing material from vehicle
JP4019989B2 (ja) 2003-03-26 2007-12-12 株式会社デンソー 半導体装置
KR100503215B1 (ko) 2003-04-04 2005-07-25 서효성 전력용 설비의 이상신호 진단시스템
US7417558B2 (en) * 2003-05-12 2008-08-26 Power Measurement Ltd. Wireless communications system incorporating intelligent electronic devices
US7728461B1 (en) 2003-06-03 2010-06-01 Cypress Semiconductor Corporation System for noise reduction in circuits
US20040251897A1 (en) * 2003-06-16 2004-12-16 Danmag Aps Fluxgate magnetometer with rotating core
US7043380B2 (en) 2003-09-16 2006-05-09 Rodenberg Iii Ernest Adolph Programmable electricity consumption monitoring system and method
WO2005033718A1 (en) * 2003-10-01 2005-04-14 Eaton Corporation Integrated anti-differential current sensing system
JP2005147755A (ja) * 2003-11-12 2005-06-09 Mitsubishi Electric Corp 電流検出装置
JP2005195427A (ja) * 2004-01-06 2005-07-21 Asahi Kasei Electronics Co Ltd 電流測定装置、電流測定方法および電流測定プログラム
US7174260B2 (en) 2004-04-01 2007-02-06 Blue Line Innovations Inc. System and method for reading power meters
JP2005304148A (ja) * 2004-04-09 2005-10-27 Hitachi Industrial Equipment Systems Co Ltd 絶縁監視システム
US7463362B2 (en) 2004-04-13 2008-12-09 The Trustees Of Columbia University In The City Of New York Digital signal processor-based detection system, method, and apparatus for optical tomography
US7460930B1 (en) 2004-05-14 2008-12-02 Admmicro Properties, Llc Energy management system and method to monitor and control multiple sub-loads
JP4380420B2 (ja) * 2004-06-03 2009-12-09 富士電機ホールディングス株式会社 電力量計
JP4381913B2 (ja) 2004-07-23 2009-12-09 本田技研工業株式会社 燃料タンク装置
JP4392511B2 (ja) 2004-08-26 2010-01-06 住友金属工業株式会社 鉄道車両用空気ばね高さ調整機構及び空気ばね高さ調整機構の制御方法
US7292045B2 (en) 2004-09-04 2007-11-06 Applied Materials, Inc. Detection and suppression of electrical arcing
US7190561B2 (en) * 2004-09-09 2007-03-13 Sensata Technologies, Inc. Apparatus for detecting arc faults
EP1795864A4 (en) 2004-09-29 2011-11-02 Amosense Co Ltd MAGNETIC SENSOR CONTROL METHOD, MAGNETIC SENSOR CONTROL MODULE, AND PORTABLE TERMINAL DEVICE
JP4423157B2 (ja) 2004-10-06 2010-03-03 キヤノン株式会社 電力線通信装置およびその制御方法
US7305310B2 (en) * 2004-10-18 2007-12-04 Electro Industries/Gauge Tech. System and method for compensating for potential and current transformers in energy meters
US7996171B2 (en) * 2005-01-27 2011-08-09 Electro Industries/Gauge Tech Intelligent electronic device with broad-range high accuracy
US7276915B1 (en) 2005-02-01 2007-10-02 Sprint Communications Company L.P. Electrical service monitoring system
GB0503079D0 (en) 2005-02-15 2005-03-23 Oxley Dev Co Ltd Usage monitoring apparatus
CN102497219B (zh) 2005-03-16 2014-09-10 美国亚德诺半导体公司 用于电力线通信的系统和方法
US7265664B2 (en) 2005-04-04 2007-09-04 Current Technologies, Llc Power line communications system and method
EP1872105A4 (en) 2005-04-08 2013-12-04 H20Flo Llc SYSTEM AND METHOD FOR MONITORING, RECORDING AND INVOICING AN INDIVIDUAL HEALTH APPARATUS AND WATER UTILIZATION UNIT IN A MULTI-UNIT STRUCTURE
US7078996B1 (en) 2005-05-20 2006-07-18 Ambient Corporation Inductive coupler for power line communications
US7511229B2 (en) 2005-06-02 2009-03-31 Liebert Corporation Sensor module, system, and method for sensors in proximity to circuit breakers
US20070014369A1 (en) 2005-07-12 2007-01-18 John Santhoff Ultra-wideband communications system and method
US7706928B1 (en) 2005-09-07 2010-04-27 Admmicro Properties, Llc Energy management system with security system interface
WO2007033169A2 (en) * 2005-09-12 2007-03-22 Siemens Energy & Automation, Inc. Panel layout for an integrated power distribution system
US8374696B2 (en) 2005-09-14 2013-02-12 University Of Florida Research Foundation, Inc. Closed-loop micro-control system for predicting and preventing epileptic seizures
JP4483760B2 (ja) * 2005-10-12 2010-06-16 株式会社デンソー 電流センサ
JP4571570B2 (ja) * 2005-10-14 2010-10-27 株式会社日立ハイテクノロジーズ 磁気検出コイルおよび磁場計測装置
US7554320B2 (en) 2005-10-28 2009-06-30 Electro Industries/Gauge Tech. Intelligent electronic device for providing broadband internet access
JP4972098B2 (ja) * 2005-11-28 2012-07-11 グルノ、ラディスラフ 可撓性精密電流検出器
US8013613B2 (en) 2005-12-08 2011-09-06 Grace Engineered Products, Inc. Voltage indicator test mechanism
US7365665B2 (en) 2005-12-30 2008-04-29 Bookham Technology Plc Photodiode digitizer with fast gain switching
US20070230094A1 (en) 2006-04-04 2007-10-04 Carlson Curt S Integrated, self-contained power distribution system
US7760343B2 (en) 2006-04-05 2010-07-20 Photonic Systems, Inc. Method and apparatus for determining frequency-dependent Vπ of a Mach-Zehnder optical modulator
JP4682914B2 (ja) 2006-05-17 2011-05-11 ソニー株式会社 情報処理装置および方法、プログラム、並びに記録媒体
US7885917B2 (en) 2006-05-26 2011-02-08 Board Of Regents Of The Nevada System Of Higher Education, On Behalf Of The Desert Research Institute Utility monitoring and disaggregation systems and methods of use
US8494762B2 (en) 2006-06-28 2013-07-23 Georgia Tech Research Corporation Sub room level indoor location system using wideband power line positioning
US8392107B2 (en) 2006-06-28 2013-03-05 Georgia Tech Research Corporation Sub-room-level indoor location system using power line positioning
US8140414B2 (en) 2006-06-29 2012-03-20 Carina Technology, Inc. System and method for controlling a utility meter
US7692555B2 (en) 2006-08-04 2010-04-06 Harman International Industries, Incorporated Powering a wireless system from preexisting power
US20090043520A1 (en) 2006-08-10 2009-02-12 V2Green, Inc. User Interface and User Control in a Power Aggregation System for Distributed Electric Resources
US20080042636A1 (en) * 2006-08-18 2008-02-21 General Electric Company System and method for current sensing
WO2008028144A2 (en) 2006-09-01 2008-03-06 Power Monitors, Inc. Method and apparatus for a power line communications test system
US7546214B2 (en) 2006-09-28 2009-06-09 General Electric Company System for power sub-metering
US7493221B2 (en) 2006-09-28 2009-02-17 General Electric Company System for power sub-metering
US7804280B2 (en) 2006-11-02 2010-09-28 Current Technologies, Llc Method and system for providing power factor correction in a power distribution system
US7795877B2 (en) 2006-11-02 2010-09-14 Current Technologies, Llc Power line communication and power distribution parameter measurement system and method
JP4873709B2 (ja) * 2006-11-08 2012-02-08 浜松光電株式会社 電流センサ
US7747357B2 (en) 2006-11-13 2010-06-29 Lutron Electronics Co., Inc. Method of communicating a command for load shedding of a load control system
US8411896B2 (en) 2006-12-21 2013-04-02 Cypress Envirosystems, Inc. Gauge reading device and system
CN104282086A (zh) 2007-01-09 2015-01-14 功率监视器公司 用于智能电路断路器的方法和设备
JP2008196950A (ja) * 2007-02-13 2008-08-28 Toyota Industries Corp 三相用電機部品
US7541941B2 (en) 2007-03-16 2009-06-02 Greenbox Technology Inc. System and method for monitoring and estimating energy resource consumption
US7493220B2 (en) 2007-03-22 2009-02-17 Commtest Instruments Limited Method and system for vibration signal processing
US7705484B2 (en) 2007-04-10 2010-04-27 Whirlpool Corporation Energy management system and method
US9501803B2 (en) 2007-04-12 2016-11-22 Siemens Industry, Inc. Devices, systems, and methods for monitoring energy systems
US8664564B2 (en) 2007-05-04 2014-03-04 Illinois Tool Works Inc. Controlled harmonics power supply for welding-type system
US8450995B2 (en) 2007-06-01 2013-05-28 Powerkuff, Llc Method and apparatus for monitoring power consumption
US7755347B1 (en) * 2007-06-12 2010-07-13 Geist Manufacturing Inc. Current and voltage measurement device
US7589942B2 (en) 2007-06-15 2009-09-15 General Electric Company MEMS based motor starter with motor failure detection
US7612971B2 (en) 2007-06-15 2009-11-03 General Electric Company Micro-electromechanical system based switching in heating-ventilation-air-conditioning systems
KR100911179B1 (ko) * 2007-06-27 2009-08-06 전자부품연구원 메쉬 센서 네트워크를 이용한 실시간 전기 사용량 모니터링시스템
EP2165159B1 (en) 2007-07-03 2013-07-17 Nxp B.V. Calibration of an amr sensor
CN101765985A (zh) 2007-07-09 2010-06-30 赛米泰克创新有限公司 通信方法和设备
DE102007032053A1 (de) 2007-07-10 2009-01-15 Abröll, Andreas Vorrichtung und Verfahren zur Regulierung des Stromverbrauchs eines elektrischen Geräts
TW200907360A (en) 2007-07-19 2009-02-16 Koninkl Philips Electronics Nv Energy consumption measurement
US7693670B2 (en) 2007-08-14 2010-04-06 General Electric Company Cognitive electric power meter
US8311757B2 (en) 2007-08-14 2012-11-13 American Gnc Corporation Miniaturized smart self-calibration electronic pointing method and system
US7702421B2 (en) 2007-08-27 2010-04-20 Honeywell International Inc. Remote HVAC control with building floor plan tool
CA2609629A1 (en) 2007-09-10 2009-03-10 Veris Industries, Llc Current switch with automatic calibration
US8094034B2 (en) 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
WO2009040140A1 (de) 2007-09-21 2009-04-02 Siemens Aktiengesellschaft Dezentrales energienetz und verfahren zur verteilung von energie in einem dezentralen energienetz
EP2194874A4 (en) 2007-09-21 2015-05-13 Nat Res Council Canada METHOD AND APPARATUS FOR PERIODONTAL DIAGNOSIS
US7622911B2 (en) 2007-10-18 2009-11-24 Intellimeter Canada, Inc. Electrical power metering device and method of operation thereof
US8682497B2 (en) 2007-11-12 2014-03-25 Util Labs (Pty) Ltd. Method of demand side electrical load management and an associated apparatus and system
JP4687704B2 (ja) 2007-11-20 2011-05-25 株式会社デンソー 車両用電源装置
US8065099B2 (en) 2007-12-20 2011-11-22 Tollgrade Communications, Inc. Power distribution monitoring system and method
WO2009086348A1 (en) 2007-12-26 2009-07-09 Elster Electricity, Llc. Mechanical packaging apparatus and methods for an electrical energy meter
EP2227700A2 (en) 2007-12-26 2010-09-15 Greenlet Technologies Ltd. Reducing power consumption in a network by detecting electrical signatures of appliances
GB0803140D0 (en) 2008-02-21 2008-03-26 Sentec Ltd Technique for inference of multiple appliances' power use from single point measurements
US8054071B2 (en) 2008-03-06 2011-11-08 Allegro Microsystems, Inc. Two-terminal linear sensor
CN101562074A (zh) * 2008-04-16 2009-10-21 邹长江 螺圈式电流互感器
GB2460872B (en) 2008-06-13 2010-11-24 Alertme Com Ltd Power consumption feedback systems
GB2464927B (en) 2008-10-28 2010-12-01 Isis Innovation Apparatus and method for metering the use of electricity
GB2464634B (en) 2008-07-17 2010-12-01 Isis Innovation Utility meter
CA2729960A1 (en) 2008-07-17 2010-01-21 Isis Innovation Limited Utility metering
GB2465367B (en) 2008-11-13 2011-01-05 Isis Innovation Variable power load detector apparatus and method
US8463452B2 (en) 2008-07-29 2013-06-11 Enmetric Systems, Inc. Apparatus using time-based electrical characteristics to identify an electrical appliance
KR101000443B1 (ko) 2008-09-18 2010-12-13 한국전력공사 계량 오차를 최소화하기 위한 방법 및 전자식 전력량계
US20100070218A1 (en) 2008-09-18 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for identifying appliances by electrical characteristics
US20100070214A1 (en) 2008-09-18 2010-03-18 Searete Llc, A Limited Liability Corporation Of The State Of Delaware System and method for identifying appliances by electrical characteristics
CN201210170Y (zh) 2008-09-28 2009-03-18 张宝宏 多功能电网检修综合测试仪
DE102008050753A1 (de) * 2008-10-07 2010-04-08 Siemens Aktiengesellschaft Verfahren zum Erfassen einer physikalischen Größe durch einen Leistungsschalter
JP2010112936A (ja) * 2008-11-10 2010-05-20 Daido Steel Co Ltd 電流センサ、磁気検出方法
WO2010062398A1 (en) 2008-11-26 2010-06-03 Maloney Michael A Power distribution controller and related systems and methods
GB2465800A (en) 2008-12-01 2010-06-02 Joyce Foster Utility Consumption Apparatus
US8482290B2 (en) 2009-02-27 2013-07-09 Makad Energy, Llc System for intelligent automated response to line frequency and voltage disturbances by a central control point communication with a plurality of load control devices
US8018095B2 (en) 2009-04-16 2011-09-13 International Business Machines Corporation Power conversion, control, and distribution system
JP4428470B1 (ja) 2009-06-08 2010-03-10 東洋インキ製造株式会社 偏光板及び偏光板形成用接着剤組成物
US8289737B2 (en) 2009-08-11 2012-10-16 Astec International Limited Bridgeless boost PFC circuits and systems with reduced common mode EMI
US20110050218A1 (en) * 2009-08-28 2011-03-03 Lohss Kurt L non-contact magnetic current sensing and distribution system for determining individual power readings from a plurality of power sources
AU2010295351A1 (en) 2009-09-21 2012-05-03 Rutgers, The State University Of New Jersey System and method for measuring consumption in a residential or commercial building via a wall socket
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
US8930152B2 (en) * 2009-09-25 2015-01-06 University Of Washington Whole structure contactless power consumption sensing
RU2402023C1 (ru) 2009-09-28 2010-10-20 Государственное образовательное учреждение высшего профессионального образования "Российская таможенная академия" Устройство для контроля потребления электроэнергии
US8676521B2 (en) 2009-10-26 2014-03-18 Fluke Corporation System and method for handling wide dynamic range signals encountered in vibration analysis using a logarithmic amplifier
US8344724B2 (en) * 2009-11-06 2013-01-01 Massachusetts Institute Of Technology Non-intrusive monitoring of power and other parameters
US20110112780A1 (en) 2009-11-06 2011-05-12 David Moss Electrical power consumption measuring system
EP3076545B1 (en) 2010-02-10 2020-12-16 Goodix Technology (HK) Company Limited System and method for adapting a loudspeaker signal
WO2011104661A1 (en) 2010-02-25 2011-09-01 Koninklijke Philips Electronics N.V. Monitoring of operational status of appliances
KR101666226B1 (ko) 2010-03-08 2016-10-13 엘에스산전 주식회사 전력량 검출장치
JP2011223360A (ja) 2010-04-09 2011-11-04 Sony Corp 送信装置、受信装置、制御方法、及び通信システム
EA033063B1 (ru) 2010-04-26 2019-08-30 Белкин Интернэшнл, Инк. Устройство регистрации электрического события и способ регистрации и классификации потребления электроэнергии
WO2012003426A2 (en) 2010-07-02 2012-01-05 Reynolds Brett S Apparatus for calibrated non-invasive measurement of electrical current
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
CA3035892C (en) 2010-07-02 2021-06-29 Belkin International, Inc. Systems and methods for measuring electrical power usage in a structure and systems and methods of calibrating the same
CA2804012A1 (en) 2010-08-10 2012-02-16 Sensus Usa Inc. Electric utility meter comprising load identifying data processor
US8738195B2 (en) 2010-09-21 2014-05-27 Intel Corporation Inferencing energy usage from voltage droop
CN102201738B (zh) 2011-05-18 2014-12-31 上海新进半导体制造有限公司 一种电源转换器的噪音控制电路和方法
US9130393B2 (en) 2011-09-26 2015-09-08 Belkin International, Inc. Systems and methods to isolate lower amplitude signals for analysis in the presence of large amplitude transients
KR101318982B1 (ko) 2013-05-10 2013-10-16 (주) 에코센스 다양한 규격의 전력 공급선에 대한 전력을 측정하는 카트리지 방식의 무정전 전력 측정장치
CA2961194A1 (en) 2014-09-12 2016-03-17 Belkin International, Inc. Self-calibrating contactless power consumption sensing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02212780A (ja) * 1989-02-13 1990-08-23 Nippondenso Co Ltd センサ信号の処理装置
JPH0450786A (ja) * 1990-06-19 1992-02-19 Fujitsu Ltd 磁界検出用ピックアップコイル
JPH09130961A (ja) * 1995-10-31 1997-05-16 Kyushu Electric Power Co Inc 電力線監視方法および装置
US20030216877A1 (en) * 2002-05-17 2003-11-20 Culler Mark Frederick Method and system for measuring current
JP2004132790A (ja) * 2002-10-09 2004-04-30 Fuji Electric Holdings Co Ltd 電流センサ
JP2004219365A (ja) * 2003-01-17 2004-08-05 Osaki Electric Co Ltd 電流信号検出器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115616277A (zh) * 2022-01-10 2023-01-17 荣耀终端有限公司 监测电路及监测系统
CN115616277B (zh) * 2022-01-10 2023-09-22 荣耀终端有限公司 监测电路及监测系统

Also Published As

Publication number Publication date
MX339946B (es) 2016-06-17
CA2804109C (en) 2020-07-28
EA201891365A3 (ru) 2019-03-29
WO2012003494A3 (en) 2012-02-23
EA201370009A1 (ru) 2013-06-28
WO2012003494A2 (en) 2012-01-05
CN103038649B (zh) 2016-08-10
WO2012003492A2 (en) 2012-01-05
CA2804106C (en) 2019-04-23
BR112013000048B1 (pt) 2020-09-24
EP2591372A2 (en) 2013-05-15
EP2591372A4 (en) 2017-12-06
EA201370011A1 (ru) 2013-06-28
CN103038650B (zh) 2015-09-09
BR112013000048A2 (pt) 2017-10-31
EA035040B1 (ru) 2020-04-21
HK1182177A1 (zh) 2013-11-22
CN103038650A (zh) 2013-04-10
CA2804109A1 (en) 2012-01-05
NZ605433A (en) 2015-01-30
AU2011274387B2 (en) 2015-08-06
CN103038649A (zh) 2013-04-10
US20150168464A1 (en) 2015-06-18
JP5881695B2 (ja) 2016-03-09
MX338368B (es) 2016-04-13
EP2588870A4 (en) 2017-12-06
KR20140133953A (ko) 2014-11-20
KR101505754B1 (ko) 2015-03-24
US8972211B2 (en) 2015-03-03
US10459012B2 (en) 2019-10-29
NZ605408A (en) 2015-02-27
BR112013000049A2 (pt) 2017-10-31
JP6154504B2 (ja) 2017-06-28
JP2016128825A (ja) 2016-07-14
WO2012003492A3 (en) 2012-03-29
AU2011274385B2 (en) 2015-02-12
JP6152437B2 (ja) 2017-06-21
EA201790486A1 (ru) 2017-07-31
CN106093554A (zh) 2016-11-09
US9594098B2 (en) 2017-03-14
CA3035892A1 (en) 2012-01-05
NZ704116A (en) 2016-04-29
BR112013000049B1 (pt) 2020-10-27
US20120072143A1 (en) 2012-03-22
AU2011274385A1 (en) 2013-01-24
KR101507663B1 (ko) 2015-03-31
CA3035892C (en) 2021-06-29
US20140347039A1 (en) 2014-11-27
CN106093554B (zh) 2020-03-10
KR20130025962A (ko) 2013-03-12
EP2588870A2 (en) 2013-05-08
EA030921B1 (ru) 2018-10-31
EP2588870B1 (en) 2021-10-20
KR20130025441A (ko) 2013-03-11
EA201891365A2 (ru) 2018-11-30
US20120068692A1 (en) 2012-03-22
MX2013000238A (es) 2013-12-02
JP2013531247A (ja) 2013-08-01
AU2011274387A1 (en) 2013-01-24
US8805628B2 (en) 2014-08-12
JP2013531802A (ja) 2013-08-08
EA027503B1 (ru) 2017-08-31
EA033426B1 (ru) 2019-10-31
MX2013000239A (es) 2013-12-02
KR101753459B1 (ko) 2017-07-03
JP2017191106A (ja) 2017-10-19
CA2804106A1 (en) 2012-01-05
CA3083437A1 (en) 2012-01-05
US20180252751A1 (en) 2018-09-06
JP6505774B2 (ja) 2019-04-24

Similar Documents

Publication Publication Date Title
JP6154504B2 (ja) 建造物の電力使用状況をモニタするためのシステムおよびその方法
US20200052482A1 (en) Communication enabled circuit breakers
US20120259565A1 (en) Alternating current power measuring apparatus
JP6136015B2 (ja) 分電盤システム、エネルギ管理システム、分電盤、配線用遮断器、およびアダプタ
US20080125988A1 (en) Current measuring device and method
JP2010204068A (ja) 絶縁入力型計測機器
CN105842545A (zh) 三维全向电磁场探头及电磁检测设备
KR20130135444A (ko) 변류기와 측정모듈이 장착된 배선용차단기 및 이를 이용한 전기안전관리 시스템
AU2017206242B2 (en) System for monitoring electrical power usage of a structure and method of same
KR101621632B1 (ko) 전기기기의 상태감시장치
CN105242093B (zh) 电子式电流互感器
JP6968629B2 (ja) 分電盤
CN213986656U (zh) 一种隔离器自动调试机
JP2011226804A (ja) 電流検出プローブ、電流測定装置及び電流検出デバイス
CN104466591A (zh) 一种智能插座校准方法及装置
Shin Bluetooth Low-Energy Current Sensor Compensated Using Piecewise Linear Model
CN205982483U (zh) 二次回路接线检查系统
KR101699404B1 (ko) 복수의 홀센서를 이용한 전류 측정 장치
JP2019068668A (ja) 分電盤
JP2014106194A (ja) 電流計測装置
JP2011033463A (ja) 電力計測ユニット

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20161205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170112

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170601

R150 Certificate of patent or registration of utility model

Ref document number: 6154504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees