JP4314710B2 - 動脈硬化評価装置 - Google Patents

動脈硬化評価装置 Download PDF

Info

Publication number
JP4314710B2
JP4314710B2 JP2000007682A JP2000007682A JP4314710B2 JP 4314710 B2 JP4314710 B2 JP 4314710B2 JP 2000007682 A JP2000007682 A JP 2000007682A JP 2000007682 A JP2000007682 A JP 2000007682A JP 4314710 B2 JP4314710 B2 JP 4314710B2
Authority
JP
Japan
Prior art keywords
pulse wave
velocity information
wave velocity
pressure
normal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000007682A
Other languages
English (en)
Other versions
JP2001190506A (ja
Inventor
敏彦 小椋
孝 本田
清幸 成松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Healthcare Co Ltd
Original Assignee
Omron Healthcare Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Healthcare Co Ltd filed Critical Omron Healthcare Co Ltd
Priority to JP2000007682A priority Critical patent/JP4314710B2/ja
Publication of JP2001190506A publication Critical patent/JP2001190506A/ja
Application granted granted Critical
Publication of JP4314710B2 publication Critical patent/JP4314710B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、生体の動脈内を伝播する脈波の伝播速度に関連する脈波伝播速度情報、たとえば脈波伝播速度或いは脈波伝播時間に基づいて、生体の動脈硬化を評価する動脈硬化評価装置に関するものである。
【0002】
【従来の技術】
心不全の経過観察や動脈硬化の診断のために、しばしば脈波伝播速度情報が測定される。動脈硬化度が脈波伝播速度情報に影響を与える因子だからである。この脈波伝播速度情報は血圧値にも影響されるので、脈波伝播速度情報に基づいて動脈硬化を評価する動脈硬化評価装置は、通常、血圧を測定する血圧測定装置を備え、80mmHg等の所定の血圧値における脈波伝播速度情報に換算した補正脈波伝播速度情報が決定される。ここで、血圧値に対する脈波伝播速度情報の関係は複雑であることから、血圧値と脈波伝播速度情報との関係を示す実験値を模式化した関係(たとえば一次式)に基づいて補正脈波伝播速度情報が決定される。しかし、脈波伝播速度情報は年齢にも依存することから、年齢と脈波伝播速度情報との二次元図表内において、予め表示された基準脈波伝播速度情報を示す基準線と実際に測定された脈波伝播速度情報とが対比されることにより動脈硬化の診断が行なわれ、投薬の効果や、運動療法の効果が判断される。
【0003】
【発明が解決しようとする課題】
しかし、上記のように二次元図表内において表示された実測値と基準線との対比は、慣れない者にとっては不明確であるため、脈波伝播速度情報がどの程度の値であれば動脈の硬さが正常であるのかを判断することは困難であり、動脈硬化度を定量的に或いは絶対的に評価することが困難であり、経時的変化(相対的変化)を評価するに留まっていた。
【0004】
本発明は以上のような事情を背景として為されたものであり、その目的とするところは、動脈硬化を容易に評価可能な動脈硬化評価装置を提供することにある。
【0005】
【課題を解決するための第1の手段】
上記目的を達成するための第1発明の要旨とするところは、生体の動脈の硬さを評価する動脈硬化評価装置であって、(a) 前記生体の血圧値を測定する血圧測定手段と、(b) 血圧値および年齢と正常脈波伝播速度情報との間の予め設定された正常脈波伝播速度情報算出式を用い、前記生体の実際の年齢および前記血圧測定手段により実際に測定される血圧値に基づいて、前記生体が正常であるとした場合にその生体内を脈波が伝播する脈波伝播速度に関連する正常脈波伝播速度情報を算出する正常脈波伝播速度情報算出手段と、(c) 前記生体の所定部位に装着されて第1心拍同期波を検出する第1心拍同期波センサと、(d) その第1心拍同期波センサとは異なる部位に装着されて第2心拍同期波を検出する第2心拍同期波センサと、(e) 前記第1心拍同期波センサにより第1心拍同期波の周期毎に発生する所定部位が検出された時間と、前記第2心拍同期波センサにより第2心拍同期波の周期毎に発生する所定部位が検出された時間との時間差から、実際に測定された脈波に基づく実脈波伝播速度情報を算出する実脈波伝播速度情報算出手段と、(f) 前記正常脈波伝播速度情報算出手段により算出された正常脈波伝播速度情報と、前記実脈波伝播速度情報算出手段により算出された実脈波伝播速度情報との比較に基づいて前記生体の動脈硬化指数を算出する動脈硬化指数算出手段とを、含むことにある。
【0006】
【第1発明の効果】
このようにすれば、正常脈波伝播速度情報算出手段により、生体の実際の年齢と血圧測定手段によって測定された実際の血圧値とに基づいて、生体が正常であるとした場合にその年齢およびその血圧値における正常脈波伝播速度情報が算出され、実脈波伝播速度情報算出手段により、実際に測定された脈波に基づいて実脈波伝播速度情報が算出され、動脈硬化指数算出手段により、その正常脈波伝播速度情報と実脈波伝播速度情報との比較に基づいて前記生体の動脈硬化指数が算出される。実脈波伝播速度情報算出手段により、実際に測定された脈波に基づいて算出される実脈波伝播速度情報は、その生体について動脈硬化が進んでいるほど正常脈波伝播速度情報算出手段により算出される正常脈波伝播速度情報から離れた値となるので、正常脈波伝播速度情報と実脈波伝播速度情報との比較に基づいて算出される動脈硬化指数により、慣れない人であっても、動脈硬化を容易に評価することができる。
【0007】
【第1発明の他の態様】
ここで、好適には、前記動脈硬化評価装置は、前記動脈硬化指数算出手段により算出された動脈硬化指数を一次元グラフ上に表示させる動脈硬化指数表示手段をさらに含むものである。このようにすれば、二次元図表において実際に測定された脈波伝播速度情報と基準線とを対比するよりも、容易に動脈硬化を評価することができる。
【0008】
【課題を解決するための第2の手段】
上記目的を達成するための第2発明の要旨とするところは、生体の動脈の硬さを評価する動脈硬化評価装置であって、(a) 前記生体の血圧値を測定する血圧測定手段と、(b) 血圧値および年齢と正常脈波伝播速度情報との間の予め設定された正常脈波伝播速度情報算出式を用い、前記生体の実際の年齢および前記血圧測定手段により実際に測定される血圧値に基づいて、前記生体が正常であるとした場合にその生体内を脈波が伝播する脈波伝播速度に関連する正常脈波伝播速度情報を算出する正常脈波伝播速度情報算出手段と、(c) 前記生体の所定部位に装着されて第1心拍同期波を検出する第1心拍同期波センサと、(d) その第1心拍同期波センサとは異なる部位に装着されて第2心拍同期波を検出する第2心拍同期波センサと、(e) 前記第1心拍同期波センサにより第1心拍同期波の周期毎に発生する所定部位が検出された時間と、前記第2心拍同期波センサにより第2心拍同期波の周期毎に発生する所定部位が検出された時間との時間差から、実際に測定された脈波に基づく実脈波伝播速度情報を算出する実脈波伝播速度情報算出手段と、(f) 前記正常脈波伝播速度情報算出手段により算出された正常脈波伝播速度情報と、前記実脈波伝播速度情報算出手段により算出された実脈波伝播速度情報とを、一次元グラフ上に比較可能に表示する比較表示手段とを、含むことにある。
【0009】
【第2発明の効果】
このようにすれば、正常脈波伝播速度情報算出手段により、生体の実際の年齢と血圧測定手段によって測定された実際の血圧値とに基づいて、生体が正常であるとした場合にその年齢およびその血圧値における正常脈波伝播速度情報が算出され、実脈波伝播速度情報算出手段により、実際に測定された脈波に基づいて実脈波伝播速度情報が算出され、比較表示手段により、その正常脈波伝播速度情報と実脈波伝播速度情報とが、一次元グラフ上に比較可能に表示される。実脈波伝播速度情報算出手段により、実際に測定された脈波に基づいて算出される実脈波伝播速度情報は、その生体について動脈硬化が進んでいるほど正常脈波伝播速度情報算出手段により算出される正常脈波伝播速度情報から離れた値となるので、正常脈波伝播速度情報と実脈波伝播速度情報とが比較可能に一次元グラフ上に表示されることにより、慣れない人であっても、動脈硬化を容易に評価することができる。
【0010】
【発明の好適な実施の形態】
以下、本発明の一実施例を図面に基づいて詳細に説明する。図1は、本発明が適用された動脈硬化評価装置8の構成を説明するブロック図である。
【0011】
図1において、動脈硬化評価装置8は、ゴム製袋を布製帯状袋内に有してたとえば患者の上腕部12に巻回されるカフ10と、このカフ10に配管20を介してそれぞれ接続された圧力センサ14、切換弁16、および空気ポンプ18とを備えている。この切換弁16は、カフ10内への圧力の供給を許容する圧力供給状態、カフ10内を徐々に排圧する徐速排圧状態、およびカフ10内を急速に排圧する急速排圧状態の3つの状態に切り換えられるように構成されている。
【0012】
圧力センサ14は、カフ10内の圧力を検出してその圧力を表す圧力信号SPを静圧弁別回路22および脈波弁別回路24にそれぞれ供給する。静圧弁別回路22はローパスフィルタを備え、圧力信号SPに含まれる定常的な圧力すなわちカフ圧PC を表すカフ圧信号SKを弁別してそのカフ圧信号SKをA/D変換器26を介して演算制御装置28へ供給する。
【0013】
上記脈波弁別回路24はバンドパスフィルタを備え、圧力信号SPの振動成分である脈波信号SM1 を周波数的に弁別してその脈波信号SM1 をA/D変換器29を介して演算制御装置28へ供給する。この脈波信号SM1 は、患者の心拍に同期して図示しない上腕動脈から発生してカフ10に伝達される圧力振動波すなわちカフ脈波である。
【0014】
本実施例において第1心拍同期波センサとして機能する心音マイク30は、生体の胸部表皮上の所定部位に装着されて、心音を表す心音信号(すなわち第1心拍同期波信号)SHを検出して出力する。心音マイク30から出力された心音信号SHは、A/D変換器32を介して前記演算制御装置28へ供給される。上記心音信号SHが表す心音は、生体の心拍に同期して発生する心拍同期波である。
【0015】
圧脈波検出プローブ34は、図2に示すように、生体の頸36に装着バンド38により装着され、図3に詳しく示すように、容器状を成すセンサハウジング40を収容するケース42と、このセンサハウジング40を頸動脈44の幅方向に移動させるためにそのセンサハウジング40に螺合され且つケース42内に設けられた図示しないモータによって回転駆動されるねじ軸46とを備えている。この圧脈波検出プローブ34は、前記装着バンド38により、センサハウジング40の開口端が生体の頸36の体表面48に対向する状態で取り付けられている。
【0016】
上記センサハウジング40の内部には、ダイヤフラム50を介して本実施例において第2心拍同期波センサとして機能する圧脈波センサ52が相対移動可能かつセンサハウジング40の開口端からの突き出し可能に設けられており、これらセンサハウジング40およびダイヤフラム50等によって圧力室54が形成されている。この圧力室54内には、図1に示すように、空気ポンプ56から調圧弁58を経て圧力空気が供給されるようになっており、これにより、圧脈波センサ52は圧力室54内の圧力(Pa)に応じた押圧力で前記体表面48に押圧される。
【0017】
上記センサハウジング40およびダイヤフラム50は、圧脈波センサ52を頸動脈44に向かって押圧する押圧装置60を構成しており、上記ねじ軸46および図示しないモータは、圧脈波センサ52が押圧される押圧位置をその頸動脈44の幅方向に移動させて変更する押圧位置変更装置すなわち幅方向移動装置62を構成している。
【0018】
上記圧脈波センサ52の押圧面64には、多数の半導体感圧素子(以下、感圧素子という)Eが、頸動脈44の幅方向すなわちねじ軸46と平行な圧脈波センサ52の移動方向において、その頸動脈44の直径よりも長くなるように、且つ一定の間隔で配列されており、たとえば、図4に示すように、配列間隔が0.6mm程度とされた15個の感圧素子E(a)、E(b)、…E(o)が配列されている。
【0019】
このように構成された圧脈波検出プローブ34が、頸36の体表面48の頸動脈44上に押圧されることにより、各感圧素子Eには、頸動脈44から発生して体表面48に伝達される心拍同期波すなわち圧脈波が検出され、その圧脈波を表す圧脈波信号SM2 がA/D変換器66を介して前記演算制御装置28へ供給される。図5は、圧脈波センサ52により逐次検出される圧脈波信号SM2 の一例を示している。
【0020】
演算制御装置28は、CPU68、ROM70、RAM72、および図示しないI/Oポート等を備えた所謂マイクロコンピュータにて構成されており、CPU68は、ROM70に予め記憶されたプログラムに従ってRAM72の記憶機能を利用しつつ信号処理を実行することにより、I/Oポートから駆動信号を出力して切換弁16および空気ポンプ18を制御し、また、空気ポンプ56および調圧弁58へ図示しない駆動回路を介して駆動信号を出力して圧力室54内の圧力を調節する。さらに、静圧弁別回路22から供給されるカフ圧信号SKおよび脈波弁別回路24から供給される脈波信号SM1 に基づいて生体の血圧値BPを決定し、心音マイク30から供給される心音信号SHおよび圧脈波センサ52から供給される圧脈波信号SM2 に基づいて脈波伝播速度情報の算出等を実行し、その血圧値BPおよび脈波伝播速度情報等を表示器74に表示する。
【0021】
入力装置76は、患者の年齢が入力されるための図示しない入力キーを備え、その入力された患者の年齢Aを表す信号を前記演算制御装置28へ出力する。
【0022】
図6は、上記動脈硬化評価装置8における演算制御装置28の制御機能の要部を説明する機能ブロック線図である。血圧測定手段80は、カフ圧制御手段82によってたとえば生体の上腕に巻回されたカフ10の圧迫圧力を所定の目標圧力値PCM(たとえば、180mmHg程度の圧力値)まで急速昇圧させた後に3mmHg/sec程度の速度で徐速降圧させる徐速降圧期間内において、順次採取される脈波信号SM1 が表す脈波の振幅の変化に基づきよく知られたオシロメトリック法を用いて最高血圧値BPSYS 、平均血圧値BPMEAN、および最低血圧値BPDIA などを決定し、その決定した最高血圧値BPSYS 、平均血圧値BPMEAN、および最低血圧値BPDIA などを表示器74に表示させる。
【0023】
最適押圧位置制御手段84は、初回の装着時など、押圧面64に配列された感圧素子Eのうちの最大脈圧PMmaxを検出する感圧素子Eすなわち最大脈圧検出素子EM の配列位置が、配列の端を基準として、それから所定数または所定距離内側までに位置するものであることを条件とする押圧位置更新条件が成立した場合には、以下の押圧位置更新作動を実行する。すなわち、押圧位置更新作動は、圧脈波センサ52を体表面48から一旦離隔させるとともに、幅方向移動装置62により押圧装置60および圧脈波センサ52を所定距離移動させた後、押圧装置60により圧脈波センサ52を比較的小さい予め設定された第1押圧力HDP1 で押圧させ、その状態で再び上記押圧位置更新条件が成立するか否かを判断し、押圧位置更新条件が成立しなくなるまで、より好ましくは、最大脈圧検出素子EM が配列位置の略中央に位置するまで上記の作動および判断を実行する。なお、上記脈圧PM とは、図5にも示すように、一拍毎の圧脈波のピークbにおける圧力と立ち上がり点a(または最小点)における圧力との差である。また、上記押圧位置更新条件における配列の端からの所定数または所定距離は、圧脈波センサ52により押圧される動脈(本実施例では頸動脈44)の直径に基づいて決定され、たとえば、その直径の1/4に設定される。
【0024】
押圧力制御手段86は、圧脈波センサ52が最適押圧位置制御手段84により最適押圧位置に位置させられた後、押圧装置60による圧脈波センサ52の押圧力HDPを連続的に変化させ、その変化過程で得た圧脈波に基づいて最適押圧力HDPO を決定し、圧脈波センサ52をその最適押圧力HDPO にて押圧させる。ここで、最適押圧力HDPO とは、たとえば、最大脈圧検出素子EM により検出される脈圧PM が予め設定された最低脈圧PL 以上となる押圧力HDPであり、この最低脈圧PL は、脈圧PM が小さすぎると圧脈波が不明瞭になり、脈波伝播速度情報を算出するための基準点の決定精度が低下することから、実験に基づいて、圧脈波が明確に検出できる大きさに設定される。
【0025】
実脈波伝播速度情報算出手段88は、上記押圧力制御手段86により圧脈波センサ52の押圧力HDPが最適押圧力HDPO に維持されている状態において、心音マイク30により逐次検出される心音信号SHと、圧脈波センサ52に配設された複数の感圧素子Eにより逐次検出される複数の圧脈波信号SM2 のうちの一つとを用いて、心音信号SHが表す心音波形の周期的に繰り返す所定部位が検出された時間と、圧脈波信号SM2 が表す圧脈波の周期的に繰り返す所定部位が検出された時間との時間差(実脈波伝播時間)DTac(msec)を算出する実脈波伝播時間算出手段を備えており、たとえば、その実脈波伝播時間算出手段は、第2心音IIの立ち上がりが検出された時間と前記最大脈圧検出素子EM により圧脈波のノッチが検出された時間との時間差(実脈波伝播時間)DTacを算出する。ここで、上記ノッチとは、図5にも示すように、圧脈波のピークb以降における極小値であり、切痕ともいう。このノッチは、大動脈弁の閉鎖によるものであることから、大動脈弁の閉鎖時に発生する心音である第2心音IIに対応する。さらに、実脈波伝播速度情報算出手段88は、その実脈波伝播時間算出手段により実際の心拍同期波に基づいて算出される実脈波伝播時間DTacから、予め記憶される式1を用いて、被測定者の動脈内を脈波が実際に伝播する実脈波伝播速度PWVac (m/sec)を算出する。尚、式1において、L (m)は心音マイク30が装着される部位から圧脈波センサ52が装着される部位までの距離であり、予め実験に基づいて求められた一定値が用いられる。
【0026】
(式1) PWVac=L/DTac
【0027】
また、上記実脈波伝播速度情報算出手段88により算出された実脈波伝播速度情報は、後述する動脈硬化指数算出手段92において、前記血圧測定手段80により測定された血圧値BPに基づいて算出される正常脈波伝播速度情報と比較されることから、上記心音信号SHおよび圧脈波信号SM2 は、前記血圧測定手段80によるり測定された血圧値BPがそれほど変化しない期間、たとえば、その血圧測定の直前、直後等に検出されることが好ましい。
【0028】
正常脈波伝播速度情報算出手段90は、血圧値BPおよび年齢Aと正常脈波伝播速度情報との間の予め設定された正常脈波伝播速度情報算出式を用い、入力装置76から入力される年齢A、および血圧測定手段80により実際に測定される生体の血圧値BPとに基づいて、生体が正常であるとした場合に生体内を脈波が伝播する脈波伝播速度に関連する正常脈波伝播速度情報を算出する。ここで、生体が正常であるとは、生体が健常者であること、すなわち、生体の動脈硬化の程度が年齢相応で標準的であるということである。式2は、正常脈波伝播速度情報として正常脈波伝播速度PWVnoが用いられ、血圧値BPとして最低血圧値BPDIA が用いられた場合の正常脈波伝播速度算出式の一例である。
【0029】
(式2) PWVno=α×A+β×BPDIA +θ
なお、この式2は、生体の血圧値BPが高いほど脈波伝播速度PWVが速いこと、および年齢Aが高いほど一般的に脈波伝播速度PWVが速いという事実に基づいて正常脈波伝播速度PWVnoを年齢Aおよび血圧値BPの線型結合により表したものである。式2においてα、β、θは定数であって、広い範囲の年齢層にわたる正常な多数の生体について、年齢Aおよび血圧値BPと実際の脈波に基づく実脈波伝播速度PWVacとの関係を求め、その多数の関係から統計的に決定される値、たとえば線型近似係数或いは回帰係数であり、たとえば、α=9.456、β=3.43、θ=19.72が用いられる。
【0030】
動脈硬化指数算出手段92は、正常脈波伝播速度情報算出手段90により算出された正常脈波伝播速度情報と、実脈波伝播速度情報算出手段88により算出された実脈波伝播速度情報との比較に基づいて、生体の動脈硬化指数Ia を算出する。動脈硬化指数Ia とは、動脈が正常である場合の脈波伝播速度情報を表す正常脈波伝播速度情報に対して実際の脈波に基づく実脈波伝播速度情報がどれほど異なっているかを表すもの、言い換えれば、正常脈波伝播速度情報を基準値或いは正常値とした場合の実脈波伝播速度情報の基準値からのずれを表すものであればよく、正常脈波伝播速度情報として正常脈波伝播速度PWVno、実脈波伝播速度情報として実脈波伝播速度PWVacを例として説明すると、たとえば、実脈波伝播速度PWVacと正常脈波伝播速度PWVnoとの差ΔPWV(=PWVac−PWVno)や、正常脈波伝播速度PWVnoに対する実脈波伝播速度PWVacの比(PWVac/PWVno)、上記差ΔPWVを正常脈波伝播速度PWVnoで割った値(ΔPWV/PWVno)等を用いることができる。この動脈硬化指数Ia は、正常脈波伝播速度情報を基準値として、その基準値と実際の脈波伝播速度情報とを比較した値であることから、経時変化等の相対的な評価でなく動脈硬化の絶対的な(定量的な)評価が可能である。
【0031】
動脈硬化指数表示手段94は、上記動脈硬化指数算出手段92により算出された動脈硬化指数Ia を、表示器74の一次元グラフ上に表示させる。図7は、動脈硬化指数表示手段94により表示される一次元グラフ96の一例を示す図であり、動脈硬化指数軸98の中央に位置する中央点Oは、前記実脈波伝播速度情報が前記正常脈波伝播速度情報と一致する場合の動脈硬化指数Ia すなわち動脈の硬さが正常である場合の動脈硬化指数Ia であり、印100は前記動脈硬化指数算出手段92により算出される動脈硬化指数Ia を示している。このように一次元グラフ96上に中央点Oおよび実際の動脈硬化指数Ia を表す印100が表示されると、印100が中央点Oからどの程度離れているかを判断することにより、動脈硬化を絶対的に評価することができる。
【0032】
図8は、図6の機能ブロック線図に示した演算制御装置28の制御作動をさらに具体的に説明するためのフローチャートである。
【0033】
図8において、ステップSA1(以下、ステップを省略する。)では、入力装置76から被測定者の年齢Aを表す信号が供給されたか否かが判断される。このSA1の判断が否定された場合は、SA1が繰り返し実行されるが、肯定された場合は、続く押圧力制御手段86に対応するSA2において、押圧装置60により圧力室54内の圧力が制御されることにより、圧脈波センサ52の押圧力HDPが予め設定された第1押圧力HDP1 とされる。上記第1押圧力HDP1 は、各感圧素子Eからの圧脈波信号SM2 に基づいて脈圧PM がそれぞれ決定できる程度の大きさとして、予め実験に基づいて決定されている。
【0034】
続いて最適押圧位置制御手段84に対応するSA3乃至SA4が実行される。まず、SA3では、押圧面64に配列された感圧素子Eのうち最大圧検出素子EM の配列位置が、配列の端から所定数または所定距離内側までに位置するものであるかを条件とする押圧位置更新条件(APS起動条件)が成立したか否かが判断される。この判断が否定された場合には、後述するSA5以降が実行される。
【0035】
一方、SA3の判断が肯定された場合、すなわち、圧脈波センサ52の頸動脈44に対する装着位置が不適切である場合には、続くSA4において、APS制御ルーチンが実行される。このAPS制御ルーチンは、最大脈圧検出素子EM が感圧素子Eの配列の略中央位置となる最適押圧位置を決定するため、圧脈波センサ52を一旦体表面48から離隔させ、幅方向移動装置62により押圧装置60および圧脈波センサ52を所定距離移動させた後、押圧装置60により圧脈波センサ52を再び前記第1押圧力HDP1 で押圧させ、その状態における最大脈圧検出素子EM が配列略中央位置にある感圧素子Eであるか否かが判断され、この判断が肯定されるまで上記作動が繰り返し実行される。
【0036】
上記SA4において圧脈波センサ52の押圧位置が最適押圧位置に制御されると、続くSA5では、その状態における最大脈圧検出素子EM が決定され、続いて押圧力制御手段86に対応するSA6において、HDP制御ルーチンが実行される。このHDP制御ルーチンは、押圧装置60により圧脈波センサ52の押圧力HDPが前記第1押圧力HDP1 から連続的に増加させられ、その押圧力増加過程で、前記SA5で決定された最大脈圧検出素子EM から検出される圧脈波の脈圧PM が予め設定された最適脈圧PL 以上となったか否かに基づいて最適押圧力HDPO が決定され、圧脈波センサ52の押圧力HDPがその決定された最適押圧力HDPO にて維持される。
【0037】
続く実脈波伝播速度情報算出手段88に対応するSA7では、図9に詳しく示す実脈波伝播速度算出ルーチンが実行されることにより、実脈波伝播速度PWVacが算出される。
【0038】
その図9に示す実脈波伝播速度算出ルーチンでは、まず、SB1において、心音マイク30から供給される心音信号SHおよび圧脈波センサ52の最大脈圧検出素子EM から供給される圧脈波信号SM2 が読み込まれる。
【0039】
続くSB2では、心音信号SHおよび圧脈波信号SM2 が一拍分読み込まれたか否かが、たとえば、圧脈波の立ち上がり点が検出されたか否かに基づいて判断される。このSB2の判断が否定された場合は、前記SB1が実行されて心音信号SHおよび圧脈波信号SM2 がさらに読み込まれる。
【0040】
しかし、上記SB2の判断が肯定された場合は、続くSB3において、上記SB1で読み込まれた心音信号SHに基づいて、第2心音IIの立ち上がり点が検出された時間が決定され、続くSB4では、上記SB1で読み込まれた圧脈波信号SM2 に基づいて頸動脈波のノッチが検出された時間が決定され、続くSB5では、上記SB3で決定された第2心音IIの立ち上がり時点と、上記SB4で決定されたノッチ発生時点との時間差から実脈波伝播時間DTacが算出される。図10は、上記SB5において算出される実脈波伝播時間DTacを示している。
【0041】
さらに、続くSB6では、上記SB5で算出された実脈波伝播時間DTacが、前記式1に代入されることにより実脈波伝播速度PWVacが算出される。
【0042】
前記SA7において実脈波伝播速度PWVが算出されると、次いで、前記カフ圧制御手段82に対応するSA8およびSA9が実行され、切換弁16が圧力供給状態に切り換えられ且つ空気ポンプ18が駆動されることにより、血圧測定のためにカフ10の急速昇圧が開始されるとともに、カフ圧PC が180mmHg程度に予め設定された目標圧迫圧PCM以上となったか否かが判断される。このSA9の判断が否定された場合は、上記SA8以下が繰り返し実行されることによりカフ圧PC の上昇が継続される。
【0043】
しかし、カフ圧PC の上昇により上記SA9の判断が肯定されると、前記血圧測定手段80に対応するSA10において、血圧測定アルゴリズムが実行される。すなわち、空気ポンプ18を停止させ且つ切換弁16を徐速排圧状態に切り換えてカフ10内の圧力を予め定められた3mmHg/sec程度の緩やかな速度で下降させることにより、この徐速降圧過程で逐次得られる脈波信号SM1 が表す脈波の振幅の変化に基づいて、良く知られたオシロメトリック方式の血圧値決定アルゴリズムに従って最高血圧値BPSYS 、平均血圧値BPMEAN、および最低血圧値BPDIA が測定されるとともに、脈波間隔に基づいて脈拍数などが決定されるのである。そして、その測定された血圧値BPおよび脈拍数などが表示器74に表示されるとともに、切換弁16が急速排圧状態に切り換えられてカフ10内が急速に排圧される。
【0044】
続く正常脈波伝播速度情報算出手段90に対応するSA11では、前記SA10で測定された最低血圧値BPDIA および前記SA1で供給された生体の年齢Aとが、前記式2に代入されることにより、正常脈波伝播速度PWVnoが算出される。
【0045】
続く動脈硬化指数算出手段92に対応するSA12では、前記SA7で算出された実脈波伝播速度PWVacと上記SA11で算出された正常脈波伝播速度PWVnoとの差ΔPWV(=PWVac−PWVno)が動脈硬化指数Ia として算出される。なお、生体の動脈が硬い場合には、SA7で算出された実脈波伝播速度PWVacは、SA11で算出された正常脈波伝播速度PWVnoよりも速くなるので、上記差ΔPWVは正の値となり、動脈硬化が進行しているほどその差ΔPWVは大きくなる。続く動脈硬化指数表示手段94に対応するSA13では、上記SA12で算出された動脈硬化指数Ia が、たとえば、図7に示すように表示器74に表示される。
【0046】
上述のように、本実施例によれば、正常脈波伝播速度情報算出手段90(SA11)により、生体の実際の年齢Aと血圧測定手段80(SA10)によって測定された実際の最低血圧値BPDIA とが前記式2に代入されることにより、生体が正常であるとした場合にその年齢Aおよびその最低血圧値BPDIA における正常脈波伝播速度PWVnoが算出され、実脈波伝播速度情報算出手段88(SA7)により、実際に測定された脈波に基づいて実脈波伝播速度PWVacが算出され、動脈硬化指数算出手段92(SA12)により、その実脈波伝播速度PWVacと正常脈波伝播速度PWVnoとの差ΔPWV(=PWVac−PWVno)が動脈硬化指数Ia として算出される。実脈波伝播速度情報算出手段88(SA7)により、実際に測定された脈波に基づいて算出される実脈波伝播速度PWVacは、その生体について動脈硬化が進んでいるほど正常脈波伝播速度情報算出手段90(SA11)により算出される正常脈波伝播速度PWVnoから離れた値となるので、実脈波伝播速度PWVacと正常脈波伝播速度PWVnoとの差ΔPWVとして算出される動脈硬化指数Ia により、慣れない人であっても、動脈硬化を容易に評価することができる。
【0047】
また、本実施例の動脈硬化評価装置8は、動脈硬化指数算出手段92(SA12)により算出された動脈硬化指数Ia を一次元グラフ96上に表示させる動脈硬化指数表示手段94(SA13)をさらに含むので、二次元図表において実際に測定された脈波伝播速度情報と基準線とを対比するよりも、容易に動脈硬化を評価することができる。
【0048】
次に、本発明の他の実施例を説明する。なお、以下の実施例において前述の実施例と共通する部分は同一の符号を付して詳細な説明を省略する。
【0049】
図11は、前述の実施例とは別の実施例における動脈硬化評価装置の要部を説明する機能ブロック線図である。本実施例の動脈硬化評価装置では、装置の機構および回路構成は前述の図1の実施例と共通するが、演算制御装置28における制御作動が相違する。以下、その相違点を説明する。
【0050】
図11の機能ブロック線図は、前述の実施例の図6の機能ブロック線図の動脈硬化指数算出手段92および動脈硬化指数表示手段94に代えて、比較表示手段102が設けられている点のみが相違する。
【0051】
その比較表示手段102は、前記実脈波伝播速度情報算出手段88により算出された実脈波伝播速度情報と、前記正常脈波伝播速度情報算出手段90により算出された正常脈波伝播速度情報とを、一次元グラフ上に比較可能に表示する。図12は、実脈波伝播速度情報として実脈波伝播速度PWVacが算出され、正常脈波伝播速度情報として正常脈波伝播速度PWVnoが算出された場合に、比較表示手段102により表示器74に表示される一次元グラフの一例を示す図である。図12のように、正常脈波伝播速度PWVnoよりも実脈波伝播速度PWVacが速い場合は、動脈硬化が進行してしていると判断でき、また、正常脈波伝播速度PWVnoの表示位置に対する実脈波伝播速度PWVacの表示位置の離れ具合により、動脈硬化に進行の程度を評価することができる。
【0052】
図13は、図11の機能ブロック線図に示した演算制御装置28の制御作動をさらに具体的に説明するためのフローチャートである。図13のフローチャートは、前述の実施例の図8のフローチャートのSA12およびSA13に代えて比較表示手段102に対応するSA14が設けられている点が異なるのみである。
【0053】
そのSA14では、前記SA11で算出された正常脈波伝播速度PWVnoと、前記SA7で算出された実脈波伝播速度PWVacとが、たとえば図12に示すように、表示器74の一次元グラフ上に同時に表示される。
【0054】
上述のように、本実施例によれば、本実施例によれば、正常脈波伝播速度情報算出手段90(SA11)により、生体の実際の年齢Aと血圧測定手段80(SA10)によって測定された実際の最低血圧値BPDIA とが前記式2に代入されることにより、生体が正常であるとした場合にその年齢Aおよびその最低血圧値BPDIA における正常脈波伝播速度PWVnoが算出され、実脈波伝播速度情報算出手段88(SA7)により、実際に測定された脈波に基づいて実脈波伝播速度PWVacが算出され、比較表示手段102(SA14)により、その正常脈波伝播速度PWVnoと実脈波伝播速度PWVacとが、一次元グラフ上に比較可能に表示される。実脈波伝播速度情報算出手段88(SA7)により、実際に測定された脈波に基づいて算出される実脈波伝播速度PWVacは、その生体について動脈硬化が進んでいるほど正常脈波伝播速度情報算出手段90(SA11)により算出される正常脈波伝播速度PWVnoから離れた値となるので、正常脈波伝播速度PWVnoと実脈波伝播速度PWVacとが比較可能に一次元グラフ上に表示されることにより、慣れない人であっても、動脈硬化を容易に評価することができる。
【0055】
以上、本発明の一実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
【0056】
たとえば、前述の実施例では、第2心拍同期波センサとして生体の頸36を押圧して頸動脈波を検出する圧脈波センサ52が用いられていたが、圧脈波センサ52は頸36以外の部位に装着されてその部位を押圧する形式でもよい。たとえば、手首、大腿部に装着される形式の圧脈波センサでもよい。また、上記圧脈波センサ52以外の他のセンサ、たとえば、脈拍検出用等に用いられる光電脈波センサ、オキシメータ用の光電脈波検出プローブ、指に装着された電極を介してインピーダンス変化を検出するインピーダンス脈波検出装置、生体の所定部位(たとえば上腕)に装着される圧迫帯内の圧力の変動を検出する形式の圧脈波センサなどが用いられてもよい。
【0057】
また、前述の実施例では、第1心拍同期波センサとして心音マイク30が用いられていたが、生体に装着される複数の電極を通して心電誘導波形を検出する心電誘導装置が第1心拍同期波センサとして用いられてもよいし、前記第2心拍同期波センサよりも上流側部位に装着されるのであれば、その第2心拍同期波センサとして用いることができるセンサ装置として例示した種々のセンサが第1心拍同期波センサとして用いられてもよい。
【0058】
また、前述の実施例の図8および図13のフローチャートでは、実脈波伝播速度情報算出手段88に対応するSA7および正常脈波伝播速度情報算出手段90に対応するSA11において、実脈波伝播速度PWVacおよび正常脈波伝播時間PWVnoが算出されていたが、それら実脈波伝播速度PWVacおよび正常脈波伝播時間PWVnoに代えて、実脈波伝播時間DTacおよび正常脈波伝播時間DTnoが算出されてもよい。
【0059】
なお、本発明はその主旨を逸脱しない範囲においてその他種々の変更が加えられ得るものである。
【図面の簡単な説明】
【図1】本発明が適用された動脈硬化評価装置の回路構成を示すブロック図である。
【図2】図1の圧脈波検出プローブが頸に装着された状態を示す図である。
【図3】図1の圧脈波検出プローブを一部切り欠いて説明する拡大図である。
【図4】図1の圧脈波センサの押圧面に配列された感圧素子の配列状態を説明する図である。
【図5】図1の圧脈波センサの感圧素子から出力される圧脈波信号SM2 を例示する図である。
【図6】図1の動脈硬化評価装置における演算制御装置の制御機能の要部を説明する機能ブロック線図である。
【図7】図6の動脈硬化指数表示手段により表示器に表示される一次元グラフの一例を示す図である。
【図8】図6の機能ブロック線図に示した演算制御装置の制御作動をさらに具体的に説明するためのフローチャートである。
【図9】図8のSA7の脈波伝播速度算出ルーチンを詳しく説明するフローチャートである。
【図10】図8のSB5により算出される脈波伝播時間DTを例示する図である。
【図11】図1とは別の実施例の動脈硬化評価装置における演算制御装置の制御機能の要部を説明する機能ブロック線図である。
【図12】図11の比較表示手段により表示器に表示される一次元グラフの一例を示す図である。
【図13】図11の機能ブロック線図に示した演算制御装置の制御作動をさらに具体的に説明するためのフローチャートである。
【符号の説明】
8:動脈硬化評価装置
30:心音マイク(第1心拍同期波センサ)
52:圧脈波センサ(第2心拍同期波センサ)
80:血圧測定手段
88:実脈波伝播速度情報算出手段
90:正常脈波伝播速度情報算出手段
92:動脈硬化指数算出手段
102:比較表示手段

Claims (2)

  1. 生体の動脈の硬さを評価する動脈硬化評価装置であって、
    前記生体の血圧値を測定する血圧測定手段と、
    血圧値および年齢と正常脈波伝播速度情報との間の予め設定された正常脈波伝播速度情報算出式を用い、前記生体の実際の年齢および前記血圧測定手段により実際に測定される血圧値に基づいて、前記生体が正常であるとした場合に該生体内を脈波が伝播する脈波伝播速度に関連する正常脈波伝播速度情報を算出する正常脈波伝播速度情報算出手段と、
    前記生体の所定部位に装着されて第1心拍同期波を検出する第1心拍同期波センサと、
    該第1心拍同期波センサとは異なる部位に装着されて第2心拍同期波を検出する第2心拍同期波センサと、
    前記第1心拍同期波センサにより第1心拍同期波の周期毎に発生する所定部位が検出された時間と、前記第2心拍同期波センサにより第2心拍同期波の周期毎に発生する所定部位が検出された時間との時間差から、実際に測定された脈波に基づく実脈波伝播速度情報を算出する実脈波伝播速度情報算出手段と、
    前記正常脈波伝播速度情報算出手段により算出された正常脈波伝播速度情報と、前記実脈波伝播速度情報算出手段により算出された実脈波伝播速度情報との比較に基づいて前記生体の動脈硬化指数を算出する動脈硬化指数算出手段と
    を、含むことを特徴とする動脈硬化評価装置。
  2. 生体の動脈の硬さを評価する動脈硬化評価装置であって、
    前記生体の血圧値を測定する血圧測定手段と、
    血圧値および年齢と正常脈波伝播速度情報との間の予め設定された正常脈波伝播速度情報算出式を用い、前記生体の実際の年齢および前記血圧測定手段により実際に測定される血圧値に基づいて、前記生体が正常であるとした場合に該生体内を脈波が伝播する脈波伝播速度に関連する正常脈波伝播速度情報を算出する正常脈波伝播速度情報算出手段と、
    前記生体の所定部位に装着されて第1心拍同期波を検出する第1心拍同期波センサと、
    該第1心拍同期波センサとは異なる部位に装着されて第2心拍同期波を検出する第2心拍同期波センサと、
    前記第1心拍同期波センサにより第1心拍同期波の周期毎に発生する所定部位が検出された時間と、前記第2心拍同期波センサにより第2心拍同期波の周期毎に発生する所定部位が検出された時間との時間差から、実際に測定された脈波に基づく実脈波伝播速度情報を算出する実脈波伝播速度情報算出手段と、
    前記正常脈波伝播速度情報算出手段により算出された正常脈波伝播速度情報と、前記実脈波伝播速度情報算出手段により算出された実脈波伝播速度情報とを、一次元グラフ上に比較可能に表示する比較表示手段と
    を、含むことを特徴とする動脈硬化評価装置。
JP2000007682A 2000-01-17 2000-01-17 動脈硬化評価装置 Expired - Fee Related JP4314710B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000007682A JP4314710B2 (ja) 2000-01-17 2000-01-17 動脈硬化評価装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000007682A JP4314710B2 (ja) 2000-01-17 2000-01-17 動脈硬化評価装置

Publications (2)

Publication Number Publication Date
JP2001190506A JP2001190506A (ja) 2001-07-17
JP4314710B2 true JP4314710B2 (ja) 2009-08-19

Family

ID=18536048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000007682A Expired - Fee Related JP4314710B2 (ja) 2000-01-17 2000-01-17 動脈硬化評価装置

Country Status (1)

Country Link
JP (1) JP4314710B2 (ja)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3538409B2 (ja) 2001-10-24 2004-06-14 コーリンメディカルテクノロジー株式会社 動脈硬化度評価装置
JP3616061B2 (ja) * 2002-03-01 2005-02-02 コーリンメディカルテクノロジー株式会社 動脈硬化検査装置
JP2003250772A (ja) 2002-03-01 2003-09-09 Nippon Colin Co Ltd 正常脈波伝播速度情報決定装置および脈波伝播速度情報測定装置
JP3587837B2 (ja) 2002-09-27 2004-11-10 コーリンメディカルテクノロジー株式会社 動脈硬化度評価装置
JP2004223046A (ja) 2003-01-24 2004-08-12 Nippon Colin Co Ltd 動脈硬化評価装置
EP1706030B1 (en) * 2003-12-17 2013-07-03 Atcor Medical Pty Ltd Method and apparatus for determination of central aortic pressure
US8094034B2 (en) 2007-09-18 2012-01-10 Georgia Tech Research Corporation Detecting actuation of electrical devices using electrical noise over a power line
US20100241013A1 (en) * 2009-03-18 2010-09-23 Edwards Lifesciences Corporation Direct Measurements of Arterial Pressure Decoupling
US20100268097A1 (en) * 2009-03-20 2010-10-21 Edwards Lifesciences Corporation Monitoring Peripheral Decoupling
US9766277B2 (en) 2009-09-25 2017-09-19 Belkin International, Inc. Self-calibrating contactless power consumption sensing
WO2012003494A2 (en) 2010-07-02 2012-01-05 Belkin International, Inc. System for monitoring electrical power usage of a structure and method of same
US9291694B2 (en) 2010-07-02 2016-03-22 Belkin International, Inc. System and method for monitoring electrical power usage in an electrical power infrastructure of a building
CN111000537B (zh) * 2019-12-24 2022-05-27 中国人民解放军陆军军医大学第一附属医院 一种修正年龄性别和血压对脉搏波传播速度的影响的方法

Also Published As

Publication number Publication date
JP2001190506A (ja) 2001-07-17

Similar Documents

Publication Publication Date Title
JP3587798B2 (ja) 連続血圧監視装置
JP3568515B2 (ja) 下肢上肢血圧指数測定装置
US6645156B2 (en) Continuous blood-pressure monitoring apparatus
JP3495348B2 (ja) 脈波伝播速度情報測定装置
US6524257B2 (en) Superior-and-inferior-limb blood-pressure index measuring apparatus
JP3618297B2 (ja) 自動血圧測定装置
JP4314710B2 (ja) 動脈硬化評価装置
US6602198B2 (en) Automatic blood-pressure measuring apparatus
JPH1043149A (ja) 血圧監視装置
JP2003210422A (ja) 動脈硬化検査装置
JP3683256B2 (ja) 動脈狭窄診断装置
JP3643562B2 (ja) 脈波伝播速度測定装置
JP2003235816A (ja) 圧脈波検出装置
JP3683257B2 (ja) 血流量推定装置
JP3495344B2 (ja) 圧脈波検出装置
JP3496820B2 (ja) 血圧監視装置
JP3538409B2 (ja) 動脈硬化度評価装置
JP3675586B2 (ja) 大動脈圧波形検出装置
JP3616074B2 (ja) 動脈硬化評価装置
JP3975604B2 (ja) 動脈硬化度測定装置
JPH08257002A (ja) 脈波伝播速度測定装置
JP3978924B2 (ja) 連続血圧監視装置
JP4352548B2 (ja) 脈波伝播速度情報測定装置
JP3696978B2 (ja) 脈波伝播速度測定装置
JP2000245702A (ja) 圧脈波検出装置

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040225

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050922

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050926

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060601

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060601

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061011

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090428

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090511

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120529

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees