JP3683257B2 - 血流量推定装置 - Google Patents

血流量推定装置 Download PDF

Info

Publication number
JP3683257B2
JP3683257B2 JP2003053641A JP2003053641A JP3683257B2 JP 3683257 B2 JP3683257 B2 JP 3683257B2 JP 2003053641 A JP2003053641 A JP 2003053641A JP 2003053641 A JP2003053641 A JP 2003053641A JP 3683257 B2 JP3683257 B2 JP 3683257B2
Authority
JP
Japan
Prior art keywords
pulse wave
blood pressure
pressure
blood
information
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003053641A
Other languages
English (en)
Other versions
JP2004261321A (ja
Inventor
清幸 成松
敏彦 小椋
Original Assignee
コーリンメディカルテクノロジー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コーリンメディカルテクノロジー株式会社 filed Critical コーリンメディカルテクノロジー株式会社
Priority to JP2003053641A priority Critical patent/JP3683257B2/ja
Priority to US10/780,734 priority patent/US20040171941A1/en
Publication of JP2004261321A publication Critical patent/JP2004261321A/ja
Application granted granted Critical
Publication of JP3683257B2 publication Critical patent/JP3683257B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/026Measuring blood flow
    • A61B5/0285Measuring or recording phase velocity of blood waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • A61B5/02108Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics
    • A61B5/02125Measuring pressure in heart or blood vessels from analysis of pulse wave characteristics of pulse wave propagation time
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/7445Display arrangements, e.g. multiple display units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Description

【0001】
【発明の属する技術分野】
本発明は、非侵襲にて血流量を推定する血流量推定装置に関するものである。
【0002】
【従来の技術】
非侵襲で生体の血流量を測定する装置として、超音波診断装置が知られている(たとえば、特許文献1参照)。超音波診断装置による血流量の測定は、生体の所定部位に超音波の送信機能および受信機能を有するプローブを押圧し、そのプローブにより、超音波ビームを生体に向けて照射するとともに生体からの超音波エコー信号を受信し、その超音波エコー信号に基づいて、血流速度および血管断面積を求め、その血流速度および血管断面積の積から血流量を算出する。
【0003】
【特許文献1】
特開2000−201930号公報
【0004】
【発明が解決しようとする課題】
血流量の測定は臨床的に重要であると認識されており、たとえば、脳への血流量は脳疾患を診断するのに用いることができる。そのため、検診時にも血流量を測定することが望まれている。しかし、超音波診断装置は高価であり、また、手技に熟練を要し、測定時間も比較的長いという問題がある。そのため、超音波診断装置を用いた血流量の診断は広く臨床的に利用されるには至っていない。
【0005】
本発明は以上の事情を背景として為されたもので、その目的とするところは、簡便に血流量を推定することができる血流量推定装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明者は、上記目的を達成するために種々検討を重ねた結果、以下の知見を見いだした。すなわち、血管系を電気回路に置き換えた場合に、血流は電流に相当し、血圧は電圧に相当する。そして、血流抵抗となる因子は、種々考えられるが、動脈硬化度は血流抵抗の一因子と考えることができる。動脈硬化度が血流抵抗の一因子と考えることができるのは、動脈硬化度は血管コンプライアンス(すなわち血管の伸びやすさ)の逆数であり、血管コンプライアンスが低下すると、血液が流れにくくなるからである。従って、オームの法則を用いると、血圧と動脈硬化度から、血流量を推定できることを見いだした。本発明は、係る知見に基づいて成されたものである。
【0007】
すなわち上記目的を達成するための本発明は、(a)生体の所定部位における血圧値を非侵襲に測定する血圧測定装置と、(b)その血圧測定装置により測定された血圧値に基づいて、前記所定部位の血圧の大きさを表す血圧情報を決定する血圧情報決定手段と、(c)前記所定部位において前記生体の脈波を検出する脈波検出装置と、(d)その脈波検出装置により検出された脈波に基づいて、動脈の硬化に関連する動脈硬化情報を決定する動脈硬化情報決定手段と、(e)出力装置と、(f)その出力装置に、血圧情報軸と動脈硬化情報軸とを有し、血圧情報および動脈硬化情報の変化に従って血流量が変化することが示されたグラフであって、前記血圧情報決定手段により決定された血圧情報および前記動脈硬化情報決定手段により決定された動脈硬化情報を示す印が示されているグラフを出力するグラフ出力手段とを含むことを特徴とする血流量推定装置である。
【0008】
【発明の効果】
この発明によれば、血圧情報決定手段により、生体の所定部位における血圧から血圧情報が決定され、動脈硬化情報決定手段により、その所定部位において検出された脈波に基づいて動脈硬化情報が決定され、グラフ出力手段により、出力装置に、血圧情報軸と動脈硬化情報軸とを有し、血圧情報および動脈硬化情報の変化に従って血流量が変化することが示されたグラフが出力され、且つ、そのグラフに、血圧情報決定手段によって決定された血圧情報および前記動脈硬化情報決定手段により決定された動脈硬化情報を示す印が示されることから、その印がグラフのどの位置に示されているかを判断することにより、前記所定部位の血流量を推定することができる。従って、生体の所定部位において測定される血圧および脈波に基づいてその部位の血流量を推定することができ、これら血圧および脈波の測定は比較的簡単であることから、簡便にその部位の血流量を推定することができる。
【0009】
【発明のその他の態様】
ここで、好ましくは、前記血圧測定装置は、頸部血圧値を測定する装置である。すなわち、前記血圧測定装置は、(a-1)前記生体の頸部に押圧させられて、頸動脈からの圧脈波を検出する頸動脈波検出装置と、(a-2)前記生体の上腕部に装着されるカフと、(a-3)前記カフの圧迫圧力を徐速変化させる過程で前記生体から検出される心拍同期信号に基づいて、上腕血圧値を決定する上腕血圧値決定手段と、(a-4)前記頸動脈波検出装置により検出された頸動脈波の最小値、面積重心値、最大値、および前記上腕血圧値決定手段により決定された上腕血圧値から、頸部血圧値を決定する頸部血圧値決定手段とを含むものである。また、その場合、好ましくは、前記脈波検出装置には、この血圧測定装置の頸動脈波検出装置を用いる。このようにすれば、血圧情報決定手段により決定される血圧情報は、頸部の血圧の大きさを表し、動脈硬化情報決定手段により決定される動脈硬化情報は、頸動脈の硬化に関連するものとなることから、グラフ出力手段により出力装置に出力されるグラフにおいて、その血圧情報と動脈硬化情報とを示す印が出力されている位置を判断することにより、頸動脈の血流量を推定することができる。
【0010】
前記動脈硬化情報には、たとえば、生体の所定の2部位間を脈波が伝播する速度すなわち脈波伝播速度や、その脈波伝播速度に関連する情報である脈波伝播速度情報がある。動脈硬化情報として脈波伝播速度情報を決定する場合、前記血流量推定装置は、前記脈波検出装置とは異なる部位において前記生体から心拍同期信号を検出する心拍同期信号検出装置をさらに備え、前記動脈硬化情報決定手段は、前記脈波検出装置により検出される脈波および前記心拍同期信号検出装置により検出される心拍同期信号に基づいて、前記動脈硬化情報として、前記生体内を脈波が伝播する速度に関連する脈波伝播速度情報を決定するものである。
【0011】
【発明の好適な実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1は、本発明が適用された血流量推定装置10の回路構成を示すブロック図である。なお、この血流量推定装置10は、被測定者が仰臥位の状態で使用される。
【0012】
図1において、カフ12はゴム製袋を布製帯状袋内に有し上腕部14に装着される。カフ12には、圧力センサ16、調圧弁18が配管20を介してそれぞれ接続されている。また、調圧弁18には、配管22を介して空気ポンプ24が接続されている。調圧弁18は、空気ポンプ24により発生させられた圧力の高い空気を、その空気の圧力を調圧してカフ12内へ供給し、或いは、カフ12内の空気を排気することによりカフ12内の圧力を調圧する。
【0013】
圧力センサ16は、カフ12内の圧力を検出してその圧力を表す圧力信号SPを静圧弁別回路26および脈波弁別回路28にそれぞれ供給する。静圧弁別回路26はローパスフィルタを備えており、圧力信号SPに含まれる定常的な圧力すなわちカフ12の圧迫圧力(以下、この圧力をカフ圧PCという)を表すカフ圧信号SCを弁別してそのカフ圧信号SCをA/D変換器30を介して電子制御装置32へ供給する。脈波弁別回路28はバンドパスフィルタを備えており、圧力信号SPの振動成分であるカフ脈波信号SM1を弁別してそのカフ脈波信号SM1をA/D変換器34を介して電子制御装置32へ供給する。このカフ脈波信号SM1は、カフ12により圧迫される図示しない上腕動脈からの上腕脈波を表し、また、上腕脈波は心拍に同期して発生する心拍同期信号である。
【0014】
また、血流量推定装置10は、図2に示す圧脈波検出プローブ36を備えている。圧脈波検出プローブ36は頸動脈波検出装置として機能し、図2に示すように、被測定者の頸部38に装着バンド40により装着され、頸動脈波wcを非侵襲的に検出する。この圧脈波検出プローブ36の構成を図3に示す。図3に詳しく示すように、圧脈波検出プローブ36は、容器状を成すセンサハウジング42と、そのセンサハウジング42を収容するケース44と、センサハウジング42を頸動脈46の幅方向に移動させるためにそのセンサハウジング42に螺合され且つケース44内に設けられた図示しないモータによって回転駆動されるねじ軸48とを備えている。この圧脈波検出プローブ36は、センサハウジング42の開口端が頸部38の体表面50に対向する状態で頸部38に装着されている。
【0015】
上記センサハウジング42の内部には、ダイヤフラム52を介して圧脈波センサ54が相対移動可能かつセンサハウジング42の開口端からの突出し可能に設けられており、これらセンサハウジング42およびダイヤフラム52等によって圧力室56が形成されている。この圧力室56内には、図1に示すように、空気ポンプ58から調圧弁60を経て圧力の高い空気が供給されるようになっており、これにより、圧脈波センサ54は圧力室56内の圧力に応じた押圧力で前記体表面50に押圧させられる。
【0016】
上記センサハウジング42およびダイヤフラム52は、圧脈波センサ54を頸動脈46に向かって押圧する押圧装置62を構成しており、上記ねじ軸48および図示しないモータは、圧脈波センサ54が体表面50に向かって押圧させられる押圧位置を、頸動脈46の幅方向に移動させる幅方向移動装置64を構成している。
【0017】
上記圧脈波センサ54の押圧面66には、多数の半導体感圧素子(以下、感圧素子という)Eが、頸動脈46の幅方向すなわちねじ軸48と平行な圧脈波センサ54の移動方向において、その頸動脈46の直径よりも長くなるように、且つ一定の間隔で配列されており、たとえば、図4に示すように、配列間隔が0.6mm程度とされた15個の感圧素子E(a)、E(b)、…E(o)が配列されている。
【0018】
このように構成された圧脈波検出プローブ36が、頸部38の体表面50の頸動脈46上に押圧されると、圧脈波センサ54により、頸動脈46から発生して体表面50に伝達される圧脈波(頸動脈波wc)が検出され、その頸動脈波wcを表す圧脈波信号SM2が、図1に示すように、A/D変換器68を介して電子制御装置32へ供給される。
【0019】
心音マイク70は、図示しない被測定者の胸部上に図示しない粘着テープ等により固着される。心音マイク70は、心拍同期信号である心音を検出する心拍同期信号検出装置であり、心音マイク70の図示しない内部に備えられている圧電素子において、被測定者の心臓から発生する心音等が電気信号すなわち心音信号SHに変換される。心音信号増幅器72には、心音の高音成分をよく記録するためにエネルギーの大きい低音成分を弱める図示しない4種類のフィルタが備えられており、心音信号増幅器72では、心音マイク70から供給される心音信号SHが、増幅され且つろ波された後に、図示しないA/D変換器を介して電子制御装置32へ出力される。
【0020】
入力装置74は、患者の身長Tが入力されるための図示しない複数の数字入力キーを備えており、入力された患者の身長Tを表す身長信号STを電子制御装置32へ供給する。
【0021】
電子制御装置32は、CPU76、ROM78、RAM80、および図示しないI/Oポート等を備えた所謂マイクロコンピュータにて構成されており、CPU76は、ROM78に予め記憶されたプログラムに従ってRAM80の記憶機能を利用しつつ信号処理を実行することにより、I/Oポートから駆動信号を出力して空気ポンプ24、58および調圧弁18、60を制御する。CPU76は、それら空気ポンプ24、58および調圧弁18、60を制御することにより、カフ圧PCおよび圧力室56内の圧力を制御する。また、CPU76は、電子制御装置32に供給される信号に基づいて、上腕血圧値BBP、頸部血圧値CBP、および心臓と頸部38との間の脈波伝播速度PWVを決定し、その頸部血圧値CBPと脈波伝播速度PWVから血流量を推定するための後述する二次元グラフ106などを、出力装置として機能する表示器82に表示する。
【0022】
図5は、電子制御装置32の制御機能の要部を示す機能ブロック線図である。カフ圧制御手段84は、後述する上腕血圧値決定手段86からの指令信号に従って、静圧弁別回路26から供給されるカフ圧信号SCに基づいてカフ圧PCを判断しつつ、空気ポンプ24および調圧弁18を制御して、カフ圧PCを以下のように制御する。すなわち、カフ圧PCを上腕部14における最高血圧値よりも高い所定の昇圧目標圧力値PCM(たとえば180mmHg)まで急速昇圧させ、その後、カフ圧PCを3mmHg/sec程度の速度で徐速降圧させる。そして、上腕最低血圧値BBPDIAが決定された後にカフ圧PCを大気圧まで排圧する。
【0023】
上腕血圧値決定手段86は、カフ圧制御手段84によるカフ圧PCの徐速降圧過程において静圧弁別回路26から逐次供給されるカフ圧信号SCおよび脈波弁別回路28から逐次供給されるカフ脈波信号SM1に基づいて、よく知られたオシロメトリックアルゴリズムを用いて上腕最高血圧値BBP(SYS)、上腕平均血圧値BBP(MEAN)および上腕最低血圧値BBP(DIA)を決定する。
【0024】
最大圧力検出素子決定手段88は、圧脈波センサ54に備えられた複数の半導体感圧素子Eのうち、最大圧力を出力する最大圧力検出素子EMを決定する。すなわち、上記複数の半導体感圧素子Eからそれぞれ出力される複数の圧脈波のうち、ピーク強度が最大となるものを決定し、その最大ピークを出力する半導体感圧素子Eを最大圧力検出素子EMに決定する。この最大圧力検出素子EMは、頸動脈46の真上に位置する半導体感圧素子Eである。
【0025】
最適押圧位置制御手段90は、圧脈波センサ54の初回の装着時など、上記最大圧力検出素子EMの配列位置が、配列の端を基準として、それから所定数または所定距離内側までに位置するものであることを条件とする押圧位置更新条件が成立した場合には、以下の押圧位置更新作動を実行する。すなわち、押圧位置更新作動は、圧脈波センサ54を体表面50から一旦離隔させるとともに、幅方向移動装置64により押圧装置62および圧脈波センサ54を所定距離移動させた後、押圧装置62により圧脈波センサ54を比較的小さい予め設定された第1押圧力HDP1で押圧させ、その状態で再び上記押圧位置更新条件が成立するか否かを判断し、押圧位置更新条件が成立しなくなるまで、より好ましくは、前記最大圧力検出素子EMが配列位置の略中央に位置するまで上記の作動および判断を実行する。なお、上記押圧位置更新条件における配列の端からの所定数または所定距離は、圧脈波センサ54により押圧される動脈(本実施例では頸動脈46)の直径に基づいて決定され、たとえば、その直径の1/4に設定される。
【0026】
押圧力制御手段92は、圧脈波センサ54が最適押圧位置制御手段90により最適押圧位置に位置させられた後、押圧装置62による圧脈波センサ54の押圧力HDP(Hold Down Pressure)を、所定の押圧力範囲内で拍動に対応して逐次変化させ、或いは所定の押圧力範囲内を比較的緩やかな一定速度で連続的に変化させる。そして、その押圧力HDPの変化過程において次述する押圧力判定手段94により圧脈波センサ54の押圧力HDPが適切であると判断された場合には、その押圧力HDPを最適押圧力HDPOに決定し、押圧装置62の押圧力をその最適押圧力HDPOに維持する。
【0027】
押圧力判定手段94は、前記最大圧力検出素子決定手段88によって決定された最大圧力検出素子EMにより検出される圧脈波、およびその最大圧力検出素子EMから所定距離だけ配列の端側に位置する半導体感圧素子E(以下、この半導体感圧素子Eを比較素子ECという)により検出される圧脈波とに基づいて、圧脈波センサ54の押圧力HDPの適否を判定する。すなわち、最大圧力検出素子EMにより圧脈波の所定部位が検出された時点と、同じ部位が比較素子ECにより検出された時点との時間差ΔTに基づいて、圧脈波センサ54の押圧力HDPの適否を判定する。上記所定部位としては、立ち上がり点、ピーク、ダイクロティックノッチ等を用いることができる。
【0028】
ここで、上記時間差ΔTによって圧脈波センサ54の押圧力HDPの適否が判定できる理由を説明する。図6は、最大圧力検出素子EMによって検出された圧脈波(実線)と、血管壁が偏平になっていない部分の真上に位置する半導体感圧素子E(x)によって検出された圧脈波(2点鎖線)とを示す図である。なお、上記最大圧力検出素子EMおよび上記半導体感圧素子E(x)と頸動脈46との関係を図7に示す。図6に示すように、半導体感圧素子E(x)によって検出される圧脈波は、最大圧力検出素子EMによって検出される圧脈波よりも位相が遅れている。これは、血管壁が平らになっている部分では血管壁の粘弾性の影響を受けないが、血管壁が平らになっていない部分では血管壁の粘弾性の影響を受けるためである。また、このことから、半導体感圧素子E(x)によって検出される圧脈波の位相が、最大圧力検出素子EMによって検出される圧脈波の位相に対して遅れていないか、遅れているとしてもその遅れが比較的小さい場合には、半導体感圧素子E(x)は血管壁が略偏平になっている部分の真上に位置している(すなわち血管壁の一部が略偏平になっている)と言える。
【0029】
従って、最大圧力検出素子EMにより圧脈波の所定部位が検出された時点と、同じ部位が比較素子ECにより検出された時点との時間差ΔTが、予め実験に基づいて決定された上限時間TH1以下であれば、頸動脈46は圧脈波センサ54からの押圧によって血管壁の一部が略平坦になっている状態である、すなわち、圧脈波センサ54の押圧力HDPは適切であると判定できるのである。なお、最大圧力検出素子EMと比較素子ECとの間の距離は、血管の直径よりも短い距離(たとえば血管の1/5)となるような距離に予め設定されている。
【0030】
頸部血圧値決定手段96は、まず、圧脈波センサ54の押圧力HDPが押圧力判定手段94により適切であると判定された状態で、最大圧力検出素子EMにより検出される圧脈波信号SM2を用いて、頸動脈波wcの単位区間における大きさの最低値a、面積重心値b、最高値cをそれぞれ決定する。ここで、単位区間は、たとえば、一拍分、数拍分など脈拍を単位として設定されるか、あるいは、数秒、数十秒など時間を単位として設定される。また、面積重心値bは頸動脈波wcの一脈波における大きさの平均値であり、たとえば、一拍分の頸動脈波wcの大きさを積分して、その積分値をそのときの脈拍周期Tで割ることによって求める。
そして、仰臥位では、上腕最低血圧値BBP(DIA)および上腕平均血圧値BBP(MEAN)は、それぞれ、頸部最低血圧値CBP(DIA)および頸部平均血圧値CBP(MEAN)とほぼ一致するという事実に基づいて、それら上腕最低血圧値BBP(DIA)と上腕平均血圧値BBP(MEAN)、および、上記頸動脈波wcの最低値aと面積重心値bから、図8に示す、頸動脈波wcの大きさと頸部血圧値CBPとの対応関係を表す直線Lを決定する。
さらに、その直線Lおよび前記頸動脈波wcの最大値cから頸部最高血圧値CBP(SYS)を決定する。なお、本実施例では、この頸部最高血圧値CBP(SYS)が血圧情報であり、頸部血圧値決定手段96が血圧情報決定手段として機能する。また、本実施例では、圧脈波検出プローブ36、カフ12、上腕血圧値決定手段86、および頸部血圧値決定手段96により血圧測定装置が構成される。
【0031】
脈波伝播速度算出手段98は、押圧力制御手段92により圧脈波センサ54の押圧力HDPが再適応圧力HDPOに維持されている状態で、心音マイク70により逐次検出される心音信号SHと、圧脈波センサ54の最大圧力検出素子EMにより逐次検出される圧脈波信号SM2とを用いて、心音信号SHが表す心音波形において周期的に繰り返す所定部位が検出された時間と、圧脈波信号SM2が表す頸動脈波wcにおいて上記心音波形の所定部位に対応する部位が検出された時間との時間差を算出する。この時間差は、心臓から頸部38までを脈波が伝播する脈波伝播時間DT(msec)を意味する。
さらに、脈波伝播速度算出手段98は、入力装置74から供給される患者の身長Tを、身長Tと伝播距離dとの間の予め記憶された関係である式1に代入することにより、心臓と頸部38との間の伝播距離dを求め、得られた伝播距離dと上記脈波伝播時間DTとを式2に代入することにより、脈波伝播速度PWV(cm/sec)を算出する。なお、本実施例では、この脈波伝播速度PWVが動脈硬化情報であり、脈波伝播速度情報算出手段98が動脈硬化情報決定手段として機能する。
(式1) d=αT+β
(α,βは、実験に基づいて決定された定数)
(式2) PWV=d/DT
【0032】
グラフ出力手段100は、表示器82に、たとえば図9に示すような脈波伝播速度軸102と頸部最高血圧値軸104を有する二次元グラフ106を表示し、その二次元グラフ106上に、脈波伝播速度算出手段96により算出された心臓から頸部38までの脈波伝播速度PWVと、頸部血圧値決定手段94により決定された頸部最高血圧値CBP(SYS)を表す一つの印108を表示する。
【0033】
また、グラフ出力手段100により表示される二次元グラフ106には、脈波伝播速度PWVが大きく(速く)なるほど血流量小さく(少なく)なること、および頸部最高血圧値CBP(SYS)が高くなるほど血流量が大きく(多く)なることが示されている。この二次元グラフ106に示されているように、脈波伝播速度PWVが大きくなるほど血流が小さくなり、頸部最高血圧値CBP(SYS)が高くなるほど血流量が大きくなるといえるのは、血管系を電気回路に置き換えると、動脈硬化度の指標である脈波伝播速度PWVはインピーダンスであり、脈波伝播速度PWVが速いほどインピーダンスが大きくなり、また、血圧は電圧に相当するので、オームの法則から、電流に相当する血流量は、血圧に比例し、脈波伝播速度PWVに反比例するという関係が導けるからである。
【0034】
このように、脈波伝播速度PWVおよび頸部最高血圧値CBP(SYS)に対する血流量の変化が示されている二次元グラフ106に、脈波伝播速度算出手段96により実際に算出された脈波伝播速度PWVおよび頸部血圧値決定手段94により実際に決定された頸部最高血圧値CBP(SYS)を示す印108が示されると、二次元グラフ106におけるその印108の位置から、頸部38の血流量、すなわち脳への血流量を推定することができる。
【0035】
図10および図11は、図5に示した電子制御装置32の制御機能をさらに具体化し、フローチャートにして示す図である。なお、このフローチャートは、入力装置74から患者の身長Tを表す身長信号STが予め供給されていることを条件として、図示しないスタートボタンの操作により開始される。
【0036】
図10において、押圧力制御手段92に相当するステップS1(以下、ステップを省略する。)では、押圧装置62により圧力室56内の圧力が制御されることにより、圧脈波センサ54の押圧力HDPが予め設定された第1押圧力HDP1とされる。上記第1押圧力HDP1は、一般的な最適押圧力HDPOよりも十分低い値であり、且つ、各半導体感圧素子Eからの圧脈波信号SM2に基づいてそれぞれの圧脈波のピーク強度が精度よく決定できる程度の大きさとして、予め実験に基づいて決定されている。
【0037】
続いて最大圧力検出素子決定手段88に相当するS2が実行される。S2では、各半導体感圧素子Eから圧脈波信号SM2が一拍分読み込まれ、それら圧脈波信号SM2が表す圧脈波のピーク強度がそれぞれ決定される。そして、最大ピーク強度を出力した半導体感圧素子Eが最大圧力検出素子EMに決定される。
【0038】
続いて最適押圧位置制御手段90に相当するS3乃至S4が実行される。まず、S3では、最大圧力検出素子EMの配列位置が、配列の端から所定数または所定距離内側までに位置するものであるかを条件とする押圧位置更新条件(APS起動条件)が成立したか否かが判断される。この判断が否定された場合には、後述するS5以降が実行される。
【0039】
一方、S3の判断が肯定された場合、すなわち、圧脈波センサ54の頸動脈46に対する装着位置が不適切である場合には、続くS4において、APS制御ルーチンが実行される。このAPS制御ルーチンは、最大圧力検出素子EMが感圧素子Eの配列の略中央位置となる最適押圧位置を決定するため、圧脈波センサ54を一旦体表面50から離隔させ、幅方向移動装置64により押圧装置62および圧脈波センサ54を所定距離移動させた後、押圧装置62により圧脈波センサ54を再び前記第1押圧力HDP1で押圧させ、その状態において最大圧力検出素子EMが配列の略中央位置にある感圧素子Eであるか否かが判断され、この判断が肯定されるまで上記作動が繰り返し実行される。
【0040】
上記S4において圧脈波センサ54の押圧位置が最適押圧位置に制御されると、続いて、最大圧力検出素子決定手段88に相当するS5において、前記S2と同様にして最大圧力検出素子EMが再び決定され、且つ、その最大圧力検出素子EMの両隣に位置する半導体感圧素子Eが比較素子ECに決定される。
【0041】
続いて押圧力判定手段94に相当するS6乃至S9が実行される。まずS6では、各半導体感圧素子Eから供給される圧脈波信号SM2が、所定のサンプリング周期Ts毎に一拍分読み込まれる。そして、続くS7では、上記S6において読み込まれた圧脈波信号SM2のうち最大圧力検出素子EMから供給された圧脈波信号SM2が示す圧脈波について、その振幅の増加率が最も大きくなる点が立ち上がり点に決定され、且つその立ち上がり点の発生時点が基準時間Tstに決定される。さらに、前記S5で決定された2つの比較素子ECから供給される圧脈波信号SM2についても同様にして立ち上がり点がそれぞれ決定され、且つその立ち上がり点の発生時間が比較時間Tcoに決定される。
【0042】
続くS8では、上記S7で決定された基準時間Tstと比較時間Tcoとの時間差ΔTが算出される。なお、この時間差ΔTは絶対値として算出される。続くS9では、上記S8で算出された時間差ΔTが、前記サンプリング周期Tsの1倍乃至3倍程度に設定された上限時間TH1よりも小さいか否かが判断される。なお、比較素子ECは2つ設定されており、時間差ΔTも2つ算出されるので、S9では、2つの時間差ΔTとも上限時間TH1よりも小さい場合に判断が肯定されたと判断されることが好ましいが、いずれか一方の時間差ΔTのみが上限時間TH1よりも小さい場合に判断が肯定されたと判断されてもよい。
【0043】
上記S9の判断が否定された場合には、押圧力制御手段92に相当するS10において、押圧装置62による圧脈波センサ54の押圧力HDPが所定値増加させられた後、再び前記S6以下が実行される。一方、前記S9の判断が肯定された場合には、圧脈波センサ54の押圧力HDPが適切である場合なので、続くS11において、最大圧力検出素子EMから供給される圧脈波信号SM2、および心音マイク70から心音信号増幅器72を介して供給される心音信号SHが前記サンプリング周期Ts毎に一拍分読み込まれる。
【0044】
続いて、脈波伝播速度算出手段98に相当するS12乃至S14が実行される。S12では、S11で読み込まれた心音信号SHおよび圧脈波信号SM2がそれぞれ表す心音波形および頸動脈波wcから、心音のII音の開始点および頸動脈波wcのノッチがそれぞれ決定される。そして、その心音のII音の開始点の発生時間と頸動脈波wcのノッチの発生時間との時間差が、脈波伝播時間DTとして算出される。続くS13では、予め供給されている患者の身長Tが、前記式1に代入されることにより伝播距離dが算出され、続くS14では、S12で算出された脈波伝播時間DTおよび上記S13で算出された伝播距離dが、前記式2に代入されることにより脈波伝播速度PWVが算出される。
【0045】
続くS15では、調圧弁18が制御されることにより、カフ圧PCの急速昇圧が開始される。そして、S16では、カフ圧PCが180mmHgに設定された昇圧目標圧力値PCMを超えたか否かが判断される。このS16の判断が否定されるうちは、S16の判断が繰り返し実行され、カフ圧PCの急速昇圧が継続される。一方、S16の判断が肯定された場合には、S17において、空気ポンプ24が停止させられ、且つ、調圧弁18が制御されることにより、カフ圧PCの3mmHg/sec程度での徐速降圧が開始される。
【0046】
続いて上腕血圧値決定手段86に相当するS18乃至S19が実行される。S18では、カフ圧PCの徐速降圧過程で逐次得られるカフ脈波信号SM1が表す上腕脈波の振幅の変化に基づいて、良く知られたオシロメトリック方式の血圧値決定アルゴリズムに従って上腕最高血圧値BBP(SYS)、上腕平均血圧値BBP(MEAN)および上腕最低血圧値BBP(DIA)が決定される。続くS19では、上記S18において上腕血圧値BBPの決定が完了したか否かが判断される。
【0047】
上記S19の判断が否定されるうちは、S18が繰り返し実行され、血圧値決定アルゴリズムが継続される。そして血圧値決定アルゴリズムの継続によりS19の判断が肯定された場合には、続くS20において、調圧弁18が制御されることによりカフ圧PCが大気圧まで排圧される。本フローチャートではS15乃至S17およびS20がカフ圧制御手段84に相当する。
【0048】
続いて、頸部血圧値決定手段96に相当するS21乃至S23が実行される。まず、S21では、図10のS11で読み込まれた圧脈波信号SM2すなわち頸動脈波wcの最小値a、最大値cが決定されるとともに、そのS11でサンプリング周期Ts毎に読み込まれた一拍分の圧脈波信号SM2の平均値が算出されることにより、頸動脈波wcの面積重心値bも算出される。
【0049】
そして、続くS22では、上記S21で決定された頸動脈波wcの最小値aおよび面積重心値bが、前記S18乃至S19で決定された上腕最低血圧値BBP(DIA)および上腕平均血圧値BBP(MEAN)と対応させられて、たとえば前述の図8に示すような、頸動脈波wcの大きさと頸部血圧値CBPとの間の対応関係が決定される。そして、続くS23では、S22で決定された対応関係と前記S21で決定された頸動脈波wcの最大値cから、頸部最高血圧値CBP(SYS)が決定される。
【0050】
続くS24はグラフ出力手段100に相当し、脈波伝播速度軸102と頸部最高血圧値軸104を有し、脈波伝播速度PWVおよび頸部最高血圧値CBP(SYS)の大きさに対応して血流量の程度が示された二次元グラフ106が、表示器82に表示され、且つ、その二次元グラフ106に、前記S14で算出された脈波伝播速度PWVおよびS23で算出された頸部最高血圧値CBP(SYS)を示す印108が表示される。
【0051】
上述の実施例によれば、頸部血圧値決定手段96(S21乃至S23)により、上腕部14における上腕血圧値BBPおよび頸部38において検出された頸動脈波wcから頸部最高血圧値CBP(SYS)が決定され、脈波伝播速度算出手段98(S12乃至S14)により、その頸動脈波wcおよび心音から、頸動脈46の硬化に関連する情報として脈波伝播速度PWVが決定され、グラフ出力手段100(S24)により、表示器82に、頸部最高血圧値軸104と脈波伝播速度軸102とを有し、頸部最高血圧値CBP(SYS)および脈波伝播速度PWVの変化に従って血流量が変化することが示された二次元グラフ106が表示され、且つ、その二次元グラフ106に、頸部血圧値決定手段96(S21乃至S23)によって決定された頸部最高血圧値CBP(SYS)および脈波伝播速度算出手段98(S12乃至S14)により算出された脈波伝播速度PWVを示す印108が示されることから、その印108が二次元グラフ106のどの位置に示されているかを判断することにより、頸部38の血流量を推定することができる。従って、上腕部14において測定される上腕血圧値BBP、頸部38において検出される頸動脈波wcおよび心音に基づいて頸部38の血流量を推定することができ、これら上腕血圧値BBP、頸動脈波wc、心音の測定は比較的簡単であることから、簡便に頸部38の血流量を推定することができる。
【0052】
以上、本発明の一実施形態を図面に基づいて説明したが、本発明は他の態様においても適用される。
【0053】
たとえば、前述の実施例では、血流量を推定する部位は頸部38であったが、上腕14、足首、大腿部など、血流量が推定される部位が頸部38以外であってもよい。
【0054】
また、前述の実施例では、血圧情報として最高血圧値を用いていたが、最低血圧値、平均血圧値、脈圧(最高血圧値と最低血圧値との差)が血圧情報として用いられてもよい。また、頸部など第1の部位において血圧が決定されるとともに、上腕などの第2の部位でも血圧が決定され、第1の部位における血圧と第2の部位における血圧との差が血圧情報とされてもよい。
【0055】
また、前述の実施例では、脈波伝播速度PWVが動脈硬化情報として用いられていたが、脈波の進行波成分に対する反射波成分の割合を表し、反射波成分のピーク発生時点における脈波の大きさから進行波成分のピーク発生時点における脈波の大きさを引いた圧力差ΔPを、脈圧PPで割ることにより算出される振幅増加指数AIも、動脈硬化に関連する情報として知られていることから、振幅増加指数AIが動脈硬化情報として用いられてもよい。なお、振幅増加指数AIの決定において、進行波成分のピーク発生時点としては、たとえば、検出される脈波においてピークまでの変曲点あるいは極大点を用い、反射波成分のピーク発生時点としては、たとえば、進行波成分のピーク以降における最初の極大点の発生時点を用いる。
【0056】
以上、本発明の実施例を図面に基づいて詳細に説明したが、これはあくまでも一実施形態であり、本発明は当業者の知識に基づいて種々の変更、改良を加えた態様で実施することができる。
【図面の簡単な説明】
【図1】本発明が適用された血流量推定装置の回路構成を示すブロック図である。
【図2】図1の血流量推定装置に備えられた圧脈波検出プローブが、頸部に装着された状態を示す図である。
【図3】図2の圧脈波検出プローブを一部切り欠いて説明する拡大図である。
【図4】図3の圧脈波センサの押圧面に配列された感圧素子の配列状態を説明する図である。
【図5】図1の電子制御装置の制御機能の要部を示す機能ブロック線図である。
【図6】最大圧力検出素子EMによって検出された圧脈波(実線)と、血管壁が偏平になっていない部分の真上に位置する半導体感圧素子E(x)によって検出された圧脈波(2点鎖線)とを示す図である。
【図7】最大圧力検出素子EMおよび半導体感圧素子E(x)と頸動脈との関係を示す図である。
【図8】図5の頸部血圧値決定手段により決定される、頸動脈波wcの大きさと頸部血圧値CBPとの対応関係を示す図である。
【図9】図5のグラフ出力手段により出力される二次元グラフの一例を示す図である。
【図10】図5に示した電子制御装置の制御機能をさらに具体化し、フローチャートにして示す図である。
【図11】図5に示した電子制御装置の制御機能をさらに具体化し、フローチャートにして示す図である。
【符号の説明】
10:血流量推定装置
12:カフ
36:圧脈波検出プローブ(頸動脈波検出装置)
70:心音マイク(心拍同期信号検出装置)
82:表示器(出力装置)
86:上腕血圧値決定手段
96:頸部血圧値決定手段(血圧情報決定手段)
98:脈波伝播速度算出手段(動脈硬化情報決定手段)
100:グラフ出力手段
102:脈波伝播速度軸
104:頸部最高血圧値軸
106:二次元グラフ
108:印

Claims (3)

  1. 生体の所定部位における血圧値を非侵襲に測定する血圧測定装置と、
    該血圧測定装置により測定された血圧値に基づいて、前記所定部位の血圧の大きさを表す血圧情報を決定する血圧情報決定手段と、
    前記所定部位において前記生体の脈波を検出する脈波検出装置と、
    該脈波検出装置により検出された脈波に基づいて、動脈の硬化に関連する動脈硬化情報を決定する動脈硬化情報決定手段と、
    出力装置と、
    該出力装置に、血圧情報軸と動脈硬化情報軸とを有し、血圧情報および動脈硬化情報の変化に従って血流量が変化することが示されたグラフであって、前記血圧情報決定手段により決定された血圧情報および前記動脈硬化情報決定手段により決定された動脈硬化情報を示す印が示されているグラフを出力するグラフ出力手段と
    を含むことを特徴とする血流量推定装置。
  2. 請求項1に記載の血流量推定装置であって、
    前記血圧測定装置は、
    前記生体の頸部に押圧させられて、頸動脈からの圧脈波を検出する頸動脈波検出装置と、
    前記生体の上腕部に装着されるカフと、
    前記カフの圧迫圧力を徐速変化させる過程で前記生体から検出される心拍同期信号に基づいて、上腕血圧値を決定する上腕血圧値決定手段と、
    前記頸動脈波検出装置により検出された頸動脈波の最小値、面積重心値、最大値、および前記上腕血圧値決定手段により決定された上腕血圧値から、頸部血圧値を決定する頸部血圧値決定手段とを含み、
    前記脈波検出装置は、該血圧測定装置の頸動脈波検出装置であることを特徴とする血流量推定装置。
  3. 請求項1乃至2に記載の血流量推定装置であって、
    前記脈波検出装置とは異なる部位において前記生体から心拍同期信号を検出する心拍同期信号検出装置をさらに備え、
    前記動脈硬化情報決定手段は、前記脈波検出装置により検出される脈波および前記心拍同期信号検出装置により検出される心拍同期信号に基づいて、前記動脈硬化情報として、前記生体内を脈波が伝播する速度に関連する脈波伝播速度情報を決定するものであることを特徴とする血流量推定装置。
JP2003053641A 2003-02-28 2003-02-28 血流量推定装置 Expired - Fee Related JP3683257B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003053641A JP3683257B2 (ja) 2003-02-28 2003-02-28 血流量推定装置
US10/780,734 US20040171941A1 (en) 2003-02-28 2004-02-19 Blood flow amount estimating apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003053641A JP3683257B2 (ja) 2003-02-28 2003-02-28 血流量推定装置

Publications (2)

Publication Number Publication Date
JP2004261321A JP2004261321A (ja) 2004-09-24
JP3683257B2 true JP3683257B2 (ja) 2005-08-17

Family

ID=32905780

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003053641A Expired - Fee Related JP3683257B2 (ja) 2003-02-28 2003-02-28 血流量推定装置

Country Status (2)

Country Link
US (1) US20040171941A1 (ja)
JP (1) JP3683257B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3858848B2 (ja) * 2003-04-15 2006-12-20 オムロンヘルスケア株式会社 脈波測定装置および脈波測定装置制御プログラム
EP1706030B1 (en) * 2003-12-17 2013-07-03 Atcor Medical Pty Ltd Method and apparatus for determination of central aortic pressure
JP2006296888A (ja) * 2005-04-22 2006-11-02 Fukuda Denshi Co Ltd 生体情報出力装置及び方法並びに生体情報レポート
CN100518634C (zh) * 2006-06-05 2009-07-29 中国科学院力学研究所 一种测量脉搏波速度的装置和方法
US9265480B2 (en) * 2008-10-02 2016-02-23 Seog San Hyeon Cerebrovascular analyzer
KR101081659B1 (ko) * 2010-01-29 2011-11-09 이병훈 병명이 표시되는 혈압기
EP2585227B1 (en) 2010-06-24 2022-02-09 CVR Global, Inc. Sensor, sensor pad and sensor array for detecting infrasonic acoustic signals
US11413653B2 (en) 2010-06-24 2022-08-16 Cvr Global, Inc. Sensor, sensor pad and sensor array for detecting infrasonic acoustic signals
JP2012139286A (ja) * 2010-12-28 2012-07-26 Omron Healthcare Co Ltd 血圧測定装置
CA2991057A1 (en) * 2015-07-01 2017-01-05 California Institute Of Technology Heart sound and pulse waveform acquisition and analysis
CN110960199B (zh) * 2019-12-24 2022-05-27 中国人民解放军陆军军医大学第一附属医院 一种双变量测量动脉硬化程度的系统
CN111248885A (zh) * 2020-02-25 2020-06-09 深圳乐普智能医疗器械有限公司 一种上臂肱动脉的分析方法及装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3580925B2 (ja) * 1995-12-22 2004-10-27 コーリンメディカルテクノロジー株式会社 生体の循環機能評価装置
US6565515B2 (en) * 1999-05-06 2003-05-20 Colin Corporation Pulse-wave-propagation-velocity-relating-information obtaining apparatus and blood-pressure-index measuring apparatus
JP3140007B2 (ja) * 1999-05-06 2001-03-05 日本コーリン株式会社 下肢上肢血圧指数測定装置
JP2003126054A (ja) * 2001-10-29 2003-05-07 Nippon Colin Co Ltd 動脈硬化度評価装置
JP2004016746A (ja) * 2002-06-20 2004-01-22 Nippon Colin Co Ltd 循環動態評価装置
JP2004016745A (ja) * 2002-06-20 2004-01-22 Nippon Colin Co Ltd 血圧決定装置

Also Published As

Publication number Publication date
JP2004261321A (ja) 2004-09-24
US20040171941A1 (en) 2004-09-02

Similar Documents

Publication Publication Date Title
JP3602880B2 (ja) 末梢循環状態監視装置
JP3400417B2 (ja) 中枢動脈圧波形推定装置
JP3675764B2 (ja) 動脈硬化検査装置
JP3578727B2 (ja) 血圧波形モニタ装置
JP3587837B2 (ja) 動脈硬化度評価装置
JP3426577B2 (ja) 自動血圧測定装置
EP1374761A2 (en) Blood-pressure determining apparatus
JP2000333910A (ja) 心機能監視装置
JP3631979B2 (ja) 心機能評価機能付き血圧測定装置
JP2000333911A (ja) 心機能監視装置
JP3683257B2 (ja) 血流量推定装置
JP3643562B2 (ja) 脈波伝播速度測定装置
JP2003235816A (ja) 圧脈波検出装置
JP3829220B2 (ja) 心機能監視装置
JP4314710B2 (ja) 動脈硬化評価装置
JP3538409B2 (ja) 動脈硬化度評価装置
JP3675586B2 (ja) 大動脈圧波形検出装置
JPH07284479A (ja) 連続血圧監視装置
JP3662683B2 (ja) 心拍出量推定装置
JPH08257002A (ja) 脈波伝播速度測定装置
JP3616074B2 (ja) 動脈硬化評価装置
JPH08256999A (ja) 生体情報監視装置
JP3975604B2 (ja) 動脈硬化度測定装置
JPH10201724A (ja) 自動血圧測定装置
JP2000245702A (ja) 圧脈波検出装置

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees