JP2015164278A - 撮像装置、撮像装置の駆動方法、撮像システム - Google Patents

撮像装置、撮像装置の駆動方法、撮像システム Download PDF

Info

Publication number
JP2015164278A
JP2015164278A JP2014043112A JP2014043112A JP2015164278A JP 2015164278 A JP2015164278 A JP 2015164278A JP 2014043112 A JP2014043112 A JP 2014043112A JP 2014043112 A JP2014043112 A JP 2014043112A JP 2015164278 A JP2015164278 A JP 2015164278A
Authority
JP
Japan
Prior art keywords
signal
digital signal
memory
comparison
digital
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014043112A
Other languages
English (en)
Other versions
JP6478467B2 (ja
Inventor
隆 武藤
Takashi Muto
隆 武藤
橋本 誠二
Seiji Hashimoto
誠二 橋本
洋史 戸塚
Yoji Totsuka
洋史 戸塚
靖司 松野
Yasushi Matsuno
靖司 松野
吉田 大介
Daisuke Yoshida
大介 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2014043112A priority Critical patent/JP6478467B2/ja
Priority to US14/223,319 priority patent/US8981987B2/en
Priority to CN201410120858.1A priority patent/CN104079844B/zh
Publication of JP2015164278A publication Critical patent/JP2015164278A/ja
Application granted granted Critical
Publication of JP6478467B2 publication Critical patent/JP6478467B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/75Circuitry for providing, modifying or processing image signals from the pixel array
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • H04N23/76Circuitry for compensating brightness variation in the scene by influencing the image signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/76Addressed sensors, e.g. MOS or CMOS sensors
    • H04N25/78Readout circuits for addressed sensors, e.g. output amplifiers or A/D converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)
  • Analogue/Digital Conversion (AREA)

Abstract

【課題】各列毎にAD変換部を持つ撮像素子で、回路規模の増大を抑える。
【解決手段】ノイズ信号に対し、単位時間当たりの電位の変化量が互いに異なる第1の参照信号と第2の参照信号との一方ずつと比較し、光電変換信号に対し、第1の参照信号と第2の参照信号の一方と比較する比較器を有する撮像装置である。また、ノイズ信号に対し、ゲインが異なる第1のゲインと第2のゲインとの一方ずつで増幅したそれぞれの信号をAD変換し、光電変換信号を第1のゲインと第2のゲインの一方で増幅した信号をAD変換する。
【選択図】図2

Description

本発明は、画素が出力する画素信号をデジタル信号に変換するAD変換部を有する撮像装置、撮像システムに関する。
画素が出力する画素信号をデジタル信号に変換するAD変換部を有する撮像装置がある。特許文献1に記載の撮像装置では、AD変換部が画素列に対応して設けられている。また、特許文献1に記載の撮像装置では、画素はノイズ信号と、入射光を光電変換して得た光電変換信号とをそれぞれAD変換部に出力する。各列のAD変換部は、ノイズ信号と単位時間当たり第1の変化量で変化する第1の参照信号とを比較し、さらに、光電変換信号と第1の参照信号とを比較する第1比較器を有する。さらに各列のAD変換部は、ノイズ信号と単位時間当たり第1の変化量よりも変化量の大きい第2の変化量で電位が変化する第2の参照信号とを比較し、さらに、光電変換信号と第2の参照信号とを比較する第2比較器を有している。
特開2007−281987号公報
特許文献1に記載の撮像装置では、各列のAD変換部に第1比較器と第2比較器とを備えるため、回路規模が増大してしまう課題があった。
本発明は上記の課題を鑑みて為されたものであり、一の態様は、入射光に基づく光電変換信号を出力する画素を有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置であって、前記比較器は、第1、第2、第3の比較を行う比較器であって、
前記第1の比較は、前記アナログ信号出力部が出力するノイズ信号と、単位時間当たり第1の変化量で電位が変化する第1の参照信号との比較であり、前記第2の比較は、前記ノイズ信号と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号との比較であり、前記第3の比較は、前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づいて前記アナログ信号出力部が出力する信号との比較であり、前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置である。
また、別の態様は、入射光に基づく光電変換信号を出力する画素と、参照信号と入力ノードに与えられる信号とを比較する比較器を有するAD変換部とを有する撮像装置であって、
前記比較器は、第1、第2、第3の比較を行う比較器であって、前記第1の比較は、リセットされた前記比較器の前記入力ノードの電位と、単位時間当たり第1の変化量で電位が変化する第1の参照信号との比較であり、前記第2の比較は、リセットされた前記比較器の前記入力ノードの電位と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号との比較であり、前記第3の比較は、前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づく前記比較器の前記入力ノードの電位との比較であり、前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置である。
また、別の態様は、ノイズ信号と入射光に基づく光電変換信号を出力する画素と、前記ノイズ信号と前記光電変換信号とをそれぞれ増幅するゲイン部とを有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置であって、前記AD変換部は、第1、第2、第3のデジタル信号を生成し、前記第1のデジタル信号は、前記ゲイン部が前記ノイズ信号を第1のゲインで増幅した信号と、時間に依存して変化する参照信号とを、前記比較器が比較する第1の比較によって生成するデジタル信号であり、前記第2のデジタル信号は、前記ゲイン部が前記ノイズ信号を第2のゲインで増幅した信号と、前記参照信号とを、前記比較器が比較する第2の比較によって生成するデジタル信号であり、前記第3のデジタル信号は、前記ゲイン部が前記光電変換信号を前記第1または前記第2のゲインで増幅した信号と、前記参照信号とを、前記比較器が比較する第3の比較によって生成するデジタル信号であり、前記第2のゲインの絶対値は、前記第1のゲインの絶対値よりも小さいことを特徴とする撮像装置である。
また、別の態様は、入射光に基づく光電変換信号を出力する画素を有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置の駆動方法であって、前記アナログ信号出力部が出力するノイズ信号と、単位時間当たり第1の変化量で電位が変化する第1の参照信号とを前記比較器に比較させる第1の工程と、前記ノイズ信号と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号とを前記比較器に比較させる第2の工程と、前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づく信号とを前記比較器に比較させる第3の工程とを有することを特徴とする撮像装置の駆動方法である。
また、別の態様は、ノイズ信号と入射光に基づく光電変換信号を出力する画素と、前記ノイズ信号と前記光電変換信号とをそれぞれ増幅するゲイン部とを有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置の駆動方法であって、前記ゲイン部は、前記ノイズ信号を第1のゲインで増幅した第1の増幅ノイズ信号と、前記ノイズ信号を第2のゲインで増幅した第2の増幅ノイズ信号とを前記比較器に出力し、前記第1のゲインと前記第2のゲインは、所定の信号値の信号を前記第2のゲインで増幅した信号の振幅が、前記所定の信号値の信号を前記第1のゲインで増幅した信号よりも振幅が小さくなる関係であり、前記ゲイン部は、前記光電変換信号を、前記第1のゲインと前記第2のゲインとの一方で増幅した増幅光電変換信号を前記比較器に出力し、前記比較器は、第1、第2、第3の比較を行う比較器であって、前記第1の比較は、前記第1の増幅ノイズ信号と時間に依存して電位が変化する参照信号との比較であり、前記第2の比較は、前記第2の増幅ノイズ信号と前記参照信号との比較であり、前記第3の比較は、前記増幅光電変換信号と前記参照信号との比較であり、前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置の駆動方法である。
本発明によれば、AD変換部は、単位時間当たりの電位の変化量が互いに異なる第1、第2の参照信号の一方と光電変換信号との比較を行う。そして、第1、第2の参照信号の一方ずつとノイズ信号との比較を行う。このAD変換部を有する撮像装置を、AD変換部の回路規模の増大を低減しながら実現することができる。
異なる傾きの参照信号を用いた場合に生じるオフセットの一例を示した図 撮像装置の一例の図 画素の構成の一例の図 増幅部の構成の一例の図と、比較部の一部の構成の一例の図 撮像装置の動作の一例のタイミング図 撮像装置の一部の構成を示した図と、第2メモリの構成を示した図 カウンタの構成を示した図と、撮像装置の動作を示した図 撮像装置の動作を示した図 撮像装置の他の一例の図と、テスト信号供給部の一例の図 撮像装置の動作の他の一例のタイミング図と、入射光量とデジタル信号値との関係を示した図 撮像装置の他の構成を示した図 ゲイン選択回路と比較回路との構成を示した図 撮像装置の他の動作を示した図 撮像装置の一部の構成を示した図 撮像装置の他の動作を示した図と、撮像装置の他の動作を示した図 撮像装置の他の構成を示した図 撮像装置の他の動作を示した図 撮像システムの一例の模式図
まず、ノイズ信号に基づくデジタル信号と光電変換信号に基づくデジタル信号を、互いに異なる傾きの参照信号を用いて生成した場合に生じうるオフセットについて説明する。以下では、説明を簡易にするために、同じ信号値のアナログ信号を異なる傾きの参照信号でAD変換した形態を説明する。以下、図1(a)、図1(b)、図2を参照しながら説明する。
図2は後述する実施例1の撮像装置の模式図である。ここでは図2について、図1(a)、図1(b)に関わる構成を説明し、詳細については、実施例1の中で説明する。
図2に示した撮像装置100は、画素1が配された画素列と画素行のそれぞれが複数並んで配された画素部10を有している。
画素部10から出力された画素信号PIXOUTは、増幅部20に入力される。増幅部20は、画素信号PIXOUTを増幅した信号Out_Ampを比較回路301に出力する。比較回路301は、参照信号供給部25から出力される参照信号Vr1、Vr2と、信号Out_Ampを比較し、比較した結果を示す比較結果信号CMPをラッチ回路304に出力する。ラッチ回路304は、比較結果信号CMPの信号値の変化に応じて信号値が変化するラッチ信号LATCHをメモリ部50に出力する。カウンタ40は、クロック信号CLKを計数したカウント信号をメモリ部50に出力する。メモリ部50は、ラッチ信号LATCHの信号値が変化した時に、カウンタ40から出力されるカウント信号を保持する。
図1(a)は、信号Out_Ampを、参照信号Vr1,Vr2のそれぞれと比較した場合を示した模式図である。時刻t20に、参照信号供給部25は参照信号Vr1、Vr2の時間に依存した電位の変化を開始する。一方、カウンタ40は、参照信号Vr1、Vr2の電位の変化の開始から遅れて、時刻t21にクロック信号の計数動作を開始する。
信号Out_Ampを参照信号Vr2と比較する場合には、時刻t22に比較結果信号が変化する。信号Out_Ampを参照信号Vr1と比較する場合には、時刻t23に比較結果信号が変化する。時刻t24に、参照信号Vr1、Vr2の時間に依存した電位の変化が停止する。また、カウンタ40はクロック信号の計数動作を停止する。
まず、参照信号Vr1を用いてデジタル信号を生成する形態について説明する。参照信号Vr1が時間に依存した電位の変化を開始してから、比較結果信号CMPの信号値が変化するまでの期間L1は、
L1=t23−t20 (1)
である。カウンタ40がクロック信号の計数動作を開始してから、比較結果信号CMPの信号値が変化するまでの期間LS1は、
LS1=t23−t21 (2)
である。さらに、参照信号Vr2が時間に依存した電位の変化を開始してから、カウンタ40が動作を開始するまでの期間L0は、
L0=t21−t20 (3)
である。LS1をL1,L0を用いて表すと、
LS1=L1−L0 (4)
である。期間LS1に相当するカウント信号が、参照信号Vr1を用いて生成したデジタル信号である。
同様に、参照信号Vr2を用いてデジタル信号を生成する形態について説明する。参照信号Vr2が時間に依存した電位の変化を開始してから、比較結果信号CMPの信号値が変化するまでの期間L2は、
L2=t22−t20 (5)
である。カウンタ40がクロック信号の計数動作を開始してから、比較結果信号CMPの信号値が変化するまでの期間LS2は、
LS2=t22−t21 (6)
である。LS2をL2,L0を用いて表すと、
LS2=L2−L0 (7)
である。期間LS2に相当するカウント信号が、参照信号Vr2を用いて生成したデジタル信号である。
ここでは、参照信号Vr1の単位時間当たりの電位の変化量に対し、参照信号Vr2の単位時間当たりの電位の変化量が4倍であるとする。この場合、L1とL2は、
L1=4×L2 (8)
の関係が成り立つ。参照信号Vr2を用いて生成したデジタル信号を、参照信号Vr1を用いて生成した場合のデジタル信号に変換するには、参照信号Vr2を用いて生成したデジタル信号の信号値を4倍する処理を行う。よって、参照信号Vr2を用いて生成したデジタル信号の信号値を4倍して得られる信号は、期間LS2を4倍した期間に相当するカウント信号となる。
ここで、期間LS2を4倍した期間である4LS2を、LS1、L0を用いて表すと、
4LS2=4L2−4L0=L1−4L0=LS1−3L0 (9)
となる。
図1(a)では、同じ信号値の増幅部20の出力する信号を参照信号Vr1,Vr2を用いてそれぞれデジタル信号に変換している。従って、参照信号Vr2を用いて得たデジタル信号を4倍して得た信号値は、理想的には参照信号Vr1を用いて得たデジタル信号の信号値と一致する。しかし、(9)式に示したように、参照信号Vr1、Vr2の時間に依存した電位の変化の開始タイミングと、カウンタ40のクロック信号の計数の開始タイミングとの差があると、(9)式の3L0に相当するカウント信号のオフセットが発生する。
このオフセットを、図1(b)を用いて説明する。図1(b)では、後述する実施例1の補正を行わない場合の、DSP90が出力するデジタル信号について説明する。図1(b)は、横軸に画素1の光電変換部への入射光の光量を示し、縦軸に、DSP90が出力するデジタル信号の信号値を取っている。(X)は、参照信号Vr1を用いてデジタル信号を生成した場合、(Y)は、参照信号Vr2を用いてデジタル信号を生成した場合をそれぞれ示している。I−Lは、増幅部20の出力する信号と比較する参照信号Vrを参照信号Vr1とする領域である。I−Hは、増幅部20の出力する信号と比較する参照信号Vrを参照信号Vr2とする領域である。領域I−Lは、領域I−Hよりも入射光の光量が小さい領域である。入射光の光量が小さい時には、参照信号Vr1を用いることで、AD変換部110が、参照信号Vr2を用いる場合よりも高い分解能でAD変換を行うことができる。一方、入射光の光量が大きい時には、AD変換部110は参照信号Vr2を用いてAD変換を行う。これにより、比較回路301が参照信号Vr1を用いて時刻t20から時刻t24の期間に比較動作する形態に比して、同じ時刻t20から時刻t24の期間で比較可能なアナログ信号の信号範囲を大きくすることができる。図1(b)のIOはI−L、I−Hとの境界である。この境界IOの光量値において、3L0のオフセットが生じる。
以上のように、同じ信号値のアナログ信号を異なる傾きの参照信号を用いてAD変換した場合オフセットが生じる。このオフセットは、異なる信号値のアナログ信号を異なる傾きの参照信号を用いてAD変換した場合でも生じうる。つまり、ノイズ信号と光電変換信号と、のそれぞれに基づく信号Out_Ampの各々を、異なる傾きの参照信号でAD変換した場合にも生じうる。従って、異なる傾きの参照信号で生成した、光電変換信号に基づくデジタル信号と、ノイズ信号に基づくデジタル信号とを差し引いたデジタル信号にオフセットが含まれてしまう場合がある。
上記では、単位時間当たりの電位の変化量の異なる参照信号を用いて、信号レベルの異なる光電変換信号を異なるAD変換ゲインのいずれかでAD変換する場合を例に示した。異なるAD変換ゲインの生成手段として、光電変換信号に基づくアナログ信号に対して異なるゲインを掛けた場合においても、同様の原理で、光電変換信号に基づくデジタル信号と、ノイズ信号に基づくデジタル信号とを差し引いたデジタル信号にオフセットが生じる。
本明細書の一部の撮像装置では、同じAD変換ゲインを用いて生成した、光電変換信号に基づくデジタル信号と、ノイズ信号に基づくデジタル信号との差分処理を行う。また、本明細書の他の撮像装置では、増幅された光電変換信号と増幅されたノイズ信号とに対して、さらに同じ増幅率で増幅した信号を、それぞれAD変換して生成したデジタル信号同士で差分処理を行う。これにより以下の各実施例の撮像装置では、デジタル信号に含まれる、図1(a)、図1(b)を参照しながら説明したオフセットが低減できる。つまり、以下の各実施例の撮像装置は、ノイズ成分の少ないデジタル信号を得ることができる。
(実施例1)
以下、図面を参照しながら本実施例の撮像装置について説明する。
先述した図2について、さらに詳しく説明する。撮像装置100は、画素1が配された画素列と画素行のそれぞれが複数並んで配された画素部10を有している。画素1の各々は、垂直走査回路15の走査によって画素信号PIXOUTを、垂直信号線2を介して増幅部20に出力する。本実施例のアナログ信号出力部150は、画素1と増幅部20を有する。画素1は入射光を光電変換する光電変換部を有する。画素信号PIXOUTとは、画素のノイズ成分の信号と、入射光を光電変換して得た電荷に基づいて出力する光電変換信号とを含む。垂直走査回路15はタイミングジェネレータ(以下、TGと表記する)70から出力される信号に基づいて、画素1の行ごとの走査を行う。増幅部20は、画素信号PIXOUTを増幅して比較部30が有する比較回路301に出力する。増幅部20は、比較部30と画素1との間の電気的経路に設けられている。参照信号供給部25は複数の参照信号を各列の選択回路302に出力する。選択回路302は選択信号SELに基づいて、複数の参照信号から比較回路301に出力する参照信号Vrを選択する。選択信号SELは後述するフラグメモリ501が生成する信号である。また、選択回路302は、信号M1_En、M2_Enをそれぞれ第1メモリ502、第2メモリ503に出力する。比較回路301は、増幅部20が出力する信号と参照信号とを比較した結果を示す比較結果信号CMPをラッチ回路304に出力する。ラッチ回路304は、比較結果信号CMPの信号値の変化に応じて信号値が変化するラッチ信号LATCHをメモリ部50と選択回路302に出力する。メモリ部50はフラグメモリ501、第1メモリ502、第2メモリ503を有する。カウンタ40はクロック信号CLKを計数したカウント信号を、第1メモリ502、第2メモリ503に出力する。水平走査回路60は各列のフラグメモリ501、第1メモリ502、第2メモリ503が保持したデジタル信号を順次DSP90に出力させる。DSP90は、各列のフラグメモリ501、第1メモリ502、第2メモリ503から出力された信号を処理し、撮像装置の外部に信号を出力する。
図2に示した撮像装置では、各列のAD変換部110は、比較部30、メモリ部50を有している。また、各列のAD変換部110は、画素1の各列に対応して設けられている。
図3は、図2に示した画素1の構成を示したものである。画素1は、光電変換部101、MOSトランジスタ102、103、104、105を有している。MOSトランジスタ102の制御ノードには、垂直走査回路15から信号PTXが与えられる。垂直走査回路15が信号PTXをHighレベル(以下、Hレベルと表記する)とすると、光電変換部101が蓄積した電荷がMOSトランジスタ104の入力ノードに転送される。MOSトランジスタ104は、一方の主ノードに電源電圧SVDDが与えられている。MOSトランジスタ104は、MOSトランジスタ104の入力ノードの電位に基づく信号をMOSトランジスタ105に出力する。MOSトランジスタ105の制御ノードには、垂直走査回路15から信号PSELが与えられる。垂直走査回路15が信号PSELをHレベルとすると、MOSトランジスタ104の出力する信号が、垂直信号線2に出力される。MOSトランジスタ104は、垂直信号線2上に設けられた不図示の電流源とともに、ソースフォロワ回路を構成するようにしても良い。MOSトランジスタ103の制御ノードには、垂直走査回路15から信号PRESが与えられる。垂直走査回路15が信号PRESをHレベルとすると、MOSトランジスタ104の入力ノードの電位が電源電圧SVDDの電位に基づいてリセットされる。MOSトランジスタ104のリセットされた入力ノードの電位に基づいて、MOSトランジスタ104がMOSトランジスタ105を介して垂直信号線2に出力する信号が、画素1のノイズ成分の信号である。
図4(a)は、図2に示した増幅部20を示したものである。増幅部20は、差動アンプ201、容量素子C0、Cfb、スイッチ202を有している。差動アンプ201の反転入力ノードには、画素信号PIXOUTが容量素子C0を介して与えられる。差動アンプ201の非反転入力ノードは、電圧VC0Rが与えられている。差動アンプ201の出力ノードと反転入力ノードとの帰還経路に容量素子Cfbが設けられている。TG70が信号PC0RをHレベルとするとスイッチ202が導通状態となって差動アンプ201の出力ノードと反転入力ノードとの帰還経路が導通する。これによって、容量素子Cfbの保持する電荷と、差動アンプ201の反転入力ノードの電位とがリセットされる。差動アンプ201は、非反転入力ノードの電位に基づいて信号OUT_Ampを出力する。
図4(b)は、図2に示した比較部30のうち、比較回路301、ラッチ回路304について示したものである。比較回路301は、比較器3010、容量素子C1、C2、スイッチ3011,3012を有している。比較器3010の入力ノードINPには、参照信号Vr_CMPが容量素子C1を介して与えられる。参照信号Vr_CMPは、選択回路302によって選択される、参照信号Vr1,Vr2のいずれかである。比較器3010の入力ノードINNには、信号Out_Ampが容量素子C2を介して与えられる。TG70が信号PC0RをHighレベル(以下、Hレベルと表記する)とするとスイッチ3011,3012が共に導通状態となる。スイッチ3011が導通状態となることにより、比較器3010の出力ノードFBPと入力ノードINPの電位がリセットされる。また、スイッチ3012が導通状態となることにより、比較器3010の出力ノードFBNと入力ノードINNの電位がリセットされる。
図4(c)は比較器3010を示したものである。入力ノードINN、INP、出力ノードFBN、FBPは、図4(b)に示したそれぞれのノードに対応している。
図5を参照しながら、図2に示した撮像装置の動作について説明する。Vr1、Vr2はそれぞれ、参照信号供給部25が出力する参照信号である。参照信号Vr1は単位時間当たり第1の変化量で電位が変化する第1の参照信号である。また、参照信号Vr2は単位時間当たり第1の変化量よりも大きい第2の変化量で電位が変化する第2の参照信号である。Vr_CMPは、選択回路302が参照信号Vr1、Vr2のいずれかを選択して比較回路301に出力する参照信号である。CMPは、比較回路301が信号Out_Ampと参照信号Vr_CMPとを比較した結果を示す比較結果信号である。第1メモリ502は、信号M1_EnがHレベルの状態にあり、比較結果信号CMPの信号値が変化した時にカウント信号を保持する。第2メモリ503は、信号M2_EnがHレベルの状態にあり、比較結果信号CMPの信号値が変化した時にカウント信号を保持する。
時刻t1では、比較結果信号CMP、ラッチ信号LATCH、信号M1_En、M2_EnはLowレベル(以下、Lレベルと表記する)である。信号PSEL、選択信号SEL、信号PC0R、信号COMPRSTはHレベルである。一方、垂直走査回路15は、信号PRESをHレベルからLレベルとする。これにより、画素1からはノイズ成分の信号が出力される。
時刻t2に、TG70は、信号PC0RをHレベルからLレベルとする。これにより、容量素子C0は、画素1が出力するノイズ成分に基づく電荷を保持する。増幅部20は、差動アンプ201のオフセット成分を含む信号Out_Ampを出力する。
時刻t3に、TG70は信号COMPRSTをLレベルとする。この時の比較器3010の入力ノードINNの電位が、リセット電位に基づく電位である。容量素子C1は時刻t3での参照信号Vr_CMPの電位に基づく電荷を保持する。また、容量素子C2は時刻t3での信号Out_Ampの電位に基づく電荷を保持する。つまり、容量素子C2は、差動アンプ201のオフセット成分に基づく電荷を保持する。そして、参照信号供給部25は、参照信号Vr1の時間に依存した電位の変化を開始する。選択信号SELがHレベルにあるため、選択回路302は、参照信号Vr1,Vr2のうち参照信号Vr1を比較回路301に出力する。また、選択回路302は信号M1_EnをHレベルとする。
時刻t4に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。これにより、ラッチ信号LATCHがLレベルからHレベルに変化する。第1メモリ502は、ラッチ信号LATCHの信号値がLレベルからHレベルに変化したことを受けて、この時のカウント信号を保持する。この時に第1メモリ502が保持したデジタル信号が第1のデジタル信号である。この第1のデジタル信号を生成する際に比較器3010が行った、入力ノードINNと入力ノードINPとの電位の比較が第1の比較である。
時刻t5に、参照信号供給部25は参照信号Vr1の時間に依存した電位の変化を停止し、参照信号Vr1の電位を時刻t3の時の電位とする。また、選択回路302は信号M1_EnをLレベルとする。時刻t5から時刻t6の間に、TG70からフラグメモリ501に出力される不図示の指示信号によって選択信号SELがLレベルとなる。これにより、選択回路302は比較回路301に出力する参照信号を参照信号Vr1から参照信号Vr2に切り替える。
時刻t6に、参照信号供給部25は、参照信号Vr2の時間に依存した電位の変化を開始する。選択回路302は、信号M2_EnをHレベルとする。
時刻t7に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。これにより、ラッチ信号LATCHがLレベルからHレベルに変化する。第2メモリ503は、ラッチ信号LATCHの信号値がLレベルからHレベルに変化したことを受けて、この時のカウント信号を保持する。この第2メモリ503が保持したカウント信号が、第2のデジタル信号である。この第2のデジタル信号を生成する際に比較器3010が行った、入力ノードINNと入力ノードINPとの電位の比較が第2の比較である。
第1のデジタル信号、第2のデジタル信号はともに、ノイズ信号に基づくデジタル信号である。このノイズ信号とは、図5に示した形態では、比較器3010のオフセット成分を主とする信号である。
時刻t8に、参照信号供給部25は、参照信号Vr2の時間に依存した電位の変化を停止し、参照信号Vr2の電位を時刻t3の時の電位とする。選択回路302は、信号M2_EnをLレベルとする。TG70は選択信号SELをLレベルとする。これにより、選択回路302は比較回路301に出力する参照信号を参照信号Vr2から参照信号Vr1に切り替える。
時刻t9に、垂直走査回路15は信号PTXをHレベルとする。これにより、画素1は光電変換信号を垂直信号線2に出力する。容量素子C0は、画素1のノイズ成分に基づく電荷を保持しているため、差動アンプ201には画素のノイズ成分を差し引いた光電変換信号が出力される。これにより、増幅部20は画素のノイズ成分を差し引いた光電変換信号を増幅した信号Out_Ampを比較回路301に出力する。容量素子C2は、時刻t3に差動アンプ201のオフセット成分に基づく電荷を保持している。よって、比較回路301の入力ノードINNには、信号Out_Ampから差動アンプ201のオフセット成分を差し引いた信号が出力される。
時刻t8から時刻t10の間に、TG70から出力される不図示の指示信号によって、選択信号SELをHレベルとすることで、選択回路302は再び参照信号Vr1を選択する。
時刻t10に、参照信号供給部25は参照信号Vr1の電位を電位VREFとする。電位VREFは、後述する時刻t14の参照信号Vr1の電位と略等しくしている。電位VREFは、時刻t14の参照信号Vr1の電位よりも小さい値が好ましい。増幅部20の出力する信号が電位VREFよりも大きい場合には、比較回路301はLレベルの比較結果信号を出力する。逆に、増幅部20の出力する信号が電位VREFよりも小さい場合には、比較回路301はHレベルの信号を出力する。ここでは、比較回路301の出力する比較結果信号CMPがLレベルであるとして説明する。
時刻t10から時刻t11の間にフラグメモリ501に比較結果信号CMPのLレベルを保持する。
時刻t11に、参照信号供給部25は参照信号Vr1の電位を時刻t3での電位と等しくする。
時刻t11から時刻t12の間にフラグメモリ501で保持した信号レベルを選択信号SELに反映させる。比較結果信号CMPがLレベルなので、選択信号SELはLレベルに変化し、選択回路302は参照信号Vr2を選択する。仮に比較結果信号がHレベルの場合、選択信号SELはHレベルが維持され、選択回路302は参照信号Vr1を選択し続ける。
時刻t12に、参照信号供給部25は参照信号Vr1、Vr2の時間に依存した電位の変化を開始する。つまり、参照信号供給部25は、共に時間に依存して電位が変化する参照信号Vr1、Vr2を、並行して選択回路302に出力する。選択回路302は、Lレベルの選択信号SELに基づいて、参照信号Vr2を比較回路301に出力する。選択回路302は、信号M1_EnをHレベルとする。これによって、先の時刻t4におけるカウント信号を保持していた第1メモリ502の信号を書き換える準備が整う。尚、時刻t10に比較回路301が出力する比較結果信号がHレベルであった場合には、選択回路302は、信号M2_EnをHレベルとする。この場合には、第2メモリ503の信号を書き換える準備が整う。
時刻t13に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。第1メモリ502は、この時のカウント信号を保持する。この時に第1メモリ502が保持したカウント信号が、光電変換信号に基づく第3のデジタル信号である。この第3のデジタル信号を生成する際に比較器3010が行った、入力ノードINNと入力ノードINPとの電位の比較が第3の比較である。
時刻t14に、参照信号供給部25は参照信号Vr1、Vr2の時間に依存した電位の変化を停止し、参照信号Vr1の電位を時刻t3の時の電位とする。選択回路302は、信号M1_EnをLレベルとする。
時刻t14の後、水平走査回路60はメモリ部50を順次走査し、各列のフラグメモリ501、第1メモリ502、第2メモリ503の各々から、各々が保持したデジタル信号をDSP90に出力させる。本実施例で説明した形態では、フラグメモリ501が出力する信号はLレベルの比較結果信号に基づく信号である、第1メモリ502が出力する信号は、参照信号Vr2を用いて生成した、光電変換信号に基づくデジタル信号である。第2メモリ503が出力する信号は、参照信号Vr2を用いて生成した、ノイズ信号に基づくデジタル信号である。光電変換信号に基づくデジタル信号には、ノイズ信号に基づくデジタル信号の成分が含まれている。従って、DSP90が光電変換信号に基づくデジタル信号からノイズ信号に基づくデジタル信号を差し引くことによって、比較部30の列ごとの特性のばらつきの影響を低減できる。つまり、DSP90は、ノイズ信号の少ないデジタル信号を生成する。このデジタル信号を、デジタルS信号と表記する。DSP90は、参照信号Vr2を用いて光電変換信号をAD変換した列については、デジタルS信号に、参照信号Vr1、Vr2の傾きの比に基づいてゲインを掛ける処理を行う。例えば、参照信号Vr2の傾きが参照信号Vr1の傾きの4倍であった場合、DSP90は、参照信号Vr2を用いて光電変換信号をAD変換した列については、デジタルS信号の信号値を4倍する処理を行う。この信号値を4倍する信号処理は、例えば、デジタルS信号の各ビットの信号をそれぞれ上位に2ビットずつシフトするようにして行えばよい。
また、特許文献1に記載の撮像装置では、各列のAD変換部に比較部を2つ設けていた。本実施例の撮像装置では、各列のAD変換部につき、1つの比較部を設ける形態とすることができる。これにより、本実施例の撮像装置は、AD変換部の回路規模の増大を低減しながら、ノイズ成分の少ないデジタル信号を得ることができる。
尚、本実施例で述べた形態では、カウント信号を保持するメモリを第1メモリ502、第2メモリ503の2つを各列に設けていた。本実施例の撮像装置はこの形態に限定されるものではなく、カウント信号を保持するメモリを各列に3つ設けても良い。3つのメモリのうち、2つのそれぞれのメモリが、参照信号Vr1を用いて生成したノイズ信号に基づくデジタル信号、参照信号Vr2を用いて生成したノイズ信号に基づくデジタル信号を保持する。そして、他の1つのメモリが、参照信号Vr1あるいは参照信号Vr2を用いて生成した光電変換信号に基づくデジタル信号を保持する。この形態であっても、本実施例の撮像装置と同様に、ノイズ成分の少ないデジタル信号を得ることができる。これに対して、図2に示した本実施例の撮像装置は、カウント信号を保持するメモリを各列に3つ設ける形態に対してメモリの数を少なくすることができるため、AD変換部の回路規模の増大を低減できる効果を有している。
また、本実施例の撮像装置は、光電変換信号に基づくデジタル信号を保持するメモリを各列に2つ設けても良い。2つのメモリの一方が、参照信号Vr1を用いて生成した光電変換信号に基づくデジタル信号を保持し、他方が、参照信号Vr2を用いて生成した光電変換信号に基づくデジタル信号を保持する。この形態であっても、本実施例の撮像装置と同様に、ノイズ成分の少ないデジタル信号を得ることができる。この形態の場合には、1つの光電変換信号のAD変換を、参照信号Vr1と、参照信号Vr2とをともに用いて行う。これに対して、図2に示した本実施例の撮像装置は、光電変換信号に基づくデジタル信号を保持するメモリを各列に1つとすることができる。これにより、光電変換信号に基づくデジタル信号を保持するメモリを各列に2つ設ける形態に対して、図2に示した撮像装置はAD変換部の回路規模の増大を低減できる効果を有している。また、光電変換信号に基づくデジタル信号を保持するメモリを各列に2つ設ける形態では、光電変換信号のAD変換を、参照信号Vr1と、参照信号Vr2とをそれぞれ用いて行う。そのため、光電変換信号に基づくデジタル信号を保持するメモリを各列に2つ設ける形態では、光電変換信号のAD変換期間を、図5の時刻t12〜t14の期間の2回分設けることになる。一方で、図2、図5に示した撮像装置では、光電変換信号のAD変換期間を時刻t12〜t14の期間とすることができる。これにより、図2〜図5に示した撮像装置は、光電変換信号に基づくデジタル信号を保持するメモリを各列に2つ設ける形態に比して、光電変換信号のAD変換期間を短縮できる効果を有している。
尚、本実施例の参照信号Vr1、Vr2は信号COMPRSTをHレベルからLレベルにした時点での参照信号Vr1、Vr2の電位から、時間に依存した電位の変化を開始するようにしていた。本実施例はこの形態に限定されるものではない。例えば、信号COMPRSTをHレベルからLレベルにした時点での参照信号Vr1、Vr2の電位から、時間に依存して電位が変化する方向とは逆方向に参照信号Vr1、Vr2の電位を変化させる。その後、参照信号Vr1,Vr2の電位が時間に依存して変化するようにしても良い。
尚、本実施例のノイズ信号は、比較器3010のオフセット成分を主とする信号であった。本実施例はこの形態に限定されない。例えば、容量素子C2を設けず、増幅部20から差動アンプ201のオフセット成分が比較器3010の入力ノードINNに与えられる構成がある。この場合のノイズ信号は、比較回路301のオフセット成分と、差動アンプ201のオフセット成分とを主とする信号である。さらに、容量素子C0を設けず、画素1のノイズ成分が差動アンプ201の反転入力ノードに与えられる構成とした場合には、ノイズ信号は、画素1のノイズ成分、差動アンプ201のオフセット成分、比較回路301のオフセット成分を主とする信号である。
また、本実施例では、画素1と比較部30との間の電気的経路に増幅部20を設ける構成としていた。他の形態として、増幅部20を設けずに、画素1の画素信号PIXOUTが比較部30に出力される構成としても良い。この形態では、アナログ信号出力部150は画素1である。この形態において、画素1と比較部30との間に画素1のノイズ成分を保持する容量素子を設けない場合には、ノイズ信号は、画素1のノイズ成分、比較回路301のオフセット成分を主とする信号である。
つまり、本実施例では、ノイズ信号の主となる成分が、画素のノイズ成分、増幅部20のオフセット成分、比較回路301のオフセット成分のいずれの場合であっても適用可能である。
(実施例2)
以下、図面を参照しながら本実施例の撮像装置を実施例1と異なる点を中心に説明する。
図6(a)は、本実施例の撮像装置の一部の構成を示した図である。図6(a)では、図2と同じ機能を有する要素については、図1で付した符号と同じ符号を付している。本実施例の撮像装置は、実施例1のAD変換部110の代わりに、各列にAD変換部600を有する。また、本実施例の撮像装置は、DSP900を有する。
本実施例では、参照信号Vr2の参照信号Vr1に対する単位時間あたりの電位の変化量が4倍としている。本実施例のAD変換部が生成する、光電変換信号に基づくデジタル信号のビット数はNビットである。また、AD変換部が生成する、ノイズ信号に基づくデジタル信号のビット数はMビットである。NビットとMビットのビット数の関係は、N≧M+2である。
AD変換部600は、比較回路301、ラッチ回路304、カウンタ400、フラグメモリ601、第1メモリ602、第2メモリ603、選択回路604を有する。フラグメモリ601は、第2メモリ603に対して比較結果信号CMPに基づく書き込み制御信号W_DISを出力する。また、フラグメモリ601は、選択回路604に対して保持した信号を反転した信号である選択信号SELBを出力する。第1メモリ602は、第2メモリ603に対して、第1メモリ602が保持したデジタル信号MEM1_OUTを出力する。本実施例では、選択信号SELBがLレベルの場合には、選択回路604は参照信号Vr1を比較回路301に出力する。また、選択信号SELBがHレベルの場合には、選択回路604は参照信号Vr2を比較回路301に出力する。TG70は、転送制御信号LTXを第2のメモリ603に出力する。
DSP900は、各列のAD変換部600のフラグメモリ601、第1メモリ602、第2メモリ603が出力するデジタル信号を処理した信号を、撮像装置の外部に出力する。
図6(b)は第2メモリ603の構成を示した図である。第2メモリ603は、Mビット分のメモリ回路611−0〜611−(M−1)を有する。図6(b)に示した[ ]内の数字はバスを示したものであり、例えば[0]は最下位ビット(LSB)の信号が伝送されるバスを示している。下位ビットから順に[0]、[1]、[2]と増え、本実施例では最上位ビット(MSB)である[M−1]までのバスを有している。以下、下位のAビットから上位のBビットまでのデジタル信号を表記する際には[B:A]と表記する。転送制御信号LTXがHレベルとなると、メモリ回路611−0とメモリ回路611−1は、第1メモリ602からの出力デジタル信号MEM1_OUT[1:0]を保持する。他のメモリ回路611−2〜611−(M−1)は、転送制御信号LTXがHレベルであり、書き込み制御信号W_DISがLレベルであると、第1メモリ602から出力されるデジタル信号MEM1_OUT[M−1:2]を保持する。本実施例では、書き込み制御信号W_DISがLレベルの時に書き込みが許可されるものとする。
図7(a)はカウンタ400の構成を示した図である。カウント信号生成部401は、N個のT−FF回路を有する。そして、カウント信号生成部401は、クロック信号CLKを計数したカウント基礎信号をセレクタ群402に出力する。クロック信号CLKは、カウント基礎信号のLSB値を出力するT−FFにTG70から入力されている。セレクタ群402はM個のセレクタを有する。図7(a)は、M=N−2の場合を示している。セレクタ群402は、TG70から入力されるシフト信号SHIFTがHレベルの場合には、カウント基礎信号の各ビット信号を2ビットずつ上位にシフトした、カウント信号CNTを出力する。一方、セレクタ群402は、TG70から入力されるシフト信号SHIFTがLレベルの場合には、カウント基礎信号をカウント信号CNTとして出力する。
次に図7(b)のタイミング図を用いて、本実施例の撮像装置にかかるAD変換部600の動作について説明する。図7(b)のタイミング図は、図5の時刻t3以降のタイミングから記載している。つまり増幅部20の信号Out_Ampとしてノイズ信号に基づく信号が出力されている状態とする。また図7(b)においては、光電変換信号に基づく増幅部20の出力信号が電位VREFより小さい列について説明する。
時刻t400では比較結果信号CMP、ラッチ信号LATCH、書き込み制御信号W_DIS、転送制御信号LTXはLレベルである。フラグメモリ601は、選択信号SELBをHレベルとする。これにより、選択回路604は参照信号Vr2を参照信号Vr_CMPとして比較回路301に出力する。またシフト信号SHIFTもHレベルとする。そして参照信号Vr2は時間に依存した電位の変化を開始する。時刻t401でカウンタ400がカウントを開始するが、シフト信号SHIFTがHレベルである。よって、カウンタ400は、クロック信号を計数したカウント信号から、各ビット信号を2ビットずつ上位にシフトしたカウント信号CNTをAD変換部600に出力する。ここで時刻t400と時刻t401の間隔は図1(a)のL0と同じとする。以降で説明する参照信号の電位変化開始とカウント動作開始のタイミング差の間隔も同様とする。
時刻t402に、増幅部20の信号Out_Ampと参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPがHレベルに変化する。この変化によりラッチ信号LATCHが一定期間LレベルからHレベルとなり、その立下りタイミングで第1メモリ602がカウント信号CNTを保持する。この時保持したデジタル信号をN(Vr2)×4とする。本データは2ビットシフトされているため、下位2ビットは「0(ゼロ)」が保持されている。
時刻t403に、参照信号供給部25は、参照信号Vr2の電位変化を停止し、さらに参照信号Vr2の電位を時刻t400の時の電位に戻す。これにより、比較結果信号CMPがLレベルに変化する。またカウンタ400はカウント動作を停止する。時刻t404に、フラグメモリ601は、選択信号SELBをLレベルとする。これにより、選択回路604は参照信号Vr1を比較回路301に出力する。尚、選択信号SELBがLレベルに変化するタイミングは必ずしも時刻t404である必要は無く、時刻t403と後述する時刻t407の間であればよい。また、カウント信号CNTのリセット、及びシフト信号SHIFTのLレベルへの変化も時刻t403から時刻t408の期間に行われればよい。
時刻t405から時刻t406の間に、TG70は転送制御信号LTXをHレベルとする。同時刻において、書き込み制御信号W_DISはLレベルのままである。よって、第1メモリ602は、出力デジタル信号MEM1_OUTとして、デジタル信号N(Vr2)×4を第2メモリ603に出力する。第2メモリ603は、このデジタル信号N(Vr2)×4を保持する。
時刻t407に、参照信号供給部25は、参照信号Vr1の時間に依存した電位変化を開始する。また、時刻t408にカウンタ400のカウント動作も開始される。同時刻において、シフト信号SHIFTはLレベルである。よって、カウンタ400は、クロック信号を計数したカウント信号をビットシフトせずに、カウント信号CNTとして出力する。
時刻t409に、増幅部20の信号Out_Ampと参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値がHレベルに変化する。この変化によりラッチ信号LATCHが一定期間LレベルからHレベルとなり、その立下りタイミングで第1メモリ602がカウント信号CNTを保持する。この時保持したデジタル信号をN(Vr1)と表記する。
時刻t410に、参照信号供給部25は参照信号Vr1の電位の変化を停止し、さらに、参照信号Vr1の電位を時刻t408の時の電位に戻す。またカウンタ400はカウント動作を停止し、後述する時刻t415より前の任意のタイミングでカウント信号CNTがリセットされる。
時刻t410と時刻t411の間の時刻に、光電変換信号に基づく信号が増幅部20から出力され、信号Out_Ampの電位が変化する。時刻t411に、参照信号供給部25は、参照信号Vr1の電位を電位VREFへ変化させる。図7(b)では増幅部20の信号Out_Ampが電位VREFより小さいため、比較結果信号CMPはHレベルとなり、その結果がフラグメモリ601に保持される。選択信号SELBはフラグメモリ601に保持された信号の反転信号である。従って、選択信号SELBの信号レベルはLレベルのままであり、選択回路604は参照信号Vr1を選択したままとする。時刻t412に参照信号Vr1は時刻t411の電位に戻る。
時刻t413から一定期間、TG70は転送制御信号LTXをHレベルとする。同時刻において、書き込み制御信号W_DISはLレベルである。よって、それまで第2メモリ603が保持していたデジタル信号N(Vr2)×4は第1メモリ602から出力されるデジタル信号N(Vr1)に上書きされる。
時刻t414において参照信号Vr1、Vr2の時間に依存した電位変化を開始する。同時刻において、選択信号SELBはLレベルなので、参照信号Vr1が選択回路604によって参照信号Vr_CMPとして比較回路301に入力される。時刻t415においてカウンタ400のカウント動作が開始される。同時刻において、シフト信号SHIFTはLレベルであるため、ビットシフトされていないカウント信号CNTが出力される。
時刻t416に、増幅部20の信号Out_Ampと参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値がHレベルに変化する。この変化によりラッチ信号LATCHが一定期間LレベルからHレベルとなり、その立下りタイミングで第1メモリ602がカウント信号CNTを保持する。この時保持されたデジタル信号をS(Vr1)とする。
時刻t417に参照信号Vr1及びVr2の電位変化が停止され、時刻t414の電位にそれぞれ戻す。またカウンタ400の動作も停止される。
次に図8のタイミング図を用いて、光電変換信号に基づく増幅部20の出力信号が電位VREFより大きい列の場合について説明する。時刻t411−2以前の動作は図7(b)と同一なので説明を省略する。
時刻t411−2と時刻t412−2の間において、増幅部20の信号Out_Ampの振幅が電位VREFより大きいため、比較結果信号CMPはLレベルを出力し、その結果がフラグメモリ601に保持される。図示されていない制御信号によって、フラグメモリ601で保持された信号の反転信号であるHレベルが選択信号SELBとして出力され、参照信号Vr2が選択される。選択信号SELBが反転するタイミングは時刻t412−2から時刻t414の間であればよい。また時刻t412−2から時刻t413−2の間にフラグメモリ601に保持された結果に基づき、書き込み制御信号W_DISがHレベルに変化する。
時刻t413−2から一定期間、TG70は転送制御信号LTXをHレベルとする。同時刻において、書き込み制御信号W_DISはHレベルなので、下位2ビットのメモリ回路611−0及びメモリ回路611−1が書き込みを許可される。これにより、デジタル信号N(Vr1)の下位2ビットであるデジタル信号N(Vr1)[1:0]が第2メモリ603に上書きされる。従って、第2メモリ603には、デジタル信号N(Vr2)×4+N(Vr1)[1:0]の信号が保持される。
時刻t414において参照信号Vr1、参照信号Vr2の時間に依存した電位の変化を開始する。同時刻において、選択信号SELBはHレベルなので、参照信号Vr2が選択回路604によって参照信号Vr_CMPとして比較回路301に入力される。時刻t415においてカウント動作を開始する。時刻t416−2においてラッチ信号LATCHの立下りタイミングで第1メモリ602がカウント信号CNTを保持する。同時刻において、第1メモリ602が保持したデジタル信号をS(Vr2)と表記する。
以上説明したように、光電変換信号に基づく増幅回路20の信号Out_Ampと電位VREFとの大小関係によって、次のような信号が各メモリに保持される。
(Out_Amp<VREFのAD変換部110)
フラグメモリ601・・・Hレベル
第1メモリ602・・・S(Vr1)
第2メモリ603・・・N(Vr1)
(Out_Amp>VREFのAD変換部110)
フラグメモリ601・・・Lレベル
第1メモリ602・・・S(Vr2)
第2メモリ603・・・N(Vr2)×4+N(Vr1)[1:0]
これらのデジタル信号が時刻t417以降、水平走査回路60の走査に応じて順次DSP900に出力される。フラグメモリ601の信号レベルに関わらず、常に光電変換信号に基づくデジタル信号が第1メモリ602から出力される。また、ノイズ信号に基づくデジタル信号が第2メモリ603から出力される。
本実施例では、参照信号Vr2でAD変換後に参照信号Vr1でAD変換を行ったが、参照信号Vr1でAD変換後に参照信号Vr2でAD変換しても良い。この場合、第1メモリ602が、参照信号Vr1によるデジタル信号N(Vr1)を、出力デジタル信号MEM1_OUTとして、第2メモリ603に出力する。これにより、第2メモリ603が、デジタル信号N(Vr1)を保持する。次に、第1メモリ602が参照信号Vr2によるデジタル信号N(Vr2)×4を保持する。
DSP900での信号処理について説明する。フラグメモリ601の信号レベルがHレベルの列においては、第1メモリ602が保持したデジタル信号S(Vr1)から第2メモリ603が保持したデジタル信号N(Vr1)を差し引くことでデジタルS信号を得る。またフラグメモリ601の信号レベルがLレベルの列においては、第1メモリ602が保持したデジタル信号S(Vr2)に4倍のゲインを掛ける。その後、第2メモリ603が保持したデジタル信号N(Vr2)×4+N(Vr1)[1:0]を差し引くことでデジタルS信号を得る。
先に説明した実施例1の撮像装置では、2つのメモリを各列に設けた構成の場合、ノイズ信号に基づくデジタル信号と光電変換信号に基づくデジタル信号が格納されるメモリが、光電変換信号の大きさによって入れ替わる。具体的には、増幅部20の出力信号が電位VREFより小さい場合は、ノイズ信号の基づくデジタル信号が第2メモリ503に格納される。また、光電変換信号の基づくデジタル信号が第1メモリ502に格納される。また増幅部20の出力信号が電位VREFより大きい場合は、ノイズ信号に基づくデジタル信号が第1メモリ502に格納される。また、光電変換信号に基づくデジタル信号が第2メモリ503に格納される。このため、後段のDSP90で差分処理をする際、フラグメモリ501が出力する比較結果信号に基づいて、差分処理の極性を変える必要があった。しかしながら、上述したように本実施例のAD変換部600の構成と駆動とすることで、フラグメモリ601が出力する値に関わらず、常に同極性の差分処理で済むことが分かる。
また実施例1の撮像装置では、例えば参照信号Vr1とVr2の傾き比が4倍であった場合、参照信号Vr2を用いて光電変換信号をAD変換した列については、2ビットシフトを行う必要がある。しかし、デジタル信号を上位に2ビットシフトした場合、下位2ビットが全て「0(ゼロ)」の信号となる。このため、取得した画像データにデジタルゲインを掛けて強調表示した際に、下位ビットの分解能不足により、不自然な表示となってしまう場合があった。しかしながら上述したように本実施例においては、参照信号Vr2を用いて変換した列のノイズ信号に基づくデジタル信号の下位2ビットには相関関係のない信号が保持されているため、階調不足による画質の低下を抑制できる。
尚、本実施例では、参照信号Vr2の参照信号Vr1に対する単位時間あたりの電位の変化量を4倍としていた。他の例としては、参照信号供給部25は、参照信号Vr2の参照信号Vr1に対する単位時間あたりの電位の変化量を2のn乗倍(nは1以上の整数)とすることが考えられる。この場合、カウンタ400は、カウント基礎信号をそれぞれ上位nビットずつシフトしたカウント信号CNTを出力する。これにより、第2メモリ603は参照信号Vr2を用いて変換したノイズ信号に基づくデジタル信号の各ビット信号をそれぞれ上位nビットずつシフトしたデジタル信号を保持する。そして、下位ビットの分解能を向上させるためには、第2メモリ603が保持する信号の下位nビットに、参照信号Vr1を用いて変換したノイズ信号に基づくデジタル信号を保持するようにすればよい。
(実施例3)
以下、図面を参照しながら本実施例の撮像装置を実施例1と異なる点を中心に説明する。
本実施例の撮像装置では、実施例1の撮像装置で得られた効果に加えて、複数の参照信号間の、単位時間当たりの電位の変化量の比がばらつくことによって生じるデジタル信号の誤差を低減することができる。
図9(a)は本実施例の撮像装置の模式図である。本実施例の撮像装置は実施例1の構成に加えて、テスト信号供給部200を有している。図2に示した撮像装置と同じ機能を有するものについては、図2で付した符号と同じ符号を図9(a)でも付している。本実施例の撮像装置は、垂直信号線2に電気的に接続されたテスト信号供給部200を有する。テスト信号供給部200には、TG70から信号S2、S3が出力される。
図9(b)は、テスト信号供給部200の構成の一例を示した図である。テスト信号供給部200は、テスト信号選択部210、テスト信号供給線220、スイッチ203を有している。テスト信号選択部210は、異なる信号値のテスト信号VS1,VS2のいずれかを信号S2に基づいてテスト信号供給線220に出力する。本実施例のテスト信号VS1は、実施例1の画素1のノイズ信号の信号値としている。また、本実施例のテスト信号VS2は、後述する時刻t48における参照信号Vr1の電位以下の信号値としている。テスト信号供給線220は、スイッチ203を介して各列の垂直信号線2に電気的に接続されている。スイッチ203は信号S3をHレベルとすると導通する。
図10(a)を参照しながら、本実施例の撮像装置の補正動作を説明する。
時刻t40において、信号S3はHレベルであり、テスト信号供給線202の信号が各列の垂直信号線2に出力されている。選択信号SELはHレベルである。
時刻t41に、信号S2をHレベルとする。これにより、テスト信号VS1が各列の垂直信号線2に出力される。
時刻t42−1に、参照信号供給部25は、参照信号Vr1の時間に依存した電位の変化を開始する。選択回路302は、信号M2_EnをHレベルとする。続いて、時刻t42−2に、カウンタ40はクロック信号の計数動作を開始する。
時刻t43に、テスト信号VS1と参照信号Vr1の電位との大小関係が逆転し、ラッチ信号LATCHの信号値が変化する。第2メモリ503は、この時点のカウント信号を保持する。この第2メモリ503が保持したカウント信号を、本実施例でデジタル信号DN1と表記する。デジタル信号DN1は、第1のアナログ信号のテスト信号VS1に基づく第4のデジタル信号である。
時刻t44に、参照信号供給部25は参照信号Vr1の電位の変化を停止する。
時刻t45に、TG70は信号S2をLレベルとする。これにより、テスト信号VS2がテスト信号供給線202、スイッチ203を介して各列の垂直信号線2に出力される。
時刻t46−1に、参照信号供給部25は、参照信号Vr1の時間に依存した電位の変化を開始する。また、選択回路302は信号M1_EnをHレベルとする。続いて、時刻t46−2にカウンタ40はクロック信号の計数動作を開始する。
時刻t47に、テスト信号VS2と参照信号Vr1との大小関係が逆転し、ラッチ信号LATCHの信号値が変化する。第1メモリ502は、この時点のカウント信号を保持する。この第1メモリ502が保持したカウント信号を、本実施例でデジタル信号DS1と表記する。デジタル信号DS1は、第1のアナログ信号のテスト信号VS1に基づく第6のデジタル信号である。尚、第5のデジタル信号は後述するデジタル信号DN2である。
時刻t48に、参照信号供給部25は参照信号Vr1の時間に依存した電位の変化を停止する。時刻t48から時刻t50−1までの期間に、水平走査回路60は、各列の第1メモリ502、第2メモリ503のそれぞれが保持した信号を順次、DSP90に転送する。
時刻t49に、TG70は信号S2をHレベルとする。これにより、テスト信号VS1がテスト信号供給線202、スイッチ203を介して各列の垂直信号線2に出力される。また、TG70は選択信号SELをLレベルとする。
時刻t50−1に、参照信号供給部25は参照信号Vr2の時間に依存した電位の変化を開始する。また、選択回路302は、信号M2_EnをHレベルとする。続いて、時刻t50−2にカウンタ40はクロック信号の計数動作を開始する。
時刻t51に、テスト信号VS1と参照信号Vr2との大小関係が逆転し、ラッチ信号LATCHの信号値が変化する。第2メモリ503は、この時点のカウント信号を保持する。この第2メモリ503が保持したカウント信号を、本実施例でデジタル信号DN2と表記する。デジタル信号DN2は、第2のアナログ信号のテスト信号VS2に基づく第5のデジタル信号である。
時刻t52に、参照信号供給部25は参照信号Vr2の時間に依存した電位の変化を停止する。
時刻t53に、TG70は信号S2をLレベルとする。
時刻t54−1に、参照信号供給部25は、参照信号Vr2の時間に依存した電位の変化を開始する。また、選択回路302は、信号M1_EnをHレベルとする。続いて、時刻t54−2にカウンタ40はクロック信号の計数動作を開始する。
時刻t55に、テスト信号VS2と参照信号Vr2との大小関係が逆転し、ラッチ信号LATCHの信号値が変化する。第1メモリ502は、この時点のカウント信号を保持する。この第1メモリ502が保持したカウント信号を、本実施例でデジタル信号DS2と表記する。デジタル信号DS2は、第2のアナログ信号のテスト信号VS2に基づく第7のデジタル信号である。
時刻t56に、参照信号供給部25は参照信号Vr2の時間に依存した電位の変化を停止する。
時刻t56以降、水平走査回路60は、各列の第1メモリ502、第2メモリ503のそれぞれの保持した信号を順次、DSP90に転送する。
本実施例の補正動作を行わない場合に得られるデジタル信号の信号値について、図10(b)を参照しながら説明する。図10(b)の(X)は、参照信号Vr1を用いてデジタル信号を生成した場合を示している。(Y1)は、参照信号Vr2の参照信号Vr1に対する単位時間当たりの電位の変化量の比が4倍になっていた場合を示している。一方、(Y2)は、参照信号Vr2の参照信号Vr1に対する単位時間当たりの電位の変化量の比が、誤差により4倍よりも小さくなっていた場合を示している。領域I―L、領域I−H間の境界IOにおいて、(X)と(Y1)では得られるデジタル信号の信号値がそれぞれD1、D2となることは図1(b)で述べた通りである。さらに、(Y2)の場合では、参照信号Vr2の参照信号Vr1に対する単位時間当たりの電位の変化量の比が、誤差により4倍よりも小さいことにより、得られるデジタル信号の信号値は、D2よりも小さいD3となる。本実施例では、同一の入射光の光量値において、(X)と(Y2)との間で生じるデジタル信号の信号値の差を低減する補正動作を行う。
次に、本実施例の補正動作を説明する。本実施例の補正部であるDSP90は、以下の(10)式により、補正値βを取得する。
Figure 2015164278
次に、補正値βを用いた補正処理について説明する。
図5を参照しながら述べた動作において、フラグメモリ501がLレベルの列の第1メモリ502が保持したデジタル信号の信号値をDSP90が4倍にする。そして、DSP90は4倍の信号値にしたデジタル信号を、以下の(11)式によって補正する。
CAL_DS=ED_DS×β (11)
(11)式のED_DSは、DSP90が、フラグメモリ501がLレベルの列の第1メモリ502が保持したデジタル信号の信号値を4倍にしたデジタル信号である。CAL_DSは、DSP90が出力する補正後のデジタル信号である。(11)式は、ED_DSに補正値βを乗算してCAL_DSを得ることを意味している。
本実施例の撮像装置においても、実施例1と同様の効果を得ることができる。さらに、本実施例の撮像装置では、複数の参照信号間の、単位時間当たりの電位の変化量の比がばらつくことによって生じるデジタル信号の誤差を低減することができる。
本実施例の図10(a)に示した動作では、デジタル信号を生成する順をDN1、DS1、DN2、DS2としていた。他の形態として、例えば、デジタル信号を生成する順を、DN1、DN2、DS1、DS2としても良い。この形態の場合には、第1メモリ502にデジタル信号DN1、第2メモリ503にデジタル信号DN2を保持させる。そして、水平走査回路60が各列のメモリ部50から順次DSPにデジタル信号を転送する。その後、第1メモリ502にデジタル信号DS1、第2メモリ503にデジタル信号DS2を保持させる。そして、再び水平走査回路60が各列のメモリ部50から順次DSPにデジタル信号を転送する形態とすれば良い。
先に述べた、デジタル信号DN1、DN2、DS1、DS2の順にデジタル信号を得る形態について再び説明する。この形態では、図10(a)の形態に比して、同一のテスト信号VS1をデジタル信号に変換できるため、デジタル信号DN1とデジタル信号DN2に含まれるノイズ成分の変動を低減することができる。これは、テスト信号供給部200の出力するテスト信号ではなく、画素1の出力する信号を用いる場合も同様である。つまり、画素1のノイズ信号に基づく信号を参照信号Vr1,Vr2のそれぞれでAD変換する。その後、画素1の光電変換信号に基づく信号を参照信号Vr1,Vr2のそれぞれでAD変換する。この形態であっても、(10)式の補正値βを取得できる。そして、図10(a)の順でAD変換を行う構成に比して、参照信号Vr1、Vr2のそれぞれでAD変換されるノイズ信号と光電変換信号のそれぞれの信号値に変動が生じにくい。これにより、ノイズ信号、光電変換信号の信号値の変動を低減したデジタル信号を得ることができる。よって、補正値βをより正確に求めることができる。この効果は、デジタル信号DN1、DN2、DS1、DS2の順にデジタル信号を得る形態に限定されない。テスト信号VS1に基づく2つのデジタル信号の生成動作を順に行う。また、テスト信号VS2に基づく2つのデジタル信号の生成動作を順に行う。例えば、デジタル信号の生成順を、DN2、DN1、DS2、DS1であっても良い。また、DS1、DS2、DN2、DN1であっても良い。
また、本実施例の撮像装置では、参照信号Vr2を用いて生成したデジタル信号を補正する形態を説明した。他の形態として、参照信号Vr1を用いて生成したデジタル信号を補正するようにしても良い。つまり、フラグメモリ501がHレベルの列の第1メモリ502が保持したデジタル信号を補正値βで除する。これにより、上記の本実施例で述べた撮像装置と同様の効果を得ることができる。また、本実施例の撮像装置では、複数の参照信号間の、単位時間当たりの電位の変化量の比がばらつくことによって生じるデジタル信号の誤差を低減することができる。
本明細書では、カウンタ40が各列のAD変換部110に共通のカウント信号を供給する形態を基に説明した。他の形態として、各列のAD変換部110が、カウンタを有する形態であっても良い。この形態の一例としては、各列のAD変換部110が、カウンタ、フラグメモリ、第1メモリ、第2メモリを有する形態がある。この形態でも、カウンタ、フラグメモリ、第1メモリ、第2メモリの動作については、各実施例で述べた動作と同様とすることができる。
上記の操作は、例えば撮像装置を撮像システムに組み込む前に行って、補正値βを撮像システムが備える補正値記憶部に記憶させておくことができる。また、撮像操作に先立って補正値βを取得することで、温度などの環境条件による参照信号の変動によるAD変換精度の低下を低減することができる。
本明細書では、参照信号の時間に依存した電位の変化がスロープ状に行われる形態として説明したが、階段状に変化する形態の参照信号であっても良い。階段状に電位が変化する参照信号も、時間に依存して電位が変化する参照信号の一例である。
尚、本実施例の補正値βを、各列のAD変換部110毎に設ける形態であっても良い。また、複数列のAD変換部110が出力するデジタル信号を用いて補正値βを求め、平均化した補正値をDSP90が用いる形態であっても良い。また、全列のAD変換部110を複数のブロックに分割し、ブロックごとに補正値βの平均値を求める形態であっても良い。例えば、このブロックの分割は、複数列のAD変換部110ごとに、カウント信号を中継するバッファが設けられている場合には、バッファごとにブロックを分割する形態としても良い。これは、バッファはカウント信号の遅延の発生原因となる事があるためである。さらに言えば、参照信号の時間に依存した電位の変化の開始と、メモリ部50の各列へのカウント信号の入力タイミングとの差が、バッファを境に異なることがある為である。補正値βを求める際には、複数列のAD変換部110の第1のデジタル信号と第2のデジタル信号をそれぞれ平均化し、平均化したそれぞれの第1のデジタル信号と第2のデジタル信号との差から、複数列のAD変換部110で共通の補正値βを求めても良い。
また、本実施例の補正動作は、撮像装置の電源投入直後に行う形態であっても良い。他に、垂直走査回路15が画素部10の全行を走査した後、次に画素部10の走査を開始するまでのブランキング期間に行う形態であっても良い。
(実施例4)
以下、図面を参照しながら本実施例の撮像装置について実施例1と異なる点を中心に説明する。なお、実施例1と同様の機能を有するものは同符号を用いている。
図11に本実施例の撮像装置の構成を示す。
本実施例の撮像装置は、実施例1とは比較部30の構成が異なる。比較部30は、比較回路301と、ゲイン選択回路303と、ラッチ回路304とを有する。増幅回路20の信号Out_Ampはゲイン選択回路303に入力される。ゲイン選択回路303は、フラグメモリ501において生成される選択信号SELに基づき、異なる2つのゲインのうちのいずれかを選択して信号Out_Ampを増幅した信号Vp_CMPを比較回路301に出力する。ゲイン選択回路303は、増幅回路20の信号Out_Ampを増幅させるゲイン部である。以下では、簡単のためにゲイン1倍と1/4倍として説明する。ゲイン1倍は第1のゲインであり、ゲイン1/4倍は、第1のゲインよりも絶対値が小さい第2のゲインである。なお、本明細書においては、1倍のゲインも、1/4倍のゲインも、増幅するゲインであるとして説明を行う。比較回路301は、信号Vp_CMPと参照信号供給部25から出力された参照信号Vrとを比較し、比較結果信号CMPを出力する。比較結果信号CMPがHレベルとなると、ラッチ回路304は一定の期間Hレベルとなる信号をメモリ部50に出力する。フラグメモリ501は比較結果信号CMPを基に選択信号SELを生成し、ゲイン選択回路303へ選択信号SELを出力する。また、ゲイン選択回路303は、選択信号SELによって選択されるゲインに対応して、信号M1_En、信号M2_Enを第1メモリ502と第2メモリ503に出力する。信号M1_Enは、第1メモリ502へのデータ書き込み可否を制御する信号である。また、信号M2_Enは、第2メモリ503へのデータ書き込み可否を制御する信号である。
図12は、本実施例におけるゲイン選択回路303と、比較回路301を示した図である。
ゲイン選択回路303は、容量素子C3、容量素子C4、容量素子C5と、スイッチSX1、スイッチSX2とスイッチ制御回路3030を有する。信号Out_Ampは容量素子C3、容量素子C4の一端に接続される。容量素子C3のもう一端は、スイッチSX1の一端に接続され、信号Vp_CMP1を出力する。また、容量素子C4の一端は、一方の端子がGND電位に接続された容量素子C5とスイッチSX2の一端に接続され、信号Vp_CMP2を出力する。ここで、容量素子C4と容量素子C5の容量比は1:3である。さらに、スイッチSX1の他端と、スイッチSX2の他端は互いに接続され、比較回路301に電圧Vp_CMPを出力する。スイッチSX1は選択信号SELにより制御され、選択信号SELがHレベルのときに導通状態、Lレベルで非導通状態となる。スイッチSX2は、選択信号SEL1により制御される。
次に、比較回路301は、比較器3010と、スイッチSX3、スイッチSX4とを有する。信号Vp_CMPは比較器3010の入力ノードINPに入力される。また、もう一方の入力ノードINNには、参照信号Vrが容量素子C1を介して入力される。また、スイッチSX3は、入力ノードINPと出力ノードFBPとの間の電気的経路に設けられている。スイッチSX4は、入力ノードINNとスイッチFBNとの間の電気的経路に設けられている。スイッチSX3とスイッチSX4はともに、信号COMPRSTにより制御される。つまり、信号COMPRSTがHレベルとなると、スイッチSX3スイッチSX4が導通状態となる。このとき、入力ノードINPと入力ノードINNの電位がリセットされる。
以上が本実施例における比較部30の構成である。
以上の構成において、信号Vp_CMP1は信号Out_Ampにゲイン1倍を掛けた信号となり、信号Vp_CMP2はゲイン1/4倍を掛けた信号となる。これら2つの信号Vp_CMP1と信号Vp_CMP2は、スイッチSX1、スイッチSX2によりゲイン選択回路303の出力端子に接続される。その結果、ゲイン選択回路303は、信号Vp_CMPとして、スイッチSX1のみが導通状態のときは信号Out_Ampの1倍となる信号Vp_CMP1を出力する。また、スイッチSX2のみが導通状態のときは信号Out_Ampの1/4倍となる信号Vp_CMP2を出力する。
続いて、図13に示す本実施例の動作タイミング図を用いて、本実施例の動作について説明する。
初めに、信号PRESはHレベル、信号PTXはLレベルであり、信号PSELがHレベルである行の画素がリセットされる。このとき、信号PC0R及び信号COMPRSTもHレベルとしているので増幅部20及び比較器3010はリセット状態である。さらに、選択信号SELと選択信号SEL1はHレベルであり、スイッチSX1とスイッチSX2は導通状態である。そのため、信号Vp_CMP1と信号Vp_CMP2は、比較器3010の入力ノードINPと同電位にリセットされる。なお、信号M1_En信号M2_EnはLレベルが出力されており、第1メモリ502及び第2メモリ503にデジタル信号は書き込まれない。
時刻t1に、垂直走査回路15は信号PRESをHレベルからLレベルとする。これにより、画素1からはリセット信号が出力される。
時刻t2に、TG70は、信号PC0RをHレベルからLレベルとする。これにより、容量素子C0は、画素1が出力するリセット信号に基づく電荷を保持する。増幅部20は、差動アンプ201のオフセットを含む信号Out_Ampを出力する。
時刻t2から時刻t3の間に、TG70は選択信号SELを強制的にLレベルとする。これによりスイッチSX1は非導通状態となり、信号Vp_CMP1はリセット電位に基づく電位を保持する。このとき、ゲイン選択回路303は選択信号SEL1がHレベルを継続しているので、ゲインは1/4倍である。このゲイン選択回路303が出力している信号は、ノイズ信号を増幅させた増幅ノイズ信号である。
時刻t3に、TG70は、信号COMPRSTをLレベルとする。このとき比較器3010の入力ノードINN及びINPにはリセット電位に基づく電位が保持される。そして、参照信号供給部25は、参照信号Vrの時間に依存した電位の変化を開始する。参照信号Vrの電位変化開始とともに、ゲイン選択回路303は信号M2_EnをHレベルとする。
時刻t4に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。これにより、ラッチ信号LATCHがHレベルのパルスを出力する。第2メモリ503は、ラッチ信号LATCHの立下りタイミングでカウント信号を保持する。
時刻t5に、参照信号供給部25は参照信号Vrの時間に依存した電位の変化を停止し、参照信号Vrの電位を時刻t3の時の電位とする。また、ゲイン選択回路303は信号M2_EnをLレベルとする。そして、スイッチSX2を非導通状態にする。
時刻t5から時刻t6の間に、TG70は選択信号SELを強制的にHレベルとする。これにより、スイッチSX1は導通状態となる。従って、ゲイン選択回路303はゲイン1倍を選択する。このゲイン選択回路303が出力している信号は、ノイズ信号を増幅させた増幅ノイズ信号である。
時刻t6に、参照信号供給部25は、参照信号Vrの時間に依存した電位の変化を開始する。このとき、参照信号Vrの電位変化の開始とともに、ゲイン選択回路303は、信号M1_EnをHレベルとする。
時刻t7に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。これにより、ラッチ信号LATCHがHレベルのパルスを出力する。第1メモリ502は、ラッチ信号LATCHの立下りタイミングでカウント信号を保持する。
時刻t8に、参照信号供給部25は、参照信号Vr2の時間に依存した電位の変化を停止し、参照信号Vrの電位を時刻t3の時の電位とする。ゲイン選択回路303は、信号M1_EnをLレベルとする。
ここまでの動作において、時刻t7に、第1メモリ502が保持したカウント信号が、第1のデジタル信号である。また,時刻t4に第2メモリ503が保持したデジタル信号が第2のデジタル信号である。
続いて、時刻t9に、垂直走査回路15は信号PTXをHレベルとする。これにより、画素1は光電変換信号を垂直信号線2に出力する。容量素子C0は、画素1のノイズ成分に基づく電荷を保持しているため、差動アンプ201には画素のノイズ成分を差し引いた光電変換信号が出力される。これにより、増幅部20は画素のノイズ成分を差し引いた光電変換信号を増幅した信号Out_Ampを比較部30に出力する。比較器3010の入力ノードINNには、時刻t3に差動アンプ201のオフセットに基づく電位が保持されている。従って、比較器301の入力ノードINNには、信号Out_Ampから差動アンプ201のオフセットを差し引いた信号が出力される。
時刻t10に、参照信号供給部25は参照信号Vrの電位を電位VREFとする。電位VREFは、増幅部20が出力する信号Out_Ampが電位VREFよりも大きい場合には、比較回路301はLレベルの比較結果信号CMPを出力する。一方信号Out_Ampが電位VREFよりも小さい場合には、比較回路301はHレベルの比較結果信号CMPを出力する。ここでは、比較回路301の出力する比較結果信号CMPがLレベルであるとして説明する。
時刻t10から時刻t11の間に、フラグメモリ501はLレベルの比較結果信号CMPを保持する。
時刻t11に、参照信号供給部25は参照信号Vrの電位を時刻t3での電位と等しくする。
時刻t11から時刻t12の間に、フラグメモリ501は、選択信号SELの信号レベルを、フラグメモリ501が保持した比較結果信号CMPの信号レベルと同じとする。ここでは、フラグメモリ501にLレベルが保持されているため、選択信号SELはLレベルとなる。これにより、スイッチ制御回路3030は、選択信号SEL1をHレベルとする。その結果、スイッチSX1が非導通状態、スイッチSX2が導通状態となるため、信号Vp_CMPには信号Vp_CMP2が出力される。仮に、フラグメモリ501に保持された比較結果信号CMPがHレベルである場合は、選択信号SELはHレベルのまま維持され、信号Vp_CMPには信号Vp_CMP1が出力される。このゲイン選択回路303が出力している信号は、光電変換信号を増幅させた増幅光電変換信号である。
時刻t12に、参照信号供給部25は参照信号Vrの時間に依存した電位の変化を開始する。ゲイン選択回路303は、信号M1_EnをHレベルとする。これによって、第1のデジタル信号を保持していた第1メモリ502の信号が書き換え可能となる。なお、フラグメモリ501に保持された比較結果信号CMPがHレベルであった場合には、ゲイン選択回路303は信号M2_EnをHレベルとする。このときは、第2のデジタル信号を保持していた第2メモリ503の信号が書き換え可能となる。
時刻t13に、増幅部20の出力する信号と参照信号Vr_CMPとの大小関係が逆転し、比較結果信号CMPの信号値が変化する。第1メモリ502は、この時のカウント信号を保持する。
時刻t14に、参照信号供給部25は参照信号Vrの時間に依存した電位の変化を停止し、参照信号Vrの電位を時刻t3の時の電位とする。ゲイン選択回路303は、信号M1_EnをLレベルとする。
以上の動作において、時刻t13に第1メモリ502が保持したカウント信号が、光電変換信号に基づく第3のデジタル信号である。
さらに、時刻t14の後、水平走査回路60はメモリ部50を順次走査し、各列のフラグメモリ501、第1メモリ502、第2メモリ503の各々から、各々が保持したデジタル信号をDSP90に出力させる。
DSP90は、フラグメモリ501から出力された値に従って、第1メモリ502、第2メモリ503から出力された値をデジタル処理する。
上述したフラグメモリ501からLレベルが出力される場合、DSP90は第1メモリ502が保持した第3のデジタル信号から第2メモリが保持した第2のデジタル信号を差し引く。このとき、第3及び第2のデジタル信号は、信号Vout_Ampにゲイン1/4倍を掛けて生成した光電変換信号に基づくデジタル信号と、信号Vout_Ampにゲイン1/4倍を掛けて生成したノイズ信号に基づくデジタル信号である。そのため、第3のデジタル信号から第2のデジタル信号を差し引くことによって、比較部30の列ごとの特性のばらつきの影響を低減できる。つまり、DSP90は、ノイズ信号の少ないデジタルS信号を生成する。
なお、フラグメモリ501からHレベルが出力される場合は、DSP90は、第2メモリが保持した第3のデジタル信号から第1メモリが保持した第1のデジタル信号を差し引く。このとき、信号Vout_Ampにゲイン1倍を掛けて生成した光電変換信号に基づくデジタル信号と、信号Vout_Ampにゲイン1倍を掛けて生成したノイズ信号に基づくデジタル信号である。そのため、フラグメモリからLレベルが出力される場合と同様に、DSP90は、ノイズ信号の少ないデジタルS信号を生成する。
最後に、DSP90は、フラグメモリ501から出力された値に従って、デジタルS信号にデジタルゲイン処理を行う。信号Vout_Ampをゲイン1/4倍してAD変換した列、すなわちフラグメモリ501からLレベルが出力される列、については、デジタルS信号を4倍した信号を出力する。また、フラグメモリ501からHレベルが出力される列については、デジタルS信号にデジタルゲイン処理を行わずにデジタルS信号をそのまま出力する。これにより、比較部30の各列においていずれのゲインが選択されても、DSP90から最終的に出力されるデジタル信号は同等のAD変換ゲインを得ることができる。
以上のように、本実施例は、上記構成により実施例1と同様の効果を得ることができる。
尚、本実施例で述べた形態では、ゲイン選択回路303を、比較部30において、比較回路301とは別に設けていた。しかし、ゲイン選択回路の一部と比較回路301を共通にしても良い。また、増幅部20にゲインを切り替える機能を設けても良い。
(実施例5)
以下、図面を参照しながら本実施例の撮像装置を実施例2、実施例4と異なる点を中心に説明する。本実施例の説明では、増幅部20からの信号のアッテネート比1/4として説明する。
図14は本実施例にかかる撮像装置にかかるAD変換部600及び増幅部20以降の周辺回路を含む構成図である。増幅部20の出力信号Out_Ampとフラグメモリ601から出力される選択信号SELBがゲイン選択回路303に入力される。ゲイン選択回路303は増幅部20の信号Out_Ampを1/4倍にアッテネートする機能を備える。選択信号SELBがLレベルの時は、ゲイン選択回路303は増幅部20の信号Out_Ampを比較回路301に出力する。以後、ゲイン選択回路303が出力する増幅部20の信号Out_Ampを、高ゲイン信号と表記する一方、選択信号SELBがHレベルの時は、ゲイン選択回路303は、増幅部20の信号Out_Ampを1/4倍した信号を比較回路301に出力する。以後、選択信号SELBがHレベルの時にゲイン選択回路303が出力する信号を、低ゲイン信号と表記する。
本実施例の撮像装置は実施例4と同じく、参照信号供給部25が比較回路301に、1つの参照信号Vrを供給する。
次に図15(a)のタイミング図を用いて、本実施例の撮像装置にかかるAD変換部600の動作について説明する。図15(a)においても、増幅部20の信号Out_Ampとしてノイズ信号に基づく信号が出力されている状態とする。また図7(b)と同様に、光電変換信号に基づく増幅部20の出力信号が電位VREFより小さい列について説明する。電位VREFより大きい場合については、後述の図15(b)にて説明する。
時刻t500において選択信号SELBはHレベルであるため、ゲイン選択回路303からは低ゲインの信号がCMP_Ampとして出力されている。そして参照信号Vrは時間に依存した電位の変化を開始し、時刻t501にカウンタ400がカウント動作を開始する。同時刻において、シフト信号SHIFTはHレベルであるため、2ビットシフトしたカウント信号CNTをAD変換部600に出力する。
時刻t502に増幅部20の信号Out_Ampと参照信号Vrの大小関係が逆転し、比較結果信号CMPがHレベルに変化する。この変化によりラッチ信号LATCHが一定期間LレベルからHレベルとなり、その立下りタイミングで第1メモリ602がカウント信号CNTを保持する。この時保持したデジタル信号をN(LoG)×4とする。本データは2ビットシフトされているため、下位2ビットは「0(ゼロ)」が保持されている。
時刻t503に参照信号Vrの電位変化が停止され、参照信号Vrの電位を時刻t500の時の電位に戻し、併せて比較結果信号CMPがLレベルに変化する。またカウンタ400のカウント動作も停止される。時刻t504に選択信号SELBをLレベルとし、ゲイン選択回路303によって高ゲインの信号がCMP_Ampとして出力される。選択信号SELBのHレベルからLレベルへの変化タイミングは必ずしも時刻t504である必要は無く、時刻t503から時刻t507の間であればよい。また、カウント信号CNTのリセット、及びシフト信号SHIFTのHレベルからLレベルへの変化のタイミングは、時刻t503から時刻t508の間であればよい。
時刻t505から時刻t506の間に転送制御信号LTXがHレベルとなることで、第2メモリ603にデジタル信号N(LoG)×4が複製され、保持される。次に時刻t507及び時刻t508において、参照信号Vrの変化及びカウンタ400のカウント動作が開始され、時刻t509に増幅部20の信号Out_Ampと参照信号Vrの大小関係が逆転し、比較結果信号CMPがHレベルに変化する。ラッチ信号LATCHの立下りタイミングでデジタル信号N(HiG)が第1メモリ602に保持される。
時刻t510で参照信号Vr1の電位変化停止と時刻t508の時の電位へ戻すこと、及び時刻t515より前にカウンタ400の動作停止とリセットが行われる。
時刻t510と時刻t511の間の時点で、光電変換信号に基づく信号が増幅部20から出力され、信号Out_Ampの電位が変化する。時刻t511に参照信号Vrの電位を電位VREFへ変化させる動作を開始する。図15(a)では増幅部20の信号Out_Ampが電位VREFより小さいため、比較結果信号CMPはHレベルになり、その結果がフラグメモリ601に保持される。選択信号SELBはフラグメモリ601に保持された信号の反転信号であるため、Lレベルのままであり、高ゲインのままとなる。時刻t512に参照信号Vr1は時刻t511の電位に戻る。
時刻t513から一定期間、TG70は転送制御信号LTXをHレベルとする。同時刻において、書き込み制御信号W_DISはLレベルである。よって、それまで第2メモリ603が保持していたデジタル信号N(LoG)×4は、第1メモリ602から出力されるデジタル信号N(HiG)に上書きされる。
時刻t515以降の動作は、時刻t516にデジタル信号S(HiG)が第1メモリ602に保持される点を除いて図7(b)を参照しながら述べた動作と同じである。
次に図15(b)のタイミング図を用いて、光電変換信号に基づく増幅部20の出力信号振幅が電位VREFより大きい列の場合について説明する。時刻t511−2以前の動作は図15(a)と同一なので説明を省略する。
時刻t511−2と時刻t512−2の間において、増幅回路20の信号Out_Ampの振幅が電位VREFより大きいため、比較結果信号CMPはLレベルを出力し、その結果がフラグメモリ601に保持される。図示されていない制御信号によって、フラグメモリ601で保持された信号の反転信号であるHレベルの信号が選択信号SELBとして出力される。これにより、ゲイン選択回路303は低ゲイン信号を比較回路301に出力する。よって、比較回路301の入力信号である信号CMP_Ampが変化する。選択信号SELBが反転するタイミングは時刻t512−2から時刻t514の間であればよい。また時刻t512−2から時刻t513−2の間にフラグメモリ601に保持された結果に基づき、書き込み制御信号W_DISがHレベルに変化する。
時刻t513−2から一定期間、TG70は転送制御信号LTXをHレベルとする。同時刻において、書き込み制御信号W_DISはHレベルである。よって、下位2ビットのメモリ回路611−0とメモリ回路611−1が書き込みを許可されている。従って、デジタル信号N(HiG)の下位2ビットであるデジタル信号N(HiG)[1:0]が、第2メモリ603に書き込まれる。よって、第2メモリ603は、デジタル信号N(LoG)×4+N(HiG)[1:0]を保持する。時刻t515以降の動作は、時刻t516−2にデジタル信号S(LoG)が第1メモリ602に保持される点を除いて、図15(a)を参照しながら述べた動作と同じである。
以上説明したように、光電変換信号に基づく増幅回路20の信号Out_Ampと電位VREFとの大小関係によって、次のような信号が各メモリに保持される。
(Out_Amp<VREFのAD変換部110)
フラグメモリ601・・・Hレベル
第1メモリ602・・・S(HiG)
第2メモリ603・・・N(HiG)
(Out_Amp>VREFのAD変換部110)
フラグメモリ601・・・Lレベル
第1メモリ602・・・S(LoG)
第2メモリ603・・・N(LoG)×4+N(HiG)[1:0]
実施例4の撮像装置では、フラグメモリ601の信号レベルに応じて、差分処理の極性を変えるようにしていた。一方、本実施例の撮像装置では、差分処理の極性を変えずに、差分処理を行うことができる。また、実施例4の撮像装置が有していた効果を同様に有することができる。
本実施例では、低ゲイン信号のノイズ信号のAD変換を、高ゲイン信号のノイズ信号のAD変換に先んじて行ったが、この順序は逆であっても良い。
(実施例6)
以下、図面を参照しながら本実施例の撮像装置について実施例3と実施例4と異なる点を中心に説明する。なお、実施例3及び実施例4と同じ機能を有するものは同符号を用いて表している。
本実施例の撮像装置は、実施例4の撮像装置で得られた効果に加えて、ゲイン選択回路303で設定されるゲイン比が列ごとにばらつくことによって生じるデジタル信号の誤差を低減することができる。
図16は本実施例の撮像装置の構成を示した図である。本実施例の撮像装置は実施例4の構成に加えて、テスト信号供給部200を有している。垂直信号線2に電気的に接続されたテスト信号供給部200を有する。テスト信号供給部200には、TG70から信号S2、S3が出力される。本実施例におけるテスト信号供給部200の構成は実施例3と同じである。
続いて、本実施例の動作について説明する。図17は、本実施例の撮像装置の動作を示した図である。本実施例の撮像装置の動作は、実施例3において図10(a)を参照しながら説明した動作に対して、参照信号供給部25の参照信号Vrの出力動作と、比較部30の動作が異なる。以下、実施例3と異なる補正動作について説明する。
補正動作を行う間、TG70は不図示の制御信号によって、選択信号SELを制御する。これにより、TG70は、ゲイン選択回路303のゲインを制御することができる。ゲイン選択回路303が、選択信号SELに応じて設定されたゲインに基づいて、テスト信号VS1、VS2、VN1、VN2をそれぞれ増幅して出力する信号のそれぞれが増幅アナログ信号である。
参照信号供給部25は、時刻t42−1から参照信号Vrの時間に依存した電位の変化を開始し、時刻t44に電位変化を停止すると同時に時刻t42−1の電位に戻す。同期間において、選択信号SELはHレベルであるため、ゲイン選択回路303はゲイン1倍を選択している。そのため、比較回路301は、時刻t42−1から時刻t44の間に、テスト信号VS1に基づく信号にゲイン1倍を掛けた信号と、参照信号Vrに基づく信号とを比較した結果を示す比較結果信号CMPを生成する。この比較結果信号CMPの信号値が変化したタイミングに基づいて生成したカウンタ40の計数値が、デジタル信号DN1として第2メモリ503に書き込まれる。
参照信号供給部25は、時刻t46−2から参照信号Vrの時間に依存した電位の変化を再度開始し、時刻t48に電位変化を停止すると同時に時刻t46−1の電位に戻す。同時刻において、選択信号SELはHレベルであるため、ゲイン選択回路303はゲイン1倍を選択している。そのため、比較回路301は、時刻t46−1から時刻t48の間に、テスト信号VS2に基づく信号にゲイン1倍を掛けた信号と、参照信号Vrに基づく信号とを比較した結果を示す比較結果信号CMPを生成する。比較結果信号CMPの信号値が変化したタイミングに基づいて生成したカウンタ40の計数値が、デジタル信号DS1として第1メモリ502に書き込まれる。
時刻t48から時刻t50までの期間に、得られたデジタル信号DN1とデジタル信号DS1が、水平走査回路60によりDSP90に転送される。
参照信号供給部25は、続く時刻t50−1から時刻56の間に、時刻t42−1から時刻48までの動作を、再度行う。同期間において、選択信号SELはLレベルであるため、ゲイン選択回路303はゲイン1/4倍を選択している。そのため、比較回路303は、時刻t50−1から時刻t52の間に、テスト信号VS1に基づく信号にゲイン1/4倍を掛けた信号と、参照信号Vrに基づく信号とを比較した結果を示す比較結果信号CMPを生成する。比較結果信号CMPの信号値が変化したタイミングに基づいて生成したカウンタ40の計数値が、デジタル信号DN2として第2メモリ503に書き込まれる。また、比較回路303は、時刻t54−1から時刻t56の間にテスト信号VS1に基づく信号にゲイン1/4倍を掛けた信号と、参照信号Vrに基づく信号とを比較した結果を示す比較結果信号CMPを生成する。比較結果信号CMPの信号値が変化したタイミングに基づいて生成したカウンタ40の計数値が、デジタル信号DS2として第1メモリ502に書き込まれる。
時刻t56以降、得られたデジタル信号DN2とデジタル信号DS2は、水平走査回路60によりDSP90に転送される。
上記補正動作により得られたデジタル信号DN1、DS1、DN2、DS2を基に、DSP90は、補正値βの取得及び補正処理を行う。補正値βの取得及び補正処理については、実施例3と同じとすることができる。
以上の構成および動作により、本実施例の撮像装置においても、実施例4と同じ効果を得ることができる。さらに、ゲイン選択回路303で設定されるゲイン比がばらつくことによるデジタル信号の誤差を低減することができる。
(実施例7)
図18は、実施例1〜実施例6で述べた撮像装置を撮像装置154として用いた撮像システムである。
図18において、撮像システムはレンズの保護のためのバリア151、被写体の光学像を撮像装置154に結像させるレンズ152、レンズ152を通った光量を可変にするための絞り153を有する。さらに撮像システムは、撮像装置154より出力される信号の処理を行う出力信号処理部155を有する。撮像装置154から出力される信号は、被写体を撮影した画像を生成するための撮像信号である。出力信号処理部155は撮像装置154から出力される撮像信号を必要に応じて各種の補正、圧縮を行って画像を生成する。レンズ152、絞り153は撮像装置154に光を集光する光学系である。
図18に例示した撮像システムはさらに、画像データを一時的に記憶する為のバッファメモリ部156、外部コンピュータ等と通信する為の外部インターフェース部157を有する。さらに撮像システムは、撮像データの記録または読み出しを行う為の半導体メモリ等の着脱可能な記録媒体159、記録媒体159に記録または読み出しを行うための記録媒体制御インターフェース部158を有する。さらに撮像システムは、各種演算とデジタルスチルカメラ全体を制御する全体制御・演算部1510を有する。
図18に示した撮像システムでは、実施例1〜実施例6で述べたDSP90を、撮像装置154の外部に設けられた出力信号処理部155が有する形態とすることができる。この形態の場合には、出力信号処理部155が、補正部を有する信号処理部である。この形態としても、本実施例の撮像システムは、実施例1〜実施例6で述べた効果と同様の効果を得ることができる。他の形態として、実施例1〜実施例6で述べたDSP90を、撮像装置154の外部に設けられた全体制御・演算部1510が有する形態とすることができる。この形態の場合には、全体制御・演算部1510が、補正部である。
1 画素
10 画素部
30 比較部
40 カウンタ
50 メモリ部
90 DSP
100 撮像装置
150 アナログ信号出力部

Claims (32)

  1. 入射光に基づく光電変換信号を出力する画素を有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置であって、
    前記比較器は、第1、第2、第3の比較を行う比較器であって、
    前記第1の比較は、前記アナログ信号出力部が出力するノイズ信号と、単位時間当たり第1の変化量で電位が変化する第1の参照信号との比較であり、
    前記第2の比較は、前記ノイズ信号と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号との比較であり、
    前記第3の比較は、前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づいて前記アナログ信号出力部が出力する信号との比較であり、
    前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置。
  2. 前記画素が、
    入射光に基づく電荷を生成する光電変換部と、
    前記電荷が与えられる入力ノードを有するとともに、前記電荷に基づく前記光電変換信号を出力するトランジスタとを有し、
    前記ノイズ信号が、リセットされた前記入力ノードの電位に基づいて、前記トランジスタから出力される信号であることを特徴とする請求項1に記載の撮像装置。
  3. 前記アナログ信号出力部が、前記光電変換信号が入力される入力ノードを有するとともに、前記入力ノードに入力された信号を増幅して前記比較器に出力する増幅部をさらに有し、
    前記ノイズ信号が、リセットされた前記増幅部の前記入力ノードの電位に基づいて、前記増幅部から出力される信号であることを特徴とする請求項1に記載の撮像装置。
  4. 入射光に基づく光電変換信号を出力する画素と、
    参照信号と入力ノードに与えられる信号とを比較する比較器を有するAD変換部とを有する撮像装置であって、
    前記比較器は、第1、第2、第3の比較を行う比較器であって、
    前記第1の比較は、リセットされた前記比較器の前記入力ノードの電位と、単位時間当たり第1の変化量で電位が変化する第1の参照信号との比較であり、
    前記第2の比較は、リセットされた前記比較器の前記入力ノードの電位と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号との比較であり、
    前記第3の比較は、前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づく前記比較器の前記入力ノードの電位との比較であり、
    前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置。
  5. 前記AD変換部が、前記第1の比較の結果に基づいて生成する前記デジタル信号が第1のデジタル信号であり、
    前記AD変換部が、前記第2の比較の結果に基づいて生成する前記デジタル信号が第2のデジタル信号であり、
    前記AD変換部はさらに選択回路を有し、
    前記AD変換部が前記第1のデジタル信号と前記第2のデジタル信号とを生成した後、前記光電変換信号に基づく信号の電位と所定の電位とを前記比較器が比較し、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記選択回路が、前記第3の比較において前記比較器に前記第1の参照信号を供給し、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記選択回路が、前記第3の比較において前記比較器に前記第2の参照信号を供給することを特徴とする請求項1〜4のいずれかに記載の撮像装置。
  6. 前記AD変換部が、前記第3の比較の結果に基づいて生成する前記デジタル信号が第3のデジタル信号であり、
    前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1メモリが、前記第1のデジタル信号を保持し、前記第2メモリが、前記第2のデジタル信号を保持した後、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記選択回路が、前記第1メモリに前記第1のデジタル信号を保持させたまま、前記第2メモリに前記第3のデジタル信号を保持させ、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記選択回路が、前記第2メモリに前記第2のデジタル信号を保持させたまま、前記第1メモリに前記第3のデジタル信号を保持させることを特徴とする請求項5に記載の撮像装置。
  7. 前記AD変換部が、前記第3の比較の結果に基づいて生成する前記デジタル信号が第3のデジタル信号であり、
    前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1メモリが前記第1のデジタル信号を保持した後、前記第2メモリが前記第1メモリに保持された前記第1のデジタル信号を保持し、
    その後、前記第1メモリが前記第2のデジタル信号を保持し、
    その後、前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記第2メモリが、前記第1メモリに保持された前記第2のデジタル信号を保持した後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項5に記載の撮像装置。
  8. 前記第2の変化量が、前記第1の変化量の2のn乗倍(nは1以上の整数)であり、
    前記第2メモリが、前記第1メモリの保持した前記第2のデジタル信号の各ビットの信号をそれぞれnビットずつ上位にシフトしたデジタル信号を保持することを特徴とする請求項7に記載の撮像装置。
  9. 前記第2メモリが、前記第1のデジタル信号の下位nビットの信号と、前記第2のデジタル信号をそれぞれnビットずつ上位にシフトしたデジタル信号とを組み合わせたデジタル信号を保持することを特徴とする請求項8に記載の撮像装置。
  10. 前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記選択回路が、前記第1メモリの保持した前記第2のデジタル信号を前記第1メモリに保持させた後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項7〜9のいずれかに記載の撮像装置。
  11. 前記AD変換部が、前記第3の比較の結果に基づいて生成する前記デジタル信号が第3のデジタル信号であり、
    前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1メモリが前記第2のデジタル信号を保持した後、前記第2メモリが前記第1メモリに保持された前記第2のデジタル信号を保持し、
    その後、前記第1メモリが前記第1のデジタル信号を保持し、
    その後、前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記第2メモリが、前記第1メモリに保持された前記第1のデジタル信号を保持した後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項5に記載の撮像装置。
  12. 前記撮像装置はさらに参照信号供給部を有し、
    前記第1の比較において、前記参照信号供給部が、前記第2の参照信号の供給を行わずに前記第1の参照信号を、前記選択回路を介して前記比較器に供給し、
    前記第2の比較において、前記参照信号供給部が前記選択回路に、前記第1の参照信号の供給を行わずに前記第2の参照信号を、前記選択回路を介して前記比較器に供給し、
    前記第3の比較において、前記参照信号供給部が前記選択回路に前記第1の参照信号を供給する期間と、前記参照信号供給部が前記選択回路に前記第2の参照信号を供給する期間と、が重なっている期間を有することを特徴とする請求項5または6に記載の撮像装置。
  13. 前記撮像装置はさらに補正部を有し、
    第1のアナログ信号と、前記第1の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第4のデジタル信号を生成し、
    前記第1のアナログ信号と、前記第2の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第5のデジタル信号を生成し、
    前記第1のアナログ信号とは信号値が異なる第2のアナログ信号と、前記第1の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第6のデジタル信号を生成し、
    前記第2のアナログ信号と、前記第2の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第7のデジタル信号を生成し、
    前記AD変換部が、前記第3の比較の結果に基づいて生成するデジタル信号である第3のデジタル信号を、
    前記第4のデジタル信号と前記第6のデジタル信号との信号値の差と、前記第5のデジタル信号と前記第7のデジタル信号との信号値の差とに基づいて前記補正部が補正することを特徴とする請求項1〜12のいずれかに記載の撮像装置。
  14. 前記撮像装置がさらにテスト信号供給部を有し、
    前記テスト信号供給部が、前記第1のアナログ信号と前記第2のアナログ信号とを前記比較器に出力することを特徴とする請求項13に記載の撮像装置。
  15. 前記第4のデジタル信号の信号値をDN1、前記第5のデジタル信号の信号値をDN2、前記第6のデジタル信号の信号値をDS1、前記第7のデジタル信号の信号値をDS2、前記第1の変化量に対する前記第2の変化量の比をGとして、前記補正部が、以下の式で求められる補正値βを前記第3のデジタル信号に乗算して、前記第3のデジタル信号の補正を行うことを特徴とする請求項13または14に記載の撮像装置。
    Figure 2015164278
  16. 前記撮像装置は、複数の前記画素と、複数の前記AD変換部とを有し、
    前記複数の画素は、複数列の前記画素であって、
    前記複数のAD変換部は、それぞれが、前記画素が設けられた列に対応して設けられ、前記複数のAD変換部の各々が、前記第4のデジタル信号、前記第5のデジタル信号、前記第6のデジタル信号、前記第7のデジタル信号を生成し、
    前記補正部が、
    前記複数のAD変換部の各々の前記第4のデジタル信号と前記第6のデジタル信号との信号値の差の、前記複数のAD変換部での平均値と、
    前記複数のAD変換部の各々の前記第5のデジタル信号と前記第7のデジタル信号との信号値の差の、前記複数のAD変換部での平均値と、
    に基づいて、前記複数のAD変換部の各々が生成した前記第3のデジタル信号の補正を行うことを特徴とする請求項13〜15のいずれかに記載の撮像装置。
  17. ノイズ信号と入射光に基づく光電変換信号を出力する画素と、前記ノイズ信号と前記光電変換信号とをそれぞれ増幅するゲイン部とを有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置であって、
    前記AD変換部は、第1、第2、第3のデジタル信号を生成し、
    前記第1のデジタル信号は、前記ゲイン部が前記ノイズ信号を第1のゲインで増幅した信号と、時間に依存して変化する参照信号とを、前記比較器が比較する第1の比較によって生成するデジタル信号であり、
    前記第2のデジタル信号は、前記ゲイン部が前記ノイズ信号を第2のゲインで増幅した信号と、前記参照信号とを、前記比較器が比較する第2の比較によって生成するデジタル信号であり、
    前記第3のデジタル信号は、前記ゲイン部が前記光電変換信号を前記第1または前記第2のゲインで増幅した信号と、前記参照信号とを、前記比較器が比較する第3の比較によって生成するデジタル信号であり、
    前記第2のゲインの絶対値は、前記第1のゲインの絶対値よりも小さいことを特徴とする撮像装置。
  18. 前記撮像装置はさらに補正部を有し、
    前記ゲイン部は、第1、第2、第3、第4の増幅アナログ信号を前記比較器に出力し、
    前記第1の増幅アナログ信号は、前記第1のアナログ信号を前記第1のゲインで増幅した信号であり、
    前記第2の増幅アナログ信号は、前記第1のアナログ信号を前記第2のゲインで増幅した信号であり、
    前記第3の増幅アナログ信号は、前記第1のアナログ信号とは信号値の異なる第2のアナログ信号を前記第1のゲインで増幅した信号であり、
    前記第4の増幅アナログ信号は、前記第2のアナログ信号を前記第2のゲインで増幅した信号であり、
    前記AD変換部は、第4、第5、第6、第7のデジタル信号を生成し、
    前記第4のデジタル信号は、前記第1の増幅アナログ信号と前記参照信号とを前記比較器が比較した結果に基づいて生成するデジタル信号であり、
    前記第5のデジタル信号は、前記第2の増幅アナログ信号と前記参照信号とを前記比較器が比較した結果に基づいて生成するデジタル信号であり、
    前記第6のデジタル信号は、前記第3の増幅アナログ信号と前記参照信号とを前記比較器が比較した結果に基づいて生成するデジタル信号であり、
    前記第7のデジタル信号は、前記第4の増幅アナログ信号と前記参照信号とを前記比較器が比較した結果に基づいて生成するデジタル信号であり、
    前記第3のデジタル信号を、前記第4のデジタル信号と前記第6のデジタル信号との信号値の差と、前記第5のデジタル信号と前記第7のデジタル信号との信号値の差と、に基づいて前記補正部が補正することを特徴とする請求項17に記載の撮像装置。
  19. 前記第4のデジタル信号の信号値をDN1、前記第5のデジタル信号の信号値をDN2、前記第6のデジタル信号の信号値をDS1、前記第7のデジタル信号の信号値をDS2、前記第1の変化量に対する前記第2の変化量の比をGとして、前記補正部が、以下の式で求められる補正値βを前記第3のデジタル信号に乗算して、前記第3の比較の結果に基づいて生成するデジタル信号の補正を行うことを特徴とする請求項18に記載の撮像装置。
    Figure 2015164278
  20. 前記AD変換部はさらに、ゲイン選択回路を有し、
    前記AD変換部が前記第1のデジタル信号と前記第2のデジタル信号とを生成した後、前記光電変換信号に基づく信号の電位と所定の電位とを前記比較器が比較し、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記ゲイン選択回路が、前記ゲイン部に、前記第1のゲインで増幅した増幅光電変換信号を出力させ、
    前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記ゲイン選択回路が、前記ゲイン部に、前記第2のゲインで増幅した増幅光電変換信号を出力させることを特徴とする請求項17〜19のいずれかに記載の撮像装置。
  21. 前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1メモリが前記第1のデジタル信号を保持した後、前記第2メモリが前記第1メモリの保持した前記第1のデジタル信号を保持し、
    その後、前記第1メモリが前記第2のデジタル信号を保持し、
    その後、前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記第2メモリが、前記第1メモリの保持した前記第2のデジタル信号を保持した後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項20に記載の撮像装置。
  22. 前記第2の変化量が、前記第1の変化量の2のn乗倍(nは1以上の整数)であり、
    前記第2メモリが、前記第1メモリの保持した前記第2のデジタル信号の各ビットの信号をそれぞれnビットずつ上位にシフトしたデジタル信号を保持することを特徴とする請求項21に記載の撮像装置。
  23. 前記第2メモリが、前記第1のデジタル信号の下位nビットの信号と、前記第2のデジタル信号をそれぞれnビットずつ上位にシフトしたデジタル信号とを組み合わせたデジタル信号を保持することを特徴とする請求項22に記載の撮像装置。
  24. 前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記ゲイン選択回路が、前記第1メモリの保持した前記第2のデジタル信号を前記第2メモリに保持させた後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項21に記載の撮像装置。
  25. 前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1メモリが前記第2のデジタル信号を保持した後、前記第2メモリが前記第1メモリの保持した前記第2のデジタル信号を保持し、
    その後、前記第1メモリが前記第1のデジタル信号を保持し、
    その後、前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合には、前記第2メモリが、前記第1メモリの保持した前記第1のデジタル信号を保持した後、前記第1メモリが前記第3のデジタル信号を保持することを特徴とする請求項20に記載の撮像装置。
  26. 請求項1〜25のいずれかに記載の撮像装置と、前記撮像装置が出力する信号を処理する信号処理部とを有する撮像システムであって、
    前記AD変換部が前記第3の比較を前記第1の参照信号を用いて行った場合には、前記信号出力部が、前記第3の比較によって生成したデジタル信号と前記第1の比較によって生成したデジタル信号との差の信号を生成し、
    前記AD変換部が前記第3の比較を前記第2の参照信号を用いて行った場合には、前記信号出力部が、前記第3の比較によって生成したデジタル信号と前記第2の比較によって生成したデジタル信号との差の信号を生成することを特徴とする撮像システム。
  27. 請求項1〜26のいずれかに記載の撮像装置と、前記撮像装置が出力する信号を処理する信号処理部とを有する撮像システム。
  28. 入射光に基づく光電変換信号を出力する画素を有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置の駆動方法であって、
    前記アナログ信号出力部が出力するノイズ信号と、単位時間当たり第1の変化量で電位が変化する第1の参照信号とを前記比較器に比較させる第1の工程と、
    前記ノイズ信号と、前記第1の変化量よりも単位時間当たりの変化量の大きい第2の変化量で電位が変化する第2の参照信号とを前記比較器に比較させる第2の工程と、
    前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づく信号とを前記比較器に比較させる第3の工程とを有することを特徴とする撮像装置の駆動方法。
  29. 前記AD変換部が、さらに第1メモリと第2メモリとを有し、
    前記第1の工程において、前記比較器の比較結果に基づいて、前記AD変換部に第1のデジタル信号を生成させ、前記第1の工程において、前記第1のデジタル信号を前記第1メモリに保持させ、
    前記第2の工程において、前記比較器の比較結果に基づいて、前記AD変換部に第2のデジタル信号を生成させ、前記第2の工程において、前記第2のデジタル信号を前記第2メモリに保持させ、
    前記第3の工程において、前記比較器の比較結果に基づいて、前記AD変換部に第3のデジタル信号を生成させ、
    前記第3の工程において、前記光電変換信号に基づく信号の電位が所定の電位よりも小さい場合には、前記第1メモリに前記第1のデジタル信号を保持させたまま、前記第2メモリに前記第3のデジタル信号を保持させ、
    前記第3の工程において、前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合には、前記第2メモリに前記第2のデジタル信号を保持させたまま、前記第1メモリに前記第3のデジタル信号を保持させることを特徴とする請求項28に記載の撮像装置の駆動方法。
  30. 前記撮像装置がさらに選択回路を有し、
    前記第1の工程において、前記第2の参照信号を前記比較器に供給せずに前記第1の参照信号を、前記選択回路を介して前記比較器に供給し、
    前記第2の工程において、前記第1の参照信号を前記比較器に供給せずに前記第2の参照信号を、前記選択回路を介して前記比較器に供給し、
    前記第3の工程において、前記第1の参照信号と前記第2の参照信号とを並行して前記選択回路に供給し、前記選択回路が、前記光電変換信号に基づく信号の電位が前記所定の電位よりも小さい場合に前記第1の参照信号と前記第2の参照信号から前記第1の参照信号を選択して前記比較器に供給し、前記光電変換信号に基づく信号の電位が前記所定の電位よりも大きい場合に、前記第1の参照信号と前記第2の参照信号から前記第2の参照信号を選択して前記比較器に供給することを特徴とする請求項29に記載の撮像装置の駆動方法。
  31. 第1のアナログ信号と、前記第1の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部に第4のデジタル信号を生成させ、
    前記第1のアナログ信号と、前記第2の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第5のデジタル信号を生成させ、
    前記第1のアナログ信号とは信号値が異なる第2のアナログ信号と、前記第1の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部に第6のデジタル信号を生成させ、
    前記第2のアナログ信号と、前記第2の参照信号とを前記比較器が比較した結果に基づいて、前記AD変換部が第7のデジタル信号を生成させ、
    前記第1の参照信号と、前記第2の参照信号との一方と、前記光電変換信号に基づく信号とを前記比較器に比較させる前記工程において、前記比較器の比較結果に基づいて、前記AD変換部に生成させたデジタル信号を、
    前記第4のデジタル信号と前記第6のデジタル信号との信号値の差と、前記第5のデジタル信号と前記第7のデジタル信号との信号値の差と、に基づいて補正することを特徴とする請求項28〜30のいずれかに記載の撮像装置の駆動方法。
  32. ノイズ信号と入射光に基づく光電変換信号を出力する画素と、前記ノイズ信号と前記光電変換信号とをそれぞれ増幅するゲイン部とを有するアナログ信号出力部と、比較器を有するAD変換部とを有する撮像装置の駆動方法であって、
    前記ゲイン部は、前記ノイズ信号を第1のゲインで増幅した第1の増幅ノイズ信号と、前記ノイズ信号を第2のゲインで増幅した第2の増幅ノイズ信号とを前記比較器に出力し、
    前記第1のゲインと前記第2のゲインは、所定の信号値の信号を前記第2のゲインで増幅した信号の振幅が、前記所定の信号値の信号を前記第1のゲインで増幅した信号よりも振幅が小さくなる関係であり、
    前記ゲイン部は、前記光電変換信号を、前記第1のゲインと前記第2のゲインとの一方で増幅した増幅光電変換信号を前記比較器に出力し、
    前記比較器は、第1、第2、第3の比較を行う比較器であって、
    前記第1の比較は、前記第1の増幅ノイズ信号と時間に依存して電位が変化する参照信号との比較であり、
    前記第2の比較は、前記第2の増幅ノイズ信号と前記参照信号との比較であり、
    前記第3の比較は、前記増幅光電変換信号と前記参照信号との比較であり、
    前記AD変換部が、前記第1の比較、前記第2の比較、前記第3の比較のそれぞれの結果に基づくデジタル信号をそれぞれ生成することを特徴とする撮像装置の駆動方法。
JP2014043112A 2013-03-28 2014-03-05 撮像装置、撮像装置の駆動方法、撮像システム Active JP6478467B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2014043112A JP6478467B2 (ja) 2013-03-28 2014-03-05 撮像装置、撮像装置の駆動方法、撮像システム
US14/223,319 US8981987B2 (en) 2013-03-28 2014-03-24 Imaging device, driving method of imaging device, and imaging system
CN201410120858.1A CN104079844B (zh) 2013-03-28 2014-03-28 成像装置、成像装置的驱动方法和成像系统

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2013070544 2013-03-28
JP2013070544 2013-03-28
JP2014016022 2014-01-30
JP2014016022 2014-01-30
JP2014043112A JP6478467B2 (ja) 2013-03-28 2014-03-05 撮像装置、撮像装置の駆動方法、撮像システム

Publications (2)

Publication Number Publication Date
JP2015164278A true JP2015164278A (ja) 2015-09-10
JP6478467B2 JP6478467B2 (ja) 2019-03-06

Family

ID=51600862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014043112A Active JP6478467B2 (ja) 2013-03-28 2014-03-05 撮像装置、撮像装置の駆動方法、撮像システム

Country Status (3)

Country Link
US (1) US8981987B2 (ja)
JP (1) JP6478467B2 (ja)
CN (1) CN104079844B (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158062A (ja) * 2016-03-02 2017-09-07 キヤノン株式会社 信号処理装置及び方法、及び撮像装置
JP2018174493A (ja) * 2017-03-31 2018-11-08 キヤノン株式会社 撮像装置、撮像システム、移動体
JP2019062399A (ja) * 2017-09-26 2019-04-18 ブリルニクス インク 固体撮像装置、固体撮像装置の駆動方法、および電子機器
US10560653B2 (en) 2017-04-07 2020-02-11 Canon Kabushiki Kaisha Image sensing apparatus and control method for performing analog-to-digital conversion
JP2020161981A (ja) * 2019-03-26 2020-10-01 キヤノン株式会社 光電変換装置、信号処理回路、撮像システム、移動体
JP2020182057A (ja) * 2019-04-24 2020-11-05 キヤノン株式会社 撮像装置、撮像方法、コンピュータプログラム及び記憶媒体
US10834353B2 (en) 2018-04-24 2020-11-10 Canon Kabushiki Kaisha Image sensor and control method therefor, and image capturing apparatus
US11832012B2 (en) 2021-08-04 2023-11-28 Canon Kabushiki Kaisha Photoelectric conversion device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6341688B2 (ja) * 2014-02-25 2018-06-13 キヤノン株式会社 固体撮像装置及び撮像システム
JP6478488B2 (ja) * 2014-06-18 2019-03-06 キヤノン株式会社 Ad変換装置及び固体撮像装置
JP2016144151A (ja) * 2015-02-04 2016-08-08 キヤノン株式会社 固体撮像装置の駆動方法、固体撮像装置およびカメラ
CN107534748B (zh) * 2015-05-20 2020-07-21 索尼公司 固态成像装置和固态成像装置的驱动方法
KR20170003744A (ko) * 2015-06-30 2017-01-10 에스케이하이닉스 주식회사 이미지 센싱 장치
JP6649806B2 (ja) * 2016-03-02 2020-02-19 キヤノン株式会社 信号処理装置、撮像装置及び制御装置、信号処理方法及び制御方法
JP7005231B2 (ja) * 2017-08-28 2022-01-21 キヤノン株式会社 撮像装置、撮像システム、移動体
CN113785561B (zh) * 2019-08-01 2023-12-19 松下知识产权经营株式会社 摄像装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009087A (ja) * 2011-06-23 2013-01-10 Canon Inc 撮像装置及びその駆動方法
JP2013051575A (ja) * 2011-08-31 2013-03-14 Sony Corp 固体撮像装置、撮像装置および撮像方法

Family Cites Families (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5877715A (en) * 1997-06-12 1999-03-02 International Business Machines Corporation Correlated double sampling with up/down counter
KR100498594B1 (ko) * 2000-12-30 2005-07-01 매그나칩 반도체 유한회사 씨모스 이미지 센서
US20030202111A1 (en) * 2002-04-30 2003-10-30 Jaejin Park Apparatus and methods for dark level compensation in image sensors using dark pixel sensor metrics
TWI247484B (en) * 2003-07-16 2006-01-11 Matsushita Electric Ind Co Ltd Timing generator, solid-state imaging device and camera system
JP4449565B2 (ja) * 2004-05-12 2010-04-14 ソニー株式会社 物理量分布検知の半導体装置
JP2006020172A (ja) * 2004-07-02 2006-01-19 Fujitsu Ltd ランプ波形発生回路、アナログ・デジタル変換回路、撮像装置、撮像装置の制御方法
JP4193768B2 (ja) * 2004-07-16 2008-12-10 ソニー株式会社 データ処理方法並びに物理量分布検知の半導体装置および電子機器
US7315273B2 (en) * 2004-11-08 2008-01-01 Sony Corporation Analog-to-digital conversion method, analog-to-digital converter, semiconductor device for detecting distribution of physical quantity, and electronic apparatus
JP4442515B2 (ja) * 2005-06-02 2010-03-31 ソニー株式会社 固体撮像装置、固体撮像装置におけるアナログ−デジタル変換方法および撮像装置
KR100744117B1 (ko) * 2005-08-24 2007-08-01 삼성전자주식회사 손실이 없는 비선형 아날로그 게인 콘트롤러를 지닌 이미지 센서 및 제조 방법
JP4654857B2 (ja) * 2005-09-26 2011-03-23 ソニー株式会社 Da変換装置、ad変換装置、半導体装置
JP4363390B2 (ja) * 2005-10-04 2009-11-11 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP4744343B2 (ja) 2006-04-10 2011-08-10 ソニー株式会社 固体撮像装置および固体撮像装置の駆動方法
CN100590846C (zh) * 2006-08-31 2010-02-17 佳能株式会社 光电转换装置的制造方法
JP4882652B2 (ja) * 2006-10-06 2012-02-22 ソニー株式会社 固体撮像装置、固体撮像装置の駆動方法および撮像装置
JP4929075B2 (ja) * 2007-06-28 2012-05-09 パナソニック株式会社 固体撮像装置およびその駆動方法、撮像装置
JP2009021809A (ja) * 2007-07-11 2009-01-29 Canon Inc 撮像装置の駆動方法、撮像装置、及び撮像システム
JP4929090B2 (ja) * 2007-07-26 2012-05-09 パナソニック株式会社 固体撮像装置およびその駆動方法
TWI399088B (zh) * 2007-10-12 2013-06-11 Sony Corp 資料處理器,固態成像裝置,成像裝置,及電子設備
JP5347341B2 (ja) * 2008-06-06 2013-11-20 ソニー株式会社 固体撮像装置、撮像装置、電子機器、ad変換装置、ad変換方法
US8253809B2 (en) * 2008-08-27 2012-08-28 Sony Corporation Analog-digital converter, analog-digital conversion method, image pickup device, method of driving the same, and camera
JP4640507B2 (ja) * 2009-01-06 2011-03-02 ソニー株式会社 固体撮像装置、固体撮像装置の信号処理方法、および撮像装置
JP5636694B2 (ja) * 2009-04-03 2014-12-10 ソニー株式会社 電子機器、ad変換装置、ad変換方法
JP2012010055A (ja) * 2010-06-24 2012-01-12 Sony Corp 固体撮像装置
KR101754131B1 (ko) * 2010-12-01 2017-07-06 삼성전자주식회사 샘플링 회로와 광감지 장치
KR101758090B1 (ko) * 2010-12-06 2017-07-17 삼성전자주식회사 이미지 센서 및 이미지 센서를 포함하는 카메라 시스템
JP5762199B2 (ja) * 2011-07-28 2015-08-12 キヤノン株式会社 固体撮像装置
JP5871531B2 (ja) * 2011-09-08 2016-03-01 キヤノン株式会社 撮像装置、撮像システム
JP5484422B2 (ja) * 2011-10-07 2014-05-07 キヤノン株式会社 固体撮像装置
JP5893573B2 (ja) * 2012-02-09 2016-03-23 キヤノン株式会社 固体撮像装置
JP6004685B2 (ja) * 2012-03-19 2016-10-12 キヤノン株式会社 固体撮像装置及びその駆動方法
JP5893550B2 (ja) * 2012-04-12 2016-03-23 キヤノン株式会社 撮像装置及び撮像システム
KR20140067408A (ko) * 2012-11-26 2014-06-05 삼성전자주식회사 고체 촬상소자 및 그에 따른 동작 제어방법
JP5813067B2 (ja) * 2012-12-20 2015-11-17 キヤノン株式会社 撮像装置の駆動方法、デジタル信号の補正方法、撮像装置、撮像システムの駆動方法、撮像システム
JP2014165845A (ja) * 2013-02-27 2014-09-08 Sony Corp 電子機器、制御方法、及び、イメージセンサ
JP5880478B2 (ja) * 2013-03-29 2016-03-09 ソニー株式会社 コンパレータ、固体撮像素子、電子機器、および、駆動方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013009087A (ja) * 2011-06-23 2013-01-10 Canon Inc 撮像装置及びその駆動方法
JP2013051575A (ja) * 2011-08-31 2013-03-14 Sony Corp 固体撮像装置、撮像装置および撮像方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017158062A (ja) * 2016-03-02 2017-09-07 キヤノン株式会社 信号処理装置及び方法、及び撮像装置
JP2018174493A (ja) * 2017-03-31 2018-11-08 キヤノン株式会社 撮像装置、撮像システム、移動体
US10560653B2 (en) 2017-04-07 2020-02-11 Canon Kabushiki Kaisha Image sensing apparatus and control method for performing analog-to-digital conversion
JP2019062399A (ja) * 2017-09-26 2019-04-18 ブリルニクス インク 固体撮像装置、固体撮像装置の駆動方法、および電子機器
JP6995550B2 (ja) 2017-09-26 2022-01-14 ブリルニクス シンガポール プライベート リミテッド 固体撮像装置、固体撮像装置の駆動方法、および電子機器
US10834353B2 (en) 2018-04-24 2020-11-10 Canon Kabushiki Kaisha Image sensor and control method therefor, and image capturing apparatus
JP2020161981A (ja) * 2019-03-26 2020-10-01 キヤノン株式会社 光電変換装置、信号処理回路、撮像システム、移動体
JP7254576B2 (ja) 2019-03-26 2023-04-10 キヤノン株式会社 光電変換装置、信号処理回路、撮像システム、移動体
JP2020182057A (ja) * 2019-04-24 2020-11-05 キヤノン株式会社 撮像装置、撮像方法、コンピュータプログラム及び記憶媒体
US11832012B2 (en) 2021-08-04 2023-11-28 Canon Kabushiki Kaisha Photoelectric conversion device

Also Published As

Publication number Publication date
JP6478467B2 (ja) 2019-03-06
US20140293085A1 (en) 2014-10-02
CN104079844A (zh) 2014-10-01
CN104079844B (zh) 2017-07-14
US8981987B2 (en) 2015-03-17

Similar Documents

Publication Publication Date Title
JP6478467B2 (ja) 撮像装置、撮像装置の駆動方法、撮像システム
JP5449290B2 (ja) ランプ信号出力回路、アナログデジタル変換回路、撮像装置、ランプ信号出力回路の駆動方法
KR101161277B1 (ko) A/d 변환 회로 및 고체 촬상 장치
US8269872B2 (en) Analog-to-digital converter, analog-to-digital converting method, solid-state image pickup device, and camera system
JP5764466B2 (ja) 固体撮像装置
KR101625394B1 (ko) 촬상장치의 구동방법, 디지털 신호의 보정방법, 촬상장치, 촬상 시스템의 구동방법, 및 촬상 시스템
JP6021626B2 (ja) 撮像装置の駆動方法、撮像装置、撮像システム
US9826186B2 (en) Imaging apparatus and imaging system
JP6053398B2 (ja) 撮像装置の駆動方法、撮像システムの駆動方法、撮像装置、撮像システム
JP2017005392A (ja) 撮像装置、撮像システム
JP2017079464A (ja) 固体撮像装置、その制御方法、撮像システム及びカメラ
JP2013251874A (ja) 撮像装置、撮像装置の駆動方法、撮像システム、撮像システムの駆動方法
US9258505B2 (en) Imaging apparatus, imaging system, method for driving imaging apparatus, and method for driving imaging system
JPWO2009131018A1 (ja) イメージセンサー用a/d変換器
JP6666043B2 (ja) 撮像装置及び撮像システム
JP7214622B2 (ja) 固体撮像装置、およびそれを用いるカメラシステム
JP6639271B2 (ja) 撮像装置、撮像システム
JP6676983B2 (ja) 光電変換素子、画像読取装置、画像形成装置及び画像読取方法
CN117061890A (zh) 图像传感器
JP2013239922A (ja) 撮像装置、撮像装置の駆動方法、撮像システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180405

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180921

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20181002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190205

R151 Written notification of patent or utility model registration

Ref document number: 6478467

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151