JP2012202653A - 減圧装置および冷凍サイクル - Google Patents

減圧装置および冷凍サイクル Download PDF

Info

Publication number
JP2012202653A
JP2012202653A JP2011069537A JP2011069537A JP2012202653A JP 2012202653 A JP2012202653 A JP 2012202653A JP 2011069537 A JP2011069537 A JP 2011069537A JP 2011069537 A JP2011069537 A JP 2011069537A JP 2012202653 A JP2012202653 A JP 2012202653A
Authority
JP
Japan
Prior art keywords
refrigerant
decompression device
swirling
flow rate
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011069537A
Other languages
English (en)
Other versions
JP5640857B2 (ja
Inventor
Tatsuhiro Suzuki
達博 鈴木
Etsuhisa Yamada
悦久 山田
Haruyuki Nishijima
春幸 西嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011069537A priority Critical patent/JP5640857B2/ja
Priority to US14/007,183 priority patent/US9784487B2/en
Priority to KR1020137027535A priority patent/KR101558307B1/ko
Priority to CN201280014959.XA priority patent/CN103477160B/zh
Priority to PCT/JP2012/001917 priority patent/WO2012132317A1/ja
Priority to DE112012001472.3T priority patent/DE112012001472B4/de
Publication of JP2012202653A publication Critical patent/JP2012202653A/ja
Application granted granted Critical
Publication of JP5640857B2 publication Critical patent/JP5640857B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • B60H2001/3286Constructional features
    • B60H2001/3298Ejector-type refrigerant circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning For Vehicles (AREA)
  • Jet Pumps And Other Pumps (AREA)

Abstract

【課題】簡素な構成で下流側へ流出させる冷媒流量の変動を抑制可能な冷凍サイクル用の減圧装置を提供する。
【解決手段】本体部140の内部に冷媒流入口141から流入した冷媒を旋回させる旋回空間SSを形成し、冷媒の旋回中心線CLの延長線上に絞りとして機能する冷媒流出口142を配置する。さらに、冷媒流入口の通路断面積をAinを、冷媒流出口142の通路断面積をAoutの12倍より小さい値として、旋回空間SS内で旋回する冷媒の旋回流速を、旋回中心線CL近傍の冷媒が減圧沸騰するまで増速させる。これにより、冷媒流出口142へ確実に気液混相冷媒を流入させることができ、サイクル構成の複雑化を招くことなく下流側へ流出する冷媒流量の変動を抑制できる。
【選択図】図2

Description

本発明は、蒸気圧縮式の冷凍サイクルに適用される減圧装置およびこれを備える冷凍サイクルに関する。
従来、少なくとも冷媒を圧縮して吐出する圧縮機、圧縮機から吐出された冷媒を外気と熱交換させて放熱させる放熱器、放熱器から流出した冷媒を減圧させる減圧装置および減圧装置にて減圧された冷媒を空調対象空間へ送風される送風空気と熱交換させて蒸発させる蒸発器を構成要素として備える蒸気圧縮式の冷凍サイクルが知られている。
この種の冷凍サイクルでは、減圧装置の入口側冷媒圧力と出口側冷媒圧力との圧力差が一定である場合には、減圧装置へ流入する冷媒の状態にかかわらず、減圧装置から流出する冷媒流量が一定であることが望ましい。その理由は、減圧装置から流出する冷媒流量が変化してしまうと、サイクルを循環する冷媒の循環流量が変化して蒸発器における送風空気の冷却能力が変化してしまうからである。
ところが、例えば、放熱器にて冷媒と熱交換する外気の温度が変化すると、減圧装置へ流入する冷媒の状態が気液二相状態から液相状態へ、あるいは、液相状態から気液二相状態へと、飽和ガス線を跨ぐように変化してしまうことがある。このような飽和ガス線を跨ぐような冷媒の状態の変化は、大きな冷媒の密度変化を伴うため、減圧装置から流出する冷媒流量を大きく変化させてしまう原因となる。
これに対して、減圧装置から流出する冷媒流量を安定化させる手段として、冷媒を過冷却液相状態となるまで冷却して減圧装置側へ流出させる放熱器(いわゆるサブクール型コンデンサ)等が知られている。さらに、この種のサブクール型コンデンサでは、冷媒を過冷却液相状態となるまで冷却することで、蒸発器入口側冷媒のエンタルピを低下させて、蒸発器にて発揮される冷凍能力の拡大を図ることもできる。
また、特許文献1、2には、減圧装置としてのエジェクタのノズル部へ流入する冷媒の状態を気液二相状態とするために、エジェクタのノズル部へ液相冷媒および気相冷媒を流入させる構成が開示されている。さらに、特許文献1には、エジェクタのノズル部へ気液二相状態の冷媒を流入させることで、ノズル部における冷媒の沸騰を促進することができ、ノズル効率の向上が図れることも開示されている。
なお、ノズル効率とは、ノズル部において冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率と定義される。
特許第4306739号公報 特開2010−210111号公報
ところが、放熱器として上述のサブクール型コンデンサを用いたとしても、例えば、外気温が比較的高くなっている場合等に、冷媒を過冷却液相状態となるまで冷却することができず、減圧装置へ流入する冷媒の状態が気液二相状態となってしまうことがある。従って、減圧装置から流出する冷媒流量を確実に安定化させることが難しい。
これに対して、特許文献1、2のように、ノズル部へ液相冷媒および気相冷媒の双方を流入させる冷凍サイクルでは、外気温によらず、減圧装置へ流入する冷媒の状態を確実に気液二相状態とすることができるので、減圧装置から流出する冷媒流量を確実に安定化させることが期待される。
しかしながら、特許文献1、2の冷凍サイクルでは、ノズル部へ液相冷媒および気相冷媒を流入させるために、それぞれ専用の冷媒通路を設ける必要があるため、冷凍サイクル全体としてサイクル構成が複雑化してしまう点が問題となる。
本発明は、上記点に鑑み、簡素な構成で下流側へ流出させる冷媒流量の変動を抑制可能な減圧装置を提供することを第1の目的とする。
また、本発明は、簡素な構成で下流側へ流出させる冷媒流量の変動を抑制可能な減圧装置を備える冷凍サイクルを提供することを第2の目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1に記載の発明では、蒸気圧縮式の冷凍サイクル(10、11)に適用されて、冷媒を流入させる冷媒流入口(141、241)から流出した冷媒を減圧させて冷媒流出口(142、242)から流出させる減圧装置であって、
冷媒流入口(141、241)から流入した冷媒を旋回させる旋回空間(SS)を形成する本体部(140、240)を備え、冷媒流出口(142、242)は、冷媒通路面積を縮小させて冷媒を減圧させる絞りとしての機能を有し、旋回空間(SS)内で旋回する冷媒の旋回中心を結んだ線を旋回中心線(CL)としたときに、旋回空間(SS)内で旋回する冷媒は、旋回中心線(CL)の外周側よりも内周側に気相冷媒が多く存在する旋回流速で旋回しており、冷媒流出口(142、242)は、旋回中心線(CL)の延長線上に配置されていることを特徴とする。
これによれば、冷媒流入口(141、241)から旋回空間(SS)内へ流入した冷媒を、旋回中心線(CL)の外周側よりも内周側に気相冷媒が多くなる旋回流速で旋回させ、さらに、冷媒流出口(142、242)が、旋回中心線(CL)の延長線上に配置されているので、気相割合の多い気液混相状態の冷媒を、冷媒流出口(142、242)から減圧させながら流出させることができる。
つまり、冷媒流入口(141、241)から旋回空間(SS)内へ流入する冷媒が気液二相状態であれば、遠心力の作用によって、密度の高い液相冷媒が旋回中心の外周側に偏在するので、旋回中心線(CL)の外周側よりも内周側に気相冷媒が多くなる。従って、旋回中心線(CL)の延長線上に配置された冷媒流出口(142、242)から気液二相状態の冷媒を、減圧させながら流出させることができる。
さらに、冷媒流入口(141、241)から旋回空間(SS)内へ流入する冷媒が液相冷媒であっても、遠心力の作用によって、旋回中心線(CL)近傍の冷媒圧力を、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることで、旋回中心線(CL)の外周側よりも内周側に気相冷媒が多く存在する状態とすることができる。
従って、冷媒流入口(141、241)から旋回空間(SS)内へ流入する冷媒が気液二相状態である場合と同様に、冷媒流出口(142、242)から気液混相状態の冷媒を、減圧させながら流出させることができる。なお、この気液混相状態の冷媒は、気液二相状態の冷媒のみを意味するものではなく、過冷却液相状態に冷媒に気泡が混じった状態の冷媒も含む意味である。
すなわち、冷媒流入口(141、241)から流入する冷媒の状態によらず、冷媒流出口(142、242)から気液混相状態の冷媒を流出させることができる。その結果、サイクル構成の複雑化を招くことなく、簡素な構成で、下流側へ流出させる冷媒流量の変動を抑制可能な減圧装置を提供することができる。
なお、本請求項に記載された旋回中心線(CL)は、必ずしも直線状に形成されるものに限定されることなく、旋回空間(SS)の形状や旋回空間(SS)内を旋回する冷媒の旋回流速によって曲線状に形成されるものも含まれる。
また、旋回中心は冷媒の圧力が最も低くなる箇所であるから、旋回中心線(CL)は、旋回空間(SS)内のうち、冷媒流出口(142、242)の開口方向に垂直な断面のうち最も圧力が低くなる箇所を結んだ線と表現することもできる。
また、本請求項に記載された旋回流速は、旋回中心線(CL)垂直断面の所定箇所における冷媒の旋回方向成分の流速を意味する。例えば、旋回空間(SS)の最外周側における冷媒の旋回方向の流速を採用できる。従って、旋回流速は、旋回空間(SS)の断面形状あるいは断面積の相違等によって変化することになる。
さらに、請求項2に記載の発明のように、請求項1に記載の減圧装置において、旋回空間(SS)は、冷媒流出口(142、242)の開口方向に向かって断面積が徐々に縮小するテーパ状の空間を含んで形成されていてもよい。
さらに、請求項3に記載の発明では、請求項2に記載の減圧装置において、冷媒流出口(242)には、その下流側の冷媒通路の冷媒通路面積を徐々に広げる末広テーパ部(244)が接続されており、さらに、末広テーパ部(244)から噴射される噴射冷媒によって冷媒を吸引する冷媒吸引口(245a)、および、噴射冷媒と冷媒吸引口(245a)から吸引された吸引冷媒との混合冷媒を昇圧させるディフューザ部(245b)が形成されたボデー部(245)を備えることを特徴とする。
これによれば、テーパ状空間、冷媒流出口(242)および末広テーパ部(244)によって形成される冷媒通路の通路断面積の変化によって、いわゆるラバールノズルを構成できるとともに、ボデー部(245)を備えているので、減圧装置全体として、特許文献1、2に記載されているようなエジェクタとしての機能を発揮させることができる。
また、請求項4に記載の発明のように、請求項1または2に記載の減圧装置において、冷媒流出口(142)には、キャピラリチューブが接続されていてもよい。
さらに、請求項5に記載の発明のように、請求項1ないし4のいずれか1つに記載の減圧装置において、冷媒流入口(141、241)の通路断面積をAinとして、冷媒流出口(142、242)の通路断面積をAoutとしたときに、
1<Ain/Aout<12
となっていてもよい。
これにより、旋回中心線(CL)近傍の冷媒圧力を、冷媒が減圧沸騰する圧力まで低下させることができる。
請求項6に記載の発明では、請求項1ないし5のいずれか1つに記載の減圧装置において、旋回流速を調整する旋回流速調整手段(143、146、147)を備えることを特徴とする。
これによれば、旋回流速を調整して、冷媒流出口(142、241)から流出する気液混相状態の冷媒の気相割合(乾き度あるいは気泡の量)を調整することができる。従って、減圧装置から下流側へ流出させる冷媒流量の変動を効果的に抑制することができる。
具体的には、請求項7に記載の発明のように、請求項6に記載の減圧装置において、旋回流速調整手段は、冷媒流入口(141)から前記旋回空間(SS)内へ流入する冷媒の流量を調整する流入側流量調整弁(143)にて構成されていてもよい。
また、請求項8に記載の発明のように、請求項6に記載の減圧装置において、本体部(140)には、旋回空間(SS)内へ冷媒を流入させる補助冷媒流入口(144)が設けられており、冷媒流入口(141)から旋回空間(SS)内へ流入する冷媒の流入方向と補助冷媒流入口(144)から旋回空間(SS)内へ流入する冷媒の流入方向は、異なる方向に向いており、旋回流速調整手段は、冷媒流入口(141)から旋回空間(SS)内へ流入する冷媒の流量を調整する流入側流量調整弁(143)および補助冷媒流入口(144)から旋回空間(SS)内へ流入する冷媒の流量を調整する補助流入側流量調整弁(146)のうち少なくとも一方で構成されていてもよい。
また、請求項9に記載の発明のように、請求項6ないし8のいずれか1つに記載の減圧装置において、旋回流速調整手段は、冷媒流出口(142、242)から流出する冷媒流量を調整する流出側流量調整弁(147)で構成されていてもよい。
請求項10に記載の発明では、請求項1ないし9のいずれか1つに記載の減圧装置(14、24)を備える冷凍サイクルを特徴とする。これによれば、簡素な構成で下流側へ流出させる冷媒流量の変動を抑制可能な減圧装置(14、24)を備える冷凍サイクルを提供することができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
第1実施形態の冷凍サイクルの全体構成図である。 (a)は、第1実施形態の減圧装置の軸方向断面図であり、(b)は、(a)のA−A断面図である。 Ain/AoutおよびAss/Aoutの適切な範囲を示すグラフである。 冷媒流入口へ流入する冷媒の状態の変化に対する、冷媒流出口から流出する冷媒流量の変化を示すグラフである。 第2実施形態の減圧装置の側面図である。 第3実施形態の減圧装置の側面図である。 第4実施形態の減圧装置の側面図である。 第5実施形態の冷凍サイクルの全体構成図である。 第6実施形態の冷凍サイクルの全体構成図である。 第7実施形態の冷凍サイクルの全体構成図である。 第8実施形態の冷凍サイクルの全体構成図である。 第9実施形態の冷凍サイクルの全体構成図である。 第9実施形態の減圧装置の軸方向断面図である。 第10実施形態の冷凍サイクルの全体構成図である。 第11実施形態の冷凍サイクルの全体構成図である。 第12実施形態の冷凍サイクルの全体構成図である。 第13実施形態の冷凍サイクルの全体構成図である。
(第1実施形態)
図1〜4により、本発明の第1実施形態について説明する。図1は、本実施形態の減圧装置14を備える蒸気圧縮式の冷凍サイクル10の全体構成図である。この冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。
まず、冷凍サイクル10において、圧縮機12は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機12は、共通するハウジング内に固定容量型の圧縮機構12aおよび圧縮機構12aを駆動する電動モータ12bを収容して構成された電動圧縮機である。
この圧縮機構12aとしては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。また、電動モータ12bは、後述する制御装置から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。
圧縮機12の吐出口には、放熱器13の凝縮部13aの冷媒入口側が接続されている。放熱器13は、圧縮機12から吐出された高圧冷媒と冷却ファン13aにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用の熱交換器である。
より具体的には、この放熱器13は、圧縮機12から吐出された高圧気相冷媒と冷却ファン13aから送風される外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部13a、凝縮部13aから流出した冷媒の気液を分離して液相冷媒を蓄えるレシーバ部13b、および、レシーバ部13bから流出した液相冷媒と冷却ファン13aから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部13cを有して構成される、いわゆるサブクール型の凝縮器である。
なお、本実施形態の冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、亜臨界冷凍サイクルを構成する冷媒であれば、HFO系冷媒(具体的には、R1234yf)等を採用してもよい。
また、この冷媒には圧縮機12を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。冷却ファン13aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
放熱器13の過冷却部13cの冷媒出口側には、減圧装置14の冷媒流入口141が接続されている。減圧装置14は、放熱器13から流出した過冷却状態の高圧液相冷媒を減圧させて、その下流側に流出させる減圧手段である。
減圧装置14の具体的構成については、図2を用いて説明する。なお、図2(a)は、減圧装置14の軸方向断面図であり、図2(b)は、(a)のA−A断面図である。さらに、図2における上下の各矢印は、冷凍サイクル10を車両用空調装置に適用した状態における上下の各方向を示している。
まず、減圧装置14は、その内部に冷媒流入口141から流入した冷媒を旋回させる旋回空間SSを形成する本体部140を備えている。本体部140は、その外観形状が鉛直下方側に向かって先細る略円錐形状に形成された金属製の中空容器によって構成されている。さらに、本体部140の内部に形成される旋回空間SSも、本体部140の外観形状に沿った円錐状(テーパ状)の空間を含んで形成されている。
冷媒流入口141は、本体部140の円錐状側面のうち円錐状空間の軸方向垂直断面積の大きい側(本実施形態では、上方側)に設けられ、さらに、上方側から見たときに、図2(b)に示すように、旋回空間SSへ流入する冷媒の流入方向および略円形状となる旋回空間SSの軸方向垂直断面の接線方向が一致するように設けられている。
これにより、冷媒流入口141から流入した冷媒は、図2の太線矢印に示すように、本体部140の内壁面に沿って流れ、旋回空間SS内を旋回する。なお、冷媒流入口141は、旋回空間SSへ流入する冷媒の流入方向が旋回空間SSの軸方向垂直断面の接線方向と完全に一致するように設けられている必要はなく、少なくとも旋回空間SSの軸方向垂直断面の接線方向の成分を含んでいれば、旋回空間SSの軸方向の成分を含んでいてもよい。
冷媒流出口142は、本体部140の円錐形状の頂部となる軸方向一端側(本実施形態では、下方側)に設けられ、さらに、旋回空間SSから流出する冷媒の流出方向が旋回空間SSの軸方向と略同軸上に配置されている。従って、本実施形態の旋回空間SSは、冷媒流出口142の開口方向に向かって旋回空間SSの軸方向垂直断面積が徐々に縮小するテーパ状の空間を含んで形成されていることになる。
さらに、本実施形態の旋回空間SSは、図2から明らかなように、円柱状の空間と円錐状の空間とを同軸上に結合した形状の空間となっている。そこで、旋回空間SS内にて旋回する冷媒の旋回中心を結んだ線を旋回中心線CLと定義すると、この旋回中心線CLは冷媒流れの乱れ等によって定常的に直線とはならないものの、旋回空間SSの軸方向にほぼ一致する。従って、本実施形態の冷媒流出口142は、旋回中心線CLの一端側の延長線上に配置されていることになる。
また、旋回空間SSはテーパ状の空間を含んで形成されているので、テーパ状空間のうち軸方向に垂直な断面積が小さくなる側(旋回中心線CLの一端側)で旋回する冷媒の旋回流速、および、テーパ状空間のうち軸方向に垂直な断面積が大きくなる側(旋回中心線CLの他端側)で旋回する冷媒の旋回流速は異なる値となる。なお、本実施形態では、旋回流速として、旋回中心線CL垂直断面のうち旋回空間SSの最外周近傍における冷媒の旋回方向の流速を採用している。
ところで、旋回空間SS内で旋回する冷媒には遠心力が作用するので、冷媒流入口141から気液二相冷媒が流入する場合には、密度の高い液相冷媒が旋回中心の外周側に偏在する。従って、冷媒流入口141から気液二相冷媒が流入する場合は、旋回中心線CLの外周側よりも内周側に気相冷媒が多く存在する。
さらに、上記の遠心力の作用によって、旋回中心線CL近傍の冷媒圧力は旋回中心線CLの外周側よりも低くなる。この旋回中心線CL近傍の冷媒圧力は、遠心力が強くなるに伴って低下することから、旋回空間SS内で旋回する冷媒の旋回流速が速くなるに伴って、旋回中心線CL近傍の冷媒圧力が低下する。
従って、旋回流速を充分に増速させて、旋回中心線CL近傍の冷媒圧力を、冷媒が減圧沸騰するまで低下させることで、冷媒流入口141から液相冷媒が流入する場合であっても、旋回中心線CLの外周側よりも内周側に気相冷媒が多く存在する状態とすることができる。
そこで、本実施形態では、冷媒流入口141の通路断面積をAinとし、冷媒流出口142の通路断面積をAoutとし、さらに、旋回空間SSの軸方向に垂直な最大断面積(すなわち、図2(a)の旋回空間SSの断面積)をAssとしたときに、下記数式F1、F2を満たすように、Ain、AoutおよびAssを決定している。
1<Ain/Aout<12…(F1)
1<Ass/Aout…(F2)
より具体的には、本実施形態では、Ain/Aoutを2程度とし、Ass/Aoutを10程度としている。
ここで、数式F1のAin/Aoutは、第1冷媒流出口142の通路断面積に対する冷媒流入口141の通路断面積の比であるから、Ain/Aoutが小さくなるに伴って、冷媒流入口141から旋回空間SS内へ流入する冷媒の流速が速くなり、旋回空間SS内で旋回する冷媒流速を増速させることができる。
一方、Ain/Aoutが小さくなり過ぎると、冷媒流入口141自体が絞りとして機能してしまい、旋回空間SS内へ流入する冷媒が有するエネルギに損失が生じてしまう。このため、Ain/Aoutには、旋回空間SS内の旋回中心線CL近傍の冷媒圧力を充分に低下させるために適切な範囲が存在する。
また、上記数式F2のAss/Aoutは、冷媒流出口142の通路断面積に対する旋回空間SSの最大断面積の比であるが、冷媒流入口141が旋回空間SSの最外周側に配置され、冷媒流出口142が旋回中心線CLの延長上に配置されていることから、旋回中心と旋回流の最外周側との距離を示す指標として用いることができる。さらに、旋回空間SS内で旋回する冷媒の旋回流を充分に成長させるためには、旋回中心と旋回流の最外周との距離を充分に確保することが望ましい。
これらの知見に基づいて、本発明者らが確認試験を行ったところ、冷媒流入口141から流入する冷媒の状態によらず、図3に示すように、数式F1、F2を満たすようにAin、AoutおよびAssを決定することで、冷媒流入口141から過冷却液相冷媒が流入する場合であっても、旋回中心線CL近傍の冷媒圧力を、冷媒が減圧沸騰するまで(すなわち、キャビテーションを生じるまで)低下させる旋回流速を実現できることが確認されている。
また、冷媒流出口142冷媒通路断面積は、図2から明らかなように、旋回空間SS内から流出する冷媒が流通する冷媒通路の中で最も縮小している。従って、冷媒流出口142は、冷媒通路面積を縮小させて冷媒を減圧させる固定絞りとしての機能を果たす。
ここで、冷媒流出口142は、本体部140の円錐形状の頂部に形成されていることから、本体部140の円錐状内壁面および冷媒流出口142はノズルとして機能する冷媒通路を形成している。さらに、本実施形態では、この冷媒通路の形状によって、冷媒流出口142から流出する冷媒の流速を、音速に近づけるように増速させている。
減圧装置14の冷媒流出口142には、蒸発器15の冷媒入口側が接続されている。蒸発器15は、冷媒流出口142を通過する際に減圧された低圧冷媒と送風ファン15aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
送風ファン15aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器15の出口側には、圧縮機12の吸入側が接続されている。
次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ12b、13a、15a等の作動を制御する。
また、制御装置には、外気温を検出する外気センサ、車室内温度を検出する内気温度センサ等のセンサ群(図示せず)の検出値や、車両用空調装置を作動させる作動スイッチ等が設けられた操作パネル(図示せず)の各種操作信号が入力される。
なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御手段を構成している。例えば、本実施形態では、圧縮機12の電動モータ12bの作動を制御する構成(ハードウェアおよびソフトウェア)が吐出能力制御手段を構成している。
次に、上記構成における本実施形態の作動を説明する。まず、操作パネルの作動スイッチが投入されると、制御装置が圧縮機12の電動モータ12b、冷却ファン13a、送風ファン15a等を作動させる。これにより、圧縮機12が冷媒を吸入し、圧縮して吐出する。
圧縮機12から吐出された高温高圧状態の気相冷媒は、放熱器13の凝縮部13aへ流入し、冷却ファン13aから送風された送風空気(外気)と熱交換し、放熱して凝縮する。凝縮部13aにて放熱した冷媒は、レシーバ部13bにて気液分離される。レシーバ部13bにて気液分離された液相冷媒は、過冷却部13cにて冷却ファン13aから送風された送風空気と熱交換し、さらに放熱して過冷却液相冷媒となる。
放熱器13の過冷却部13cから流出した過冷却液相冷媒は、減圧装置14の冷媒流入口141から旋回空間SS内へ流入する。旋回空間SS内では、冷媒が旋回することによって、旋回中心線CL近傍の冷媒圧力が低下する。これにより、旋回中心線CL近傍の冷媒が減圧沸騰して、気液混相状態の冷媒が、旋回中心線CLの延長線上に配置された冷媒流出口142から流出する。
この際、冷媒流出口142は、絞りとして機能するので、冷媒流出口142から流出する冷媒は、冷媒流出口142を通過する際に低圧冷媒となるまで等エンタルピ的に減圧される。冷媒流出口142にて減圧された冷媒は、蒸発器15へ流入して、送風ファン15aによって送風された送風空気から吸熱して蒸発する。これにより、車室内へ送風される送風空気が冷却される。蒸発器15から流出した冷媒は、圧縮機12に吸入されて、再び圧縮される。
本実施形態の冷凍サイクル10は、上述の如く作動するので、蒸発器15にて冷媒に吸熱作用を発揮させて車室内へ送風される送風空気を冷却することができる。さらに、本実施形態の冷凍サイクル10は、減圧装置14を採用しているので、放熱器13から流出する冷媒の状態が変化したとしても、減圧装置14から流出する冷媒流量を安定化させることができ、冷凍サイクル10に安定した冷却能力を発揮させることができる。
つまり、本実施形態の冷凍サイクルでは、放熱器13としてサブクール型の凝縮器を採用しているので、通常想定される運転条件では、減圧装置14に過冷却液相冷媒を供給することができる。ところが、サブクール型の凝縮器を採用していても、例えば、外気温の急上昇等が生じると、放熱器13から流出して減圧装置14へ流入する冷媒の状態が気液二相状態になってしまうおそれがある。
これに対して、本実施形態の減圧装置14によれば、冷媒流入口141から流入する冷媒の状態が過冷却液相状態であっても気液二相状態であっても、冷媒流出口142から気液混相状態の冷媒を、減圧させながら流出させることができる。その結果、図4に示すように、下流側へ流出させる冷媒流量の変動を抑制することができる。
なお、図4は、減圧装置14の冷媒流入口141から流入する冷媒の圧力と冷媒流出口142から流出した冷媒の圧力との圧力差を一定とした状態で、冷媒流入口141へ流入する冷媒の状態の変化に対する、冷媒流出口142から流出する冷媒流量の変化を示すグラフである。
図4から明らかなように、旋回空間SS内で冷媒を旋回させることによって、旋回中心線CLの外周側よりも内周側に気相冷媒が多く存在する状態とすることで、旋回空間SS内で冷媒を旋回させない場合に対して、冷媒流量の変化を大幅に抑制できる。
また、本体部140の円錐状内壁面および冷媒流出口142がノズルとして機能する冷媒通路を形成し、冷媒流出口142から流出する冷媒の流速を音速に近い高速度に増速させているので、冷媒流出口142の下流側の冷媒流れに乱れが生じたとしても、この下流側の冷媒流れの乱れが第1冷媒流出口142を介して旋回空間SS内へ伝達されてしまうことが抑制できる。
従って、旋回空間SSから冷媒流出口142を介して流出する冷媒流量をより一層安定化させることができるとともに、旋回空間SS内にて旋回中心線CLの外周側よりも内周側に気相冷媒が多く存在する旋回流速で冷媒を旋回させることによって得られる効果を確実に得ることができる。
つまり、本実施形態の減圧装置14によれば、冷媒流入口141から流入する冷媒の状態によらず、サイクル構成の複雑化を招くことなく、簡素な構成で、減圧装置14から流出する冷媒流量の変動を抑制できる。その結果、減圧装置14を採用することで、冷凍サイクル10に安定した冷却能力を発揮させることができる。
(第2実施形態)
本実施形態では、第1実施形態に対して、減圧装置14の構成を変更した例を説明する。具体的には、本実施形態の減圧装置14では、図5に示すように、旋回空間SS内で旋回する冷媒の旋回流速を調整する旋回流速調整手段としての流入側流量調整弁143を追加している。なお、図5は、本実施形態の減圧装置14の一部断面を示す側面図である。また、図5では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
この流入側流量調整弁143は、冷媒流入口141の冷媒通路面積を変化させ、冷媒流入口141から旋回空間SS内へ流入する冷媒の流速を変化させることによって、旋回空間SS内の冷媒の旋回流速を変化させるものである。
具体的には、流入側流量調整弁143は、冷媒流入口141の開度を調整する弁体143aと、この弁体143aを変位させる電動アクチュエータ143bとを有して構成されている。さらに、電動アクチュエータ143bは、制御装置から出力される制御信号によって、その作動が制御される。
さらに、本実施形態では、制御装置が、放熱器13から流出した冷媒の温度および圧力等を検出し、これらの検出値から冷媒の過冷却度を算出する。そして、制御装置が、算出された過冷却度に基づいて、予め制御装置の記憶回路に記憶されている制御マップを参照して、冷媒流出口142から流出する冷媒の気相割合(乾き度)が予め定めた目標乾き度に近づくように、電動アクチュエータ143bの作動を制御する。
その他の構成および作動は、第1実施形態と同様である。従って、本実施形態の冷凍サイクル10を作動させると、第1実施形態と同様の効果を得ることができる。
ここで、制御装置が、電動アクチュエータ143bの作動を制御して、弁体143aが冷媒流入口141の冷媒通路面積を変化させると、冷媒流出口142から流出する冷媒流量も変化してしまう。しかし、冷媒流出口142から流出する冷媒の気相割合を調整するための冷媒流量の変化は、冷媒流入口141から流入する冷媒の状態変化による冷媒流量の変化に対して極めて小さい。
従って、本実施形態の減圧装置14においても、冷媒流入口141から流入する冷媒の状態によらず、サイクル構成の複雑化を招くことなく、簡素な構成で、減圧装置14から流出する冷媒流量の変動を抑制できる。その結果、第1実施形態と同様に、冷凍サイクル10に安定した冷却能力を発揮させることができる。
(第3実施形態)
本実施形態では、図6に示すように、第2実施形態に対して、本体部140に、旋回空間SS内へ冷媒を流入させる補助冷媒流入口144を設けた例を説明する。なお、図6は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。
補助冷媒流入口144は、本体部140の円錐形状の底面となる軸方向他端側(本実施形態では、上方側)に、旋回空間SSへ流入する冷媒の流入方向が旋回空間SSの軸方向と略同軸上に配置されている。
従って、本実施形態では、冷媒流入口141から旋回空間SSへ流入する冷媒の流入方向と補助冷媒流入口144から旋回空間SS内へ流入する冷媒の流入方向は、異なる方向となり、冷媒流出口142の中心部および補助冷媒流入口144の中心部を結ぶ方向は、旋回空間SSの軸方向に平行となる。
また、補助冷媒流入口144には、バイパス通路145を介して放熱器13の過冷却部13c流出冷媒が流入する。バイパス通路145は、放熱器13の過冷却部13c流出冷媒を、流入側流量調整弁143を迂回させて流す冷媒通路である。その他の構成および作動は、第2実施形態と同様である。
従って、本実施形態の冷凍サイクル10を作動させると、第2実施形態と同様の効果を得ることができるだけでなく、バイパス通路145および補助冷媒流入口144を介して、旋回空間SS内へ冷媒を流入させることができるので、第2実施形態に対して、減圧装置14から下流側へ流出させる冷媒流量の変動を、効果的に抑制することができる。延いては、冷凍サイクル10に、より一層安定した冷却能力を発揮させることができる。
(第4実施形態)
本実施形態では、図7に示すように、第2実施形態に対して、流入側流量調整弁143を廃止して、旋回流速調整手段としての補助流入側流量調整弁146を設けた例である。なお、図7は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。
補助流入側流量調整弁146の基本的構成は、第2実施形態の流入側流量調整弁143と同様である。従って、補助流入側流量調整弁146も、補助冷媒流入口144の開度を調整する弁体146aと、この弁体146aを変位させる電動アクチュエータ146bとを有して構成されている。
さらに、本実施形態では、制御装置が、放熱器13から流出した冷媒の温度および圧力等を検出し、これらの検出値から冷媒の過冷却度を算出する。そして、制御装置が、算出された過冷却度に基づいて、予め制御装置の記憶回路に記憶されている制御マップを参照して、冷媒流出口142から流出する冷媒の気相割合(乾き度)が予め定めた目標乾き度に近づくように、電動アクチュエータ146bの作動を制御する。
その他の構成および作動は、第2実施形態と同様である。従って、本実施形態の冷凍サイクル10を作動させると、第3実施形態と同様に、減圧装置14から下流側へ流出させる冷媒流量の変動を、効果的に抑制して、冷凍サイクル10に、より一層安定した冷却能力を発揮させることができる。
(第5実施形態)
本実施形態では、図8に示すように、第2実施形態に対して、第4実施形態と同様の補助流入側流量調整弁146を設けた例である。従って、本実施形態では、流入側流量調整手段143および補助流入側流量調整弁146の双方によって、旋回流速調整手段が構成される。なお、図8は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。
さらに、本実施形態では、制御装置が、放熱器13から流出した冷媒の温度および圧力等を検出し、これらの検出値から冷媒の過冷却度を算出する。そして、制御装置が、算出された過冷却度に基づいて、予め制御装置の記憶回路に記憶されている制御マップを参照して、冷媒流出口142から流出する冷媒の気相割合(乾き度)が予め定めた目標乾き度に近づくように、電動アクチュエータ143b、146bの双方の作動を制御する。
その他の構成および作動は、第2実施形態と同様である。従って、本実施形態の冷凍サイクル10を作動させると、第3実施形態と同様に、減圧装置14から下流側へ流出させる冷媒流量の変動を効果的に抑制して、冷凍サイクル10に、より一層安定した冷却能力を発揮させることができる。
(第6実施形態)
本実施形態では、第1実施形態に対して、減圧装置14の構成を変更した例を説明する。具体的には、本実施形態の減圧装置14では、図9に示すように、旋回空間SS内で旋回する冷媒の旋回流速を調整する旋回流速調整手段としての流出側流量調整弁147を追加している。なお、図9は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。
流出側流量調整弁147は、冷媒流出口142の冷媒通路面積を変化させ、冷媒流出口142から流出する冷媒の流量を変化させることによって、旋回空間SS内の冷媒の旋回流速を変化させるものである。
具体的には、流出側流量調整弁147は、冷媒流出口142の開度を調整する球状体からなる弁体147aと、この弁体147aを変位させる電動アクチュエータ147bとを有して構成されている。さらに、電動アクチュエータ147bは、冷媒流出口142の下流側に配置されており、制御装置から出力される制御信号によって、その作動が制御される。
さらに、本実施形態では、制御装置が、放熱器13から流出した冷媒の温度および圧力等を検出し、これらの検出値から冷媒の過冷却度を算出する。そして、制御装置が、算出された過冷却度に基づいて、予め制御装置の記憶回路に記憶されている制御マップを参照して、冷媒流出口142から流出する冷媒の気相割合(乾き度)が予め定めた目標乾き度に近づくように、電動アクチュエータ147bの作動を制御する。
その他の構成および作動は、第2実施形態と同様である。従って、本実施形態の冷凍サイクル10を作動させると、第2実施形態と同様の効果を得ることができる。
(第7実施形態)
本実施形態では、第6実施形態に対して、図10に示すように、流出側流量調整弁147の構成を変更している。なお、図10は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。
具体的には、本実施形態の流出側流量調整弁147は、冷媒流出口142の開度を調整するニードル弁からなる弁体147cと、この弁体147cを変位させる電動アクチュエータ147bとを有して構成されている。
さらに、本実施形態の電動アクチュエータ147bは、冷媒流出口142の上流側に配置されている。その他の構成および作動は、第6実施形態と同様である。本実施形態のように流出側流量調整弁147を構成しても、第6実施形態と全く同様の効果を得ることができる。
(第8実施形態)
本実施形態では、図11に示すように、第5実施形態に対して、さらに、第6実施形態の流出側流量調整弁147を追加してものである。なお、図11は、本実施形態の減圧装置14の一部断面を示す側面図であり、第2実施形態の図5に対応する図面である。その他の構成および作動は、第5実施形態と同様である。本実施形態のように、流入口流量調整弁143、補助流入口流量調整弁146および流出側流量調整弁147によって旋回流速調整手段を構成しても、第5実施形態と全く同様の効果を得ることができる。
(第9実施形態)
本実施形態では、第1実施形態に対して、減圧装置の構成を変更して、図12の全体構成図に示すように、冷媒減圧手段および冷媒循環手段として機能するエジェクタを備える冷凍サイクル(エジェクタ式冷凍サイクル)11を構成した例を説明する。
この種のエジェクタ式冷凍サイクルでは、エジェクタのノズル部にて冷媒が減圧される際の運動エネルギの損失を回収し、回収した運動エネルギを圧力エネルギに変換して、圧縮機吸入冷媒の圧力を上昇させることができるので、圧縮機の駆動動力を低減させてサイクル効率の向上を図ることができる。
まず、図13を用いて本実施形態の減圧装置24の詳細構成を説明する。なお、図13は、本実施形態の減圧装置24の軸方向断面図である。図13に示すように本実施形態の減圧装置24は、第1実施形態の減圧装置14の本体部140と同様の構成の本体部240を備えている。従って、本体部240には、その内部に冷媒を旋回させる旋回空間SSが形成され、冷媒流入口241および冷媒流出口242が設けられている。
さらに、本実施形態の減圧装置24は、冷媒流出口242の下流側の冷媒通路面積を徐々に広げる末広テーパ部244、並びに、末広テーパ部244から噴射される噴射冷媒によって冷媒を吸引する冷媒吸引口245aおよび噴射冷媒と冷媒吸引口245aから吸引された吸引冷媒とを混合させて昇圧させるディフューザ部245bが形成されたボデー部245を備えている。
末広テーパ部244は、絞りとして機能する冷媒流出口242に接続されている。そして、減圧装置24の本体部240の円錐状内壁面、冷媒流出口242および末広テーパ部244の内壁面は、いわゆるラバールノズルとして機能する冷媒通路を形成する。つまり、本実施形態の冷媒流出口242は、ラバールノズルにおいて冷媒通路面積が最も縮小する喉部を構成している。
ボデー部245は、略円筒状の形状に形成され、その一端側に本体部240の外周側が圧入等の手段によって固定されている。冷媒吸引口245aは、後述する吸引側蒸発器25下流側冷媒を、ボデー部245内部に吸引する吸引口であり、本体部240および末広テーパ部244の外周側に配置され、末広テーパ部244の冷媒噴射口と連通するように設けられている。
従って、ボデー部245の内周面と本体部240の円錐状外周面との間およびボデー部245の内周面と末広テーパ部の外周面との間に形成される空間は、冷媒吸引口245aからボデー部245の内部へ吸引された吸引冷媒をディフューザ部245b側へ導く吸引冷媒通路として機能する。
ディフューザ部245bは、末広テーパ部244の冷媒噴射口および冷媒吸引口245aの冷媒流れ下流側に配置されて、冷媒通路面積を徐々に大きくする形状に形成されている。これにより、末広テーパ部244の冷媒噴射口から噴射された噴射冷媒と冷媒吸引口245aから吸引された吸引冷媒との混合冷媒の流速を減速させて昇圧させる作用、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する作用を果たす。
以上の説明から明らかなように、本実施形態の減圧装置240は、本体部240および末広テーパ部244によってラバールノズルを構成できるとともに、ボデー部245を備えているので、減圧装置240全体として、例えば、特許文献1に記載されているエジェクタとしての機能を発揮することができる。
次に、図12へ戻り、本実施形態の冷凍サイクル11の全体構成について説明する。まず、本実施形態の放熱器13の冷媒出口には、冷媒の流れを分岐する分岐部21の冷媒流入口が接続されている。分岐部21は、3つの流入出口を有する三方継手で構成されており、流入出口のうち1つを冷媒流入口とし、2つを冷媒流出口としたものである。このような三方継手は、管径の異なる配管を接合して構成してもよいし、金属ブロックや樹脂ブロックに通路径の異なる複数の冷媒通路を設けて構成してもよい。
分岐部21の一方の冷媒流出口には、減圧装置24の冷媒流入口241が接続されており、他方の冷媒流出口には、分岐側減圧手段としての固定絞り22を介して、吸引側蒸発器25が接続されている。この固定絞り22としては、オリフィス、キャピラリチューブ等を採用できる。
吸引側蒸発器25は、固定絞り22にて減圧された低圧冷媒と送風ファン15aから送風された蒸発器15通過後の送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。吸引側蒸発器25の基本的構成は、蒸発器15と同様である。吸引側蒸発器25の冷媒出口側には、減圧装置24の冷媒吸引口245aが接続されている。なお、本実施形態では、蒸発器15と吸引側蒸発器25との相違を明確化するために、以下の説明では、蒸発器15を流出側蒸発器15と記載する。
また、減圧装置24の冷媒流出口242の冷媒流れ下流側に位置づけられるディフューザ部の冷媒出口には、流出側蒸発器15の冷媒入口側が接続され、流出側蒸発器15の冷媒出口側には、圧縮機12の吸入側が接続されている。また、減圧装置24の第2冷媒流出口142には、圧縮機12の吸入側が接続されている。その他の構成は、第1実施形態と同様である。
次に、上記構成における本実施形態の作動について説明する。制御装置が圧縮機12を作動させることにより、圧縮機12から吐出された高温高圧冷媒が放熱器13へ流入して凝縮する。放熱器13から流出した高圧冷媒の流れは、分岐部21にて減圧装置24の冷媒流入口241へ流入する流れと、固定絞り22へ流入する流れに分流される。
分岐部21から減圧装置24側へ流入した高圧冷媒は、旋回空間SS内で旋回し、冷媒流出口242から流出する。この際、第1実施形態と同様に、気液混相状態の冷媒が、旋回中心線CLの延長線上に配置された冷媒流出口242から流出する。
冷媒流出口242から流出する冷媒は、冷媒流出口242を通過する際に減圧される。より詳細には、本実施形態の減圧装置24では、本体部240および末広テーパ部244によってラバールノズルを構成しているので、冷媒流出口242を通過する冷媒は、等エントロピ的に減圧されて末広テーパ部244の冷媒噴射口から音速を超える流速となって噴射される。
そして、この噴射冷媒の吸引作用によって、吸引側蒸発器25から流出した冷媒が冷媒吸引口245aから吸引される。末広テーパ部244から噴射された噴射冷媒と冷媒吸引口245aから吸引された吸引冷媒は、減圧装置24のディフューザ部245bへ流入する。ディフューザ部245bでは冷媒通路面積の拡大により、冷媒の速度エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する。
ディフューザ部245bから流出した冷媒は、流出側蒸発器15へ流入し、送風ファン15aによって送風された送風空気から吸熱して蒸発する。これにより、車室内へ送風される送風空気が冷却される。流出側蒸発器15から流出した冷媒は、圧縮機12に吸入されて再び圧縮される。
一方、第2冷媒流出口243から流出する冷媒は、第2冷媒流出口242を通過する際に中間圧冷媒となるまで等エンタルピ的に減圧されて、その圧力を低下させる。第2冷媒流出口242にて減圧された冷媒は、圧縮機12から吐出された冷媒と合流して圧縮機12へ吸入される。
また、分岐部21から絞り機構27側へ流出した冷媒は、固定絞り22にて等エンタルピ的に減圧膨張されて、吸引側蒸発器25へ流入する。吸引側蒸発器25へ流入した冷媒は、送風ファン15aによって送風されて流出側蒸発器15にて冷却された送風空気から吸熱して蒸発する。これにより、車室内へ送風される送風空気がさらに冷却される。吸引側蒸発器25から流出した冷媒は、冷媒吸引口245aから吸引される。
本実施形態の冷凍サイクル11は、上記の如く作動するので、送風ファン16aから送風された送風空気を流出側蒸発器15→吸引側蒸発器25の順に通過させて冷却することができる。この際、流出側蒸発器15の冷媒蒸発圧力をディフューザ部245bで昇圧した後の圧力として、吸引側蒸発器25の冷媒蒸発圧力を冷媒流出口242にて減圧された直後の最も低い圧力とすることができる。
従って、流出側蒸発器15の冷媒蒸発圧力(冷媒蒸発温度)よりも吸引側蒸発器25の冷媒蒸発圧力(冷媒蒸発温度)を低くすることができる。その結果、流出側蒸発器15および吸引側蒸発器25の冷媒蒸発温度と送風空気との温度差を確保して、効率的に送風空気を冷却できる。
さらに、本実施形態の冷凍サイクル11では、エジェクタとして機能する減圧装置24を採用しているので、第1実施形態と同様に減圧装置24の冷媒流出口241から流出する冷媒流量を安定化させて、上述したエジェクタ式冷凍サイクルとしてのサイクル効率向上効果を確実に得ることができる。
この際、本実施形態の減圧装置24によれば、冷媒流入口241から流出する冷媒を気液混相状態(気液二相状態、あるいは、液相冷媒に気泡が混ざった状態)にすることができる。
これにより、絞りを構成する冷媒流出口242における冷媒の沸騰が促進され、エジェクタとして機能する減圧装置24のノズル効率を向上させることができるとともに、安定した吸引能力および昇圧能力を発揮させることができる。従って、サイクルの熱負荷変動が生じて、サイクルを循環する冷媒の循環流量が変化しても、エジェクタ式冷凍サイクルとしてのサイクル効率向上効果を得ることができる。
また、本実施形態の減圧装置24では、本体部240、冷媒流出口242および末広テーパ部244によってラバールノズルとして機能する冷媒通路を形成し、末広テーパ部244の冷媒噴射口から音速を超える流速で冷媒を噴射させるので、冷媒分配器24の下流側の冷媒流れに乱れが生じたとしても、この下流側の冷媒流れの乱れが冷媒流出口242を介して旋回空間SS内へ伝達されてしまうことが抑制できる。
従って、旋回空間SSから冷媒流出口242を介して流出する冷媒流量を安定化させることができるとともに、旋回空間SS内にて旋回中心線CLの外周側よりも内周側に気相冷媒が多く存在する旋回流速で冷媒を旋回させることによって得られる効果を確実に得ることができる。
もちろん、本実施形態の減圧装置24に、第2、第3、第5、第8実施形態で採用した流入側流量調整弁143、第3〜第5、第8実施形態で採用したバイパス通路145、第4、第5、第8実施形態で採用した補助流入側流量調整弁146、および、第6〜第8実施形態で採用した流出側流量調整弁147の適用してもよい。
これにより、エジェクタ式冷凍サイクルとしてのサイクル効率向上効果をより一層効果的に得ることができるとともに、エジェクタとして機能する減圧装置24により一層安定した吸引能力および昇圧能力を発揮させることができる。
(第10、第11実施形態)
第10実施形態では、第1実施形態の冷凍サイクル10に対して、図14の全体構成図に示すように、放熱器の構成を変更したものである。具体的には、本実施形態の放熱器23は、サブクール型の凝縮器として構成されておらず、冷媒を凝縮させる凝縮部から構成されている。
従って、放熱器23から流出する冷媒の状態は、外気温等の変化によって変化してしまうことがある。すなわち、減圧装置14へ流入する冷媒の状態も気液二相状態から液相状態へ、あるいは、液相状態から気液二相状態へと、飽和ガス線を跨ぐように変化してしまうことがある。
これに対して、本実施形態の冷凍サイクル10では、減圧装置14を備えているので、冷媒流入口141から流入する冷媒の状態が過冷却液相状態であっても気液二相状態であっても、冷媒流出口142から気液混相状態の冷媒を、減圧させながら流出させることができるので、第1実施形態と同様に、冷凍サイクル10に安定した冷却能力を発揮させることができる。
また、第11実施形態では、第9実施形態の冷凍サイクル11に対して、図15の全体構成図に示すように、第10実施形態と同様の放熱器23を採用している。
本実施形態の冷凍サイクル11では、減圧装置24を備えているので、第2実施形態と同様に、エジェクタ式冷凍サイクルとしてのサイクル効率向上効果をより一層確実に得ることができるとともに、エジェクタとして機能する減圧装置24により一層安定した吸引能力および昇圧能力を発揮させることができる。
(第12、第13実施形態)
第12実施形態では、第10実施形態の冷凍サイクル10に対して、図16の全体構成図に示すように、圧縮機12へ吸入される冷媒の気液を分離して液相冷媒を蓄えるアキュムレータ26を追加したものである。その他の構成および作動は第10実施形態と同様である。従って、第12実施形態の冷凍サイクル10においても、第01実施形態と同様の効果を得ることができる。
このようなアキュムレータ26を備えるサイクルでは、圧縮機12の吸入側へ確実に気相冷媒を供給して、圧縮機12の液圧縮を防止できる。従って、放熱器23から流出する冷媒の温度あるいは圧力に応じて、サイクル効率が極大値となるように、圧縮機12の作動を制御できる。従って、より一層のサイクル効率向上効果を得ることができる。
第13実施形態では、第11実施形態の冷凍サイクル11に対して、図17の全体構成図に示すように、圧縮機12へ吸入される冷媒の気液を分離して液相冷媒を蓄えるアキュムレータ26を追加したものである。その他の構成および作動は第11実施形態と同様である。従って、第13実施形態の冷凍サイクル11においても、第11実施形態と同様の効果を得ることができるとともに、圧縮機12の液圧縮を防止できる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の各実施形態では、減圧装置14、24の旋回空間SSを円柱状の空間と円錐状の空間とを同軸上に結合した形状の空間とした例を説明したが、旋回空間SSの空間形状はこれに限定されない。例えば、第1実施形態の減圧装置14において、冷媒流出口142の中心部および第2冷媒流出口143の中心部を結ぶ方向に垂直な断面形状が楕円形状、多角形状であってもよい。すなわち、断面形状が円形状でなくてもよい。
この場合は、旋回中心線CLは、旋回空間SSの軸と一致しないことになるが、冷凍サイクル10、11の通常想定される運転条件において、冷媒流出口142、242が、旋回中心線CLの一端側の延長線上に配置されていればよい。
そのため、上記数式F2では、旋回中心と旋回流の最外周側との距離を示す指標として上記数式F2を採用している。つまり、上記数式F2によれば、冷媒流出口142の開口方向に垂直な断面形状が楕円形状、多角形状であっても、旋回空間SS内で旋回する冷媒の旋回流を充分に成長させる条件を導き出すことができる。
(2)上述の各実施形態では、冷媒流出口142の冷媒通路面積を縮小させることで、オリフィスと同様の固定絞りとしての機能を発揮させているが、冷媒流出口142に絞りとしての機能を発揮させる手段はこれに限定されない。例えば、減圧装置14の冷媒流出口143をキャピラリチューブによって構成してもよい。
(3)上述の第1〜第8、第10、第12実施形態では、減圧装置14を通常の冷凍サイクルに適用した例を説明したが、減圧装置14の適用はこれに限定されない。
例えば、低段側圧縮機構および高段側圧縮機構の2つの圧縮機を備え、冷媒を多段階に昇圧させるとともに、サイクル内の中間圧冷媒を低段側圧縮機構から吐出された冷媒と合流させて、高段側圧縮機構へ吸入させる、いわゆるエコノマイザ式冷凍サイクルとして構成された冷凍サイクルに適用してもよい。
また、上述の第9、第11、第13実施形態では、放熱器13、23から流出した冷媒の流れを分岐させる分岐部21を備え、分岐部21にて分岐された一方の冷媒流出口にエジェクタとして機能する減圧装置24の冷媒流入口241を接続したエジェクタ式冷凍サイクルについて説明したが、減圧装置24を適用可能なエジェクタ式冷凍サイクルはこれに限定さない。
例えば、減圧装置24のディフューザ部245bから流出した冷媒の流れを分岐する低圧側分岐部を備え、低圧側分岐部にて分岐された一方の冷媒を流出側蒸発器15へ流入させ、他方の冷媒を吸引側蒸発器25へ流入させるサイクル構成としてもよい。
さらに、上記の実施形態では、流出側蒸発器15および吸引側蒸発器25によって同一の空調対象空間(車室内)を冷却しているが、流出側蒸発器15および吸引側蒸発器25にて異なる空調対象空間を冷却するようにしてもよい。例えば、流出側蒸発器15に対して、冷媒蒸発圧力(冷媒蒸発温度)が低い吸引側蒸発器25を冷凍庫内の冷却用に利用し、流出側蒸発器15を冷蔵庫内の冷却用に利用してもよい。
(4)上述の実施形態では、本発明の減圧装置14、24を備える冷凍サイクル10、11を、車両用空調装置に適用した例を説明したが、本発明の減圧装置14、24を備える冷凍サイクル10、11の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
(5)上述の実施形態では、放熱器13、23を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器(流出側蒸発器)15および吸引側蒸発器25を室内送風空気を冷却する利用側熱交換器として用いた例について説明したが、蒸発器(流出側蒸発器)15および吸引側蒸発器25を外気等の熱源から吸熱する室外側熱交換器とし、放熱器13、23を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として用いるヒートポンプサイクルを構成してもよい。
10、11 冷凍サイクル
12 圧縮機
13、23 放熱器
14、24 減圧装置
15 蒸発器(流出側蒸発器)
25 吸引側蒸発器
26 アキュムレータ
140、240 本体部
141、241 冷媒流入口
142、242 第1冷媒流出口
244 末広テーパ部
245 ボデー部
245a 冷媒吸引口
245b ディフューザ部

Claims (10)

  1. 蒸気圧縮式の冷凍サイクル(10、11)に適用されて、
    冷媒を流入させる冷媒流入口(141、241)から流出した冷媒を減圧させて冷媒流出口(142、242)から流出させる減圧装置であって、
    前記冷媒流入口(141、241)から流入した冷媒を旋回させる旋回空間(SS)を形成する本体部(140、240)を備え、
    前記冷媒流出口(142、242)は、冷媒通路面積を縮小させて冷媒を減圧させる絞りとしての機能を有し、
    前記旋回空間(SS)内で旋回する冷媒の旋回中心を結んだ線を旋回中心線(CL)としたときに、前記旋回空間(SS)内で旋回する冷媒は、前記旋回中心線(CL)の外周側よりも内周側に気相冷媒が多く存在する旋回流速で旋回しており、
    前記冷媒流出口(142、242)は、前記旋回中心線(CL)の延長線上に配置されていることを特徴とする減圧装置。
  2. 前記旋回空間(SS)は、前記冷媒流出口(142、242)の開口方向に向かって断面積が徐々に縮小するテーパ状の空間を含んで形成されていることを特徴とする請求項1に記載の減圧装置。
  3. 前記冷媒流出口(242)には、その下流側の冷媒通路の冷媒通路面積を徐々に広げる末広テーパ部(244)が接続されており、
    さらに、前記末広テーパ部(244)から噴射される噴射冷媒によって冷媒を吸引する冷媒吸引口(245a)、および、前記噴射冷媒と前記冷媒吸引口(245a)から吸引された吸引冷媒との混合冷媒を昇圧させるディフューザ部(245b)が形成されたボデー部(245)を備えることを特徴とする請求項2に記載の減圧装置。
  4. 前記冷媒流出口(142)には、キャピラリチューブが接続されていることを特徴とする請求項1または2に記載の減圧装置。
  5. 前記冷媒流入口(141、241)の通路断面積をAinとして、
    前記冷媒流出口(142、242)の通路断面積をAoutとしたときに、
    1<Ain/Aout<12
    となっていることを特徴とする請求項1ないし4のいずれか1つに記載の減圧装置。
  6. さらに、前記旋回流速を調整する旋回流速調整手段(143、146、147)を備えることを特徴とする請求項1ないし5のいずれか1つに記載の減圧装置。
  7. 前記旋回流速調整手段は、前記冷媒流入口(141)から前記旋回空間(SS)内へ流入する冷媒の流量を調整する流入側流量調整弁(143)にて構成されていることを特徴とする請求項6に記載の減圧装置。
  8. 前記本体部(140)には、前記旋回空間(SS)内へ冷媒を流入させる補助冷媒流入口(144)が設けられており、
    前記冷媒流入口(141)から前記旋回空間(SS)内へ流入する冷媒の流入方向と前記補助冷媒流入口(144)から前記旋回空間(SS)内へ流入する冷媒の流入方向は、異なる方向となっており、
    前記旋回流速調整手段は、前記冷媒流入口(141)から前記旋回空間(SS)内へ流入する冷媒の流量を調整する流入側流量調整弁(143)および前記補助冷媒流入口(144)から前記旋回空間(SS)内へ流入する冷媒の流量を調整する補助流入側流量調整弁(146)のうち少なくとも一方で構成されていることを特徴とする請求項6に記載の減圧装置。
  9. 前記旋回流速調整手段は、前記冷媒流出口(142)から流出する冷媒流量を調整する流出側流量調整弁(147)で構成されていることを特徴とする請求項6ないし8のいずれか1つに記載の減圧装置。
  10. 請求項1ないし9のいずれか1つに記載の減圧装置(14、24)を備えることを特徴とする冷凍サイクル。
JP2011069537A 2011-03-28 2011-03-28 減圧装置および冷凍サイクル Expired - Fee Related JP5640857B2 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2011069537A JP5640857B2 (ja) 2011-03-28 2011-03-28 減圧装置および冷凍サイクル
US14/007,183 US9784487B2 (en) 2011-03-28 2012-03-21 Decompression device having flow control valves and refrigeration cycle with said decompression device
KR1020137027535A KR101558307B1 (ko) 2011-03-28 2012-03-21 감압 장치 및 냉동 사이클 장치
CN201280014959.XA CN103477160B (zh) 2011-03-28 2012-03-21 减压装置和制冷循环装置
PCT/JP2012/001917 WO2012132317A1 (ja) 2011-03-28 2012-03-21 減圧装置および冷凍サイクル装置
DE112012001472.3T DE112012001472B4 (de) 2011-03-28 2012-03-21 Dekompressionseinrichtung und Kälteerzeugungskreis-Einrichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011069537A JP5640857B2 (ja) 2011-03-28 2011-03-28 減圧装置および冷凍サイクル

Publications (2)

Publication Number Publication Date
JP2012202653A true JP2012202653A (ja) 2012-10-22
JP5640857B2 JP5640857B2 (ja) 2014-12-17

Family

ID=46930105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011069537A Expired - Fee Related JP5640857B2 (ja) 2011-03-28 2011-03-28 減圧装置および冷凍サイクル

Country Status (6)

Country Link
US (1) US9784487B2 (ja)
JP (1) JP5640857B2 (ja)
KR (1) KR101558307B1 (ja)
CN (1) CN103477160B (ja)
DE (1) DE112012001472B4 (ja)
WO (1) WO2012132317A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014162520A1 (ja) * 2013-04-02 2014-10-09 三菱電機株式会社 冷凍サイクル装置
CN104154049A (zh) * 2014-08-07 2014-11-19 苏州淮通电气有限公司 一种射流泵
WO2015029346A1 (ja) * 2013-08-29 2015-03-05 株式会社デンソー エジェクタ式冷凍サイクル
US9581376B2 (en) 2013-03-27 2017-02-28 Denso Corporation Ejector
US9618245B2 (en) 2012-12-27 2017-04-11 Denso Corporation Ejector
US9625193B2 (en) 2012-12-27 2017-04-18 Denso Corporation Ejector
CN106567237A (zh) * 2015-10-10 2017-04-19 杭州三花家电热管理系统有限公司 制冷剂系统、烘干装置及烘干装置的控制方法
US9879887B2 (en) 2014-01-21 2018-01-30 Denso Corporation Ejector
US9897354B2 (en) 2013-07-30 2018-02-20 Denso Corporation Ejector
US10145588B2 (en) 2015-03-23 2018-12-04 Denso Corporation Ejector refrigeration cycle
US10184704B2 (en) 2015-03-09 2019-01-22 Denso Corporation Ejector and ejector-type refrigeration cycle
US10316865B2 (en) 2015-03-09 2019-06-11 Denso Corporation Ejector, manufacturing method thereof, and ejector-type refrigeration cycle
US10935051B2 (en) 2015-03-09 2021-03-02 Denso Corporation Ejector and ejector-type refrigeration cycle

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891968B2 (ja) 2012-06-22 2016-03-23 株式会社デンソー 減圧装置
WO2014198555A1 (en) * 2013-06-10 2014-12-18 Arcelik Anonim Sirketi A cooling device comprising a flow regulator
JP6481678B2 (ja) 2016-02-02 2019-03-13 株式会社デンソー エジェクタ
JP6481679B2 (ja) 2016-02-02 2019-03-13 株式会社デンソー エジェクタ
JP2017198406A (ja) * 2016-04-28 2017-11-02 株式会社デンソー 減圧装置および冷凍サイクル装置
US10549345B2 (en) * 2017-01-10 2020-02-04 General Electric Company Control system of additive manufacturing systems for controlling movement of sintering devices and related program products
CN113085481A (zh) * 2021-04-12 2021-07-09 北汽福田汽车股份有限公司 空调系统、空调系统的控制方法及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159617A (ja) * 1994-12-09 1996-06-21 Daikin Ind Ltd 電子膨張弁
JP2009127920A (ja) * 2007-11-22 2009-06-11 Topre Corp 冷凍装置
JP2010210111A (ja) * 2009-03-06 2010-09-24 Denso Corp エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3670519A (en) * 1971-02-08 1972-06-20 Borg Warner Capacity control for multiple-phase ejector refrigeration systems
US4378681A (en) * 1981-09-08 1983-04-05 Modisette, Inc. Refrigeration system
DE3444039A1 (de) * 1984-12-03 1986-06-05 Herion-Werke Kg, 7012 Fellbach Stellventil
JPH04306739A (ja) 1991-04-03 1992-10-29 Omron Corp プロセッサ開発支援装置,開発支援装置用ポッドおよびインサーキット・エミュレータのポッド
JPH05322383A (ja) * 1992-05-15 1993-12-07 Daikin Ind Ltd 気液分離器
JPH07332806A (ja) 1994-04-12 1995-12-22 Nippondenso Co Ltd 冷凍装置
JPH09159617A (ja) 1995-12-08 1997-06-20 Sony Corp 異物検査装置
JP3603552B2 (ja) 1997-07-22 2004-12-22 株式会社デンソー ノズル装置
US6138456A (en) * 1999-06-07 2000-10-31 The George Washington University Pressure exchanging ejector and methods of use
US6651451B2 (en) * 2002-04-23 2003-11-25 Vai Holdings, Llc Variable capacity refrigeration system with a single-frequency compressor
US6904769B2 (en) * 2002-05-15 2005-06-14 Denso Corporation Ejector-type depressurizer for vapor compression refrigeration system
JP4114544B2 (ja) * 2003-05-28 2008-07-09 株式会社デンソー エジェクタサイクル
JP4114554B2 (ja) * 2003-06-18 2008-07-09 株式会社デンソー エジェクタサイクル
JP4273977B2 (ja) * 2004-01-21 2009-06-03 株式会社デンソー エジェクタサイクル
JP2006023010A (ja) 2004-07-08 2006-01-26 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
US7497666B2 (en) * 2004-09-21 2009-03-03 George Washington University Pressure exchange ejector
JP4609388B2 (ja) * 2006-06-30 2011-01-12 株式会社デンソー 気液二相流体の分配器
FR2911915B1 (fr) * 2007-01-30 2011-06-17 Hispano Suiza Sa Dispositif de refroidissement d'un equipement electrique dans une turbomachine.
JP4306739B2 (ja) 2007-02-16 2009-08-05 三菱電機株式会社 冷凍サイクル装置
JP4812665B2 (ja) 2007-03-16 2011-11-09 三菱電機株式会社 エジェクタ及び冷凍サイクル装置
JP4572910B2 (ja) * 2007-06-11 2010-11-04 株式会社デンソー 二段減圧式エジェクタおよびエジェクタ式冷凍サイクル
JP5018725B2 (ja) 2008-04-18 2012-09-05 株式会社デンソー エジェクタ式冷凍サイクル
US10527329B2 (en) * 2008-04-18 2020-01-07 Denso Corporation Ejector-type refrigeration cycle device
JP5195364B2 (ja) * 2008-12-03 2013-05-08 株式会社デンソー エジェクタ式冷凍サイクル
JP5493769B2 (ja) * 2009-01-12 2014-05-14 株式会社デンソー 蒸発器ユニット
JP2011069537A (ja) 2009-09-25 2011-04-07 Toshiba Corp 冷蔵庫扉装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08159617A (ja) * 1994-12-09 1996-06-21 Daikin Ind Ltd 電子膨張弁
JP2009127920A (ja) * 2007-11-22 2009-06-11 Topre Corp 冷凍装置
JP2010210111A (ja) * 2009-03-06 2010-09-24 Denso Corp エジェクタ方式の減圧装置およびこれを備えた冷凍サイクル

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9618245B2 (en) 2012-12-27 2017-04-11 Denso Corporation Ejector
US9625193B2 (en) 2012-12-27 2017-04-18 Denso Corporation Ejector
DE112014001694B4 (de) 2013-03-27 2021-12-30 Denso Corporation Ejektor
US9581376B2 (en) 2013-03-27 2017-02-28 Denso Corporation Ejector
WO2014162764A1 (ja) * 2013-04-02 2014-10-09 三菱電機株式会社 冷凍サイクル装置
WO2014162520A1 (ja) * 2013-04-02 2014-10-09 三菱電機株式会社 冷凍サイクル装置
JP6072899B2 (ja) * 2013-04-02 2017-02-01 三菱電機株式会社 冷凍サイクル装置
JPWO2014162764A1 (ja) * 2013-04-02 2017-02-16 三菱電機株式会社 冷凍サイクル装置
US9897354B2 (en) 2013-07-30 2018-02-20 Denso Corporation Ejector
JP2015064194A (ja) * 2013-08-29 2015-04-09 株式会社デンソー エジェクタ式冷凍サイクル
WO2015029346A1 (ja) * 2013-08-29 2015-03-05 株式会社デンソー エジェクタ式冷凍サイクル
US9879887B2 (en) 2014-01-21 2018-01-30 Denso Corporation Ejector
CN106286425A (zh) * 2014-08-07 2017-01-04 充梦霞 射流泵
CN104154049A (zh) * 2014-08-07 2014-11-19 苏州淮通电气有限公司 一种射流泵
US10184704B2 (en) 2015-03-09 2019-01-22 Denso Corporation Ejector and ejector-type refrigeration cycle
US10316865B2 (en) 2015-03-09 2019-06-11 Denso Corporation Ejector, manufacturing method thereof, and ejector-type refrigeration cycle
US10935051B2 (en) 2015-03-09 2021-03-02 Denso Corporation Ejector and ejector-type refrigeration cycle
US10145588B2 (en) 2015-03-23 2018-12-04 Denso Corporation Ejector refrigeration cycle
CN106567237A (zh) * 2015-10-10 2017-04-19 杭州三花家电热管理系统有限公司 制冷剂系统、烘干装置及烘干装置的控制方法

Also Published As

Publication number Publication date
DE112012001472B4 (de) 2019-03-14
DE112012001472T5 (de) 2013-12-19
JP5640857B2 (ja) 2014-12-17
US20140020424A1 (en) 2014-01-23
KR20130142180A (ko) 2013-12-27
CN103477160A (zh) 2013-12-25
CN103477160B (zh) 2015-10-14
US9784487B2 (en) 2017-10-10
KR101558307B1 (ko) 2015-10-07
WO2012132317A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
JP5640857B2 (ja) 減圧装置および冷凍サイクル
JP5413393B2 (ja) 冷媒分配器および冷凍サイクル
JP6299495B2 (ja) エジェクタ式冷凍サイクル
US10378795B2 (en) Ejector and ejector refrigeration cycle
WO2015015752A1 (ja) エジェクタ
JP2007040690A (ja) エジェクタ式冷凍サイクル
US9328742B2 (en) Ejector
WO2016021141A1 (ja) 蒸発器
JP2014134196A (ja) エジェクタ
JP2008304077A (ja) エジェクタ式冷凍サイクル
JP6512071B2 (ja) エジェクタ式冷凍サイクル
JP4888050B2 (ja) 冷凍サイクル装置
JP6459807B2 (ja) エジェクタ式冷凍サイクル
WO2017135092A1 (ja) エジェクタ
WO2017135093A1 (ja) エジェクタ
JP6780567B2 (ja) 気液分離器、および冷凍サイクル装置
JP6327088B2 (ja) エジェクタ式冷凍サイクル
JP2016166549A (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6500697B2 (ja) エジェクタ
JP6500737B2 (ja) エジェクタ式冷凍サイクル
JP2017161214A (ja) 蒸発器ユニット
JP7040285B2 (ja) エジェクタ
JP6717252B2 (ja) 気液分離器、および冷凍サイクル装置
WO2017187932A1 (ja) 減圧装置および冷凍サイクル装置
JP6511997B2 (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140127

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140527

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140822

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20140903

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141013

R151 Written notification of patent or utility model registration

Ref document number: 5640857

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees