WO2017135092A1 - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
WO2017135092A1
WO2017135092A1 PCT/JP2017/002203 JP2017002203W WO2017135092A1 WO 2017135092 A1 WO2017135092 A1 WO 2017135092A1 JP 2017002203 W JP2017002203 W JP 2017002203W WO 2017135092 A1 WO2017135092 A1 WO 2017135092A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
refrigerant
forming member
ejector
space
Prior art date
Application number
PCT/JP2017/002203
Other languages
English (en)
French (fr)
Inventor
西嶋 春幸
高野 義昭
佳之 横山
押谷 洋
陽平 長野
中嶋 亮太
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2016248886A external-priority patent/JP6481679B2/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to US16/073,889 priority Critical patent/US10767905B2/en
Priority to CN201780008952.XA priority patent/CN108603518B/zh
Priority to DE112017000620.1T priority patent/DE112017000620B4/de
Publication of WO2017135092A1 publication Critical patent/WO2017135092A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/48Control

Definitions

  • the present disclosure relates to an ejector that decompresses a fluid and sucks the fluid by a suction action of a jet fluid ejected at a high speed.
  • Patent Document 1 discloses an ejector applied to a vapor compression refrigeration cycle apparatus.
  • coolant suction port formed in the body is attracted
  • coolant is attracted
  • coolant coolant.
  • the pressure of the mixed refrigerant of the injection refrigerant and the suction refrigerant that is, the evaporator outlet side refrigerant
  • a passage forming member which is a substantially conical valve body, is disposed inside the body, and a cross-sectional circle is formed between the inner side surface of the body and the conical side surface of the passage forming member.
  • An annular refrigerant passage is formed.
  • a portion on the most upstream side of the refrigerant flow is used as a nozzle passage, and a portion on the downstream side of the refrigerant flow in the nozzle passage is used as a diffuser passage.
  • the body of the ejector of Patent Document 1 is formed with a swirling space for swirling the refrigerant flowing into the nozzle passage around the central axis of the passage forming member.
  • this swirling space the liquid-phase refrigerant that has flowed out of the radiator is swirled, whereby the swirling center side refrigerant is boiled under reduced pressure.
  • coolant (henceforth an air column) in the turning center side is made to flow in into a nozzle channel
  • the ejector disclosed in Patent Document 1 promotes boiling of the refrigerant in the nozzle passage, and attempts to improve energy conversion efficiency when the pressure energy of the refrigerant is converted into kinetic energy in the nozzle passage.
  • the energy conversion efficiency hereinafter referred to as ejector efficiency
  • the ejector of Patent Document 1 includes a drive mechanism that changes the passage cross-sectional area of the refrigerant passage by displacing the passage formation member.
  • a drive mechanism that changes the passage cross-sectional area of the refrigerant passage by displacing the passage formation member.
  • Patent Document 1 when the ejector of Patent Document 1 is applied to a refrigeration cycle apparatus that employs refrigerants having different physical properties, the amount of refrigerant necessary for causing the refrigeration cycle apparatus to exhibit a desired refrigeration capacity changes. Therefore, even if refrigerants with different physical properties are swirled in the same swirling space, an appropriate air column cannot be stably generated, and energy conversion efficiency in the nozzle passage cannot be improved. End up.
  • the jet refrigerant injected at a supersonic speed from the nozzle passage has a velocity component in the swirling direction. For this reason, an oblique shock wave generated in the jet refrigerant is also generated along the swirl flow, and the velocity component in the swirl direction of the jet refrigerant is accelerated. As a result, the speed difference between the flow rate of the injected refrigerant and the flow rate of the suction refrigerant increases, and energy loss (hereinafter referred to as mixing loss) when mixing the injected refrigerant and the suction refrigerant is likely to increase.
  • mixing loss energy loss
  • the ejector of Patent Document 1 includes a passage forming member, and the refrigerant outlet of the suction passage is opened in an annular shape on the outer peripheral side of the refrigerant injection port of the nozzle passage. For this reason, in the ejector of Patent Document 1, it is difficult to sufficiently reduce the mixing loss even if the suction refrigerant is merely accelerated to reduce the speed difference.
  • an ejector applied to a vapor compression refrigeration cycle apparatus includes a body, a passage forming member, and a drive mechanism.
  • the body includes an inflow space into which liquid phase refrigerant flows, a decompression space for decompressing the refrigerant flowing out of the inflow space, and a suction passage for communicating the refrigerant sucked from the refrigerant suction port in communication with the refrigerant flow downstream side of the decompression space.
  • a pressure increasing space for allowing the jetted refrigerant injected from the pressure reducing space and the suctioned refrigerant sucked through the suction passage to flow in.
  • At least a part of the passage forming member is disposed inside the decompression space and forms a refrigerant passage between the passage forming member and the body.
  • the drive mechanism displaces the passage forming member.
  • the refrigerant passage formed between the inner peripheral surface of the part of the body that forms the decompression space and the outer peripheral surface of the passage forming member is a nozzle passage that functions as a nozzle that decompresses and injects the refrigerant.
  • An upstream operating rod that extends toward the inflow space and is slidably supported by the body is connected to the passage forming member.
  • the central axis of the upstream operating rod and the central axis of the passage forming member are coaxial with each other. Is arranged.
  • the wall surface forming the nozzle passage is formed with a plurality of throat portions for turning the refrigerant flow direction after gradually reducing the passage cross-sectional area of the nozzle passage toward the downstream side of the refrigerant flow.
  • the most upstream throat portion disposed on the most upstream side of the refrigerant flow is formed on the passage forming member side.
  • the most upstream throat portion is formed in a shape that turns the flow direction of the refrigerant in the nozzle passage 13a toward the central axis side of the passage forming member, and is arranged in a region where the subsonic refrigerant flows in the nozzle passage. Has been.
  • the drive mechanism displaces the passage forming member, the passage sectional area of the nozzle passage can be adjusted according to the load fluctuation of the applied refrigeration cycle apparatus.
  • the upstream operating rod extends to the inflow space side, it is difficult for the refrigerant in the inflow space to generate a swirling flow and no air column is generated in the inflow space. Therefore, the ejector efficiency does not become unstable because the form of the air column becomes unstable.
  • the most upstream throat portion is formed in a region where the subsonic refrigerant flows in the nozzle passage, and the most upstream throat portion enlarges the passage cross-sectional area of the nozzle passage to generate a separation vortex. Function as. Therefore, boiling nuclei can be generated in the liquid-phase refrigerant flowing through the nozzle passage.
  • the most upstream throat portion is formed on the passage forming member side, and at least a part of the shape of the nozzle passage is formed in a shape for turning the refrigerant flow direction toward the central axis of the passage forming member. Yes.
  • the boiling nuclei can be supplied from the intermediate shaft side to the liquid-phase refrigerant flowing through the nozzle passage. Therefore, even if no air column or the like is generated in the refrigerant in the inflow space, boiling of the refrigerant flowing through the nozzle passage can be promoted, and the ejector efficiency can be improved.
  • the refrigerant passage may be a diffuser passage that functions as a pressure increasing unit that increases the pressure by mixing the injected refrigerant and the suction refrigerant.
  • the cross-sectional area of the diffuser passage can be adjusted according to the load fluctuation of the applied refrigeration cycle apparatus. Therefore, high energy conversion efficiency can be more stably exhibited regardless of the load fluctuation of the applied refrigeration cycle apparatus.
  • a downstream throat portion arranged downstream of the refrigerant flow with respect to the most upstream throat portion is formed at a portion of the body forming a decompression space, and the nozzle passage 13a. At least a part of the shape may be formed in a shape that turns the flow direction of the refrigerant to the side away from the central axis of the passage forming member.
  • boiling nuclei can be supplied from the outer peripheral side to the liquid-phase refrigerant flowing through the nozzle passage. Therefore, the boiling of the refrigerant flowing through the nozzle passage can be further promoted.
  • a downstream operating rod that extends downstream from the diffuser passage and is slidably supported by the body may be connected to the passage forming member. According to this, since the passage forming member can be supported on both ends of the central axis by the upstream side operating rod and the downstream side operating rod, the central axis of the passage forming member is more reliably inclined. Can be suppressed.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. It is typical sectional drawing of the IV section of FIG. It is a Mollier diagram which shows the change of the state of the refrigerant
  • FIGS. 1-8 1st Embodiment of this indication is described using FIGS. 1-8.
  • the ejector 13 of the present embodiment is applied to a vapor compression refrigeration cycle apparatus including an ejector as a refrigerant decompression apparatus, that is, an ejector refrigeration cycle 10.
  • this ejector type refrigeration cycle 10 is applied to a vehicle air conditioner, and fulfills a function of cooling the blown air blown into the vehicle interior, which is the air-conditioning target space. Therefore, the cooling target fluid of the ejector refrigeration cycle 10 of the present embodiment is blown air.
  • the ejector refrigeration cycle 10 of the present embodiment employs an HFO refrigerant (specifically, R1234yf) as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant. is doing.
  • This refrigerant is mixed with refrigerating machine oil for lubricating the compressor 11, and a part of the refrigerating machine oil circulates in the cycle together with the refrigerant.
  • the compressor 11 sucks refrigerant and discharges it until it becomes high-pressure refrigerant.
  • the compressor 11 is disposed in an engine room together with an engine (internal combustion engine) that outputs a driving force for vehicle travel. Further, the compressor 11 is an engine-driven compressor that is driven by a rotational driving force output from the engine via a pulley, a belt, or the like.
  • a swash plate type variable displacement compressor configured such that the refrigerant discharge capacity can be adjusted by changing the discharge capacity is adopted as the compressor 11.
  • the compressor 11 has a discharge capacity control valve (not shown) for changing the discharge capacity.
  • the operation of the discharge capacity control valve is controlled by a control current output from a control device described later.
  • the refrigerant inlet side of the condenser 12 a of the radiator 12 is connected to the discharge port of the compressor 11.
  • the radiator 12 is a heat exchanger for heat radiation that radiates and cools the high-pressure refrigerant by exchanging heat between the high-pressure refrigerant discharged from the compressor 11 and outside air (outside air) blown by the cooling fan 12d. .
  • the radiator 12 is arranged on the vehicle front side in the engine room.
  • the radiator 12 is configured as a so-called subcool type condenser having a condensing unit 12a, a receiver unit 12b, and a supercooling unit 12c.
  • the condensing unit 12a is a heat exchange unit for condensation that exchanges heat between the high-pressure gas-phase refrigerant discharged from the compressor 11 and the outside air blown from the cooling fan 12d, and dissipates the high-pressure gas-phase refrigerant to condense.
  • the receiver unit 12b is a refrigerant container that separates the gas-liquid refrigerant flowing out from the condensing unit 12a and stores excess liquid-phase refrigerant.
  • the supercooling unit 12c is a heat exchange unit for supercooling that heat-exchanges the liquid refrigerant flowing out from the receiver unit 12b and the outside air blown from the cooling fan 12d to supercool the liquid refrigerant.
  • the cooling fan 12d is an electric blower in which the rotation speed (that is, the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant inlet 31 a of the ejector 13 is connected to the refrigerant outlet side of the supercooling portion 12 c of the radiator 12.
  • the ejector 13 functions as a refrigerant decompression device that decompresses the supercooled high-pressure refrigerant that has flowed out of the radiator 12 and flows it downstream. Further, the ejector 13 has a function as a refrigerant transporting device that sucks and transports a refrigerant (that is, an outlet side refrigerant of the evaporator 14) that flows out from the evaporator 14 (described later) by the suction action of the jetted refrigerant that is injected at a high speed. Fulfill.
  • a refrigerant that is, an outlet side refrigerant of the evaporator 14
  • the ejector 13 of the present embodiment also has a function as a gas-liquid separator that separates the gas-liquid of the decompressed refrigerant.
  • the ejector 13 of the present embodiment is configured as an ejector with a gas-liquid separation function in which the ejector and the gas-liquid separator are integrated (that is, modularized).
  • the ejector 13 is disposed in the engine room together with the compressor 11 and the radiator 12.
  • the up and down arrows in FIG. 1 indicate the up and down directions in a state where the ejector 13 is mounted on the vehicle, and the up and down arrows in the state where other components of the ejector refrigeration cycle 10 are mounted on the vehicle. Each direction is not limited to this.
  • FIGS. 2 and 3 are axial sectional views of the ejector 13, FIG. 2 is a sectional view taken along the line II-II in FIG. 3, and FIG. 3 is a sectional view taken along the line III-III in FIG.
  • FIG. 4 is a schematic partially enlarged cross-sectional view for explaining the refrigerant passage formed inside the ejector 13, and parts having the same functions as those in FIGS. 2 and 3 have the same reference numerals. Is attached.
  • the ejector 13 of the present embodiment includes a body 30 formed by combining a plurality of constituent members as shown in FIGS.
  • the body 30 includes an upper body 311, a lower body 312, a gas-liquid separation body 313, and the like.
  • Each of these bodies 311 to 313 functions as a housing that forms an outer shell of the ejector 13 and accommodates other constituent members therein.
  • the housing bodies 311 to 313 are formed of a hollow member made of metal (in this embodiment, made of an aluminum alloy).
  • the housing bodies 311 to 313 may be made of resin.
  • constituent members of the body 30 such as a nozzle 32 and a diffuser body 33 described later are fixed.
  • the upper body 311 is formed with a plurality of refrigerant inlets such as a refrigerant inlet 31a and a refrigerant suction port 31b.
  • the refrigerant inlet 31a is a refrigerant inlet through which the refrigerant that has flowed out of the radiator 12 flows.
  • the refrigerant suction port 31b is a refrigerant inflow port that sucks the refrigerant that has flowed out of the evaporator 14.
  • the gas-liquid separation body 313 is formed with a plurality of refrigerant inflow / outflow ports such as a liquid phase refrigerant outflow port 31c and a gas phase refrigerant outflow port 31d.
  • the liquid-phase refrigerant outlet 31 c is a refrigerant outlet that allows the liquid-phase refrigerant separated in the gas-liquid separation space 30 f formed in the gas-liquid separation body 313 to flow out to the refrigerant inlet side of the evaporator 14.
  • the gas-phase refrigerant outlet 31d is a refrigerant outlet through which the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out to the suction port side of the compressor 11.
  • the nozzle 32 is formed of a cylindrical member made of metal (in this embodiment, stainless steel). As shown in FIGS. 2 and 3, the nozzle 32 is disposed on the bottom surface of one end side in the axial direction of the upper body 311 (opposite side of the lower body 312). The nozzle 32 is fixed by being press-fitted into a hole formed in the upper body 311, and the refrigerant does not leak from the gap between the upper body 311 and the nozzle 32.
  • an inflow space 30a for allowing the refrigerant that has flowed in from the refrigerant inflow port 31a to flow is formed.
  • the inflow space 30a is formed in a substantially cylindrical rotating body shape.
  • a central axis of the inflow space 30a is arranged coaxially with a central axis CL of a passage forming member 35 described later.
  • the central axis CL of the present embodiment extends in a substantially horizontal direction.
  • the rotating body shape is a three-dimensional shape formed when a plane figure is rotated around one straight line (center axis) on the same plane.
  • the upper body 311 is formed with a refrigerant inflow passage 31e that guides the refrigerant flowing in from the refrigerant inflow port 31a to the inflow space 30a side.
  • the refrigerant inflow passage 31e is formed in a shape extending in the radial direction when viewed from the central axis direction of the inflow space 30a, and causes the refrigerant flowing into the inflow space 30a to flow toward the central axis of the inflow space 30a. Is formed.
  • a decompression space 30b is formed on the downstream side of the refrigerant flow in the inflow space 30a to depressurize the refrigerant that has flowed out of the inflow space 30a and flow out to the downstream side.
  • the decompression space 30b is formed in a rotating body shape in which the top sides of two frustoconical spaces are joined together.
  • the central axis of the decompression space 30b is also arranged coaxially with the central axis CL of the passage forming member 35.
  • the passage forming member 35 is a valve body portion arranged in a refrigerant passage formed inside the body 30.
  • the passage forming member 35 functions to change the passage sectional area of the refrigerant passage by being displaced in the direction of the central axis CL.
  • the passage forming member 35 is formed of a conical member made of resin (in this embodiment, nylon 6 or nylon 66) that is resistant to the refrigerant.
  • the passage forming member 35 is formed in a conical shape in which the outer diameter increases as the distance from the decompression space 30b increases (that is, toward the downstream side of the refrigerant flow).
  • annular member 35 a made of the same material as the passage forming member 35 is arranged on the top side of the passage forming member 35.
  • the outer shape of the annular member 35a is formed in a rotating body shape in which the bottom sides of the two truncated cones are coupled to each other.
  • the annular member 35a is formed in a shape having a maximum outer diameter portion 30n at a substantially central portion in the central axis direction and a minimum outer diameter portion 30p at the most downstream portion of the refrigerant flow.
  • the annular member 35a and the passage forming member 35 are formed as separate members. However, if the passage forming member 35 and the like can be assembled inside the body 30, the annular member 35a and the passage forming are formed.
  • the member 35 may be integrally formed.
  • a substantially frustoconical space is formed inside the passage forming member 35 from the bottom surface side. That is, the passage forming member 35 is formed in a cup shape (that is, a cup shape). Further, a shaft 351 is connected to the passage forming member 35.
  • the shaft 351 is formed of a cylindrical rod-shaped member made of metal (in this embodiment, stainless steel). The central axis of the shaft 351 is disposed coaxially with the central axis CL of the passage forming member 35.
  • the shaft 351 is insert-molded in the passage forming member 35. Thereby, the channel
  • the upstream operating rod 351a extends from the top of the passage forming member 35 so as to penetrate the inflow space 30a, and is slidably supported in the bearing hole of the upper body 311.
  • the downstream operation rod 351b extends from the top of the passage forming member 35 toward the downstream side of a diffuser passage 13c described later, and is slidably supported in a bearing hole of a support member 36 provided in the lower body 312. Yes. That is, the shaft 351 is slidably supported by the body 30 at both axial ends.
  • the support member 36 is formed of a cylindrical member made of metal (in this embodiment, an aluminum alloy), and is fixed to the lower body 312 via a fixing member (not shown). Furthermore, a coil spring 36a that applies a load toward the inflow space 30a with respect to the downstream operation rod 351b is accommodated inside the support member 36. The load of the coil spring 36 a can be adjusted by an adjustment screw 36 b provided on the support member 36.
  • the leading end of the upstream operating rod 351a on the inflow space 30a side is connected to the drive mechanism 37.
  • the drive mechanism 37 outputs a driving force for displacing the shaft 351 and the passage forming member 35 in the axial direction. Details of the drive mechanism 37 will be described later.
  • the refrigerant passage is a nozzle passage 13a that functions as a nozzle that decompresses and injects the refrigerant.
  • the nozzle passage 13a is formed in an annular shape (a shape excluding a small-diameter circular shape arranged coaxially from a circular shape) in a vertical cross section in the axial direction.
  • the annular member 35 a is arranged on the top side of the passage forming member 35.
  • the shape that the wall surface of the nozzle passage 13a on the center axis CL side (that is, the passage forming member 35 and the annular member 35a side) draws in the axial cross section is the largest from the upstream side of the annular member 35a as shown in FIG. In the range reaching the outer diameter portion 30n, the shape is separated from the central axis CL toward the downstream side of the refrigerant flow.
  • the shape approaches the central axis CL toward the refrigerant flow downstream side.
  • the shape is separated from the central axis CL toward the downstream side of the refrigerant flow from the minimum outer diameter portion 30p.
  • the shape of the wall surface of the nozzle passage 13a opposite to the center axis CL (that is, the side of the nozzle 32 forming the decompression space 30b) is drawn in the axial cross section as shown in FIG.
  • the shape approaches the central axis CL toward the downstream side of the refrigerant flow. Further, the shape is separated from the central axis CL from the minimum inner diameter portion 30m toward the refrigerant flow downstream.
  • the nozzle passage 13a of this embodiment is roughly divided into a first passage 131, a second passage 132, and a third passage 133 as shown in FIG.
  • the first passage 131 is a refrigerant passage that is formed in a range from the upstream side of the refrigerant flow of the annular member 35a to the maximum outer diameter portion 30n, and the passage cross-sectional area gradually decreases.
  • the second passage 132 is formed in a range from the maximum outer diameter portion 30n of the annular member 35a to the minimum inner diameter portion 30m of the nozzle 32, and the refrigerant passage that is reduced after the passage sectional area immediately after the first passage 131 is enlarged. It is.
  • the third passage 133 is a refrigerant passage that is formed on the downstream side of the refrigerant flow from the minimum inner diameter portion 30 m of the nozzle 32 and gradually increases the passage cross-sectional area.
  • the maximum outer diameter portion 30n of the annular member 35a is the most upstream throat portion arranged on the most upstream side of the refrigerant flow. Further, since the maximum outer diameter portion 30n is formed, the nozzle passage 13a has a shape that enlarges the passage sectional area toward the central axis CL. Further, the maximum outer diameter portion 30n is disposed in a region where the subsonic refrigerant flows in the nozzle passage 13a.
  • the minimum inner diameter portion 30m of the nozzle 32 is a downstream throat portion arranged on the downstream side of the refrigerant flow with respect to the most upstream throat portion.
  • the minimum inner diameter portion 30m is formed in a shape that enlarges the passage cross-sectional area of the nozzle passage 13a to the side away from the central axis CL of the passage forming member 35.
  • the passage cross-sectional area of the nozzle passage 13a of the present embodiment changes so as to function as a two-stage throttle type Laval nozzle having a plurality of (two in the present embodiment) throat portions (throat portions).
  • the pressure of the refrigerant is reduced and the flow rate of the refrigerant is increased to be supersonic and injected.
  • the minimum passage cross-sectional area of the refrigerant passage formed by the most upstream throat portion (that is, the maximum outer diameter portion 30n of the annular member 35a) is the downstream throat portion (that is, the nozzle).
  • the dimensions of the annular member 35a and the nozzle 32 are set so as to be smaller than the minimum passage sectional area of the refrigerant passage formed by the minimum inner diameter portion 30m).
  • a diffuser body 33 is arranged on the downstream side of the refrigerant flow from the nozzle 32 inside the upper body 311.
  • the diffuser body 33 is formed of a cylindrical member made of metal (in this embodiment, aluminum alloy).
  • the diffuser body 33 may be divided into a plurality of members so that the refrigerant injection port 13e side of the nozzle 32 can be accommodated in a through hole 33a formed inside.
  • the diffuser body 33 is fixed to the upper body 311 by press-fitting the outer peripheral side thereof to the inner peripheral side surface of the upper body 311. Note that an O-ring as a sealing member (not shown) is arranged between the diffuser body 33 and the upper body 311 so that the refrigerant does not leak from the gap between these members.
  • a through hole 33a penetrating in the axial direction is formed.
  • the through hole 33 a is formed in a substantially truncated cone-shaped rotating body shape, and its central axis is arranged coaxially with the central axis CL of the passage forming member 35.
  • coolant injection port 13e of the nozzle 32 is extended to the inside of the through-hole 33a of the diffuser body 33.
  • coolant suction port 31b of the pressure reduction space 30b (namely, nozzle passage 13a).
  • a suction passage 13b leading to the downstream side of the refrigerant flow is formed.
  • the suction refrigerant outlet 13f which is the most downstream portion of the suction passage 13b opens in an annular shape on the outer peripheral side of the refrigerant injection port 13e.
  • a pressure increasing space 30e formed in a substantially truncated cone shape gradually spreading in the refrigerant flow direction is formed.
  • the pressurizing space 30e is a space into which the injection refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked from the suction passage 13b flow.
  • the lower side of the passage forming member 35 is disposed inside the pressurizing space 30e.
  • a mixing passage 13d and a diffuser passage 13c are formed between the inner peripheral surface of the diffuser body 33 forming the pressurizing space 30e and the lower outer peripheral surface of the passage forming member 35.
  • the mixing passage 13d is a refrigerant passage for mixing the injection refrigerant and the suction refrigerant.
  • the diffuser passage 13c is a refrigerant passage that pressurizes the mixed refrigerant of the injection refrigerant and the suction refrigerant.
  • the mixing passage 13d is disposed upstream of the refrigerant flow in the diffuser passage 13c.
  • the mixing passage 13d is formed in a shape in which the passage cross-sectional area gradually decreases toward the downstream side of the refrigerant flow. Specifically, as shown in FIG. 4, the line drawn on the cross section including the central axis CL of the wall surface forming the mixing passage 13d in the diffuser body 33 approaches the passage forming member 35 toward the downstream side of the refrigerant flow. So as to be inclined. Thereby, the passage cross-sectional area of the mixing passage 13d is reduced toward the downstream side of the refrigerant flow.
  • the minimum passage sectional area of the mixing passage 13d is formed smaller than the total value of the passage sectional area of the refrigerant injection port 13e and the passage sectional area of the suction refrigerant outlet 13f. Therefore, in the mixing passage 13d, the mixing property of the injection refrigerant and the suction refrigerant is improved.
  • the diffuser passage 13c is formed in a shape that gradually increases the cross-sectional area of the passage toward the downstream side of the refrigerant flow. Thereby, the velocity energy of the mixed refrigerant can be converted into pressure energy in the diffuser passage 13c. Therefore, the diffuser passage 13c functions as a diffuser part (a boosting part).
  • the mixing passage 13d and the diffuser passage 13c are both formed in an annular shape in cross section perpendicular to the central axis.
  • the nozzle passage 13 a is formed in a range where a line segment extending in the normal direction from the outer peripheral surface of the passage forming member 35 intersects a portion of the nozzle 32 that forms the decompression space 30 b. It may be defined as a refrigerant passage.
  • the diffuser passage 13c may be defined as a refrigerant passage formed in a range where a line segment extending in the normal direction from the outer peripheral surface of the passage forming member 35 intersects a portion of the diffuser body 33 that forms the pressure increasing space 30e.
  • the suction refrigerant outlet 13f of the suction passage 13b in the cross-sectional view of FIG. 4 is a line segment extending in the normal direction of the outer peripheral surface of the passage forming member 35, and extends from the tip of the refrigerant injection port 13e of the nozzle 32 to the diffuser body 33. It may be defined by a line segment leading to.
  • the mixing passage 13d may be defined as a refrigerant passage connecting the nozzle passage 13a, the suction passage 13b, and the diffuser passage 13c. Furthermore, the minimum passage sectional area of the mixing passage 13d is a passage sectional area in the most downstream portion of the refrigerant flow in the mixing passage 13d (that is, the most upstream portion of the refrigerant flow in the diffuser passage 13c).
  • the nozzle passage 13a, the suction passage 13b, the diffuser passage 13c, and the mixing passage 13d are formed on the outer peripheral surface of the passage forming member 35 and the inner peripheral surface of the body 30 (specifically, the nozzle 32 and the diffuser body 33). Is formed between.
  • the refrigerant flows toward the downstream side.
  • the radial width (flow passage width) of each passage can be increased or decreased toward the downstream side of the refrigerant flow.
  • the drive mechanism 37 changes the passage sectional areas of the nozzle passage 13a and the diffuser passage 13c by displacing the passage forming member 35. As shown in FIGS. 2 and 3, the drive mechanism 37 is disposed outside the upper body 311 and on an axial extension line of the upstream operation rod 351a.
  • the drive mechanism 37 includes a diaphragm 371, an upper cover 372, a lower cover 373, and the like.
  • the upper cover 372 is a sealed space forming member that forms a part of the sealed space 37a together with the diaphragm 371.
  • the upper cover 372 is a cup-shaped member formed of metal (in this embodiment, stainless steel).
  • the enclosed space 37a is a space in which a temperature-sensitive medium whose pressure changes with temperature change is enclosed. More specifically, the enclosed space 37a is a space in which a temperature-sensitive medium having the same composition as the refrigerant circulating in the ejector refrigeration cycle 10 is enclosed so as to have a predetermined enclosure density.
  • a medium mainly composed of R1234yf (for example, a mixed medium of R1234yf and helium) can be employed as the temperature sensitive medium of the present embodiment. Further, the density of the temperature sensitive medium is set so that the passage forming member 35 can be appropriately displaced during the normal operation of the cycle, as will be described later.
  • the lower cover 373 is an introduction space forming member that forms the introduction space 37b together with the diaphragm 371.
  • the lower cover 373 is formed of the same metal member as the upper cover 372.
  • the introduction space 37b is a space for introducing the suction refrigerant sucked from the refrigerant suction port 31b through a communication path (not shown).
  • the outer peripheral edges of the upper cover 372 and the lower cover 373 are fixed by caulking or the like. Further, the outer peripheral side edge of the diaphragm 371 is sandwiched between the upper cover 372 and the lower cover 373. Thereby, the diaphragm 371 partitions the space formed between the upper cover 372 and the lower cover 373 into an enclosed space 37a and an introduction space 37b.
  • the diaphragm 371 is a pressure responsive member that is displaced according to the pressure difference between the internal pressure of the enclosed space 37a and the pressure of the suction refrigerant flowing through the suction passage 13b. Accordingly, it is desirable that the diaphragm 371 is made of a material that is rich in elasticity and excellent in pressure resistance and airtightness.
  • a metal thin plate made of stainless steel (SUS304) is adopted as the diaphragm 371.
  • gum base materials such as EPDM (ethylene propylene diene rubber) and HNBR (hydrogenated nitrile rubber) containing base fabric (polyester).
  • a disk-shaped plate member 374 made of metal (in this embodiment, an aluminum alloy) is disposed on the introduction space 37b side of the diaphragm 371.
  • the plate member 374 is arranged so as to contact the diaphragm 371. Further, the tip end portion of the upstream operation rod 351a is coupled to the plate member 374. Therefore, the shaft 351 and the passage forming member 35 of the present embodiment are displaced so that the total load of the load received from the drive mechanism 37 (specifically, the diaphragm 371) and the load received from the coil spring 36a is balanced.
  • the passage forming member 35 is displaced in a direction to reduce the passage sectional area of the nozzle passage 13a and the like.
  • the drive mechanism 37 of this embodiment is configured by a mechanical mechanism, and the diaphragm 371 displaces the passage forming member 35 according to the superheat degree SH of the evaporator 14 outlet side refrigerant.
  • the passage cross-sectional area of the nozzle passage 13a and the like is adjusted so that the superheat degree SH of the evaporator 14 outlet-side refrigerant approaches a predetermined reference superheat degree KSH.
  • the reference superheat degree KSH can be changed by adjusting the load of the coil spring 36a.
  • a cover member 375 that covers the drive mechanism 37 is disposed on the outer peripheral side of the drive mechanism 37. Thereby, it is suppressed that the temperature-sensitive medium in the enclosed space 37a is affected by the outside air temperature in the engine room.
  • the lower body 312 is formed with a mixed refrigerant outlet 31g.
  • the mixed refrigerant outlet 31g is a refrigerant outlet through which the gas-liquid mixed refrigerant flowing out of the diffuser passage 13c flows out to the gas-liquid separation space 31f formed in the gas-liquid separation body 313.
  • the passage sectional area of the mixed refrigerant outlet 31g is formed smaller than the passage sectional area of the most downstream portion of the diffuser passage 13c.
  • the gas-liquid separation body 313 is formed in a cylindrical shape.
  • a gas-liquid separation space 30 f is formed inside the gas-liquid separation body 313.
  • the gas-liquid separation space 30f is formed as a substantially cylindrical rotating body-shaped space.
  • the central axes of the gas-liquid separation body 313 and the gas-liquid separation space 30f extend in the vertical direction. For this reason, the gas-liquid separation body 313, the gas-liquid separation space 30f, and the central axis are orthogonal to the central axis of the passage forming member 35 and the like.
  • the gas-liquid separation body 313 is arranged so that the refrigerant that has flowed into the gas-liquid separation space 30f from the mixed refrigerant outlet 31g of the lower body 312 flows along the outer peripheral wall surface of the gas-liquid separation space 30f. Yes. Thereby, in the gas-liquid separation space 30f, the gas-liquid of the refrigerant is separated by the action of the centrifugal force generated by the refrigerant turning around the central axis.
  • a cylindrical pipe 313a that is arranged coaxially with the gas-liquid separation space 30f and extends in the vertical direction.
  • a liquid-phase refrigerant outlet through which the liquid-phase refrigerant separated in the gas-liquid separation space 30f flows out along the outer peripheral side wall surface of the gas-liquid separation space 30f is formed on the cylindrical side surface on the bottom side of the gas-liquid separation body 313.
  • 31c is formed.
  • a gas-phase refrigerant outlet 31d through which the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out is formed at the lower end of the pipe 313a.
  • a gas-phase refrigerant passage formed in the gas-liquid separation space 30f and the pipe 313a is formed at the root of the pipe 313a in the gas-liquid separation space 30f (that is, the lowermost portion in the gas-liquid separation space 30f).
  • An oil return hole 313b is formed.
  • the oil return hole 313b is a communication path for returning the refrigeration oil dissolved in the liquid phase refrigerant into the compressor 11 together with the liquid phase refrigerant through the gas phase refrigerant outflow path 34b.
  • the refrigerant inlet side of the evaporator 14 is connected to the liquid phase refrigerant outlet 31 c of the ejector 13.
  • the evaporator 14 performs heat exchange between the low-pressure refrigerant decompressed by the ejector 13 and the blown air blown into the vehicle interior from the blower fan 14a, thereby evaporating the low-pressure refrigerant and exerting an endothermic effect. It is a vessel.
  • the blower fan 14a is an electric blower in which the rotation speed (the amount of blown air) is controlled by a control voltage output from the control device.
  • a refrigerant suction port 31 b of the ejector 13 is connected to the outlet side of the evaporator 14. Further, the suction port side of the compressor 11 is connected to the gas-phase refrigerant outlet 31 d of the ejector 13.
  • a control device (not shown) includes a known microcomputer including a CPU, a ROM, a RAM, and the like and its peripheral circuits. This control device performs various calculations and processes based on a control program stored in the ROM. Then, the operation of the above-described various electric actuators 11, 12d, 14a and the like is controlled.
  • a plurality of air conditioning control sensor groups such as an inside air temperature sensor, an outside air temperature sensor, a solar radiation sensor, an evaporator temperature sensor, and a discharge pressure sensor are connected to the control device, and detection values of these sensor groups are input.
  • the inside air temperature sensor is an inside air temperature detecting unit that detects the temperature inside the vehicle.
  • the outside air temperature sensor is an outside air temperature detecting unit that detects the outside air temperature.
  • a solar radiation sensor is a solar radiation amount detection part which detects the solar radiation amount in a vehicle interior.
  • the evaporator temperature sensor is an evaporator temperature detector that detects the temperature of the blown air (evaporator temperature) of the evaporator 14.
  • the discharge pressure sensor is an outlet-side pressure detection unit that detects the pressure of the radiator 12 outlet-side refrigerant.
  • an operation panel (not shown) disposed near the instrument panel in the front part of the vehicle interior is connected to the input side of the control device, and operation signals from various operation switches provided on the operation panel are input to the control device.
  • various operation switches provided on the operation panel there are provided an air conditioning operation switch for requesting air conditioning in the vehicle interior, a vehicle interior temperature setting switch for setting the vehicle interior temperature, and the like.
  • control device of the present embodiment is configured integrally with a control unit that controls the operation of various control target devices connected to the output side of the control device.
  • a configuration (hardware and software) for controlling the operation constitutes a control unit of each control target device.
  • the configuration for controlling the refrigerant discharge capacity of the compressor 11 by controlling the operation of the discharge capacity control valve of the compressor 11 constitutes the discharge capacity control unit.
  • the discharge capacity control unit may be configured as a separate control device with respect to the control device.
  • the control device when the operation switch of the operation panel is turned on (ON), the control device operates the discharge capacity control valve of the compressor 11, the cooling fan 12d, the blower fan 14a, and the like. Thereby, the compressor 11 sucks the refrigerant, compresses it, and discharges it.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 11 flows into the condenser 12a of the radiator 12, exchanges heat with the outside air blown from the cooling fan 12d, and dissipates heat to condense.
  • the refrigerant condensed in the condensing unit 12a is gas-liquid separated in the receiver unit 12b.
  • the liquid phase refrigerant separated from the gas and liquid by the receiver unit 12b exchanges heat with the outside air blown from the cooling fan 12d by the supercooling unit 12c, and further dissipates heat to become a supercooled liquid phase refrigerant (a in FIG. 5).
  • the supercooled liquid-phase refrigerant that has flowed out of the supercooling portion 12c of the radiator 12 passes through the nozzle passage 13a formed between the inner peripheral surface of the decompression space 30b of the ejector 13 and the outer peripheral surface of the passage forming member 35. Entropically decompressed and injected.
  • the passage cross-sectional area is reduced in the first passage 131, so that the subsonic liquid-phase refrigerant is decompressed and the speed thereof is accelerated (FIG. 5).
  • the refrigerant flowing into the second passage 132 recovers its pressure as the passage area increases (point c1 ⁇ point c2 in FIG. 5).
  • a separation vortex is generated with the maximum outer diameter portion 30n of the annular member 35a forming the most upstream portion of the second passage as an edge, and boiling nuclei are generated in the refrigerant on the central axis CL side. Generated.
  • a separation vortex is generated with the minimum inner diameter portion 30m of the nozzle 32 forming the most upstream portion of the third passage 133 as an edge, and boiling nuclei are generated in the outer peripheral side refrigerant. .
  • the boiling-promoted refrigerant is blocked (choked). Due to this choking, the refrigerant reaches the sonic velocity, and is accelerated until it becomes supersonic in the third passage 133 and is injected from the refrigerant injection port 13e (point c2 ⁇ c3 in FIG. 5).
  • the passage cross-sectional area of the refrigerant passage formed by the maximum outer diameter portion 30n of the annular member 35a (that is, the minimum passage cross-sectional area of the nozzle passage 13a) is equal to the refrigerant on the outlet side of the evaporator 14 (point h in FIG. 5).
  • the degree of superheat is adjusted to approach the reference superheat degree KSH.
  • the refrigerant flowing out of the evaporator 14 (point h in FIG. 5) is sucked through the refrigerant suction port 31b and the suction passage 13b by the suction action of the injection refrigerant injected from the nozzle passage 13a.
  • the injection refrigerant injected from the nozzle passage 13a and the suction refrigerant sucked through the suction passage 13b flow into the diffuser passage 13c and join (point c ⁇ d point, h1 point ⁇ d point in FIG. 5).
  • the most downstream portion of the suction passage 13b of the present embodiment is formed in a shape in which the passage cross-sectional area gradually decreases in the refrigerant flow direction. For this reason, the suction refrigerant passing through the suction passage 13b increases the flow velocity while decreasing the pressure (point h ⁇ point h1 in FIG. 5).
  • the kinetic energy of the refrigerant is converted into pressure energy by expanding the sectional area of the refrigerant passage.
  • the pressure of the mixed refrigerant rises while the injected refrigerant and the suction refrigerant are mixed (point d ⁇ point e in FIG. 5).
  • the refrigerant flowing out of the diffuser passage 13c is gas-liquid separated in the gas-liquid separation space 30f (e point ⁇ f point, e point ⁇ g point in FIG. 5).
  • the liquid-phase refrigerant separated in the gas-liquid separation space 30f flows into the evaporator 14 with pressure loss when flowing through the refrigerant flow path from the ejector 13 to the evaporator 14 (g point ⁇ g1 in FIG. 5). point).
  • the refrigerant flowing into the evaporator 14 absorbs heat from the blown air blown by the blower fan 14a and evaporates (g1 point ⁇ h point in FIG. 5). Thereby, blowing air is cooled.
  • the gas-phase refrigerant separated in the gas-liquid separation space 30f flows out of the gas-phase refrigerant outlet 31d, is sucked into the compressor 11, and is compressed again (point f ⁇ a in FIG. 5).
  • the ejector refrigeration cycle 10 of the present embodiment operates as described above, and can cool the blown air blown into the vehicle interior.
  • the refrigerant whose pressure has been increased in the diffuser passage 13c is sucked into the compressor 11. Therefore, according to the ejector-type refrigeration cycle 10, the power consumption of the compressor 11 can be reduced compared with the normal refrigeration cycle apparatus in which the refrigerant evaporation pressure in the evaporator and the pressure of the refrigerant sucked by the compressor are substantially equal.
  • Coefficient of performance (COP) can be improved.
  • the passage forming member 35 is displaced according to the load fluctuation of the ejector refrigeration cycle 10, and the passage sectional area of the nozzle passage 13a and the diffuser passage The passage cross-sectional area of 13c can be adjusted.
  • the passage cross-sectional areas of the refrigerant passages (specifically, the nozzle passage 13a and the diffuser passage 13c) formed inside are changed to appropriately adjust the ejector 13. Can be operated.
  • the central axis CL of the passage forming member 35 has the inflow space 30a and the pressure reducing portion. There is a risk of tilting with respect to the central axis of the space 30b, the boosting space 30e, and the like.
  • the passage forming member 35 and the upstream operating rod 351a of the shaft 351 are integrated, and the central axis CL of the passage forming member 35 and the central axis of the upstream operating rod 351a are It is arranged on the same axis.
  • the passage forming member 35 can be supported on both ends of the central axis CL. Therefore, it is possible to suppress the inclination of the central axis CL of the passage forming member 35 more reliably. As a result, it is possible to suppress the ejector efficiency from becoming unstable.
  • the upstream operating rod 351a passes through the inflow space 30a, and the central axis of the upstream operating rod 351a and the central axis of the inflow space 30a are arranged coaxially. This not only makes it difficult for the refrigerant in the inflow space 30a to turn around the central axis, but also suppresses the occurrence of an air column at the center of the inflow space 30a even if it turns. be able to.
  • the central axis CL of the passage forming member 35 is not inclined and the form of the air column does not become unstable. As a result, it is possible to suppress the ejector efficiency from becoming unstable. Further, since the swirl flow around the central axis is unlikely to occur in the refrigerant in the inflow space 30a, it occurs due to the difference in the flow direction between the injected refrigerant and the sucked refrigerant when the injected refrigerant and the sucked refrigerant are mixed in the mixing passage 13d. An increase in mixing loss can be suppressed.
  • the maximum outer diameter portion 30n of the annular member 35a constituting the most upstream throat portion is formed in the region where the subsonic refrigerant flows in the nozzle passage 13a, and the maximum outer diameter.
  • the portion 30n functions as an edge that rapidly expands the cross-sectional area of the nozzle passage 13a to generate a separation vortex. Therefore, boiling nuclei can be generated in the liquid-phase refrigerant flowing through the nozzle passage 13a.
  • the largest outer diameter portion 30n of the annular member 35a constituting the most upstream throat portion is formed on the passage forming member 35 side (that is, the central axis CL) side.
  • the shape of at least a part of the nozzle passage 13 a is formed to turn the refrigerant flow direction toward the central axis CL of the passage forming member 35.
  • the boiling nuclei can be supplied from the central axis CL side to the liquid refrigerant flowing through the nozzle passage 13a. Therefore, even if an air column or the like is not generated in the refrigerant in the inflow space 30a, the boiling of the refrigerant flowing through the nozzle passage 13a can be promoted, and the ejector efficiency can be improved.
  • the minimum inner diameter portion 30m of the nozzle 32 constituting the downstream throat portion is formed in a portion where the pressure reducing space 30b of the nozzle 32 is formed.
  • the shape of at least a part of the nozzle passage 13 a is formed to turn the refrigerant flow direction away from the central axis CL of the passage forming member 35.
  • boiling nuclei can be supplied from the outer peripheral side to the liquid-phase refrigerant flowing through the nozzle passage 13a. Therefore, the boiling of the refrigerant flowing through the nozzle passage 13a can be further promoted.
  • the passage cross-sectional area of the mixing passage 13d is reduced toward the downstream side of the refrigerant flow. According to this, the loss generated in the mixing passage 13d and the diffuser passage 13c can be suppressed.
  • the jet refrigerant injected from the nozzle passage 13a to the mixing passage 13d has a liquid volume ratio in the vicinity of the wall due to the inertial force of the liquid droplets, and the flow velocity tends to be larger than the center of the flow path. That is, the flow velocity of the droplets of the injected refrigerant immediately after being injected from the nozzle passage 13a is larger than the two-phase sonic velocity, and the flow velocity of the gas (that is, the gas phase refrigerant of the injected refrigerant) may be larger than the sonic velocity of the gas. .
  • the flow rate of the suction refrigerant sucked from the suction passage 13b to the mixing passage 13d is smaller than the speed of sound. That is, the suction refrigerant immediately after being sucked into the mixing passage 13d is in a subsonic speed state.
  • the refrigerant in the mixing passage 13d is formed with a velocity boundary layer between the supersonic state refrigerant and the subsonic state refrigerant as shown by a thick broken line in FIG.
  • the road cross-sectional area becomes a flow that decreases in the flow direction (that is, a tapered flow), and the Mach number of the supersonic gas refrigerant decreases, so that an oblique shock wave as shown by a double thin line in FIG. 6 is generated.
  • the Mach number of the wake of the shock wave exceeds 1, an expansion wave as shown by a thin line in FIG. 6 is further generated, and a shock wave is further generated in the wake.
  • the interval between shock waves can be shortened, and the number of occurrences can be suppressed (occurrence twice in FIG. 6).
  • FIG. 7 it is an ejector of a comparative example in which the refrigerant flow in the mixing passage 13d is not a tapered flow, and the passage forming member 35 does not intersect the ridge line on the outlet side of the nozzle passage 13a indicated by the thin broken line.
  • the number of occurrences of the shock wave is likely to increase (in FIG. 7, it is generated three times).
  • the Mach number upstream of the shock wave is 1. For this reason, the expansion of the area is reduced and the pressure increase of the ejector is reduced.
  • the loss of the shock wave (entropy generation amount) will be described using the general formula (F1) of the shock wave entropy generation amount.
  • the amount of entropy generated that becomes a loss with respect to the pressure rise tends to increase as the shock wave angle and Mach number increase.
  • the amount of entropy generation increases by the number of shock waves generated.
  • the injected refrigerant shifts to the subsonic state while generating shock waves twice in the order of N1 ⁇ N2, as indicated by the solid arrow in the upper part of FIG.
  • the injected refrigerant enters the subsonic state while generating shock waves three times at a Mach number higher than that of the present embodiment in the order of n 1 ⁇ n 2 ⁇ n 3. Transition.
  • the entropy generation amount by shock waves (by repeating the collision) is obtained by reducing the Mach number of the flow by reducing the flow of refrigerant in the mixing passage 13d as in the present embodiment. Energy loss) can be reduced, and energy conversion efficiency can be improved.
  • the ejector 13 of the present embodiment high energy conversion efficiency can be stably exhibited regardless of the load fluctuation of the applied ejector refrigeration cycle 10. Further, as described above, the suppression of the increase in mixing loss is extremely effective in the ejector 13 in which the suction refrigerant outlet 13f of the suction passage 13b is annularly opened on the outer peripheral side of the refrigerant injection port 13e of the nozzle passage 13a. .
  • the minimum passage sectional area of the refrigerant passage formed by the maximum outer diameter portion 30n of the annular member 35a is the minimum passage sectional area of the refrigerant passage formed by the minimum inner diameter portion 30m of the nozzle 32. Is smaller than
  • the flow rate of the refrigerant flowing through the nozzle passage 13a can be adjusted by changing the passage sectional area of the refrigerant passage formed by the maximum outer diameter portion 30n. Further, the subsonic refrigerant flows through the refrigerant passage formed by the maximum outer diameter portion 30n, and the refrigerant enters a supersonic critical state downstream of the maximum outer diameter portion 30n. Therefore, the refrigerant is formed by the maximum outer diameter portion 30n. The refrigerant flow rate can be accurately adjusted in the refrigerant passage.
  • the passage forming member 35 and the shaft 351 are connected to the ejector 13. The assembling property when assembling inside can be improved.
  • the tip of the upstream operating rod 351a is connected to the plate member 374 of the drive mechanism 37, it is easier to connect the passage forming member 35 and the drive mechanism 37 via a plurality of operating rods. Can be linked.
  • the refrigerant inflow passage 31e causes the refrigerant flowing into the inflow space 30a to flow toward the central axis of the inflow space 30a when viewed from the central axis direction of the inflow space 30a. Is formed. According to this, it is possible to further suppress the swirling flow around the central axis from occurring in the refrigerant in the inflow space 30a.
  • rigid bodies such as the upstream operation rod 351a and the passage forming member 35 are arranged at the center of the inflow space 30a, the pressure reducing space 30b, and the pressure increasing space 30e. Accordingly, the axial vertical cross-sectional shapes of all the refrigerant passages formed by the inflow space 30a, the decompression space 30b, and the pressurization space 30e are annular.
  • the minimum passage sectional area of the mixing passage 13d is formed smaller than the total value of the passage sectional area of the refrigerant injection port 13e and the passage sectional area of the suction refrigerant outlet 13f. According to this, the mixing property of the injection refrigerant and the mixed refrigerant in the mixing passage 13d can be improved.
  • the passage sectional area of the mixed refrigerant outlet 31g is formed to be smaller than the passage sectional area of the most downstream portion of the diffuser passage 13c, and further the gas-liquid mixture flowing out of the diffuser passage 13c
  • the refrigerant in the state is caused to flow along the outer peripheral wall surface of the gas-liquid separation space 30f. According to this, the pressure loss of the refrigerant generated in the gas-liquid separation space 30f can be reduced.
  • the static pressure of the refrigerant decreases due to the reduction of the passage cross-sectional area, but the refrigerant flowing into the gas-liquid separation space 30f from the mixed refrigerant outlet 31g It flows along the inner peripheral wall surface of the liquid separation body 313 (that is, the outer peripheral wall surface of the gas-liquid separation space 30f).
  • FIG. 9 is a drawing corresponding to FIG. 4 described in the first embodiment.
  • symbol is attached
  • the outer shape of the annular member 35b of the present embodiment is formed in a rotating body shape in which the top sides of the two truncated cones are coupled to each other. Therefore, the annular member 35b of the present embodiment is formed in a shape having the maximum outer diameter portion 30n on the most upstream side of the refrigerant flow and the minimum outer diameter portion 30p in the substantially central portion in the central axis direction. Furthermore, the outer diameter of the upstream operating rod 351a of the shaft 351 of the present embodiment is the same thickness as the maximum outer diameter portion 30n.
  • the axial sectional shape of the nozzle passage 13a on the central axis CL side (passage forming member 35 and annular member 35b side) is minimum from the maximum outer diameter portion 30n on the most upstream side of the annular member 35b, as shown in FIG.
  • the shape approaches the center axis CL toward the downstream side of the refrigerant flow.
  • the shape is separated from the central axis CL toward the downstream side of the refrigerant flow from the minimum outer diameter portion 30p.
  • the part forming the decompression space 30b of the nozzle 32 of the present embodiment has two reduced diameter parts, that is, an upstream minimum inner diameter part 30m and a downstream minimum inner diameter part 30q.
  • the inner diameter of the upstream minimum inner diameter portion 30m is smaller than the inner diameter of the downstream minimum inner diameter portion 30q.
  • the axial cross-sectional shape of the nozzle passage 13a on the side opposite to the center axis CL is the minimum inner diameter portion on the upstream side from the inflow space 30a side.
  • the shape approaches the central axis CL toward the downstream side of the refrigerant flow.
  • the refrigerant flows toward the downstream side and becomes a shape that approaches after leaving the central axis CL.
  • the shape is separated from the central axis CL toward the downstream side of the refrigerant flow from the downstream-side minimum inner diameter portion 30q.
  • the second passage 132 of the present embodiment is formed in a shape in which the passage sectional area gradually decreases toward the downstream side of the refrigerant flow. Furthermore, two throat portions of an upstream minimum inner diameter portion 30m and a downstream minimum inner diameter portion 30q are formed in the third passage 133 of the present embodiment. That is, in the present embodiment, two downstream throat portions are formed which are arranged on the downstream side of the refrigerant flow with respect to the most upstream throat portion.
  • the passage cross-sectional area of the nozzle passage 13a of the present embodiment changes so as to function as a multistage throttle nozzle having a plurality of throat portions (throat portions).
  • Other configurations of the ejector 13 and the ejector refrigeration cycle 10 are the same as those in the first embodiment.
  • the refrigerant is depressurized in multiple stages. That is, in the first passage 131 of the present embodiment, the subsonic liquid phase refrigerant is decompressed.
  • the second passage 132 of the present embodiment has a tapered shape in which the passage sectional area gradually decreases toward the refrigerant flow downstream side. For this reason, in the 2nd channel
  • a separation vortex is generated with the maximum outer diameter portion 30n of the annular member 35a forming the most upstream portion of the second passage as an edge, and boiling nuclei are generated in the refrigerant on the central axis CL side. Generated.
  • a separation vortex is generated with the upstream-side minimum inner diameter portion 30 m of the nozzle 32 forming the most upstream portion of the third passage 133 as an edge, and boiling nuclei are generated in the outer refrigerant. Is done.
  • the refrigerant whose boiling has been promoted is blocked (choking). This choking causes the refrigerant to reach the speed of sound. Further, the downstream minimum inner diameter portion 30q becomes an edge to generate boiling nuclei, whereby the boiling of the refrigerant is further promoted and the refrigerant is injected from the refrigerant injection port 13e.
  • the ejector 13 and the ejector refrigeration cycle 10 are the same as those in the first embodiment. Therefore, the same effects as those of the first embodiment can be obtained in the ejector 13 and the ejector refrigeration cycle 10 of the present embodiment. That is, the plurality of throat portions are not limited to two as in the first embodiment, but may be provided as three or more as in the present embodiment.
  • a line drawn on a cross section including the central axis CL of the wall surface forming the mixing passage 13d in the passage forming member 35 of the present embodiment is inclined so as to approach the diffuser body 33 side toward the downstream side of the refrigerant flow. is doing. Thereby, the passage cross-sectional area of the mixing passage 13d is reduced toward the downstream side of the refrigerant flow.
  • FIG. 10 is a schematic enlarged cross-sectional view corresponding to FIG. 6 described in the first embodiment.
  • the passage forming member 35 of the first embodiment is indicated by a thin broken line for clarity of explanation.
  • the passage cross-sectional area of the mixing passage 13d is reduced toward the downstream side of the refrigerant flow by inclining the conical side surface of the passage forming member 35. Even if the mixing passage 13d is formed in this way, the boosting performance of the diffuser passage 13c can be stabilized and the ejector efficiency can be prevented from becoming unstable, as in the first embodiment. Mixing loss that occurs when the injection refrigerant and the suction refrigerant are mixed can be suppressed.
  • FIG. 11 is a drawing corresponding to FIG. 4 described in the first embodiment.
  • the recessed portion of the present embodiment is formed by a through hole 352 that is formed on the top side of the passage forming member 35 and penetrates the conical side surface of the passage forming member 35 in a direction perpendicular to the central axis CL. ing.
  • the through hole 352 is formed to be positioned upstream of the refrigerant flow with respect to the minimum inner diameter portion 30m of the nozzle passage 13a.
  • the passage forming member 35 of the ejector 13 of the present embodiment is provided with a through hole 352
  • the refrigerant passage cross-sectional area of the nozzle passage 13a can be rapidly expanded to generate boiling nuclei. Therefore, the boiling of the refrigerant in the nozzle passage 13a can be promoted, and the energy conversion efficiency in the nozzle passage 13a can be improved.
  • the through hole 352 since the through hole 352 is provided, the pressure distribution in the circumferential direction of the nozzle passage 13a formed in an annular cross section can be suppressed. Therefore, even if the central axis CL of the passage forming member 35 is inclined, it is possible to prevent the ejector efficiency from being greatly reduced.
  • the number of through holes 352 is not limited to one, and a plurality of through holes 352 may be provided in the circumferential direction and arranged at equal angular intervals.
  • FIG. 12 is an axial cross-sectional view corresponding to FIG. 2 described in the first embodiment.
  • the shape of the passage forming member 35 is changed with respect to the first embodiment.
  • the passage forming member 35 of the present embodiment is formed in a shape that decreases after the cross-sectional area perpendicular to the central axis increases from the refrigerant flow upstream side to the downstream side. More specifically, the outer shape of the passage forming member 35 of the present embodiment is formed in a rotating body shape in which the truncated cone-shaped member and the bottom surfaces of the conical members are combined.
  • a maximum outer diameter portion 30n is formed at a substantially central portion in the central axis direction of the passage forming member 35.
  • the maximum outer diameter portion 30n functions as the most upstream throat portion described in the sixth embodiment.
  • At least a part of the passage forming member 35 is disposed in the decompression space 30 b formed in the nozzle 32.
  • the nozzle 32 of this embodiment is formed integrally with the upper body 311.
  • the nozzle 32 is formed with a minimum inner diameter portion 30m that reduces the passage sectional area of the nozzle passage 13a the most.
  • the minimum inner diameter portion 30m functions as the downstream throat portion described in the sixth embodiment.
  • the maximum outer diameter portion 30n of the passage forming member 35 is positioned upstream of the refrigerant flow with respect to the minimum inner diameter portion 30m.
  • the nozzle passage 13a formed between the outer peripheral surface of the passage forming member 35 and the inner peripheral surface of the portion forming the pressure reducing space 30b of the nozzle 32 is the same as the Laval nozzle, as in the first embodiment.
  • the cross-sectional area changes.
  • a portion of the nozzle passage 13a formed on the upstream side of the refrigerant flow with respect to the smallest inner diameter portion 30m having the smallest passage cross-sectional area becomes a taper that gradually reduces the cross-sectional area of the passage toward the downstream side of the refrigerant flow.
  • coolant flow downstream from the minimum internal diameter part 30m becomes a divergent part where a passage cross-sectional area expands gradually toward a refrigerant
  • the upstream side operating rod 351a of the shaft 351 is integrally and coaxially connected to the top side of the truncated cone-shaped part disposed on the upstream side of the refrigerant flow from the maximum outer diameter part 30n.
  • a stepping motor 370 is connected to the upstream operating rod 351a.
  • the stepping motor 370 is a drive mechanism that displaces the passage forming member 35.
  • the operation of the stepping motor 370 is controlled by a control signal (control pulse) output from the control device.
  • the outer diameter of the maximum outer diameter portion 30 n of the passage forming member 35 is formed larger than the inner diameter of the minimum inner diameter portion 30 m of the nozzle 32. For this reason, when the stepping motor 370 displaces the passage forming member 35 and closes the nozzle passage 13a, the maximum outer diameter portion 30n of the passage forming member 35 contacts the nozzle 32.
  • the passage cross-sectional area of the mixing passage 13d arranged on the downstream side of the refrigerant flow in the nozzle passage 13a is reduced toward the downstream side of the refrigerant flow. Furthermore, the minimum passage sectional area of the mixing passage 13d is formed smaller than the total value of the passage sectional area of the refrigerant injection port 13e and the passage sectional area of the suction refrigerant outlet 13f.
  • the passage forming member 35 of the present embodiment is disposed in the decompression space 30b, but is not disposed in the boosting space 30e. Accordingly, in the ejector 13 of the present embodiment, as shown in FIG. 12, the shape of the pressurizing space 30e is formed such that the passage sectional area gradually decreases toward the downstream side of the refrigerant flow.
  • the pressure increasing space 30e functions as the diffuser passage 13c.
  • the passage forming member 35 is disposed in the decompression space 30b without being disposed in the pressurization space 30e. Therefore, the passage forming member 35 can be downsized as compared with the case where the passage forming member 35 is disposed in both the pressure reducing space 30b and the pressure increasing space 30e. Thereby, size reduction and simplification of the configuration of the ejector 13 as a whole can be achieved.
  • the upstream operation rod 351a is integrally and coaxially connected to the passage forming member 35. Therefore, as in the first embodiment, the central axis CL of the passage forming member 35 can be prevented from being inclined with respect to the central axes of the decompression space 30b, the boosting space 30e, and the like.
  • the passage forming member 35 can be downsized. Therefore, since the load (that is, the action of dynamic pressure) received by the passage forming member 35 from the refrigerant is reduced, the center axis CL of the passage forming member 35 can be further prevented from being inclined.
  • the passage cross-sectional area of the mixing passage 13d is reduced toward the downstream side of the refrigerant flow. Therefore, as in the first embodiment, the pressure rising performance of the diffuser passage 13c can be stabilized to prevent the ejector efficiency from becoming unstable, and the injection refrigerant and the suction refrigerant are mixed. The mixing loss occurring in the can be suppressed.
  • the compression wave reflected on the velocity boundary layer and traveling toward the central axis CL side is on the central axis (so-called slip surface) of the mixing passage 13d even if the passage forming member 35 or the like is not present. ), It collides with the compression wave traveling from the opposite side, reflects, and turns to the outer peripheral side. Therefore, even if the passage forming member 35 is not disposed in the mixing passage 13d, the same effect as in the first embodiment can be obtained.
  • the passage forming member 35 is formed with a maximum outer diameter portion 30n that functions as the most upstream throat portion. Therefore, the boiling nuclei can be supplied from the central axis CL side to the liquid-phase refrigerant flowing through the nozzle passage 13a. Furthermore, a minimum inner diameter portion 30m that functions as a downstream throat portion is formed in the nozzle 32. Therefore, the minimum inner diameter portion 30m can supply boiling nuclei to the liquid refrigerant flowing through the nozzle passage 13a also from the outer peripheral side.
  • the ejector 13 is not limited to the one disclosed in the above embodiment.
  • annular members 35a and 35b are formed of the passage forming member 35 and the resin of the material has been described in order to reduce the weight.
  • And may be formed integrally with the upstream operation rod 351a).
  • the upstream operating rod 351a and the downstream operating rod 351b are formed by the shaft 351 that is a common cylindrical member.
  • one downstream operation rod 351b is provided in the same manner as the upstream operation rod 351a, but a plurality of downstream operation rods 351b may be provided.
  • the outer diameter of the upstream operating rod 351a and the outer diameter of the downstream operating rod 351b may be set to the same value or may be set to different values.
  • a bearing member formed of a cylindrical metal may be disposed in each bearing hole.
  • the drive mechanism 37 displaces the passage forming member 35 in accordance with the temperature and pressure of the evaporator 14 outlet-side refrigerant, so that the superheat degree SH of the evaporator 14 outlet-side refrigerant becomes the reference superheat degree.
  • the adjustment of the passage sectional area by the drive mechanism 37 is not limited to this.
  • the nozzle passage is arranged so that the degree of supercooling of the refrigerant on the outlet side of the radiator 12 approaches a predetermined reference subcooling degree by displacing the passage forming member 35 according to the temperature and pressure of the refrigerant on the outlet side of the radiator 12.
  • the passage cross-sectional area of 13a may be adjusted.
  • the drive mechanism 37 is not limited to the one described in the above embodiment.
  • a thermo wax that changes in volume depending on temperature may be employed as the temperature-sensitive medium employed in the drive mechanisms of the first to seventh embodiments.
  • a mechanism having a shape memory alloy elastic member may be adopted as the drive mechanism.
  • the example in which the electrically operated stepping motor 370 is employed as the drive mechanism has been described.
  • the first to fourth embodiments are used as the drive mechanism of the ejector 13 described in the fifth embodiment. You may employ
  • Each component device constituting the ejector refrigeration cycle 10 is not limited to that disclosed in the above-described embodiment.
  • a normal radiator including only the condensing unit 12a may be employed.
  • a receiver-integrated condenser that integrates a receiver (receiver) that separates the gas-liquid of the refrigerant radiated by this radiator and stores excess liquid phase refrigerant is adopted. Also good.
  • R1234yf is adopted as the refrigerant
  • the refrigerant is not limited to this.
  • R134a, R600a, R410A, R404A, R32, R407C, etc. can be employed.
  • a supercritical refrigeration cycle in which carbon dioxide is employed as the refrigerant and the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the ejector refrigeration cycle 10 according to the present disclosure is applied to a vehicle air conditioner has been described, but the application of the ejector refrigeration cycle 10 is not limited thereto.
  • the present invention may be applied to a stationary air conditioner, a cold / hot storage, a cooling / heating device for a vending machine, and the like.
  • the radiator 12 of the ejector refrigeration cycle 10 including the ejector 13 according to the present disclosure is an outdoor heat exchanger that exchanges heat between the refrigerant and the outside air, and the evaporator 14 cools the blown air.
  • Use side heat exchanger the evaporator 14 may be used as an outdoor heat exchanger that absorbs heat from a heat source such as outside air, and the radiator 12 may be used as a use side heat exchanger that heats a heated fluid such as air or water.
  • each of the above embodiments may be appropriately combined within a practicable range.
  • the passage forming member 35 of the third embodiment may be applied to the second and fourth embodiments.

Abstract

エジェクタは、冷媒を流入させる流入空間(30a)が形成されたボデー(30)と、ボデーの内部に配置されて円錐形状を有する通路形成部材(35)と、ボデーの内壁面と通路形成部材の円錐状側面との間に、ノズルとして機能する断面円環状のノズル通路(13a)および昇圧部として機能する断面円環状のディフューザ通路(13c)と、を備える。さらに、通路形成部材から流入空間側へ延びてボデーに摺動可能に支持された上流側作動棒(351a)に、通路形成部材を中心軸(CL)方向に変位させる駆動機構(37)を連結している。ノズル通路の壁面を形成する環状部材(35a)の最大外径部(30n)によって、通路断面積を拡大させて冷媒に剥離渦を生じさせるエッジとして機能するスロート部を形成する。これにより、適用された冷凍サイクル装置の負荷変動によらず、安定的に高いエネルギ変換効率を発揮できる。

Description

エジェクタ 関連出願の相互参照
 本出願は、当該開示内容が参照によって本出願に組み込まれた、2016年2月2日に出願された日本特許出願2016-018068および、2016年12月22日に出願された日本特許出願2016-248886を基にしている。
 本開示は、流体を減圧するとともに、高速度で噴射される噴射流体の吸引作用によって流体を吸引するエジェクタに関する。
 従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用されたエジェクタが開示されている。この特許文献1のエジェクタでは、冷媒を減圧させるノズル通路から噴射される超音速の噴射冷媒の吸引作用によって、ボデーに形成された冷媒吸引口から蒸発器から流出した冷媒を吸引する。そして、ディフューザ通路にて、噴射冷媒と吸引冷媒(すなわち、蒸発器出口側冷媒)との混合冷媒を昇圧させて、圧縮機の吸入側へ流出させる。
 より詳細には、特許文献1のエジェクタでは、ボデーの内部に略円錐形状の弁体部である通路形成部材を配置し、ボデーの内側面と通路形成部材の円錐状側面との間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位をノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位をディフューザ通路として利用している。
 さらに、特許文献1のエジェクタのボデーには、ノズル通路へ流入する冷媒を通路形成部材の中心軸周りに旋回させる旋回空間が形成されている。この旋回空間では、放熱器から流出した液相冷媒を旋回させることによって、旋回中心側の冷媒を減圧沸騰させる。そして、旋回中心側に柱状の気相冷媒(以下、気柱という。)を生じさせた二相分離状態の冷媒をノズル通路へ流入させる。
 これにより、特許文献1のエジェクタでは、ノズル通路における冷媒の沸騰を促進し、ノズル通路にて冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率を向上させようとしている。延いては、エジェクタ全体としてのエネルギ変換効率(以下、エジェクタ効率という。)を向上させようとしている。
 また、特許文献1のエジェクタは、通路形成部材を変位させて冷媒通路の通路断面積を変化させる駆動機構を備えている。これにより、特許文献1のエジェクタでは、適用された冷凍サイクル装置の負荷変動に応じて、冷媒通路の通路断面積を変化させてエジェクタを適切に作動させようとしている。
特開2013-177879号公報
 ところが、本発明者らが更なるエジェクタ効率の向上のために、特許文献1のエジェクタについて検討を進めたところ、特許文献1のエジェクタでは、高いエジェクタ効率を安定的に発揮できないことがあった。そこで、本発明者らがその原因について調査したところ、以下のような原因が判った。
 まず、特許文献1のエジェクタでは、複数の作動棒を介して、通路形成部材の外周側の部位と駆動機構とを連結している。このため、冷凍サイクル装置の負荷変動に応じて通路形成部材を変位させると、通路形成部材の中心軸が旋回空間の中心軸等に対して傾いてしまうことがあった。そして、通路形成部材の中心軸が傾いてしまうと、断面円環状の冷媒通路の通路断面積が周方向に変化してしまう。
 そのため、ノズルから噴射される噴射冷媒に周方向の速度分布が生じてしまい、ノズル通路におけるエネルギ変換効率を低下させてしまうとともに、吸引冷媒を周方向に均一に吸引することができなくなってしまう。さらに、通路形成部材の中心軸が傾いてしまうと、旋回空間内に生じる気柱の形態が蛇行して不安定となってしまう。その結果、エジェクタ効率が低下してしまう。
 また、特許文献1のエジェクタを、異なる物性の冷媒を採用する冷凍サイクル装置に適用した場合、冷凍サイクル装置に所望の冷凍能力を発揮させるために必要な冷媒の量等が変化してしまう。そのため、同一の形状の旋回空間にて異なる物性の冷媒を旋回させたとしても、適切な気柱を安定的に発生させることができず、ノズル通路におけるエネルギ変換効率を向上させることができなくなってしまう。
 さらに、特許文献1のエジェクタでは、ノズル通路から超音速となって噴射される噴射冷媒が旋回方向の速度成分を有する。このため、噴射冷媒に生じる斜め衝撃波も旋回流れに沿って発生して、噴射冷媒の旋回方向の速度成分を加速させる。その結果、噴射冷媒の流速と吸引冷媒の流速との速度差が拡大して、噴射冷媒と吸引冷媒とを混合させる際のエネルギ損失(以下、混合損失という。)が増加しやすい。
 ここで、混合損失の増加を抑制するためには、吸引冷媒を加速させて速度差を低減させることが考えられる。しかしながら、特許文献1のエジェクタでは、通路形成部材を備えており、吸引用通路の冷媒出口をノズル通路の冷媒噴射口の外周側に円環状に開口させている。このため、特許文献1のエジェクタでは、単に吸引冷媒を加速させて速度差を縮小させたとしても、混合損失を充分に低減させることが難しい。
 その理由は、吸引冷媒を加速させて噴射冷媒の外周側から合流させると、噴射冷媒と吸引冷媒とを混合させる混合通路へ流入した噴射冷媒中の液滴が通路形成部材側に偏在あるいは付着してしまうからである。従って、特許文献1のエジェクタでは、吸引冷媒を加速させたとしても、液滴を混合通路中に均質に分布させにくく、混合損失を充分に低減させることが難しい。
 本開示は、上記点に鑑み、安定的に高いエネルギ変換効率を発揮可能なエジェクタを提供することを目的とする。
 本開示の一態様によると、蒸気圧縮式の冷凍サイクル装置に適用されるエジェクタは、ボデーと、通路形成部材と、駆動機構と、を備える。ボデーは、液相冷媒を流入させる流入空間、流入空間から流出した冷媒を減圧させる減圧用空間、減圧用空間の冷媒流れ下流側に連通して冷媒吸引口から吸引した冷媒を流通させる吸引用通路、および減圧用空間から噴射された噴射冷媒と吸引用通路を介して吸引された吸引冷媒とを流入させる昇圧用空間を有する。通路形成部材は、少なくとも一部が減圧用空間の内部に配置されて、ボデーとの間に冷媒通路を形成する。駆動機構は、通路形成部材を変位させる。ボデーのうち減圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路である。通路形成部材には、流入空間側へ延びてボデーに摺動可能に支持された上流側作動棒が連結されており、上流側作動棒の中心軸および通路形成部材の中心軸は、互いに同軸上に配置されている。ノズル通路を形成する壁面には、ノズル通路の通路断面積を冷媒流れ下流側に向かって徐々に縮小させた後に冷媒の流れ方向を転向させる複数のスロート部が形成されている。複数のスロート部のうち、冷媒流れ最上流側に配置された最上流側スロート部は、通路形成部材側に形成されている。さらに、最上流側スロート部は、ノズル通路13aにおける冷媒の流れ方向を通路形成部材の中心軸側へ転向させる形状に形成されているとともに、ノズル通路のうち亜音速の冷媒が流通する領域に配置されている。
 これによれば、駆動機構が通路形成部材を変位させるので、適用された冷凍サイクル装置の負荷変動に応じて、ノズル通路の通路断面積を調整することができる。
 この際、通路形成部材が、同軸上に配置された上流側作動棒によって支持されているので、駆動機構が通路形成部材を変位させても、通路形成部材の中心軸が傾いてしまうことを抑制することができる。従って、通路形成部材の中心軸が傾いてしまうことで、エジェクタ効率が不安定となってしまうことを抑制することができる。
 さらに、上流側作動棒が、流入空間側へ延びているので、流入空間内の冷媒に旋回流れが生じにくく、流入空間内に気柱が発生しない構成とすることができる。従って、気柱の形態が不安定となってしまうことで、エジェクタ効率が不安定となってしまうことがない。
 また、最上流側スロート部が、ノズル通路のうち亜音速の冷媒が流通する領域に形成されており、最上流側スロート部が、ノズル通路の通路断面積を拡大させて剥離渦を生成するエッジとして機能する。従って、ノズル通路を流通する液相冷媒中に沸騰核を生成することができる。
 さらに、最上流側スロート部が、通路形成部材側に形成されているとともに、ノズル通路の少なくとも一部の形状が、冷媒の流れ方向を通路形成部材の中心軸側へ転向させる形状に形成されている。
 これによれば、ノズル通路を流通する液相冷媒に中間軸側から沸騰核を供給することができる。従って、流入空間内の冷媒に気柱等が生成されていなくても、ノズル通路を流通する冷媒の沸騰を促進することができ、エジェクタ効率を向上させることができる。
 すなわち、上記態様のエジェクタによれば、適用された冷凍サイクル装置の負荷変動によらず、安定的に高いエネルギ変換効率を発揮させることができる。
 また、通路形成部材は、少なくとも一部が昇圧用空間の内部に配置されており、ボデーのうち昇圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合させて昇圧させる昇圧部として機能するディフューザ通路であってもよい。
 これによれば、適用された冷凍サイクル装置の負荷変動に応じて、ディフューザ通路の通路断面積を調整することができる。従って、適用された冷凍サイクル装置の負荷変動によらず、より一層、安定的に高いエネルギ変換効率を発揮させることができる。
 また、複数のスロート部のうち、最上流側スロート部よりも冷媒流れ下流側に配置された下流側スロート部が、ボデーのうち減圧用空間を形成する部位に形成されているとともに、ノズル通路13aにおける少なくとも一部の形状が、冷媒の流れ方向を通路形成部材の中心軸から離れる側へ転向させる形状に形成されていてもよい。
 これによれば、ノズル通路を流通する液相冷媒に外周側からも沸騰核を供給することができる。従って、より一層、ノズル通路を流通する冷媒の沸騰を促進することができる。
 また、通路形成部材には、ディフューザ通路の下流側へ延びてボデーに摺動可能に支持された下流側作動棒が連結されていてもよい。これによれば、上流側作動棒および下流側作動棒によって、通路形成部材を中心軸の両端側で支持することができるので、より一層確実に、通路形成部材の中心軸が傾いてしまうことを抑制することができる。
第1実施形態のエジェクタ式冷凍サイクルの概略図である。 第1実施形態のエジェクタの断面図である。 図2のIII-III断面図である。 図2のIV部の模式的な断面図である。 第1実施形態のエジェクタ式冷凍サイクルにおける冷媒の状態の変化を示すモリエル線図である。 図4のVI部の模式的な断面図である。 比較例のエジェクタの図6に対応する部位の模式的な断面図である。 冷媒が角を曲がる際に発生する衝撃波の特性とエントロピ生成量を説明するための説明図である。 第2実施形態のエジェクタの一部の模式的な断面図である。 第3実施形態のエジェクタの混合通路を示す模式的な断面図である。 第4実施形態のエジェクタの一部の模式的な断面図である。 第5実施形態のエジェクタの断面図である。 他の実施形態のエジェクタ式冷凍サイクルの概略図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 (第1実施形態)
 図1~図8を用いて、本開示の第1実施形態を説明する。本実施形態のエジェクタ13は、図1に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置、すなわち、エジェクタ式冷凍サイクル10に適用されている。さらに、このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、本実施形態のエジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
 また、本実施形態のエジェクタ式冷凍サイクル10では、冷媒としてHFO系冷媒(具体的には、R1234yf)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には、圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
 エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力するエンジン(内燃機関)とともにエンジンルーム内に配置されている。さらに、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動されるエンジン駆動式の圧縮機である。
 より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された斜板式の可変容量型圧縮機を採用している。この圧縮機11では、吐出容量を変化させるための図示しない吐出容量制御弁を有している。吐出容量制御弁は、後述する制御装置から出力される制御電流によって、その作動が制御される。
 圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両前方側に配置されている。
 より具体的には、放熱器12は、凝縮部12a、レシーバ部12b、および過冷却部12cを有する、いわゆるサブクール型の凝縮器として構成されている。
 凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。過冷却部12cは、レシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却用の熱交換部である。
 冷却ファン12dは、制御装置から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒出口側には、エジェクタ13の冷媒流入口31aが接続されている。
 エジェクタ13は、放熱器12から流出した過冷却状態の高圧冷媒を減圧させて下流側へ流出させる冷媒減圧装置としての機能を果たす。さらに、エジェクタ13は、高速度で噴射される噴射冷媒の吸引作用によって後述する蒸発器14から流出した冷媒(すなわち、蒸発器14出口側冷媒)を吸引して輸送する冷媒輸送装置としての機能を果たす。
 これに加えて、本実施形態のエジェクタ13は、減圧させた冷媒の気液を分離する気液分離器としての機能も兼ね備えている。換言すると、本実施形態のエジェクタ13は、エジェクタと気液分離器とを一体化(すなわち、モジュール化)させた、気液分離機能付きエジェクタとして構成されている。
 エジェクタ13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。なお、図1における上下の各矢印は、エジェクタ13を車両に搭載した状態における上下の各方向を示したものであり、他のエジェクタ式冷凍サイクル10の構成機器を車両に搭載した状態における上下の各方向は、これに限定されない。
 エジェクタ13の具体的構成については、図2~図4を用いて説明する。図2における上下の各矢印は、エジェクタ式冷凍サイクル10を車両用空調装置に搭載した状態における上下の各方向を示している。図2、図3はいずれもエジェクタ13の軸方向断面図であり、図2は、図3のII-II断面図であり、図3は、図2のIII-III断面図である。
 また、図4は、エジェクタ13の内部に形成された冷媒通路を説明するための模式的な一部拡大断面図であって、図2、図3と同一の機能を果たす部分には同一の符号を付している。
 本実施形態のエジェクタ13は、図2、図3に示すように、複数の構成部材を組み合わせることによって形成されたボデー30を備えている。
 より具体的には、ボデー30は、アッパーボデー311、ロワーボデー312、気液分離ボデー313等を有している。これらの各ボデー311~313は、エジェクタ13の外殻を形成するとともに、内部に他の構成部材を収容するハウジングとしての機能を果たす。ハウジング用のボデー311~313は、金属製(本実施形態では、アルミニウム合金製)の中空部材で形成されている。なお、ハウジング用のボデー311~313は、樹脂にて形成されていてもよい。
 アッパーボデー311とロワーボデー312とを組み合わせることによって形成される内部空間には、後述するノズル32、ディフューザボデー33等のボデー30の構成部材が固定されている。
 アッパーボデー311には、冷媒流入口31a、冷媒吸引口31bといった複数の冷媒流入口が形成されている。冷媒流入口31aは、放熱器12から流出した冷媒を流入させる冷媒流入口である。冷媒吸引口31bは、蒸発器14から流出した冷媒を吸引する冷媒流入口である。
 気液分離ボデー313には、液相冷媒流出口31c、気相冷媒流出口31dといった複数の冷媒流入出口が形成されている。液相冷媒流出口31cは、気液分離ボデー313内に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる冷媒流出口である。気相冷媒流出口31dは、気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入口側へ流出させる冷媒流出口である。
 ノズル32は、金属製(本実施形態では、ステンレス製)の円筒状部材で形成されている。ノズル32は、図2、図3に示すように、アッパーボデー311の軸方向一端側(ロワーボデー312の反対側)の底面に配置されている。ノズル32は、アッパーボデー311に形成された穴部に圧入によって固定されており、アッパーボデー311とノズル32との隙間から冷媒が漏れることはない。
 ノズル32の内部には、冷媒流入口31aから流入した冷媒を流入させる流入空間30aが形成されている。流入空間30aは、略円柱状の回転体形状に形成されている。流入空間30aの中心軸は、後述する通路形成部材35の中心軸CLと同軸上に配置されている。図2、図3から明らかなように、本実施形態の中心軸CLは略水平方向に延びている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)周りに回転させた際に形成される立体形状である。
 また、アッパーボデー311には、冷媒流入口31aから流入した冷媒を流入空間30a側へ導く冷媒流入通路31eが形成されている。冷媒流入通路31eは、流入空間30aの中心軸方向から見たときに、径方向に延びる形状に形成され、流入空間30aへ流入する冷媒を、流入空間30aの中心軸に向かって流入させるように形成されている。
 ノズル32の内部であって、流入空間30aの冷媒流れ下流側には、流入空間30aから流出した冷媒を減圧させて下流側へ流出させる減圧用空間30bが形成されている。減圧用空間30bは、2つの円錐台形状の空間の頂部側同士を結合させた回転体形状に形成されている。この減圧用空間30bの中心軸も、通路形成部材35の中心軸CLと同軸上に配置されている。
 減圧用空間30bの内部には、円錐状に形成された通路形成部材35の頂部側が配置されている。通路形成部材35は、ボデー30の内部に形成された冷媒通路内に配置された弁体部である。通路形成部材35は、中心軸CL方向に変位することによって、冷媒通路の通路断面積を変化させる機能を果たす。
 より具体的には、通路形成部材35は、冷媒に対して耐性を有する樹脂製(本実施形態では、ナイロン6またはナイロン66製)の円錐状部材で形成されている。通路形成部材35は、減圧用空間30bから離れるに伴って(すなわち、冷媒流れ下流側へ向かって)、外径が拡大する円錐形状に形成されている。
 さらに、通路形成部材35の頂部側には、通路形成部材35と同じ材質で形成された円環状の環状部材35aが配置されている。環状部材35aの外形は、2つの円錐台の底面側同士を結合させた回転体形状に形成されている。
 環状部材35aは、中心軸方向の略中央部に最大外径部30nを有し、冷媒流れ最下流部に最小外径部30pを有する形状に形成されている。なお、本実施形態では、環状部材35aと通路形成部材35とを別部材で形成しているが、通路形成部材35等をボデー30の内部に組付可能であれば、環状部材35aと通路形成部材35とを一体的に形成してもよい。
 また、通路形成部材35の内部には、その底面側から略円錐台状の空間が形成されている。つまり、通路形成部材35は、杯状(すなわち、カップ状)に形成されている。さらに、通路形成部材35には、シャフト351が連結されている。シャフト351は、金属製(本実施形態では、ステンレス製)の円柱棒状部材で形成されている。シャフト351の中心軸は、通路形成部材35の中心軸CLと同軸上に配置されている。
 シャフト351は、通路形成部材35にインサート成形されている。これにより、通路形成部材35とシャフト351は一体化されている。さらに、シャフト351は、上流側作動棒351aおよび下流側作動棒351bを有している。従って、上流側作動棒351aの中心軸と下流側作動棒351bの中心軸も同軸上に配置されている。
 上流側作動棒351aは、通路形成部材35の頂部から流入空間30aを貫通するように延びて、アッパーボデー311の軸受穴に摺動可能に支持されている。また、下流側作動棒351bは、通路形成部材35の頂部から後述するディフューザ通路13cの下流側へ向かって延びて、ロワーボデー312に設けられた支持部材36の軸受穴に摺動可能に支持されている。つまり、シャフト351は、軸方向の両端側でボデー30に摺動可能に支持されている。
 支持部材36は、金属製(本実施形態では、アルミニウム合金)の円筒状部材で形成され、図示しない固定部材を介してロワーボデー312に固定されている。さらに、支持部材36の内部には、下流側作動棒351bに対して流入空間30a側へ向かう荷重をかけるコイルバネ36aが収容されている。コイルバネ36aの荷重は、支持部材36に設けられた調整ネジ36bによって調整することができる。
 上流側作動棒351aの流入空間30a側の先端部は、駆動機構37に連結されている。駆動機構37は、シャフト351および通路形成部材35を軸方向に変位させるための駆動力を出力するものである。駆動機構37の詳細については後述する。
 次に、通路形成部材35の頂部側(すなわち、流入空間30a側)の外周面とノズル32の減圧用空間30bを形成する部位の内周面との間に形成されて、流入空間30aから流出した冷媒が流通する冷媒通路について説明する。この冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路13aである。ノズル通路13aは、軸方向垂直断面の形状が円環状(円形状から同軸上に配置された小径の円形状を除いた形状)に形成されている。
 前述の如く、通路形成部材35の頂部側には、環状部材35aが配置されている。このため、ノズル通路13aの中心軸CL側(すなわち、通路形成部材35および環状部材35a側)の壁面が軸方向断面に描く形状は、図4に示すように、環状部材35aの上流側から最大外径部30nへ至る範囲では冷媒流れ下流側に向かって、中心軸CLから離れる形状となっている。
 さらに、最大外径部30nから最小外径部30pへ至る範囲では冷媒流れ下流側に向かって、中心軸CLへ近づく形状となっている。最小外径部30pから冷媒流れ下流側に向かって、中心軸CLから離れる形状となっている。
 一方、ノズル通路13aの中心軸CLの反対側(すなわち、ノズル32の減圧用空間30bを形成する部位側)の壁面が軸方向断面に描く形状は、図4に示すように、流入空間30a側から最小内径部30mへ至る範囲では冷媒流れ下流側に向かって、中心軸CLへ近づく形状となっている。さらに、最小内径部30mから冷媒流れ下流側に向かって、中心軸CLから離れる形状となっている。
 このため、本実施形態のノズル通路13aは、図4に示すように、第1通路131、第2通路132、および第3通路133に大別される。
 第1通路131は、環状部材35aの冷媒流れ上流部側から最大外径部30nへ至る範囲に形成されて、通路断面積が徐々に縮小する冷媒通路である。第2通路132は、環状部材35aの最大外径部30nからノズル32の最小内径部30mへ至る範囲に形成されて、第1通路131の直後の通路断面積を拡大させた後に縮小させる冷媒通路である。第3通路133は、ノズル32の最小内径部30mから冷媒流れ下流側に形成されて、通路断面積を徐々に拡大させる冷媒通路である。
 つまり、本実施形態では、環状部材35aの最大外径部30n、およびノズル32の最小内径部30mによって、ノズル通路13aの通路断面積を冷媒流れ下流側に向かって徐々に縮小させた後に、少なくとも一部の冷媒の流れ方向を急転向させるスロート部が形成されている。
 さらに、環状部材35aの最大外径部30nは、冷媒流れ最上流側に配置された最上流側スロート部である。そして、最大外径部30nが形成されていることによって、ノズル通路13aは中心軸CL側へ通路断面積を拡大させる形状になっている。また、最大外径部30nは、ノズル通路13aのうち亜音速状態の冷媒が流通する領域に配置されている。
 一方、ノズル32の最小内径部30mは、最上流側スロート部よりも冷媒流れ下流側に配置された下流側スロート部である。最小内径部30mは、ノズル通路13aの通路断面積を通路形成部材35の中心軸CLから離れる側に拡大させる形状に形成されている。
 つまり、本実施形態のノズル通路13aは、複数(本実施形態では、2つ)のスロート部(喉部)を有する二段絞り型のラバールノズルとして機能するように通路断面積が変化する。これにより、ノズル通路13aでは、冷媒を減圧させるとともに、冷媒の流速を超音速となるように増速させて噴射している。
 さらに、本実施形態のノズル通路13aでは、最上流側スロート部(すなわち、環状部材35aの最大外径部30n)によって形成される冷媒通路の最小通路断面積が、下流側スロート部(すなわち、ノズル32の最小内径部30m)によって形成される冷媒通路の最小通路断面積よりも小さくなるように、環状部材35aおよびノズル32の寸法が設定されている。
 このため、駆動機構37が通路形成部材35を変位させて、ノズル通路13aを閉塞させる際には、環状部材35aの最大外径部30nがノズル32に接触する。
 次に、アッパーボデー311の内部のノズル32よりも冷媒流れ下流側には、図2、図3に示すように、ディフューザボデー33が配置されている。ディフューザボデー33は、金属製(本実施形態では、アルミニウム合金性)の円筒状部材で形成されている。ディフューザボデー33は、内部に形成された貫通穴33aにノズル32の冷媒噴射口13e側を収容できるように、複数の部材に分割されていてもよい。
 ディフューザボデー33は、その外周側がアッパーボデー311の内周側面に圧入されることによって、アッパーボデー311に固定されている。なお、ディフューザボデー33とアッパーボデー311との間には、図示しないシール部材としてのO-リングが配置されており、これらの部材の隙間から冷媒が漏れることはない。
 ディフューザボデー33の中心部には、軸方向に貫通する貫通穴33aが形成されている。貫通穴33aは略円錐台状の回転体形状に形成されており、その中心軸が通路形成部材35の中心軸CLと同軸上に配置されている。さらに、本実施形態では、ノズル32の冷媒噴射口13e側の先端部が、ディフューザボデー33の貫通穴33aの内部まで延びている。
 そして、ディフューザボデー33の貫通穴33aの内周面とノズル32の先端部の外周面との間には、冷媒吸引口31bから吸引された冷媒を減圧用空間30b(すなわち、ノズル通路13a)の冷媒流れ下流側へ導く吸引用通路13bが形成されている。このため、中心軸CL方向から見たときに、吸引用通路13bの最下流部となる吸引冷媒出口13fは、冷媒噴射口13eの外周側に円環状に開口している。
 ディフューザボデー33の貫通穴33aのうち、吸引用通路13bの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間30eが形成されている。昇圧用空間30eは、上述したノズル通路13aから噴射された噴射冷媒と吸引用通路13bから吸引された吸引冷媒とを流入させる空間である。
 昇圧用空間30eの内部には、通路形成部材35の下方側が配置されている。ディフューザボデー33の昇圧用空間30eを形成する部位の内周面と通路形成部材35の下方側の外周面との間には、混合通路13d、およびディフューザ通路13cが形成されている。混合通路13dは、噴射冷媒と吸引冷媒とを混合させる冷媒通路である。ディフューザ通路13cは、噴射冷媒と吸引冷媒との混合冷媒を昇圧させる冷媒通路である。
 混合通路13dは、ディフューザ通路13cの冷媒流れ上流側に配置されている。混合通路13dは、冷媒流れ下流側へ向かって通路断面積が徐々に縮小する形状に形成されている。具体的には、図4に示すように、ディフューザボデー33のうち混合通路13dを形成する壁面が中心軸CLを含む断面に描く線は、冷媒流れ下流側へ向かって通路形成部材35側に近づくように傾斜している。これにより、混合通路13dの通路断面積は、冷媒流れ下流側へ向かって縮小している。
 さらに、混合通路13dの最小通路断面積は、冷媒噴射口13eの通路断面積および吸引冷媒出口13fの通路断面積の合計値よりも小さく形成されている。これにより、混合通路13dでは、噴射冷媒と吸引冷媒との混合性を向上させている。
 ディフューザ通路13cは、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。これにより、ディフューザ通路13cでは、混合冷媒の速度エネルギを圧力エネルギに変換することができる。従って、ディフューザ通路13cは、ディフューザ部(昇圧部)としての機能を果たす。また、混合通路13dおよびディフューザ通路13cは、いずれも中心軸に垂直な断面形状が円環状に形成されている。
 ここで、図4に示すように、ノズル通路13aは、通路形成部材35の外周面から法線方向に延びる線分がノズル32のうち減圧用空間30bを形成する部位と交わる範囲に形成される冷媒通路と定義してもよい。ディフューザ通路13cは、通路形成部材35の外周面から法線方向に延びる線分がディフューザボデー33のうち昇圧用空間30eを形成する部位と交わる範囲に形成される冷媒通路と定義してもよい。
 図4の断面図における吸引用通路13bの吸引冷媒出口13fは、通路形成部材35の外周面の法線方向に延びる線分であって、ノズル32の冷媒噴射口13eの先端部からディフューザボデー33へ至る線分で定義してもよい。
 混合通路13dは、ノズル通路13a、吸引用通路13b、およびディフューザ通路13cを接続する冷媒通路と定義してもよい。さらに、混合通路13dの最小通路断面積は、混合通路13dの冷媒流れ最下流部(すなわち、ディフューザ通路13cの冷媒流れ最上流部)における通路断面積となる。
 さらに、ノズル通路13a、吸引用通路13b、ディフューザ通路13c、および混合通路13dは、通路形成部材35の外周面とボデー30(具体的には、ノズル32、およびディフューザボデー33)の内周面との間に形成されている。
 このため、中心軸CLと通路形成部材35の外周面との間の角度、および中心軸CLとボデー30の内周面との間の角度を調整することで、仮に冷媒流れ下流側に向かって通路断面積を一定に形成したとしても、各通路の径方向の幅(流路幅)等を冷媒流れ下流側に向かって増加させることも減少させることもできる。
 次に、駆動機構37について説明する。駆動機構37は、通路形成部材35を変位させることによって、ノズル通路13aおよびディフューザ通路13cの通路断面積を変化させるものである。図2、図3に示すように、駆動機構37は、アッパーボデー311の外側であって、上流側作動棒351aの軸方向延長線上に配置されている。駆動機構37は、ダイヤフラム371、アッパーカバー372、ロワーカバー373等を有している。
 アッパーカバー372は、ダイヤフラム371とともに、封入空間37aの一部を形成する封入空間形成部材である。アッパーカバー372は、金属(本実施形態では、ステンレス)で形成されたカップ状部材である。
 封入空間37aは、温度変化に伴って圧力変化する感温媒体が封入された空間である。より詳細には、封入空間37aは、エジェクタ式冷凍サイクル10を循環する冷媒と同等の組成の感温媒体が予め定めた封入密度となるように封入された空間である。
 従って、本実施形態の感温媒体としては、R1234yfを主成分とする媒体(例えば、R1234yfとヘリウムとの混合媒体)を採用することができる。さらに、感温媒体の封入密度は、後述するようにサイクルの通常作動時に通路形成部材35を適切に変位させることができるように設定されている。
 ロワーカバー373は、ダイヤフラム371とともに、導入空間37bを形成する導入空間形成部材である。ロワーカバー373は、アッパーカバー372と同様の金属部材で形成されている。導入空間37bは、図示しない連通路を介して、冷媒吸引口31bから吸引された吸引冷媒を導入させる空間である。
 アッパーカバー372およびロワーカバー373は、かしめ等により外周縁部同士が固定されている。さらに、ダイヤフラム371の外周側縁部は、アッパーカバー372とロワーカバー373との間に挟持される。これにより、ダイヤフラム371が、アッパーカバー372とロワーカバー373との間に形成される空間を封入空間37aと導入空間37bとに仕切っている。
 ダイヤフラム371は、封入空間37aの内圧と吸引用通路13bを流通する吸引冷媒の圧力との圧力差に応じて変位する圧力応動部材である。従って、ダイヤフラム371は弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。
 そこで、本実施形態では、ダイヤフラム371として、ステンレス(SUS304)製の金属薄板を採用している。また、基布(ポリエステル)入りのEPDM(エチレンプロピレンジエンゴム)やHNBR(水素添加ニトリルゴム)等のゴム製の基材で形成されたものを採用してもよい。
 ダイヤフラム371の導入空間37b側には、金属(本実施形態では、アルミニウム合金)で形成された円板状のプレート部材374が配置されている。プレート部材374は、ダイヤフラム371に接触するように配置されている。さらに、プレート部材374には、上流側作動棒351aの先端部が連結されている。従って、本実施形態のシャフト351および通路形成部材35は、駆動機構37(具体的には、ダイヤフラム371)から受ける荷重とコイルバネ36aから受ける荷重との合計荷重が釣り合うように変位する。
 より具体的には、蒸発器14出口側冷媒の温度(過熱度SH)が上昇すると、封入空間37aに封入された感温媒体の飽和圧力が上昇し、封入空間37a内の内圧から導入空間37b内の内圧を差し引いた圧力差が大きくなる。これにより、ダイヤフラム371が導入空間37b側へ変位して、上流側作動棒351aが駆動機構37から受ける荷重が増加する。
 従って、蒸発器14出口側冷媒の温度(過熱度SH)が上昇すると、通路形成部材35は、ノズル通路13a等の通路断面積を拡大させる方向に変位する。
 一方、蒸発器14出口側冷媒の温度(過熱度SH)が低下すると、封入空間37aに封入された感温媒体の飽和圧力が低下し、封入空間37a内の内圧から導入空間37b内の内圧を差し引いた圧力差が小さくなる。これにより、ダイヤフラム371が封入空間37a側へ変位して、上流側作動棒351aが駆動機構37から受ける荷重が減少する。
 従って、蒸発器14出口側冷媒の温度(過熱度SH)が低下すると、通路形成部材35は、ノズル通路13a等の通路断面積を縮小させる方向に変位する。
 つまり、本実施形態の駆動機構37は、機械的機構で構成されており、蒸発器14出口側冷媒の過熱度SHに応じて、ダイヤフラム371が通路形成部材35を変位させる。そして、蒸発器14出口側冷媒の過熱度SHが予め定めた基準過熱度KSHに近づくように、ノズル通路13a等の通路断面積を調整している。なお、基準過熱度KSHは、前述のコイルバネ36aの荷重を調整することによって、変更することができる。
 さらに、本実施形態では、駆動機構37の外周側に、駆動機構37を覆うカバー部材375を配置している。これにより封入空間37a内の感温媒体がエンジンルーム内の外気温の影響を受けてしまうことを抑制している。
 次に、図2、図3に示すように、ロワーボデー312には、混合冷媒流出口31gが形成されている。混合冷媒流出口31gは、ディフューザ通路13cから流出した気液混合状態の冷媒を気液分離ボデー313内に形成された気液分離空間31f側へ流出させる冷媒流出口である。混合冷媒流出口31gの通路断面積は、ディフューザ通路13cの最下流部の通路断面積よりも小さく形成されている。
 気液分離ボデー313は、円筒状に形成されている。気液分離ボデー313の内部には、気液分離空間30fが形成されている。気液分離空間30fは、略円筒状の回転体形状の空間として形成されている。気液分離ボデー313および気液分離空間30fの中心軸は上下方向に延びている。このため、気液分離ボデー313と気液分離空間30fと中心軸は、通路形成部材35等の中心軸に直交している。
 さらに、気液分離ボデー313は、ロワーボデー312の混合冷媒流出口31gから気液分離空間30f内へ流入した冷媒が、気液分離空間30fの外周側の壁面に沿って流入するように配置されている。これにより、気液分離空間30fでは、冷媒が中心軸周りに旋回することで生じる遠心力の作用によって、冷媒の気液を分離している。
 気液分離ボデー313の軸中心部には、気液分離空間30fに対して同軸上に配置されて、上下方向へ延びる円筒状のパイプ313aが設けられている。そして、気液分離ボデー313の底面側の筒状側面には、気液分離空間30fにて分離された液相冷媒を気液分離空間30fの外周側壁面に沿って流出させる液相冷媒流出口31cが形成されている。さらに、パイプ313aの下方側端部には、気液分離空間30fにて分離された気相冷媒を流出させる気相冷媒流出口31dが形成されている。
 また、気液分離空間30f内のパイプ313aの根元部(すなわち、気液分離空間30f内の最下方側の部位)には、気液分離空間30fとパイプ313a内に形成された気相冷媒通路とを連通させるオイル戻し穴313bが形成されている。オイル戻し穴313bは、液相冷媒に溶け込んだ冷凍機油を、液相冷媒とともに気相冷媒流出通路34bを介して圧縮機11内へ戻すための連通路である。
 エジェクタ13の液相冷媒流出口31cには、図1に示すように、蒸発器14の冷媒入口側が接続されている。蒸発器14は、エジェクタ13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
 送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の出口側には、エジェクタ13の冷媒吸引口31bが接続されている。さらに、エジェクタ13の気相冷媒流出口31dには圧縮機11の吸入口側が接続されている。
 次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。そして、上述の各種電気式のアクチュエータ11、12d、14a等の作動を制御する。
 また、制御装置には、内気温センサ、外気温センサ、日射センサ、蒸発器温度センサ、吐出圧力センサ等の複数の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
 より具体的には、内気温センサは、車室内温度を検出する内気温検出部である。外気温センサは、外気温を検出する外気温検出部である。日射センサは、車室内の日射量を検出する日射量検出部である。蒸発器温度センサは、蒸発器14の吹出空気温度(蒸発器温度)を検出する蒸発器温度検出部である。吐出圧力センサは、放熱器12出口側冷媒の圧力を検出する出口側圧力検出部である。
 さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続され、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
 なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御部を構成している。
 例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御することによって、圧縮機11の冷媒吐出能力を制御する構成が吐出能力制御部を構成している。もちろん、吐出能力制御部を制御装置に対して、別体の制御装置で構成してもよい。
 次に、上記構成における本実施形態の作動を図5のモリエル線図を用いて説明する。まず、操作パネルの作動スイッチが投入(ON)されると、制御装置が圧縮機11の吐出容量制御弁、冷却ファン12d、送風ファン14a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。
 圧縮機11から吐出された高温高圧冷媒(図5のa点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図5のa点→b点)。
 放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタ13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される。
 より詳細には、本実施形態のノズル通路13aでは、第1通路131にて通路断面積が縮小することで、亜音速状態の液相冷媒が減圧されて、その速度を加速させる(図5のb点→c1点)。第2通路132へ流入した冷媒は、通路面積の拡大によって圧力回復する(図5のc1点→c2点)。
 第2通路132へ流入した冷媒には、第2通路の最上流部を形成する環状部材35aの最大外径部30nがエッジとなって剥離渦が生じ、中心軸CL側の冷媒に沸騰核が生成される。第3通路133へ流入した冷媒には、第3通路133の最上流部を形成するノズル32の最小内径部30mがエッジとなって剥離渦が生じ、外周側の冷媒に沸騰核が生成される。
 ノズル32の最小内径部30mの近傍では、沸騰促進された冷媒に閉塞(チョーキング)が生じる。このチョーキングによって冷媒が音速に到達し、第3通路133にて超音速となるまで加速されて冷媒噴射口13eから噴射される(図5のc2点→c3点)。
 この際、環状部材35aの最大外径部30nによって形成される冷媒通路の通路断面積(すなわち、ノズル通路13aの最小通路断面積)は、蒸発器14出口側冷媒(図5のh点)の過熱度が基準過熱度KSHに近づくように調整される。
 さらに、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒(図5のh点)が、冷媒吸引口31bおよび吸引用通路13bを介して吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する(図5のc点→d点、h1点→d点)。
 ここで、本実施形態の吸引用通路13bの最下流部は、冷媒流れ方向に向かって通路断面積が徐々に縮小する形状に形成されている。このため、吸引用通路13bを通過する吸引冷媒は、その圧力を低下させながら(図5のh点→h1点)、流速を増加させる。
 ディフューザ通路13cでは冷媒通路断面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図5のd点→e点)。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される(図5のe点→f点、e点→g点)。
 気液分離空間30fにて分離された液相冷媒は、エジェクタ13から蒸発器14へ至る冷媒流路を流通する際に圧力損失を伴って蒸発器14へ流入する(図5のg点→g1点)。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図5のg1点→h点)。これにより、送風空気が冷却される。
 一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される(図5のf点→a点)。
 本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。
 本実施形態のエジェクタ式冷凍サイクル10では、ディフューザ通路13cにて昇圧された冷媒を圧縮機11へ吸入させている。従って、エジェクタ式冷凍サイクル10によれば、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
 さらに、本実施形態のエジェクタ13では、駆動機構37を備えているので、エジェクタ式冷凍サイクル10の負荷変動に応じて通路形成部材35を変位させて、ノズル通路13aの通路断面積、およびディフューザ通路13cの通路断面積を調整することができる。
 従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、内部に形成された冷媒通路(具体的には、ノズル通路13a、およびディフューザ通路13c)の通路断面積を変化させて、エジェクタ13を適切に作動させることができる。
 ここで、本実施形態のエジェクタ13のように、エジェクタ式冷凍サイクル10の負荷変動に応じて通路形成部材35を変位させる構成では、通路形成部材35の中心軸CLが、流入空間30a、減圧用空間30b、昇圧用空間30e等の中心軸に対して傾いてしまうおそれがある。
 そして、通路形成部材35の中心軸CLが傾いてしまうと、断面円環状の冷媒通路の通路断面積が周方向に変化してしまうため、高いエジェクタ効率を安定的に発揮できなくなってしまうおそれがある。
 これに対して、本実施形態のエジェクタ13では、通路形成部材35とシャフト351の上流側作動棒351aが一体化されて、通路形成部材35の中心軸CLと上流側作動棒351aの中心軸が同軸上に配置されている。これにより、駆動機構37がシャフト351とともに通路形成部材35を変位させても、通路形成部材35の中心軸CLが傾いてしまうことを抑制することができる。
 さらに、本実施形態のエジェクタ13では、下流側作動棒351bを備えているので、通路形成部材35を中心軸CLの両端側で支持することができる。従って、より一層確実に、通路形成部材35の中心軸CLが傾いてしまうことを抑制することができる。その結果、エジェクタ効率が不安定となってしまうことを抑制することができる。
 また、本実施形態のエジェクタ13では、上流側作動棒351aが流入空間30aを貫通して、上流側作動棒351aの中心軸と流入空間30aの中心軸が同軸上に配置されている。これによれば、流入空間30a内の冷媒が中心軸周りに旋回しにくいだけでなく、仮に旋回してしまったとしても、流入空間30aの中心部に気柱が発生してしまうことを抑制することができる。
 従って、通路形成部材35の中心軸CLが傾いて気柱の形態が不安定になってしまうこともない。その結果、エジェクタ効率が不安定となってしまうことを抑制することができる。さらに、流入空間30a内の冷媒に中心軸周りの旋回流れが生じにくいので、混合通路13dにて噴射冷媒と吸引冷媒とを混合させる際に、噴射冷媒と吸引冷媒との流れ方向の相違によって生じる混合損失の増加を抑制することができる。
 また、本実施形態のエジェクタ13では、最上流側スロート部を構成する環状部材35aの最大外径部30nがノズル通路13aのうち亜音速の冷媒が流通する領域に形成されており、最大外径部30nが、ノズル通路13aの通路断面積を急拡大させて剥離渦を発生させるエッジとして機能する。従って、ノズル通路13aを流通する液相冷媒中に沸騰核を生成することができる。
 さらに、最上流側スロート部を構成する環状部材35aの最大外径部30nが、通路形成部材35側(すなわち、中心軸CL)側に形成されている。そして、ノズル通路13aの少なくとも一部の形状が、冷媒の流れ方向を通路形成部材35の中心軸CL側へ転向させる形状に形成されている。
 これによれば、ノズル通路13aを流通する液相冷媒に中心軸CL側から沸騰核を供給することができる。従って、流入空間30a内の冷媒に気柱等が生成されていなくても、ノズル通路13aを流通する冷媒の沸騰を促進することができ、エジェクタ効率を向上させることができる。
 これに加えて、本実施形態のエジェクタ13では、下流側スロート部を構成するノズル32の最小内径部30mが、ノズル32の減圧用空間30bを形成する部位に形成されている。そして、ノズル通路13aの少なくとも一部の形状が、冷媒の流れ方向を通路形成部材35の中心軸CLから離れる側へ転向させる形状に形成されている。
 これによれば、ノズル通路13aを流通する液相冷媒に外周側からも沸騰核を供給することができる。従って、より一層、ノズル通路13aを流通する冷媒の沸騰を促進することができる。
 また、本実施形態のエジェクタ13では、図4に示すように、混合通路13dの通路断面積が、冷媒流れ下流側へ向かって縮小している。これによれば、混合通路13d、およびディフューザ通路13cにて生じる損失を抑制することができる。
 このことをより詳細に説明する。エジェクタ13では、ノズル通路13aから混合通路13dへ噴射される噴射冷媒は、液滴の慣性力の為、壁近傍の液体積割合が小さくなり、流速が流路中央より大きい傾向がある。つまり、ノズル通路13aから噴射された直後の噴射冷媒のうち液滴の流速は二相音速よりも大きく、ガス(すなわち、噴射冷媒のうち気相冷媒)の流速はガス音速より大きくなる場合がある。一方、吸引用通路13bから混合通路13dへ吸引される吸引冷媒の流速は音速よりも小さい。つまり、混合通路13dへ吸引された直後の吸引冷媒は亜音速状態となっている。
 この場合、混合通路13d内の冷媒には、図6の太破線に示すように、超音速状態の冷媒と亜音速状態の冷媒との間に速度境界層が形成され、混合通路13d内で流路断面積が流れ方向に減少する流れ(すなわち、先細流れ)になり、超音速のガス冷媒のマッハ数は低下する為、図6の二重細線に示すような斜め衝撃波が生じる。この衝撃波の後流のマッハ数が1を超える場合には、さらに図6の細線に示すような膨張波が発生し、そのさらに後流で衝撃波が発生するが、先細流れとすることで、その衝撃波の間隔を短くすることができ、発生回数も抑制できる(図6では2回発生)。
 一方、図7のように、混合通路13d内の冷媒流れが先細流れとならない比較例のエジェクタであって、通路形成部材35が細破線で示すノズル通路13aの出口側の稜線と交わらないような形状においては、上記衝撃波の発生回数が増加しやすく(図7では、3回発生)、面積拡大区間(すなわち、ディフューザ通路13c)で衝撃波が発生する場合には、この衝撃波上流のマッハ数は1以上の為、面積拡大により減圧膨張し、エジェクタの圧力上昇量が低下する。
 一般的な衝撃波のエントロピー生成量の式(F1)を用いて、衝撃波の損失(エントロピー生成量)を説明する。
Figure JPOXMLDOC01-appb-M000001
 式(F1)において、s:エントロピ、γ:比熱比、R:気体定数、β:衝撃波角、M:マッハ数であり、添え字の1は衝撃波前、2は衝撃波後の物理量を表す。
 このように、圧力上昇に対し損失となるエントロピー生成量は衝撃波角度とマッハ数が大きくなると増加する傾向にある。また、このエントロピー生成量は衝撃波の発生回数分大きくなる。
 そして、本実施形態の混合通路18dでは、噴射冷媒が図8の上段の実線矢印で示すように、N1→N2の順に2回衝撃波を発生させながら亜音速状態へ移行する。一方、比較例では、噴射冷媒が図8の上段の破線矢印に示すように、n1→n2→n3の順で、本実施形態よりも高いマッハ数で3回衝撃波を発生させながら亜音速状態へ移行する。
 したがって、本実施形態のように混合通路13d内の冷媒流れを先細流れとし、流れのマッハ数を減少させることで、図8の下段に示すように、衝撃波によるエントロピー生成量(衝突を繰り返すことによって積算されるエネルギ損失)を低減させることができ、エネルギ変換効率を向上できる。
 その結果、本実施形態のエジェクタ13によれば、適用されたエジェクタ式冷凍サイクル10の負荷変動によらず、安定的に高いエネルギ変換効率を発揮させることができる。また、上記の如く、混合損失の増加を抑制できることは、吸引用通路13bの吸引冷媒出口13fがノズル通路13aの冷媒噴射口13eの外周側に環状に開口しているエジェクタ13において極めて有効である。
 また、本実施形態のエジェクタ13では、環状部材35aの最大外径部30nによって形成される冷媒通路の最小通路断面積が、ノズル32の最小内径部30mによって形成される冷媒通路の最小通路断面積よりも小さくなっている。
 従って、最大外径部30nによって形成される冷媒通路の通路断面積を変化させることで、ノズル通路13aを流通する冷媒の流量を調整することができる。さらに、最大外径部30nによって形成される冷媒通路には亜音速の冷媒が流通し、冷媒は最大外径部30nの下流側で超音速の臨界状態となるので、最大外径部30nによって形成される冷媒通路おいて冷媒流量を精度良く調整することができる。
 また、本実施形態のエジェクタ13では、上流側作動棒351aの中心軸および下流側作動棒351bの中心軸が、互いに同軸上に配置されているので、通路形成部材35およびシャフト351をエジェクタ13の内部に組み付ける際の組み付け性を向上させることができる。
 さらに、上流側作動棒351aの先端部が駆動機構37のプレート部材374に連結されているので、通路形成部材35と駆動機構37とを複数の作動棒を介して連結する場合に対して容易に連結することができる。
 また、本実施形態のエジェクタ13では、流入空間30aの中心軸方向から見たときに、冷媒流入通路31eが、流入空間30aへ流入する冷媒を流入空間30aの中心軸に向かって流入させるように形成されている。これによれば、より一層、流入空間30a内の冷媒に中心軸周りの旋回流れが発生してしまうことを抑制することができる。
 さらに、本実施形態では、流入空間30a、減圧用空間30b、昇圧用空間30eの中心部に、上流側作動棒351a、通路形成部材35といった剛体が配置されている。従って、流入空間30a、減圧用空間30b、昇圧用空間30eによって形成される全ての冷媒通路の軸方向垂直断面形状が円環状となる。
 このため、これらの冷媒通路を流通する冷媒には、外周側壁面の壁面との摩擦および内周側の壁面との摩擦の双方の摩擦が生じるので、旋回流れが促進されてしまうことがない。
 また、本実施形態のエジェクタ13では、混合通路13dの最小通路断面積は、冷媒噴射口13eの通路断面積および吸引冷媒出口13fの通路断面積の合計値よりも小さく形成されている。これによれば、混合通路13dにおける噴射冷媒と混合冷媒との混合性を向上させることができる。
 また、本実施形態のエジェクタ13では、混合冷媒流出口31gの通路断面積がディフューザ通路13cの最下流部の通路断面積よりも小さく形成されており、さらに、ディフューザ通路13cから流出した気液混合状態の冷媒を気液分離空間30fの外周側の壁面に沿って流入させている。これによれば、気液分離空間30fにて生じる冷媒の圧力損失を低減させることができる。
 このことをより詳細に説明すると、混合冷媒流出口31gでは、通路断面積の縮小によって冷媒の静圧低下が生じるものの、混合冷媒流出口31gから気液分離空間30f内へ流入する冷媒は、気液分離ボデー313の内周壁面(すなわち、気液分離空間30fの外周側の壁面)に沿って流入する。
 このため、混合冷媒流出口31gから気液分離空間30f内へ流入する気相冷媒は、気液分離空間30f内へ流入した際の体積の急拡大が抑制されるので、体積拡大によるエネルギ損失を抑制できる。一方、混合冷媒流出口31gから気液分離空間30f内へ流入する液相冷媒については、比較的影響の少ない壁面摩擦分しかエネルギ損失が生じない。
 従って、混合冷媒流出口31gから比較的体積の大きい気液分離空間30f内へ流入した冷媒の運動エネルギが、大きく損失してしまうことなく圧力エネルギに変換されて、冷媒の静圧が回復する。これにより、気液分離空間30fにて生じる冷媒の圧力損失を低減させることができる。
 さらに、この圧力回復によって、気液分離空間30f内の圧力と圧縮機11の吸入口側の圧力との圧力差を確保することができる。これにより、液相冷媒に溶け込んだ冷凍機油を、オイル戻し穴313bを介して、確実に圧縮機11の吸入口側へ戻すことができる。
 (第2実施形態)
 本実施形態では、第1実施形態のエジェクタ13に対して、図9の拡大断面図に示すように、通路形成部材35の頂部側の環状部材35bの形状、並びに、ノズル32の減圧用空間30bを形成する部位の形状を変更した例を説明する。なお、図9は、第1実施形態で説明した図4に対応する図面である。また、図9では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
 より具体的には、本実施形態の環状部材35bの外形は、2つの円錐台の頂部側同士を結合させた回転体形状に形成されている。従って、本実施形態の環状部材35bは、冷媒流れ最上流側に最大外径部30nを有し、中心軸方向の略中央部に最小外径部30pを有する形状に形成されている。さらに、本実施形態のシャフト351の上流側作動棒351aの外径は、最大外径部30nと同等の太さになっている。
 従って、ノズル通路13aの中心軸CL側(通路形成部材35および環状部材35b側)の軸方向断面形状は、図9に示すように、環状部材35bの最上流側の最大外径部30nから最小外径部30pへ至る範囲では冷媒流れ下流側に向かって、中心軸CLへ近づく形状となる。最小外径部30pから冷媒流れ下流側に向かって、中心軸CLから離れる形状となっている。
 一方、本実施形態のノズル32の減圧用空間30bを形成する部位は、上流側最小内径部30mと下流側最小内径部30qの2つの縮径部を有している。上流側最小内径部30mの内径は、下流側最小内径部30qの内径よりも小さい。
 従って、ノズル通路13aの中心軸CLの反対側(ノズル32の減圧用空間30bを形成する部位側)の軸方向断面形状は、図9に示すように、流入空間30a側から上流側最小内径部30mへ至る範囲では冷媒流れ下流側に向かって、中心軸CLへ近づく形状となる。上流側最小内径部30mから下流側最小内径部30qへ至る範囲では、冷媒流れ下流側に向かって、中心軸CLから離れた後に近づく形状となる。下流側最小内径部30qから冷媒流れ下流側に向かって、中心軸CLから離れる形状となっている。
 また、本実施形態の第2通路132は、冷媒流れ下流側に向かって通路断面積が徐々に縮小する形状に形成されている。さらに、本実施形態の第3通路133には、上流側最小内径部30m、および下流側最小内径部30qの2つのスロート部が形成されている。つまり、本実施形態では、最上流側スロート部よりも冷媒流れ下流側に配置された下流側スロート部が2つ形成されている。
 つまり、本実施形態のノズル通路13aは、複数のスロート部(喉部)を有する多段絞り型のノズルとして機能するように通路断面積が変化する。その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成は、第1実施形態と同様である。
 また、本実施形態のエジェクタ13のノズル通路13aでは、冷媒を多段階に減圧させる。すなわち、本実施形態の第1通路131では、亜音速状態の液相冷媒が減圧される。本実施形態の第2通路132は、冷媒流れ下流側に向かって通路断面積が徐々に縮小する先細形状となっている。このため、第2通路132では、冷媒は亜音速のまま減圧されて加速される。
 第2通路132へ流入した冷媒には、第2通路の最上流部を形成する環状部材35aの最大外径部30nがエッジとなって剥離渦が生じ、中心軸CL側の冷媒に沸騰核が生成される。第3通路133へ流入した冷媒には、第3通路133の最上流部を形成するノズル32の上流側最小内径部30mがエッジとなって剥離渦が生じ、外周側の冷媒に沸騰核が生成される。
 上流側最小内径部30mの近傍では、沸騰促進された冷媒に閉塞(チョーキング)が生じる。このチョーキングによって冷媒が音速に到達する。さらに、下流側最小内径部30qがエッジとなって、沸騰核が生成されることで、より一層、冷媒の沸騰促進がなされて、冷媒噴射口13eから噴射される。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の基本的な作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ13およびエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。つまり、複数のスロート部は、第1実施形態のように2つ限定されることなく、本実施形態のように、3つ以上設けられていてもよい。
 (第3実施形態)
 本実施形態では、第1実施形態のエジェクタ13に対して、図10に示すように、混合通路13dの形状を変更した例を説明する。
 具体的には、本実施形態の通路形成部材35のうち混合通路13dを形成する壁面が中心軸CLを含む断面に描く線は、冷媒流れ下流側へ向かってディフューザボデー33側に近づくように傾斜している。これにより、混合通路13dの通路断面積が、冷媒流れ下流側へ向かって縮小している。
 なお、図10は、第1実施形態で説明した図6に対応する模式的な拡大断面図である。また、図10では、説明の明確化のために、第1実施形態の通路形成部材35を細破線で示している。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ13およびエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
 つまり、本実施形態では、通路形成部材35の円錐状側面を傾斜させることによって、混合通路13dの通路断面積を冷媒流れ下流側へ向かって縮小させている。このように混合通路13dを形成しても、第1実施形態と同様に、ディフューザ通路13cの昇圧性能を安定化させて、エジェクタ効率が不安定となってしまうことを抑制することができるとともに、噴射冷媒と吸引冷媒とを混合させる際に生じる混合損失を抑制することができる。
 (第4実施形態)
 本実施形態では、第1実施形態のエジェクタ13に対して、図11の拡大断面図に示すように、通路形成部材35の頂部側にノズル通路13aの通路断面積を拡大させる側に凹んだ凹み部を形成した例を説明する。なお、図11は、第1実施形態で説明した図4に対応する図面である。
 具体的には、本実施形態の凹み部は、通路形成部材35の頂部側に形成されて、通路形成部材35の円錐状側面を中心軸CLに垂直な方向に貫通する貫通穴352で構成されている。貫通穴352は、ノズル通路13aの最小内径部30mよりも冷媒流れ上流側に位置付けられるように形成されている。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ13およびエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態のエジェクタ13の通路形成部材35には、貫通穴352が設けられているので、ノズル通路13aの冷媒通路断面積を急拡大させて沸騰核を生成することができる。従って、ノズル通路13aにおける冷媒の沸騰を促進して、ノズル通路13aにおけるエネルギ変換効率を向上させることができる。
 また、本実施形態のエジェクタ13では、貫通穴352が設けられているので、断面円環状に形成されるノズル通路13aの周方向の圧力分布を抑制することができる。従って、仮に、通路形成部材35の中心軸CLが傾いてしまったとしても、エジェクタ効率が大きく低下してしまうことを抑制することができる。また、貫通穴352の数は1つに限定されることなく、周方向に複数設けられて、等角度間隔に配置されていてもよい。
 (第5実施形態)
 本実施形態では、第1実施形態のエジェクタ13に対して、図12に示すように、エジェクタ13の構成を簡素化させた例を説明する。なお、図12は、第1実施形態で説明した図2に対応する軸方向断面図である。
 本実施形態のエジェクタ13では、第1実施形態に対して、通路形成部材35の形状を変更している。本実施形態の通路形成部材35は、冷媒流れ上流側から下流側へ向かって中心軸に垂直な断面積が拡大した後に縮小する形状に形成されている。より具体的には、本実施形態の通路形成部材35の外形は、円錐台状部材と円錐状部材の底面同士を結合させた回転体形状に形成されている。
 このため、通路形成部材35の中心軸方向の略中央部には、最大外径部30nが形成されている。最大外径部30nは、第6実施形態で説明した最上流側スロート部としての機能を果たす。通路形成部材35の少なくとも一部は、ノズル32内に形成された減圧用空間30bの内部に配置されている。
 本実施形態のノズル32は、アッパーボデー311に一体的に形成されている。ノズル32には、ノズル通路13aの通路断面積を最も縮小させる最小内径部30mが形成されている。最小内径部30mは、第6実施形態で説明した下流側スロート部としての機能を果たす。
 通路形成部材35の最大外径部30nは、最小内径部30mよりも冷媒流れ上流側に位置付けられる。そして、通路形成部材35の外周面とノズル32の減圧用空間30bを形成する部位の内周面との間に形成されるノズル通路13aは、第1実施形態と同様に、ラバールノズルと同様に通路断面積が変化する。
 つまり、ノズル通路13aのうち通路断面積が最も縮小した最小内径部30mよりも冷媒流れ上流側に形成される部位が、冷媒流れ下流側へ向かって通路断面積が徐々に縮小する先細部となる。そして、最小内径部30mから冷媒流れ下流側に形成される部位が、冷媒流れ下流側へ向かって通路断面積が徐々に拡大する末広部となる。
 最大外径部30nよりも冷媒流れ上流側に配置される円錐台状部の頂部側には、シャフト351の上流側作動棒351aが一体的、かつ、同軸上に連結されている。上流側作動棒351aには、ステッピングモータ370に連結されている。ステッピングモータ370は、通路形成部材35を変位させる駆動機構である。ステッピングモータ370は、制御装置から出力される制御信号(制御パルス)によって、その作動が制御される。
 また、通路形成部材35の最大外径部30nの外径は、ノズル32の最小内径部30mの内径よりも大きく形成されている。このため、ステッピングモータ370が通路形成部材35を変位させてノズル通路13aを閉塞させる際には、通路形成部材35の最大外径部30nがノズル32に接触する。
 また、ノズル通路13aの冷媒流れ下流側に配置される混合通路13dの通路断面積は、冷媒流れ下流側へ向かって縮小している。さらに、混合通路13dの最小通路断面積は、冷媒噴射口13eの通路断面積および吸引冷媒出口13fの通路断面積の合計値よりも小さく形成されている。
 また、本実施形態の通路形成部材35は、少なくとも一部が減圧用空間30b内に配置されているものの、昇圧用空間30e内には配置されていない。従って、本実施形態のエジェクタ13では、図12に示すように、昇圧用空間30eの形状が、冷媒流れ下流側へ向かって通路断面積が徐々に縮小する形状に形成されている。そして、昇圧用空間30eが、ディフューザ通路13cとしての機能を果たす。
 その他のエジェクタ13およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ13およびエジェクタ式冷凍サイクル10においても第1実施形態と同様の効果を得ることができる。
 さらに、本実施形態では、通路形成部材35を昇圧用空間30e内に配置することなく減圧用空間30b内に配置している。従って、減圧用空間30bおよび昇圧用空間30e内の双方に配置する場合に対して、通路形成部材35の小型化を図ることできる。これにより、エジェクタ13全体としての小型化、および構成の簡素化を図ることができる。
 また、本実施形態のエジェクタ13では、下流側作動棒351bが廃止されているものの、通路形成部材35に上流側作動棒351aが一体的、かつ、同軸上に連結されている。従って、第1実施形態と同様に、通路形成部材35の中心軸CLが減圧用空間30b、昇圧用空間30e等の中心軸に対して傾いてしまうことを抑制することができる。
 さらに、本実施形態のエジェクタ13では、通路形成部材35の小型化を図ることできる。これにより、通路形成部材35が冷媒から受ける荷重(すなわち、動圧の作用)が小さくなるので、より一層、通路形成部材35の中心軸CLが傾いてしまうことを抑制することができる。
 また、本実施形態のエジェクタでは、混合通路13dの通路断面積が、冷媒流れ下流側へ向かって縮小している。従って、第1実施形態と同様に、ディフューザ通路13cの昇圧性能を安定化させて、エジェクタ効率が不安定となってしまうことを抑制することができるとともに、噴射冷媒と吸引冷媒とを混合させる際に生じる混合損失を抑制することができる。
 より詳細には、速度境界層にて反射して中心軸CL側へ進行する圧縮波は、通路形成部材35等が存在していなくても、混合通路13dの中心軸上(いわゆる、すべり面上)にて、反対側から進行してくる圧縮波と衝突して反射して外周側に転向する。従って、混合通路13d内に通路形成部材35が配置されていなくても、第1実施形態と同様の効果を得ることができる。
 また、本実施形態では、通路形成部材35に最上流側スロート部としての機能を果たす最大外径部30nが形成されている。従って、ノズル通路13aを流通する液相冷媒に中心軸CL側から沸騰核を供給することができる。さらに、ノズル32に下流側スロート部としての機能を果たす最小内径部30mが形成されている。従って、最小内径部30mが、ノズル通路13aを流通する液相冷媒に外周側からも沸騰核を供給することができる。
 その結果、流入空間30a内の冷媒に気柱等が生成されていなくても、ノズル通路13aを流通する冷媒の沸騰を促進することができ、エジェクタ効率を向上させることができる。
 (他の実施形態)
 本開示は上述の実施形態に限定されることなく、本開示の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
 (1)上述の各実施形態では、エジェクタ13の通路形成部材35の中心軸CLを水平方向に配置した例を説明したが、エジェクタ13の配置はこれに限定されない。例えば、図13の全体構成図に示すように、通路形成部材35の中心軸を鉛直方向に配置してもよい。この場合は、液相冷媒流出口31cが気液分離ボデーの最下方側に配置されていることが望ましい。
 (2)エジェクタ13は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、軽量化のために、環状部材35a、35bを通路形成部材35と材質の樹脂で形成した例を説明したが、もちろん金属的形成し、シャフト351(具体的には、上流側作動棒351a)と一体的に形成してもよい。
 また、上述の実施形態では、上流側作動棒351aおよび下流側作動棒351bを共通する円柱状部材であるシャフト351によって形成した例を説明したが、上流側作動棒351aおよび下流側作動棒351bを別部材で形成してもよい。
 さらに、上述の実施形態では、下流側作動棒351bを上流側作動棒351aと同様に一本設けているが、下流側作動棒351bを複数本設けてもよい。上流側作動棒351aの外径および下流側作動棒351bの外径は、同一の値に設定されていてもよいし、異なる値に設定されていてもよい。
 また、エジェクタ13のアッパーボデー311の軸受穴およびロワーボデー312の軸受穴の摩耗を抑制するために、それぞれの軸受穴に筒状の金属で形成された軸受部材を配置してもよい。
 また、上述の実施形態では、上流側作動棒351aに駆動機構37のプレート部材374を連結した例を説明したが、下流側作動棒351bに駆動機構を連結してもよい。
 また、上述の実施形態では、駆動機構37が、蒸発器14出口側冷媒の温度および圧力に応じて通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度SHが基準過熱度KSHに近づくように、ノズル通路13aの通路断面積を調整した例を説明したが、駆動機構37による通路断面積の調整はこれに限定されない。
 例えば、放熱器12出口側冷媒の温度および圧力に応じて通路形成部材35を変位させることによって、放熱器12出口側冷媒の過冷却度が予め定めた基準過冷却度に近づくように、ノズル通路13aの通路断面積を調整してもよい。
 また、駆動機構37は上述の実施形態で説明したものに限定されない。例えば、第1~第7実施形態の駆動機構で採用した感温媒体として温度によって体積変化するサーモワックスを採用してもよい。さらに、駆動機構として、形状記憶合金性の弾性部材を有して構成されたものを採用してもよい。
 また、第5実施形態では、駆動機構として、電気的に作動するステッピングモータ370採用した例を説明したが、もちろん、第5実施形態で説明したエジェクタ13の駆動機構として、第1~第4実施形態で説明した機械的機構で構成される駆動機構37を採用してもよい。
 (3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
 例えば、上述の実施形態では、圧縮機11として、エンジン駆動式の可変容量型圧縮機を採用した例を説明したが、圧縮機11として、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用してもよい。さらに、固定容量型圧縮機構と電動モータとを備え、電力を供給されることによって作動する電動圧縮機を採用してもよい。電動圧縮機では、電動モータの回転数を調整することによって、冷媒吐出能力を制御することができる。
 また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。
 また、上述の実施形態では、冷媒としてR1234yfを採用した例を説明したが、冷媒はこれに限定されない。例えば、R134a、R600a、R410A、R404A、R32、R407C、等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 (4)上述の実施形態では、本開示に係るエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
 また、上述の実施形態では、本開示に係るエジェクタ13を備えるエジェクタ式冷凍サイクル10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器14を送風空気を冷却する利用側熱交換器としている。これに対して、蒸発器14を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する利用側熱交換器として用いてもよい。
 (5)また、上記各実施形態に開示された要素は、実施可能な範囲で適宜組み合わせてもよい。例えば、第3実施形態の通路形成部材35を、第2、第4実施形態に適用してもよい。また、第2、第5実施形態の通路形成部材35に、第4実施形態で説明した凹み部(貫通穴352)を形成してもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (15)

  1.  蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
     液相冷媒を流入させる流入空間(30a)、前記流入空間から流出した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間の冷媒流れ下流側に連通して冷媒吸引口(31b)から吸引した冷媒を流通させる吸引用通路(13b)、および前記減圧用空間から噴射された噴射冷媒と前記吸引用通路を介して吸引された吸引冷媒とを流入させる昇圧用空間(30e)を有するボデー(30)と、
     少なくとも一部が前記減圧用空間の内部に配置されて、前記ボデーとの間に冷媒通路を形成する通路形成部材(35)と、
     前記通路形成部材を変位させる駆動機構(37)と、を備え、
     前記ボデーのうち前記減圧用空間を形成する部位の内周面と前記通路形成部材の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
     前記通路形成部材には、前記流入空間側へ延びて前記ボデーに摺動可能に支持された上流側作動棒(351a)が連結されており、
     前記上流側作動棒の中心軸および前記通路形成部材の中心軸(CL)は、互いに同軸上に配置されており、
     前記ノズル通路を形成する壁面には、前記ノズル通路の通路断面積を冷媒流れ下流側に向かって徐々に縮小させた後に冷媒の流れ方向を転向させる複数のスロート部(30n、30m、30q)が形成されており、
     前記複数のスロート部のうち、冷媒流れ最上流側に配置された最上流側スロート部(30n)は、前記通路形成部材側に形成されており、
     さらに、前記最上流側スロート部は、前記ノズル通路における冷媒の流れ方向を前記通路形成部材の中心軸側へ転向させる形状に形成されているとともに、前記ノズル通路のうち亜音速の冷媒が流通する領域に配置されているエジェクタ。
  2.  前記複数のスロート部のうち、前記最上流側スロート部よりも冷媒流れ下流側に配置された下流側スロート部(30m、30q)は、前記ボデーのうち前記減圧用空間を形成する部位に形成されており、
     さらに、前記下流側スロート部は、前記ノズル通路における冷媒の流れ方向を前記通路形成部材の中心軸から離れる側へ転向させる形状に形成されている請求項1に記載のエジェクタ。
  3.  前記最上流側スロート部によって形成される冷媒通路の最小通路断面積は、前記下流側スロート部(30m、30q)によって形成される冷媒通路の最小通路断面積よりも小さくなっている請求項2に記載のエジェクタ。
  4.  前記通路形成部材は、少なくとも一部が前記減圧用空間の内部、および前記昇圧用空間の内部に配置されており、
     前記ボデーのうち前記昇圧用空間を形成する部位の内周面と前記通路形成部材の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合させて昇圧させる昇圧部として機能するディフューザ通路(13c)である請求項1ないし3のいずれか1つに記載のエジェクタ。
  5.  前記通路形成部材には、前記ディフューザ通路の下流側へ向かって延びて前記ボデーに摺動可能に支持された下流側作動棒(351b)が連結されている請求項4に記載のエジェクタ。
  6.  前記上流側作動棒の中心軸と前記下流側作動棒の中心軸は、同軸上に配置されている請求項5に記載のエジェクタ。
  7.  前記駆動機構は、前記上流側作動棒および前記下流側作動棒の少なくとも一方に連結されている請求項5または6に記載のエジェクタ。
  8.  前記流入空間の中心軸方向から見たときに、前記吸引用通路の吸引冷媒出口(13f)は前記ノズル通路の冷媒噴射口(13e)の外周側に環状に開口している請求項4ないし7のいずれか1つに記載のエジェクタ。
  9.  前記ボデーのうち前記昇圧用空間を形成する部位の内周面と前記通路形成部材の外周面との間に形成される冷媒通路であって、前記ディフューザ通路の冷媒流れ上流側には、前記噴射冷媒と前記吸引冷媒とを混合させる混合通路(13d)が形成されており、
     前記混合通路の最小通路断面積は、前記冷媒噴射口の通路断面積および前記吸引冷媒出口の通路断面積の合計値よりも小さく形成されている請求項8に記載のエジェクタ。
  10.  前記ボデーは、前記中心軸を含む断面における前記混合通路を形成する部位の描く線が冷媒流れ下流側に向かって前記通路形成部材側に近づくように傾斜している請求項9に記載のエジェクタ。
  11.  前記通路形成部材は、前記中心軸を含む断面における前記混合通路を形成する部位の描く線が冷媒流れ下流側に向かって前記ボデー側に近づくように傾斜している請求項9または10に記載のエジェクタ。
  12.  前記通路形成部材は、冷媒流れ上流側から下流側へ向かって中心軸に垂直な断面積が拡大した後に縮小する形状に形成されている請求項1ないし3のいずれか1つに記載のエジェクタ。
  13.  前記ノズル通路の下流側には、前記噴射冷媒と前記吸引冷媒とを混合させる混合通路(13d)が形成されており、
     前記混合通路の最小通路断面積は、前記ノズル通路の冷媒噴射口の通路断面積および前記吸引用通路の吸引冷媒出口の通路断面積の合計値よりも小さく形成されている請求項12に記載のエジェクタ。
  14.  前記通路形成部材には、前記通路形成部材の円錐状側面を貫通する貫通穴(352)が形成されている請求項1ないし13のいずれか1つに記載のエジェクタ。
  15.  前記ボデーには、冷媒流入口(31a)から流入した冷媒を前記流入空間へ導く冷媒流入通路(31e)が形成されており、
     前記流入空間の中心軸方向から見たときに、前記冷媒流入通路は前記流入空間へ流入する冷媒を前記中心軸に向かって流入させる形状に形成されている請求項1ないし14のいずれか1つに記載のエジェクタ。
PCT/JP2017/002203 2016-02-02 2017-01-24 エジェクタ WO2017135092A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/073,889 US10767905B2 (en) 2016-02-02 2017-01-24 Ejector
CN201780008952.XA CN108603518B (zh) 2016-02-02 2017-01-24 喷射器
DE112017000620.1T DE112017000620B4 (de) 2016-02-02 2017-01-24 Ejektor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-018068 2016-02-02
JP2016018068 2016-02-02
JP2016248886A JP6481679B2 (ja) 2016-02-02 2016-12-22 エジェクタ
JP2016-248886 2016-12-22

Publications (1)

Publication Number Publication Date
WO2017135092A1 true WO2017135092A1 (ja) 2017-08-10

Family

ID=59500774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/002203 WO2017135092A1 (ja) 2016-02-02 2017-01-24 エジェクタ

Country Status (1)

Country Link
WO (1) WO2017135092A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053956B2 (en) 2016-02-02 2021-07-06 Denso Corporation Ejector
WO2021261112A1 (ja) * 2020-06-22 2021-12-30 株式会社デンソー エジェクタ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350095A (en) * 1918-03-11 1920-08-17 Surface Comb Co Inc Method of and apparatus for unloading pumps
WO2002001970A2 (en) * 2000-06-30 2002-01-10 Fmc Corporation Steam injection heater and method
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1350095A (en) * 1918-03-11 1920-08-17 Surface Comb Co Inc Method of and apparatus for unloading pumps
WO2002001970A2 (en) * 2000-06-30 2002-01-10 Fmc Corporation Steam injection heater and method
JP2013177879A (ja) * 2012-02-02 2013-09-09 Denso Corp エジェクタ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11053956B2 (en) 2016-02-02 2021-07-06 Denso Corporation Ejector
WO2021261112A1 (ja) * 2020-06-22 2021-12-30 株式会社デンソー エジェクタ
JP7472675B2 (ja) 2020-06-22 2024-04-23 株式会社デンソー エジェクタ

Similar Documents

Publication Publication Date Title
JP5920110B2 (ja) エジェクタ
WO2014010162A1 (ja) エジェクタ
JP6176127B2 (ja) エジェクタ
WO2015111113A1 (ja) エジェクタ
WO2017135092A1 (ja) エジェクタ
JP6512071B2 (ja) エジェクタ式冷凍サイクル
WO2017135093A1 (ja) エジェクタ
WO2014185069A1 (ja) エジェクタ
JP6481679B2 (ja) エジェクタ
JP6511873B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6481678B2 (ja) エジェクタ
JP6561919B2 (ja) エジェクタ
JP6485550B2 (ja) エジェクタ
JP6500697B2 (ja) エジェクタ
JP2017031975A (ja) エジェクタ
JP6638607B2 (ja) エジェクタ
JP2017089963A (ja) エジェクタ式冷凍サイクル
JP6582950B2 (ja) エジェクタ
JP6398883B2 (ja) エジェクタ
JP6572745B2 (ja) エジェクタ式冷凍サイクル
WO2017212819A1 (ja) エジェクタ
WO2017187932A1 (ja) 減圧装置および冷凍サイクル装置
JP2017053290A (ja) エジェクタ
JP2017032272A (ja) エジェクタ
JP2017015346A (ja) エジェクタ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17747251

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112017000620

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17747251

Country of ref document: EP

Kind code of ref document: A1