JP6638607B2 - エジェクタ - Google Patents

エジェクタ Download PDF

Info

Publication number
JP6638607B2
JP6638607B2 JP2016177388A JP2016177388A JP6638607B2 JP 6638607 B2 JP6638607 B2 JP 6638607B2 JP 2016177388 A JP2016177388 A JP 2016177388A JP 2016177388 A JP2016177388 A JP 2016177388A JP 6638607 B2 JP6638607 B2 JP 6638607B2
Authority
JP
Japan
Prior art keywords
refrigerant
passage
space
pressure
ejector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2016177388A
Other languages
English (en)
Other versions
JP2018044441A (ja
Inventor
山田 悦久
悦久 山田
照之 堀田
照之 堀田
陽一郎 河本
陽一郎 河本
大介 中島
大介 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016177388A priority Critical patent/JP6638607B2/ja
Publication of JP2018044441A publication Critical patent/JP2018044441A/ja
Application granted granted Critical
Publication of JP6638607B2 publication Critical patent/JP6638607B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、流体を減圧するとともに、高速度で噴射される噴射流体の吸引作用によって流体を吸引するエジェクタに関する。
従来、特許文献1に、蒸気圧縮式の冷凍サイクル装置に適用されたエジェクタが開示されている。この特許文献1のエジェクタでは、冷媒を減圧させるノズル通路から噴射される高速度の噴射冷媒の吸引作用によって、ボデーに形成された冷媒吸引口から蒸発器から流出した冷媒を吸引する。そして、ディフューザ通路にて、噴射冷媒と吸引冷媒(すなわち、蒸発器出口側冷媒)との混合冷媒を昇圧させて、圧縮機の吸入側へ流出させる。
より詳細には、特許文献1のエジェクタでは、ボデーの内部に略円錐形状の弁体部である通路形成部材を配置し、ボデーの内側面と通路形成部材の円錐状側面との間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位をノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位をディフューザ通路として利用している。
また、特許文献1のエジェクタは、通路形成部材を変位させて冷媒通路の通路断面積を変化させる駆動機構を備えている。これにより、特許文献1のエジェクタでは、適用された冷凍サイクル装置の負荷変動に応じて、冷媒通路の通路断面積を変化させてエジェクタを適切に作動させようとしている。
特開2013−177879号公報
ところで、本発明者等は更なるエジェクタの作動効率の向上のために、特許文献1のエジェクタについて検討を進めたところ、特許文献1のエジェクタでは、所望の昇圧量を得られないことがあった。そこで、本発明者等がその原因について調査したところ、特許文献1のエジェクタでは、ディフューザ通路にて昇圧された冷媒がエジェクタの内部を流通する際に、冷媒に圧力損失が生じてしまうことが原因であると判った。
より詳細には、特許文献1のエジェクタでは、ディフューザ通路の下流側に、ディフューザ通路から流出した冷媒の気液を分離する気液分離空間を配置している。そして、この気液分離空間内に通路形成部材を支持するための支持部材および駆動機構の一部を構成するコイルバネ等を配置している。このため、ディフューザ通路にて昇圧された冷媒が支持部材等の隙間を流通する際に、冷媒に圧力損失が生じやすくなっていた。
本発明は、上記点に鑑み、冷媒通路の通路断面積を変更可能に構成されたエジェクタの昇圧性能の低下を抑制することを目的とする。
上記目的を達成するため、請求項1に記載の発明は、蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
冷媒を流入させる流入空間(30a)、流入空間から流出した冷媒を減圧させる減圧用空間(30b)、減圧用空間の冷媒流れ下流側に連通して冷媒吸引口(31b)から吸引した冷媒を流通させる吸引用通路(13b)、および減圧用空間から噴射された噴射冷媒と吸引用通路を介して吸引された吸引冷媒とを流入させる昇圧用空間(30e)が形成されたボデー(30)と、少なくとも一部が減圧用空間の内部、および昇圧用空間の内部に配置された通路形成部材(35)と、通路形成部材を変位させる駆動力を出力する駆動機構(37、37α)と、駆動力を通路形成部材に伝達する伝達用部材(38)と、を備え、
昇圧用空間は、冷媒流れ下流側に向かって断面積が拡大する形状に形成されており、
ボデーのうち減圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、ボデーのうち昇圧用空間を形成する部位の内周面と通路形成部材の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合させて昇圧させる昇圧部として機能するディフューザ通路(13c)であり、
ディフューザ通路は、冷媒流れ下流側に向かって通路断面積が拡大しており、
伝達用部材は、通路形成部材のうちディフューザ通路を形成する部位よりも上流側の部位から、冷媒流れ上流側に配置された流入空間側へ延びて駆動機構に連結されているエジェクタである。
これによれば、駆動機構(37、37α)および伝達用部材(38)を備えているので、冷凍サイクル装置(10)の負荷変動に応じて、通路形成部材(35)を変位させてノズル通路(13a)およびディフューザ通路(13c)の通路断面積を変化させることができる。
さらに、伝達用部材(38)が、通路形成部材(35)のうちディフューザ通路(13c)を形成する部位よりも上流側の部位から流入空間(30a)側、すなわち冷媒流れ上流側へ向かって延びて駆動機構に連結されている。従って、伝達用部材(38)および駆動機構(37、37α)が、ディフューザ通路(13c)およびディフューザ通路(13c)の下流側に配置されない構成を実現することができる。
その結果、ディフューザ通路(13c)における冷媒の昇圧量が低下してしまうことや、冷媒がディフューザ通路(13c)よりも下流側を流通する際に生じる圧力損失が増加してしまうことを抑制することができる。すなわち、請求項1に記載の発明によれば、ノズル通路(13a)およびディフューザ通路(13c)といった冷媒通路の通路断面積を変更可能に構成されたエジェクタの昇圧性能の低下を抑制することができる。
ここで、請求項に記載の駆動機構(37、37α)には、通路形成部材(35)を変位させるための駆動力を出力するものが広く含まれる。例えば、圧力を受けて変形することによって通路形成部材(35)を変位させるための駆動力を出力する圧力応動部材、弾性変形することによって駆動力を出力する弾性部材、電力を供給されることによって駆動力を出力する電動式の装置等も駆動機構に含まれる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示す一例である。
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 図2のIII−III断面図である。 図2のIV部の模式的な拡大図である。 第1実施形態のエジェクタ式冷凍サイクルにおける冷媒の状態の変化を示すモリエル線図である。 第2実施形態のエジェクタの軸方向断面図である。 第3実施形態のエジェクタの軸方向断面図である。
(第1実施形態)
図1〜図5を用いて、本発明の第1実施形態を説明する。本実施形態のエジェクタ13は、図1に示すように、冷媒減圧装置としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置、すなわち、エジェクタ式冷凍サイクル10に適用されている。このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、本実施形態のエジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
また、本実施形態のエジェクタ式冷凍サイクル10では、冷媒として、R134aを採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。この冷媒には、圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
エジェクタ式冷凍サイクル10の構成機器のうち、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。圧縮機11は、車両走行用の駆動力を出力するエンジン(内燃機関)とともにエンジンルーム内に配置されている。さらに、圧縮機11は、プーリ、ベルト等を介してエンジンから出力される回転駆動力によって駆動されるエンジン駆動式の圧縮機である。
より具体的には、本実施形態では、圧縮機11として、吐出容量を変化させることによって冷媒吐出能力を調整可能に構成された斜板式の可変容量型圧縮機を採用している。この圧縮機11では、吐出容量を変化させるための図示しない吐出容量制御弁を有している。吐出容量制御弁は、後述する制御装置から出力される制御電流によって、その作動が制御される。
圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dによって送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。放熱器12は、エンジンルーム内の車両前方側に配置されている。
より具体的には、放熱器12は、凝縮部12a、レシーバ部12b、および過冷却部12cを有する、いわゆるサブクール型の凝縮器として構成されている。
凝縮部12aは、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮用の熱交換部である。レシーバ部12bは、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄える冷媒容器である。過冷却部12cは、レシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却用の熱交換部である。
冷却ファン12dは、制御装置から出力される制御電圧によって回転数(すなわち、送風空気量)が制御される電動式送風機である。放熱器12の過冷却部12cの冷媒出口側には、エジェクタ13の冷媒流入口31aが接続されている。
エジェクタ13は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させる冷媒減圧装置としての機能を果たすものである。さらに、エジェクタ13は、高速度で噴射される噴射冷媒の吸引作用によって後述する蒸発器14から流出した冷媒(すなわち、蒸発器14出口側冷媒)を吸引して輸送する冷媒輸送装置としての機能を果たす。
これに加えて、本実施形態のエジェクタ13は、減圧させた冷媒の気液を分離する気液分離器の機能も兼ね備えている。換言すると、本実施形態のエジェクタ13は、エジェクタと気液分離器とを一体化(すなわち、モジュール化)させた、気液分離機能付きエジェクタとして構成されている。エジェクタ13は、圧縮機11および放熱器12とともに、エンジンルーム内に配置されている。
エジェクタ13の具体的構成については、図2〜図4を用いて説明する。図2、図3は、エジェクタ13の軸方向断面図であり、図2は、図3のII−II断面図であり、図3は、図2のIII−III断面図である。また、図3における上下の各矢印は、エジェクタ13を車両に搭載した状態における上下の各方向を示している。
本実施形態のエジェクタ13は、図2、図3に示すように、複数の構成部材を組み合わせることによって形成されたボデー30を備えている。より具体的には、ボデー30は、アッパーボデー311、ロワーボデー312、気液分離ボデー313等を有している。アッパーボデー311、ロワーボデー312、気液分離ボデー313は、エジェクタ13の外殻を形成するとともに、内部に他の構成部材を収容するハウジングとしての機能を果たす。
アッパーボデー311、ロワーボデー312、気液分離ボデー313は、金属製(本実施形態では、アルミニウム合金製)の中空部材で形成されている。アッパーボデー311、ロワーボデー312、気液分離ボデー313は、樹脂にて形成されていてもよい。
アッパーボデー311とロワーボデー312とを組み合わせることによって形成される内部空間には、後述するノズルボデー32、ディフューザボデー33等のボデー30の構成部材が固定されている。
アッパーボデー311には、冷媒流入口31a、冷媒吸引口31bといった複数の冷媒流入口が形成されている。冷媒流入口31aは、放熱器12から流出した高圧冷媒を流入させる冷媒流入口である。冷媒吸引口31bは、蒸発器14から流出した低圧冷媒を吸引する冷媒流入口である。
気液分離ボデー313には、液相冷媒流出口31c、気相冷媒流出口31dといった複数の冷媒流出口が形成されている。液相冷媒流出口31cは、気液分離ボデー313の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる冷媒流出口である。気相冷媒流出口31dは、気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入口側へ流出させる冷媒流出口である。
ノズルボデー32は、金属製(本実施形態では、ステンレス製)の円筒状部材で形成されている。ノズルボデー32は、図2、図3に示すように、アッパーボデー311のうちロワーボデー312側の底面に配置されている。ノズルボデー32は、アッパーボデー311に形成された穴部に圧入によって固定されており、アッパーボデー311とノズルボデー32との隙間から冷媒が漏れることはない。
ノズルボデー32の内部には、冷媒流入口31aから流入した冷媒を流入させる流入空間30aが形成されている。流入空間30aは、略円柱状の回転体形状に形成されている。流入空間30aの中心軸は、後述する通路形成部材35の中心軸CLと同軸上に配置されている。さらに、図2、図3から明らかなように、本実施形態の中心軸CLは、略水平方向に延びている。なお、回転体形状とは、平面図形を同一平面上の1つの直線(中心軸)周りに回転させた際に形成される立体形状である。
また、アッパーボデー311には、冷媒流入口31aから流入した高圧冷媒を流入空間30a内へ導く冷媒流入通路31eが形成されている。冷媒流入通路31eは、流入空間30aの軸方向から見たときに、径方向に延びる形状に形成され、流入空間30aへ流入する冷媒を、流入空間30aの中心軸に向かって流入させるように形成されている。
ノズルボデー32の内部であって、流入空間30aの冷媒流れ下流側には、流入空間30aに連続するように形成されて、流入空間30aから流出した冷媒を減圧させて下流側へ流出させる減圧用空間30bが形成されている。減圧用空間30bは、2つの円錐台形状の空間の頂部側同士を結合させた回転体形状に形成されている。
この形状により、ノズルボデー32には、減圧用空間30b(より具体的には、後述するノズル通路13a)の冷媒通路断面積を最も縮小させる喉部30mが形成されている。さらに、減圧用空間30bの中心軸も、通路形成部材35の中心軸CLと同軸上に配置されている。
また、減圧用空間30bの内部には、円錐状に形成された通路形成部材35の頂部側が配置されている。通路形成部材35は、中心軸CL方向に変位することによって、エジェクタ13の内部に形成される冷媒通路の通路断面積を変化させる弁体部である。通路形成部材35は、減圧用空間30bから離れるに伴って(すなわち、冷媒流れ下流側へ向かって)、外径が拡大する円錐状に形成されている。
このため、ノズルボデー32の減圧用空間30bを形成する部位の内周面と通路形成部材35の頂部側の部位の外周面との間には、軸方向垂直断面の形状が円環状となる冷媒通路が形成される。この冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路13aである。なお、通路形成部材35の詳細構成については後述する。
ノズル通路13aでは、流入空間30a側から喉部30mへ向かって通路断面積が減少して、喉部30mから冷媒流れ下流側に向かって通路断面積が再び拡大する。つまり、本実施形態のノズル通路13aでは、冷媒流れ方向に向かって、いわゆるラバールノズルと同様に通路断面積が変化する。これにより、ノズル通路13aでは、冷媒を減圧させるとともに、冷媒の流速を超音速となるまで増速させて噴射することができる。
ディフューザボデー33は、アッパーボデー311の内部であって、ノズルボデー32よりも冷媒流れ下流側に配置されている。ディフューザボデー33は、金属製(本実施形態では、アルミニウム合金性)の円筒状部材で形成されている。
ディフューザボデー33は、その外周側がアッパーボデー311の内周側面に圧入されて、アッパーボデー311に固定されている。ディフューザボデー33の外周面とアッパーボデー311の内周面との間には、図示しないシール部材としてのO−リングが配置されており、ディフューザボデー33とアッパーボデー311との隙間から冷媒が漏れることはない。
ディフューザボデー33の中心部には、軸方向に貫通する貫通穴33aが形成されている。貫通穴33aの中心軸は、通路形成部材35の中心軸CLと同軸上に配置されている。貫通穴33aは、冷媒流れ下流側に向かって断面積が拡大する略円錐台形状に形成されている。
さらに、本実施形態では、ノズルボデー32の冷媒噴射口側の先端部が、ディフューザボデー33の貫通穴33aの内部まで延びている。そして、ディフューザボデー33の貫通穴33aの内周面とノズルボデー32の筒状の先端部の外周面との間には、冷媒吸引口31bから吸引された冷媒を減圧用空間30b(すなわち、ノズル通路13a)の冷媒流れ下流側へ導く吸引用通路13bの下流側が形成されている。
このため、軸方向から見たときに、吸引用通路13bの最下流部となる吸引冷媒出口は、冷媒噴射口の外周側に円環状に開口している。
ディフューザボデー33の貫通穴33aのうち、吸引用通路13bの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間30eが形成されている。昇圧用空間30eは、上述したノズル通路13aから噴射された噴射冷媒と吸引用通路13bから吸引された吸引冷媒とを流入させる空間である。
昇圧用空間30eの内部には、通路形成部材35の頂部よりも冷媒流れ下流側が配置されている。ディフューザボデー33の昇圧用空間30eを形成する部位の内周面と通路形成部材35の冷媒流れ下流側の外周面との間には、軸方向垂直断面の形状が円環状となる冷媒通路が形成される。
この冷媒通路は、噴射冷媒と吸引冷媒とを混合させて昇圧させる昇圧部として機能するディフューザ通路13cである。ディフューザ通路13cでは、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる。これにより、ディフューザ通路13cでは、噴射冷媒と吸引冷媒との混合冷媒の速度エネルギを圧力エネルギに変換することができる。
次に、通路形成部材35の詳細構成について説明する。通路形成部材35は、冷媒に対して耐性を有する樹脂製(本実施形態では、ナイロン6またはナイロン66製)の円錐状部材で形成されている。通路形成部材35の内部には、その底面側から略円錐台状の空間が形成されている。つまり、通路形成部材35は、杯状(すなわち、カップ状)に形成されている。
通路形成部材35には、シャフト38が連結されている。シャフト38は、金属製(本実施形態では、ステンレス製)の円柱状部材で形成されている。シャフト38は、通路形成部材35にインサート成形されている。これにより、通路形成部材35とシャフト38は一体化されている。通路形成部材35の中心軸とシャフト38の中心軸は、同軸上に配置されている。
シャフト38の一端側(本実施形態では、流入空間30a側)は、通路形成部材35の頂部から突出して流入空間30a側へ延びている。さらに、シャフト38の一端側は、アッパーボデー311に固定された支持部材39に、摺動可能に支持されている。
支持部材39は、金属製(本実施形態では、シャフト38と同じステンレス製)の円筒状部材で形成されている。支持部材39は、シャフト38を摺動可能に支持することによって、通路形成部材35の変位方向が減圧用空間30bの中心軸方向に対して傾いてしまうことを抑制する機能も有している。
より具体的には、支持部材39は、図4の拡大図に示すように、径の異なる2つの円筒状部を有している。2つの円筒状部として、通路形成部材35に近い側に小径部391が形成されており、通路形成部材35から遠い側に大径部392が形成されている。そして、小径部391の内径寸法とシャフト38の外径寸法が隙間バメの関係になっていることによって、シャフト38が小径部391に摺動可能に支持されている。
また、大径部392の内部には、コイルバネ41が配置されている。コイルバネ41は、シャフト38に対して、通路形成部材35が喉部30mにおける通路断面積を縮小させる方向の荷重をかける弾性部材である。より詳細には、シャフト38には、コイルバネ41と接触して、コイルバネ41からの荷重を受ける荷重調整部材40が固定されている。
荷重調整部材40は、金属製(本実施形態では、アルミニウム合金性)の円筒状部材で形成されている。荷重調整部材40は、シャフト38の外周側にネジ止めによって取り付けられている。従って、荷重調整部材40の取付位置を調整することによって、コイルバネ41が荷重調整部材40に作用させる荷重を調整することができる。
また、荷重調整部材40の外径は、支持部材39の大径部392の内径より僅かに小さな径に形成されている。このため、荷重調整部材40の外周面と大径部392の内周面との間には隙間が形成されている。そこで、本実施形態では、荷重調整部材40の外周側に形成された円環状の溝に、シール部材としてのO−リング42を配置している。
従って、荷重調整部材40の外周面と大径部392の内周面との隙間から冷媒が漏れることはない。さらに、荷重調整部材40は、シャフト38が変位しても全ての可動範囲において、O−リング42が隙間をシールできるように、シャフト38に固定されている。
また、シャフト38の一端側の先端部は、図2、図3に示すように、駆動機構37に連結されている。駆動機構37は、通路形成部材35およびシャフト38を軸方向に変位させる駆動力を出力するものである。換言すると、駆動機構37は、通路形成部材35を軸方向に変位させることによって、ノズル通路13aの喉部30m等の通路断面積を変化させるものである。
従って、本実施形態のシャフト38は、駆動機構37から出力された駆動力を通路形成部材35に伝達する伝達用部材である。さらに、シャフト38は、図2、図3に示すように、通路形成部材35のうちディフューザ通路13cを形成する部位よりも上流側(より具体的には、ノズル通路13aの喉部30mよりも上流側)の部位から冷媒流れ上流側(すなわち、流入空間30a)側へ延びて、駆動機構37に連結されている。
駆動機構37は、アッパーボデー311の外側であって、シャフト38の軸方向の延長線上に配置されている。駆動機構37は、図2、図3に示すように、ダイヤフラム371、アッパーカバー372、ロワーカバー373、感温筒375等を有している。
アッパーカバー372は、ダイヤフラム371とともに、封入空間37aの一部を形成する封入空間形成部材である。アッパーカバー372は、金属(本実施形態では、ステンレス)で形成されたカップ状部材である。
封入空間37aは、温度変化に伴って圧力変化する感温媒体が封入された空間である。より詳細には、封入空間37aは、エジェクタ式冷凍サイクル10を循環する冷媒と同等の組成の感温媒体が予め定めた封入密度となるように封入された空間である。
従って、本実施形態の感温媒体としては、R134aを主成分とする媒体(例えば、R134aとヘリウムとの混合媒体)を採用することができる。さらに、感温媒体の封入密度は、後述するようにサイクルの通常作動時に通路形成部材35を適切に変位させることができるように設定されている。
さらに、アッパーカバー372には、感温筒375が接続されている。感温筒375は、冷媒吸引口31bから吸引された直後の吸引冷媒(すなわち、蒸発器14出口側冷媒)の温度を速やかに封入空間37a内の感温媒体に伝達させる機能を果たすものである。これにより、封入空間37a内の感温媒体の圧力は、感温筒375を介して伝達される吸引冷媒の温度に応じて速やかに変化する。
ロワーカバー373は、ダイヤフラム371とともに、導入空間37bを形成する導入空間形成部材である。ロワーカバー373は、アッパーカバー372と同様の金属部材で形成されている。導入空間37bは、アッパーカバー372に形成された図示しない連通路を介して、冷媒吸引口31bから吸引された吸引冷媒を導入させる空間である。
アッパーカバー372およびロワーカバー373は、かしめ等により外周縁部同士が固定されている。さらに、ダイヤフラム371の外周側部は、アッパーカバー372とロワーカバー373との間に挟持される。これにより、ダイヤフラム371が、アッパーカバー372とロワーカバー373との間に形成される空間を封入空間37aと導入空間37bとに仕切っている。
ダイヤフラム371は、封入空間37aの内圧と吸引用通路13bを流通する吸引冷媒の圧力との圧力差に応じて変位する圧力応動部材である。従って、ダイヤフラム371は弾性に富み、かつ耐圧性および気密性に優れる材質で形成されていることが望ましい。そこで、本実施形態では、ダイヤフラム371として、ステンレス(SUS304)製の金属薄板を採用している。
ダイヤフラム371の導入空間37b側には、金属(本実施形態では、アルミニウム合金)で形成された円板状のプレート部材374が、ダイヤフラム371に、接触するように配置されている。さらに、プレート部材374には、シャフト38の先端部が連結されている。
このため、シャフト38および通路形成部材35は、駆動機構37(具体的には、ダイヤフラム371)から受ける荷重と荷重調整部材40がコイルバネ41から受ける荷重が釣り合うように変位する。
より詳細には、蒸発器14出口側冷媒の温度(過熱度SH)が上昇すると、封入空間37aに封入された感温媒体の飽和圧力が上昇し、封入空間37a内の内圧から導入空間37b内の内圧を差し引いた圧力差が大きくなる。このため、ダイヤフラム371が導入空間37b側へ変位することによって合計荷重が釣り合う。
従って、蒸発器14出口側冷媒の温度(過熱度SH)が上昇すると、通路形成部材35は、喉部30mにおける通路断面積を拡大させる方向に変位する。
一方、蒸発器14出口側冷媒の温度(過熱度SH)が低下すると、封入空間37aに封入された感温媒体の飽和圧力が低下し、封入空間37a内の内圧から導入空間37b内の内圧を差し引いた圧力差が小さくなる。このためダイヤフラム371が封入空間37a側へ変位することによって合計荷重が釣り合う。
従って、蒸発器14出口側冷媒の温度(過熱度SH)が低下すると、通路形成部材35は、喉部30mにおける通路断面積を縮小させる方向に変位する。
つまり、本実施形態の駆動機構37は、機械的機構で構成されて、蒸発器14出口側冷媒の過熱度SHに応じて、ダイヤフラム371が通路形成部材35を変位させる。そして、蒸発器14出口側冷媒の過熱度SHが予め定めた基準過熱度KSHに近づくように、喉部30mにおける通路断面積を調整している。
この基準過熱度KSHは、荷重調整部材40をシャフト38に取り付ける位置を調整して、荷重調整部材40がコイルバネ41から受ける荷重を調整することによって、変更することもできる。さらに、本実施形態のコイルバネ41は、外部から伝達される振動によって通路形成部材35が振動してしまうことを抑制する振動抑制部材としての機能も果たしている。
また、本実施形態のエジェクタ13では、図2、図3に示すように、駆動機構37の外周側に、駆動機構37を覆うカバー部材376を配置している。これにより封入空間37a内の感温媒体がエンジンルーム内の外気温の影響を受けてしまうことを抑制している。
次に、ロワーボデー312の冷媒流れ下流側には、混合冷媒流出口31gが形成されている。混合冷媒流出口31gは、ディフューザ通路13cから流出した気液混合状態の冷媒を気液分離ボデー313内に形成された気液分離空間3f側へ流出させる冷媒流出口である。混合冷媒流出口31gの通路断面積は、ディフューザ通路13cの最下流部の通路断面積よりも小さく形成されている。
気液分離ボデー313は、円筒状に形成されている。気液分離ボデー313の内部には、気液分離空間30fが形成されている。気液分離空間30fは、略円筒状の回転体形状の空間として形成されている。気液分離ボデー313および気液分離空間30fの中心軸は上下方向に延びている。このため、気液分離ボデー313と気液分離空間30fと中心軸は、中心軸CLに直交している。
さらに、気液分離ボデー313は、ロワーボデー312の混合冷媒流出口31gから気液分離空間30f内へ流入した冷媒が、気液分離空間30fの外周側の壁面に沿って流入するように配置されている。これにより、気液分離空間30fでは、冷媒が中心軸周りに旋回することで生じる遠心力の作用によって、冷媒の気液を分離している。
気液分離ボデー313の軸中心部には、気液分離空間30fに対して同軸上に配置されて、上下方向へ延びる円筒状のパイプ313aが配置されている。そして、気液分離ボデー313の底面側の筒状側面には、気液分離空間30fにて分離された液相冷媒を気液分離空間30fの外周側壁面に沿って流出させる液相冷媒流出口31cが形成されている。パイプ313aの下方側端部には、気液分離空間30fにて分離された気相冷媒を流出させる気相冷媒流出口31dが形成されている。
さらに、気液分離空間30f内のパイプ313aの根元部(すなわち、気液分離空間30f内の最下方側の部位)には、気液分離空間30fとパイプ313a内に形成された気相冷媒通路とを連通させるオイル戻し穴313bが形成されている。オイル戻し穴313bは、液相冷媒に溶け込んだ冷凍機油を、僅かな量の液相冷媒とともに気相冷媒通路を介して圧縮機11内へ戻すための連通路である。
エジェクタ13の液相冷媒流出口31cには、図1に示すように、蒸発器14の冷媒入口側が接続されている。蒸発器14は、エジェクタ13にて減圧された低圧冷媒と送風ファン14aから車室内へ送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。
送風ファン14aは、制御装置から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の冷媒出口側には、エジェクタ13の冷媒吸引口31bが接続されている。さらに、エジェクタ13の気相冷媒流出口31dには圧縮機11の吸入口側が接続されている。
次に、図示しない制御装置は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この制御装置は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行う。そして、上述の各種電気式のアクチュエータ11、12d、14a等の作動を制御する。
また、制御装置には、内気温センサ、外気温センサ、日射センサ、蒸発器温度センサ、吐出圧力センサ等の複数の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
より具体的には、内気温センサは、車室内温度を検出する内気温検出部である。外気温センサは、外気温を検出する外気温検出部である。日射センサは、車室内の日射量を検出する日射量検出部である。蒸発器温度センサは、蒸発器14の吹出空気温度(蒸発器温度)を検出する蒸発器温度検出部である。吐出圧力センサは、放熱器12出口側冷媒の圧力を検出する出口側圧力検出部である。
さらに、制御装置の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続される。そして、この操作パネルに設けられた各種操作スイッチからの操作信号が制御装置へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度を設定する車室内温度設定スイッチ等が設けられている。
なお、本実施形態の制御装置は、その出力側に接続された各種の制御対象機器の作動を制御する制御部が一体に構成されたものであるが、制御装置のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の専用の制御部を構成している。
例えば、本実施形態では、圧縮機11の吐出容量制御弁の作動を制御することによって、圧縮機11の冷媒吐出能力を制御する構成が吐出能力制御部を構成している。もちろん、吐出能力制御部を、制御装置に対して別体の制御装置で構成してもよい。
次に、上記構成における本実施形態の作動を図5のモリエル線図を用いて説明する。まず、操作パネルの作動スイッチが投入(ON)されると、制御装置が圧縮機11の吐出容量制御弁、冷却ファン12d、送風ファン14a等を作動させる。これにより、圧縮機11が冷媒を吸入し、圧縮して吐出する。この際、制御装置は、エジェクタ式冷凍サイクル10の熱負荷の増加に伴って、圧縮機11の冷媒吐出能力を増加させる。
圧縮機11から吐出された高温高圧冷媒(図5のa点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて気液分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図5のa点→b点)。
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタ13の減圧用空間30bの内周面と通路形成部材35の外周面との間に形成されるノズル通路13aにて等エントロピ的に減圧されて噴射される(図5のb点→c点)。この際、減圧用空間30bの喉部30mにおける通路断面積は、蒸発器14出口側冷媒(図5のh点)の過熱度が基準過熱度KSHに近づくように調整される。
さらに、ノズル通路13aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒(図5のh点)が、冷媒吸引口31bおよび吸引用通路13bを介して吸引される。ノズル通路13aから噴射された噴射冷媒および吸引用通路13bを介して吸引された吸引冷媒は、ディフューザ通路13cへ流入して合流する(図5のc点→d点、h1点→d点)。
ここで、本実施形態の吸引用通路13bの最下流部は、冷媒流れ方向に向かって通路断面積が徐々に縮小する形状に形成されている。このため、吸引用通路13bを通過する吸引冷媒は、その圧力を低下させながら(図5のh点→h1点)、流速を増加させる。これにより、吸引冷媒と噴射冷媒との速度差を縮小し、ディフューザ通路13cにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
ディフューザ通路13cでは通路断面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図5のd点→e点)。ディフューザ通路13cから流出した冷媒は気液分離空間30fにて気液分離される(図5のe点→f点、e点→g点)。
気液分離空間30fにて分離された液相冷媒は、エジェクタ13から蒸発器14へ至る冷媒流路を流通する際に圧力損失を伴って蒸発器14へ流入する(図5のg点→g1点)。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図5のg1点→h点)。これにより、送風空気が冷却される。
一方、気液分離空間30fにて分離された気相冷媒は気相冷媒流出口31dから流出して、圧縮機11へ吸入され再び圧縮される(図5のf点→a点)。
本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。
この際、エジェクタ式冷凍サイクル10では、ディフューザ通路13cにて昇圧された冷媒を圧縮機11へ吸入させている。従って、エジェクタ式冷凍サイクル10によれば、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
また、本実施形態のエジェクタ13では、駆動機構37を備えているので、エジェクタ式冷凍サイクル10の負荷変動に応じて通路形成部材35を変位させて、ノズル通路13aの通路断面積(喉部30mにおける通路断面積)、およびディフューザ通路13cの通路断面積を調整することができる。
これにより、エジェクタ式冷凍サイクル10の負荷変動に応じて、内部に形成された冷媒通路(具体的には、ノズル通路13aおよびディフューザ通路13c)の通路断面積を変化させて、エジェクタ式冷凍サイクル10を循環する循環冷媒流量に応じて、エジェクタ13を適切に作動させることができる。
さらに、本実施形態のエジェクタ13では、シャフト38が、通路形成部材35のうちディフューザ通路13cを形成する部位よりも上流側の部位から冷媒流れ上流側(すなわち、流入空間30a)側へ延びて、駆動機構37に連結されている。従って、シャフト38および駆動機構37が、ディフューザ通路13cおよびディフューザ通路13cの下流側に配置されない構成を実現することができる。
従って、ディフューザ通路13cにおける冷媒の昇圧量が低下してしまうことや、冷媒がディフューザ通路13cよりも下流側を流通する際に生じる圧力損失が増加してしまうことを抑制することができる。すなわち、本実施形態のエジェクタ13によれば、ノズル通路13aおよびディフューザ通路13cといった冷媒通路の通路断面積を変更可能に構成されたエジェクタ13の昇圧性能の低下を抑制することができる。
ここで、ノズル通路13aの喉部30mにおける通路断面積は、ノズル通路13aを流通する冷媒流量を決定付ける最小通路断面積となる。従って、シャフト38が、通路形成部材35のうちノズル通路13aの喉部30mよりも冷媒流れ下流側から流入空間30a側へ延びていると、喉部30mにおける通路断面積の変化に悪影響を与えてしまうおそれがある。
これに対して、本実施形態のエジェクタ13では、シャフト38が、通路形成部材35のうちノズル通路13aの喉部30mよりも上流側の部位から流入空間30a側へ延びているので、シャフト38が喉部30mにおける通路断面積の変化に悪影響を与えてしまうことがない。従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、精度良く喉部30mにおける通路断面積を変化させることができる。
また、本実施形態のエジェクタ13では、振動抑制部材として機能するコイルバネ41を備えているので、外部から伝達される振動や冷媒が減圧される際の圧力脈動に起因する通路形成部材35の振動を減衰させることができる。これにより、エジェクタ13全体としての防振性能を向上させることができる。
また、本実施形態のエジェクタ13では、混合冷媒流出口31gの通路断面積がディフューザ通路13cの最下流部の通路断面積よりも小さく形成されており、さらに、ディフューザ通路13cから流出した気液混合状態の冷媒を気液分離空間30fの外周側の壁面に沿って流入させている。これによれば、気液分離空間30fにて生じる冷媒の圧力損失を低減させることができる。
このことをより詳細に説明すると、混合冷媒流出口31gでは、通路断面積の縮小によって冷媒の静圧低下が生じるものの、混合冷媒流出口31gから気液分離空間30f内へ流入する冷媒は、気液分離ボデー313の内周壁面(すなわち、気液分離空間30fの外周側の壁面)に沿って流入する。
このため、混合冷媒流出口31gから気液分離空間30f内へ流入する気相冷媒は、気液分離空間30f内へ流入した際の体積の急拡大が抑制されるので、体積拡大によるエネルギ損失を抑制できる。一方、混合冷媒流出口31gから気液分離空間30f内へ流入する液相冷媒については、比較的影響の少ない壁面摩擦分しかエネルギ損失が生じない。
従って、混合冷媒流出口31gから比較的体積の大きい気液分離空間30f内へ流入した冷媒の運動エネルギが、大きく損失してしまうことなく圧力エネルギに変換されて、冷媒の静圧が回復する。これにより、気液分離空間30fにて生じる冷媒の圧力損失を低減させることができる。
さらに、この圧力回復によって、気液分離空間30f内の圧力と圧縮機11の吸入口側の圧力との圧力差を確保することができる。これにより、液相冷媒に溶け込んだ冷凍機油を、オイル戻し穴313bを介して、確実に圧縮機11の吸入口側へ戻すことができる。
(第2実施形態)
本実施形態のエジェクタ13は、第1実施形態に対して、図6に示すように、駆動機構37の取付態様を変更した例を説明する。なお、図6は、第1実施形態で説明した図2に対応する図面である。また、図6では、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
具体的には、本実施形態のエジェクタ13では、ノズルボデー32が筒状延長部32aを有している。筒状延長部32aは、ノズルボデー32の冷媒噴射口の反対側の端部を、アッパーボデー311の外部に露出するまで延長させた部位である。
このため、本実施形態の支持部材39は、ノズルボデー32の内部に固定されている。より詳細には、支持部材39の大径部392が筒状延長部32aの内部に圧入されることによって固定されている。さらに、駆動機構37(具体的には、ロワーカバー373)が筒状延長部32aの冷媒噴射口の反対側の端部に固定されている。
つまり、本実施形態では、支持部材39および駆動機構37が、ボデー30(具体的には、アッパーボデー311)を介在させることなく、ノズルボデー32に直接固定されている。その他のエジェクタ13の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10およびエジェクタ13では、第1実施形態と同様の効果を得ることができる。
さらに、本実施形態のエジェクタ13によれば、支持部材39および駆動機構37を、ボデー30に介在させることなく、ノズルボデー32に固定することができる。従って、支持部材39および駆動機構37をノズルボデー32に固定した状態で、ボデー30に固定する前に、コイルバネ41の荷重調整(調整工程)、あるいは通路形成部材35が喉部を閉塞した際の気密性検査(検査工程)を行うことができる。その結果、エジェクタ13をより容易に製造することができる。
(第3実施形態)
上述の実施形態では、機械的機構で構成された駆動機構37を採用した例を説明したが、本実施形態では、図7に示すように、電力を供給されることによって通路形成部材35およびシャフト38を軸方向に変位させる駆動力を出力する電動式の駆動機構37αを採用した例を説明する。
より具体的には、駆動機構37αは、制御装置から出力される制御信号(制御パルス)によって、その作動が制御されるステッピングモータである。さらに、本実施形態の制御装置には、空調制御用のセンサとして図示しない過熱度センサが接続されている。過熱度センサは、蒸発器14出口側冷媒の過熱度を検出する過熱度検出部である。
そして、制御装置は、過熱度センサの検出値が基準加熱度KSHに近づくように、駆動機構37αの作動を制御する。その他のエジェクタ13の構成および作動は、第1実施形態と同様である。従って、本実施形態のエジェクタ式冷凍サイクル10およびエジェクタ13では、第1実施形態と同様の効果を得ることができる。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の各実施形態では、エジェクタ13の通路形成部材35の中心軸CLを水平方向に配置した例を説明したが、エジェクタ13の配置はこれに限定されない。例えば、通路形成部材35の中心軸を鉛直方向に配置してもよい。この場合は、液相冷媒流出口31cが気液分離ボデーの最下方側に配置されていることが望ましい。
(2)エジェクタ13は、上述の実施形態に開示されたものに限定されない。
例えば、上述の第1、第2実施形態では、駆動機構37の圧力応動部材として、金属薄板を採用した例を説明したが、圧力応動部材としてゴム製のものを使用してもよい。ゴム製のダイヤフラムとしては、HNBR(水素添加ニトリルゴム)で形成されたものを採用してもよい。
また、上述の実施形態では、駆動機構37が、蒸発器14出口側冷媒の温度および圧力に応じて通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度SHが基準過熱度KSHに近づくように、ノズル通路13aの通路断面積を調整した例を説明したが、駆動機構37による通路断面積の調整はこれに限定されない。
例えば、放熱器12出口側冷媒の温度および圧力に応じて通路形成部材35を変位させることによって、放熱器12出口側冷媒の過冷却度が予め定めた基準過冷却度に近づくように、ノズル通路13aの通路断面積を調整してもよい。
また、上述の第1実施形態では、荷重調整部材40が、シャフト38の外周側にネジ止めによって固定された例を説明したが、荷重調整部材40が、シャフト38の外周側に圧入あるいは溶接等で固定されていてもよい。
(3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、エンジン駆動式の可変容量型圧縮機を採用した例を説明したが、圧縮機11として、電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用してもよい。さらに、固定容量型圧縮機構と電動モータとを備え、電力を供給されることによって作動する電動圧縮機を採用してもよい。電動圧縮機では、電動モータの回転数を調整することによって、冷媒吐出能力を制御することができる。
また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。
また、上述の実施形態では、冷媒としてR134aを採用した例を説明したが、冷媒はこれに限定されない。例えば、R1234yf、R600a、R410A、R404A、R32、R407C、等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。さらに、冷媒として二酸化炭素を採用して、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
(4)上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
また、上述の実施形態では、本発明に係るエジェクタ13を備えるエジェクタ式冷凍サイクル10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器14を送風空気を冷却する利用側熱交換器としている。これに対して、蒸発器14を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する利用側熱交換器として用いてもよい。
10 エジェクタ式冷凍サイクル(冷凍サイクル装置)
13 エジェクタ
13a ノズル通路
13b 吸引用通路
13c ディフューザ通路
30 ボデー
35 通路形成部材
37、37α 駆動機構、ステッピングモータ(駆動機構)
38 シャフト(伝達用部材)

Claims (5)

  1. 蒸気圧縮式の冷凍サイクル装置(10)に適用されるエジェクタであって、
    冷媒を流入させる流入空間(30a)、前記流入空間から流出した冷媒を減圧させる減圧用空間(30b)、前記減圧用空間の冷媒流れ下流側に連通して冷媒吸引口(31b)から吸引した冷媒を流通させる吸引用通路(13b)、および前記減圧用空間から噴射された噴射冷媒と前記吸引用通路を介して吸引された吸引冷媒とを流入させる昇圧用空間(30e)が形成されたボデー(30)と、
    少なくとも一部が前記減圧用空間の内部、および前記昇圧用空間の内部に配置された通路形成部材(35)と、
    前記通路形成部材を変位させる駆動力を出力する駆動機構(37、37α)と、
    前記駆動力を前記通路形成部材に伝達する伝達用部材(38)と、を備え、
    前記昇圧用空間は、冷媒流れ下流側に向かって断面積が拡大する形状に形成されており、
    前記ボデーのうち前記減圧用空間を形成する部位の内周面と前記通路形成部材の外周面との間に形成される冷媒通路は、冷媒を減圧させて噴射するノズルとして機能するノズル通路(13a)であり、
    前記ボデーのうち前記昇圧用空間を形成する部位の内周面と前記通路形成部材の外周面との間に形成される冷媒通路は、前記噴射冷媒および前記吸引冷媒を混合させて昇圧させる昇圧部として機能するディフューザ通路(13c)であり、
    前記ディフューザ通路は、冷媒流れ下流側に向かって通路断面積が拡大しており、
    前記伝達用部材は、前記通路形成部材のうち前記ディフューザ通路を形成する部位よりも上流側の部位から、冷媒流れ上流側に配置された前記流入空間側へ延びて前記駆動機構に連結されているエジェクタ。
  2. 前記ノズル通路には、冷媒通路断面積を最も縮小させる喉部(30m)が形成されており、
    前記伝達用部材は、前記通路形成部材のうち前記喉部を形成する部位よりも上流側の部位から前記流入空間側へ延びて前記駆動機構に連結されている請求項1に記載のエジェクタ。
  3. 前記駆動機構(37)は、温度変化に伴って圧力変化する感温媒体が封入された封入空間(37a)を形成する封入空間形成部材(372)、および前記感温媒体の圧力と前記吸引冷媒の圧力との圧力差に応じて変位する圧力応動部材(371)を有し、
    前記伝達用部材は、前記圧力応動部材に連結されている請求項1または2に記載のエジェクタ。
  4. さらに、前記駆動機構は、前記圧力応動部材に対して荷重を作用させる弾性部材(41)を有し、
    前記伝達用部材には、前記荷重を調整する荷重調整部材(40)が取り付けられている請求項3に記載のエジェクタ。
  5. 前記駆動機構(37α)は、電力を供給されることによって前記駆動力を出力する電動式のものである請求項1または2に記載のエジェクタ。
JP2016177388A 2016-09-12 2016-09-12 エジェクタ Expired - Fee Related JP6638607B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016177388A JP6638607B2 (ja) 2016-09-12 2016-09-12 エジェクタ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016177388A JP6638607B2 (ja) 2016-09-12 2016-09-12 エジェクタ

Publications (2)

Publication Number Publication Date
JP2018044441A JP2018044441A (ja) 2018-03-22
JP6638607B2 true JP6638607B2 (ja) 2020-01-29

Family

ID=61694533

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016177388A Expired - Fee Related JP6638607B2 (ja) 2016-09-12 2016-09-12 エジェクタ

Country Status (1)

Country Link
JP (1) JP6638607B2 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62206348A (ja) * 1986-03-04 1987-09-10 シャープ株式会社 エジエクタ
JP4232484B2 (ja) * 2003-03-05 2009-03-04 株式会社日本自動車部品総合研究所 エジェクタおよび蒸気圧縮式冷凍機
JP4114554B2 (ja) * 2003-06-18 2008-07-09 株式会社デンソー エジェクタサイクル
WO2012092685A1 (en) * 2011-01-04 2012-07-12 Carrier Corporation Ejector
JP5920110B2 (ja) * 2012-02-02 2016-05-18 株式会社デンソー エジェクタ

Also Published As

Publication number Publication date
JP2018044441A (ja) 2018-03-22

Similar Documents

Publication Publication Date Title
US10378795B2 (en) Ejector and ejector refrigeration cycle
US10029538B2 (en) Refrigeration cycle
JP2016169729A (ja) エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
JP6512071B2 (ja) エジェクタ式冷凍サイクル
WO2016143292A1 (ja) エジェクタ式冷凍サイクル
WO2018016219A1 (ja) エジェクタ式冷凍サイクル
WO2017135092A1 (ja) エジェクタ
JP6561919B2 (ja) エジェクタ
JP6638607B2 (ja) エジェクタ
WO2017135093A1 (ja) エジェクタ
WO2018047563A1 (ja) エジェクタ
JP6481679B2 (ja) エジェクタ
WO2017179321A1 (ja) エジェクタ
US11460049B2 (en) Ejector
WO2017212864A1 (ja) 減圧装置
JP6380122B2 (ja) エジェクタ
JP2017031975A (ja) エジェクタ
JP6582950B2 (ja) エジェクタ
JP6572745B2 (ja) エジェクタ式冷凍サイクル
JP2017089963A (ja) エジェクタ式冷凍サイクル
JP2017044374A (ja) エジェクタ
JP6398883B2 (ja) エジェクタ
JP2017032272A (ja) エジェクタ
JP2017002872A (ja) エジェクタ
JP2017053574A (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191004

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191015

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191209

R151 Written notification of patent or utility model registration

Ref document number: 6638607

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees