JP2016169729A - エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル - Google Patents

エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル Download PDF

Info

Publication number
JP2016169729A
JP2016169729A JP2016022118A JP2016022118A JP2016169729A JP 2016169729 A JP2016169729 A JP 2016169729A JP 2016022118 A JP2016022118 A JP 2016022118A JP 2016022118 A JP2016022118 A JP 2016022118A JP 2016169729 A JP2016169729 A JP 2016169729A
Authority
JP
Japan
Prior art keywords
refrigerant
passage
nozzle
ejector
sectional area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016022118A
Other languages
English (en)
Other versions
JP6610313B2 (ja
Inventor
佳之 横山
Yoshiyuki Yokoyama
佳之 横山
西嶋 春幸
Haruyuki Nishijima
春幸 西嶋
山田 悦久
Etsuhisa Yamada
悦久 山田
中嶋 亮太
Ryota Nakajima
亮太 中嶋
高野 義昭
Yoshiaki Takano
義昭 高野
和典 水鳥
Kazunori Mizudori
和典 水鳥
頼人 小原
Yorito Obara
頼人 小原
大志 新谷
Daishi Shintani
大志 新谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to US15/556,486 priority Critical patent/US10316865B2/en
Priority to CN201680014439.7A priority patent/CN107407293B/zh
Priority to PCT/JP2016/001114 priority patent/WO2016143300A1/ja
Priority to DE112016001141.5T priority patent/DE112016001141B4/de
Publication of JP2016169729A publication Critical patent/JP2016169729A/ja
Application granted granted Critical
Publication of JP6610313B2 publication Critical patent/JP6610313B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • F04F5/463Arrangements of nozzles with provisions for mixing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/02Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid
    • F04F5/04Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being liquid displacing elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/44Component parts, details, or accessories not provided for in, or of interest apart from, groups F04F5/02 - F04F5/42
    • F04F5/46Arrangements of nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2341/00Details of ejectors not being used as compression device; Details of flow restrictors or expansion valves
    • F25B2341/001Ejectors not being used as compression device
    • F25B2341/0012Ejectors with the cooled primary flow at high pressure

Abstract

【課題】適用された冷凍サイクル装置の負荷変動によらず高いエネルギ変換効率を発揮可能なエジェクタを提供する。【解決手段】エジェクタ20のノズル21の内部に通路形成部材としてのニードル弁23を配置することによって断面円環状のノズル通路20aを形成する。さらに、ニードル弁23のノズル21側の先端部にノズル通路20aを拡大させる側に凹んだ溝部23bを形成しておく。そして、エジェクタ式冷凍サイクル10の中負荷から高負荷運転時には、旋回流発生手段によって二相分離状態とした冷媒をノズル通路20aへ流入させ、さらに、低負荷運転時には、溝部23bにて生じるキャビティをノズル通路20aを流通する冷媒に供給することによって、ノズル通路20aを流通する冷媒の沸騰を促進し、エジェクタのエネルギ変換効率を向上させる。【選択図】図7

Description

本発明は、高速度で噴射される噴射流体の吸引作用によって流体を吸引するエジェクタ、このエジェクタの製造方法、並びに、エジェクタを備えるエジェクタ式冷凍サイクルに関する。
従来、特許文献1に、高速度で噴射される噴射冷媒の吸引作用によって冷媒吸引口から冷媒を吸引し、噴射冷媒と吸引冷媒とを混合させて昇圧させるエジェクタ、および冷媒減圧手段としてエジェクタを備える蒸気圧縮式の冷凍サイクル装置であるエジェクタ式冷凍サイクルが開示されている。
この特許文献1のエジェクタでは、ボデーの内部に略円錐形状の通路形成部材を配置し、ボデーと通路形成部材の円錐状側面との隙間に断面円環状の冷媒通路を形成している。そして、この冷媒通路のうち、冷媒流れ最上流側の部位を、高圧冷媒を減圧させて噴射するノズル通路として利用し、ノズル通路の冷媒流れ下流側の部位を、噴射冷媒と吸引冷媒とを混合させて混合冷媒を昇圧させるディフューザ通路として利用している。
さらに、特許文献1のエジェクタのボデーには、ノズル通路へ流入させる冷媒に旋回流れを生じさせる旋回流発生手段としての旋回空間が形成されている。そして、旋回空間にて、過冷却液相冷媒を旋回させることによって旋回中心側の冷媒を減圧沸騰させて、旋回中心側に気相冷媒が偏在した二相分離状態の冷媒をノズル通路へ流入させている。
これにより、特許文献1のエジェクタでは、ノズル通路における冷媒の沸騰を促進し、ノズル通路にて冷媒の圧力エネルギを運動エネルギに変換する際のエネルギ変換効率を向上させようとしている。
特開2013−177879号公報
ところで、特許文献1のエジェクタでは、旋回空間および旋回空間へ冷媒を流入させる冷媒流入通路が一定の形状に形成されている。このため、適用されたエジェクタ式冷凍サイクルの負荷変動によってサイクルを循環する循環冷媒流量が変化すると、旋回空間へ流入する冷媒の流量が変化して、旋回空間内で旋回する冷媒の旋回流速も変化してしまう。
従って、エジェクタ式冷凍サイクルに負荷変動が生じると、特許文献1のエジェクタの旋回空間では、エネルギ変換効率を向上させるために適切な二相分離状態となった冷媒を、ノズル通路へ流入させることができなくなってしまうおそれがある。
このことをより詳細に説明すると、例えば、循環冷媒流量が多くなる高負荷運転時に、ノズル通路へ流入する冷媒が適切な二相分離状態となるように旋回空間の寸法諸元を設定すると、循環冷媒流量が少なくなる低負荷運転時に、旋回流速が低下して、冷媒を減圧沸騰させることができなくなってしまう。
逆に、低負荷運転時に、ノズル通路へ流入する冷媒が適切な二相分離状態となるように旋回空間の寸法諸元を設定すると、高負荷運転時に、旋回流速が不必要に速くなり、減圧沸騰による気相冷媒も不必要に増加してしまう。その結果、二相分離状態の冷媒がノズル通路を流通する際の圧力損失が増加してしまう。
従って、冷凍サイクル装置に負荷変動が生じると、適切な二相分離状態となった冷媒をノズル通路へ流入させることができず、エジェクタに高いエネルギ変換効率を発揮させることができなくなってしまう。
本発明は、上記点に鑑み、適用された冷凍サイクル装置の負荷変動によらず高いエネルギ変換効率を発揮可能なエジェクタを提供することを目的とする。
また、本発明は、適用された冷凍サイクル装置の負荷変動によらず高いエネルギ変換効率を発揮可能なエジェクタの製造方法を提供することを別の目的とする。
また、本発明は、サイクルの負荷変動によらず高いエネルギ変換効率を発揮可能なエジェクタを備えるエジェクタ式冷凍サイクルを提供することを、さらに別の目的とする。
本発明は、上記目的を達成するために案出されたもので、請求項1および請求項4に記載の発明では、冷凍サイクル装置に適用されるエジェクタにおいて、冷凍サイクル装置の負荷変動によらず、ノズル通路を流通する冷媒の沸騰を促進するための新規な技術手段を開示している。
すなわち、請求項1に記載の発明では、蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されるエジェクタであって、
冷媒を噴射するノズル(21、32)と、ノズル(21、32)から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(22a、31b)、および噴射冷媒と冷媒吸引口(22a、31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(20g)を有するボデー(22、30)と、ノズル(21、32)内に形成された冷媒通路内に配置された通路形成部材(23、35)と、通路形成部材(23、35)を変位させる駆動手段(23a、37)と、を備え、
ノズル(21、32)の内周面と通路形成部材(23、35)の外周面との間に形成される冷媒通路は、冷媒を減圧させるノズル通路(20a、25a)であり、ノズル通路(20a、25a)には、通路断面積が最も縮小した最小通路断面積部(20b、25b)、最小通路断面積部(20b、25b)の冷媒流れ上流側に形成されて最小通路断面積部(20b、25b)へ向かって通路断面積が徐々に縮小する先細部(20c、25c)、および最小通路断面積部(20b、25b)の冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部(20d、25d)が形成されており、
通路形成部材(23、35)には、ノズル通路(20a、25a)の通路断面積を拡大させる側に凹んだ溝部(23b、35a)が形成されていることを特徴とする。
これによれば、溝部(23b、35a)が形成されているので、ノズル通路(20a、25a)の通路断面積を急拡大させることができる。そして、溝部(23b、35a)を、冷媒流れに剥離渦を生じさせるエッジとして機能させることができる。従って、溝部(23b、35a)の内部で冷媒を減圧沸騰させて、気泡(キャビティ)を生じさせることができる。
そして、このキャビティを、沸騰核としてノズル通路(20a、25a)を流通する冷媒に供給することで、ノズル通路(20a、25a)における冷媒の沸騰を促進し、末広部(20d、25d)にて冷媒の流速を効果的に増速させることができる。その結果、ノズル通路(20a、25a)におけるエネルギ変換効率が低下しやすい運転条件時であっても、エジェクタに高いエネルギ変換効率を発揮させることができる。
すなわち、本請求項に記載の発明によれば、適用された冷凍サイクル装置(10、10a)の負荷変動によらず、高いエネルギ変換効率を発揮可能なエジェクタを提供することができる。
また、溝部(23b、35a)は、ノズル(21、32)の軸周りの全周に亘って形成されていてもよい。これによれば、断面円環状に形成されるノズル通路(20a、25a)の周方向に均等に沸騰核を供給することができる。その結果、一部の冷媒の沸騰が促進されることによって、通路形成部材(23、35)が傾いてしまうことを抑制することができる。
また、駆動手段(23a、37)が通路形成部材(23、35)を変位させることによって、ノズル(21、32)の軸方向に垂直な方向から見たときに、最小通路断面積部(20b、25b)の冷媒流れ方向の直後に溝部(23b、35a)を配置することができるようになっていてもよい。
これにより、最小通路断面積部(20b、25b)を通過する際に増速した冷媒が流通する冷媒通路の通路断面積を、溝部(23b、35a)によって急拡大させることができる。従って、溝部(23b、35a)の内部でより一層効果的にキャビティを生じさせることができる。
また、上記の特徴のエジェクタの製造方法であって、通路形成部材(23、35)をノズル(21、32)に押しつけることによって、溝部(23b、35a)を形成する溝部形成工程を有していてもよい。これによれば、適用された冷凍サイクル装置(10、10a)の負荷変動によらず、高いエネルギ変換効率を発揮可能なエジェクタ(20、25)の製造方法を提供することができる。
請求項7に記載の発明では、蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されるエジェクタであって、
冷媒を噴射するノズル(21、32)と、ノズル(21、32)から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(22a、31b)、および噴射冷媒と冷媒吸引口(22a、31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(20g)を有するボデー(22、30)と、ノズル(21、32)内に形成された冷媒通路内に配置された通路形成部材(23、35)と、通路形成部材(23、35)を変位させる駆動手段(23a、37)と、を備え、
ノズル(21、32)の内周面と通路形成部材(23、35)の外周面との間に形成される冷媒通路は、冷媒を減圧させるノズル通路(20a、25a)であり、ノズル通路(20a、25a)には、通路断面積が最も縮小した最小通路断面積部(20b、25b)、最小通路断面積部(20b、25b)の冷媒流れ上流側に形成されて最小通路断面積部(20b、25b)へ向かって通路断面積が徐々に縮小する先細部(20c、25c)、および最小通路断面積部(20b、25b)の冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部(20d、25d)が形成されており、
ノズル(21、32)の軸線を含む断面において、ノズル(21、32)のうち末広部(20d、25d)を形成する部位は、冷媒流れ下流側に向かって広がり度合が変化しており、最小通路断面積部(20b、25b)を形成する喉部(21b、32a)の直後の部位の広がり度合が最も大きくなっていることを特徴とする。
これによれば、ノズル(21、32)のうち、末広部(20d、25d)を形成する部位では、喉部(21b、32a)の直後の部位の広がり度合が最も大きくなっている。従って、最小通路断面積部(20b、25b)を通過する際に増速した冷媒の流通する冷媒通路の通路断面積を、喉部(21b、32a)の直後で急拡大させることができる。これにより、喉部(21b、32a)の直後の部位にて冷媒を減圧沸騰させてキャビティを生じさせることができる。
そして、このキャビティを、沸騰核としてノズル通路(20a、25a)を流通する冷媒に供給することで、ノズル通路(20a、25a)における冷媒の沸騰を促進し、末広部(20d、25d)にて冷媒の流速を効果的に増速させることができる。
すなわち、本請求項に記載の発明によれば、適用された冷凍サイクル装置(10、10a)の負荷変動によらず、高いエネルギ変換効率を発揮可能なエジェクタを提供することができる。
また、上記の特徴のエジェクタにおいて、ノズル(21、32)へ流入する冷媒をノズル(21、32)の中心軸周りに旋回させる旋回流発生手段(20e、21d、30a)を備えていてもよい。
これによれば、循環冷媒流量が多くなる高負荷運転時等に、旋回中心側の冷媒を減圧沸騰させ、旋回中心側に気相冷媒が偏在した二相分離状態の冷媒をノズル通路へ流入させることができる。従って、ノズル通路(20a、25a)におけるエネルギ変換効率を向上させることができる。
また、上述した旋回流発生手段(20e…30a)を有するエジェクタ(20、25)を備えるエジェクタ式冷凍サイクルにおいて、冷媒を圧縮する圧縮機(11)から吐出された高圧冷媒を過冷却液相冷媒となるまで冷却する放熱器(12)を備え、旋回流発生手段(20e…30a)には、過冷却液相冷媒が流入するようになっていてもよい。
これによれば、サイクルの負荷変動によらず高いエネルギ変換効率を発揮可能なエジェクタを備えるエジェクタ式冷凍サイクルを提供することができる。
なお、この欄および特許請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第1実施形態のエジェクタの軸方向断面図である。 図2のIII部を模式的に拡大した一部拡大断面図である。 第1実施形態の溝部形成工程における図3に対応する一部拡大断面図である。 第1実施形態のエジェクタ式冷凍サイクルにおける冷媒の状態の変化を示すモリエル線図である。 第1実施形態のエジェクタの中負荷運転時から高負荷運転時における冷媒の沸騰の様子を説明するための説明図である。 第1実施形態のエジェクタの低負荷運転時における冷媒の沸騰の様子を説明するための説明図である。 第2実施形態のエジェクタの一部を模式的に拡大した一部拡大断面図である。 第2実施形態のエジェクタの低負荷運転時における冷媒の沸騰の様子を説明するための説明図である。 第3実施形態のエジェクタ式冷凍サイクルの全体構成図である。 第3実施形態のエジェクタの軸方向断面図である。 図11のXII部を模式的に拡大した一部拡大断面図である。 第4実施形態のエジェクタの低負荷運転時における冷媒の沸騰の様子を説明するための説明図である。 第5実施形態のエジェクタの低負荷運転時における冷媒の沸騰の様子を説明するための説明図である。
(第1実施形態)
図1〜図7を用いて、本発明の第1実施形態を説明する。本実施形態のエジェクタ20は、図1の全体構成図に示すように、エジェクタを備える蒸気圧縮式の冷凍サイクル装置、すなわちエジェクタ式冷凍サイクル10に適用されている。さらに、このエジェクタ式冷凍サイクル10は、車両用空調装置に適用されており、空調対象空間である車室内へ送風される送風空気を冷却する機能を果たす。従って、本実施形態のエジェクタ式冷凍サイクル10の冷却対象流体は、送風空気である。
また、本実施形態のエジェクタ式冷凍サイクル10では、冷媒としてHFC系冷媒(具体的には、R134a)を採用しており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。もちろん、冷媒としてHFO系冷媒(具体的には、R1234yf)等を採用してもよい。さらに、冷媒には圧縮機11を潤滑するための冷凍機油が混入されており、冷凍機油の一部は冷媒とともにサイクルを循環している。
エジェクタ式冷凍サイクル10において、圧縮機11は、冷媒を吸入して高圧冷媒となるまで昇圧して吐出するものである。具体的には、本実施形態の圧縮機11は、1つのハウジング内に固定容量型の圧縮機構、および圧縮機構を駆動する電動モータを収容して構成された電動圧縮機である。
この圧縮機構としては、スクロール型圧縮機構、ベーン型圧縮機構等の各種圧縮機構を採用できる。また、電動モータは、後述する空調制御装置50から出力される制御信号によって、その作動(回転数)が制御されるもので、交流モータ、直流モータのいずれの形式を採用してもよい。
圧縮機11の吐出口には、放熱器12の凝縮部12aの冷媒入口側が接続されている。放熱器12は、圧縮機11から吐出された高圧冷媒と冷却ファン12dにより送風される車室外空気(外気)を熱交換させることによって、高圧冷媒を放熱させて冷却する放熱用熱交換器である。
より具体的には、放熱器12は、圧縮機11から吐出された高圧気相冷媒と冷却ファン12dから送風された外気とを熱交換させ、高圧気相冷媒を放熱させて凝縮させる凝縮部12a、凝縮部12aから流出した冷媒の気液を分離して余剰液相冷媒を蓄えるレシーバ部12b、およびレシーバ部12bから流出した液相冷媒と冷却ファン12dから送風される外気とを熱交換させ、液相冷媒を過冷却する過冷却部12cを有して構成される、いわゆるサブクール型の凝縮器である。
冷却ファン12dは、空調制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。
放熱器12の過冷却部12cの冷媒出口には、エジェクタ20の冷媒流入口21a側が接続されている。エジェクタ20は、放熱器12から流出した過冷却状態の高圧液相冷媒を減圧させて下流側へ流出させる冷媒減圧手段としての機能を果たすとともに、高速度で噴射される噴射冷媒の吸引作用によって後述する蒸発器14から流出した冷媒を吸引(輸送)して循環させる冷媒循環手段(冷媒輸送手段)としての機能を果たす。
エジェクタ20の具体的構成については、図2〜図4を用いて説明する。エジェクタ20は、ノズル21、ボデー22、ニードル弁23等を有して構成されている。まず、ノズル21は、冷媒の流れ方向に向かって徐々に先細る略円筒状の金属(例えば、ステンレス合金)で形成されており、その内部に形成されるノズル通路20aにて冷媒を等エントロピ的に減圧させて噴射するものである。
ノズル21の内部には、通路形成部材としての針状のニードル弁23が配置されている。ノズル21の内周面とニードル弁23の外周面との間に形成される冷媒通路は、冷媒を減圧させるノズル通路20aの少なくとも一部を形成している。従って、ノズル21の軸方向に垂直な方向から見たときにノズル21とニードル弁23が重合する範囲では、ノズル通路20aの軸方向垂直断面における断面形状が、円環状となる。
ノズル21の内壁面には、冷媒通路断面積が最も縮小した最小通路断面積部20bを形成する喉部21bが設けられている。このため、ノズル通路20aには、最小通路断面積部20bの冷媒流れ上流側に形成されて最小通路断面積部20bへ向かって通路断面積が徐々に縮小する先細部20c、および最小通路断面積部20bの冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部20dが形成されている。
従って、本実施形態のノズル通路20aでは、いわゆるラバールノズルと同様に冷媒通路断面積を変化させている。さらに、本実施形態では、エジェクタ式冷凍サイクル10の通常運転時に、冷媒噴射口21cから噴射される噴射冷媒の流速が音速以上となるようにノズル通路20aの冷媒通路断面積を変化させている。
また、ノズル21のノズル通路20aを形成する部位の冷媒流れ上流側には、ノズル21の軸線方向と同軸上に延びる筒状部21dが設けられている。この筒状部21dの内部には、ノズル21の内部へ流入した冷媒を旋回させる旋回空間20eが形成されている。旋回空間20eは、ノズル21の軸線方向と同軸上に延びる略円柱状の空間である。
さらに、エジェクタ20の外部から旋回空間20eへ冷媒を流入させる冷媒流入通路は、旋回空間20eの中心軸方向から見たときに旋回空間20eの内壁面の接線方向に延びている。これにより、放熱器12から流出して旋回空間20eへ流入した過冷却液相冷媒は、旋回空間20eの内壁面に沿って流れ、旋回空間20eの中心軸周りに旋回する。
ここで、旋回空間20e内で旋回する冷媒には遠心力が作用するので、旋回空間20e内では中心軸側の冷媒圧力が外周側の冷媒圧力よりも低下する。そこで、本実施形態では、エジェクタ式冷凍サイクル10の熱負荷が、中間的な値となる中負荷運転時から比較的高くなる高負荷運転時に、旋回空間20e内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力となるまで低下させるように、旋回空間20e等の寸法諸元を設定している。
このような旋回空間20e内の中心軸側の冷媒圧力の調整は、旋回空間20e内で旋回する冷媒の旋回流速を調整することによって実現することができる。さらに、旋回流速の調整は、例えば、冷媒流入通路の通路断面積と旋回空間20eの軸方向垂直断面積との面積比等の寸法諸元を調整すること等によって行うことができる。なお、本実施形態の旋回流速とは、旋回空間20eの最外周部近傍における冷媒の旋回方向の流速を意味している。
従って、本実施形態では、筒状部21dおよび旋回空間20eが、ノズル21へ流入する過冷却液相冷媒をノズル21の軸周りに旋回させる旋回流発生手段を構成している。つまり、本実施形態では、エジェクタ20(具体的には、ノズル21)と旋回流発生手段が一体的に構成されている。
ボデー22は、略円筒状の金属(例えば、アルミニウム)あるいは樹脂で形成されており、内部にノズル21を支持固定する固定部材として機能するとともに、エジェクタ20の外殻を形成するものである。より具体的には、ノズル21は、ボデー22の長手方向一端側の内部に収容されるように圧入にて固定されている。従って、ノズル21とボデー22との固定部(圧入部)から冷媒が漏れることはない。
また、ボデー22の外周面のうち、ノズル21の外周側に対応する部位には、その内外を貫通してノズル21の冷媒噴射口21cと連通するように設けられた冷媒吸引口22aが形成されている。この冷媒吸引口22aは、ノズル21から噴射される噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒をエジェクタ20の外部から内部へ吸引する貫通穴である。
さらに、ボデー22の内部には、冷媒吸引口22aから吸引された吸引冷媒をノズル21の冷媒噴射口側へ導く吸引通路20f、および冷媒吸引口22aからエジェクタ20の内部へ流入した吸引冷媒と噴射冷媒とを混合させて昇圧させる昇圧部としてのディフューザ部20gが形成されている。
ディフューザ部20gは、吸引通路20fの出口に連続するように配置されて、冷媒通路面積を徐々に拡大させる空間によって形成されている。これにより、噴射冷媒と吸引冷媒とを混合させながら、その流速を減速させて噴射冷媒と吸引冷媒との混合冷媒の圧力を上昇させる機能、すなわち、混合冷媒の速度エネルギを圧力エネルギに変換する機能を果たす。
ニードル弁23は、通路形成部材としての機能を果たすとともに、ノズル通路20aの通路断面積を変化させる機能を果たすものである。より具体的には、ニードル弁23は、熱可塑性樹脂(例えば、PPS:ポリフェニレンスルファイド)にて形成されており、ディフューザ部20g側から冷媒流れ上流側(ノズル通路20a側)へ向かって先細る針状の形状に形成されている。
さらに、ニードル弁23は、ノズル21と同軸上に配置されている。また、ニードル弁23のディフューザ部20g側の端部には、ニードル弁23をノズル21の軸方向へ変位させる駆動手段としてのステッピングモータ23aが連結されている。このステッピングモータ23aは、空調制御装置50から出力される制御パルスによって、その作動が制御される。
一方、ニードル弁23のノズル通路20a側の端部には、図3の模式的な一部断面図に示すように、ノズル通路20aの通路断面積を拡大させる側に凹んだ溝部23bが、ノズル21の軸周りの全周に亘って形成されている。なお、図3、図4は、説明の明確化のためにノズル21の中心軸に垂直な方向の寸法をノズル21の中心軸方向の寸法よりも拡大して示した模式的な一部断面図である。
ここで、この溝部23bの形成方法について説明する。溝部23bは、エジェクタ20を製造する過程で形成される。つまり、溝部23bを形成する工程(溝部形成工程)は、本実施形態のエジェクタ20の製造方法が有する一つの工程である。
より具体的には、溝部形成工程では、熱可塑性樹脂で形成されたニードル弁23を加熱する。そして、加熱することによって軟化させたニードル弁23を、ノズル21の喉部21bを閉塞するように、ノズル21に押しつける。この際、ニードル弁23の中心軸とノズル21の中心軸と同軸上に配置した状態で、ニードル弁23をノズル21に押しつける(図4参照)。
その後、ニードル弁23をノズル21から離すと、ノズル21の喉部21bが雄型となって、この喉部21bの形状がニードル弁23のノズル通路20a側の先端部に転写される(図3参照)。これにより、ニードル弁23のノズル通路20a側の先端部に溝部23bが形成される。
このため、ステッピングモータ23aが、ニードル弁23をノズル21に接触するように変位させると、ノズル21の内周面とニードル弁23の外周面は面接触する。さらに、ステッピングモータ23aが、ニードル弁23をノズル21から離れる側へ変位させると、図3に示すように、ノズル21の中心軸に垂直な方向から見たときに、最小通路断面積部20bの冷媒流れ方向の直後に溝部23bを変位させることができる。
また、図1に示すように、エジェクタ20のディフューザ部20gの冷媒出口には、気液分離器13の入口側が接続されている。気液分離器13は、エジェクタ20のディフューザ部20gから流出した冷媒の気液を分離する気液分離手段である。なお、本実施形態では、気液分離器13として、分離された液相冷媒を殆ど蓄えることなく液相冷媒流出口から流出させる比較的内容積の小さいものを採用しているが、サイクル内の余剰液相冷媒を蓄える貯液手段としての機能を有するものを採用してもよい。
気液分離器13の気相冷媒流出口には、圧縮機11の吸入口側が接続されている。一方、気液分離器13の液相冷媒流出口には、減圧手段としての固定絞り13aを介して、蒸発器14の冷媒入口側が接続されている。この固定絞り13aとしては、オリフィス、キャピラリーチューブ等を採用することができる。
蒸発器14は、内部へ流入した低圧冷媒と送風ファン14aから車室内へ向けて送風される送風空気とを熱交換させることによって、低圧冷媒を蒸発させて吸熱作用を発揮させる吸熱用熱交換器である。送風ファン14aは、空調制御装置50から出力される制御電圧によって回転数(送風空気量)が制御される電動式送風機である。蒸発器14の冷媒出口は、エジェクタ20の冷媒吸引口22a側に接続されている。
次に、本実施形態の電気制御部の概要について説明する。空調制御装置50は、CPU、ROMおよびRAM等を含む周知のマイクロコンピュータとその周辺回路から構成される。この空調制御装置50は、そのROM内に記憶された制御プログラムに基づいて各種演算、処理を行って、上述の各種電気式のアクチュエータ11、12d、14a、23a等の作動を制御する。
また、空調制御装置50には、車室内温度(内気温)Trを検出する内気温センサ、外気温Tamを検出する外気温センサ、車室内の日射量Asを検出する日射センサ、蒸発器14出口側冷媒の温度(蒸発器出口側温度)Teを検出する蒸発器出口側温度センサ(蒸発器出口側温度検出手段)51、蒸発器14出口側冷媒の圧力(蒸発器出口側圧力)Peを検出する蒸発器出口側圧力センサ(蒸発器出口側圧力検出手段)52、放熱器12出口側冷媒の温度Tdを検出する放熱器出口側温度センサ、および放熱器12出口側冷媒の圧力Pdを検出する出口側圧力センサ等の空調制御用のセンサ群が接続され、これらのセンサ群の検出値が入力される。
さらに、空調制御装置50の入力側には、車室内前部の計器盤付近に配置された図示しない操作パネルが接続されており、この操作パネルに設けられた各種操作スイッチからの操作信号が空調制御装置50へ入力される。操作パネルに設けられた各種操作スイッチとしては、車室内空調を行うことを要求する空調作動スイッチ、車室内温度Tsetを設定する車室内温度設定スイッチ等が設けられている。
なお、本実施形態の空調制御装置50は、その出力側に接続された各種の制御対象機器の作動を制御する制御手段が一体的に構成されたものであるが、空調制御装置50のうち、各制御対象機器の作動を制御する構成(ハードウェアおよびソフトウェア)が各制御対象機器の制御手段を構成している。
例えば、本実施形態では、圧縮機11の作動を制御する構成が吐出能力制御手段50aを構成しており、ステッピングモータ23aの作動を制御する構成が弁開度制御手段50bを構成している。もちろん、吐出能力制御手段50aや弁開度制御手段50bを空調制御装置50に対して、別体の制御装置で構成してもよい。
次に、上記構成における本実施形態の作動について説明する。本実施形態の車両用空調装置では、操作パネルの空調作動スイッチが投入(ON)されると、空調制御装置50が予め記憶している空調制御プログラムを実行する。
この空調制御プログラムでは、上述の空調制御用のセンサ群の検出信号および操作パネルの操作信号を読み込む。そして、読み込まれた検出信号および操作信号に基づいて、車室内へ吹き出す空気の目標温度である目標吹出温度TAOを算出する。
目標吹出温度TAOは、以下数式F1に基づいて算出される。
TAO=Kset×Tset−Kr×Tr−Kam×Tam−Ks×As+C…(F1)
なお、Tsetは温度設定スイッチによって設定された車室内温度、Trは内気温センサによって検出された内気温、Tamは外気温センサによって検出された外気温、Asは日射センサによって検出された日射量である。また、Kset、Kr、Kam、Ksは制御ゲインであり、Cは補正用の定数である。
さらに、空調制御プログラムでは、算出された目標吹出温度TAOおよびセンサ群の検出信号に基づいて、空調制御装置50の出力側に接続された各種制御対象機器の作動状態を決定する。
例えば、圧縮機11の冷媒吐出能力、すなわち圧縮機11の電動モータに出力される制御信号については、以下のように決定される。まず、目標吹出温度TAOに基づいて、予め記憶回路に記憶されている制御マップを参照して、蒸発器14から吹き出される送風空気の目標蒸発器吹出温度TEOを決定する。
そして、蒸発器出口側温度センサ51によって検出された蒸発器出口側温度Teと目標蒸発器吹出温度TEOとの偏差(TEO−Te)に基づいて、フィードバック制御手法を用いて蒸発器出口側温度Teが目標蒸発器吹出温度TEOに近づくように、圧縮機11の電動モータに出力される制御信号が決定される。
より具体的には、本実施形態の吐出能力制御手段50aは、偏差(TEO−Te)が拡大するに伴って、すなわち、エジェクタ式冷凍サイクル10の熱負荷が高くなるに伴って、サイクルを循環する循環冷媒流量が増加するように、圧縮機11の冷媒吐出能力を制御する。
また、ニードル弁23を変位させるステッピングモータ23aへ出力される制御パルスについては、蒸発器出口側温度Te、および蒸発器出口側圧力センサ52によって検出された蒸発器出口側圧力Peから算出される蒸発器14出口側冷媒の過熱度SHが、予め定めた基準過熱度KSHに近づくように決定される。
より具体的には、本実施形態の弁開度制御手段50bは、蒸発器14出口側冷媒の過熱度SHが高くなるに伴って、最小通路断面積部20bの通路断面積を拡大させるように、ステッピングモータ23aの作動を制御する。
そして、空調制御装置50は、決定された制御信号等を各種制御対象機器へ出力する。その後、車両用空調装置の作動停止が要求されるまで、所定の制御周期毎に、上述の検出信号および操作信号の読み込み→目標吹出温度TAOの算出→各種制御対象機器の作動状態決定→制御信号等の出力といった制御ルーチンが繰り返される。
これにより、エジェクタ式冷凍サイクル10では、図1の太実線矢印に示すように冷媒が流れる。そして、図5のモリエル線図に示すように冷媒の状態が変化する。
より詳細には、圧縮機11から吐出された高温高圧冷媒(図5のa点)は、放熱器12の凝縮部12aへ流入し、冷却ファン12dから送風された外気と熱交換し、放熱して凝縮する。凝縮部12aにて凝縮した冷媒は、レシーバ部12bにて気液分離される。レシーバ部12bにて分離された液相冷媒は、過冷却部12cにて冷却ファン12dから送風された外気と熱交換し、さらに放熱して過冷却液相冷媒となる(図5のa点→b点)。
放熱器12の過冷却部12cから流出した過冷却液相冷媒は、エジェクタ20のノズル通路20aにて等エントロピ的に減圧されて噴射される(図5のb点→c点)。この際、弁開度制御手段50bは、蒸発器14出口側冷媒(図5のh点)の過熱度SHが予め定めた基準過熱度KSHに近づくように、ステッピングモータ23aの作動を制御する。
そして、ノズル通路20aから噴射された噴射冷媒の吸引作用によって、蒸発器14から流出した冷媒(図5のh点)が、冷媒吸引口22aから吸引される。ノズル通路20aから噴射された噴射冷媒および冷媒吸引口22aから吸引された吸引冷媒は、ディフューザ部20gへ流入して合流する(図5のc点→d点、h’点→d点)。
ここで、本実施形態の吸引通路20fは、冷媒流れ方向に向かって通路断面積が徐々に縮小する形状に形成されている。このため、吸引通路20fを通過する吸引冷媒は、その圧力を低下させながら(図5のh点→h’点)、流速を増加させる。これにより、吸引冷媒と噴射冷媒との速度差を縮小し、ディフューザ部20gにて吸引冷媒と噴射冷媒が混合する際のエネルギ損失(混合損失)を減少させている。
ディフューザ部20gでは冷媒通路断面積の拡大により、冷媒の運動エネルギが圧力エネルギに変換される。これにより、噴射冷媒と吸引冷媒が混合されながら混合冷媒の圧力が上昇する(図5のd点→e点)。ディフューザ部20gから流出した冷媒は気液分離器13にて気液分離される(図5のe点→f点、e点→g点)。
気液分離器13にて分離された液相冷媒は、固定絞り13aにて減圧されて(図5のg点→g’点)、蒸発器14へ流入する。蒸発器14へ流入した冷媒は、送風ファン14aによって送風された送風空気から吸熱して蒸発する(図5のg’点→h点)。これにより、送風空気が冷却される。一方、気液分離器13にて分離された気相冷媒は、圧縮機11へ吸入され再び圧縮される(図5のf点→a点)。
本実施形態のエジェクタ式冷凍サイクル10は、以上の如く作動して、車室内へ送風される送風空気を冷却することができる。
この際、本実施形態のエジェクタ式冷凍サイクル10では、エジェクタ20のディフューザ部20gにて昇圧された冷媒を圧縮機11へ吸入させている。従って、エジェクタ式冷凍サイクル10によれば、蒸発器における冷媒蒸発圧力と圧縮機吸入冷媒の圧力が略同等となる通常の冷凍サイクル装置よりも、圧縮機11の消費動力を低減させて、サイクルの成績係数(COP)を向上させることができる。
また、本実施形態のエジェクタ20は、通路形成部材であるニードル弁23、および駆動手段であるステッピングモータ23aを有しているので、エジェクタ式冷凍サイクル10の負荷変動に応じて、最小通路断面積部20bの通路断面積を調整することができる。従って、エジェクタ式冷凍サイクル10の負荷変動に応じて、エジェクタ20を適切に作動させることができる。
また、本実施形態のエジェクタ20によれば、エジェクタ式冷凍サイクル10の中負荷運転時から高負荷運転時に、旋回空間20eにて冷媒を旋回させることで、旋回空間20e内の旋回中心側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力まで低下させることができる。
これにより、図6に示すように、旋回中心軸の内周側に柱状の気相冷媒(気柱)が存在するようにして、旋回空間20e内の旋回中心線近傍はガス単相、その周りは液単相の二相分離状態とすることができる。なお、図6、図7は、図3と同等の断面をさらに拡大し、冷媒の沸騰の様子を模式的に表した説明図である。さらに、図6、図7では、説明の明確化のために、液相冷媒を網掛けハッチングで表している。
そして、旋回空間20e内で二相分離状態となった冷媒をノズル通路20aへ流入させることで、ノズル通路20a内では、円環状の冷媒通路の外周側壁面から冷媒が剥離する際に生じる壁面沸騰および円環状の冷媒通路の中心軸側の冷媒のキャビテーションによって生じた沸騰核による界面沸騰によって冷媒の沸騰が促進される。
これにより、ノズル通路20aの最小通路断面積部20bへ流入する冷媒が、気相と液相が均質に混合した気液混合状態となる。そして、最小通路断面積部20bの近傍で気液混合状態の冷媒の流れに閉塞(チョーキング)が生じ、このチョーキングによって音速に到達した気液混合状態の冷媒が末広部20dにて加速されて噴射される。
このように、サイクルの中負荷運転時から高負荷運転時には、壁面沸騰および界面沸騰の双方による沸騰促進によって、気液混合状態の冷媒を音速となるまで効率よく加速できることで、ノズル通路20aにおけるエネルギ変換効率を向上させることができる。
その一方で、サイクルの低負荷運転時には、循環冷媒流量が減少して、旋回空間20eにおける冷媒の旋回流速が低下してしまうので、旋回空間20e内の旋回中心側の冷媒圧力を、冷媒が減圧沸騰する圧力まで低下させにくい。このため、低負荷運転時には、界面沸騰による冷媒の沸騰が促進されにくく、エジェクタ20に高いエネルギ変換効率を発揮させることができなくなってしまうおそれがある。
これに対して、本実施形態では、ニードル弁23に溝部23bが形成されているので、ノズル通路20aの通路断面積を急拡大させることができる。そして、溝部23bを、冷媒流れに剥離渦を生じさせるエッジとして機能させることができる。従って、図7に示すように、溝部23bの内部で冷媒を減圧沸騰させて、気泡(キャビティ)を生じさせることができる。換言すると、溝部23bは、ノズル通路20aへ流入した液相冷媒が沸騰を開始する位置に形成されている。
そして、このキャビティを、沸騰核としてノズル通路20aを流通する冷媒に供給することで、ノズル通路20aにおける冷媒の沸騰を促進し、末広部20dにて冷媒の流速を効果的に増速させることができる。その結果、本実施形態のエジェクタ20では、低負荷運転時のように、旋回空間20eにて冷媒を減圧沸騰させにくい運転条件であっても、エジェクタ20に高いエネルギ変換効率を発揮させることができる。
すなわち、本実施形態のエジェクタ20によれば、適用されたエジェクタ式冷凍サイクル10の負荷変動によらず、高いエネルギ変換効率を発揮させることができる。
また、本実施形態のエジェクタ20では、溝部23bがノズル21の軸周りの全周に亘って形成されているので、ノズル21の軸周りの全周にキャビティを生じさせることができる。従って、環状に形成されたノズル通路20aを流通する冷媒に均等に沸騰核を供給することができる。その結果、一部の冷媒の沸騰が促進されることによって、ニードル弁23が傾いてしまうことを抑制することができる。
また、本実施形態のエジェクタ20では、蒸発器14出口側冷媒の過熱度SHが基準過熱度KSHに近づくように、空調制御装置50の弁開度制御手段50bがステッピングモータ23aの作動を制御する。このため、循環冷媒流量が減少する低負荷運転時には、ニードル弁23が、最小通路断面積部20bの通路断面積を縮小させる側へ変位する。
従って、低負荷運転時には、ノズル通路20aの最小通路断面積部20bの冷媒流れ方向の直後に、ニードル弁23の溝部23bを変位させることができる。そして、最小通路断面積部20bを通過する際に増速した冷媒が流通する冷媒通路の通路断面積を、溝部23bによって急拡大させることができる。従って、溝部23bの内部でより一層効果的にキャビティを生じさせることができる。
さらに、キャビティは、溝部23bの内部に生じるので、キャビティがノズル通路20aの実質的な通路断面積を狭めて、冷媒がノズル通路20aを流通する際の圧力損失を増加させてしまうこともない。
これに加えて、中負荷運転時から高負荷運転時には、図6に示すように、溝部23bに液相冷媒が流入しないので、溝部23bの内部にキャビティが生じてしまうことがない。従って、中負荷運転時から高負荷運転時に、ノズル通路20aを流通する冷媒に沸騰核として供給される気泡が不必要に増加してしまうことがなく、冷媒がノズル通路20aを流通する際の圧力損失を増加させてしまうこともない。
また、本実施形態のエジェクタ20では、ステッピングモータ23aが、ニードル弁23をノズル21に接触させるように変位させた際に、ノズル21の内周面とニードル弁23の外周面が面接触する。従って、ニードル弁23によってノズル通路20aを全閉させた際にシール性を向上させることができ、最小通路断面積部20bの通路断面積を精度よく調整することができる。
(第2実施形態)
本実施形態では、第1実施形態に対して、図8、図9に示すように、ニードル弁23の溝部23bを廃止し、ノズル21の内壁面の形状を変化させた例を説明する。なお、図8、図9は、それぞれ第1実施形態で説明した図3、図7に対応する図面であって、第1実施形態と同一もしくは均等部分には同一の符号を付している。このことは、以下の図面でも同様である。
より具体的には、図8に示すように、ノズル21の軸線を含む断面において、ノズル通路20aの末広部20dを形成する部位の広がり度合は、冷媒流れ下流側に向かって変化しており、喉部21bの直後の部位の広がり度合が最も大きくなっている。
なお、図8では、末広部20dを形成する部位の広がり度合を、段階的(具体的には、2段階)に変化させた例を図示しているが、もちろん、ノズル21の軸線を含む断面において、末広部20dを形成する部位を曲線状に形成し、広がり度合を連続的に変化させてもよい。その他のエジェクタ20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。
従って、本実施形態のエジェクタ式冷凍サイクル10においても、第1実施形態と同様の効果を得ることができる。また、本実施形態のエジェクタ20においても、中負荷運転時から高負荷運転時には、旋回空間20eにて冷媒を旋回させることで、第1実施形態と同様に、高いエネルギ変化効率を発揮させることができる。
さらに、本実施形態のエジェクタ20によれば、ノズル21のうち末広部20dを形成する部位では、喉部21bの直後の部位の広がり度合が最も大きくなっているので、最小通路断面積部20bを通過する際に増速した冷媒が流通する冷媒通路の通路断面積を、喉部21bの直後で急拡大させることができる。
これにより、図9に示すように、ノズル通路20a内の喉部21bの直後の部位にて冷媒を減圧沸騰させてキャビティを生じさせることができる。従って、第1実施形態と同様に、低負荷運転時のように、旋回空間20eにて冷媒を減圧沸騰させにくい運転条件であっても、エジェクタ20に高いエネルギ変換効率を発揮させることができる。
すなわち、本実施形態のエジェクタ20においても、エジェクタ式冷凍サイクル10の負荷変動によらず、高いエネルギ変換効率を発揮させることができる。
(第3実施形態)
本実施形態では、第1実施形態に対して、図10の全体構成図に示すように、エジェクタ式冷凍サイクル10aに、エジェクタ25を採用した例を説明する。エジェクタ25は、第1実施形態で説明したエジェクタ20、気液分離器13、固定絞り13aに対応する構成を一体化(モジュール化)させたものである。従って、エジェクタ25は、「気液分離機能付きエジェクタ」「エジェクタモジュール」と表現することもできる。
なお、図10では、図示の明確化のため、蒸発器出口側温度センサ51、蒸発器出口側圧力センサ52等の空調制御用のセンサ群の図示を省略している。
エジェクタ25の具体的構成については、図11、図12を用いて説明する。なお、図11における上下の矢印は、エジェクタ25をエジェクタ式冷凍サイクル10aに搭載した状態における上下の各方向を示している。また、図12は、図11のXII部を模式的に拡大した一部断面図であって、第1実施形態の図3に対応する図面である。
エジェクタ25は、図11に示すように、複数の構成部材を組み合わせることによって形成されたボデー30を備えている。具体的には、ボデー30は、角柱状あるいは円柱状の金属もしくは樹脂にて形成されてエジェクタ25の外殻を形成するハウジングボデー31を有している。さらに、ハウジングボデー31の内部には、ノズル32、ミドルボデー33、ロワーボデー34等が固定されている。
ハウジングボデー31には、放熱器12から流出した冷媒を内部へ流入させる冷媒流入口31a、蒸発器14から流出した冷媒を吸引する冷媒吸引口31b、ボデー30の内部に形成された気液分離空間30fにて分離された液相冷媒を蒸発器14の冷媒入口側へ流出させる液相冷媒流出口31c、および気液分離空間30fにて分離された気相冷媒を圧縮機11の吸入口側へ流出させる気相冷媒流出口31d等が形成されている。
さらに、本実施形態では、気液分離空間30fと液相冷媒流出口31cとを接続する液相冷媒通路に、蒸発器14へ流入させる冷媒を減圧させる減圧手段としてのオリフィス31iを配置している。なお、本実施形態の気液分離空間30fは、第1実施形態で説明した気液分離器13に対応する構成であり、本実施形態のオリフィス31iは、第1実施形態で説明した固定絞り13aに対応する構成である。
本実施形態のノズル32は、冷媒流れ方向に先細る略円錐形状の金属製(例えば、ステンレス合金)の部材で形成されている。さらに、ノズル32は、軸方向が鉛直方向(図11の上下方向)となるように、ハウジングボデー31の内部に圧入等の手段によって固定されている。ノズル32の上方側とハウジングボデー31との間には、冷媒流入口31aから流入した冷媒を旋回させる略円柱状の旋回空間30aが形成されている。
冷媒流入口31aと旋回空間30aとを接続する冷媒流入通路31eは、旋回空間30aの中心軸方向から見たときに旋回空間30aの内壁面の接線方向に延びている。これにより、冷媒流入通路31eから旋回空間30aへ流入した冷媒は、旋回空間30aの内壁面に沿って流れ、旋回空間30aの中心軸周りに旋回する。従って、本実施形態では、ボデー30のうち旋回空間30aを形成する部位、および旋回空間30aが、旋回流発生手段を構成している。
さらに、本実施形態では、第1実施形態と同様に、エジェクタ式冷凍サイクル10aの熱負荷が、中間的な値となる中負荷運転時から比較的高くなる高負荷運転時に、旋回空間30a内の中心軸側の冷媒圧力を、飽和液相冷媒となる圧力、あるいは、冷媒が減圧沸騰する(キャビテーションを生じる)圧力となるまで低下させるように、旋回空間30aの寸法諸元を設定している。
ノズル32の内部には、旋回空間30aから流出した冷媒を減圧させて下流側へ流出させる減圧用空間30bが形成されている。減圧用空間30bは、円柱状空間とこの円柱状空間の下方側から連続して冷媒流れ方向に向かって徐々に広がる円錐台形状空間とを結合させた回転体形状に形成されており、減圧用空間30bの中心軸は旋回空間30aの中心軸と同軸上に配置されている。
この減圧用空間30bの内部には、通路形成部材35が配置されている。通路形成部材35は、第1実施形態で説明したニードル弁23と同様の機能を果たすものである。より具体的には、通路形成部材35は、ニードル弁23と同様の樹脂にて形成されており、減圧用空間30b側から離れるに伴って断面積が拡大する円錐状に形成されている。また、通路形成部材35の中心軸は、減圧用空間30bの中心軸と同軸上に配置されている。
これにより、ノズル32の減圧用空間30bを形成する部位の内周面と通路形成部材35の外周面との間には、図12に示すように、冷媒を減圧させるための断面円環状のノズル通路25aの少なくとも一部が形成される。
また、ノズル32の内壁面には、冷媒通路断面積が最も縮小した最小通路断面積部25bを形成する喉部32aが設けられている。このため、ノズル通路25aには、最小通路断面積部25bの冷媒流れ上流側に形成されて最小通路断面積部25bへ向かって通路断面積が徐々に縮小する先細部25c、および最小通路断面積部25bの冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部25dが形成されている。
従って、本実施形態のノズル通路25aも、ラバールノズルと同様に冷媒通路断面積が変化する。さらに、本実施形態では、エジェクタ式冷凍サイクル10aの通常運転時に、ノズル通路25aから噴射される噴射冷媒の流速が音速以上となるようにノズル通路25aの冷媒通路断面積を変化させている。
また、本実施形態の通路形成部材35の頂部側には、図12に示すように、ノズル通路25aの通路断面積を拡大させる側に凹んだ溝部35aが、ノズル32の軸周りの全周に亘って形成されている。さらに、この溝部35aは、通路形成部材35を変位させることによって、最小通路断面積部25b冷媒流れ方向の直後に変位させることができる。
さらに、本実施形態のノズル32の内周面は、図12に示すように、ノズル32の軸線を含む断面において、ノズル通路25aの末広部25dを形成する部位の広がり度合が、冷媒流れ下流側に向かって変化している。より具体的には、第2実施形態と同様に、喉部32aの直後の部位の広がり度合が最も大きくなっている。
次に、図11に示すミドルボデー33は、その中心部に表裏(上下)を貫通する貫通穴が設けられた金属製の円板状部材である。さらに、ミドルボデー33の貫通穴の外周側には、通路形成部材35を変位させる駆動手段としての駆動機構37が配置されている。ミドルボデー33は、ハウジングボデー31の内部であって、かつ、ノズル32の下方側に圧入等の手段によって固定されている。
ミドルボデー33の上面とこれに対向するハウジングボデー31の内壁面との間には、冷媒吸引口31bから流入した冷媒を滞留させる流入空間30cが形成されている。さらに、ミドルボデー33の貫通穴の内周面とノズル32の下方側の外周面との間には、流入空間30cと減圧用空間30bの冷媒流れ下流側とを連通させる吸引通路30dが形成されている。
また、ミドルボデー33の貫通穴のうち、吸引通路30dの冷媒流れ下流側には、冷媒流れ方向に向かって徐々に広がる略円錐台形状に形成された昇圧用空間30eが形成されている。昇圧用空間30eは、上述したノズル通路25aから噴射された噴射冷媒と吸引通路30dから吸引された吸引冷媒とを混合させる空間である。昇圧用空間30eの中心軸は旋回空間30aおよび減圧用空間30bの中心軸と同軸上に配置されている。
昇圧用空間30eの内部には、通路形成部材35の下方側が配置されている。さらに、ミドルボデー33の昇圧用空間30eを形成する部位の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、冷媒流れ下流側に向かって通路断面積を徐々に拡大させる形状に形成されている。これにより、この冷媒通路では、噴射冷媒および吸引冷媒の混合冷媒の速度エネルギを圧力エネルギに変換させることができる。
従って、昇圧用空間30eを形成するミドルボデー33の内周面と通路形成部材35の下方側の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合して昇圧させるディフューザ(昇圧部)として機能するディフューザ通路を構成している。
次に、ミドルボデー33の内部に配置された、駆動機構37について説明する。駆動機構37は、圧力応動部材である円形薄板状のダイヤフラム37aを有して構成されている。より具体的には、図11に示すように、ダイヤフラム37aはミドルボデー33の外周側に形成された円柱状の空間を上下の2つの空間に仕切るように、溶接等の手段によって固定されている。
ダイヤフラム37aによって仕切られた2つの空間のうち上方側(流入空間30c側)の空間は、蒸発器14出口側冷媒(具体的には、蒸発器14から流出した冷媒)の温度に応じて圧力変化する感温媒体が封入される封入空間37bを構成している。この封入空間37bには、エジェクタ式冷凍サイクル10aを循環する冷媒を主成分とする感温媒体が予め定めた密度となるように封入されている。
一方、ダイヤフラム37aによって仕切られた2つの空間のうち下方側の空間は、図示しない連通路を介して、蒸発器14出口側冷媒を導入させる導入空間37cを構成している。従って、封入空間37bに封入された感温媒体には、流入空間30cと封入空間37bとを仕切る蓋部材37dおよびダイヤフラム37aを介して、蒸発器14出口側冷媒の温度が伝達される。
さらに、ダイヤフラム37aは、封入空間37bの内圧と導入空間37cへ流入した蒸発器14出口側冷媒の圧力との差圧に応じて変形する。このため、ダイヤフラム37aは弾性に富み、かつ熱伝導が良好で、強靱な材質にて形成することが好ましい。具体的には、ダイヤフラム37aとして、ステンレス(SUS304)製の金属薄板や基布入りEPDM(エチレンプロピレンジエン共重合ゴム)等を採用してもよい。
ダイヤフラム37aの中心部には、円柱状の作動棒37eの一端側端部(上方側端部)が接合されている。作動棒37eは、駆動機構37から通路形成部材35へ、通路形成部材35を変位させるための駆動力を伝達するものである。さらに、作動棒37eの他端側端部(下方側端部)は、通路形成部材35の底面側の外周側に当接するように配置されている。
また、図11に示すように、通路形成部材35の底面は、コイルバネ40の荷重を受けている。コイルバネ40は、通路形成部材35に対して、上方側(通路形成部材35が最小通路断面積部25bにおける通路断面積を縮小する側)に付勢する荷重を加える弾性部材である。従って、通路形成部材35は、旋回空間30a側の高圧冷媒から受ける荷重、気液分離空間30f側の低圧冷媒から受ける荷重、作動棒37eから受ける荷重、およびコイルバネ40から受ける荷重が釣り合うように変位する。
より具体的には、蒸発器14出口側冷媒の温度(過熱度)が上昇すると、封入空間37bに封入された感温媒体の飽和圧力が上昇し、封入空間37bの内圧から導入空間37cの圧力を差し引いた差圧が大きくなる。これにより、ダイヤフラム37aが導入空間37c側へ変位して、通路形成部材35が作動棒37eから受ける荷重が増加する。このため、蒸発器14出口側冷媒の温度が上昇すると、通路形成部材35は、最小通路断面積部25bにおける通路断面積を拡大させる方向(鉛直方向下方側)に変位する。
一方、蒸発器14出口側冷媒の温度(過熱度)が低下すると、封入空間37bに封入された感温媒体の飽和圧力が低下して、封入空間37bの内圧から導入空間37cの圧力を差し引いた差圧が小さくなる。これにより、ダイヤフラム37aが封入空間37b側へ変位して、通路形成部材35が作動棒37eから受ける荷重が減少する。このため、蒸発器14出口側冷媒の温度が低下すると、通路形成部材35は、最小通路断面積部25bにおける通路断面積を縮小させる方向(鉛直方向上方側)に変位する。
本実施形態の駆動機構37では、このように蒸発器14出口側冷媒の過熱度に応じてダイヤフラム37aが通路形成部材35を変位させることによって、蒸発器14出口側冷媒の過熱度が予め定めた基準過熱度KSHに近づくように、最小通路断面積部25bにおける通路断面積を調整している。この基準過熱度KSHは、コイルバネ40の荷重を調整することによって変更することもできる。
なお、作動棒37eとミドルボデー33との隙間は、図示しないO−リング等のシール部材によってシールされており、作動棒37eが変位してもこの隙間から冷媒が漏れることはない。
また、本実施形態では、ミドルボデー33に複数(本実施形態では、3つ)の円柱状の空間を設け、この空間の内部にそれぞれ円形薄板状のダイヤフラム37aを固定して複数の駆動機構37を構成している。さらに、複数の駆動機構37は、通路形成部材35に均等に駆動力を伝達するために、中心軸周りに等角度間隔で配置されている。
次に、ロワーボデー34は、円柱状の金属部材で形成されており、ハウジングボデー3
1の底面を閉塞するように、ハウジングボデー31内にネジ止め等の手段によって固定されている。ロワーボデー34の上方側とミドルボデー33との間には、昇圧用空間30e内に形成されたディフューザ通路から流出した冷媒の気液を分離する気液分離空間30fが形成されている。
気液分離空間30fは、略円柱状の回転体形状の空間として形成されており、気液分離空間30fの中心軸も、旋回空間30a、減圧用空間30b、昇圧用空間30e等の中心軸と同軸上に配置されている。この気液分離空間30fでは、冷媒を中心軸周りに旋回させた際の遠心力の作用によって、冷媒の気液を分離する。さらに、この気液分離空間30fの内容積は、サイクルに負荷変動が生じてサイクルを循環する冷媒循環流量が変動しても、実質的に余剰冷媒を溜めることができない程度の容積になっている。
ロワーボデー34の中心部には、気液分離空間30fに対して同軸上に配置されて、上方側へ向かって延びる円筒状のパイプ34aが設けられている。そして、気液分離空間30fにて分離された液相冷媒は、パイプ34aの外周側に一時的に滞留して、液相冷媒流出口31cから流出する。パイプ34aの内部には、気液分離空間30fにて分離された気相冷媒をハウジングボデー31の気相冷媒流出口31dへ導く気相冷媒流出通路34bが形成されている。
パイプ34aの上端部には、前述したコイルバネ40固定されている。このコイルバネ40は、冷媒が減圧される際の圧力脈動に起因する通路形成部材35の振動を減衰させる振動緩衝部材としての機能も果たしている。また、気液分離空間30fの底面には、液相冷媒中の冷凍機油を気相冷媒流出通路34bを介して圧縮機11内へ戻すオイル戻し穴34cが形成されている。
従って、本実施形態のエジェクタ25は、
冷媒流入口(31a)から流入した冷媒を減圧させる減圧用空間(30b)、減圧用空間(30b)の冷媒流れ下流側に連通して外部から吸引された冷媒を流通させる吸引用通路(30c、30d)、減圧用空間(30b)から噴射された噴射冷媒と吸引用通路(30c、30d)から吸引された吸引冷媒とを混合させる昇圧用空間(30e)が形成されたボデー(30)と、
少なくとも一部が減圧用空間(30b)の内部、および昇圧用空間(30e)の内部に配置されるとともに、減圧用空間(30b)側から離れるに伴って断面積が拡大する円錐状に形成された通路形成部材(35)と、
通路形成部材(35)を変位させる駆動力を出力する駆動手段(37)と、を備え、
ボデー(30)のうち減圧用空間(30b)を形成する部位の内周面と通路形成部材(35)の外周面との間に形成される冷媒通路は、冷媒流入口(31a)から流入した冷媒を減圧させて噴射するノズルとして機能するノズル通路(25a)であり、
ボデー(30)のうち昇圧用空間(30e)を形成する部位の内周面と通路形成部材(35)の外周面との間に形成される冷媒通路は、噴射冷媒および吸引冷媒を混合して昇圧させる昇圧部として機能するディフューザ通路であり、
ノズル通路(25a)には、通路断面積が最も縮小した最小通路断面積部(25b)、最小通路断面積部(25b)の冷媒流れ上流側に形成されて最小通路断面積部(25b)へ向かって通路断面積が徐々に縮小する先細部(25c)、および最小通路断面積部(25b)の冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部(25d)が形成されていると表現することができる。
さらに、本実施形態のエジェクタ(25)の通路形成部材(35)には、ノズル通路(25a)の通路断面積を拡大させる側に凹んだ溝部(35a)が、ノズル(32)の軸周りの全周に亘って形成されており、駆動手段(37)が通路形成部材(35)を変位させることによって、ノズル(32)の軸方向に垂直な方向から見たときに、最小通路断面積部(25b)の冷媒流れ方向の直後に溝部(35a)を配置可能に構成されていると表現することができる。
また、本実施形態のエジェクタ(25)のノズル(32)の軸線を含む断面において、ノズル(32)のうち末広部(25d)を形成する部位は冷媒流れ下流側に向かって広がり度合が変化しており、最小通路断面積部(25b)を形成する喉部(32a)の直後の部位の広がり度合が最も大きくなっていると表現することができる。
その他のエジェクタ式冷凍サイクル10aの構成は、第1実施形態のエジェクタ式冷凍サイクル10と同様である。ここで、本実施形態のエジェクタ25は、サイクルを構成する複数の構成機器を一体化させたものである。従って、本実施形態のエジェクタ式冷凍サイクル10aを作動させても、第1実施形態のエジェクタ式冷凍サイクル10と同様に作動し、同様の効果を得ることができる。
また、本実施形態のエジェクタ25では、旋回流発生手段としての旋回空間30aが形成されているので、エジェクタ式冷凍サイクル10aの中負荷運転時から高負荷運転時には、旋回空間30aにて冷媒を旋回させることで、第1実施形態と同様に、高いエネルギ変化効率を発揮させることができる。
さらに、本実施形態のエジェクタ25では、循環冷媒流量が減少する低負荷運転時に、蒸発器14出口側冷媒の過熱度SHを基準過熱度KSHに近づけるために、駆動機構37が通路形成部材35を最小通路断面積部25bの通路断面積を縮小させる側に変位させる。
これにより、低負荷運転時に、ノズル通路25aの最小通路断面積部25bの冷媒流れ方向の直後に、通路形成部材35の溝部35aを変位させることができる。従って、最小通路断面積部25bを通過する際に増速した冷媒が流通する冷媒通路の通路断面積を、溝部35aによって急拡大させることができる。
従って、第1実施形態と同様に、溝部35aの内部にキャビティを生じさせることができ、旋回空間20aにて冷媒を減圧沸騰させにくい運転条件であっても、第1実施形態と同様に、エジェクタ25に高いエネルギ変換効率を発揮させることができる。
これに加えて、本実施形態のエジェクタ25では、ノズル32のうち末広部25dを形成する部位では、喉部32aの直後の部位の広がり度合が最も大きくなっているので、最小通路断面積部20bを通過する際に増速した冷媒が流通する冷媒通路の通路断面積を、喉部21bの直後で急拡大させることができる。
従って、第2実施形態と同様に、ノズル通路20a内の喉部21bの直後の部位にキャビティを生じさせることができ、旋回空間20aにて冷媒を減圧沸騰させにくい運転条件であっても、第1実施形態と同様に、エジェクタ25に高いエネルギ変換効率を発揮させることができる。
すなわち、本実施形態のエジェクタ25においても、エジェクタ式冷凍サイクル10の負荷変動によらず、高いエネルギ変換効率を発揮させることができる。
(第4実施形態)
本実施形態では、第1実施形態に対して、図13に示すように、ニードル弁23の溝部23bが、低負荷運転時にノズル通路20aの最小通路断面積部20bの冷媒流れ方向上流側に配置されている例を説明する。なお、図13は、第1実施形態で説明した図7に対応する図面である。その他のエジェクタ20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。
本実施形態のように溝部23bを形成しても、低負荷運転時に溝部23bにてキャビティを生じさせることができる。従って、本実施形態のエジェクタ20においても、第1実施形態と同様に、低負荷運転時に、エジェクタ20に高いエネルギ変換効率を発揮させることができる。さらに、高負荷運転時に、溝部23bが最小通路断面積部20bの冷媒流れ方向上流側に配置されていてもよい。
(第5実施形態)
本実施形態では、第1実施形態に対して、図14に示すように、ニードル弁23の溝部23bが、軸周りの全周に亘って連続的に形成されておらず、複数の溝部23cが軸周りに円環状に、かつ、等角度間隔に配置されている。より具体的には、本実施形態では、中心軸方向から見たときに半円弧状に形成された2つの溝部23cが、円環状に配置されている。
なお、図14は、第1実施形態で説明した図7に対応する図面である。その他のエジェクタ20およびエジェクタ式冷凍サイクル10の構成および作動は、第1実施形態と同様である。
本実施形態のように溝部23cを形成しても、低負荷運転時に溝部23cにてキャビティを生じさせることができる。従って、本実施形態のエジェクタ20においても、第1実施形態と同様に、低負荷運転時に、エジェクタ20に高いエネルギ変換効率を発揮させることができる。さらに、本実施形態の変形例として、第4実施形態と同様に、溝部23cを最小通路断面積部20bの冷媒流れ方向上流側に配置してもよい。
(他の実施形態)
本発明は上述の実施形態に限定されることなく、本発明の趣旨を逸脱しない範囲内で、以下のように種々変形可能である。
(1)上述の実施形態では、ニードル弁23および通路形成部材35を熱可塑性樹脂で形成した例を説明したが、もちろん金属で形成してもよい。さらに、金属製のニードル弁23や通路形成部材35であっても、溝部形成工程では、ニードル弁23や通路形成部材35をノズル21、32に押しつけることによって、溝部23b、35aを形成してもよい。
この場合は、ニードル弁23や通路形成部材35として、ステンレス合金で形成されたノズル21、32よりも柔らかい金属(例えば、アルミニウム)で形成されていることが望ましい。
(2)また、上記各実施形態に開示された手段は、実施可能な範囲で適宜組み合わせてもよい。例えば、第1実施形態で説明したエジェクタ20のノズル21の末広部20dの形状を、第2実施形態で説明したように、喉部21bの直後の部位の広がり度合が最も大きくなる形状としてもよい。
さらに、第3実施形態で説明したエジェクタ25の通路形成部材35の溝部35aを廃止してもよいし、喉部32aの直後の部位の広がり度合を一定としてもよい。また、第4、第5実施形態で説明した溝部23aの配置を、第3実施形態で説明したエジェクタ25に適用してもよい。また、変形例として、第1実施形態と同様の円環状の溝部23bを軸方向に複数配置してもよい。
さらに、通路形成部材に溝部23b、35aを設ける手段、およびノズル21、32の末広部20d、25dの形状を、喉部21b、32aの直後の部位の広がり度合が最も大きくなる形状とする手段は、旋回流発生手段(旋回空間20e、筒状部21d、旋回空間30a)に加えて採用されるだけでなく、旋回流発生手段に代えて採用することができる。つまり、エジェクタ20、25において、旋回流発生手段を廃止してもよい。
このように、旋回流発生手段を廃止する際には、第4実施形態で説明したように、溝部23bを最小通路断面積部20bの冷媒流れ方向上流側に配置することで、冷媒の沸騰を効果的に促進できる。
(3)エジェクタ式冷凍サイクル10を構成する各構成機器は、上述の実施形態に開示されたものに限定されない。
例えば、上述の実施形態では、圧縮機11として、電動圧縮機を採用した例を説明したが、圧縮機11として、プーリ、ベルト等を介して車両走行用エンジンから伝達される回転駆動力によって駆動されるエンジン駆動式の圧縮機を採用してもよい。さらに、エンジン駆動式の圧縮機としては、吐出容量の変化により冷媒吐出能力を調整することのできる可変容量型圧縮機、あるいは電磁クラッチの断続により圧縮機の稼働率を変化させて冷媒吐出能力を調整する固定容量型圧縮機を採用することができる。
また、上述の実施形態では、放熱器12として、サブクール型の熱交換器を採用した例を説明したが、凝縮部12aのみからなる通常の放熱器を採用してもよい。さらに、通常の放熱器とともに、この放熱器にて放熱した冷媒の気液を分離して余剰液相冷媒を蓄える受液器(レシーバ)を一体化させたレシーバ一体型の凝縮器を採用してもよい。
また、上述の実施形態では、冷媒としてR134aあるいはR1234yf等を採用可能であることを説明したが、冷媒はこれに限定されない。例えば、R600a、R410A、R404A、R32、R407C、HFO−1234ze、HFO−1234zd等を採用することができる。または、これらの冷媒のうち複数種を混合させた混合冷媒等を採用してもよい。
(4)上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10を、車両用空調装置に適用した例を説明したが、エジェクタ式冷凍サイクル10の適用はこれに限定されない。例えば、据置型空調装置、冷温保存庫、自動販売機用冷却加熱装置等に適用してもよい。
また、上述の実施形態では、本発明に係るエジェクタ式冷凍サイクル10の放熱器12を冷媒と外気とを熱交換させる室外側熱交換器とし、蒸発器14を送風空気を冷却する利用側熱交換器として用いているが、逆に、蒸発器14を外気等の熱源から吸熱する室外側熱交換器として用い、放熱器12を空気あるいは水等の被加熱流体を加熱する室内側熱交換器として用いるヒートポンプサイクルを構成してもよい。
10、10a エジェクタ式冷凍サイクル
20、25 エジェクタ
20a、25a ノズル通路
20b、25b 最小通路断面積部
21、32 ノズル
21b、32a 喉部
22、30 ボデー
23、35 ニードル弁、通路形成部材
23b、35a 溝部
23a、37 ステッピングモータ、駆動機構(駆動手段)

Claims (11)

  1. 蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されるエジェクタであって、
    冷媒を噴射するノズル(21、32)と、
    前記ノズル(21、32)から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(22a、31b)、および前記噴射冷媒と前記冷媒吸引口(22a、31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(20g)を有するボデー(22、30)と、
    前記ノズル(21、32)内に形成された冷媒通路内に配置された通路形成部材(23、35)と、
    前記通路形成部材(23、35)を変位させる駆動手段(23a、37)と、を備え、
    前記ノズル(21、32)の内周面と前記通路形成部材(23、35)の外周面との間に形成される冷媒通路は、冷媒を減圧させるノズル通路(20a、25a)であり、
    前記ノズル通路(20a、25a)には、通路断面積が最も縮小した最小通路断面積部(20b、25b)、前記最小通路断面積部(20b、25b)の冷媒流れ上流側に形成されて前記最小通路断面積部(20b、25b)へ向かって通路断面積が徐々に縮小する先細部(20c、25c)、および前記最小通路断面積部(20b、25b)の冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部(20d、25d)が形成されており、
    前記通路形成部材(23、35)には、前記ノズル通路(20a、25a)の通路断面積を拡大させる側に凹んだ溝部(23b、35a)が形成されていることを特徴とするエジェクタ。
  2. 前記溝部(23b、35a)は、前記ノズル(21、32)の軸周りの全周に亘って形成されていることを特徴とする請求項1に記載のエジェクタ。
  3. 前記溝部(23b、35a)は、前記ノズル通路(20a、25a)へ流入した液相冷媒が沸騰を開始する位置に形成されていることを特徴とする請求項1または2に記載のエジェクタ。
  4. 前記駆動手段(23a、37)が前記通路形成部材(23、35)を変位させることによって、前記ノズル(21、32)の軸方向に垂直な方向から見たときに、前記最小通路断面積部(20b、25b)の冷媒流れ方向の直後に前記溝部(23b、35a)を配置可能に構成されていることを特徴とする請求項1ないし3のいずれか1つに記載のエジェクタ。
  5. 前記駆動手段(23a、37)が、前記通路形成部材(23、35)を前記ノズル(21、32)に接触するように変位させた際に、前記ノズル(21、32)の内周面および前記通路形成部材(23、35)の外周面が面接触するように形成されていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ。
  6. 前記ノズル(21、32)の軸線を含む断面において、前記ノズル(21、32)のうち前記末広部(20d、25d)を形成する部位は冷媒流れ下流側に向かって広がり度合が変化しており、前記最小通路断面積部(20b、25b)を形成する喉部(21b、32a)の直後の部位の広がり度合が最も大きくなっていることを特徴とする請求項1ないし4のいずれか1つに記載のエジェクタ。
  7. 蒸気圧縮式の冷凍サイクル装置(10、10a)に適用されるエジェクタであって、
    冷媒を噴射するノズル(21、32)と、
    前記ノズル(21、32)から噴射された噴射冷媒の吸引作用によって外部から冷媒を吸引する冷媒吸引口(22a、31b)、および前記噴射冷媒と前記冷媒吸引口(22a、31b)から吸引された吸引冷媒とを混合させて昇圧させる昇圧部(20g)を有するボデー(22、30)と、
    前記ノズル(21、32)内に形成された冷媒通路内に配置された通路形成部材(23、35)と、
    前記通路形成部材(23、35)を変位させる駆動手段(23a、37)と、を備え、
    前記ノズル(21、32)の内周面と前記通路形成部材(23、35)の外周面との間に形成される冷媒通路は、冷媒を減圧させるノズル通路(20a、25a)であり、
    前記ノズル通路(20a、25a)は、前記ノズル(21、32)の軸方向に垂直な断
    面における断面形状が環状に形成されており、
    前記ノズル通路(20a、25a)には、通路断面積が最も縮小した最小通路断面積部(20b、25b)、前記最小通路断面積部(20b、25b)の冷媒流れ上流側に形成されて前記最小通路断面積部(20b、25b)へ向かって通路断面積が徐々に縮小する先細部(20c、25c)、および前記最小通路断面積部(20b、25b)の冷媒流れ下流側に形成されて通路断面積が徐々に拡大する末広部(20d、25d)が形成されており、
    前記ノズル(21、32)の軸線を含む断面において、前記ノズル(21、32)のうち前記末広部(20d、25d)を形成する部位は、冷媒流れ下流側に向かって広がり度合が変化しており、前記最小通路断面積部(20b、25b)を形成する喉部(21b、32a)の直後の部位の広がり度合が最も大きくなっていることを特徴とするエジェクタ。
  8. さらに、前記ノズル(21、32)へ流入する冷媒を前記ノズル(21、32)の中心軸周りに旋回させる旋回流発生手段(20e、21d、30a)を備えることを特徴とする請求項1ないし7のいずれか1つに記載のエジェクタ。
  9. 請求項1ないし5のいずれか1つに記載のエジェクタの製造方法であって、
    前記通路形成部材(23)を前記ノズル(21)に押しつけることによって、前記溝部(23b)を形成する溝部形成工程を有することを特徴とするエジェクタの製造方法。
  10. 前記通路形成部材(23)は、樹脂で形成されており、
    前記溝部形成工程では、加熱された前記通路形成部材(23)を前記ノズル(21)に押しつけることを特徴とする請求項9に記載のエジェクタの製造方法。
  11. 請求項8に記載のエジェクタ(20、25)と、
    冷媒を圧縮する圧縮機(11)から吐出された高圧冷媒を過冷却液相冷媒となるまで冷却する放熱器(12)とを、備え、
    前記旋回流発生手段(20e…30a)には、前記過冷却液相冷媒が流入することを特徴とするエジェクタ式冷凍サイクル。
JP2016022118A 2015-03-09 2016-02-08 エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル Active JP6610313B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/556,486 US10316865B2 (en) 2015-03-09 2016-03-02 Ejector, manufacturing method thereof, and ejector-type refrigeration cycle
CN201680014439.7A CN107407293B (zh) 2015-03-09 2016-03-02 喷射器、喷射器的制造方法以及喷射器式制冷循环装置
PCT/JP2016/001114 WO2016143300A1 (ja) 2015-03-09 2016-03-02 エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
DE112016001141.5T DE112016001141B4 (de) 2015-03-09 2016-03-02 Ejektor, Herstellungsverfahren für denselben und Kältekreislauf vom Ejektor-Typ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015045870 2015-03-09
JP2015045870 2015-03-09

Publications (2)

Publication Number Publication Date
JP2016169729A true JP2016169729A (ja) 2016-09-23
JP6610313B2 JP6610313B2 (ja) 2019-11-27

Family

ID=56983335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016022118A Active JP6610313B2 (ja) 2015-03-09 2016-02-08 エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル

Country Status (4)

Country Link
US (1) US10316865B2 (ja)
JP (1) JP6610313B2 (ja)
CN (1) CN107407293B (ja)
DE (1) DE112016001141B4 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108256A1 (en) * 2014-01-30 2017-04-20 Carrier Corporation Ejectors and Methods of Use
WO2018139417A1 (ja) * 2017-01-26 2018-08-02 株式会社デンソー エジェクタ
CN110226044A (zh) * 2017-01-26 2019-09-10 株式会社电装 喷射器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2571135B (en) * 2018-02-20 2020-07-15 Univ Cranfield Jet pump apparatus
DE102021200741A1 (de) 2021-01-27 2022-07-28 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein Verfahren zur Herstellung eines Ejektors und mit diesem Verfahren hergestellter Ejektor

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137577A (ja) * 1997-07-22 1999-02-12 Denso Corp ノズル装置
JP2002056868A (ja) * 2000-08-10 2002-02-22 Honda Motor Co Ltd 燃料電池の流体供給装置
JP2009221883A (ja) * 2008-03-13 2009-10-01 Denso Corp エジェクタ装置およびエジェクタ装置を用いた蒸気圧縮式冷凍サイクル
JP2013185485A (ja) * 2012-03-07 2013-09-19 Denso Corp エジェクタ
US20130277448A1 (en) * 2011-01-04 2013-10-24 Carrier Corporation Ejector
JP2014122779A (ja) * 2012-11-20 2014-07-03 Denso Corp エジェクタ
JP2014190229A (ja) * 2013-03-27 2014-10-06 Denso Corp エジェクタ
JP2014202391A (ja) * 2013-04-03 2014-10-27 株式会社デンソー エジェクタ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4120296B2 (ja) * 2002-07-09 2008-07-16 株式会社デンソー エジェクタおよびエジェクタサイクル
JP5640857B2 (ja) 2011-03-28 2014-12-17 株式会社デンソー 減圧装置および冷凍サイクル
JP5920110B2 (ja) 2012-02-02 2016-05-18 株式会社デンソー エジェクタ
WO2014094890A1 (en) * 2012-12-21 2014-06-26 Xerex Ab Vacuum ejector nozzle with elliptical diverging section

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137577A (ja) * 1997-07-22 1999-02-12 Denso Corp ノズル装置
JP2002056868A (ja) * 2000-08-10 2002-02-22 Honda Motor Co Ltd 燃料電池の流体供給装置
JP2009221883A (ja) * 2008-03-13 2009-10-01 Denso Corp エジェクタ装置およびエジェクタ装置を用いた蒸気圧縮式冷凍サイクル
US20130277448A1 (en) * 2011-01-04 2013-10-24 Carrier Corporation Ejector
JP2013185485A (ja) * 2012-03-07 2013-09-19 Denso Corp エジェクタ
JP2014122779A (ja) * 2012-11-20 2014-07-03 Denso Corp エジェクタ
JP2014190229A (ja) * 2013-03-27 2014-10-06 Denso Corp エジェクタ
JP2014202391A (ja) * 2013-04-03 2014-10-27 株式会社デンソー エジェクタ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170108256A1 (en) * 2014-01-30 2017-04-20 Carrier Corporation Ejectors and Methods of Use
WO2018139417A1 (ja) * 2017-01-26 2018-08-02 株式会社デンソー エジェクタ
CN110226044A (zh) * 2017-01-26 2019-09-10 株式会社电装 喷射器
US11549522B2 (en) 2017-01-26 2023-01-10 Denso Corporation Ejector

Also Published As

Publication number Publication date
US10316865B2 (en) 2019-06-11
DE112016001141T5 (de) 2017-12-21
CN107407293B (zh) 2019-07-30
DE112016001141B4 (de) 2023-07-27
JP6610313B2 (ja) 2019-11-27
CN107407293A (zh) 2017-11-28
US20180045225A1 (en) 2018-02-15

Similar Documents

Publication Publication Date Title
JP6248499B2 (ja) エジェクタ式冷凍サイクル
WO2015029394A1 (ja) エジェクタ式冷凍サイクルおよびエジェクタ
JP6610313B2 (ja) エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
WO2016027407A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP2015031184A (ja) エジェクタ
WO2015019564A1 (ja) エジェクタ
WO2016143290A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP5962571B2 (ja) エジェクタ
JP5929814B2 (ja) エジェクタ
WO2016143300A1 (ja) エジェクタ、エジェクタの製造方法、およびエジェクタ式冷凍サイクル
WO2014185069A1 (ja) エジェクタ
WO2016143292A1 (ja) エジェクタ式冷凍サイクル
JP6512071B2 (ja) エジェクタ式冷凍サイクル
WO2016143291A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
WO2016185664A1 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6380122B2 (ja) エジェクタ
JP6365408B2 (ja) エジェクタ
JP6399009B2 (ja) エジェクタ、およびエジェクタ式冷凍サイクル
JP6011484B2 (ja) エジェクタ
JP2017089963A (ja) エジェクタ式冷凍サイクル
JP6572745B2 (ja) エジェクタ式冷凍サイクル
JP6582950B2 (ja) エジェクタ
JP2016133084A (ja) エジェクタ
JP2017015346A (ja) エジェクタ
JP2017032272A (ja) エジェクタ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190409

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190606

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191014

R151 Written notification of patent or utility model registration

Ref document number: 6610313

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250