JP2012069606A - 不揮発性半導体記憶装置 - Google Patents

不揮発性半導体記憶装置 Download PDF

Info

Publication number
JP2012069606A
JP2012069606A JP2010211326A JP2010211326A JP2012069606A JP 2012069606 A JP2012069606 A JP 2012069606A JP 2010211326 A JP2010211326 A JP 2010211326A JP 2010211326 A JP2010211326 A JP 2010211326A JP 2012069606 A JP2012069606 A JP 2012069606A
Authority
JP
Japan
Prior art keywords
memory
voltage
transistor
wiring
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010211326A
Other languages
English (en)
Inventor
Hitoshi Iwai
斎 岩井
Tomoaki Azuma
知輝 東
Shinichi Oosera
真一 大瀬良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010211326A priority Critical patent/JP2012069606A/ja
Priority to US13/041,579 priority patent/US20120069660A1/en
Priority to KR1020110023763A priority patent/KR20120030923A/ko
Publication of JP2012069606A publication Critical patent/JP2012069606A/ja
Priority to US13/870,164 priority patent/US8659947B2/en
Priority to US14/094,438 priority patent/US8804427B2/en
Priority to US14/321,280 priority patent/US20140313829A1/en
Priority to US15/137,222 priority patent/US20160240261A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • G11C16/14Circuits for erasing electrically, e.g. erase voltage switching circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0483Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells having several storage transistors connected in series
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/102Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components
    • H01L27/1021Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration including bipolar components including diodes only
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B43/00EEPROM devices comprising charge-trapping gate insulators
    • H10B43/20EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels
    • H10B43/23EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels
    • H10B43/27EEPROM devices comprising charge-trapping gate insulators characterised by three-dimensional arrangements, e.g. with cells on different height levels with source and drain on different levels, e.g. with sloping channels the channels comprising vertical portions, e.g. U-shaped channels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/34Determination of programming status, e.g. threshold voltage, overprogramming or underprogramming, retention
    • G11C16/3418Disturbance prevention or evaluation; Refreshing of disturbed memory data
    • G11C16/3427Circuits or methods to prevent or reduce disturbance of the state of a memory cell when neighbouring cells are read or written

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Semiconductor Memories (AREA)
  • Non-Volatile Memory (AREA)
  • Read Only Memory (AREA)

Abstract

【課題】安定した動作を実行可能な不揮発性半導体記憶装置を提供する。
【解決手段】不揮発性半導体記憶装置は、複数のセルユニットを有し且つ複数のセルユニットに保持されたデータを消去する消去動作実行の単位とされる複数のメモリブロックを備える。セルユニットは、メモリストリング、第1トランジスタ、第2トランジスタ、及びダイオードを備える。第1トランジスタは、メモリストリングの一端に一端を接続されている、第2トランジスタは、メモリストリングの他端と第2配線との間に設けられている。ダイオードは、第1トランジスタの他端と第1配線との間に設けられている。ダイオードは、基板に対して垂直方向に延びる第1導電型の第2半導体層と、第2半導体層の上面に接して基板に対して垂直方向に延びる第2導電型の第3半導体層とを備える。
【選択図】図4

Description

本明細書に記載の実施の形態は、電気的にデータの書き換えが可能な不揮発性半導体記憶装置に関する。
近年、メモリの集積度を高めるために、メモリセルを3次元的に配置した半導体記憶装置が多数提案されている。例えば、メモリセルを3次元的に配置した従来の半導体記憶装置の一つに、円柱型構造のトランジスタを用いた半導体記憶装置がある。
上記のような半導体記憶装置に対して消去動作を実行する際、各種配線からメモリセルに流れるリーク電流により、その消去動作は正確に実行されないおそれがある。
特開2007−266143号公報
本発明は、安定した動作を実行可能な不揮発性半導体記憶装置を提供する。
一態様に係る不揮発性半導体記憶装置は、複数のメモリブロック、第1配線、第2配線、及び制御回路を備える。複数のメモリブロックは、各々、複数のセルユニットを有し且つ消去動作の最小単位とされる。第1配線は、複数のメモリブロックに共通に設けられ且つ複数のセルユニットの一端に接続されている。第2配線は、複数のセルユニットの他端に接続されている。制御回路は、複数のメモリブロックに対して印加する電圧を制御する。複数のセルユニットは、各々、メモリストリング、第1トランジスタ、第2トランジスタ、及びダイオードを備える。メモリストリングは、電気的に書き換え可能な複数のメモリトランジスタを直列接続してなる。第1トランジスタは、メモリストリングの一端に一端を接続されている。第2トランジスタは、複数のメモリストリングの他端と第2配線との間に設けられている。ダイオードは、第1トランジスタと第1配線との間に設けられ且つ第1トランジスタ側から第1配線側を順バイアス方向とする。メモリストリングは、第1半導体層、電荷蓄積層、及び第1導電層を備える。第1半導体層は、基板に対して垂直方向に延びる柱状部を含み、メモリトランジスタのボディとして機能する。電荷蓄積層は、柱状部の側面を取り囲むように形成されて、電荷を蓄積可能に構成されている。第1導電層は、電荷蓄積層を介して柱状部の側面を取り囲むように複数のメモリブロックに共通に形成され、メモリトランジスタのゲートとして機能する。ダイオードは、第2半導体層、及び第3半導体層を備える。第2半導体層は、基板に対して垂直方向に延びる第1導電型に構成されている。第3半導体層は、第2半導体層の上面に接して基板に対して垂直方向に延びる第2導電型に構成されている。制御回路は、消去動作の際、選択されるメモリブロックにおいては、第1配線の電圧を第1トランジスタのゲートの電圧よりも第1電圧だけ高く設定してGIDL電流を発生させることにより、メモリトランジスタのボディの電圧を上昇させると共に、メモリトランジスタのゲートの電圧をメモリトランジスタのボディの電圧よりも第2電圧だけ低く設定して、これにより選択されるメモリブロックに対する消去動作を実行する。一方、制御回路は、消去動作の際、非選択とされるメモリブロックにおいては、第1配線の電圧と第1トランジスタのゲートの電圧との間の電圧差を第1電圧と異なる第3電圧に設定してGIDL電流の発生を禁止し、これにより非選択とされるメモリブロックに対する消去動作を禁止する。
一態様に係る不揮発性半導体記憶装置は、複数のメモリブロック、第1配線、第2配線、及び制御回路を備える。メモリブロックは、複数のセルユニットを配列してなり消去動作の最小単位とされる。第1配線は、複数のメモリブロックに共通に設けられ且つ複数のセルユニットの一端に接続されている。第2配線は、複数のセルユニットの他端に接続されている。制御回路は、複数のメモリブロックに対して印加する電圧を制御する。複数のセルユニットは、各々、メモリストリング、第1トランジスタ、第2トランジスタ、及びダイオードを備える。メモリストリングは、電気的に書き換え可能な複数のメモリトランジスタを直列接続してなる。第1トランジスタは、メモリストリングの一端に一端を接続されている。第2トランジスタは、メモリストリングの他端と第2配線との間に設けられている。ダイオードは、複数の第1トランジスタと第1配線との間に設けられ且つ第1配線側から第1トランジスタ側を順バイアス方向とする。メモリストリングは、第1半導体層、電荷蓄積層、及び第1導電層を備える。第1半導体層は、基板に対して垂直方向に延びる柱状部を含み、メモリトランジスタのボディとして機能する。電荷蓄積層は、柱状部の側面を取り囲むように形成されて、電荷を蓄積可能に構成されている。第1導電層は、柱状部の側面及び電荷蓄積層を取り囲むように複数のメモリブロックに共通に形成され、メモリトランジスタのゲートとして機能する。ダイオードは、第2半導体層、及び第3半導体層を備える。第2半導体層は、基板に対して垂直方向に延びる第1導電型に構成されている。第3半導体層は、第2半導体層に接して基板に対して垂直方向に延びる第2導電型に構成されている。制御回路は、消去動作の際、選択されるメモリブロックにおいては、第2配線の電圧を第2トランジスタのゲートの電圧よりも第1電圧だけ高く設定してGIDL電流を発生させることにより、メモリトランジスタのボディの電圧を上昇させると共に、メモリトランジスタのゲートの電圧をメモリトランジスタのボディの電圧よりも第2電圧だけ低く設定して、これにより選択されるメモリブロックに対する消去動作を実行する。一方、制御回路は、消去動作の際、非選択とされるメモリブロックにおいては、第2配線の電圧と第2トランジスタのゲートの電圧との間の電圧差を第1電圧と異なる第3電圧に設定してGIDL電流の発生を禁止し、これにより非選択とされるメモリブロックにおける消去動作を禁止する。
第1実施形態に係る不揮発性半導体記憶装置のブロック図である。 第1実施形態に係る不揮発性半導体記憶装置の概略斜視図である。 第1実施形態に係るメモリセルアレイ1の回路図である。 第1実施形態に係る不揮発性半導体記憶装置の断面図である。 図4の拡大図である。 第1実施形態に係る不揮発性半導体記憶装置の第1の消去動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の第1の消去動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の第1の書込動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の第1の書込動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の第1の書込動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の第1の読出動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の第1の読出動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の第2の消去動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の第2の書込動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の第2の読出動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第1実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第1実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第1実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第2実施形態に係るメモリセルアレイ1の回路図である。 第2実施形態に係る不揮発性半導体記憶装置の断面図である。 第2実施形態に係る不揮発性半導体記憶装置の第1の消去動作時の概略図である。 第2実施形態に係る不揮発性半導体記憶装置の消去動作時のタイミングチャートである。 第1実施形態に係る不揮発性半導体記憶装置の書込動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の書込動作時の概略図である。 第1実施形態に係る不揮発性半導体記憶装置の書込動作時のタイミングチャートである。 第3実施形態に係る不揮発性半導体記憶装置の断面図である。 第4実施形態に係る不揮発性半導体記憶装置の断面図である。 第5実施形態に係る不揮発性半導体記憶装置の断面図である。 第5実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第5実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第5実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第5実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。 第5実施形態に係る不揮発性半導体記憶装置の製造工程を示す断面図である。
以下、図面を参照して、不揮発性半導体記憶装置の一実施形態について説明する。
[第1実施形態]
[構成]
先ず、図1及び図2を参照して、第1実施形態に係る不揮発性半導体記憶装置の構成について説明する。図1は、本発明の第1実施形態に係る不揮発性半導体記憶装置のブロック図であり、図2は、不揮発性半導体記憶装置の概略斜視図である。
第1実施形態に係る不揮発性半導体記憶装置は、図1に示すように、メモリセルアレイ1、及び制御回路1Aを有する。
メモリセルアレイ1は、図2に示すように、データを電気的に記憶するメモリトランジスタMTr1〜MTr4を3次元マトリクス状に配列して構成されている。すなわち、メモリトランジスタMTr1〜MTr4は、水平方向にマトリクス状に配列されるとともに、積層方向(基板に対して垂直方向)にも配列される。
積層方向に並ぶ複数個のメモリトランジスタMTr1〜MTr4は直列接続され、公知のメモリストリングMS(NANDストリング)を構成する。メモリトランジスタMTr1〜MTr4は、その電荷蓄積層に蓄積される電荷の量が変化することで、その閾値電圧が変化する。閾値電圧が変化することにより、メモリトランジスタMTr1〜MTr4が保持するデータが書き替えられる。メモリストリングMSの両端には選択時に導通状態とされるドレイン側選択トランジスタSDTr、及びソース側選択トランジスタSSTrが接続されている。そして、ドレイン側選択トランジスタSDTrのドレインは、ダイオードDIを介してビット線BLに接続され、ソース側選択トランジスタSSTrのソースは、ソース線SLに接続されている。なお、これらメモリセルアレイ1の具体的な回路構成、及びその積層構造は後述する。
制御回路1Aは、メモリセルアレイ1(後述するメモリブロックBK)に対して印加する電圧を制御するように構成されている。制御回路1Aは、ロウデコーダ2、3、センスアンプ4、カラムデコーダ5、及び制御信号生成部(高電圧生成部)6を備える。ロウデコーダ2、3は、図1に示すように、取り込まれたブロックアドレス信号等をデコードし、メモリセルアレイ1を制御する。センスアンプ4は、メモリセルアレイ1からデータを読み出す。カラムデコーダ5は、カラムアドレス信号をデコードし、センスアンプ4を制御する。制御信号生成部6は、基準電圧を昇圧させて、書き込みや消去時に必要となる高電圧を生成し、さらに制御信号を生成し、ロウデコーダ2、3、センスアンプ4、及びカラムデコーダ5を制御する。
次に、図3を参照して、メモリセルアレイ1の回路構成について説明する。図3に示すように、メモリセルアレイ1は、複数のメモリブロックBK_1、BK_2、…、BK_n、複数のビット線BL1、BL2、…、BLn、及び複数のソース線SL1、SL2、…、SLnを有する。なお、複数のメモリブロックBK_1、BK_2、…、BK_nのいずれかを特定しない場合、それらをメモリブロックBKと総称する。複数のビット線BL1、BL2、…、BLnのいずれかを特定しない場合、それらをビット線BLと総称する。複数のソース線SL1、SL2、…、SLnのいずれかを特定しない場合、それらをソース線SLと総称する。
メモリブロックBKは、各々、複数のセルユニットMUを有し、データを消去する消去動作の最小単位とされる。ビット線BLは、メモリブロックBK_1、BK_2、…、BK_nに共通して設けられている。ビット線BLは、複数のセルユニットMUのドレインに接続されている。ソース線SLは、各々、メモリブロックBK毎に分割して設けられている。ソース線SLは、1つのメモリブロックBK中の複数のセルユニットMUのソースに共通に接続されている。
図3に示す例では、セルユニットMUは、1つのメモリブロックBK毎に、k行、n列に亘りマトリクス状に設けられている。セルユニットMUは、メモリストリングMS、ドレイン側選択トランジスタSDTr、ソース側選択トランジスタSSTr、及びダイオードDIを有する。メモリストリングMSは、直列接続されたメモリトランジスタMTr1〜MTr4にて構成されている。ドレイン側選択トランジスタSDTrは、メモリストリングMSのドレイン(メモリトランジスタMTr4のドレイン)に接続されている。ソース側選択トランジスタSSTrは、メモリストリングMSのソース(メモリトランジスタMTr1ソース)に接続されている。なお、メモリストリングMSは、4つ以上のメモリトランジスタにて構成してもよい。
図3に示すように、複数のメモリブロックBKにおいて、マトリクス状に配列されたメモリトランジスタMTr1のゲートは、ワード線WL1に共通接続されている。同様に、メモリトランジスタMTr2〜MTr4のゲートは、各々、ワード線WL2〜WL4に共通接続されている。
図3に示すように、メモリブロックBK_1において、ロウ方向に一列に配列されたドレイン側選択トランジスタSDTrのゲートは、1本のドレイン側選択ゲート線SGD1、1(又は、SGD1、2、…、SGD1、k)に共通接続されている。同様に、メモリブロックBK_2において、ロウ方向に一列に配列されたドレイン側選択トランジスタSDTrのゲートは、1本のドレイン側選択ゲート線SGD2、1(又は、SGD2、2、…、SGD2、k)に共通接続されている。メモリブロックBK_nにおいて、ロウ方向に一列に配列されたドレイン側選択トランジスタSDTrのゲートは、1本のドレイン側選択ゲート線SGDn、1(又は、SGDn、2、…、SGDn、k)に共通接続されている。なお、ドレイン側選択ゲート線SGD1、1、…、SGDn、kのいずれかを特定しない場合、それらをドレイン側選択ゲート線SGDと総称する。ドレイン側選択ゲート線SGDは、各々ロウ方向に延びるようにカラム方向に所定ピッチをもって設けられている。
また、カラム方向に一列に配列されたドレイン側選択トランジスタSDTrの他端は、ダイオードDIを介して1本のビット線BL1(又は、BL2、…、BLn)に共通に接続されている。ダイオードDIは、ドレイン側選択トランジスタSDTr側からビット線BL側を順バイアス方向とするように設けられている。ビット線BLは、メモリブロックBKを跨いでカラム方向に延びるように形成されている。
図3に示すように、メモリブロックBK_1において、ロウ方向に一列に配列されたソース側選択トランジスタSSTrのゲートは、1本のソース側選択ゲート線SGS1、1(又は、SGS1、2、…、SGS1、k)に共通接続されている。同様に、メモリブロックBK_2において、ロウ方向に一列に配列されたソース側選択トランジスタSSTrのゲートは、1本のソース側選択ゲート線SGS2、1(又は、SGS2、2、…、SGS2、k)に共通接続されている。メモリブロックBK_nにおいて、ロウ方向に一列に配列されたソース側選択トランジスタSSTrのゲートは、1本のソース側選択ゲート線SGSn、1(又は、SGSn、2、…、SGSn、k)に共通接続されている。なお、ソース側選択ゲート線SGS1、1、…、SGSn、kのいずれかを特定しない場合、それらをソース側選択ゲート線SGSと総称する。ソース側選択ゲート線SGSは、各々ロウ方向に延びるようにカラム方向に所定ピッチをもって設けられている。
また、メモリブロックBK_1内の全てのソース側選択トランジスタSSTrは、1本のソース線SL1に共通接続されている。同様に、メモリブロックBK_2内の全てのソース側選択トランジスタSSTrは、1本のソース線SL2に共通接続され、メモリブロックBK_n内の全てのソース側選択トランジスタSSTrは、1本のソース線SLnに共通接続されている。
上記のような不揮発性半導体記憶装置の回路構成は、図4に示す積層構造により実現されている。第1実施形態に係る不揮発性半導体記憶装置は、図4に示すように、半導体基板10、半導体基板10上に順次積層されたソース側選択トランジスタ層20、メモリトランジスタ層30、ドレイン側選択トランジスタ層40、ダイオード層50、及び配線層60を有する。
半導体基板10は、ソース線SLとして機能する。ソース側選択トランジスタ層20は、ソース側選択トランジスタSSTrとして機能する。メモリトランジスタ層30は、メモリストリングMS(メモリトランジスタMTr1〜MTr4)として機能する。ドレイン側選択トランジスタ層40は、ドレイン側選択トランジスタSDTrとして機能する。ダイオード層50は、ダイオードDIとして機能する。配線層60は、ビット線BL、及びその他の各種配線として機能する。
半導体基板10は、図4に示すように、その上面に拡散層11を有する。拡散層11は、ソース線SLとして機能する。拡散層11は、メモリブロックBK毎に分断されている。
ソース側選択トランジスタ層20は、図4に示すように、半導体基板10上に絶縁層を介してソース側導電層21を有する。ソース側導電層21は、ソース側選択トランジスタSSTrのゲート、及びソース側選択ゲート線SGSとして機能する。ソース側導電層21は、各メモリブロックBK内にて、カラム方向に所定ピッチをもってロウ方向に延びるストライプ状に形成されている。ソース側導電層21は、ポリシリコン(poly−Si)にて構成されている。
また、ソース側選択トランジスタ層20は、図4に示すように、ソース側ホール22を有する。ソース側ホール22は、ソース側導電層21を貫通するように形成されている。ソース側ホール22は、ロウ方向及びカラム方向にマトリクス状に形成されている。
また、ソース側選択トランジスタ層20は、図4に示すように、ソース側ゲート絶縁層23、及びソース側柱状半導体層24を有する。ソース側柱状半導体層24は、ソース側選択トランジスタSSTrのボディ(チャネル)として機能する。
ソース側ゲート絶縁層23は、ソース側ホール22の側壁に所定の厚みをもって形成されている。ソース側柱状半導体層24は、ソース側ゲート絶縁層23の側面に接し、ソース側ホール22を埋めるように形成されている。ソース側柱状半導体層24は、積層方向(半導体基板10に対して垂直方向)に延びる柱状に形成されている。ソース側柱状半導体層24は、拡散層11上に形成されている。ソース側ゲート絶縁層23は、酸化シリコン(SiO)にて構成されている。ソース側柱状半導体層24は、ポリシリコン(poly−Si)にて構成されている。
上記ソース側選択トランジスタ層20の構成を換言すると、ソース側導電層21は、ソース側ゲート絶縁層23を介してソース側柱状半導体層24を取り囲むように形成されている。
メモリトランジスタ層30は、図4に示すように、ソース側選択トランジスタ層20上に絶縁層を介して順次積層されたワード線導電層31a〜31dを有する。ワード線導電層31a〜31dは、メモリトランジスタMTr1〜MTr4のゲート、及びワード線WL1〜WL4として機能する。
ワード線導電層31a〜31dは、複数のメモリブロックBKに亘って、ロウ方向及びカラム方向に2次元的に(板状に)広がるように形成されている。ワード線導電層31a〜31dは、ポリシリコン(poly−Si)にて構成されている。
また、メモリトランジスタ層30は、図4に示すように、メモリホール32を有する。メモリホール32は、ワード線導電層31a〜31dを貫通するように形成されている。メモリホール32は、ロウ方向及びカラム方向にマトリクス状に形成されている。メモリホール32は、ソース側ホール22と整合する位置に形成されている。
また、メモリトランジスタ層30は、図4に示すように、メモリゲート絶縁層33、及びメモリ柱状半導体層34を有する。メモリ柱状半導体層34は、メモリトランジスタMTr1〜MTr4のボディ(チャネル)として機能する。
メモリゲート絶縁層33は、メモリホール32の側壁に所定の厚みをもって形成されている。メモリ柱状半導体層34は、メモリゲート絶縁層33の側面に接し、メモリホール32を埋めるように形成されている。メモリ柱状半導体層34は、積層方向に延びる柱状に形成されている。メモリ側柱状半導体層34の下面は、ソース柱状半導体層24の上面に接するように形成されている。
ここで、図5を参照して、メモリゲート絶縁層33の構成について詳しく説明する。図5は、図4の拡大図である。メモリゲート絶縁層33は、メモリホール32の側面側からメモリ柱状半導体層34側へと、ブロック絶縁層33a、電荷蓄積層33b、及びトンネル絶縁層33cを有する。電荷蓄積層33bは、電荷を蓄積可能に構成されている。
ブロック絶縁層33aは、図5に示すように、メモリホール32の側壁に所定の厚みをもって形成されている。電荷蓄積層33bは、ブロック絶縁層33aの側壁に所定の厚みをもって形成されている。トンネル絶縁層33cは、電荷蓄積層33bの側壁に所定の厚みをもって形成されている。ブロック絶縁層33a、及びトンネル絶縁層33cは、酸化シリコン(SiO)にて構成されている。電荷蓄積層33bは、窒化シリコン(SiN)にて構成されている。メモリ柱状半導体層34は、ポリシリコン(poly−Si)にて構成されている。
上記メモリトランジスタ層30の構成を換言すると、ワード線導電層31a〜31dは、メモリゲート絶縁層33を介してメモリ柱状半導体層34を取り囲むように形成されている。
ドレイン側選択トランジスタ層40は、図4に示すように、ドレイン側導電層41を有する。ドレイン側導電層41は、ドレイン側選択トランジスタSDTrのゲート、及びドレイン側選択ゲート線SGDとして機能する。
ドレイン側導電層41は、メモリトランジスタ層30の上に絶縁層を介して積層されている。ドレイン側導電層41は、メモリ柱状半導体層34の直上に形成されている。ドレイン側導電層41は、各メモリブロックBK内にて、カラム方向に所定ピッチをもってロウ方向に延びるストライプ状に形成されている。ドレイン側導電層41は、例えば、ポリシリコン(poly−Si)にて構成されている。
また、ドレイン側選択トランジスタ層40は、図4に示すように、ドレイン側ホール42を有する。ドレイン側ホール42は、ドレイン側導電層41を貫通するように形成されている。ドレイン側ホール42は、ロウ方向及びカラム方向にマトリクス状に形成されている。ドレイン側ホール42は、メモリホール32に整合する位置に形成されている。
また、ドレイン側選択トランジスタ層40は、図4に示すように、ドレイン側ゲート絶縁層43、及びドレイン側柱状半導体層44を有する。ドレイン側柱状半導体層44は、ドレイン側選択トランジスタSDTrのボディ(チャネル)として機能する。
ドレイン側ゲート絶縁層43は、ドレイン側ホール42の側壁に所定の厚みをもって形成されている。ドレイン側柱状半導体層44は、ドレイン側ゲート絶縁層43に接し、ドレイン側ホール42を埋めるように形成されている。ドレイン側柱状半導体層44は、積層方向に延びるように柱状に形成されている。ドレイン側柱状半導体層44の下面は、メモリ柱状半導体層34の上面に接するように形成されている。ドレイン側ゲート絶縁層43は、酸化シリコン(SiO)にて構成されている。ドレイン側柱状半導体層44は、ポリシリコン(poly−Si)にて構成されている。また、ドレイン側柱状半導体層44の下部44aは、真性半導体にて構成され、その上部44bは、N+型半導体にて構成されている。
上記ドレイン側選択トランジスタ層40の構成を換言すると、ドレイン側導電層41は、ドレイン側ゲート絶縁層43を介してドレイン側柱状半導体層44を取り囲むように形成されている。
ダイオード層50は、図4に示すように、オーミックコンタクト層51、P型半導体層52、及びN型半導体層53を有する。オーミックコンタクト層51は、P型半導体層52とドレイン側柱状半導体層44とをオーミックコンタクトさせる。P型半導体層52、及びN型半導体層53は、ダイオードDIとして機能する。
オーミックコンタクト層51は、ドレイン側柱状半導体層44の上面から積層方向に延びる柱状に形成されている。P型半導体層52は、オーミックコンタクト層51の上面から積層方向に延びる柱状に形成されている。N型半導体層53は、N型半導体層52の上面から積層方向に延びる柱状に形成されている。P型半導体層52は、P型の不純物がドープされたポリシリコンにて構成されている。N型半導体層53は、N型不純物がドープされたポリシリコンにて構成されている。
配線層60は、図4に示すように、ビット層61を有する。ビット層61は、ビット線BLとして機能する。
ビット層61は、N型半導体層53の上面に接するように形成されている。ビット層61は、ロウ方向に所定ピッチをもってカラム方向に延びるように形成されている。ビット層61は、タングステン等の金属にて構成されている。
[第1の消去動作]
次に、図6を参照して、第1実施形態に係る不揮発性半導体記憶装置の第1の消去動作について説明する。
図6に示す一例において、メモリブロックBK_1が消去動作の対象として選択されるものとする。一方、メモリブロックBK_1とビット線BLを共有するメモリブロックBK_2は消去動作の対象とされず、そこに保持されたデータは消去を禁止される。
消去動作時において、ビット線BLには電圧Vera(例えば17V程度)が印加される。選択メモリブロックBK_1では、ソース線SL1に電圧Veraが印加される一方、ドレイン側選択ゲート線SGD、及びソース側選択ゲート線SGSには電圧VeraよりもΔV(例えば3V程度)小さい電圧Vera−ΔVが印加される。一方、非選択メモリブロックBK_2では、ソース線SL2に電圧0Vが印加される一方、ドレイン側選択ゲート線SGD、及びソース側選択ゲート線SGSにはそれぞれ0V、電源電圧Vdd(=1.2V)が印加される。
具体的に、図6に示すように、選択メモリブロックBK_1においては、ビット線BL1の電圧Veraは、ドレイン側選択トランジスタSDTrのゲートの電圧Vera−ΔVよりも電圧ΔVだけ高い。また、ソース線SL1の電圧Veraは、ソース側選択トランジスタSSTrのゲートの電圧Vera−ΔVよりも電圧ΔVだけ高い。これにより、メモリブロックBK_1内で、ソース側選択トランジスタSSTr、及びドレイン側選択トランジスタSDTrのゲート近傍で、GIDL電流が発生する(符号“E11”参照)。そして、メモリブロックBK_1において、GIDL電流によって生じたホールは、メモリトランジスタMTr1〜MTr4のボディに流れ込み、メモリトランジスタMTr1〜MTr4のボディの電圧は上昇する。
続いて、メモリトランジスタMTr1〜MTr4のゲートの電圧は0Vとされ、メモリトランジスタMTr1〜MTr4のボディの電圧よりも低く設定される。これにより、メモリトランジスタMTr1〜MTr4の電荷蓄積層に高電圧が印加され、メモリブロックBK_1に対する消去動作が実行される。
一方、メモリブロックBK_2においては、ドレイン側選択トランジスタSDTrのゲートの電圧は0Vに設定される。すなわち、ビット線BL1の電圧Veraが、ドレイン側選択トランジスタSDTrのゲートの電圧(0V)よりも電圧Veraだけ高く設定されることとなる。また、ソース線SL2は0Vに設定され、ソース側選択トランジスタSSTrのゲートの電圧は電源電圧Vdd(例えば、1.2V)に設定される。すなわち、ソース側選択トランジスタSSTrのゲートの電圧(Vdd)が、ソース線SL2の電圧(0V)よりも電圧Vddだけ高く設定されることとなる。これにより、メモリブロックBK_2においては、GIDL電流の発生は禁止され、ソース側選択トランジスタSSTrは導通状態とされる。
ここで、メモリブロックBK_1、BK_2の間で、メモリトランジスタMTr1〜MTr4のゲートはワード線WL1〜WL4により共通接続されている。よって、メモリブロックBK_1と共に、メモリブロックBK_2においても、メモリトランジスタMTr1〜MTr4のゲートの電圧は0Vに設定される。
しかしながら、メモリブロックBK_2において、メモリトランジスタMTr1〜MTr4のボディの電圧は、GIDL電流によって昇圧されない。また、メモリブロックBK_2においては、ソース側選択トランジスタSSTrが導通状態となることから、仮にメモリトランジスタMtr1〜Mtr4のボディの電圧がリーク電流等の影響により上昇しても、その電圧は、導通状態となったソース側選択トランジスタSSTrを介してソース線SL2へと放電される(符号“E12”参照)。
さらに、第1実施形態は、ダイオードDIを有している。これにより、ビット線BL1から非選択のメモリブロックBK_2内のメモリトランジスタMTr1〜MTr4のボディに流れる電流を抑制することができる(符号“E13”参照)。
以上のことから、メモリブロックBK_2において、メモリトランジスタMTr1〜MTr4のボディの電圧は、低電圧に保持される。よって、それらメモリトランジスタMTr1〜MTr4の電荷蓄積層には、高電圧が印加されず、第1実施形態は、非選択のメモリブロックBK_2における誤消去を抑制することができる。
上記消去動作を実行する場合の具体的な動作手順を、図7のタイミングチャートを参照して説明する。先ず、図7の時刻t11にて、ビット線BL1、及びソース線SL1の電圧は、消去電圧Vera(例えば、17V)まで上げられる。また、時刻t11にて、ソース側選択ゲート線SGS1、1〜SGS1、kの電圧、及びドレイン側選択ゲート線SGD1,1〜SGD1、kの電圧は、電圧Vera−ΔV(例えば、14V)まで上げられる。これにより、メモリブロックBK_1において、GIDL電流が発生する。
一方、時刻t11にて、ソース線SL2の電圧は、0Vに保持される。また、時刻t11にて、ソース側選択ゲート線SGS2、1〜SGS2、kの電圧は電源電圧Vddまで上げられ、ドレイン側選択ゲート線SGD1,1〜SGD1、kの電圧は0Vに保持される。これにより、メモリブロックBK_2においては、GIDL電流は発生せず、ソース側選択トランジスタSSTrは導通状態となる。
次に、時刻t12にて、ワード線WL1〜WL4の電圧は、0Vまで下げられる。これにより、メモリブロックBK_1内のメモリトランジスタMT1〜MTr4のデータは消去され、メモリブロックBK_2内のメモリトランジスタMT1〜MTr4のデータは保持される。
[第1の書込動作]
次に、図8A、及び図8Bを参照して、第1実施形態に係る不揮発性半導体記憶装置の第1の書込動作について説明する。
図8A、及び図8Bでは、一例として、メモリブロックBK_1内のセルユニットMU(以下、選択セルユニットsMU)を書き込み対象とする場合を説明する。選択セルユニットsMU内のメモリトランジスタMTr3(以下、選択メモリトランジスタsMTr3)に書き込みが行われるものとして説明する。
具体的に、図8Aに示すように、先ず、選択メモリトランジスタsMTr3のデータを“0”データに書込む場合、ビット線BL1の電圧は0Vとされ、選択メモリトランジスタsMTr3のデータを“1”データに保持する場合、ビット線BL1の電圧は電源電圧Vdd(=1.2V)とされる。ソース線SL1、SL2は、電源電圧Vddに設定される。
そして、メモリブロックBK_1、BK_2に含まれるメモリトランジスタMTr1〜MTr4は、そのゲートにパス電圧Vpass(例えば、10V)を印加されて導通状態とされる。ソース側選択トランジスタSSTrは、そのゲートに電圧Vdd+Vtを印加されて導通状態とされる。これにより、メモリブロックBK_1、BK_2に含まれるメモリトランジスタMTr1〜MT4のボディ電圧は、ソース線SL1、SL2を介して電源電圧Vddまで充電される(符号“W11”参照)。すなわち、メモリブロックBK_1、BK_2に含まれるメモリトランジスタMTr1〜MT4のボディの電圧は、書込動作時にビット線BL1に印加され得る電源電圧Vdd以上に設定される。また、所定時間の後、ソース側選択トランジスタSSTrは、再び非導通状態とされる。
続いて、図8Bに示すように、選択セルユニットsMUに含まれるドレイン側選択トランジスタSDTrは、そのゲートに電圧Vdd+Vtを供給される。“0”データを書き込むためビット線BL1に0Vが供給されている場合には、ドレイン側選択トランジスタSDTrは導通状態となり、これにより、選択セルユニットsMUに含まれるメモリトランジスタMTr1〜MTr4のボディの電圧は、ビット線BL1と同じ0Vに放電される(符号“W12”参照)。一方、”1”データに保持するためビット線BL1に電源電圧Vddが供給されている場合には、ドレイン側選択トランジスタSDTrは非導通状態のままとなり、従って、選択セルユニットsMUに含まれるメモリトランジスタMTr1〜MTr4のボディは、放電されず、フローティング状態とされ、その電位は電源電圧Vddに保持される。
そして、選択メモリトランジスタsMTr3のゲートの電圧を、プログラム電圧Vprg(=18V)とする。これにより、“0”データを書き込む場合、選択メモリトランジスタsMTr3のボディの電圧は0Vに放電されているため、選択メモリトランジスタsMTr3の電荷蓄積層には高電圧が印加され、選択メモリトランジスタsMTr3に対して書込動作が実行される。一方、“1”データに保持する場合、選択メモリトランジスタsMTr3のボディはフローティング状態とされ、その電位は電源電圧Vddに保持されているため、選択メモリトランジスタsMTr3の電荷蓄積層には高電圧が印加されず、選択メモリトランジスタsMTr3に対しては書込動作は実行されない。
ここで、複数のメモリユニットMUに亘って、メモリトランジスタMTr1〜MTr4のゲートは、ワード線WL1〜WL4により共通接続されている。選択メモリトランジスタsMTr3のゲートの電圧を、プログラム電圧Vprgとすれば、非選択とされたメモリユニットMUに含まれるメモリトランジスタMTr3のゲートにも、プログラム電圧Vprgが印加される。しかしながら、非選択のメモリユニットMUに含まれるメモリトランジスタMTr1〜MTr4のボディの電圧は、非導通状態とされたドレイン側選択トランジスタSDTr及びソース側選択トランジスタSSTrによって、フローティングとされている。よって、非選択のメモリユニットMUに含まれるメモリトランジスタMTr3の電荷蓄積層には高電圧が印加されず、書込動作は実行されない。
上記書込動作を実行する場合の具体的な動作手順を、図9のタイミングチャートを参照して説明する。先ず、図9の時刻t21にて、ソース線SL1、SL2の電圧は、電源電圧Vddまで上げられ、ソース側選択ゲート線SGS1、1〜SGS1、k、SGS2、1〜SGS2、kの電圧は電圧Vdd+Vtまで上げられる。また、時刻t21にて、ワード線WL1〜WL4の電圧はパス電圧Vpassまで上げられる。これにより、メモリブロックBK_1において、ソース側選択トランジスタSSTrは、導通状態となり、メモリトランジスタMTr1〜MT4のボディの電圧は、電源電圧Vddとなる。また、時刻t21にて、“0”データ書込み時、ビット線BL1は0Vに下げられ、“1”データ保持時、ビット線BL1は電源電圧Vddまで上げられる。
次に、時刻t22にて、ソース側選択ゲート線SGS1、1〜SGS1、k、SGS2、1〜SGS2、kの電圧は、0Vまで下げられる。これにより、メモリブロックBK_1内のソース側選択トランジスタSSTrは、非導通状態となる。
続いて、時刻t23にて、ドレイン側選択トランジスタSGD1、2の電圧が、電圧Vdd+Vtまで上げられる。これにより、選択セルユニットsMUに含まれるドレイン側選択トランジスタSDTrのみが、導通状態となる。
次に、時刻t24にて、ワード線WL3の電圧は、プログラム電圧Vprog(例えば、18V)まで上げられる。これにより、選択メモリトランジスタsMTr3に対して、書込動作が実行される。
[第1の読出動作]
次に、図10を参照して、第1実施形態に係る不揮発性半導体記憶装置の第1の読出動作について説明する。図10に示す一例において、読出動作は、選択メモリトランジスタsMTr3に対して実行される。
具体的に、図10に示すように、ビット線BLは0Vに設定される。ソース線SL1は電源電圧Vddに設定され、ソース線SL2は0Vに設定される。選択セルユニットsMUに含まれるドレイン側選択トランジスタSDTr及びソース側トランジスタSSTrは、選択ゲート線SGD1,2及びSGS1,2に電圧Vdd+vtを与えられて導通状態とされる。そして、メモリトランジスタMTr1、MTr2、MTr4のゲートはパス電圧Vpassを印加され、メモリトランジスタMTr3のゲートはリード電圧Vread(Vread<Vpass)を印加される。これにより、選択メモリトランジスタsMTr3が“1”データを保持している場合、ソース線SL1からビット線BL1に電流が流れ(符号“R1”参照)、ビット線BL1は電源電圧Vddまで充電される。一方、選択メモリトランジスタsMTr3が“0”データを保持している場合(閾値が高い場合)、ソース線SL1からビット線BL1に電流が流れず(符号“R2”参照)、ビット線BL1は充電されず0Vに保持される。そして、ビット線BL1の電圧を検知することにより、選択メモリトランジスタsMTr3に対する読出動作が実行される。
上記書込動作を実行する場合の具体的な動作手順を、図11のタイミングチャートを参照して説明する。先ず、図11の時刻t31にて、ソース線SL1の電圧は、電源電圧Vddまで上げられ、ソース側選択ゲート線SGS1、2の電圧、及びドレイン側選択ゲート線SGD1、2の電圧は、電圧Vdd+Vtまで上げられる。また、時刻t31にて、ワード線WL1、WL2、WL4の電圧は、パス電圧Vpassまで上げられる。これにより、メモリトランジスタMTr1、2、4、ソース側選択トランジスタSSTr、及びドレイン側選択トランジスタSDTrは、導通状態となる。
次に、時刻t32にて、ワード線WL3の電圧は、リード電圧Vreadまで上げられる。この後、ビット線BL1の電圧を検知することによって、選択メモリトランジスタsMTr3に対する読出動作が実行される。
[第2の消去動作]
次に、図12を参照して、第1実施形態に係る不揮発性半導体記憶装置の第2の消去動作について説明する。この第2の消去動作においては、図12に示すように、時刻t11にて、ソース線SL2、ドレイン側選択ゲート線SGD2、1〜SGD2、k、及びソース側選択ゲート線SGS2、1〜SGS2、kは、電圧V1(=5V)まで上げられ、この点で第1の消去動作と異なる。
上記の電圧V1により、上記の第2の消去動作時、非選択のメモリブロックBK_2内のソース側選択トランジスタSSTr、及びドレイン側選択トランジスタSDTrのゲート絶縁膜に印加される電圧は、第1の消去動作時よりも低くなる。したがって、第2の消去動作によれば、耐圧の低いソース側選択トランジスタSSTr、及びドレイン側選択トランジスタSDTrであっても、その破損を抑制することができる。
[第2の書込動作]
次に、図13を参照して、第1実施形態に係る不揮発性半導体記憶装置の第2の書込動作について説明する。ここで、第1の書込動作は、図8の符号“W11”に示したように、メモリブロックBK_1、BK_2内のメモリトランジスタMTr1〜MT4のボディを電源電圧Vddまで充電する充電工程を実行するものである。これに対して、第2の書込動作は、第1の書込動作からボディの電源電圧Vddへの充電工程を省略したものである。すなわち、図13に示すように、第2の書込動作において、時刻t21にて、ソース側選択ゲート線SGS1、1〜SGS1、k、SGS2、1〜SGS2、kは、0Vに保持される。このような第2の書込動作であっても、第2の書込動作の実行前に、ドレイン側選択ゲート線SGD1,2が0VからVdd+Vtに立ち上がり、これにより電源電圧Vddが与えられたビット線BLに接続されたメモリユニットMUのボディは電源電圧Vddまで充電されフローティング状態とされるので、同様の書込動作が実行できる。
[第2の読出動作]
次に、図14を参照して、第1実施形態に係る不揮発性半導体記憶装置の第2の読出動作について説明する。第2の読出動作においては、選択セルユニットMU内のメモリトランジスタMTr1、2、4のゲート、及び選択メモリトランジスタsMTr3のゲートに印加する電圧が、第1の読出動作と異なる。すなわち、図14に示すように、時刻t31にて、ワード線WL3は0Vに保持され、ワード線WL1、WL2、WL4はリード電圧Vreadまで上げられる。
[製造方法]
次に、図15〜図18を参照して、第1の実施形態に係る不揮発性半導体記憶装置の製造方法について説明する。
先ず、図15に示すように、ソース側選択トランジスタ層20、メモリトランジスタ層30、及びドレイン側選択トランジスタ層40を形成する。ここで、ドレイン側ホール42の上部は埋められることなく、そのまま残される。
次に、図16に示すように、ドレイン側ホール42内のドレイン側柱状半導体層44の上部にオーミックコンタクト層51を堆積させる。続いて、図17に示すように、ドレイン側ホール42内のオーミックコンタクト層51の上部に、P型半導体層52を堆積させる。そして、図18に示すように、ドレイン側ホール42内のP型半導体層52の上部に、及びN型半導体層53を堆積させる。例えば、N型半導体層53は、ポリシリコンを堆積させた後、そのポリシリコンにN+イオンを注入することによって形成される。
[第2実施形態]
[構成]
次に、図19を参照して、第2実施形態に係る不揮発性半導体記憶装置に含まれるメモリセルアレイ1の回路構成について説明する。図19に示すように、第2実施形態においては、ダイオードDIが、ビット線BL側からドレイン側選択トランジスタSDTr側へと順方向になるように設けられており、この点が第1実施形態と異なる。なお、第2実施形態において、第1実施形態と同様の構成については、同一の符号を付し、その説明を省略する。
上記のような不揮発性半導体記憶装置の回路構成は、図20に示す積層構造により実現されている。図20は、第2実施形態に係る不揮発性半導体記憶装置の断面図である。
図20に示すように、第2実施形態においては、ダイオード層50aの構成が、第1実施形態と異なる。ダイオード層50aは、N型半導体層54、及びP型半導体層55を有する。N型半導体層54は、ドレイン側柱状半導体層44の上面から積層方向に延びるように柱状に形成されている。P型半導体層55は、N型半導体層54の上面から積層方向に延びるように柱状に形成されている。また、P型半導体層55の上面は、ビット層61の下面に接するように形成されている。N型半導体層54は、N型の不純物をドープされたポリシリコンにて構成され、P型半導体層55は、P型の不純物をドープされたポリシリコンにて構成されている。
[消去動作]
次に、図21を参照して、第2実施形態に係る不揮発性半導体記憶装置の消去動作について説明する。
図21に示すように、第2実施形態の消去動作は、メモリブロックBK_1内で、ソース側選択トランジスタSSTrのゲート近傍のみでGIDL電流を発生させ(符号“E21”参照)、ドレイン側選択トランジスタSDTrのゲート近傍ではGIDL電流の発生を禁止させる。この点で、第2実施形態の消去動作は、第1実施形態の消去動作と異なる。さらに、第2実施形態は、第1実施形態と逆方向に接続されたダイオードDIを有している。これにより、選択したメモリブロックBK_1からビット線BL1に流れる電流を抑制することができる(符号“E22”参照)。よって、ビット線BL1は、メモリブロックBK_1からのリーク電流で充電されない。従って、メモリブロックBK_2には、リーク電流は流れない。以上により、第2実施形態の消去動作は、非選択のメモリブロックBK_2における誤消去を抑制することができる。
上記消去動作を実行する場合、第1実施形態と異なり、図22に示すように、時刻t11にて、ビット線BL1は0Vに保持され、ドレイン側選択ゲート線SGD2,1〜SGD2、k及びソース側選択ゲート線SGS2、1〜SGS2、kは、0Vに保持される。
[書込動作]
次に、図23A、及び図23Bを参照して、第2実施形態に係る不揮発性半導体記憶装置の書込動作について説明する。
図23A、及び図23Bでは、一例として、メモリブロックBK_1内の選択セルユニットsMU内のメモリトランジスタMTr3に書き込みが行われるものとして説明する。
ビット線BL1に印加される電圧は0V又は電源電圧Vdd(=1.2V)とされる点は、第1実施形態の不揮発性半導体記憶装置の書込動作と同様である。ただし、図23Aに示すように、ソース線SL1は、書込動作の開始前において、負の電圧−VSGを与えられる。この点において、第1実施形態と異なっている。
メモリブロックBK_1のソース側選択トランジスタSSTrは、そのゲートに0Vを印加され、これにより、メモリブロックBK_1中のメモリユニットMUのボディは、負の電圧−VSGまで一旦充電される。
一方、メモリブロックBK_1のドレイン側選択トランジスタSDTrは、そのゲートに当初−VSGを与えられ、これにより、メモリブロックBK_1のドレイン側選択トランジスタSDTrは、メモリブロックBK_1のメモリユニットMUのボディが負の電圧−VSGに充電されている間、非導通状態に維持される。
その後、書込み動作の段階では、図23Bに示すように、ソース線SL1の電位は負の電圧−VSGから0Vに上昇されると共に、選択メモリユニットsMUに接続されるドレイン側選択ゲート線SGD1,2は電源電圧Vddを与えられる。これにより、選択メモリユニットsMUのボディの電位は、ビット線BL1に与えられた電位に従って、0V又は電源電圧Vdd(フローティング状態)となる。また、選択メモリブロックBK_1中の非選択メモリユニットMUに接続されるドレイン側選択ゲート線SGD1,1、1,3〜1、kは、0Vを与えられ、これにより、非選択のメモリユニットMUのボディは0V又は電源電圧Vddまで充電されてフローティング状態となる。以下、第1実施形態と同様にして、選択メモリブロックBK_1に対する書込動作が実行される。
なお、非選択の面路意ブロックBK_2では、ドレイン側選択ゲート線SGD2,1〜2、kが終始0Vに維持され、ソース側選択ゲート線SGS2,1〜2、k、及びソース線SL2が終始電源電圧Vddに維持される。
図24は、上記の動作の具体的なタイミングチャートを示している。先ず、図24の時刻t21にて、ソース線SL1、及びドレイン側選択ゲート線SGD1、1〜SGD1、kは、負の電圧―VSGまで下げられる。これにより、メモリブロックBK_1内のソース側選択トランジスタSSTrは、導通状態となる。そして、メモリブロックBK_1に含まれるメモリトランジスタMTr1〜MT4のボディ電圧は、ソース線SL1の電圧と同じ負の電圧―VSGまで放電される。また、時刻t21にて、ワード線WL1〜WL4は、パス電圧Vpassまで上げられる。
次に、時刻t22にて、ソース線SL1、及びドレイン側選択ゲート線SGD1、1〜SGD1、kは、0Vまで上げられる。つづいて、時刻t23にて、ドレイン側選択ゲート線SGD1、2は、電源電圧Vddまで上げられる。これにより、選択セルユニットsMUに含まれるドレイン側選択トランジスタSDTrは、導通状態となり、選択セルユニットsMUに含まれるメモリトランジスタMTr1〜MTr4のボディの電圧は、0V、又は電源電圧Vdd(フローティング状態)となる。
そして、時刻t24にて、ワード線WL3は、プログラム電圧Vprgまで上げられる。これにより、選択メモリトランジスタsMTr3に対して、書込動作が実行される。
[読出動作]
第2実施形態に係る不揮発性半導体記憶装置の読出動作は、第1実施形態と同様である。よって、その説明は省略する。
[第3実施形態]
[構成]
次に、図25を参照して、第3実施形態に係る不揮発性半導体記憶装置の積層構造について説明する。なお、第3実施形態において、第1及び第2実施形態と同様の構成については、同一符号を付し、その説明を省略する。
第3実施形態は、図25に示すように、第1実施形態の積層構造と略同様のダイオード層50bを有する。ダイオード層50bは、さらに、N型半導体層53の上面から積層方向に柱状に延びるP型半導体層56を有する。この構造によれば、ダイオードDIとして双方向ダイオードが形成される。
[第4実施形態]
[構成]
次に、図26を参照して、第4実施形態に係る不揮発性半導体記憶装置の積層構造について説明する。なお、第4実施形態において、第1乃至第3実施形態と同様の構成については、同一符号を付し、その説明を省略する。
第4実施形態は、図26に示すように、第2実施形態の積層構造と略同様のダイオード層50cを有する。ダイオード層50cは、さらに、P型半導体層55の上面から積層方向に柱状に延びるN型半導体層57を有する。この構造によれば、ダイオードDIとして双方向ダイオードが形成される。
[第5実施形態]
次に、図27を参照して、第5実施形態に係る不揮発性半導体記憶装置の積層構造について説明する。なお、第5実施形態において、第1実施形態と同様の構成については、同一符号を付し、その説明を省略する。
第5実施形態に係る不揮発性半導体記憶装置は、上記実施形態のI状のメモリ柱状半導体層34の代わりに、図27に示すU字状のメモリ半導体層84を有する。この点で、第5実施形態は、上記実施形態と大きく異なる。
第5実施形態に係る不揮発性半導体記憶装置は、図27に示すように、半導体基板10の上に順次積層されたバックゲート層70、メモリトランジスタ層80、選択トランジスタ層90、ダイオード層100、及び配線層110を有する。メモリトランジスタ層80は、メモリトランジスタMTrとして機能する。選択トランジスタ層90は、ドレイン側選択トランジスタSDTr、及びソース側選択トランジスタSSTrとして機能する。ダイオード層100は、ダイオードDIとして機能する。配線層110は、ソース線SL、及びビット線BLとして機能する。
バックゲート層70は、図27に示すように、バックゲート導電層71を有する。バックゲート導電層71は、基板10と平行なロウ方向及びカラム方向に2次元的に広がるように形成されている。バックゲート導電層71は、ポリシリコン(poly−Si)にて構成されている。
バックゲート導電層71は、図27に示すように、バックゲートホール72を有する。バックゲートホール72は、バックゲート導電層71を掘り込むように形成されている。バックゲートホール72は、上面からみてカラム方向を長手方向とする略矩形状に形成されている。バックゲートホール72は、ロウ方向及びカラム方向にマトリクス状に形成されている。
メモリトランジスタ層80は、図27に示すように、バックゲート層70の上層に形成されている。メモリトランジスタ層80は、ワード線導電層81a〜81dを有する。ワード線導電層81a〜81dは、各々、ワード線WL、及びメモリトランジスタMTrのゲートとして機能する。
ワード線導電層81a〜81dは、層間絶縁層を挟んで積層されている。ワード線導電層81a〜81dは、カラム方向に所定ピッチをもってロウ方向を長手方向として延びるように形成されている。ワード線導電層81a〜81dは、ポリシリコン(poly−Si)にて構成されている。
メモリトランジスタ層80は、図27に示すように、メモリホール82を有する。メモリホール82は、ワード線導電層81a〜81d、及び層間絶縁層を貫通するように形成されている。メモリホール82は、バックゲートホール72のカラム方向の端部近傍に整合するように形成されている。
また、バックゲート層70、及びメモリトランジスタ層80は、図27に示すように、メモリゲート絶縁層83、及びメモリ半導体層84を有する。メモリ半導体層84は、メモリトランジスタMTr(メモリストリングMS)のボディとして機能する。メモリゲート絶縁層83は、上記実施形態と同様に、電荷を蓄積する電荷蓄積層を有する。
メモリ半導体層84は、バックゲートホール72、及びメモリホール82を埋めるように形成されている。メモリ半導体層84は、ロウ方向からみてU字状に形成されている。メモリ半導体層84は、基板10に対して垂直方向に延びる一対の柱状部84a、及び一対の柱状部84aの下端を連結する連結部84bを有する。メモリ半導体層84は、ポリシリコン(poly−Si)にて構成されている。
上記バックゲート層70の構成を換言すると、バックゲート導電層71は、メモリゲート絶縁層83を介して連結部84bを取り囲むように形成されている。また、上記メモリトランジスタ層80の構成を換言すると、ワード線導電層81a〜81dは、メモリゲート絶縁層83を介して柱状部84aを取り囲むように形成されている。
選択トランジスタ層90は、図27に示すように、ソース側導電層91a、及びドレイン側導電層91bを有する。ソース側導電層91aは、ソース側選択ゲート線SGS、及びソース側選択トランジスタSSTrのゲートとして機能する。ドレイン側導電層91bは、ドレイン側選択ゲート線SGD、及びドレイン側選択トランジスタSDTrのゲートとして機能する。
ソース側導電層91aは、メモリ半導体層84を構成する一方の柱状部84aの上層に形成され、ドレイン側導電層91bは、ソース側導電層91aと同層であって、メモリ半導体層84を構成する他方の柱状部84aの上層に形成されている。ソース側導電層91a、及びドレイン側導電層91bは、カラム方向に所定ピッチをもってロウ方向に延びるストライプ状に形成されている。ソース側導電層91a、及びドレイン側導電層91bは、ポリシリコン(poly−Si)にて構成されている。
選択トランジスタ層90は、図27に示すように、ソース側ホール92a、及びドレイン側ホール92bを有する。ソース側ホール92aは、ソース側導電層91aを貫通するように形成されている。ドレイン側ホール92bは、ドレイン側導電層91bを貫通するように形成されている。ソース側ホール92a及びドレイン側ホール92bは、各々、メモリホール82と整合する位置に形成されている。
選択トランジスタ層90は、図27に示すように、ソース側ゲート絶縁層93a、ソース側柱状半導体層94a、ドレイン側ゲート絶縁層93b、及びドレイン側柱状半導体層94bを有する。ソース側柱状半導体層94aは、ソース側選択トランジスタSSTrのボディとして機能する。ドレイン側柱状半導体層94bは、ドレイン側柱状半導体層SDTrのボディとして機能する。
ソース側ゲート絶縁層93aは、ソース側ホール92aの側面に所定の厚みをもって形成されている。ソース側柱状半導体層94aは、ソース側ゲート絶縁層93aの側面及び一対の柱状部84aの一方の上面に接し、基板10に対して垂直方向に延びるように柱状に形成されている。ソース側ゲート絶縁層93aは、酸化シリコン(SiO)にて構成されている。ソース側柱状半導体層94aは、ポリシリコン(poly−Si)にて構成されている。ソース側柱状半導体層94aの下部94aaは、真性半導体にて構成され、ソース側柱状半導体層94aの上部94abは、N+型半導体にて構成されている。
ドレイン側ゲート絶縁層93bは、ドレイン側ホール92bの側面に所定の厚みをもって形成されている。ドレイン側柱状半導体層94bは、ドレイン側ゲート絶縁層93bの側面及び一対の柱状部84bの他方の上面に接し、基板10に対して垂直方向に延びるように柱状に形成されている。ドレイン側ゲート絶縁層93bは、酸化シリコン(SiO)にて構成されている。ドレイン側柱状半導体層94bは、ポリシリコン(poly−Si)にて構成されている。ドレイン側柱状半導体層94bの下部94baは、真性半導体にて構成され、ドレイン側柱状半導体層94bの上部94bbは、N+型半導体にて構成されている。
ダイオード層100は、図27に示すように、ソース側オーミックコンタクト層101a、ソース側N型半導体層102a、ドレイン側オーミックコンタクト層101b、ドレイン側P型半導体層102b、及びドレイン側N型半導体層103bを有する。ドレイン側P型半導体層102b、及びドレイン側N型半導体層103bは、ダイオードDIとして機能する。
ソース側オーミックコンタクト層101aは、ソース側柱状半導体層94aの上面から積層方向に延びる柱状に形成されている。ソース側N型半導体層102aは、ソース側オーミックコンタクト層101aの上面から積層方向に延びる柱状に形成されている。ソース側N型半導体層102aは、N型の不純物を有するポリシリコンにて構成されている。
ドレイン側オーミックコンタクト層101bは、ドレイン側柱状半導体層94bの上面から積層方向に延びる柱状に形成されている。ドレイン側P型半導体層102bは、ドレイン側オーミックコンタクト層101bの上面から積層方向に延びる柱状に形成されている。ドレイン側N型半導体層103bは、ドレインP型半導体層102bの上面から積層方向に延びる柱状に形成されている。ドレイン側P型半導体層102bは、P型の不純物を有するポリシリコンにて構成され、ドレイン側N型半導体層103bは、N型の不純物を有するポリシリコンにて構成されている。
配線層110は、ソース層111、プラグ層112、及びビット層113を有する。ソース層111は、ソース線SLとして機能する。ビット層113は、ビット線BLとして機能する。
ソース層111は、ソース側N型半導体層102aの上面に接し、ロウ方向に延びるように形成されている。ビット層113は、プラグ層112を介してドレイン側N型半導体層103bの上面に接し、カラム方向に延びるように形成されている。ソース層111、プラグ層112、及びビット層113は、タングステン等の金属にて構成されている。
[製造方法]
次に、図28〜図32を参照して、第5実施形態に係る不揮発性半導体記憶装置の製造方法について説明する。
先ず、図28に示すように、バックゲート層70、メモリトランジスタ層80、及び選択トランジスタ層90を形成する。ここで、ソース側ホール92aの上部、及びドレイン側ホール92bの上部は、埋められることなく、そのまま残される。
次に、図29に示すように、ソース側ホール92a内のソース側柱状半導体層94aの上部にソース側オーミックコンタクト層101aを堆積させる。また、ドレイン側ホール92b内のドレイン側柱状半導体層94bの上部にドレイン側オーミックコンタクト層101bを堆積させる。
続いて、図30に示すように、ソース側ホール92a内のソース側オーミックコンタクト層101aの上部にソース側P型半導体層104を堆積させる。また、ドレイン側ホール92b内のドレイン側オーミックコンタクト層101bの上部にドレイン側P型半導体層102bを堆積させる。次に、図31に示すように、ソース側ホール92a内のソース側P型半導体層104を除去する。
続いて、図32に示すように、ソース側ホール92a内のソース側オーミックコンタクト層101aの上部にソース側N型半導体層102aを堆積させる。また、ドレイン側ホール92b内のドレイン側P型半導体層102bの上部にドレイン側N型半導体層103bを堆積させる。例えば、ソース側N型半導体層102a、及びドレイン側N型半導体層103bは、ポリシリコンを堆積させた後、そのポリシリコンにN+イオンを注入することによって形成される。
[その他実施形態]
以上、実施の形態を説明したが、これらの実施の形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施の形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
10…半導体基板、 20…ソース側選択トランジスタ層、 30、80…メモリトランジスタ層、 40…ドレイン側選択トランジスタ層、 50、50a、50b、50c、100…ダイオード層、 60、110…配線層、 70…バックゲート層、 90…選択トランジスタ層、 Ba…半導体基板、 MTr1〜MTr4…メモリトランジスタ、 SSTr…ソース側選択トランジスタ、 SDTr…ドレイン側選択トランジスタ、 DI…ダイオード。

Claims (15)

  1. 複数のセルユニットを有し且つ消去動作の最小単位とされる複数のメモリブロックと、
    複数の前記メモリブロックに共通に設けられ且つ複数の前記セルユニットの一端に接続された第1配線と、
    複数の前記セルユニットの他端に接続された第2配線と、
    複数の前記メモリブロックに対して印加する電圧を制御する制御回路とを備え、
    複数の前記セルユニットは、各々、
    電気的に書き換え可能な複数のメモリトランジスタを直列接続してなるメモリストリングと、
    前記メモリストリングの一端に一端を接続された第1トランジスタと、
    前記メモリストリングの他端と前記第2配線との間に設けられた第2トランジスタと、
    前記第1トランジスタと前記第1配線との間に設けられ且つ前記第1トランジスタ側から前記第1配線側を順バイアス方向とするダイオードとを備え、
    前記メモリストリングは、
    基板に対して垂直方向に延びる柱状部を含み、前記メモリトランジスタのボディとして機能する第1半導体層と、
    前記柱状部の側面を取り囲むように形成されて、電荷を蓄積可能に構成された電荷蓄積層と、
    前記電荷蓄積層を介して前記柱状部の側面を取り囲むように複数の前記メモリブロックに共通に形成され、前記メモリトランジスタのゲートとして機能する第1導電層とを備え、
    前記ダイオードは、
    前記基板に対して垂直方向に延びる第1導電型の第2半導体層と、
    前記第2半導体層の上面に接して前記基板に対して垂直方向に延びる第2導電型の第3半導体層とを備え、
    前記制御回路は、消去動作の際、
    選択される前記メモリブロックにおいては、前記第1配線の電圧を前記第1トランジスタのゲートの電圧よりも第1電圧だけ高く設定してGIDL電流を発生させることにより、前記メモリトランジスタのボディの電圧を上昇させると共に、前記メモリトランジスタのゲートの電圧を前記メモリトランジスタのボディの電圧よりも第2電圧だけ低く設定して、これにより選択される前記メモリブロックに対する消去動作を実行する一方、
    非選択とされる前記メモリブロックにおいては、前記第1配線の電圧と前記第1トランジスタのゲートの電圧との間の電圧差を前記第1電圧と異なる第3電圧に設定して前記GIDL電流の発生を禁止し、これにより非選択とされる前記メモリブロックに対する消去動作を禁止する
    ことを特徴とする不揮発性半導体記憶装置。
  2. 前記制御回路は、前記消去動作の際、
    選択される前記メモリブロックにおいては、前記第2配線の電圧を前記第2トランジスタのゲートの電圧よりも前記1電圧だけ高く設定して前記GIDL電流を発生させることにより、前記メモリトランジスタのボディの電圧を上昇させると共に、前記メモリトランジスタのゲートの電圧を前記メモリトランジスタのボディの電圧よりも前記第2電圧だけ低く設定して、これにより選択される前記メモリブロックにおける消去動作を実行する一方、
    非選択とされる前記メモリブロックにおいては、前記第2配線の電圧と前記第2トランジスタのゲートの電圧との間の電圧差を前記第3電圧に設定して前記GIDL電流の発生を禁止し、これにより非選択とされる前記メモリブロックにおける消去動作を禁止する
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  3. 前記第2配線は、前記メモリブロック毎に分断されており、
    前記制御回路は、前記消去動作の際、
    非選択とされる前記メモリブロックにおいては、前記第2トランジスタを導通状態とする
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  4. 前記制御回路は、前記メモリトランジスタにデータを書き込む書込動作の際、
    選択した前記セルユニットに含まれる前記第2トランジスタを導通状態として、これにより、選択した前記セルユニットに含まれる前記メモリトランジスタのボディの電圧を、前記書込動作時に前記第1配線に印加され得る電圧以上に設定する第1処理と、
    前記第1処理の後、選択した前記セルユニットに含まれる前記第1トランジスタを導通状態とする第2処理と、
    選択した前記メモリトランジスタのゲートを第4電圧に設定する第3処理とを実行する
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  5. 前記制御回路は、選択される前記セルユニットに含まれ、且つ選択される前記メモリトランジスタからデータを読み出す読出動作の際、
    前記第2配線の電圧を前記第1配線の電圧よりも第5電圧だけ高く設定し、選択した前記セルユニットに含まれる前記第1トランジスタ及び前記第2トランジスタを導通状態とし、選択した前記セルユニットに含まれ且つ非選択とされた前記メモリトランジスタのゲートに第6電圧を印加し、選択した前記メモリトランジスタのゲートに前記第6電圧よりも低い第7電圧を印加する
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  6. 前記ダイオードは、前記第2半導体層の下面に接するオーミックコンタクト層を更に備えた
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  7. 前記ダイオードは、前記第3半導体層の上面に接して前記基板に対して垂直方向に延びる前記第1導電型の第4半導体層を更に備える
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  8. 前記第1半導体層は、一対の前記柱状部の下端を連結する連結部を有する
    ことを特徴とする請求項1記載の不揮発性半導体記憶装置。
  9. 複数のセルユニットを配列してなり且つ前記セルユニットに保持されたデータを消去する消去動作実行の単位とされる複数のメモリブロックと、
    複数の前記メモリブロックに共通に設けられ且つ複数の前記セルユニットの一端に接続された第1配線と、
    複数の前記セルユニットの他端に接続された第2配線と、
    複数の前記メモリブロックに対して印加する電圧を制御する制御回路とを備え、
    複数の前記セルユニットは、各々、
    電気的に書き換え可能な複数のメモリトランジスタを直列接続してなるメモリストリングと、
    前記メモリストリングの一端に一端を接続された第1トランジスタと、
    前記メモリストリングの他端と前記第2配線との間に設けられた第2トランジスタと、
    前記第1トランジスタと前記第1配線との間に設けられ且つ前記第1配線側から前記第1トランジスタ側を順バイアス方向とするダイオードとを備え
    前記メモリストリングは、
    基板に対して垂直方向に延びる柱状部を含み、前記メモリトランジスタのボディとして機能する第1半導体層と、
    前記柱状部の側面を取り囲むように形成されて、電荷を蓄積可能に構成された電荷蓄積層と、
    前記電荷蓄積層を介して前記柱状部の側面を取り囲むように複数の前記メモリブロックに共通に形成され、前記メモリトランジスタのゲートとして機能する第1導電層とを備え、
    前記ダイオードは、
    前記基板に対して垂直方向に延びる第1導電型の第2半導体層と、
    前記第2半導体層に接して前記基板に対して垂直方向に延びる第2導電型の第3半導体層とを備え、
    前記制御回路は、消去動作の際、
    選択される前記メモリブロックにおいては、前記第2配線の電圧を前記第2トランジスタのゲートの電圧よりも第1電圧だけ高く設定してGIDL電流を発生させることにより、前記メモリトランジスタのボディの電圧を上昇させると共に、前記メモリトランジスタのゲートの電圧を前記メモリトランジスタのボディの電圧よりも第2電圧だけ低く設定して、これにより選択される前記メモリブロックに対する消去動作を実行する一方、
    非選択とされる前記メモリブロックにおいては、前記第2配線の電圧と前記第2トランジスタのゲートの電圧との間の電圧差を前記第1電圧と異なる第3電圧に設定して前記GIDL電流の発生を禁止し、これにより非選択とされる前記メモリブロックにおける消去動作を禁止する
    ことを特徴とする不揮発性半導体記憶装置。
  10. 前記第2配線は、前記メモリブロック毎に分断されており、
    前記制御回路は、前記消去動作の際、
    非選択とされる前記メモリブロックにおいては、前記第2トランジスタを導通状態とする
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
  11. 前記制御回路は、前記メモリトランジスタにデータを書き込む書込動作の際、
    選択した前記セルユニットに含まれる前記第2トランジスタを導通状態として、これにより、選択した前記セルユニットに含まれる前記メモリトランジスタのボディの電圧を、前記書込動作時に前記第1配線に印加され得る電圧以下に設定する第1処理と、
    前記第1処理の後、選択した前記セルユニットに含まれる前記第1トランジスタを導通状態とする第2処理と、
    選択した前記メモリトランジスタのゲートを第4電圧に設定する第3処理とを実行する
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
  12. 前記制御回路は、選択される前記セルユニットに含まれ、且つ選択される前記メモリトランジスタからデータを読み出す読出動作の際、
    前記第2配線の電圧を前記第1配線の電圧よりも第5電圧だけ高く設定し、選択した前記セルユニットに含まれる前記第1トランジスタ及び前記第2トランジスタを導通状態とし、選択した前記セルユニットに含まれ且つ非選択とされた前記メモリトランジスタのゲートに第6電圧を印加し、選択した前記メモリトランジスタのゲートに前記第6電圧よりも低い第7電圧を印加する
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
  13. 前記ダイオードは、前記第3半導体層の上面に接して前記基板に対して垂直方向に延びる前記第1導電型の第4半導体層を更に備える
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
  14. 前記第1半導体層の上部は、前記第2導電型の半導体にて構成されている
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
  15. 前記第1半導体層は、一対の前記柱状部の下端を連結する連結部を有する
    ことを特徴とする請求項9記載の不揮発性半導体記憶装置。
JP2010211326A 2010-09-21 2010-09-21 不揮発性半導体記憶装置 Pending JP2012069606A (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2010211326A JP2012069606A (ja) 2010-09-21 2010-09-21 不揮発性半導体記憶装置
US13/041,579 US20120069660A1 (en) 2010-09-21 2011-03-07 Nonvolatile semiconductor memory device
KR1020110023763A KR20120030923A (ko) 2010-09-21 2011-03-17 불휘발성 반도체 기억 장치
US13/870,164 US8659947B2 (en) 2010-09-21 2013-04-25 Nonvolatile semiconductor memory device
US14/094,438 US8804427B2 (en) 2010-09-21 2013-12-02 Nonvolatile semiconductor memory device
US14/321,280 US20140313829A1 (en) 2010-09-21 2014-07-01 Nonvolatile semiconductor memory device
US15/137,222 US20160240261A1 (en) 2010-09-21 2016-04-25 Nonvolatile semiconductor memory device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010211326A JP2012069606A (ja) 2010-09-21 2010-09-21 不揮発性半導体記憶装置

Publications (1)

Publication Number Publication Date
JP2012069606A true JP2012069606A (ja) 2012-04-05

Family

ID=45817660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010211326A Pending JP2012069606A (ja) 2010-09-21 2010-09-21 不揮発性半導体記憶装置

Country Status (3)

Country Link
US (5) US20120069660A1 (ja)
JP (1) JP2012069606A (ja)
KR (1) KR20120030923A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187286A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 不揮発性半導体記憶装置
US9406814B2 (en) 2013-07-30 2016-08-02 Kabushiki Kaisha Toshiba Non-volatile memory device
JP2017537424A (ja) * 2014-10-20 2017-12-14 マイクロン テクノロジー, インク. 区分化sgs線用の装置および方法
JP2018515906A (ja) * 2015-05-08 2018-06-14 サンディスク テクノロジーズ エルエルシー 3次元p−i−nメモリデバイスおよび正孔電流検出を用いたその読取方法
US10134478B2 (en) 2014-10-20 2018-11-20 Micron Technology, Inc. Apparatuses and methods for reducing read disturb
US10686045B2 (en) 2015-03-02 2020-06-16 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
JP2021007143A (ja) * 2019-06-05 2021-01-21 サンディスク テクノロジーズ エルエルシー 3d不揮発性メモリのサブブロックサイズ低減
US11018148B2 (en) 2015-06-04 2021-05-25 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US11183507B2 (en) 2015-02-24 2021-11-23 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012069187A (ja) 2010-09-22 2012-04-05 Toshiba Corp 不揮発性半導体記憶装置
JP5377526B2 (ja) * 2011-01-13 2013-12-25 株式会社東芝 不揮発性半導体記憶装置
JP2013254537A (ja) * 2012-06-06 2013-12-19 Toshiba Corp 半導体記憶装置及びコントローラ
JP2014063555A (ja) * 2012-09-24 2014-04-10 Toshiba Corp 不揮発性半導体記憶装置、及びその制御方法
KR102094336B1 (ko) 2013-02-13 2020-04-14 삼성전자주식회사 메모리 시스템 및 그것의 구동 방법
US9202578B2 (en) * 2013-10-02 2015-12-01 Conversant Intellectual Property Management Inc. Vertical gate stacked NAND and row decoder for erase operation
JP2017010951A (ja) 2014-01-10 2017-01-12 株式会社東芝 半導体記憶装置及びその製造方法
JP2015176627A (ja) * 2014-03-17 2015-10-05 株式会社東芝 半導体記憶装置
US9881674B2 (en) 2014-12-11 2018-01-30 Micron Technology, Inc. Sequential write and sequential write verify in memory device
KR20170119158A (ko) 2016-04-18 2017-10-26 삼성전자주식회사 반도체 메모리 장치 및 반도체 장치
KR20170131121A (ko) * 2016-05-20 2017-11-29 삼성전자주식회사 반도체 소자
US11037943B2 (en) 2017-07-18 2021-06-15 Sandisk Technologies Llc Three-dimensional memory device having on-pitch drain select gate electrodes and method of making the same
US11552094B2 (en) 2017-07-18 2023-01-10 Sandisk Technologies Llc Three-dimensional memory device having on-pitch drain select gate electrodes and method of making the same
WO2019018050A1 (en) * 2017-07-18 2019-01-24 Sandisk Technologies Llc THREE-DIMENSIONAL MEMORY DEVICE WITH SELF-ALIGNED DRAIN SELECTION GRID ELECTRODES AND METHOD FOR MANUFACTURING THE SAME
US10297610B2 (en) 2017-07-18 2019-05-21 Sandisk Technologies Llc Three-dimensional memory device having on-pitch drain select gate electrodes and method of making the same
ES2811516T3 (es) * 2017-11-07 2021-03-12 Lumson Spa Dispositivo limpiador
CN108520881B (zh) * 2018-04-25 2019-10-11 长江存储科技有限责任公司 三维存储器及其数据操作方法
JP2020087495A (ja) 2018-11-29 2020-06-04 キオクシア株式会社 半導体メモリ
KR20200112192A (ko) 2019-03-21 2020-10-05 삼성전자주식회사 비휘발성 메모리 장치와 및 비휘발성 메모리 장치의 이레이즈 방법
JP2021034529A (ja) * 2019-08-22 2021-03-01 キオクシア株式会社 不揮発性半導体記憶装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177197B2 (en) * 2001-09-17 2007-02-13 Sandisk Corporation Latched programming of memory and method
US6944048B2 (en) * 2001-11-29 2005-09-13 Kabushiki Kaisha Toshiba Magnetic random access memory
JP4709523B2 (ja) * 2004-10-14 2011-06-22 株式会社東芝 不揮発性半導体記憶装置
JP4822841B2 (ja) * 2005-12-28 2011-11-24 株式会社東芝 半導体記憶装置及びその製造方法
JP5016832B2 (ja) * 2006-03-27 2012-09-05 株式会社東芝 不揮発性半導体記憶装置及びその製造方法
JP2008034456A (ja) * 2006-07-26 2008-02-14 Toshiba Corp 不揮発性半導体記憶装置
US7508710B2 (en) * 2006-11-13 2009-03-24 Sandisk Corporation Operating non-volatile memory with boost structures
US7696035B2 (en) * 2006-11-13 2010-04-13 Sandisk Corporation Method for fabricating non-volatile memory with boost structures
US7511996B2 (en) * 2006-11-30 2009-03-31 Mosaid Technologies Incorporated Flash memory program inhibit scheme
KR101263823B1 (ko) * 2007-04-19 2013-05-13 삼성전자주식회사 비휘발성 메모리 소자 및 그 동작 방법
JP5142692B2 (ja) 2007-12-11 2013-02-13 株式会社東芝 不揮発性半導体記憶装置
JP2009266312A (ja) 2008-04-25 2009-11-12 Toshiba Corp 半導体記憶装置
KR100979906B1 (ko) 2008-10-09 2010-09-06 서울대학교산학협력단 고집적 플래시 메모리 셀 스택, 셀 스택 스트링 및 그 제조방법
JP2010098067A (ja) * 2008-10-15 2010-04-30 Toshiba Corp 半導体装置
JP5275052B2 (ja) 2009-01-08 2013-08-28 株式会社東芝 不揮発性半導体記憶装置
JP4856203B2 (ja) * 2009-03-23 2012-01-18 株式会社東芝 不揮発性半導体記憶装置
JP5502629B2 (ja) * 2010-07-12 2014-05-28 株式会社東芝 不揮発性半導体記憶装置、及びその製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187286A (ja) * 2013-03-25 2014-10-02 Toshiba Corp 不揮発性半導体記憶装置
US9406814B2 (en) 2013-07-30 2016-08-02 Kabushiki Kaisha Toshiba Non-volatile memory device
US11145370B2 (en) 2014-10-20 2021-10-12 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
JP2017537424A (ja) * 2014-10-20 2017-12-14 マイクロン テクノロジー, インク. 区分化sgs線用の装置および方法
US10134478B2 (en) 2014-10-20 2018-11-20 Micron Technology, Inc. Apparatuses and methods for reducing read disturb
US10381080B2 (en) 2014-10-20 2019-08-13 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US10803945B2 (en) 2014-10-20 2020-10-13 Micron Technology, Inc. Apparatuses and methods for segmented SGS lines
US10854301B2 (en) 2014-10-20 2020-12-01 Micron Technology, Inc. Apparatuses and methods for reducing read disturb
US11183507B2 (en) 2015-02-24 2021-11-23 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
US10686045B2 (en) 2015-03-02 2020-06-16 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
JP2018515906A (ja) * 2015-05-08 2018-06-14 サンディスク テクノロジーズ エルエルシー 3次元p−i−nメモリデバイスおよび正孔電流検出を用いたその読取方法
US11018148B2 (en) 2015-06-04 2021-05-25 Toshiba Memory Corporation Semiconductor memory device and method for manufacturing same
JP2021007143A (ja) * 2019-06-05 2021-01-21 サンディスク テクノロジーズ エルエルシー 3d不揮発性メモリのサブブロックサイズ低減
US11404122B2 (en) 2019-06-05 2022-08-02 Sandisk Technologies Llc Sub-block size reduction for 3D non-volatile memory

Also Published As

Publication number Publication date
US20140085991A1 (en) 2014-03-27
US20130229876A1 (en) 2013-09-05
KR20120030923A (ko) 2012-03-29
US8659947B2 (en) 2014-02-25
US20120069660A1 (en) 2012-03-22
US20160240261A1 (en) 2016-08-18
US8804427B2 (en) 2014-08-12
US20140313829A1 (en) 2014-10-23

Similar Documents

Publication Publication Date Title
JP2012069606A (ja) 不揮発性半導体記憶装置
US8976603B2 (en) Nonvolatile semiconductor memory device
JP4856203B2 (ja) 不揮発性半導体記憶装置
JP5044624B2 (ja) 不揮発性半導体記憶装置
JP5524134B2 (ja) 不揮発性半導体記憶装置
JP4504405B2 (ja) 半導体記憶装置
JP5514158B2 (ja) 不揮発性半導体記憶装置
JP2012069205A (ja) 不揮発性半導体記憶装置
JP2014170598A (ja) 半導体記憶装置
KR101017757B1 (ko) 공통 피웰을 이용하는 낸드 플래시 메모리 및 이의 동작방법
JP2022052505A (ja) メモリデバイス
JP2010198685A (ja) 不揮発性半導体メモリ
JP2011076678A (ja) 不揮発性半導体記憶装置
JP5657063B2 (ja) 半導体記憶装置
US10770117B1 (en) Semiconductor storage device
US20130080718A1 (en) Semiconductor memory device and method of operating the same
JP2012160234A (ja) 不揮発性半導体記憶装置
JP2011210337A (ja) 不揮発性半導体記憶装置およびその書き込み方法
JP5524140B2 (ja) 不揮発性半導体記憶装置
JP2017162879A (ja) 半導体記憶装置およびその製造方法
TW201528273A (zh) 半導體記憶裝置及快閃記憶體的程式化方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130221