JP2011204662A - 光電変換素子およびその製造方法ならびに電子機器 - Google Patents

光電変換素子およびその製造方法ならびに電子機器 Download PDF

Info

Publication number
JP2011204662A
JP2011204662A JP2010160585A JP2010160585A JP2011204662A JP 2011204662 A JP2011204662 A JP 2011204662A JP 2010160585 A JP2010160585 A JP 2010160585A JP 2010160585 A JP2010160585 A JP 2010160585A JP 2011204662 A JP2011204662 A JP 2011204662A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
conversion element
dye
solvent
porous photoelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010160585A
Other languages
English (en)
Inventor
Ryohei Tsuda
遼平 津田
Yusuke Suzuki
祐輔 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2010160585A priority Critical patent/JP2011204662A/ja
Priority to EP11155348A priority patent/EP2363869A3/en
Priority to US13/034,149 priority patent/US20110214739A1/en
Priority to CN201110049519.5A priority patent/CN102194576B/zh
Publication of JP2011204662A publication Critical patent/JP2011204662A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • H01G9/2063Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution comprising a mixture of two or more dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/10Transparent electrodes, e.g. using graphene
    • H10K2102/101Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO]
    • H10K2102/102Transparent electrodes, e.g. using graphene comprising transparent conductive oxides [TCO] comprising tin oxides, e.g. fluorine-doped SnO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/344Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising ruthenium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Abstract

【課題】電解液の揮発を抑制することができ、しかも優れた光電変換特性を得ることができる光電変換素子およびその製造方法を提供する。
【解決手段】透明基板1上に形成された多孔質光電極3と対極6との間に電解液からなる電解質層7が充填された構造を有する光電変換素子において、電解液の溶媒として、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含むものを用いる。イオン液体としては、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンと、76Å3 以上のファンデルワールス体積を有するアニオンとからなるものを用いる。電子対供与性の官能基はエーテル基またはアミノ基である。色素増感光電変換素子においては、多孔質光電極3の表面に光増感色素を結合させる。
【選択図】図1

Description

この発明は、光電変換素子およびその製造方法ならびに電子機器に関し、例えば色素増感太陽電池に用いて好適な光電変換素子およびその製造方法ならびにこの光電変換素子を用いる電子機器に関するものである。
太陽光を電気エネルギーに変換する光電変換素子である太陽電池は太陽光をエネルギー源としているため、地球環境に対する影響が極めて少なく、より一層の普及が期待されている。
従来より、太陽電池としては、単結晶または多結晶のシリコンを用いた結晶シリコン系太陽電池および非晶質(アモルファス)シリコン系太陽電池が主に用いられている。
一方、1991年にグレッツェルらが提案した色素増感太陽電池は、高い光電変換効率を得ることができ、しかも従来のシリコン系太陽電池とは異なり製造の際に大掛かりな装置を必要とせず、低コストで製造することができることなどにより注目されている(例えば、非特許文献1参照。)。
この色素増感太陽電池は、一般的に、光増感色素を結合させた酸化チタンなどからなる多孔質光電極と白金などからなる対極とを対向させ、それらの間に電解液からなる電解質層が充填された構造を有する。電解液としては、ヨウ素やヨウ化物イオンなどの酸化・還元種を含む電解質を溶媒に溶解したものが多く用いられる。
従来、色素増感太陽電池の電解液の溶媒としてはアセトニトリルなどの揮発性の有機溶媒が用いられてきた。しかしながら、この色素増感太陽電池では、破損などにより電解液が大気に露出すると、電解液の蒸散が起き、故障を招くという問題があった。
この問題を解消するために、近年、電解液の溶媒として、揮発性の有機溶媒の代わりにイオン液体と呼ばれる難揮発性の溶融塩が用いられるようになった(例えば、特許文献1および非特許文献2、3参照。)。この結果、色素増感太陽電池における電解液の揮発の問題は改善されつつある。
Nature,353,p.737-740,1991 Inorg.Chem.1996,35,1168-1178 J.Chem.Phys.124,184902(2006)
特表2009−527074号公報
しかしながら、イオン液体は従来用いられている有機溶媒よりも非常に高い粘性率を有するため、このイオン液体を用いた色素増感太陽電池の光電変換特性は、従来の色素増感太陽電池の光電変換特性よりも劣るのが実情である。
そこで、この発明が解決しようとする課題は、電解液の揮発を抑制することができ、しかも優れた光電変換特性を得ることができる色素増感太陽電池などの光電変換素子およびその製造方法を提供することである。
この発明が解決しようとする他の課題は、上記のような優れた光電変換素子を用いた高性能の電子機器を提供することである。
本発明者らは、上記の課題を解決すべく鋭意研究を行った。その研究の過程において、本発明者らは、電解液の溶媒としてイオン液体を用いた場合に光電変換特性が劣化する問題の改善策を模索する中で、改善効果は得られないであろうという予想の下に、イオン液体を揮発性の有機溶媒で希釈する試みを行った。結果は予想通りであった。すなわち、イオン液体を揮発性の有機溶媒で希釈した溶媒を電解液に用いた場合には、電解液の粘性率が低下することにより光電変換特性は向上するが、有機溶媒が揮発してしまう問題は依然として残ってしまう。
しかしながら、上記の検証を進めるために、種々の有機溶媒を用いてイオン液体を希釈する試みをさらに行った結果、イオン液体と有機溶媒との特定の組み合わせでは、光電変換特性を劣化させずに電解液の揮発を有効に抑えることができることを見出した。これは予想外の驚くべき結果であった。そして、こうして予期せず得られた知見に基づいて実験的および理論的検討を進めた結果、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを電解液の溶媒に含ませることが有効であるという結論に至り、この発明を案出するに至った。
すなわち、上記課題を解決するために、この発明は、
多孔質光電極と対極との間に電解液からなる電解質層が充填された構造を有し、
上記電解液の溶媒が、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む光電変換素子である。
また、この発明は、
多孔質光電極と対極との間に、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む溶媒を用いた電解液からなる電解質層が充填された構造を形成する工程を有する光電変換素子の製造方法である。
また、この発明は、
少なくとも一つの光電変換素子を有し、
上記光電変換素子が、
多孔質光電極と対極との間に電解液からなる電解質層が充填された構造を有し、
上記電解液の溶媒が、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む光電変換素子である電子機器である。
上記の各発明において、「イオン液体」は、100℃で液体状態を示す塩(融点もしくはガラス転移温度が100℃以上でも、過冷却により室温で液体状態となるものも含む)のほか、これ以外の塩でも、溶媒を添加することによって一つ以上の相を形成し、液体状態となる塩も含む。イオン液体は、電子対受容性の官能基を有するイオン液体である限り基本的にはどのようなものであってもよく、有機溶媒は、電子対供与性の官能基を有する限り基本的にはどのようなものであってもよい。イオン液体は、典型的には、そのカチオンが電子対受容性の官能基を有するものである。このイオン液体は、好適には、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンと、76Å3 以上のファンデルワールス(van der Waals)体積を有するアニオン(有機アニオンだけでなく、例えばAlCl4 - やFeCl4 - などの無機アニオンも含む)とからなるが、これに限定されるものではない。溶媒中のイオン液体の含有量は必要に応じて選ばれるが、好適には、イオン液体と有機溶媒とからなる溶媒にイオン液体が15重量%(wt%)以上100重量%(wt%)未満含まれる。有機溶媒の電子対供与性の官能基は、好適にはエーテル基またはアミノ基であるが、これに限定されるものではない。
電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む溶媒を用いた電解液は、ゲル状のものであってもよい。
光電変換素子は、典型的には、多孔質光電極に光増感色素が結合(あるいは吸着)した色素増感光電変換素子である。この場合、光電変換素子の製造方法は、典型的には、多孔質光電極に光増感色素を結合させる工程をさらに有する。この多孔質光電極は、半導体からなる微粒子により構成される。半導体は、好適には、酸化チタン(TiO2 )、取り分けアナターゼ型のTiO2 を含む。
多孔質光電極としては、いわゆるコア−シェル構造の微粒子により構成されたものを用いてもよく、この場合には光増感色素を結合させないでもよい。この多孔質光電極としては、好適には、金属からなるコアとこのコアを取り巻く金属酸化物からなるシェルとからなる微粒子により構成されたものが用いられる。このような多孔質光電極を用いると、この多孔質光電極と対極との間に電解質層を充填した場合、電解質層の電解質が金属/金属酸化物微粒子の金属からなるコアと接触することがないことから、電解質による多孔質光電極の溶解を防止することができる。このため、金属/金属酸化物微粒子のコアを構成する金属として、従来使用が困難であった、表面プラズモン共鳴の効果が大きい金(Au)、銀(Ag)、銅(Cu)などを用いることができ、光電変換において表面プラズモン共鳴の効果を十分に得ることができる。また、電解質層の電解質としてヨウ素系の電解質を用いることができる。金属/金属酸化物微粒子のコアを構成する金属としては、白金(Pt)、パラジウム(Pd)などを用いることもできる。金属/金属酸化物微粒子のシェルを構成する金属酸化物としては使用する電解質に溶解しない金属酸化物が用いられ、必要に応じて選ばれる。このような金属酸化物としては、好適には、酸化チタン(TiO2 )、酸化スズ(SnO2 )、酸化ニオブ(Nb2 5 )および酸化亜鉛(ZnO)からなる群より選ばれた少なくとも一種の金属酸化物が用いられるが、これらに限定されない。例えば、酸化タングステン(WO3 )、チタン酸ストロンチウム(SrTiO3 )などの金属酸化物を用いることもできる。金属/金属酸化物微粒子の粒径は適宜選ばれるが、好適には1〜500nmである。また、金属/金属酸化物微粒子のコアの粒径も適宜選ばれるが、好適には1〜200nmである。
光電変換素子は、最も典型的には、太陽電池として構成される。ただし、光電変換素子は、太陽電池以外のもの、例えば光センサーなどであってもよい。
電子機器は、基本的にはどのようなものであってもよく、携帯型のものと据え置き型のものとの双方を含むが、具体例を挙げると、携帯電話、モバイル機器、ロボット、パーソナルコンピュータ、車載機器、各種家庭電気製品などである。この場合、光電変換素子は、例えばこれらの電子機器の電源として用いられる太陽電池である。
上述のように構成されたこの発明においては、電解液の溶媒中において、イオン液体の電子対受容性の官能基と有機溶媒の電子対供与性の官能基との間に水素結合が形成される。この水素結合を介してイオン液体の分子と有機溶媒の分子とが結合するため、有機溶媒単体を用いた場合に比べて、有機溶媒、したがって電解液の揮発を抑制することができる。また、電解液の溶媒はイオン液体に加えて有機溶媒を含むため、溶媒としてイオン液体だけを用いた場合に比べて電解液の粘性率を低くすることができ、光電変換特性の劣化を防止することができる。
この発明によれば、電解液の揮発を抑制することができ、しかも優れた光電変換特性を得ることができる光電変換素子を実現することができる。そして、この優れた光電変換素子を用いることにより、高性能の電子機器を実現することができる。
この発明の第1の実施の形態による色素増感光電変換素子を示す断面図である。 この発明の第1の実施の形態による色素増感光電変換素子の動作原理を説明するための略線図である。 Z907の構造式を示す略線図である。 Z907を単独で多孔質光電極に結合させた色素増感光電変換素子のIPCEスペクトルの測定結果を示す略線図である。 色素Aの構造式を示す略線図である。 色素Aを単独で多孔質光電極に結合させた色素増感光電変換素子のIPCEスペクトルの測定結果を示す略線図である。 Z991の構造式を示す略線図である。 種々の溶媒のTG−DTA測定の結果を示す略線図である。 種々の溶媒のTG−DTA測定の結果を示す略線図である。 種々の溶媒のTG−DTA測定の結果を示す略線図である。 種々の溶媒のTG−DTA測定の結果を示す略線図である。 この発明の第1の実施の形態による色素増感光電変換素子の加速試験を行った結果を示す略線図である。 EMImTCBとtriglymeとの混合溶媒中のEMImTCBの含有量と蒸発速度低下率との関係を測定した結果を示す略線図である。 種々のイオン液体のアニオンのファンデルワールス体積と蒸発速度低下率との関係を測定した結果を示す略線図である。 電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒との間に水素結合が形成される様子を示す略線図である。 電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を複数有する有機溶媒との間に複数の水素結合が形成される様子を示す略線図である。 この発明の第2の実施の形態による色素増感光電変換素子を示す断面図である。 この発明の第2の実施の形態による色素増感光電変換素子において多孔質光電極を構成する金属/金属酸化物微粒子の構成を示す断面図である。 この発明の第3の実施の形態による光電変換素子を示す断面図である。
以下、発明を実施するための形態(以下「実施の形態」とする)について説明する。なお、説明は以下の順序で行う。
1.第1の実施の形態(色素増感光電変換素子およびその製造方法)
2.第2の実施の形態(色素増感光電変換素子およびその製造方法)
3.第3の実施の形態(光電変換素子およびその製造方法)
〈1.第1の実施の形態〉
[色素増感光電変換素子]
図1は第1の実施の形態による色素増感光電変換素子を示す要部断面図である。
図1に示すように、この色素増感光電変換素子においては、透明基板1の一主面に透明電極2が設けられ、この透明電極2上に多孔質光電極3が設けられている。この多孔質光電極3には一種または複数種の光増感色素(図示せず)が結合している。一方、対向基板4の一主面に透明導電層5が設けられ、この透明導電層5上に対極6が設けられている。そして、透明基板1上の多孔質光電極3と対向基板4上の対極6との間に電解液からなる電解質層7が充填され、これらの透明基板1および対向基板4の外周部が封止材(図示せず)で封止されている。
多孔質光電極3としては、典型的には、半導体微粒子を焼結させた多孔質半導体層が用いられる。光増感色素はこの半導体微粒子の表面に吸着している。半導体微粒子の材料としては、シリコンに代表される元素半導体、化合物半導体、ペロブスカイト構造を有する半導体などを用いることができる。これらの半導体は、光励起下で伝導帯電子がキャリアとなり、アノード電流を生じるn型半導体であることが好ましい。具体的には、例えば、酸化チタン(TiO2 )、酸化亜鉛(ZnO)、酸化タングステン(WO3 )、酸化ニオブ(Nb2 5 )、チタン酸ストロンチウム(SrTiO3 )、酸化スズ(SnO2 )などの半導体が用いられる。これらの半導体の中でも、TiO2 、取り分けアナターゼ型のTiO2 を用いることが好ましい。ただし、半導体の種類はこれらに限定されるものではなく、必要に応じて、二種類以上の半導体を混合または複合化して用いることができる。また、半導体微粒子の形態は粒状、チューブ状、棒状などのいずれであってもよい。
上記の半導体微粒子の粒径に特に制限はないが、一次粒子の平均粒径で1〜200nmが好ましく、特に好ましくは5〜100nmである。また、半導体微粒子よりも大きいサイズの粒子を混合し、この粒子で入射光を散乱させ、量子収率を向上させることも可能である。この場合、別途混合する粒子の平均サイズは20〜500nmであることが好ましいが、これに限定されるものではない。
多孔質光電極3は、できるだけ多くの光増感色素を結合させることができるように、半導体微粒子からなる多孔質半導体層の内部の空孔に面する微粒子表面も含めた実表面積の大きいものが好ましい。このため、多孔質光電極3を透明電極2の上に形成した状態での実表面積は、多孔質光電極3の外側表面の面積(投影面積)に対して10倍以上であることが好ましく、100倍以上であることがさらに好ましい。この比に特に上限はないが、通常1000倍程度である。
一般に、多孔質光電極3の厚さが増し、単位投影面積当たりに含まれる半導体微粒子の数が増加するほど、実表面積が増加し、単位投影面積に保持することができる光増感色素の量が増加するため、光吸収率が高くなる。一方、多孔質光電極3の厚さが増加すると、光増感色素から多孔質光電極3に移行した電子が透明電極2に達するまでに拡散する距離が増加するため、多孔質光電極3内での電荷再結合による電子の損失も大きくなる。従って、多孔質光電極3には好ましい厚さが存在するが、この厚さは一般的には0.1〜100μmであり、1〜50μmであることがより好ましく、3〜30μmであることが特に好ましい。
電解質層7を構成する電解液としては、酸化還元系(レドックス対)を含む溶液が挙げられる。酸化還元系としては、具体的には、例えば、ヨウ素(I2 )と金属または有機物のヨウ化物塩との組み合わせや、臭素(Br2 )と金属または有機物の臭化物塩との組み合わせなどが用いられる。金属塩を構成するカチオンは、例えば、リチウム(Li+ )、ナトリウム(Na+ )、カリウム(K+ )、セシウム(Cs+ )、マグネシウム(Mg2+)、カルシウム(Ca2+)などである。また、有機物塩を構成するカチオンとしては、テトラアルキルアンモニウムイオン類、ピリジニウムイオン類、イミダゾリウムイオン類などの第四級アンモニウムイオンが好適なものであり、これらを単独に、あるいは二種類以上を混合して用いることができる。
電解質層7を構成する電解液としては、上記のほかに、フェロシアン酸塩とフェリシアン酸塩との組み合わせや、フェロセンとフェリシニウムイオンとの組み合わせなどの金属錯体、ポリ硫化ナトリウム、アルキルチオールとアルキルジスルフィドとの組み合わせなどのイオウ化合物、ビオロゲン色素、ヒドロキノンとキノンとの組み合わせなどを用いることもできる。
電解質層7の電解質としては、上記の中でも特に、ヨウ素(I2 )と、ヨウ化リチウム(LiI)、ヨウ化ナトリウム(NaI)、イミダゾリウムヨーダイドなどの第四級アンモニウム化合物とを組み合わせた電解質が好ましい。電解質塩の濃度は溶媒に対して0.05〜10Mが好ましく、さらに好ましくは0.2〜3Mである。ヨウ素(I2 )または臭素(Br2 )の濃度は0.0005〜1Mが好ましく、さらに好ましくは0.001〜0.5Mである。
この場合、電解質層7を構成する電解液の溶媒としては、少なくとも、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含むものが用いられる。典型的には、電子対受容性の官能基はイオン液体を構成するカチオンが有する。イオン液体のカチオンは、好適には、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンである。この有機カチオンは、イミダゾリウムカチオン、ピリジニウムカチオン、チアゾリウムカチオン、ピラゾニウムカチオンなどであるが、これに限定されるものではない。イオン液体のアニオンは、好適には76Å3 以上、より好適には100Å3 以上の大きさのファンデルワールス体積を有するアニオンが用いられる。
電子対受容性の官能基を有するイオン液体の具体例を挙げると以下の通りである。
・EMImTCB:1−エチル−3−メチルイミダゾリウム テトラシアノボレート(1-ethyl-3-methylimidazolium tetracyanoborate)
・EMImTFSI:1−エチル−3−メチルイミダゾリウム ビス(トリフルオロメタンスルホン)アミド(1-ethyl-3-methylimidazolium bis(trifluoromethanesulfone)imide)
・EMImFAP:1−エチル−3−メチルイミダゾリウム トリス(ペンタフルオロエチル)トリフルオロホスヘート(1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate)
・EMImBF4 :1−エチル−3−メチルイミダゾリウム テトラフルオロボレート(1-ethyl-3-methylimidazolium tetrafluoroborate)
電子対供与性の官能基を有する有機溶媒は、蒸発速度を低下させる観点から、好適には下記の化学構造を有するが、これに限定されるものではない。
・エーテル
Figure 2011204662
・ケトン
Figure 2011204662
・アミン構造
第一級アミン
Figure 2011204662
第三級アミン
Figure 2011204662
・芳香族アミン
ピリジン構造
Figure 2011204662
イミダゾール構造
Figure 2011204662
・スルホン
Figure 2011204662
・スルホキシド
Figure 2011204662
電子対供与性の官能基を有する有機溶媒の具体例を挙げると以下の通りである。
・MPN:3−メトキシプロピオニトリル(3-methoxypropionitrile)
・GBL:γ−ブチロラクトン(γ-butyrolactone)
・DMF:N,N−ジメチルホルムアミド(N,N-dimethylformamide)
・diglyme :ジエチレングリコールジメチルエーテル(diethylene glycol dimethyl ether)
・triglyme:トリエチレングリコールジメチルエーテル(triethylene glycol dimethyl
ether)
・tetraglyme:テトラエチレングリコールジメチルエーテル(tetraethylene glycol dimethyl ether)
・PhOAN:フェノキシアセトニトリル(phenoxy acetonitrile)
・PC:プロピレンカーボネート(propylene carbonate)
・aniline :アニリン(aniline)
・DManiline :N,N−ジメチルアニリン(N,N-dimethylaniline)
・NBB:N−ブチルベンズイミダゾール(N-butylbenzimidazole)
・TBP:tert−ブチルピリジン(tert-butylpyridine)
・EMS:エチルメチルスルホン(ethyl methyl sulfone)
・DMSO:ジメチルスルホキシド(dimethyl sulfoxide)
第三級窒素原子を有する有機溶媒の具体例を五つの種類に分けて挙げると以下の通りである。
(1)メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチルメチルアミン、n−プロピルアミン、iso−プロピル、ジプロピルアミン、n−ブチルアミン、sec−ブチルアミン、tert−ブチルアミン
(2)エチレンジアミン
(3)アニリン、N,N−ジメチルアニリン
(4)ホルムアミド、N−メチルホルムアミド、N,N−ジメチルホルムアミド、アセトアミド、N−メチルアセトアミド、N,N−ジメチルアセトアミド
(5)N−メチルピロリドン
(1)〜(4)を一般式で書くと、分子量1000以下の有機分子において、以下の分子骨格を有する分子である。
Figure 2011204662
ただし、式中、R1 、R2 、R3 は、H、Cn m (n=1〜20、m=3〜41)、フェニル基、アルデヒド基およびアセチル基からなる群より選ばれた一つの置換基。
透明基板1は、光が透過しやすい材質と形状のものであれば特に限定されるものではなく、種々の基板材料を用いることができるが、特に可視光の透過率が高い基板材料を用いることが好ましい。また、色素増感光電変換素子に外部から侵入しようとする水分やガスを阻止する遮断性能が高く、また、耐溶剤性や耐候性に優れている材料が好ましい。具体的には、透明基板1の材料としては、石英やガラスなどの透明無機材料や、ポリエチレンテレフタラート、ポリエチレンナフタラート、ポリカーボネート、ポリスチレン、ポリエチレン、ポリプロピレン、ポリフェニレンスルフィド、ポリフッ化ビニリデン、アセチルセルロース、ブロム化フェノキシ、アラミド類、ポリイミド類、ポリスチレン類、ポリアリレート類、ポリスルホン類、ポリオレフィン類などの透明プラスチックが挙げられる。透明基板1の厚さは特に制限されず、光の透過率や、光電変換素子内外を遮断する性能を勘案して、適宜選択することができる。
透明基板1上に設けられる透明電極2は、シート抵抗が小さいほど好ましく、具体的には500Ω/□以下であることが好ましく、100Ω/□以下であることがさらに好ましい。透明電極2を形成する材料としては公知の材料を用いることができ、必要に応じて選択される。この透明電極2を形成する材料は、具体的には、インジウム−スズ複合酸化物(ITO)、フッ素がドープされた酸化スズ(IV)SnO2 (FTO)、酸化スズ(IV)SnO2 、酸化亜鉛(II)ZnO、インジウム−亜鉛複合酸化物(IZO)などが挙げられる。ただし、透明電極2を形成する材料は、これらに限定されるものではなく、二種類以上を組み合わせて用いることもできる。
多孔質光電極3に結合させる光増感色素は増感作用を示すものであれば特に制限はないが、この多孔質光電極3の表面に吸着する酸官能基を有するものが好ましい。光増感色素は、一般的には、カルボキシ基、リン酸基などを有するものが好ましく、この中でも特にカルボキシ基を有するものが好ましい。光増感色素の具体例を挙げると、例えば、ローダミンB、ローズベンガル、エオシン、エリスロシンなどのキサンテン系色素、メロシアニン、キノシアニン、クリプトシアニンなどのシアニン系色素、フェノサフラニン、カブリブルー、チオシン、メチレンブルーなどの塩基性染料、クロロフィル、亜鉛ポルフィリン、マグネシウムポルフィリンなどのポルフィリン系化合物が挙げられ、その他のものとしてはアゾ色素、フタロシアニン化合物、クマリン系化合物、ビピリジン錯化合物、アントラキノン系色素、多環キノン系色素などが挙げられる。これらの中でも、リガンド(配位子)がピリジン環またはイミダゾリウム環を含み、Ru、Os、Ir、Pt、Co、FeおよびCuからなる群より選ばれた少なくとも一種類の金属の錯体の色素は量子収率が高く好ましい。特に、シス−ビス(イソチオシアナート)−N,N−ビス(2,2’−ジピリジル−4,4’−ジカルボン酸)−ルテニウム(II)またはトリス(イソチオシアナート)−ルテニウム(II)−2,2' :6' ,2" −ターピリジン−4,4' ,4" −トリカルボン酸を基本骨格とする色素分子は吸収波長域が広く好ましい。ただし、光増感色素は、これらに限定されるものではない。光増感色素としては、典型的には、これらのうちの一種類のものを用いるが、二種類以上の光増感色素を混合して用いてもよい。二種類以上の光増感色素を混合して用いる場合、光増感色素は、好適には、多孔質光電極3に保持された、MLCT(Metal to Ligand Charge Transfer)を引き起こす性質を有する無機錯体色素と、この多孔質光電極3に保持された、分子内CT(Charge Transfer)の性質を有する有機分子色素とを有する。この場合、無機錯体色素と有機分子色素とは、多孔質光電極3に互いに異なる立体配座で吸着する。無機錯体色素は、好適には、多孔質光電極3に結合する官能基としてカルボキシ基またはホスホノ基を有する。また、有機分子色素は、好適には、同一炭素に、多孔質光電極3に結合する官能基としてカルボキシ基またはホスホノ基とシアノ基、アミノ基、チオール基またはチオン基とを有する。無機錯体色素は例えばポリピリジン錯体、有機分子色素は例えば、電子供与性の基と電子受容性の基とを併せ持ち、分子内CTの性質を有する芳香族多環共役系分子である。
光増感色素の多孔質光電極3への吸着方法に特に制限はないが、上記の光増感色素を例えばアルコール類、ニトリル類、ニトロメタン、ハロゲン化炭化水素、エーテル類、ジメチルスルホキシド、アミド類、N−メチルピロリドン、1,3−ジメチルイミダゾリジノン、3−メチルオキサゾリジノン、エステル類、炭酸エステル類、ケトン類、炭化水素、水などの溶媒に溶解させ、これに多孔質光電極3を浸漬したり、光増感色素を含む溶液を多孔質光電極3上に塗布したりすることができる。また、光増感色素の分子同士の会合を低減する目的でデオキシコール酸などを添加してもよい。必要に応じて紫外線吸収剤を併用することもできる。
多孔質光電極3に光増感色素を吸着させた後に、過剰に吸着した光増感色素の除去を促進する目的で、アミン類を用いて多孔質光電極3の表面を処理してもよい。アミン類の例としてはピリジン、4−tert−ブチルピリジン、ポリビニルピリジンなどが挙げられ、これらが液体の場合はそのまま用いてもよいし、有機溶媒に溶解して用いてもよい。
対極6の材料としては、導電性物質であれば任意のものを用いることができるが、絶縁性材料の電解質層7に面している側に導電層が形成されていれば、これも用いることが可能である。対極6の材料としては、電気化学的に安定な材料を用いることが好ましく、具体的には、白金、金、カーボン、導電性ポリマーなどを用いることが望ましい。
また、対極6での還元反応に対する触媒作用を向上させるために、電解質層7に接している対極6の表面は、微細構造が形成され、実表面積が増大するように形成されていることが好ましい。例えば、対極6の表面は、白金であれば白金黒の状態に、カーボンであれば多孔質カーボンの状態に形成されていることが好ましい。白金黒は、白金の陽極酸化法や塩化白金酸処理などによって、また多孔質カーボンは、カーボン微粒子の焼結や有機ポリマーの焼成などの方法によって形成することができる。
対極6は対向基板4の一主面に形成された透明導電層5上に形成されているが、これに限定されるものではない。対向基板4の材料としては、不透明なガラス、プラスチック、セラミック、金属などを用いてもよいし、透明材料、例えば透明なガラスやプラスチックなどを用いてもよい。透明導電層5としては、透明電極2と同様なものを用いることができる。
封止材の材料としては、耐光性、絶縁性、防湿性などを備えた材料を用いることが好ましい。封止材の材料の具体例を挙げると、エポキシ樹脂、紫外線硬化樹脂、アクリル樹脂、ポリイソブチレン樹脂、EVA(エチレンビニルアセテート) 、アイオノマー樹脂、セラミック、各種熱融着フィルムなどである。
また、電解質層7を形成するために電解液を注入する場合、注入口が必要であるが、多孔質光電極3およびこれに対向する部分の対極6上でなければ注入口の場所は特に限定されない。また、電解液の注入方法に特に制限はないが、外周が予め封止され、溶液の注入口を開けられた光電変換素子の内部に減圧下で注液を行う方法が好ましい。この場合、注入口に溶液を数滴垂らし、毛細管現象により注液する方法が簡便である。また、必要に応じて減圧もしくは加熱下で注液の操作を行うこともできる。完全に溶液が注入された後、注入口に残った溶液を除去し、注入口を封止する。この封止方法にも特に制限はないが、必要であればガラス板やプラスチック基板を封止剤で貼り付けて封止することもできる。また、この方法以外にも、液晶パネルの液晶滴下注入(ODF;One Drop Filling)工程のように、電解液を基板上に滴下して減圧下で貼り合わせて封止することもできる。封止を行った後、電解液を多孔質光電極3へ十分に含漬させるため、必要に応じて加熱、加圧の操作を行うことも可能である。
[色素増感光電変換素子の製造方法]
次に、この色素増感光電変換素子の製造方法について説明する。
まず、透明基板1の一主面にスパッタリング法などにより透明導電層を形成して透明電極2を形成する。
次に、透明電極2上に多孔質光電極3を形成する。この多孔質光電極3の形成方法に特に制限はないが、物性、利便性、製造コストなどを考慮した場合、湿式製膜法を用いるのが好ましい。湿式製膜法では、半導体微粒子の粉末あるいはゾルを水などの溶媒に均一に分散させたペースト状の分散液を調製し、この分散液を透明基板1の透明電極2上に塗布または印刷する方法が好ましい。分散液の塗布方法または印刷方法に特に制限はなく、公知の方法を用いることができる。具体的には、塗布方法としては、例えば、ディップ法、スプレー法、ワイヤーバー法、スピンコート法、ローラーコート法、ブレードコート法、グラビアコート法などを用いることができる。また、印刷方法としては、凸版印刷法、オフセット印刷法、グラビア印刷法、凹版印刷法、ゴム版印刷法、スクリーン印刷法などを用いることができる。
半導体微粒子の材料としてアナターゼ型TiO2 を用いる場合、このアナターゼ型TiO2 は、粉末状、ゾル状、またはスラリー状の市販品を用いてもよいし、酸化チタンアルコキシドを加水分解するなどの公知の方法によって所定の粒径のものを形成してもよい。市販の粉末を使用する際には粒子の二次凝集を解消することが好ましく、ペースト状分散液の調製時に、乳鉢やボールミルなどを使用して粒子の粉砕を行うことが好ましい。このとき、二次凝集が解消された粒子が再度凝集するのを防ぐために、アセチルアセトン、塩酸、硝酸、界面活性剤、キレート剤などをペースト状分散液に添加することができる。また、ペースト状分散液の粘性を増すために、ポリエチレンオキシドやポリビニルアルコールなどの高分子、あるいはセルロース系の増粘剤などの各種増粘剤をペースト状分散液に添加することもできる。
多孔質光電極3は、半導体微粒子を透明電極2上に塗布または印刷した後に、半導体微粒子同士を電気的に接続し、多孔質光電極3の機械的強度を向上させ、透明電極2との密着性を向上させるために、焼成することが好ましい。焼成温度の範囲に特に制限はないが、温度を上げ過ぎると、透明電極2の電気抵抗が高くなり、さらには透明電極2が溶融することもあるため、通常は40〜700℃が好ましく、40〜650℃がより好ましい。また、焼成時間にも特に制限はないが、通常は10分〜10時間程度である。
焼成後、半導体微粒子の表面積を増加させたり、半導体微粒子間のネッキングを高めたりする目的で、例えば、四塩化チタン水溶液や直径10nm以下の酸化チタン超微粒子ゾルによるディップ処理を行ってもよい。透明電極2を支持する透明基板1としてプラスチック基板を用いる場合には、結着剤を含むペースト状分散液を用いて透明電極2上に多孔質光電極3を製膜し、加熱プレスによって透明電極2に圧着することも可能である。
次に、多孔質光電極3が形成された透明基板1を、光増感色素を所定の溶媒に溶解した溶液中に浸漬することにより、多孔質光電極3に光増感色素を結合させる。
一方、対向基板4上にスパッタリング法などにより透明導電層5および対極6を順次形成する。
次に、透明基板1と対向基板4とを多孔質光電極3と対極6とが所定の間隔、例えば1〜100μm、好ましくは1〜50μmの間隔をおいて互いに対向するように配置する。そして、透明基板1および対向基板4の外周部に封止材(図示せず)を形成して電解質層7が封入される空間を作り、この空間に例えば透明基板1に予め形成された注液口(図示せず)から電解液を注入し、電解質層7を形成する。その後、この注液口を塞ぐ。
以上により、目的とする色素増感光電変換素子が製造される。
[色素増感光電変換素子の動作]
次に、この色素増感光電変換素子の動作について説明する。
この色素増感光電変換素子は、光が入射すると、対極6を正極、透明電極2を負極とする電池として動作する。その原理は次の通りである。なお、ここでは、透明電極2の材料としてFTOを用い、多孔質光電極3の材料としてTiO2 を用い、レドックス対としてI- /I3 - の酸化還元種を用いることを想定しているが、これに限定されるものではない。また、多孔質光電極3に一種類の光増感色素が結合していることを想定する。
透明基板1および透明電極2を透過し、多孔質光電極3に入射した光子を多孔質光電極3に結合した光増感色素が吸収すると、この光増感色素中の電子が基底状態(HOMO)から励起状態(LUMO)へ励起される。こうして励起された電子は、光増感色素と多孔質光電極3との間の電気的結合を介して、多孔質光電極3を構成するTiO2 の伝導帯に引き出され、多孔質光電極3を通って透明電極2に到達する。
一方、電子を失った光増感色素は、電解質層7中の還元剤、例えばI- から下記の反応によって電子を受け取り、電解質層7中に酸化剤、例えばI3 - (I2 とI- との結合体)を生成する。
2I- → I2 + 2e-
2 + I- → I3 -
こうして生成された酸化剤は拡散によって対極6に到達し、上記の反応の逆反応によって対極6から電子を受け取り、もとの還元剤に還元される。
3 - → I2 + I-
2 + 2e- → 2I-
透明電極2から外部回路へ送り出された電子は、外部回路で電気的仕事をした後、対極6に戻る。このようにして、光増感色素にも電解質層7にも何の変化も残さず、光エネルギーが電気エネルギーに変換される。
次に、多孔質光電極3に二種類の光増感色素を結合させた色素増感光電変換素子の動作について説明する。ここでは、一例として多孔質光電極3にZ907および色素Aを結合させることを想定しているが、これに限定されるものではない。色素Aは2-Cyano-3-[4-[4-(2,2-diphenylethenyl)phenyl]-1,2,3,3a,4,8b-hexahydrocyclopent[b]indol-7-yl]-2-propenoic acidである。図2はこの色素増感光電変換素子の動作原理を説明するためのエネルギー図である。この色素増感光電変換素子は、光が入射すると、対極6を正極、透明電極2を負極とする電池として動作する。その原理は次の通りである。なお、ここでは、透明電極2の材料としてFTOを用い、多孔質光電極3の材料としてTiO2 を用い、レドックス対としてI- /I3 - の酸化還元種を用いることを想定しているが、これに限定されるものではない。
図3にZ907の構造式を示し、図4にZ907を単独で多孔質光電極3の表面に吸着させたときのIPCE(Incident Photon-to-current Conversion Efficiency)スペクトルの測定結果を示す。また、図5に色素Aの構造式を示し、図6に色素Aを単独で多孔質光電極3の表面に吸着させたときのIPCEスペクトルの測定結果を示す。図4および図6に示すように、Z907は広範囲の波長の光を吸収することができるが、短波長領域に吸光度が不足する領域があり、この短波長領域では、この短波長領域で大きな吸光度を有する色素Aが光吸収を補助する関係にある。すなわち、色素Aは、短波長領域では大きな吸光度を有する光増感色素として働いている。
図3に示すように、Z907は、多孔質光電極3と強く結合する官能基としてカルボキシ基(−COOH)を有し、このカルボキシ基が多孔質光電極3と結合している。これに対し、図5に示すように、色素Aは、多孔質光電極3と強く結合する官能基であるカルボキシ基(−COOH)と多孔質光電極3と弱く結合する官能基であるシアノ基(−CN)とが同一炭素に結合している。そして、色素Aは、同一炭素に結合したこれらのカルボキシ基およびシアノ基が多孔質光電極3と結合している。すなわち、色素Aは、同一炭素に結合しているカルボキシ基とシアノ基とによって多孔質光電極3に吸着し、カルボキシ基のみによって多孔質光電極3に吸着するZ907とは異なる立体配置で多孔質光電極3に吸着する。ここで、もし仮に、色素Aの同一炭素に結合した複数個の官能基が、いずれも多孔質光電極3に強く結合する官能基であると、多孔質光電極3に吸着されたこの色素Aの立体配置は自由度が少なくなり、同一炭素に結合した複数個の官能基が存在する効果が発現しにくくなる。これに対し、色素Aでは、多孔質光電極3に弱く結合するシアノ基が補助的に機能し、しかも、強く結合するカルボキシ基の、多孔質光電極3への結合を妨げることがない。この結果、色素Aでは、カルボキシ基およびシアノ基が同一炭素に結合している効果が効果的に発現する。すなわち、色素AとZ907とは、多孔質光電極3の表面上で互いに隣接していても、強い相互作用を及ぼし合うことなく共存することができるため、互いの光電変換性能を損なうことがない。一方、色素Aは、同じ多孔質光電極3の表面に結合したZ907間に効果的に介在し、Z907の会合を抑制して、Z907間での無駄な電子移動を防止する。このため、光を吸収したZ907からは、励起された電子が無駄にZ907間で移動することなく、効率よく多孔質光電極3に取り出されるため、Z907の光電変換効率が向上する。また、光を吸収した色素Aの励起電子は、強く結合するカルボキシ基から多孔質光電極3へ取り出されるため、多孔質光電極3への電荷移動が効率よく行われる。
透明基板1、透明電極2および多孔質光電極3を透過してきた光子を多孔質光電極3に結合した光増感色素、すなわちZ907および色素Aが吸収すると、これらのZ907および色素A中の電子が基底状態(HOMO)から励起状態(LUMO)へ励起される。この際、光増感色素がZ907および色素Aからなるため、光増感色素が単一の色素からなる色素増感光電変換素子に比べて、より広い波長領域の光をより高い光吸収率で吸収することができる。
励起状態の電子は、光増感色素、すなわちZ907および色素Aと多孔質光電極3との間の電気的結合を介して、多孔質光電極3の伝導帯に引き出され、多孔質光電極3を通って透明電極2に到達する。この際、Z907および色素Aの最小励起エネルギー、言い換えるとHOMO−LUMOギャップが互いに十分異なり、しかもこれらのZ907および色素Aは多孔質光電極3に異なる立体配置で結合するため、これらのZ907および色素Aの間で無駄な電子移動が起こりにくい。このため、これらのZ907および色素Aは互いの量子収率を低下させることがなく、これらのZ907および色素Aによる光電変換機能が発現し、電流の発生量が大きく向上する。また、この系では、色素Aの励起状態の電子が多孔質光電極3の伝導帯に引き出される経路が二種類存在する。一つは、色素Aの励起状態から直接、多孔質光電極3の伝導帯に引き出される直接経路P1 である。もう一つは、色素Aの励起状態の電子が、まず、エネルギー準位の低いZ907の励起状態へ引き出され、その後、Z907の励起状態から多孔質光電極3の伝導帯に引き出される間接経路P2 である。この間接経路P2 の寄与によって、色素Aに加えてZ907が共存する系では色素Aの光電変換効率が向上する。
一方、電子を失ったZ907および色素Aは、電解質層7中の還元剤、例えばI- から下記の反応によって電子を受け取り、電解質層7中に酸化剤、例えばI3 - (I2 とI- との結合体)を生成する。
2I- → I2 + 2e-
2 + I- → I3 -
こうして生成された酸化剤は拡散によって対極6に到達し、上記の反応の逆反応によって対極6から電子を受け取り、もとの還元剤に還元される。
3 - → I2 + I-
2 + 2e- → 2I-
透明電極2から外部回路へ送り出された電子は、外部回路で電気的仕事をした後、対極6に戻る。このようにして、光増感色素、すなわちZ907および色素Aにも電解質層7にも何の変化も残さず、光エネルギーが電気エネルギーに変換される。
〈実施例1〉
色素増感光電変換素子を以下のようにして製造した。
多孔質光電極3を形成する際の原料であるTiO2 のペースト状分散液は、「色素増感太陽電池の最新技術」(荒川裕則監修、2001年、(株)シーエムシー)を参考にして作製した。すなわち、まず、室温で撹拌しながらチタンイソプロポキシド125mlを0.1Mの硝酸水溶液750mlに徐々に滴下した。滴下後、80℃の恒温槽に移し、8時間撹拌を続けたところ、白濁した半透明のゾル溶液が得られた。このゾル溶液を室温になるまで放冷し、ガラスフィルタでろ過した後、溶媒を加えて溶液の体積を700mlにした。得られたゾル溶液をオートクレーブへ移し、220℃で12時間水熱反応を行わせた後、1時間超音波処理して分散化処理を行った。次に、この溶液をエバポレータを用いて40℃で濃縮し、TiO2 の含有量が20wt%になるように調製した。この濃縮ゾル溶液に、TiO2 の質量の20%分のポリエチレングリコール(分子量50万)と、TiO2 の質量の30%分の粒子直径200nmのアナターゼ型TiO2 とを添加し、撹拌脱泡機で均一に混合し、粘性を増加させたTiO2 のペースト状分散液を得た。
上記のTiO2 のペースト状分散液を、透明電極2であるFTO層の上にブレードコーティング法によって塗布し、大きさ5mm×5mm、厚さ200μmの微粒子層を形成した。その後、500℃に30分間保持して、TiO2 微粒子をFTO層上に焼結した。焼結されたTiO2 膜へ0.1Mの塩化チタン(IV)TiCl4 水溶液を滴下し、室温下で15時間保持した後、洗浄し、再び500℃で30分間焼成を行った。この後、紫外光照射装置を用いてTiO2 焼結体に紫外光を30分間照射し、このTiO2 焼結体に含まれる有機物などの不純物をTiO2 の光触媒作用によって酸化分解して除去し、TiO2 焼結体の活性を高める処理を行い、多孔質光電極3を得た。
光増感色素として、十分に精製したZ907 23.8mgを、アセトニトリルとtert−ブタノールとを1:1の体積比で混合した混合溶媒50mlに溶解させ、光増感色素溶液を調製した。
なお、光増感色素としてZ907と色素Aとを用いる場合には、十分に精製したZ907 23.8mgと、色素A 2.5mgとを、アセトニトリルとtert−ブタノールとを1:1の体積比で混合した混合溶媒50mlに溶解させ、光増感色素溶液を調製する。
次に、多孔質光電極3をこの光増感色素溶液に室温下で24時間浸漬し、TiO2 微粒子表面に光増感色素を保持させた。次に、4−tert−ブチルピリジンのアセトニトリル溶液およびアセトニトリルを順に用いて多孔質光電極3を洗浄した後、暗所で溶媒を蒸発させ、乾燥させた。
対極6は、予め直径0.5mmの注液口が形成されたFTO層の上に厚さ50nmのクロム層および厚さ100nmの白金層を順次スパッタリング法によって積層し、その上に塩化白金酸のイソプロピルアルコール(2−プロパノール)溶液をスプレーコートし、385℃、15分間加熱することにより形成した。
次に、透明基板1と対向基板4とをそれらの多孔質光電極3と対極6とが対向するように配置し、外周を厚さ30μmのアイオノマー樹脂フィルムとアクリル系紫外線硬化樹脂とによって封止した。
一方、EMImTCBとdiglyme とを1:1の重量比で混合した混合溶媒 2.0gに1−プロピル−3−メチルイミダゾリウムヨーダイド 1.0g、ヨウ素I2 0.10g、そしてN−ブチルベンズイミダゾール(NBB) 0.054gを溶解させ、電解液を調製した。
なお、光増感色素としてZ907と色素Aとを用いる場合には、例えば、EMImTCBとdiglyme とを1:1の重量比で混合した混合溶媒 2.0gに、ヨウ化ナトリウムNaI 0.030g、1−プロピル−2,3−ジメチルイミダゾリウムヨーダイド 1.0g、ヨウ素I2 0.10g、そして4−tert−ブチルピリジン(TBP) 0.054gを溶解させ、電解液を調製する。
この電解液を予め準備した色素増感光電変換素子の注液口から送液ポンプを用いて注入し、減圧することで素子内部の気泡を追い出した。こうして電解質層7が形成される。次に、注液口をアイオノマー樹脂フィルム、アクリル樹脂およびガラス基板で封止し、色素増感光電変換素子を完成した。
〈実施例2〉
溶媒としてEMImTCBとtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例3 〉
溶媒としてEMImTCBとtetraglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例4〉
溶媒としてEMImTCBとMPNとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例5〉
溶媒としてEMImTCBとPhOANとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例6〉
溶媒としてEMImTCBとGBLとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例7〉
溶媒としてEMImTCBとPCとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例8〉
溶媒としてEMImTCBとアニリンとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例9〉
溶媒としてEMImTCBとDMFとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例10〉
溶媒としてEMImTCBとDManiline とを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例11〉
溶媒としてEMImTCBとNBBとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例12〉
溶媒としてEMImTCBとTBPとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例13〉
溶媒としてEMImTFSIとtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例14〉
溶媒としてEMImFAPとtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例15〉
多孔質光電極3に結合させる光増感色素としてZ991を用いた。図7にZ991の構造式を示す。図7に示すように、Z991は、多孔質光電極3と強く結合する官能基としてカルボキシ基(−COOH)を有し、このカルボキシ基が多孔質光電極3と結合する。
溶媒としてEMImTCBとEMSとを1:1の重量比で混合した混合溶媒2.0gに、1−プロピル−3−メチルイミダゾリウムヨーダイド1.0g、ヨウ素I2 0.10g、そしてN−ブチルベンゾイミダゾール(NBB)0.054gを用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例16〉
多孔質光電極3に結合させる光増感色素としてZ991を用いた。
溶媒としてEMImTCBとDMSOとを1:1の重量比で混合した混合溶媒2.0gに、1−プロピル−3−メチルイミダゾリウムヨーダイド1.0g、ヨウ素I2 0.10g、そしてN−ブチルベンゾイミダゾール(NBB)0.045gを用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈実施例17〉
多孔質光電極3に結合させる光増感色素としてZ991を用いた。
溶媒としてEMImTCBとEMSとを1:1の重量比で混合した混合溶媒2.0gに、1−プロピル−3−メチルイミダゾリウムヨーダイド1.0g、ヨウ素I2 0.10g、そしてN−ブチルベンゾイミダゾール(NBB)0.045gを用いて電解液を調製した。こうして調製した電解液とシリカ微粒子とを9:1の重量比で十分混合して電解液をゲル化させた。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例1〉
溶媒としてdiglyme を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例2〉
溶媒としてEMImTCBを用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例3〉
溶媒としてMPNを用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例4〉
溶媒としてEMImTCBとPhAN(フェニルアセトニトリル(phenyl acetonitrile))とを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例5〉
溶媒としてEMImBF4 (1−エチル−3−メチルイミダゾリウム テトラフルオロボレート(1-ethyl-3-methylimidazolium tetrafluoroborate))とtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例6〉
溶媒としてEMImOTf(1−エチル−3−メチルイミダゾリウム トリフルオロメタンスルホネート(1-ethyl-3-methylimidazolium trifluorometanesulfonate) )とtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例7〉
溶媒としてP222 MOMTFSI(トリエチル(メトキシメチル)ホスホニウム ビス(トリフルオロメチルスホニル)アミド(triethyl(methoxymethyl)phosphonium bis(trifluoromethylsufonyl)imide )とtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例8〉
溶媒としてEMImBF4 とtriglymeとを1:1の重量比で混合した混合溶媒を用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
〈比較例9〉
多孔質光電極3に結合させる光増感色素としてZ991を用いた。
溶媒としてEMImTCBを用いて電解液を調製した。その他は実施例1と同様にして色素増感光電変換素子を製造した。
表1は、実施例1〜17および比較例4〜7のイオン液体と有機溶媒との混合溶媒の蒸発速度低下率Zvapor を求めた結果を示す。ただし、混合溶媒における有機溶媒の重量比は50wt%である。Zvapor (%)=[1−(混合溶媒における有機溶媒の重量比)×(kmixture /kneat)]×100と定義される。kneatは有機溶媒単体の蒸発速度、kmixture はイオン液体と有機溶媒との混合溶媒の蒸発速度であり、いずれもTG(Thermo Gravimetry)−DTA(Differential Thermal Analysis)測定(示差熱−熱重量同時測定)で求められる。Zvapor の値が大きいほど混合溶媒における有機溶媒成分の揮発性が有機溶媒単体を用いた場合と比較して低下していることを示す。
Figure 2011204662
表1より、実施例1〜17ではZvapor は大きな正の値を示し、イオン液体と有機溶媒との混合による有機溶媒成分の揮発性の低下が見られる。これに対し、比較例4〜7ではZvapor は0または負の値を示し、イオン液体と有機溶媒との混合による有機溶媒成分の揮発性の低下は見られない。
図8は種々の溶媒のTG−DTA曲線を示す。図8から分かるように、EMImTCBとMPNとの混合溶媒(EMImTCBの重量比は50wt%)を用いた場合(実施例4、曲線(4))には、MPN単体を用いた場合(比較例3、曲線(5))に比べて重量減少はずっと小さい。また、EMImTCBとGBLとの混合溶媒(EMImTCBの重量比は50wt%)を用いた場合(実施例6、曲線(2))には、GBL単体を用いた場合(曲線(3))に比べて重量減少は小さい。
図9は、EMImTCBとdiglyme との混合溶媒(EMImTCBの重量比は50wt%)を用いた場合(実施例4)、EMImTCB単体を用いた場合およびdiglyme 単体を用いた場合のTG−DTA曲線を示す。図9より、EMImTCBとdiglyme との混合溶媒を用いた場合には、diglyme 単体を用いた場合に比べて重量減少は極めて少なく、EMImTCB単体を用いた場合に近い重量減少に抑えられていることが分かる。
図10は、EMImTCBとtriglymeとの混合溶媒(EMImTCBの重量比は50wt%)を用いた場合(実施例2)、EMImTCB単体を用いた場合およびtriglyme単体を用いた場合のTG−DTA曲線を示す。図10より、EMImTCBとtriglymeとの混合溶媒を用いた場合には、triglyme単体を用いた場合に比べて重量減少は極めて少なく、EMImTCB単体を用いた場合に近い重量減少に抑えられていることが分かる。
図11は、EMImTCBとtetraglymeとの混合溶媒(EMImTCBの重量比は50wt%)を用いた場合(実施例3)、EMImTCB単体を用いた場合およびtetraglyme単体を用いた場合のTG−DTA曲線を示す。図11より、EMImTCBとtetraglymeとの混合溶媒を用いた場合には、tetraglyme単体を用いた場合に比べて重量減少は極めて少なく、EMImTCB単体を用いた場合と同様にほとんど重量減少が見られないことが分かる。
電解液の溶媒として、EMImTCBとdiglyme との混合溶媒、EMImTCB単体およびdiglyme 単体を用いた色素増感光電変換素子の電流−電圧特性を測定した。測定は、色素増感光電変換素子に擬似太陽光(AM1.5、100mW/cm2 )を照射して行った。表2にこの色素増感光電変換素子の開放端電圧Voc、電流密度Jsc、フィルファクター(FF)および光電変換効率を示す。
Figure 2011204662
表2より、電解液の溶媒としてEMImTCBとdiglyme との混合溶媒を用いた実施例1の色素増感光電変換素子の光電変換特性は、電解液の溶媒としてEMImTCB単体を用いた比較例2の色素増感光電変換素子の光電変換特性に比べてはるかに良好である。この光電変換特性は、電解液の溶媒としてdiglyme 単体を用いた場合と同等である。
電解液の溶媒として、EMImTCBとMPNとの混合溶媒(EMImTCBの重量比は22wt%)、EMImTFSIとMPNとの混合溶媒(EMImTFSIの重量比は35wt%)およびMPN単体を用いた色素増感光電変換素子の電流−電圧曲線を測定した。測定は、色素増感光電変換素子に擬似太陽光(AM1.5、100mW/cm2 )を照射して行った。表3にこの色素増感光電変換素子の開放端電圧Voc、電流密度Jsc、フィルファクター(FF)および光電変換効率を示す。
Figure 2011204662
表3より、電解液の溶媒としてEMImTCBとMPNとの混合溶媒を用いた色素増感光電変換素子および電解液の溶媒としてEMImTFSIとMPNとの混合溶媒を用いた色素増感光電変換素子とも、電解液の溶媒としてMPN単体を用いた色素増感光電変換素子と同等の光電変換特性が得られている。ここで、電解液の溶媒として上記の混合溶媒を用いた色素増感光電変換素子では、MPN単体を用いた色素増感光電変換素子と比較して、Jscが低下し、Vocが上昇することが分かる。Jscが低下するのは、イオン液体を混合したことによる、電解液中のレドックス対の拡散性の低下によるものと考えられる。また、Vocが上昇するのは、イオン液体が酸化チタンからなる多孔質光電極の表面に擬似吸着することによる酸化チタンの電子電位の変化、もしくはレドックス対との相互作用による酸化還元電位の変化によるものと考えられる。
電解液の溶媒としてEMImTCBとEMSとの混合溶媒(EMImTCBの重量比は50wt%)を用いた実施例15の色素増感光電変換素子の電流−電圧曲線を測定した。また、電解液の溶媒としてEMImTCB単体を用いた比較例9の色素増感光電変換素子の電流−電圧曲線を測定した。測定は、色素増感光電変換素子に擬似太陽光(AM1.5、100mW/cm2 )を照射して行った。表4にこの色素増感光電変換素子の開放端電圧Voc、電流密度Jsc、フィルファクター(FF)および光電変換効率を示す。
Figure 2011204662
表4より、電解液の溶媒としてEMImTCBとEMSとの混合溶媒を用いた実施例15の色素増感光電変換素子は、電解液の溶媒としてEMS単体を用いた比較例9の色素増感光電変換素子に比べて、光電変換効率が約1%高く、Jscも約2mA/cm2 も高い。Jscが増加したのは、電解液の粘性率が低下したことによる。
電解液の溶媒としてEMImTCBとEMSとの混合溶媒(EMImTCBの重量比は50wt%)を用いた電解液とシリカ微粒子とを9:1の重量比で十分混合してゲル化させた電解液を用いた実施例17の色素増感光電変換素子の電流−電圧曲線を測定した。測定は、色素増感光電変換素子に擬似太陽光(AM1.5、100mW/cm2 )を照射して行った。表5にこの色素増感光電変換素子の開放端電圧Voc、電流密度Jsc、フィルファクター(FF)および光電変換効率を示す。表5には、比較のために、電解液の溶媒としてEMImTCBとEMSとの混合溶媒を用いた実施例15の色素増感光電変換素子の開放端電圧Voc、電流密度Jsc、フィルファクター(FF)および光電変換効率も示す。
Figure 2011204662
表5より、ゲル化させた電解液を用いた実施例17の色素増感光電変換素子は、電解液の溶媒としてEMImTCBとEMSとの混合溶媒を用いた実施例15の色素増感光電変換素子と同等の光電変換特性を有することが分かる。
図12は、電解液の溶媒として、EMImTCBとMPNとの混合溶媒(EMImTCBの重量比は22wt%)、EMImTFSIとMPNとの混合溶媒(EMImTFSIの重量比は35wt%)およびMPN単体を用いた色素増感光電変換素子の加速試験の結果を示す。図12の横軸は85℃での保持時間、縦軸は光電変換効率を示す。試験は色素増感光電変換素子を85℃に保たれた暗所で行った。
図12より、電解液の溶媒としてMPN単体を用いた色素増感光電変換素子では、試験を開始してから光電変換効率が減少し続け、170時間後には初期に比べて30%以上も減少している。これに対して、電解液の溶媒としてEMImTCBとMPNとの混合溶媒(EMImTCBの重量比は22wt%)、EMImTFSIとMPNとの混合溶媒(EMImTFSIの重量比は35wt%)を用いた色素増感光電変換素子では試験開始後170時間経過しても光電変換効率の減少は僅かであり、耐久性が高いことが分かる。これは、イオン液体分子が有機溶媒分子と相互作用することによる揮発性の低下や電解液成分・電極界面とのイオン液体分子の相互作用による安定化が原因であると考えられる。
図13は、電解液の溶媒としてEMImTCBとdiglyme との混合溶媒を用いた場合の混合溶媒中のEMImTCBの含有量と蒸発速度低下率との関係を調べた結果を示す。図13より、EMImTCBの含有量が15wt%以上であれば、蒸発速度の低下が見られる。
次に、イオン液体の好適なカチオンおよびアニオンの構造について説明する。まず、カチオンについては、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンが好ましい。このような有機カチオンとしては、例えば、イミダゾリウムカチオン、ピリジニウムカチオン、チアゾリウムカチオン、ピラゾニウムカチオンなどがある。アニオンについては、計算科学的に算出されたアニオンのファンデルワールス(van der Waals)体積(電子雲の大きさ)により規定することができる。図14はいくつかのアニオン(TCB- 、TFSI- 、OTf- 、BF4 - )のファンデルワールス体積に対して蒸発速度低下率をプロットした図である。各アニオンのファンデルワールス体積の値はJournal of The Electrochemical Society 002,149(10),A1385-A1388(2002) を参照した。TCBアニオンのファンデルワールス体積としては、TCBアニオンと類似の構造を持つ(C2 5 4 - アニオンのファンデルワールス体積を用いた。これらのデータを一次関数でフィッティングした。ファンデルワールス体積をx、蒸発速度低下率をyで表すと、フィッティング式はy=0.5898x−44.675である。図14より、ファンデルワールス体積が76Å3 以上、好適には100Å3 以上のアニオンでは蒸発速度の低下が起こると考えられる。
次に、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とからなる混合溶媒において蒸発速度が低下する原理を考察した結果について説明する。
この混合溶媒においては、イオン液体が有する電子対受容性の官能基と有機溶媒が有する電子対供与性の官能基(エーテル基やアミノ基など)との間に水素結合が形成され、熱的に安定化する。図15に一例を示す。図15に示すように、この例では、イオン液体のイミダゾリウムカチオンの電子対受容性の官能基(酸性プロトン)とdiglyme 分子のエーテル基(−O−)との間に水素結合(破線で示す)が形成されている。このように、この混合溶媒においては、イオン液体と有機溶媒との間に水素結合が形成されることにより熱的に安定化するため、蒸発速度が低下すると考えることができる。
特に、有機溶媒の1分子中の電子対供与性の官能基の数が多くなると、蒸発速度低下率が大きくなる。例えば、図16は、有機溶媒がtriglymeである例を示すが、この例では、イオン液体のイミダゾリウムカチオンの二つの電子対受容性の官能基(酸性プロトン)とtriglymeの二つのエーテル基との間にそれぞれ水素結合が形成され、熱的により安定化する。また、この場合、イオン液体のイミダゾリウムカチオンの一つの電子対受容性の官能基とtriglymeの一つのエーテル基との間に水素結合が形成されると、イオン液体のイミダゾリウムカチオンの他の電子対受容性の官能基にtriglymeの他のエーテル基が近接する。言い換えると、triglymeがイミダゾリウムカチオンを巻き込む。このため、イオン液体のイミダゾリウムカチオンの他の電子対受容性の官能基とtriglymeの他のエーテル基とが相互作用しやすくなり、それらの間に水素結合が容易に形成される。
以上のように、この第1の実施の形態によれば、電解質層7を構成する電解液の溶媒として、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とからなる混合溶媒を用いている。このため、電解液の揮発を有効に抑制することができる。しかも、この混合溶媒の粘性率は低く、したがって電解液の粘性率を低くすることができることから、優れた光電変換特性を有する色素増感光電変換素子を得ることができる。
〈2.第2の実施の形態〉
[色素増感光電変換素子]
図17は第2の実施の形態による色素増感光電変換素子を示す要部断面図である。
図17に示すように、この色素増感光電変換素子においては、透明基板11の一主面に透明電極12が設けられ、この透明電極12上に一種または複数種の光増感色素が結合(あるいは吸着)した多孔質光電極13が設けられている。一方、透明基板11と対向するように対極14が設けられている。そして、これらの透明基板11および対極14の外周部が封止材15で封止され、透明基板11上の多孔質光電極13と対極14との間に電解液からなる電解質層16が充填されている。
多孔質光電極13は金属/金属酸化物微粒子17により構成され、典型的には、これらの金属/金属酸化物微粒子17が焼結されたものからなる。この金属/金属酸化物微粒子17の構造の詳細を図18に示す。図18に示すように、金属/金属酸化物微粒子17は、金属からなる球状のコア17aとこのコア17aの周りを取り囲む金属酸化物からなるシェル17bとからなるコア/シェル構造を有する。この金属/金属酸化物微粒子17の金属酸化物からなるシェル17bの表面に一種または複数種の光増感色素18が結合(あるいは吸着)する。
金属/金属酸化物微粒子17のシェル17bを構成する金属酸化物は、例えば、酸化チタン(TiO2 )、酸化スズ(SnO2 )、酸化ニオブ(Nb2 5 )、酸化亜鉛(ZnO)などが用いられる。これらの金属酸化物の中でも、TiO2 、取り分けアナターゼ型のTiO2 を用いることが好ましい。ただし、金属酸化物の種類はこれらに限定されるものではなく、必要に応じて、二種類以上の金属酸化物を混合または複合化して用いることができる。また、金属/金属酸化物微粒子17の形態は粒状、チューブ状、棒状などのいずれであってもよい。
上記の金属/金属酸化物微粒子17の粒径に特に制限はないが、一般的には一次粒子の平均粒径で1〜500nmであり、取り分け1〜200nmが好ましく、特に好ましくは5〜100nmである。また、金属/金属酸化物微粒子17のコア17aの粒径は一般的には1〜200nmである。
透明基板11、透明電極12、対極14および電解質層16は、第1の実施の形態による色素増感光電変換素子の透明基板1、透明電極2、対極6および電解質層7と同様なものを用いることができる。
[色素増感光電変換素子の製造方法]
次に、この色素増感光電変換素子の製造方法について説明する。
まず、透明基板11の一主面にスパッタリング法などにより透明電極12を形成する。
次に、透明電極12上に金属/金属酸化物微粒子17からなる多孔質光電極13を形成する。
多孔質光電極13は、金属/金属酸化物微粒子7を透明電極12上に塗布または印刷した後に、金属/金属酸化物微粒子17同士を電気的に接続し、多孔質光電極13の機械的強度を向上させ、透明電極12との密着性を向上させるために、焼成することが好ましい。
次に、多孔質光電極13が形成された透明基板11を、光増感色素18を所定の溶媒に溶解した溶液中に浸漬することにより、多孔質光電極13に光増感色素18を吸着させる。
一方、例えば対向基板上にスパッタリング法などにより対極14を形成する。
次に、多孔質光電極13が形成された透明基板11と対極14とを多孔質光電極13と対極14とが所定の間隔、例えば1〜100μm、好ましくは1〜50μmの間隔をおいて互いに対向するように配置する。そして、透明基板11および対極14の外周部に封止材15を形成して電解質層が封入される空間を作り、この空間に例えば透明基板11に予め形成された注液口(図示せず)から電解質層16を注入する。その後、この注液口を塞ぐ。
上記以外のことは、第1の実施の形態による色素増感光電変換素子の製造方法と同様である。
以上により、目的とする色素増感光電変換素子が製造される。
多孔質光電極13を構成する金属/金属酸化物微粒子17は従来公知の方法により製造することができる(例えば、Jpn.J.Appl.Phys.Vol.46,No.4B,2007,pp.2567-2570参照)。一例として、コア17aがAu、シェル17bがTiO2 からなる金属/金属酸化物微粒子17の製造方法の概要を説明すると次の通りである。すなわち、まず、5×10-4
HAuCl4 500mLの加熱した溶液に脱水クエン酸3ナトリウムを混合・攪拌する。次に、メルカプトウンデカン酸をアンモニア水溶液に2.5wt%添加・攪拌した後、Auナノ粒子分散溶液に添加し、2時間保温する。次に、1M HClを添加して溶液のpHを3にする。次に、チタンイソプロポキシドおよびトリエタノールアミンを窒素雰囲気下でAuコロイド溶液に添加する。こうして、コア17aがAu、シェル17bがTiO2 からなる金属/金属酸化物微粒子17が製造される。
[色素増感光電変換素子の動作]
次に、この色素増感光電変換素子の動作について説明する。
この色素増感光電変換素子は、光が入射すると、対極14を正極、透明電極12を負極とする電池として動作する。その原理は次の通りである。なお、ここでは、透明電極12の材料としてFTOを用い、多孔質光電極13を構成する金属/金属酸化物微粒子17のコア17aの材料としてAu、シェル17bの材料としてTiO2 を用い、レドックス対としてI- /I3 - の酸化還元種を用いることを想定している。ただし、これに限定されるものではない。
透明基板11および透明電極12を透過し、多孔質光電極13に入射した光子を多孔質光電極13に結合した光増感色素18が吸収すると、この光増感色素18中の電子が基底状態(HOMO)から励起状態(LUMO)へ励起される。こうして励起された電子は、光増感色素18と多孔質光電極13との間の電気的結合を介して、多孔質光電極13を構成する金属/金属酸化物微粒子17のシェル17bを構成するTiO2 の伝導帯に引き出され、多孔質光電極13を通って透明電極12に到達する。加えて、金属/金属酸化物微粒子17のAuからなるコア17aの表面に光が入射することにより局在表面プラズモンが励起され、電場増強効果が得られる。そして、この増強電場によりシェル17bを構成するTiO2 の伝導帯に電子が大量に励起され、多孔質光電極13を通って透明電極12に到達する。このように、多孔質光電極13に光が入射したとき、透明電極12には、光増感色素18の励起により発生した電子が到達することに加えて、金属/金属酸化物微粒子17のコア17aの表面における局在表面プラズモンの励起によりシェル17bを構成するTiO2 の伝導帯に励起される電子も到達する。このため、高い光電変換効率を得ることができる。
一方、電子を失った光増感色素18は、電解質層16中の還元剤、例えばI- から下記の反応によって電子を受け取り、電解質層16中に酸化剤、例えばI3 - (I2 とI- との結合体)を生成する。
2I- → I2 + 2e-
2 + I- → I3 -
こうして生成された酸化剤は拡散によって対極14に到達し、上記の反応の逆反応によって対極14から電子を受け取り、もとの還元剤に還元される。
3 - → I2 + I-
2 + 2e- → 2I-
透明電極12から外部回路へ送り出された電子は、外部回路で電気的仕事をした後、対極14に戻る。このようにして、光増感色素18にも電解質層16にも何の変化も残さず、光エネルギーが電気エネルギーに変換される。
この第2の実施の形態によれば、第1の実施の形態と同様な利点に加えて、次のような利点を得ることができる。すなわち、多孔質光電極13は、金属からなる球状のコア17aとこのコア17aの周りを取り囲む金属酸化物からなるシェル17bとからなるコア/シェル構造を有する金属/金属酸化物微粒子17により構成されている。このため、この多孔質光電極13と対極14との間に電解質層16を充填した場合、電解質層16の電解質が金属/金属酸化物微粒子17の金属からなるコア17aと接触することがなく、電解質による多孔質光電極13の溶解を防止することができる。従って、金属/金属酸化物微粒子17のコア17aを構成する金属として表面プラズモン共鳴の効果が大きい金、銀、銅などを用いることができ、表面プラズモン共鳴の効果を十分に得ることができる。また、電解質層16の電解質としてヨウ素系の電解質を用いることができる。以上により、光電変換効率が高い色素増感光電変換素子を得ることができる。そして、この優れた色素増感光電変換素子を用いることにより、高性能の電子機器を実現することができる。
〈3.第3の実施の形態〉
[光電変換素子]
図19に示すように、第3の実施の形態による光電変換素子は、多孔質光電極13を構成する金属/金属酸化物微粒子17に光増感色素18が結合していないことを除いて、第2の実施の形態による色素増感光電変換素子と同様な構成を有する。
[光電変換素子の製造方法]
この色素増感光電変換素子の製造方法は、多孔質光電極13に光増感色素18を吸着させないことを除いて、第2の実施の形態による色素増感光電変換素子と同様である。
[光電変換素子の動作]
次に、この光電変換素子の動作について説明する。
この光電変換素子は、光が入射すると、対極14を正極、透明電極12を負極とする電池として動作する。その原理は次の通りである。なお、ここでは、透明電極12の材料としてFTOを用い、多孔質光電極13を構成する金属/金属酸化物微粒子17のコア17aの材料としてAu、シェル17bの材料としてTiO2 を用い、レドックス対としてI- /I3 - の酸化還元種を用いることを想定している。ただし、これに限定されるものではない。
透明基板11および透明電極12を透過し、多孔質光電極13を構成する金属/金属酸化物微粒子17のAuからなるコア17aの表面に光が入射することにより局在表面プラズモンが励起され、電場増強効果が得られる。そして、この増強電場によりシェル17bを構成するTiO2 の伝導帯に電子が大量に励起され、多孔質光電極13を通って透明電極12に到達する。
一方、電子を失った多孔質光電極13は、電解質層16中の還元剤、例えばI- から下記の反応によって電子を受け取り、電解質層16中に酸化剤、例えばI3 - (I2 とI- との結合体)を生成する。
2I- → I2 + 2e-
2 + I- → I3 -
こうして生成された酸化剤は拡散によって対極14に到達し、上記の反応の逆反応によって対極14から電子を受け取り、もとの還元剤に還元される。
3 - → I2 + I-
2 + 2e- → 2I-
透明電極12から外部回路へ送り出された電子は、外部回路で電気的仕事をした後、対極14に戻る。このようにして、電解質層16に何の変化も残さず、光エネルギーが電気エネルギーに変換される。
第3の実施の形態によれば、第2の実施の形態と同様な利点を得ることができる。
以上、この発明の実施の形態および実施例について具体的に説明したが、この発明は、上述の実施の形態および実施例に限定されるものではなく、この発明の技術的思想に基づく各種の変形が可能である。
例えば、上述の実施の形態および実施例において挙げた数値、構造、構成、形状、材料などはあくまでも例に過ぎず、必要に応じてこれらと異なる数値、構造、構成、形状、材料などを用いてもよい。
1…透明基板、2…透明電極、3…多孔質光電極、4…対向基板、5…透明導電層、6…対極、7…電解質層、11…透明基板、12…透明電極、13…多孔質光電極、14…対極、15…封止材、16…電解質層、17…金属/金属酸化物微粒子、17a…コア,17b…シェル、18…光増感色素

Claims (17)

  1. 多孔質光電極と対極との間に電解液からなる電解質層が充填された構造を有し、
    上記電解液の溶媒が、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む光電変換素子。
  2. 上記イオン液体のカチオンが電子対受容性の官能基を有する請求項1記載の光電変換素子。
  3. 上記イオン液体は、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンと、76Å3 以上のファンデルワールス体積を有するアニオンとからなる請求項2記載の光電変換素子。
  4. 上記イオン液体と上記有機溶媒とからなる溶媒に上記イオン液体が15重量%以上100重量%未満含まれる請求項3記載の光電変換素子。
  5. 上記電子対供与性の官能基はエーテル基またはアミノ基である請求項1記載の光電変換素子。
  6. 上記光電変換素子は上記多孔質光電極に光増感色素が結合した色素増感光電変換素子である請求項1記載の光電変換素子。
  7. 上記多孔質光電極は半導体からなる微粒子により構成されている請求項6記載の光電変換素子。
  8. 上記多孔質光電極は、金属からなるコアとこのコアを取り巻く金属酸化物からなるシェルとからなる微粒子により構成されている請求項1記載の光電変換素子。
  9. 多孔質光電極と対極との間に、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む溶媒を用いた電解液からなる電解質層が充填された構造を形成する工程を有する光電変換素子の製造方法。
  10. 上記イオン液体のカチオンが電子対受容性の官能基を有する請求項9記載の光電変換素子の製造方法。
  11. 上記イオン液体は、第四級窒素原子を有する芳香族アミンカチオンからなり、芳香環中に水素原子を有する有機カチオンと、76Å3 以上のファンデルワールス体積を有するアニオンとからなる請求項10記載の光電変換素子の製造方法。
  12. 上記イオン液体と上記有機溶媒とからなる溶媒に上記イオン液体が15重量%以上100重量%未満含まれる請求項11記載の光電変換素子の製造方法。
  13. 上記電子対供与性の官能基はエーテル基またはアミノ基である請求項9記載の光電変換素子の製造方法。
  14. 上記多孔質光電極と上記対極との間に上記電解質層が充填された構造を形成する際に上記多孔質光電極に光増感色素を結合させる請求項9記載の光電変換素子の製造方法。
  15. 上記多孔質光電極は半導体からなる微粒子により構成されている請求項14記載の光電変換素子の製造方法。
  16. 上記多孔質光電極は、金属からなるコアとこのコアを取り巻く金属酸化物からなるシェルとからなる微粒子により構成されている請求項9記載の光電変換素子の製造方法。
  17. 少なくとも一つの光電変換素子を有し、
    上記光電変換素子が、
    多孔質光電極と対極との間に電解液からなる電解質層が充填された構造を有し、
    上記電解液の溶媒が、電子対受容性の官能基を有するイオン液体と電子対供与性の官能基を有する有機溶媒とを含む光電変換素子である電子機器。
JP2010160585A 2010-03-05 2010-07-15 光電変換素子およびその製造方法ならびに電子機器 Pending JP2011204662A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2010160585A JP2011204662A (ja) 2010-03-05 2010-07-15 光電変換素子およびその製造方法ならびに電子機器
EP11155348A EP2363869A3 (en) 2010-03-05 2011-02-22 Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
US13/034,149 US20110214739A1 (en) 2010-03-05 2011-02-24 Photoelectric conversion element and method of manufacturing the same, and electronic apparatus
CN201110049519.5A CN102194576B (zh) 2010-03-05 2011-02-28 光电转换器件及其制造方法、电子设备

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2010049765 2010-03-05
JP2010049765 2010-03-05
JP2010160585A JP2011204662A (ja) 2010-03-05 2010-07-15 光電変換素子およびその製造方法ならびに電子機器

Publications (1)

Publication Number Publication Date
JP2011204662A true JP2011204662A (ja) 2011-10-13

Family

ID=44080483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010160585A Pending JP2011204662A (ja) 2010-03-05 2010-07-15 光電変換素子およびその製造方法ならびに電子機器

Country Status (4)

Country Link
US (1) US20110214739A1 (ja)
EP (1) EP2363869A3 (ja)
JP (1) JP2011204662A (ja)
CN (1) CN102194576B (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5007784B2 (ja) * 2006-01-30 2012-08-22 ソニー株式会社 光電変換装置
JP2007234580A (ja) * 2006-02-02 2007-09-13 Sony Corp 色素増感型光電変換装置
JP2007280906A (ja) * 2006-04-12 2007-10-25 Sony Corp 機能デバイス及びその製造方法
JP5023866B2 (ja) * 2007-07-27 2012-09-12 ソニー株式会社 色素増感光電変換素子およびその製造方法ならびに電子機器
JP2009099476A (ja) * 2007-10-19 2009-05-07 Sony Corp 色素増感光電変換素子およびその製造方法
JP2009146625A (ja) * 2007-12-12 2009-07-02 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに光電変換素子モジュールおよびその製造方法ならびに電子機器
JP2010003468A (ja) * 2008-06-19 2010-01-07 Sony Corp 色素増感太陽電池およびその製造方法
JP2010009769A (ja) * 2008-06-24 2010-01-14 Sony Corp 光電変換素子の製造方法
JP2010010191A (ja) * 2008-06-24 2010-01-14 Sony Corp 電子装置
JP2010092762A (ja) * 2008-10-09 2010-04-22 Sony Corp 機能性デバイス及びその製造方法
US20110048525A1 (en) * 2008-11-26 2011-03-03 Sony Corporation Functional device and method for producing the same
JP5428555B2 (ja) * 2009-06-08 2014-02-26 ソニー株式会社 色素増感光電変換素子の製造方法
JP5621488B2 (ja) * 2010-03-17 2014-11-12 ソニー株式会社 光電変換装置
CN104603234B (zh) * 2012-09-11 2016-08-24 海洋王照明科技股份有限公司 钛酸盐发光材料及其制备方法
CN103578781B (zh) * 2013-10-24 2016-05-18 宁国市龙晟柔性储能材料科技有限公司 以离子液体共熔体为电解质的染料敏化太阳能电池及其制备方法
KR20150103950A (ko) * 2014-03-04 2015-09-14 현대자동차주식회사 장기 안정성 전해질의 효율 개선 방법 및 이를 이용한 자동차용 염료감응 태양전지
EP3270390B1 (en) * 2015-03-11 2021-04-14 Sanyo Chemical Industries, Ltd. Electrolytic solution for aluminum electrolytic capacitor and aluminum electrolytic capacitor using same
CN105633285A (zh) * 2016-03-24 2016-06-01 浙江零维光伏科技有限公司 一种有机薄膜太阳能电池碳电极的制备方法

Family Cites Families (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801363A (en) * 1987-01-05 1989-01-31 The Dow Chemical Company High purity alkaline earths via electrodeposition
US5729379A (en) * 1994-10-26 1998-03-17 Donnelly Corporation Electrochromic devices
US6277525B1 (en) * 1997-09-25 2001-08-21 Canon Kabushiki Kaisha Method for producing electrolyte and method for producing secondary battery
JP5081345B2 (ja) * 2000-06-13 2012-11-28 富士フイルム株式会社 光電変換素子の製造方法
US7141735B2 (en) * 2000-07-27 2006-11-28 Nippon Kayaku Kabushiki Kaisha Dye-sensitized photoelectric conversion device
EP2262050B1 (en) * 2001-07-06 2013-09-04 Nippon Kayaku Kabushiki Kaisha Photoelectric conversion element sensitized with methine dyes
JP4010170B2 (ja) * 2002-04-11 2007-11-21 ソニー株式会社 光電変換素子の製造方法
JP4221643B2 (ja) * 2002-05-27 2009-02-12 ソニー株式会社 光電変換装置
EP1528580B2 (en) * 2003-01-15 2015-07-01 Nippon Shokubai Co., Ltd. Dye-sensitized type solar cell
JP4820535B2 (ja) * 2004-02-24 2011-11-24 弘幸 大野 新規イミダゾリウム化合物
EP1745525A4 (en) * 2004-05-10 2011-03-16 Nippon Catalytic Chem Ind MATERIAL FOR AN ELECTROLYTIC SOLUTION, ION MATERIAL CONTAINING COMPOSITION AND USE THEREOF
JP4635473B2 (ja) * 2004-05-13 2011-02-23 ソニー株式会社 光電変換素子の製造方法及び半導体電極の製造方法
JP4635474B2 (ja) * 2004-05-14 2011-02-23 ソニー株式会社 光電変換素子、及びこれに用いる透明導電性基板
EP1622178A1 (en) * 2004-07-29 2006-02-01 Ecole Polytechnique Federale De Lausanne (Epfl) 2,2 -Bipyridine ligand, sensitizing dye and dye sensitized solar cell
EP1672653B1 (en) * 2004-12-20 2019-07-17 Merck Patent GmbH Patterned photovoltaic cell
US8044219B2 (en) * 2005-05-13 2011-10-25 Agc Seimi Chemical., Ltd. Amino group-containing heterocyclic derivatives and sensitizing dyes for photoelectric conversion containing the heterocyclic derivatives
JP4910497B2 (ja) * 2005-06-30 2012-04-04 本田技研工業株式会社 電気二重層キャパシタ用電解液および電気二重層キャパシタ
JP5007784B2 (ja) * 2006-01-30 2012-08-22 ソニー株式会社 光電変換装置
JP2007234580A (ja) * 2006-02-02 2007-09-13 Sony Corp 色素増感型光電変換装置
EP1819005A1 (en) * 2006-02-13 2007-08-15 Ecole Polytechnique Fédérale de Lausanne (EPFL) Ionic liquid electrolyte
JP2007280906A (ja) * 2006-04-12 2007-10-25 Sony Corp 機能デバイス及びその製造方法
JP2008186752A (ja) * 2007-01-31 2008-08-14 Konica Minolta Business Technologies Inc 光電変換素子及び太陽電池
JP5023866B2 (ja) * 2007-07-27 2012-09-12 ソニー株式会社 色素増感光電変換素子およびその製造方法ならびに電子機器
US7813188B2 (en) * 2007-09-10 2010-10-12 Hynix Semiconductor Inc. Non-volatile memory device and a method of programming a multi level cell in the same
JP2009099476A (ja) * 2007-10-19 2009-05-07 Sony Corp 色素増感光電変換素子およびその製造方法
JP2009110796A (ja) * 2007-10-30 2009-05-21 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに電子機器
JP2009146625A (ja) * 2007-12-12 2009-07-02 Sony Corp 色素増感光電変換素子モジュールおよびその製造方法ならびに光電変換素子モジュールおよびその製造方法ならびに電子機器
CN101232080B (zh) * 2007-12-29 2012-11-07 中国科学院长春应用化学研究所 共熔室温离子液体及其制法和应用
JP2010003468A (ja) * 2008-06-19 2010-01-07 Sony Corp 色素増感太陽電池およびその製造方法
JP2010009769A (ja) * 2008-06-24 2010-01-14 Sony Corp 光電変換素子の製造方法
JP2010010191A (ja) * 2008-06-24 2010-01-14 Sony Corp 電子装置
JP2010009831A (ja) * 2008-06-25 2010-01-14 Tdk Corp 光電変換素子
JP2010049765A (ja) 2008-08-23 2010-03-04 Hitachi Global Storage Technologies Netherlands Bv ディスクにサーボ・データを書き込む方法及びディスク・ドライブ装置
JP2010092762A (ja) * 2008-10-09 2010-04-22 Sony Corp 機能性デバイス及びその製造方法
US20110048525A1 (en) * 2008-11-26 2011-03-03 Sony Corporation Functional device and method for producing the same
TW201024267A (en) * 2008-12-19 2010-07-01 Ind Tech Res Inst Electrolyte composition and dye-sensitized solar cell using the same
JP2010160585A (ja) 2009-01-06 2010-07-22 Sony Corp サーバ装置、情報処理方法、情報処理システム
JP5428555B2 (ja) * 2009-06-08 2014-02-26 ソニー株式会社 色素増感光電変換素子の製造方法
JP2011216190A (ja) * 2010-03-31 2011-10-27 Sony Corp 光電変換装置及びその製造方法
JP2011216189A (ja) * 2010-03-31 2011-10-27 Sony Corp 光電変換装置及び光電変換装置モジュール
JP2011238472A (ja) * 2010-05-11 2011-11-24 Sony Corp 光電変換装置
JP2012004010A (ja) * 2010-06-18 2012-01-05 Sony Corp 光電変換素子およびその製造方法ならびに電子機器
JP2012014849A (ja) * 2010-06-29 2012-01-19 Sony Corp 光電変換素子およびその製造方法ならびに光電変換素子モジュールおよびその製造方法
JP2012084374A (ja) * 2010-10-12 2012-04-26 Sony Corp 光電変換素子、光電変換素子の製造方法、光電変換素子用電解質層および電子機器

Also Published As

Publication number Publication date
CN102194576A (zh) 2011-09-21
EP2363869A3 (en) 2012-08-29
US20110214739A1 (en) 2011-09-08
CN102194576B (zh) 2016-08-03
EP2363869A2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
JP5023866B2 (ja) 色素増感光電変換素子およびその製造方法ならびに電子機器
JP2011204662A (ja) 光電変換素子およびその製造方法ならびに電子機器
JP5428555B2 (ja) 色素増感光電変換素子の製造方法
WO2011002073A1 (ja) 光電変換素子およびその製造方法ならびに電子機器
WO2011158922A1 (ja) 光電変換素子およびその製造方法ならびに電子機器
WO2012117867A1 (ja) 光電変換素子、光電変換素子の製造方法および電子機器
JP4591131B2 (ja) 色素増感光電変換素子およびその製造方法ならびに電子装置およびその製造方法ならびに電子機器
JP4635473B2 (ja) 光電変換素子の製造方法及び半導体電極の製造方法
JP2012084374A (ja) 光電変換素子、光電変換素子の製造方法、光電変換素子用電解質層および電子機器
JP2007234580A (ja) 色素増感型光電変換装置
JP2012014849A (ja) 光電変換素子およびその製造方法ならびに光電変換素子モジュールおよびその製造方法
JP4380779B2 (ja) 色素増感型光電変換装置
JP6011443B2 (ja) 色素増感太陽電池用半導体層、および色素増感太陽電池用電極部材
JP2012212615A (ja) 光電変換素子の製造方法、光電変換素子および電子機器
WO2012086663A1 (ja) 色素、色素増感光電変換素子、電子機器および建築物
WO2012128016A1 (ja) 光電変換素子の製造方法および電子装置の製造方法
JP2012243436A (ja) 光電変換素子およびその製造方法ならびに電子機器
JP2015115110A (ja) 色素増感太陽電池の製造方法および色素増感太陽電池
JP2013161660A (ja) 光電変換素子、光電変換素子の製造方法、電子機器および建築物
JP2013058424A (ja) 光増感色素、色素増感光電変換素子、電子機器および建築物
JP2011138624A (ja) 光電変換素子用電解質組成物及び光電変換素子
JP2012146640A (ja) 色素、色素増感光電変換素子、電子機器および建築物
JP2011187425A (ja) 色素増感型光電変換装置及びその製造方法
JP2014011024A (ja) 色素増感型太陽電池用有機化合物、色素増感型太陽電池用作用電極及び色素増感型太陽電池

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20130308