JP2011008966A - 多層多孔膜 - Google Patents

多層多孔膜 Download PDF

Info

Publication number
JP2011008966A
JP2011008966A JP2009149001A JP2009149001A JP2011008966A JP 2011008966 A JP2011008966 A JP 2011008966A JP 2009149001 A JP2009149001 A JP 2009149001A JP 2009149001 A JP2009149001 A JP 2009149001A JP 2011008966 A JP2011008966 A JP 2011008966A
Authority
JP
Japan
Prior art keywords
porous membrane
mass
monomer
multilayer porous
polyolefin resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009149001A
Other languages
English (en)
Other versions
JP5354735B2 (ja
Inventor
Hiroshi Murata
博 村田
Hidenori Iwazawa
英徳 岩澤
Mikiyoshi Mori
森  幹芳
Koichiro Azuma
孝一郎 東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp, Asahi Kasei E Materials Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2009149001A priority Critical patent/JP5354735B2/ja
Publication of JP2011008966A publication Critical patent/JP2011008966A/ja
Application granted granted Critical
Publication of JP5354735B2 publication Critical patent/JP5354735B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Laminated Bodies (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Cell Separators (AREA)

Abstract

【課題】高温環境下においても熱収縮の抑制された多層多孔膜を提供する。
【解決手段】ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機粒子と樹脂製バインダとを含む多孔層を備えた多層多孔膜であって、樹脂製バインダが、(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを原料単位として含む共重合体であり、前記単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量部%以上であることを特徴とする多層多孔膜。
【選択図】なし

Description

本発明は、各種物質の分離や浄化等及び電池の中で正極と負極の間に配置される膜に好適に用いられる多層多孔膜およびその製造方法に関する。さらに、それを用いた非水系電解液電池用セパレータおよび非水電解液電池に関する。
ポリオレフィン多孔膜は優れた電気絶縁性、イオン透過性を示すことから、電池やコンデンサー等におけるセパレータとして広く利用されている。特に近年では、携帯機器の多機能化、軽量化に伴い、その電源として高出力密度、高容量密度のリチウムイオン二次電池が使用されており、このような電池用セパレータにも主としてポリオレフィン多孔膜が用いられている。
リチウムイオン二次電池は高い出力密度、容量密度を持つ反面、電解液に有機溶媒を用いているために短絡や過充電などの異常事態に伴う発熱によって電解液が分解し、最悪の場合には発火に至ることがある。このような事態を防ぐため、リチウムイオン二次電池にはいくつかの安全機能が組み込まれており、その中の一つに、セパレータのシャットダウン機能がある。シャットダウン機能とは電池が異常発熱を起こした際、セパレータの微多孔が熱溶融等により閉塞して電解液内のイオン伝導を抑制し、電気化学反応の進行をストップさせる機能のことである。一般にシャットダウン温度が低いほど安全性が高いとされ、ポリエチレンがセパレータの成分として用いられている理由の一つに適度なシャットダウン温度を持つという点が挙げられる。
しかし、高いエネルギーを有する電池においては、シャットダウンにより電気化学反応の進行をストップさせても電池内の温度が上昇し続け、その結果、セパレータが熱収縮して破膜し、両極が短絡(ショート)するという問題が生じる場合がある。
安全性の高い電池を製造することを目的として、特許文献1には、熱可塑性樹脂を主成分とする第一の多孔層に、耐熱層を積層してセパレータを形成する技術が記載されている。
特許第3756815号公報
しかしながら、近年、電池の高容量化が進んでいる。このような高容量電池においては異常発熱時の発熱量が大きく、より高温環境となり易い。特許文献1に記載されたセパレータは、耐熱層を有しない通常のセパレータに比して安全性が向上すると考えられるものの、セパレータの熱収縮を高温環境下においても抑制し、セパレータの破膜によって両極が短絡(ショート)するおそれを低減する観点からは、なお改良の余地を有するものであった。
本発明は、高温環境下においても熱収縮の抑制された多層多孔膜を提供することを目的とする。
本発明者らは、前記課題を解決するため鋭意検討した結果、無機粒子含有層を積層したポリオレフィン多孔膜において、特定のバインダを用いて無機粒子層を構成することにより、高い透過性を維持しながら、高温での熱収縮が抑制された多層多孔膜を実現し得ることを見出し、本発明に到達した。
すなわち、本発明は以下のとおりである。
[1]ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機粒子と樹脂製バインダとを含む多孔層を備えた多層多孔膜であって、前記樹脂製バインダが、(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを原料単位として含む共重合体であり、前記単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量%以上であることを特徴とする多層多孔膜。
[2]前記共重合体が、更に、ヒドロキシル基含有ビニル系単量体を原料単位として含む[1]に記載の多層多孔膜。
[3]前記無機粒子が、ケイ酸アルミニウム化合物、水酸化酸化アルミニウム、及び炭酸カルシウムよりなる群から選択される少なくとも1種である[1]又は[2]に記載の多層多孔膜。
[4]前記ポリオレフィン樹脂がポリプロピレンを含む[1]〜[3]のいずれかに記載の多層多孔膜。
[5]前記ポリプロピレンが、前記ポリオレフィン樹脂中に占める割合が1〜35質量%である[4]に記載の多層多孔膜。
[6][1]〜[5]のいずれかに記載の多層多孔膜からなる非水電解液電池用セパレータ。
[7][6]に記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する非水電解液電池。
[8][1]〜[5]のいずれかに記載の多層多孔膜の製造方法であって、以下の(A)〜(B)の各工程、
(A)(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを含む単量体組成物を少なくとも含み、単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量%以上である単量体組成を、乳化重合し、重合体粒子が溶媒中に分散した分散体を形成する分散体形成工程、
(B)前記分散体と無機粒子とを含む塗布液を、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に塗布する塗布工程、
を含むことを特徴とする製造方法。
[9]前記単量体組成物が、更に、ヒドロキシル基含有ビニル系単量体を含む[8]に記載の製造方法。
本発明によれば、高温環境下においても熱収縮が抑制された多層多孔膜、その製造方法、それを用いた非水電解液電池用セパレータおよび非水電解液電池を提供できる。
以下、本発明を実施するための形態(以下、「実施の形態」と略記する。)について詳細に説明する。尚、本発明は、以下の実施の形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
本実施の形態の多層多孔膜は、ポリオレフィン樹脂を主成分とする多孔膜と、該多孔膜の少なくとも片面に積層された、無機粒子と樹脂製バインダとを含む多孔層を有している。
前記樹脂製バインダは、(メタ)アクリル酸エステル単量体(本願において、アクリル酸およびメタアクリル酸を合わせて(メタ)アクリル酸と表記する)から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを原料単位として含む共重合体である。
前記(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルアクリレート、イソブチルアクリレート、t−ブチルアクリレート、n−ヘキシルアクリレート、シクロヘキシルアクリレート、2−エチルヘキシルアクリレート、ラウリルアクリレート、ベンジルアクリレート、フェニルアクリレート、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルアクリレート、ブチルメタクリレート、イソブチルメタクリレート、t−ブチルメタクリレート、n−ヘキシルメタクリレート、シクロヘキシルメタクリレート、2−エチルヘキシルメタクリレート、ラウリルメタクリレート、ベンジルメタクリレート、フェニルメタクリレート等が挙げられる。好ましくは、ブチルアクリレート、2−エチルヘキシルアクリレート、メチルメタクリレート、ブチルメタクリレート、シクロヘキシルメタクリレートである。
前記不飽和カルボン酸単量体としては、例えば、モノカルボン酸のアクリル酸、メタクリル酸、イタコン酸のハーフエステル、マレイン酸のハーフエステル、フマール酸のハーフエステルなどが挙げられ、ジカルボン酸としてはイタコン酸、フマール酸、マレイン酸等が挙げられる。好ましくはアクリル酸、メタクリル酸、イタコン酸であり、さらに好ましくはアクリル酸、メタクリル酸である。
前記架橋性単量体としては、ラジカル重合性の二重結合を2個以上有している単量体や、重合中または重合後に自己架橋構造を与える官能基を有している単量体が挙げられる。
ラジカル重合性の二重結合を2個以上有している単量体としては、例えば、ジビニルベンゼン、ポリオキシエチレンジアクリレート、ポリオキシエチレンジメタクリレート、ポリオキシプロピレンジアクリレート、ポリオキシプロピレンジメタクリレート、ネオペンチルグリコールジアクリレート、ネオペンチルグリコールジメタクリレート、ブタンジオールジアクリレート、ブタンジオールジメタクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールテトラメタクリレートなどが挙げられる。
重合中または重合後に自己架橋構造を与える官能基を有している単量体としては、例えばエポキシ基含有ビニル単量体、メチロール基含有単量体、アルコキシメチル基含有単量体、加水分解性シリル基を有するビニル単量体等を挙げることができる。
エポキシ基含有ビニル単量体としては、例えば、グリシジルアクリレート、グリシジルメタクリレート、アリルグリシジルエーテル、メチルグリシジルアクリレート、メチルグリシジルメタクリレートなどが挙げられる。好ましくはグリシジルメタクリレートである。
メチロール基含有ビニル単量体としては、例えば、N−メチロールアクリルアミド、N−メチロールメタクリルアミド、ジメチロールアクリルアミド、ジメチロールメタクリルアミドなどが挙げられる。
アルコキシメチル基含有ビニル単量体としては、例えば、N−メトキシメチルアクリルアミド、N−メトキシメチルメタクリルアミド、N−ブトキシメチルアクリルアミド、N−ブトキシメチルメタクリルアミドなどが挙げられる
加水分解性シリル基を有するビニル単量体としては、例えば、ビニルシラン、γ−アクリロキシプロピルトリメトキシシラン、γ−アクリロキシプロピルトリエトキシシラン、γ−メタクリロキシプロピルトリメトキシシラン、γ−メタクリロキシプロピルトリエトキシシラン等が挙げられる。
前記共重合体は、更に、ヒドロキシル基含有ビニル系単量体を原料単位として含むことが好ましい。
ヒドロキシル基含有ビニル単量体としては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ポリエチレングリコールアクリレート、ポリエチレングリコールメタクリレート等が挙げられる。好ましくはヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレートである。
なお、これらの単量体に加えて、様々な品質・物性を改良するために、上記以外の単量体成分をさらに使用することもできる。上記以外の単量体として、例えば、アミド基含有ビニル単量体、シアノ基含有ビニル単量体、芳香族ビニル単量体、その他のエチレン性不飽和単量体等を挙げることができる。
アミド基含有ビニル単量体としては、例えば、アクリルアミド、メタクリルアミド、N,N−メチレンビスアクリルアミド、ダイアセトンアクリルアミド、ダイアセトンメタクリルアミド、マレイン酸アミド、マレイミド等を挙げられる。好ましくはアクリルアミド、メタクリルアミドである。
シアノ基含有ビニル単量体としては、例えば、アクリロニトリル、メタクリロニトリルなどが挙げられる。
芳香族ビニル単量体としては、例えば、スチレン、ビニルトルエン、α−メチルスチレンなどが挙げられる。好ましくはスチレンである。
その他のエチレン性不飽和単量体としては、アミノ基、スルホン酸基、リン酸基などの官能基を有する各種のビニル系単量体、さらには酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニル、ビニルピロリドン、メチルビニルケトン、ブタジエン、エチレン、プロピレン、塩化ビニル、塩化ビニリデンなども必要に応じて使用できる。
単量体組成物に含まれる、不飽和カルボン酸単量体の割合としては、1.0質量%以上、好ましくは1〜10質量%(より好ましくは1〜5質量%)、
(メタ)アクリル酸エステル単量体の割合としては、好ましくは30〜98.5質量%(より好ましくは40〜98.5質量%、更に好ましくは50〜98.0質量%)、
架橋性単量体の割合としては、好ましくは0.5〜10質量%(より好ましくは1〜5質量%)、
ヒドロキシル基含有ビニル単量体の割合としては、好ましくは0〜10質量%(より好ましくは0.5〜5質量%)、
その他の単量体の割合としては、好ましくは0〜50質量%である。
前記共重合体は、例えば、通常の乳化重合法によって得られる。乳化重合の方法に関しては特に制限はなく、従来公知の方法を用いることができる。例えば、水性媒体中で前記の単量体組成物、界面活性剤、ラジカル重合開始剤および、必要に応じて用いられる他の添加剤成分などを基本組成成分とする分散系において、単量体組成物を重合することにより共重合体が得られる。そして、重合に際しては、供給する単量体組成物の組成を全重合過程で一定にする方法や、重合過程で逐次あるいは連続的に変化させることによって生成する樹脂分散体の粒子の形態的な組成変化を与える方法など必要に応じて様々な方法が利用できる。
界面活性剤は、一分子中に少なくとも一つ以上の親水基と一つ以上の親油基を有する化合物を指す。界面活性剤としては、例えば非反応性のアルキル硫酸エステル、ポリオキシエチレンアルキルエーテル硫酸エステル塩、アルキルベンゼンスルフォン酸塩、アルキルナフタレンスルフォン酸塩、アルキルスルホコハク酸塩、アルキルジフェニルエーテルジスルフォン酸塩、ナフタレンスルフォン酸ホルマリン縮合物、ポリオキシエチレン多環フェニルエーテル硫酸エステル塩、ポリオキシエチレンジスチレン化フェニルエーテル硫酸エステル塩、脂肪酸塩、アルキルリン酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸エステル塩などのアニオン性界面活性剤が挙げられ、また非反応性のポリオキシエチレンアルキルエーテル、ポリオキシアルキレンアルキルエーテル、ポリオキシエチレン多環フェニルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレンソルビトール脂肪酸エステル、グリセリン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレンアルキルアミン、アルキルアルカノールアミド、ポリオキシエチレンアルキルフェニルエーテルなどのノニオン性界面活性剤が挙げられる。
これらのほかに親水基と親油基を有する界面活性剤の化学構造式の中にエチレン性二重結合を導入した、いわゆる反応性界面活性剤を用いても良い。
反応性界面活性剤の中でアニオン性界面活性剤としては、例えばスルホン酸基、スルホネート基又は硫酸エステル基及びこれらの塩を有するエチレン性不飽和単量体であり、スルホン酸基、又はそのアンモニウム塩かアルカリ金属塩である基(アンモニウムスルホネート基、又はアルカリ金属スルホネート基)を有する化合物であることが好ましい。例えばアルキルアリルスルホコハク酸塩(例えば三洋化成(株)エレミノール(商標)JS−20、例えば花王(株)製ラテムル(商標)S−120、S−180A、S−180等が挙げられる)、例えばポリオキシエチレンアルキルプロペニルフェニルエーテル硫酸エステル塩(例えば第一工業製薬(株)製アクアロン(商標)HS−10等が挙げられる)、例えばα−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ポリオキシエチレン硫酸エステル塩(例えば(株)ADEKA製アデカリアソープ(商標)SE−10N等が挙げられる)、例えばアンモニウム=α−スルホナト−ω−1−(アリルオキシメチル)アルキルオキシポリオキシエチレン(例えば第一工業製薬(株)製アクアロンKH−10などが挙げられる)、例えばスチレンスルホン酸塩(例えば東ソー有機化学(株)製スピノマー(商標)NaSS等が挙げられる)、例えばα−〔2−〔(アリルオキシ)−1−(アルキルオキシメチル)エチル〕−ω−ポリオキシエチレン硫酸エステル塩(例えば(株)ADEKA製アデカリアソープ(商標)SR−10等が挙げられる)、例えばポリオキシエチレンポリオキシブチレン(3−メチル−3−ブテニル)エーテルの硫酸エステル塩(例えば花王(株)製ラテムル(商標)PD−104等が挙げられる)などが挙げられる。
また、反応性界面活性剤でノニオン性界面活性剤としては、例えばα−〔1−〔(アリルオキシ)メチル〕−2−(ノニルフェノキシ)エチル〕−ω−ヒドロキシポリオキシエチレン(例えば(株)ADEKA製アデカリアソープNE−20、NE−30、NE−40等が挙げられる)、例えばポリオキシエチレンアルキルプロペニルフェニルエーテル(例えば第一工業製薬(株)製アクアロンRN−10、RN−20、RN−30、RN−50等が挙げられる)、例えばα−〔2−〔(アリルオキシ)−1−(アルキルオキシメチル)エチル〕−ω−ヒドロキシポリオキシエチレン(例えば(株)ADEKA製アデカリアソープ(商標)ER−10等が挙げられる)、例えばポリオキシエチレンポリオキシブチレン(3−メチル−3−ブテニル)エーテル(例えば花王(株)製ラテムル(商標)PD−420等が挙げられる)などが挙げられる。
界面活性剤の量としては、単量体組成物100質量部に対してアニオン性界面活性剤0.1〜5質量部、ノニオン性界面活性剤0.1〜5質量部を用いることができる。
ラジカル重合開始剤としては、熱または還元性物質によりラジカル分解して単量体の付加重合を開始させるものであり、無機系開始剤および有機系開始剤のいずれも使用できる。このようなものとしては、水溶性、油溶性の重合開始剤が使用できる。水溶性の重合開始剤としては例えばペルオキソ二硫酸塩、過酸化物、水溶性のアゾビス化合物、過酸化物−還元剤のレドックス系などが挙げられ、ペルオキソ二硫酸塩としては例えばペルオキソ二硫酸カリウム(KPS)、ペルオキソ二硫酸ナトリウム(NPS)、ペルオキソ二硫酸アンモニウム(APS)などが挙げられ、過酸化物としては例えば過酸化水素、t−ブチルハイドロパーオキサイド、t―ブチルパーオキシマレイン酸、コハク酸パーオキシド、過酸化ベンゾイルなどが挙げられ、水溶性アゾビス化合物としては、例えば2,2−アゾビス(N−ヒドロキシエチルイソブチルアミド)、2、2−アゾビス(2−アミジノプロパン)2塩化水素、4,4−アゾビス(4−シアノペンタン酸)などが挙げられ、過酸化物−還元剤のレドックス系としては、例えば先の過酸化物にナトリウムスルホオキシレートホルムアルデヒド、亜硫酸水素ナトリウム、チオ硫酸ナトリウム、ヒドロキシメタンスルフィン酸ナトリウム、L−アスコルビン酸、およびその塩、第一銅塩、第一鉄塩などの還元剤を重合開始剤に組み合わせて用いることもできる。
ラジカル重合開始剤の量としては、単量体組成物100質量部に対して、ラジカル重合開始剤0.05〜2質量部を用いることができる。
なお、(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを含む単量体組成物を乳化重合し、重合体粒子が溶媒中に分散した分散体を形成する場合、得られた分散体の固形分としては、30質量%〜70質量%であることが好ましい。
また、分散体は、長期の分散安定性を保つため、アンモニア、水酸化ナトリウム、水酸化カリウム、ジメチルアミノエタノールなどのアミン類を用いてpH5〜12の範囲に調整することが好ましい。
前記重合粒子の平均粒径は、好ましくは70〜250nm、より好ましくは75〜230nm、更に好ましくは80〜220nmである。平均粒径を70nm以上とすることは、多孔層のバインダとして使用した際に耐熱性能を十分に発現する観点から好ましい。また、平均粒径を250nm以下とすることは、多孔層からの無機粒子の脱落等のない良好な塗工層強度を発現させる観点から好ましい。
前記多孔層に使用する無機粒子としては、200℃以上の融点をもち、電気絶縁性が高く、かつリチウムイオン二次電池の使用範囲で電気化学的に安定であるものが好ましい。
例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、イットリア、酸化亜鉛、酸化鉄などの酸化物系セラミックス、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、硫酸マグネシウム、硫酸アルミニウム、水酸化アルミニウム、水酸化酸化アルミニウム、チタン酸カリウム、タルク、カオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライト、モンモリロナイト、セリサイト、マイカ、アメサイト、ベントナイト、アスベスト、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ藻土、ケイ砂等のセラミックス、ガラス繊維などが挙げられ、これらを単独で用いてもよいし、複数を混合して用いてもよい。
電気化学的安定性の点および多層多孔膜の耐熱特性の観点から、アルミナ、水酸化酸化アルミニウムなどの酸化アルミニウム化合物、またはカオリナイト、ディカイト、ナクライト、ハロイサイト、パイロフィライトなどのイオン交換能を持たないケイ酸アルミニウム化合物、または炭酸カルシウムが好ましい。前記酸化アルミニウム化合物としては、水酸化酸化アルミニウムが特に好ましい。イオン交換能を持たないケイ酸アルミニウム化合物としては、カオリン鉱物で主に構成されているカオリンが、安価で入手も容易なため、より好ましい。カオリンには湿式カオリンおよびこれを焼成処理した焼成カオリンがあるが、焼成カオリンは焼成処理の際に結晶水が放出されるのに加え、不純物が除去されるので、電気化学的安定性の点で特に好ましい。前記炭酸カルシウムとしては、柱状、針状または紡錘状の軽質炭酸カルシウムが特に好ましい。
前記無機粒子の平均粒径は、0.1μmより大きく4.0μm以下であることが好ましく、0.2μmより大きく3.5μm以下であることがより好ましく、0.4μmより大きく3.0μm以下であることが特に好ましい。このような平均粒径とすることは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。
前記無機粒子において、0.2μmより大きく1.4μm以下の粒径を有する粒子が無機粒子全体に占める割合としては、好ましくは2体積%以上、より好ましくは3体積%以上、更に好ましくは5体積%以上であり、好ましくは90体積%以下、より好ましくは80体積%以下である。
前記無機粒子において、0.2μmより大きく1.0μm以下の粒径を有する粒子が無機粒子全体に占める割合としては、好ましくは1体積%以上、より好ましくは2体積%以上であり、好ましくは80体積%以下、より好ましくは70体積%以下である。
また、前記無機粒子において、0.5μmより大きく2.0μm以下の粒径を有する粒子が無機粒子全体に占める割合としては、好ましくは8体積%以上、より好ましくは10体積以上であり、好ましくは60体積%以下、より好ましくは50体積%以下である。
更に、前記無機粒子において、0.6μmより大きく1.4μm以下の粒径を有する粒子が無機粒子全体に占める割合としては、好ましくは1体積%以上、より好ましくは3体積%以上であり、好ましくは40体積%以下、より好ましくは30体積%以下である。
このような粒度分布とすることは、多孔層の厚さが薄い場合(例えば、7μm以下)であっても、高温での熱収縮を抑制する観点から好ましい。
なお、このような割合を調整する方法としては、ボールミル・ビーズミル・ジェットミル等を用いて無機粒子を粉砕し、粒径を小さくする方法等を挙げることができる。
前記無機粒子が、前記多孔層中に占める割合(質量%)としては、無機粒子の結着性、多層多孔膜の透過性・耐熱性等の観点から適宜決定することができるが、50%以上100%未満であることが好ましく、より好ましくは70%以上99.99%以下、さらに好ましくは80%以上99.9%以下、特に好ましくは90%以上99%以下である。
多孔層の層厚は、多層多孔膜の耐熱性の観点から1μm以上であることが好ましく、電池の高容量化と透過性の観点から50μm以下であることが好ましい。より好ましくは1.5μm以上20μm以下、さらに好ましくは2μm以上10μm以下、特に好ましくは3μm以上10μm以下、最も好ましくは3μm以上7μm以下である。
多孔層の形成方法としては、例えば、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機粒子と樹脂製バインダとを含む塗布液を塗布して多孔層を形成する方法を挙げることができる。
塗布液の溶媒としては、前記無機粒子、及び前記樹脂製バインダを均一かつ安定に分散又は溶解できるものが好ましく、例えば、N−メチルピロリドン、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、水、エタノール、トルエン、熱キシレン、塩化メチレン、ヘキサン等が挙げられる。
塗布液には、分散安定化や塗工性の向上のために、界面活性剤等の分散剤;増粘剤;湿潤剤;消泡剤;酸、アルカリを含むPH調製剤等の各種添加剤を加えてもよい。これらの添加剤は、溶媒除去の際に除去できるものが好ましいが、リチウムイオン二次電池の使用範囲において電気化学的に安定で、電池反応を阻害せず、かつ200℃程度まで安定ならば多孔層内に残存してもよい。
前記無機粒子と前記重合体粒子とを、塗布液の溶媒に溶解又は分散させる方法については、塗布工程に必要な塗布液の溶解又は分散特性を実現できる方法であれば特に限定はない。例えば、ボールミル、ビーズミル、遊星ボールミル、振動ボールミル、サンドミル、コロイドミル、アトライター、ロールミル、高速インペラー分散、ディスパーザー、ホモジナイザー、高速衝撃ミル、超音波分散、撹拌羽根等による機械撹拌等が挙げられる。
塗布液を多孔膜に塗布する方法については、必要とする層厚や塗布面積を実現できる方法であれば特に限定はない。例えば、グラビアコーター法、小径グラビアコーター法、リバースロールコーター法、トランスファロールコーター法、キスコーター法、ディップコーター法、ナイフコーター法、エアドクタコーター法、ブレードコーター法、ロッドコーター法、スクイズコーター法、キャストコーター法、ダイコーター法、スクリーン印刷法、スプレー塗布法等が挙げられる。
さらに、塗布に先立ち、多孔膜表面に表面処理をすると、塗布液を塗布し易くなると共に、塗布後の無機粒子含有多孔層と多孔膜表面との接着性が向上するため好ましい。表面処理の方法は、多孔膜の多孔質構造を著しく損なわない方法であれば特に限定はなく、例えば、コロナ放電処理法、機械的粗面化法、溶剤処理法、酸処理法、紫外線酸化法等が挙げられる。
塗布後に塗布膜から溶媒を除去する方法については、多孔膜に悪影響を及ぼさない方法であれば特に限定はない。例えば、多孔膜を固定しながらその融点以下の温度にて乾燥する方法、低温で減圧乾燥する方法、樹脂製バインダに対する貧溶媒に浸漬して樹脂製バインダを凝固させると同時に溶媒を抽出する方法等が挙げられる。
次に、ポリオレフィン樹脂を主成分とする多孔膜について説明する。
ポリオレフィン樹脂を主成分とする多孔膜とは、電池用セパレータとして用いた場合のシャットダウン性能などの点から、多孔膜を構成する樹脂成分の質量分率の50%以上100%以下をポリオレフィン樹脂が占めるポリオレフィン樹脂組成物にて形成される多孔膜が好ましい。ポリオレフィン樹脂が占める割合は60%以上100%以下がより好ましく、70%以上100%以下であることが最も好ましい。
ポリオレフィン樹脂とは、通常の押出、射出、インフレーション、及びブロー成形等に使用するポリオレフィン樹脂をいい、エチレン、プロピレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、及び1−オクテン等のホモ重合体及び共重合体、多段重合体等を使用することができる。また、これらのホモ重合体及び共重合体、多段重合体の群から選んだポリオレフィンを単独、もしくは混合して使用することもできる。前記重合体の代表例としては、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン、アイソタクティックポリプロピレン、アタクティックポリプロピレン、エチレン−プロピレンランダム共重合体、ポリブテン、エチレンプロピレンラバー等が挙げられる。
多層多孔膜を電池セパレータとして使用する場合、低融点であり、かつ高強度の要求性能から、特に高密度ポリエチレンを主成分とする樹脂を使用することが好ましい。
多孔膜の耐熱性向上、多層多孔膜の耐熱性向上の観点から、ポリプロピレンと、ポリプロピレン以外のポリオレフィン樹脂を含む樹脂組成物からなる多孔膜を用いることがより好ましい。
ここで、ポリプロピレンの立体構造に限定はなく、アイソタクティックポリプロピレン、シンジオタクティックポリプロピレン及びアタクティックポリプロピレンのいずれでもよい。
ポリオレフィン樹脂組成物中の総ポリオレフィンに対するポリプロピレンの割合は、耐熱性と良好なシャットダウン機能の両立の観点から、1〜35質量%であることが好ましく、より好ましくは3〜20質量%、さらに好ましくは4〜10質量%である。
この場合、ポリプロピレン以外のポリオレフィン樹脂に限定はなく、例えば、エチレン、1−ブテン、4−メチル−1−ペンテン、1−ヘキセン、1−オクテン等のオレフィン炭化水素の単独重合体又は共重合体が挙げられる。具体的には、ポリエチレン、ポリブテン、エチレン−プロピレンランダム共重合体等が挙げられる。
電池用セパレータとして使用する場合等、孔が熱溶融により閉塞してシャットダウンすることが要求される場合には、ポリプロピレン以外のポリオレフィン樹脂として、低密度ポリエチレン、線状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、超高分子量ポリエチレン等のポリエチレンを用いることが好ましい。これらの中でも、強度の観点から、JIS K 7112に従って測定した密度が0.93g/cm3以上であるポリエチレンを使用することがより好ましい。
ポリオレフィン樹脂の粘度平均分子量は、3万以上1200万以下であることが好ましく、より好ましくは5万以上200万未満、さらに好ましくは10万以上100万未満である。粘度平均分子量が3万以上であると、溶融成形の際のメルトテンションが大きくなり成形性が良好になると共に、重合体どうしの絡み合いにより高強度となるため好ましい。一方、粘度平均分子量が1200万以下であると、均一に溶融混練をすることが容易となり、シートの成形性、特に厚み安定性に優れるため好ましい。さらに、本実施の形態の多層多孔膜を電池用セパレータとして使用する場合、粘度平均分子量が100万未満であると、温度上昇時に孔を閉塞しやすく良好なシャットダウン機能が得られるため好ましい。なお、例えば、粘度平均分子量100万未満のポリオレフィンを単独で使用する替わりに、粘度平均分子量200万のポリオレフィンと粘度平均分子量27万のポリオレフィンの混合物とし、混合物の粘度平均分子量を100万未満としてもよい。
ポリオレフィン樹脂組成物には、任意の添加剤を含有させることができる。このような添加剤としては、例えば、ポリオレフィン以外の重合体;無機フィラー;フェノール系、リン系、イオウ系等の酸化防止剤;ステアリン酸カルシウム、ステアリン酸亜鉛等の金属石鹸類;紫外線吸収剤;光安定剤;帯電防止剤;防曇剤;着色顔料等が挙げられる。
これらの添加剤の総添加量は、ポリオレフィン樹脂組成物100質量部に対して、20質量部以下であることが好ましく、より好ましくは10質量部以下、さらに好ましくは5質量部以下である。
多孔膜の平均孔径に限定はなく、用途に応じて適宜決定できるが、多層多孔膜を電池用セパレータとして使用する場合、孔径は、0.001〜10μmが好ましく、より好ましくは0.01〜1μmである。
前記多孔膜を製造する方法に制限はなく、公知の製造方法を採用することができる。例えば、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、場合により延伸した後、可塑剤を抽出することにより多孔化させる方法、ポリオレフィン樹脂組成物を溶融混練して高ドロー比で押出した後、熱処理と延伸によってポリオレフィン結晶界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物と無機充填材とを溶融混練してシート上に成形後、延伸によってポリオレフィンと無機充填材との界面を剥離させることにより多孔化させる方法、ポリオレフィン樹脂組成物を溶解後、ポリオレフィンに対する貧溶媒に浸漬させポリオレフィンを凝固させると同時に溶剤を除去することにより多孔化させる方法等が挙げられる。
以下、多孔膜を製造する方法の一例として、ポリオレフィン樹脂組成物と可塑剤とを溶融混練してシート状に成形後、可塑剤を抽出する方法について説明する。
まず、ポリオレフィン樹脂組成物と可塑剤を溶融混練する。溶融混練方法としては、例えば、ポリオレフィン樹脂および必要によりその他の添加剤を、押出機、ニーダー、ラボプラストミル、混練ロール、バンバリーミキサー等の樹脂混練装置に投入し、樹脂成分を加熱溶融させながら任意の比率で可塑剤を導入して混練する方法が挙げられる。この際、ポリオレフィン樹脂、その他の添加剤及び可塑剤を樹脂混練装置に投入する前に、予めヘンシェルミキサー等を用い所定の割合で事前混練しておくことが好ましい。より好ましくは、事前混練において可塑剤の一部のみを投入し、残りの可塑剤を樹脂混練装置サイドフィードしながら混練することである。このようにすることにより、可塑剤の分散性を高め、後の工程で樹脂組成物と可塑剤の溶融混練合物のシート状成形体を延伸する際に、破膜することなく高倍率で延伸することができる。
可塑剤としては、ポリオレフィンの融点以上において均一溶液を形成しうる不揮発性溶媒を用いることができる。このような不揮発性溶媒の具体例として、例えば、流動パラフィン、パラフィンワックス等の炭化水素類;フタル酸ジオクチル、フタル酸ジブチル等のエステル類;オレイルアルコール、ステアリルアルコール等の高級アルコール等が挙げられる。
これらの中で、流動パラフィンは、ポリエチレンやポリプロピレンとの相溶性が高く、溶融混練物を延伸しても樹脂と可塑剤の界面剥離が起こりにくいので、均一な延伸が実施しやすいので好ましい。
ポリオレフィン樹脂組成物と可塑剤の比率は、これらを均一に溶融混練して、シート状に成形できる範囲であれば特に限定はない。例えば、ポリオレフィン樹脂組成物と可塑剤とからなる組成物中に占める可塑剤の質量分率は好ましくは30〜80質量%、より好ましくは40〜70質量%である。可塑剤の質量分率が80質量%以下であると、溶融成形時のメルトテンションが不足しにくく成形性が向上する傾向にある。一方、質量分率が30質量%以上であると、ポリオレフィン樹脂組成物と可塑剤の混合物を高倍率で延伸してもポリオレフィン鎖の切断が起こらず、均一かつ微細な孔構造を形成し強度も増加しやすい。
次に、溶融混練物をシート状に成形する。シート状成形体を製造する方法としては、例えば、溶融混練物を、Tダイ等を介してシート状に押出し、熱伝導体に接触させて樹脂成分の結晶化温度より充分に低い温度まで冷却して固化する方法が挙げられる。冷却固化に用いられる熱伝導体としては、金属、水、空気、あるいは可塑剤自身等が使用できるが、金属製のロールが熱伝導の効率が高く好ましい。この際、金属製のロールに接触させる際に、ロール間で挟み込むと、熱伝導の効率がさらに高まると共に、シートが配向して膜強度が増し、シートの表面平滑性も向上するためより好ましい。Tダイよりシート状に押出す際のダイリップ間隔は400μm以上3000μm以下であることが好ましく、500μm以上2500μm以下であることがさらに好ましい。ダイリップ間隔が400μm以上であると、メヤニ等が低減され、スジや欠点など膜品位への影響が少なく、その後の延伸工程に於いて膜破断などを防ぐことができる。一方、ダイリップ間隔が3000μm以下であると、冷却速度が速く冷却ムラを防げると共に、シートの厚み安定性を維持できる。
このようにして得たシート状成形体を延伸することが好ましい。延伸処理としては、一軸延伸又は二軸延伸のいずれも好適に用いることができるが、得られる多孔膜の強度等の観点から二軸延伸が好ましい。シート状成形体を二軸方向に高倍率延伸すると、分子が面方向に配向し、最終的に得られる多孔膜が裂けにくくなり高い突刺強度を有するものとなる。延伸方法としては、例えば、同時二軸延伸、逐次二軸延、多段延伸、多数回延伸等の方法を挙げることができ、突刺強度の向上、延伸の均一性、シャットダウン性の観点から同時二軸延伸が好ましい。
なお、ここで、同時二軸延伸とは、MD方向(微多孔膜の機械方向)の延伸とTD方向(微多孔膜のMDを90°の角度で横切る方向)の延伸が同時に施される延伸方法をいい、各方向の延伸倍率は異なってもよい。逐次二軸延伸とは、MD方向、又はTD方向の延伸が独立して施される延伸方法をいい、MD方向又はTD方向に延伸がなされている際は、他方向は非拘束状態又は定長に固定されている状態とする。
延伸倍率は、面倍率で20倍以上100倍以下の範囲であることが好ましく、25倍以上50倍以下の範囲であることがさらに好ましい。各軸方向の延伸倍率は、MD方向に4倍以上10倍以下、TD方向に4倍以上10倍以下の範囲であることが好ましく、MD方向に5倍以上8倍以下、TD方向に5倍以上8倍以下の範囲であることがさらに好ましい。総面積倍率が20倍以上であると、得られる多孔膜に十分な強度を付与でき、一方、総面積倍率が100倍以下であると延伸工程における膜破断を防ぎ、高い生産性が得られる。
また、シート状成形体を圧延してもよい。圧延は、例えば、ダブルベルトプレス機等を使用したプレス法にて実施することができる。圧延は特に表層部分の配向を増すことができる。圧延面倍率は1倍より大きく3倍以下であることが好ましく、1倍より大きく2倍以下であることがより好ましい。圧延倍率が1倍より大きいと、面配向が増加し最終的に得られる多孔膜の膜強度が増加する。一方、圧延倍率が3倍以下であると、表層部分と中心内部の配向差が小さく、膜の厚さ方向に均一な多孔構造を形成することができるために好ましい。
次いで、シート状成形体から可塑剤を除去して多孔膜とする。可塑剤を除去する方法としては、例えば、抽出溶剤にシート状成形体を浸漬して可塑剤を抽出し、充分に乾燥させる方法が挙げられる。可塑剤を抽出する方法はバッチ式、連続式のいずれであってもよい。多孔膜の収縮を抑えるために、浸漬、乾燥の一連の工程中にシート状成形体の端部を拘束することが好ましい。また、多孔膜中の可塑剤残存量は1質量%未満にすることが好ましい。
抽出溶剤としては、ポリオレフィン樹脂に対して貧溶媒で、かつ可塑剤に対して良溶媒であり、沸点がポリオレフィン樹脂の融点より低いものを用いることが好ましい。このような抽出溶剤としては、例えば、n−ヘキサン、シクロヘキサン等の炭化水素類;塩化メチレン、1,1,1−トリクロロエタン等のハロゲン化炭化水素類;ハイドロフルオロエーテル、ハイドロフルオロカーボン等の非塩素系ハロゲン化溶剤;エタノール、イソプロパノール等のアルコール類;ジエチルエーテル、テトラヒドロフラン等のエーテル類;アセトン、メチルエチルケトン等のケトン類が挙げられる。なお、これらの抽出溶剤は、蒸留等の操作により回収して再利用してよい。
多孔膜の収縮を抑制するために、延伸工程後、又は、多孔膜形成後に熱固定や熱緩和等の熱処理を行うこともできる。また、多孔膜に、界面活性剤等による親水化処理、電離性放射線等による架橋処理等の後処理を行ってもよい。
次に、本実施の形態の多層多孔膜を電池用セパレータとして用いる場合について説明する。
本実施の形態の多層多孔膜は、耐熱性に優れ、シャットダウン機能を有しているので電池の中で正極と負極を隔離する電池用セパレータに適している。
特に、本実施の形態の多層多孔膜は、高温においても短絡し難く、高起電力電池用のセパレータとしても安全に使用できる。
このような高起電力電池としては、例えば、非水電解液電池が挙げられ、本実施の形態の多層多孔膜を正極と負極の間に配置し、非水電解液を保持させることにより、非水電解液電池を製造することができる。
正極、負極、非水電解液に限定はなく、公知のものを用いることができる。
正極材料としては、例えば、LiCoO2、LiNiO2、スピネル型LiMnO4、オリビン型LiFePO4等のリチウム含有複合酸化物等が、負極材料としては、例えば、黒鉛質、難黒鉛化炭素質、易黒鉛化炭素質、複合炭素体等の炭素材料;シリコン、スズ、金属リチウム、各種合金材料等が挙げられる。
また、非水電解液としては、電解質を有機溶媒に溶解した電解液を用いることができ、有機溶媒としては、例えば、プロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等が、電解質としては、例えば、LiClO4、LiBF4、LiPF6等のリチウム塩が挙げられる。
多層多孔膜を電池用セパレータとして使用する場合、多層多孔膜の透気度は、10秒/100cc以上650秒/100cc以下であることが好ましく、より好ましくは20秒/100cc以上500秒/100cc以下、さらに好ましくは30秒/100cc以上450秒/100cc以下、特に好ましくは50秒/100cc以上400秒/100cc以下である。透気度が10秒/100cc以上であると電池用セパレータとして使用した際の自己放電が少なく、650秒/100cc以下であると良好な充放電特性が得られる。
また、多孔層を形成したことによる多層多孔膜の透気度の増加率は0%以上200%以下であることが好ましく、0%以上100%以下であることがより好ましく、0%以上50%以下であることが特に好ましく、0%以上30%以下であることが最も好ましい。ただし、多孔膜の透気度が100秒/100cc未満の場合は、多孔層を形成した後の多層多孔膜の透気度増加率は0%以上500%以下であれば好ましく用いることができる。
多層多孔膜の最終的な膜厚は、2μm以上200μm以下であることが好ましく、より好ましくは5μm以上100μm以下、さらに好ましくは7μm以上30μm以下である。
膜厚が2μm以上であると機械強度が十分であり、また、200μm以下であるとセパレータの占有体積が減るため、電池の高容量化の点において有利となる。
多層多孔膜の150℃での熱収縮率は、MD方向、TD方向ともに0%以上15%以下であることが好ましく、より好ましくは0%以上10%以下、さらに好ましくは0%以上5%以下である。熱収縮率がMD方向、TD方向ともに15%以下であると、電池の異常発熱時の多層多孔膜の破膜が抑制され、短絡が起こりにくくなるので好ましい。
多層多孔膜のシャットダウン温度は、120℃以上160℃以下であることが好ましく、より好ましくは120℃以上150℃以下の範囲である。シャットダウン温度が160℃以下であると、電池が発熱した場合等においても、電流遮断を速やかに促進し、より良好な安全性能が得られる傾向にあるので好ましい。一方、シャットダウン温度が120℃以上であると、電池を100℃前後で使用することができるので好ましい。
多層多孔膜のショート温度は、180℃以上1000℃以下であることが好ましく、より好ましくは、200℃以上1000℃以下である。ショート温度が180℃以上であると、電池に異常発熱が発生しても、すぐには短絡が起こらないため、その間に放熱することができ、より良好な安全性能が得られる。
ショート温度は、ポリプロピレンの含有量や、ポリプロピレン以外のポリオレフィンの種類、無機粒子の種類、無機粒子含有層の厚さ等を調整することにより所望の値に制御することができる。
なお、上述した各種パラメータについては、特に断りのない限り、後述する実施例における測定法に準じて測定される。
次に、実施例及び比較例を挙げて本実施の形態をより具体的に説明するが、本実施の形態はその要旨を超えない限り、以下の実施例に限定されるものではない。なお、実施例中の物性は以下の方法により測定した。
(1)重合体粒子の平均粒径
光散乱法による粒径測定装置(LEED&NORTHRUP社製MICROTRACTMUPA150)を用い、体積平均粒子径(nm)を測定し、平均粒径とした。
(2)ポリオレフィンの粘度平均分子量(Mv)
ASTM−D4020に基づき、デカリン溶媒における135℃での極限粘度[η](dl/g)を求めた。
ポリエチレンについては、次式により算出した。
[η]=6.77×10-4Mv0.67
ポリプロピレンについては、次式によりMvを算出した。
[η]=1.10×10-4Mv0.80
(3)多孔膜の膜厚、多孔層の層厚
多孔膜、多層多孔膜からMD10mm×TD10mmのサンプルを切り出し、格子状に9箇所(3点×3点)を選んで、膜厚をダイヤルゲージ(尾崎製作所製PEACOCK No.25(登録商標))を用いて測定し、9箇所の測定値の平均値を多孔膜、多層多孔膜の膜厚(μm)とした。また、このように測定された多層多孔膜と多孔膜の膜厚の差を多孔層の多孔層の層厚(μm)とした。
(4)無機粒子の平均粒径(μm)
無機粒子を蒸留水に加え、ヘキサメタリン酸ナトリウム水溶液を少量添加してから超音波ホモジナイザで1分間分散させた後、レーザー式粒度分布測定装置(日機装(株)製マイクロトラックMT3300EX)を用いて粒径分布を測定した。累積頻度が50%となる粒径を平均粒径とした。
(5)透気度(秒/100cc)、透気度増加(上昇)率(%)
JIS P−8117準拠のガーレー式透気度計(東洋精機製G−B2(商標)、内筒質量:567g)を用い、645mm2の面積(直径28.6mmの円)の測定対象膜に対して、空気100ccが通過する時間(秒)を測定し、透気度とした。
多孔層の形成による透気度増加率は、以下の式にて算出した。
透気度増加率(%)={(多層多孔膜の透気度−多孔膜の透気度)/多孔膜の透気度}×100
(6)150℃熱収縮率(%)
セパレータをMD方向に100mm、TD方向に100mmに切り取り、150℃のオーブン中に1時間静置する。このとき、温風が直接サンプルにあたらないよう、サンプルを2枚の紙にはさむ。サンプルをオーブンから取り出し冷却した後、長さ(mm)を測定し、以下の式にてMDおよびTDの熱収縮率を算出する。
MD熱収縮率(%)=(100―加熱後のMDの長さ)/100×100
TD熱収縮率(%)=(100―加熱後のTDの長さ)/100×100
(7)多層多孔膜のシャットダウン温度、ショート温度
a.正極の作製
正極活物質としてリチウムコバルト複合酸化物(LiCoO2)を92.2質量部、導電材としてリン片状グラファイトとアセチレンブラックをそれぞれ2.3質量部、樹脂製バインダとしてポリフッ化ビニリデン(PVDF)を3.2質量部用意し、これらをN−メチルピロリドン(NMP)中に分散させてスラリーを調製した。このスラリーを正極集電体となる厚さ20μmのアルミニウム箔の片面にダイコーターを用いて、正極活物質塗布量が250g/m2となるように塗布した。130℃で3分間乾燥後、ロールプレス機を用いて、正極活物質かさ密度が3.00g/cm3となるように圧縮成形し、正極とした。
b.負極の作製
負極活物質として人造グラファイトを96.6質量部、樹脂製バインダとしてカルボキシメチルセルロースのアンモニウム塩1.4質量部とスチレン−ブタジエン共重合体ラテックス1.7質量部を用意し、これらを精製水中に分散させてスラリーを調製した。このスラリーを負極集電体となる厚さ12μmの銅箔の片面にダイコーターを用いて負極活物質塗布量が106g/m2となるように塗布した。120℃で3分間乾燥後、ロールプレス機を用いて、負極活物質かさ密度が1.35g/cm3となるように圧縮成形し、負極とした。
c.非水電解液の調製
プロピレンカーボネート:エチレンカーボネート:γ−ブチルラクトン=1:1:2(体積比)の混合溶媒に、溶質としてLiBF4を濃度1.0mol/Lとなるように溶解させ、非水電解液を調製した。
d.シャットダウン温度、ショート温度の測定
65mm×20mmに切り出して非水電解液に1分以上浸漬した負極、中央部に直径16mmの穴をあけた9μm(厚さ)×50mm×50mmのアラミドフィルム、65mm×20mmに切り出して非水電解液に1時間以上浸漬した多層多孔膜または多孔膜、65mm×20mmに切り出して非水電解液に1分以上浸漬した正極、カプトンフィルム、厚さ約4mmのシリコンゴムを用意し、熱電対を接続したセラミックプレート上に、この順で積層した。この積層体をホットプレート上にセットし、油圧プレス機にて4.1MPaの圧力をかけた状態で15℃/minの速度で昇温し、正負極間のインピーダンス変化を交流1V、1kHzの条件下で200℃まで測定した。
インピーダンスが1000Ωに達した時点の温度をシャットダウン温度とし、シャットダウン後、再びインピーダンスが1000Ωを下回った時点の温度をショート温度とした。
(8)電池用セパレータ適性の評価
a.正極の作製
(7)のaと同様にして作製した正極を面積2.00cm2の円形に打ち抜いた。
b.負極の作製
(7)のbと同様にして作製した負極を面積2.05cm2の円形に打ち抜いた。
c.非水電解液
エチレンカーボネート:エチルメチルカーボネート=1:2(体積比)の混合溶媒に、溶質としてLiPF6を濃度1.0ml/Lとなるように溶解させて調製した。
d.電池組立
正極と負極の活物質面が対向するように、下から負極、多層多孔膜、正極の順に重ねた。この積層体を、容器本体と蓋が絶縁されている蓋付きステンレス金属製容器に、負極の銅箔、正極のアルミ箔が、それぞれ、容器本体、蓋と接するように収納した。この容器内に、非水電解液を注入して密閉した。
e.評価
(レート特性)
d.で組み立てた簡易電池を、25℃において、電流値3mA(約0.5C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を3mAから絞り始めるという方法で、合計約6時間、電池作成後の最初の充電を行い、その後電流値3mAで電池電圧3.0Vまで放電した。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値6mAで電池電圧3.0Vまで放電して、その時の放電容量を1C放電容量(mAh)とした。
次に、25℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、その後電流値12mA(約2.0C)で電池電圧3.0Vまで放電して、その時の放電容量を2C放電容量(mAh)とした。
1C放電容量に対する2C放電容量の割合を算出し、この値をレート特性とした。
レート特性(%)=(2C放電容量/1C放電容量)×100
(サイクル特性)
レート特性を評価した簡易電池を、60℃において、電流値6mA(約1.0C)で電池電圧4.2Vまで充電し、さらに4.2Vを保持するようにして電流値を6mAから絞り始めるという方法で、合計約3時間充電を行い、そして電流値6mAで電池電圧3.0Vまで放電するというサイクルを100回繰り返し、1サイクル目と100サイクル目の放電容量(mAh)を測定した。
1回目の放電容量に対する100サイクル目の放電容量の割合を算出し、この値をサイクル特性とした。
サイクル特性(%)=(100回目の放電容量/1回目の放電容量)×100
(9)気孔率(%)
10cm×10cm角の試料を微多孔膜から切り取り、その体積(cm3)と質量(g)を求め、膜密度を0.95(g/cm3)として次式を用いて計算した。
気孔率=(1−質量/体積/0.95)×100
[合成例1]
攪拌機、還流冷却器、滴下槽及び温度計を取り付けた反応容器に、初期仕込みとして水74質量部、アクアロンKH10(ポリオキシエチレン−1−(アリルオキシメチル)アルキルエーテル硫酸エステルアンモニウム塩:100%固形分/第一工業製薬(株)製)0.5質量部を投入し、反応容器中の温度を80℃に保ち、ペルオキソ二硫酸アンモニウムの10%水溶液1.5質量部を添加した。添加した5分後に、メチルメタクリレート26.5質量部、シクロヘキシルメタクリレート6質量部、ブチルアクリレート25質量部、2−エチルヘキシルメタクリレート35質量部、メタクリル酸1質量部、アクリル酸1.5質量部、グリシジルメタクリレート3質量部、2−ヒドロキシエチルメタクリレート2質量部と、アクアロンKH10を1.5質量部、ペルオキソ二硫酸アンモニウム10%水溶液1.5質量部、水65質量部からなる乳化混合液を150分かけて滴下槽から反応容器に投入した。反応系のpHは4以下に維持した。乳化混合液の投入が終了してからそのまま反応容器の温度は80℃に保ち、120分間攪拌を続けた。その後、室温まで冷却した。
冷却後、200メッシュの金網でロ過を行い、凝集物等を除去した。ロ過後、25%のアンモニア水でpHを8に調整し、その後、固形分が40%となるよう水を添加し調整した。得られたラテックス1の平均粒子径は90nmであった。
[合成例2〜5および9、10]
単量体組成比を表1に示した組成比に変更した以外は、合成例1と同様にしてラテックス2〜5および9、10を得た。
[合成例6]
初期仕込みに使用するアクアロンKH10の使用量を0.03質量部に、乳化液中のアクアロンKH10の使用量を1.0質量部に変更した以外は、合成例1と同様にしてラテックス6を得た。
[合成例7]
初期仕込みに使用しているアクアロンKH10(0.5質量部)の替わりにPD104(ポリオキシエチレンポリオキシブチレン(3−メチル−3−ブテニル)エーテルの硫酸エステルのアンモニウム塩:20%固形分/花王(株)製)4.0質量部(20%品として)、初期仕込みの水を70.5質量部、乳化液に使用しているアクアロンKH10(1.5質量部)の替わりにPD104、7.5質量部(20%品として)、乳化液中の水を59質量部に変更し、その他は合成例1と同様にしてラテックス7を得た。
[合成例8]
初期仕込みに使用しているアクアロンKH10(0.5質量部)の替わりにG15(ドデシルベンゼンスルホン酸ナトリウム:16%固形分/花王(株)製)1.25質量部(16%品として)、初期仕込みの水を73質量部、乳化液に使用しているアクアロンKH10(1.5質量部)の替わりにペレックスSSL(アルキルジフェニルエーテルジスルホン酸ナトリウム:50%固形分/花王(株)製)3.0質量部(50%品として)、乳化液の水を63.5質量部に変更し、その他は合成例1と同様にしてラテックス8を得た。
合成例1〜10の単量体組成比および得られたラテックス1〜10の物性を表1に示す。
[実施例1]
Mv70万のホモポリマーのポリエチレン47質量部とMv25万のホモポリマーのポリエチレン46質量部とMv40万のホモポリマーのポリプロピレン7質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-52/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダーおよびポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ2000μmのシート状のポリオレフィン組成物を得た。
次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に7倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は125℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は133℃、TD緩和率0.80とした。その結果、膜厚16μm、気孔率40%、透気度160秒/100ccのポリオレフィン樹脂多孔膜を得た。
次に、無機粒子として焼成カオリン1(カオリナイト(Al2Si25(OH)4)を主成分とする湿式カオリンを高温焼成処理したもの、平均粒径1.89μm)を90.6質量部と、樹脂製バインダとしてラテックス1を9.4質量部とを150質量部の水に均一に分散させて塗布液を調製し、上記ポリオレフィン樹脂多孔膜の表面にマイクログラビアコーターを用いて塗布した。60℃にて乾燥して水を除去し、ポリオレフィン樹脂多孔膜上に厚さ5μmの多孔層(多孔層中のバインダ比率4.0%)を形成した多層多孔膜を得た。
[実施例2]
無機粒子として紡錘状の軽質炭酸カルシウム1(平均粒径0.98μm)を95.1質量部と、樹脂製バインダとしてラテックス1を4.9質量部とを150質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン樹脂多孔膜上に厚さ3μmの多孔層(多孔層中のバインダ比率2.0%)を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[実施例3]
無機粒子として水酸化酸化アルミニウム1(平均粒径1.0μm)を92.8質量部と、樹脂製バインダとしてラテックス1を7.2質量部とを150質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン樹脂多孔膜上に厚さ4μmの多孔層(多孔層中のバインダ比率3.0%)を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[実施例4]
樹脂製バインダとしてラテックス2を用いた以外は、実施例1と同様にして多層多孔膜を得た。
[実施例5]
無機粒子として水酸化酸化アルミニウム1を用いて、ポリオレフィン樹脂多孔膜上に厚さ4μmの多孔層を形成した以外は、実施例4と同様にして多層多孔膜を得た。
[実施例6]
樹脂製バインダとしてラテックス3を用いて、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[実施例7]
樹脂製バインダとしてラテックス4を用いた以外は、実施例1と同様にして多層多孔膜を得た。
[実施例8]
ポリオレフィン樹脂多孔膜の膜厚を12μm、気孔率を40%、透気度を120秒/100ccとし、ポリオレフィン樹脂多孔膜上に厚さ4μmの多孔層を形成した以外は、実施例7と同様にして多層多孔膜を得た。
[実施例9]
ポリオレフィン樹脂多孔膜の膜厚を12μm、気孔率を40%、透気度を120秒/100ccとした以外は、実施例3と同様にして多層多孔膜を得た。
[実施例10]
多孔膜の膜厚を20μm、気孔率を40%、透気度を280秒/100ccとし、ポリオレフィン樹脂多孔膜上に厚さ5μmの多孔層を形成した以外は、実施例2と同様にして多層多孔膜を得た。
[実施例11]
樹脂製バインダとしてラテックス5を用いた以外は、実施例6と同様にして多層多孔膜を得た。
[実施例12]
樹脂製バインダとしてラテックス6を用いた以外は、実施例1と同様にして多層多孔膜を得た。
[実施例13]
樹脂製バインダとしてラテックス6を用いた以外は、実施例8と同様にして多層多孔膜を得た。
[実施例14]
(多孔膜の製造)
Mv70万のホモポリマーのポリエチレン47.5質量部とMv25万のホモポリマーのポリエチレン47.5質量部とMv40万のホモポリマーのポリプロピレン5質量部とを、タンブラーブレンダーを用いてドライブレンドした。得られた純ポリマー混合物99質量%に、酸化防止剤としてペンタエリスリチル−テトラキス−[3−(3,5−ジ−t−ブチル−4−ヒドロキシフェニル)プロピオネート]を1質量%添加し、再度タンブラーブレンダーを用いてドライブレンドすることにより、ポリマー等混合物を得た。得られたポリマー等混合物は窒素で置換を行った後に、二軸押出機へ窒素雰囲気下でフィーダーにより供給した。また、可塑剤として流動パラフィン(37.78℃における動粘度7.59×10-52/s)を押出機シリンダーにプランジャーポンプにより注入した。溶融混練し、押し出される全混合物中に占める流動パラフィン量比が65質量%となるように、フィーダーおよびポンプを調整した。溶融混練条件は、設定温度200℃、スクリュー回転数240rpm、吐出量12kg/hで行った。
続いて、溶融混練物を、Tダイを経て表面温度25℃に制御された冷却ロール上に押出しキャストすることにより、厚さ1300μmのシート状のポリオレフィン組成物を得た。
次に同時二軸テンター延伸機へ導き、MD方向に7倍、TD方向に6.4倍に同時二軸延伸を行った。この時、同時二軸テンターの設定温度は118℃であった。次にメチルエチルケトン槽に導き、流動パラフィンを抽出除去した後、メチルエチルケトンを乾燥除去した。
さらにTDテンター熱固定機に導き、熱固定を行った。熱固定温度は122℃、TD緩和率0.80とした。その結果、膜厚16μm、気孔率49%、透気度155秒/100ccのポリオレフィン樹脂多孔膜を得た。
上記ポリオレフィン樹脂多孔膜を用いた以外は、実施例1と同様にして多層多孔膜を得た。
[実施例15]
無機粒子として炭酸カルシウム1を用いて、ポリオレフィン樹脂多孔膜上に厚さ3μmの多孔層を形成した以外は、実施例3と同様にして多層多孔膜を得た。
[実施例16]
樹脂製バインダとしてラテックス6を用いた以外は、実施例3と同様にして多層多孔膜を得た。
[実施例17]
無機粒子として焼成カオリン1を86.2質量部と、樹脂製バインダとしてラテックス7を13.8質量部とを150質量部の水に均一に分散させて塗布液を調製し、ポリオレフィン樹脂多孔膜上に厚さ5μmの多孔層(多孔層中のバインダ比率6.0%)を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[実施例18]
樹脂製バインダとしてラテックス8を用いた以外は、実施例6と同様にして多層多孔膜を得た。
[比較例1]
樹脂製バインダとしてラテックス9を用いて、ポリオレフィン樹脂多孔膜上に厚さ8μmの多孔層を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[比較例2]
樹脂製バインダとしてラテックス9を用いて、ポリオレフィン樹脂多孔膜上に厚さ6μmの多孔層を形成した以外は、実施例5と同様にして多層多孔膜を得た。
[比較例3]
樹脂製バインダとしてラテックス10を用いて、ポリオレフィン樹脂多孔膜上に厚さ9μmの多孔層を形成した以外は、実施例1と同様にして多層多孔膜を得た。
[比較例4]
樹脂製バインダとしてラテックス10を用いて、ポリオレフィン樹脂多孔膜上に厚さ8μmの多孔層を形成した以外は、実施例5と同様にして多層多孔膜を得た。
[比較例5]
多孔層を形成しなかった以外は実施例1と同様にして多孔膜を得た。
[比較例6]
多孔層を形成しなかった以外は実施例8と同様にして多孔膜を得た。
[比較例7]
多孔層を形成しなかった以外は実施例10と同様にして多孔膜を得た。
[比較例8]
多孔層を形成しなかった以外は実施例14と同様にして多孔膜を得た。
Figure 2011008966
Figure 2011008966
実施例1〜18および比較例1〜8で作成した多層多孔膜の透気度および透気度上昇率、150℃熱収縮率、シャットダウン温度およびショート温度を表2に示す。
多孔層を形成しなかった比較例5〜8の多孔膜は、150℃での熱収縮率が50%を超える非常に大きな値を示した。
これに対し、実施例1〜18の多層多孔膜は、多孔層の厚さが2〜6μmと薄いにもかかわらず、150℃での熱収縮率がMD方向、TD方向のいずれも5%以下と非常に小さく、良好な耐熱収縮特性を示した。
一方、(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを原料単位として含む共重合体であっても、前記単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量部未満である、ラテックス9、10を樹脂製バインダとして用いた比較例1〜4の多層多孔膜は、多孔層を形成しなかった比較例5〜8の多孔膜と比較すると150℃での熱収縮率は抑制されたが、本願実施例に比して不十分な抑制効果であった。
実施例1〜18、比較例1〜8の多層多孔膜又は多孔膜のシャットダウン温度は145〜148℃であり、良好なシャットダウン機能を有するものであった。多孔層を形成しなかった比較例5〜8の多孔膜は、シャットダウン温度+数℃まで加熱しただけで短絡したが、多孔層を形成した実施例1〜18、比較例1〜4の多層多孔膜は全て200℃以上まで加熱しても短絡せず、耐熱性に非常に優れていた。
実施例1〜18の多層多孔膜の透気度はおおむね300秒/100CC以下程度と、小さかった。特に、多孔層を形成しなかった比較例5〜8の多孔膜と比較し、透気度上昇率を25%以下に抑えることができた。
実施例1〜18、比較例5〜8の多層多孔膜又は多孔膜をセパレータとして用いた簡易電池は、いずれも、90%以上のレート特性、サイクル特性を示した。このことから、実施例1〜18、比較例5〜8で製造した多層多孔膜又は多孔膜は、電池用セパレータとして使用可能なものであることが確認できた。
本実施の形態の多層多孔膜は耐熱性に優れているので、高温下での各種物質の分離や浄化等に好適に用いることができる。
また、本実施の形態の多層多孔膜は、シャットダウン機能を有するので、特に、電池用セパレータに好適に用いることができる。とりわけ、リチウムイオン二次電池用の電池用セパレータに適している。

Claims (9)

  1. ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に、無機粒子と樹脂製バインダとを含む多孔層を備えた多層多孔膜であって、
    前記樹脂製バインダが、(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを原料単位として含む共重合体であり、
    前記単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量%以上であることを特徴とする多層多孔膜。
  2. 前記共重合体が、さらにヒドロキシル基含有ビニル系単量体を原料単位として含む請求項1に記載の多層多孔膜。
  3. 前記無機粒子が、ケイ酸アルミニウム化合物、水酸化酸化アルミニウム、及び炭酸カルシウムよりなる群から選択される少なくとも1種である請求項1又は2に記載の多層多孔膜。
  4. 前記ポリオレフィン樹脂がポリプロピレンを含む請求項1〜3のいずれか1項に記載の多層多孔膜。
  5. 前記ポリプロピレンが、前記ポリオレフィン樹脂中に占める割合が1〜35質量%である請求項4に記載の多層多孔膜。
  6. 請求項1〜5のいずれかに記載の多層多孔膜からなる非水電解液電池用セパレータ。
  7. 請求項6に記載の非水電解液電池用セパレータと、正極と、負極と、電解液とを有する非水電解液電池。
  8. 請求項1〜5のいずれかに記載の多層多孔膜の製造方法であって、以下の(A)〜(B)の各工程、
    (A)(メタ)アクリル酸エステル単量体から選ばれる1種以上の単量体と、不飽和カルボン酸単量体と、架橋性単量体とを含む単量体組成物を少なくとも含み、単量体組成のうち、不飽和カルボン酸単量体の割合が1.0質量%以上である単量体組成を、乳化重合し、重合体粒子が溶媒中に分散した分散体を形成する分散体形成工程、
    (B)前記分散体と無機粒子とを含む塗布液を、ポリオレフィン樹脂を主成分とする多孔膜の少なくとも片面に塗布する塗布工程、
    を含むことを特徴とする製造方法。
  9. 前記単量体組成物が、更に、ヒドロキシル基含有ビニル系単量体を含む請求項8に記載の製造方法。
JP2009149001A 2009-06-23 2009-06-23 多層多孔膜 Active JP5354735B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009149001A JP5354735B2 (ja) 2009-06-23 2009-06-23 多層多孔膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009149001A JP5354735B2 (ja) 2009-06-23 2009-06-23 多層多孔膜

Publications (2)

Publication Number Publication Date
JP2011008966A true JP2011008966A (ja) 2011-01-13
JP5354735B2 JP5354735B2 (ja) 2013-11-27

Family

ID=43565397

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009149001A Active JP5354735B2 (ja) 2009-06-23 2009-06-23 多層多孔膜

Country Status (1)

Country Link
JP (1) JP5354735B2 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171290A (ja) * 2010-01-21 2011-09-01 Toray Ind Inc 蓄電デバイス用セパレータ
WO2012099149A1 (ja) * 2011-01-20 2012-07-26 東レ株式会社 多孔質積層フィルム、蓄電デバイス用セパレータ、および蓄電デバイス
WO2012120608A1 (ja) * 2011-03-07 2012-09-13 日立マクセル株式会社 電池用セパレータおよび電池
WO2012131883A1 (ja) * 2011-03-28 2012-10-04 トヨタ自動車株式会社 リチウムイオン二次電池
JP2012219240A (ja) * 2011-04-13 2012-11-12 Asahi Kasei Chemicals Corp 多層多孔膜用共重合体組成物
WO2013005796A1 (ja) * 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
WO2014050707A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池用の多孔膜セパレータの製造方法、及び、リチウムイオン二次電池用積層体の製造方法
WO2014050708A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
JP2014523608A (ja) * 2011-06-08 2014-09-11 シーメンス エナジー インコーポレイテッド 内部に空孔を有する絶縁材
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015185530A (ja) * 2014-03-26 2015-10-22 日本ゼオン株式会社 二次電池多孔膜用バインダー、二次電池多孔膜用スラリー組成物、二次電池用多孔膜及び二次電池
CN113845676A (zh) * 2021-09-23 2021-12-28 安徽泽汇新材料有限公司 一种聚丙烯医用微孔滤膜的制备方法
WO2024212399A1 (zh) * 2023-04-12 2024-10-17 中材锂膜有限公司 一种电池隔离膜及其制备方法、二次电池

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017086466A1 (ja) 2015-11-19 2017-05-26 旭化成株式会社 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047439A (ja) * 2002-05-17 2004-02-12 Nitto Denko Corp 接着剤組成物担持電池用セパレータとそれを用いて得られる電極/セパレータ積層体

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004047439A (ja) * 2002-05-17 2004-02-12 Nitto Denko Corp 接着剤組成物担持電池用セパレータとそれを用いて得られる電極/セパレータ積層体

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011171290A (ja) * 2010-01-21 2011-09-01 Toray Ind Inc 蓄電デバイス用セパレータ
KR20140031844A (ko) * 2011-01-20 2014-03-13 도레이 카부시키가이샤 다공질 적층 필름, 축전 디바이스용 세퍼레이터 및 축전 디바이스
WO2012099149A1 (ja) * 2011-01-20 2012-07-26 東レ株式会社 多孔質積層フィルム、蓄電デバイス用セパレータ、および蓄電デバイス
KR101883512B1 (ko) 2011-01-20 2018-07-30 도레이 카부시키가이샤 다공질 적층 필름, 축전 디바이스용 세퍼레이터 및 축전 디바이스
CN103328209A (zh) * 2011-01-20 2013-09-25 东丽株式会社 多孔质层合膜、蓄电装置用隔板及蓄电装置
CN103328209B (zh) * 2011-01-20 2015-05-06 东丽株式会社 多孔质层合膜、蓄电装置用隔板及蓄电装置
WO2012120608A1 (ja) * 2011-03-07 2012-09-13 日立マクセル株式会社 電池用セパレータおよび電池
JPWO2012120608A1 (ja) * 2011-03-07 2014-07-07 日立マクセル株式会社 電池用セパレータおよび電池
CN102959765A (zh) * 2011-03-07 2013-03-06 日立麦克赛尔株式会社 电池用隔膜以及电池
JP5650738B2 (ja) * 2011-03-07 2015-01-07 日立マクセル株式会社 電池用セパレータおよび電池
WO2012131883A1 (ja) * 2011-03-28 2012-10-04 トヨタ自動車株式会社 リチウムイオン二次電池
KR101520210B1 (ko) 2011-03-28 2015-05-13 도요타지도샤가부시키가이샤 리튬 이온 2차 전지
CN103460443A (zh) * 2011-03-28 2013-12-18 丰田自动车株式会社 锂离子二次电池
JP2012219240A (ja) * 2011-04-13 2012-11-12 Asahi Kasei Chemicals Corp 多層多孔膜用共重合体組成物
JP2014523608A (ja) * 2011-06-08 2014-09-11 シーメンス エナジー インコーポレイテッド 内部に空孔を有する絶縁材
WO2013005796A1 (ja) * 2011-07-06 2013-01-10 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
CN103620820B (zh) * 2011-07-06 2016-03-23 日本瑞翁株式会社 二次电池用多孔膜、二次电池用隔板及二次电池
JPWO2013005796A1 (ja) * 2011-07-06 2015-02-23 日本ゼオン株式会社 二次電池用多孔膜、二次電池用セパレーター及び二次電池
CN103620820A (zh) * 2011-07-06 2014-03-05 日本瑞翁株式会社 二次电池用多孔膜、二次电池用隔板及二次电池
WO2014050707A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 リチウムイオン二次電池用の多孔膜セパレータの製造方法、及び、リチウムイオン二次電池用積層体の製造方法
JPWO2014050708A1 (ja) * 2012-09-28 2016-08-22 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
US10256449B2 (en) 2012-09-28 2019-04-09 Zeon Corporation Porous membrane separator for secondary battery, method for producing the same, and secondary battery
WO2014050708A1 (ja) * 2012-09-28 2014-04-03 日本ゼオン株式会社 二次電池用多孔膜セパレータ及びその製造方法、並びに二次電池
JPWO2014050707A1 (ja) * 2012-09-28 2016-08-22 日本ゼオン株式会社 リチウムイオン二次電池用の多孔膜セパレータの製造方法、及び、リチウムイオン二次電池用積層体の製造方法
JP2015026572A (ja) * 2013-07-29 2015-02-05 日本ゼオン株式会社 リチウムイオン二次電池用多孔膜組成物、リチウムイオン二次電池用セパレーター、リチウムイオン二次電池用電極、及びリチウムイオン二次電池
JP2015185530A (ja) * 2014-03-26 2015-10-22 日本ゼオン株式会社 二次電池多孔膜用バインダー、二次電池多孔膜用スラリー組成物、二次電池用多孔膜及び二次電池
CN113845676A (zh) * 2021-09-23 2021-12-28 安徽泽汇新材料有限公司 一种聚丙烯医用微孔滤膜的制备方法
CN113845676B (zh) * 2021-09-23 2023-12-26 安徽名汇新材料科技有限公司 一种聚丙烯医用微孔滤膜的制备方法
WO2024212399A1 (zh) * 2023-04-12 2024-10-17 中材锂膜有限公司 一种电池隔离膜及其制备方法、二次电池

Also Published As

Publication number Publication date
JP5354735B2 (ja) 2013-11-27

Similar Documents

Publication Publication Date Title
JP5323590B2 (ja) 多層多孔膜、樹脂製バインダおよび塗布液
JP5525193B2 (ja) 多層多孔膜および塗布液
JP5829042B2 (ja) 多層多孔膜用共重合体組成物
JP5354735B2 (ja) 多層多孔膜
JP6309661B2 (ja) 多孔膜及び多層多孔膜
JP6031179B2 (ja) 蓄電デバイス用セパレータ、積層体、及び多孔膜
JP4789274B2 (ja) 多層多孔膜
JP6431621B2 (ja) 蓄電デバイス用セパレータ並びにそれを用いた電極体及び蓄電デバイス
JP6425484B2 (ja) 電池用セパレータ
JP6692619B2 (ja) 二次電池用セパレータ
JP5196969B2 (ja) 多層多孔膜
JP6382051B2 (ja) 蓄電デバイス用セパレータ
JP6412760B2 (ja) 蓄電デバイス用セパレータ
JP6423724B2 (ja) 電池用セパレータ、及び非水電解液電池
JP6856988B2 (ja) 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池又は蓄電デバイス
JP2019179698A (ja) 蓄電デバイス用セパレータ及びそれを用いた積層体、捲回体、リチウムイオン二次電池、並びに蓄電デバイス
JP2016107642A (ja) 多層多孔膜及び蓄電デバイス用セパレータ
JP2012219240A (ja) 多層多孔膜用共重合体組成物
JP6378998B2 (ja) 蓄電デバイス用セパレータの製造方法
JP6357395B2 (ja) 電池用セパレータ
JP6346986B1 (ja) 蓄電デバイス用セパレータ並びにこれを用いた積層体、捲回体及び二次電池
JP6574602B2 (ja) 蓄電デバイス用セパレータ、蓄電デバイス、及びリチウムイオン二次電池
JP2020116925A (ja) ポリオレフィン微多孔膜を備える多層多孔膜

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130822

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130823

R150 Certificate of patent or registration of utility model

Ref document number: 5354735

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350