WO2012120608A1 - 電池用セパレータおよび電池 - Google Patents

電池用セパレータおよび電池 Download PDF

Info

Publication number
WO2012120608A1
WO2012120608A1 PCT/JP2011/055198 JP2011055198W WO2012120608A1 WO 2012120608 A1 WO2012120608 A1 WO 2012120608A1 JP 2011055198 W JP2011055198 W JP 2011055198W WO 2012120608 A1 WO2012120608 A1 WO 2012120608A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
separator
resin
resistant
layer
Prior art date
Application number
PCT/JP2011/055198
Other languages
English (en)
French (fr)
Inventor
片山秀昭
松本修明
Original Assignee
日立マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立マクセル株式会社 filed Critical 日立マクセル株式会社
Priority to PCT/JP2011/055198 priority Critical patent/WO2012120608A1/ja
Priority to KR1020127034363A priority patent/KR101407651B1/ko
Priority to JP2012523530A priority patent/JP5650738B2/ja
Priority to CN201180032563.3A priority patent/CN102959765B/zh
Priority to EP11860631.8A priority patent/EP2573837B1/en
Publication of WO2012120608A1 publication Critical patent/WO2012120608A1/ja
Priority to US13/711,875 priority patent/US20130101888A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/443Particulate material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/451Separators, membranes or diaphragms characterised by the material having a layered structure comprising layers of only organic material and layers containing inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/449Separators, membranes or diaphragms characterised by the material having a layered structure
    • H01M50/457Separators, membranes or diaphragms characterised by the material having a layered structure comprising three or more layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery separator that can constitute a battery with improved safety, and a battery having the separator.
  • Lithium secondary batteries are widely used as power sources for portable devices such as mobile phones and notebook personal computers because of their high energy density.
  • lithium secondary batteries tend to have higher capacities as mobile devices become more sophisticated, and ensuring safety is important.
  • a polyolefin-based microporous film having a thickness of about 20 to 30 ⁇ m is used as a separator interposed between a positive electrode and a negative electrode.
  • separator material the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit.
  • polyethylene (PE) having a low melting point may be applied.
  • a separator for example, a uniaxially stretched film or a biaxially stretched film is used for increasing the porosity and improving the strength. Since such a separator is supplied as a single film, a certain strength is required in terms of workability and the like, and this is ensured by stretching. However, in such a stretched film, the degree of crystallinity of the constituent resin has increased, and the shutdown temperature has increased to a temperature close to the thermal runaway temperature of the battery, so there is a sufficient margin for ensuring the safety of the battery. It is hard to say that there is.
  • the separator is distorted by the stretching, there is a problem that when such a separator is exposed to high temperature, shrinkage occurs due to residual stress.
  • the shrinkage temperature is very close to the melting point, ie the shutdown temperature.
  • the current must be immediately reduced to prevent the battery temperature from rising. This is because if the pores are not sufficiently closed and the current cannot be reduced immediately, the battery temperature easily rises to the contraction temperature of the separator, and there is a risk of ignition due to an internal short circuit.
  • the present inventors mainly include a first separator layer containing a resin for ensuring a shutdown function. And a porous separator for electrochemical devices having a second separator layer mainly containing a filler having a heat resistant temperature of 150 ° C. or more has been developed and a patent application has already been filed (Patent Document 1).
  • the second separator layer is a layer for ensuring the original function of the separator, mainly the function of preventing a short circuit due to direct contact between the positive electrode and the negative electrode,
  • fillers with a heat resistant temperature of 2 separator layers of 150 ° C. or higher prevent thermal contraction of the separator.
  • maintained in a 2nd separator layer is ensured by providing a 1st separator layer side by side.
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a battery separator capable of constituting a battery with improved safety and a battery having the separator.
  • the battery separator of the present invention that has achieved the above-mentioned object comprises a multilayer porous membrane having at least a resin porous membrane (I) and a heat-resistant porous layer (II) mainly comprising heat-resistant fine particles, and is shut down.
  • the temperature is 100 to 150 ° C.
  • the shutdown speed is 50 ⁇ / min ⁇ cm 2 or more.
  • the shutdown temperature and the shutdown speed are each determined by the following methods.
  • shuttdown speed After the shutdown temperature measurement, the temperature rise in the tank and the measurement of the resistance value between the two stainless steel plates related to the laminate are continued, and the resistance between 10 ⁇ and before and 20 ⁇ in total before and after the shutdown temperature, respectively. From the change in value, the shutdown speed of the separator is calculated using the following equation (1).
  • V SD (50-30) / ⁇ (t 50 -t 30 ) ⁇ S ⁇ (1)
  • V SD Shutdown speed ( ⁇ / min ⁇ cm 2 )
  • t 50 Elapsed time (minutes) until the resistance value reaches 50 ⁇
  • t 30 Time until the resistance value reaches 30 ⁇ Elapsed time (minutes)
  • S area (cm 2 ) of the stainless steel plate.
  • the battery of the present invention includes a positive electrode having an active material capable of occluding and releasing Li (lithium) ions, a negative electrode having an active material capable of occluding and releasing Li ions, an organic electrolyte, and the battery separator of the present invention. It is characterized by having.
  • the present invention it is possible to provide a battery separator that can constitute a battery with improved safety, and a battery having the separator. That is, the battery of the present invention is excellent in safety.
  • the battery separator of the present invention comprises a multilayer porous membrane having at least a resin porous membrane (I) and a heat-resistant porous layer (II) mainly comprising heat-resistant fine particles.
  • the porous resin membrane (I) according to the battery separator of the present invention (hereinafter sometimes simply referred to as “separator”) has a shutdown temperature (hereinafter simply referred to as “shutdown temperature”) required by the above method of 100 to 150.
  • the shutdown speed required by the above method (hereinafter simply referred to as “shutdown speed”) is 50 ⁇ / min ⁇ cm 2 or more.
  • the separator of the present invention has a shutdown speed of 50 ⁇ / min ⁇ cm 2 or more, preferably 70 ⁇ / min ⁇ cm 2 or more. If it is a separator having such a shutdown speed, even if the temperature of the battery rises due to an abnormality such as an internal short circuit or overcharge in a battery using this separator, the separator hole can be quickly closed, and the current can be further increased. Therefore, it is possible to ensure the safety of the battery at a high level.
  • the shutdown temperature measured by the above method is 100 ° C. or higher, preferably 110 ° C. or higher, 150 ° C. or lower, and preferably 140 ° C. or lower.
  • the separator has such a shutdown temperature, it is possible to provide a separator that can constitute a battery that can ensure good lithium ion conductivity during normal use and can ensure safety by shutdown when abnormal.
  • the resistance value after shutdown obtained by the following method is preferably at 500 [Omega / cm 2 or more, at 1000 [Omega] / cm 2 or more More preferably.
  • a minute current may continue to flow between the positive and negative electrodes even after the shutdown has occurred, thereby reducing the safety improvement effect of a battery using this separator. There is a fear.
  • the separator has such a resistance value after shutdown, the current value flowing between the positive and negative electrodes at the time of shutdown can be suppressed as small as possible, and thus a battery with higher safety can be configured.
  • the upper limit value of the resistance value after shutdown is not particularly limited, but is usually about 10,000 ⁇ / cm 2 .
  • the resistance value after the shutdown in the separator is obtained by the following method. After the shutdown temperature measurement, the temperature rise in the tank and the measurement of the resistance value between the two stainless steel plates related to the laminate are continuously measured to measure the maximum resistance value, according to the following equation (2) Calculate the resistance value after shutdown.
  • R SD R f / S (2)
  • R SD resistance value of the separator after shutdown ( ⁇ / cm 2 )
  • R f maximum resistance value after shutdown ( ⁇ )
  • S area of the stainless steel plate (cm 2) ).
  • the air permeability of the separator of the present invention is determined by a method according to JIS P 8117, and is expressed by a Gurley value represented by the number of seconds that 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2. Is preferably 10 to 600 sec / 100 ml.
  • a Gurley value represented by the number of seconds that 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2. Is preferably 10 to 600 sec / 100 ml.
  • the bubble point pore diameter of the whole separator is S ( ⁇ m) and the bubble point pore diameter of the resin porous membrane (I) is R ( ⁇ m), R ⁇ S ⁇ 0.01 It is preferable to satisfy the relationship.
  • bubble point pore diameter refers to a pore diameter calculated by the following equation (3) using a bubble point value P (Pa) measured by a method defined in JIS K3832. For example, it can be measured by using an apparatus used in Examples described later.
  • d (K4 ⁇ cos ⁇ ) / P (3)
  • d bubble point pore diameter ( ⁇ m)
  • surface tension (mN / m)
  • contact angle (°)
  • K capillary constant.
  • the value of RS is more preferably 0.001 or less.
  • the bubble point pore diameter of the entire separator is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 5 ⁇ m or less, more preferably 1 ⁇ m or less.
  • the bubble point pore size of the resin porous membrane (I) is preferably 0.01 ⁇ m or more, more preferably 0.05 ⁇ m or more, and preferably 0.5 ⁇ m or less. More preferably, it is 3 ⁇ m or less.
  • the porosity A of the resin porous membrane (I) is preferably 30 to 70%, and the porosity B of the heat resistant porous layer (II) is preferably 30 to 75%. Furthermore, it is more preferable to satisfy the relationship of A ⁇ B.
  • the porosity of the resin porous membrane (I) and the porosity of the heat-resistant porous layer (II) By setting the porosity of the resin porous membrane (I) and the porosity of the heat-resistant porous layer (II) to the above lower limit or higher, ions can be moved more easily in the battery, and load characteristics, etc. It is possible to suppress the deterioration of the battery characteristics. Further, by setting the porosity of the resin porous membrane (I) and the porosity of the heat-resistant porous layer (II) to the upper limit or less, the resin porous membrane (I) and the heat-resistant porous layer (II ) Can be increased to improve the handleability thereof. Furthermore, the porosity A of the resin porous membrane (I) and the porosity B of the heat-resistant porous layer (II) are set so as to satisfy the relationship of A ⁇ B. The movement can be made difficult to be inhibited by the heat-resistant porous layer (II), and the deterioration of battery characteristics
  • the porosity of the entire separator is preferably 30% or more in a dried state in order to secure the amount of non-aqueous electrolyte and improve the ion permeability.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator: C (%) can be calculated by obtaining the sum for each component i using the following equation (4) from the thickness of the separator, the mass per area, and the density of the constituent components.
  • a i ratio of component i when the total mass is 1
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of the separator (G / cm 2 )
  • t thickness (cm) of the separator.
  • m is made into the mass (g / cm ⁇ 2 >) per unit area of resin porous membrane (I), and t is made into the thickness (cm) of resin porous membrane (I).
  • the porosity: A (%) of the porous resin membrane (I) can be obtained instead of the porosity of the separator: C.
  • m is the mass per unit area (g / cm 2 ) of the heat resistant porous layer (II), and t is the thickness (cm) of the heat resistant porous layer (II).
  • the porosity: B (%) of the heat-resistant porous layer (II) can be obtained instead of the porosity of the separator: C.
  • the resin porous membrane (I) relating to the multilayer porous membrane constituting the separator of the present invention has a property of transmitting ions while preventing a short circuit between the positive electrode and the negative electrode, and a redox reaction in the battery. If it is stable with respect to electrolyte solution, such as organic electrolyte solution used for a battery, and it is stable, there will be no restriction
  • the resin porous membrane (I) needs to contain a resin that can bring about the above-mentioned shutdown characteristics to the separator by having a characteristic of melting or softening at a certain temperature or higher. More specifically, the resin porous membrane (I) preferably contains a resin having a melting point of 80 to 150 ° C. [hereinafter referred to as resin (A)].
  • the melting point of the resin (A) and other resins referred to in the present specification can be determined by, for example, the melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121.
  • DSC differential scanning calorimeter
  • the resin (A) having the melting point examples include polyethylene (PE), copolymerized polyolefin, or polyolefin derivative (such as chlorinated polyethylene), polyolefin wax, petroleum wax, carnauba wax, and the like.
  • the copolymer polyolefin examples include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-propylene copolymer, an ethylene-vinyl acetate copolymer (EVA), an ethylene-acrylic acid copolymer (ethylene-methyl). Examples thereof include acrylate copolymers and ethylene-ethyl acrylate copolymers.
  • the structural unit derived from ethylene in the copolymerized polyolefin is desirably 85 mol% or more.
  • polycycloolefin etc. can also be used.
  • the above-exemplified resins may be used alone or in combination of two or more.
  • the resin (A) related to the resin porous membrane (I) PE, polyolefin wax, or EVA having a structural unit derived from ethylene of 85 mol% or more is preferable, and PE alone or PE as a main component is more preferable.
  • Resin (A) may contain various well-known additives (for example, antioxidant etc.) added to resin as needed.
  • Examples of the resin porous membrane (I) include a microporous membrane mainly composed of the resin (A).
  • microporous membrane mainly composed of resin (A) refers to the volume ratio of resin (A) in the microporous membrane (in 100% by volume of the total volume of the constituent components of the microporous membrane excluding the pores). Ratio) is 50% by volume or more.
  • a microporous film for example, a microporous film made of polyolefin (PE, copolymer polyolefin such as ethylene-propylene copolymer) used in a battery such as a conventionally known lithium secondary battery is used.
  • PE polyolefin
  • a film that is, a film or sheet formed using a polyolefin mixed with an inorganic filler or the like may be uniaxially or biaxially stretched to form fine pores.
  • the resin (A) and other resin are mixed to form a film or sheet, and then the film or sheet is immersed in a solvent that dissolves only the other resin, so that only the other resin is mixed. What melt
  • hole can also be used as a resin porous membrane (I).
  • the porous resin membrane (I) may contain a filler or the like in order to improve the strength and the like within a range not impairing the action of imparting a shutdown function to the separator.
  • the filler that can be used for the resin porous membrane (I) include the same heat-resistant fine particles that can be used for the heat-resistant porous layer (II) described later.
  • the particle size of the filler used for the resin porous membrane (I) is an average particle size, for example, preferably 0.01 ⁇ m or more, more preferably 0.1 ⁇ m or more, preferably 10 ⁇ m or less, more preferably 1 ⁇ m. It is as follows.
  • the average particle size used in the present specification is, for example, a number average particle size measured by dispersing these fine particles in a medium that does not dissolve the filler using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by HORIBA). [The same applies to the heat-resistant fine particles according to the heat-resistant porous layer (II) described later. ].
  • the resin porous membrane (I) is a laminated film having a plurality of layers (two layers, three layers, four layers, five layers, etc.), and at least two of them are mainly composed of different resins.
  • a layer is preferred.
  • the resin porous membrane (I) is composed of two layers, these layers are layers mainly composed of different resins.
  • the resin porous layer (I) is composed of three layers, two of them are layers mainly composed of different resins, and the remaining layers are either one of the two layers.
  • a layer mainly composed of the same resin as the resin mainly composed of one layer may be used, or a layer mainly composed of a different type of resin from the resin mainly composed of the two layers.
  • the resin porous membrane (I) is the laminated film
  • resin (B) A laminated film (microporous film) with a layer mainly composed of] is preferable.
  • a laminated microporous film having a layer mainly composed of PE (hereinafter referred to as “PE layer”) and a layer mainly composed of polypropylene (PP) (hereinafter referred to as “PP layer”) is preferable.
  • PE layer a layer mainly composed of PE
  • PP layer polypropylene
  • the layer mainly composed of the resin (B) Therefore, the shutdown speed of the separator and the resistance value after shutdown can be further increased, and the shutdown speed and the resistance value after shutdown can be easily adjusted to the above values.
  • the separator of the present invention preferably has a structure having a layer mainly composed of the resin (B) between the heat resistant porous layer (II) and a layer mainly composed of the resin (A). Thus, it becomes easier to adjust the shutdown speed to the above value.
  • the thickness of the layer mainly composed of the resin (B) is the resin (A)
  • the thickness of the layer mainly composed of the resin (B) is the resin (A)
  • the thickness of the layer mainly composed of the resin (B) is preferably 10 ⁇ m or less, and more preferably 7 ⁇ m or less.
  • the resin porous membrane (I) has a layer mainly composed of the resin (A) and a layer mainly composed of the resin (B), in order to enhance the effect of each layer, the resin (B)
  • the melting point is preferably higher than the melting point of the resin (A) by 20 ° C. or more, more preferably 25 ° C. or more.
  • the resin microporous membrane (I) is particularly preferably a laminated microporous membrane having a three-layer structure in which a PE layer is interposed between the PP layer and the PP layer.
  • the PE layer is crushed during shutdown. Since the speed at which the melted PE closes the pores of the separator is increased, it becomes easier to adjust the shutdown speed to the above value.
  • the above-mentioned “layer mainly composed of resin (A)” is a volume ratio of resin (A) in the layer (a ratio in 100% by volume of the total volume of the constituent components of the layer excluding void portions. )) Is 50% by volume or more.
  • the layer mainly composed of the resin (A) may have a volume ratio of the resin (A) of 100% by volume.
  • the “layer mainly composed of the resin (B)” is a volume ratio of the resin (B) in the layer (a ratio in 100% by volume of the total volume of the constituent components of the layer excluding void portions). , The same)) means 50% by volume or more.
  • the volume ratio of the resin (B) may be 100% by volume.
  • the “layer mainly composed of PE” is a volume ratio of PE in the layer (a ratio in 100% by volume of the total volume of the constituent components of the layer excluding the void portion. The same applies hereinafter). It means that it is 50 volume% or more.
  • the layer mainly composed of PE may have a volume ratio of PE of 100% by volume.
  • the above-mentioned “layer mainly composed of PP” means the volume ratio of PP in the layer (ratio in the total volume of 100 volume% of the constituent components of the layer excluding the void portion. The same applies hereinafter). It means that it is 50 volume% or more.
  • the layer mainly composed of PP may have a volume ratio of PP of 100% by volume.
  • the content of the resin (A) in the resin porous membrane (I) is preferably, for example, as follows in order to make it easier to obtain the shutdown effect.
  • the volume of the resin (A) in the total volume of the constituent components of the separator (in the total volume of 100% by volume excluding the pores) is preferably 10% by volume or more, and more preferably 20% by volume or more.
  • the volume of the resin (A) is preferably 15% by volume or more in the total volume of the constituent components of the resin porous membrane (I) (in the total volume excluding the voids), and is 20% by volume or more. More preferably, it is preferably 80% by volume or less, and more preferably 70% by volume or less.
  • the heat-resistant porous layer (II) related to the multilayer porous film constituting the separator of the present invention is a layer that plays a role of imparting heat resistance to the separator.
  • the resin porous film Even if (I) tends to shrink, the heat-resistant porous layer (II) that is difficult to shrink acts as a skeleton of the separator, and suppresses thermal shrinkage of the resin porous membrane (I), that is, thermal shrinkage of the entire separator.
  • the heat-resistant porous layer (II) contains heat-resistant fine particles as a main component, but the term “containing heat-resistant fine particles as a main component” in the present specification means the volume ratio in the heat-resistant porous layer (II) ( The proportion of the constituents of the layer excluding the voids in 100% by volume of the total volume, but in the case of having the porous substrate described later, the proportion of the constituents excluding the porous substrate in the total volume of 100% by volume. Hereinafter the same)) means that the heat-resistant fine particles are 50% by volume or more.
  • the heat-resistant fine particles have a heat resistance of 150 ° C. or higher and electrical insulation, and are stable to the organic electrolyte solution and the solvent used in the production of the separator (details will be described later).
  • organic fine particles or inorganic fine particles may be used as long as they are electrochemically stable and hardly oxidized / reduced in the operating voltage range of the battery, but inorganic fine particles are more preferably used from the viewpoint of stability.
  • “heat-resistant temperature is 150 ° C. or higher” in this specification means that deformation such as softening is not observed at least at 150 ° C.
  • examples of the inorganic fine particles include inorganic oxides such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 , BaTiO 3 , and ZrO 2 ; aluminum nitride, silicon nitride, and the like.
  • inorganic oxides such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 , BaTiO 3 , and ZrO 2 ; aluminum nitride, silicon nitride, and the like.
  • Inorganic nitrides of the above fine particles such as poorly soluble ion crystals such as calcium fluoride, barium fluoride and barium sulfate; covalent bonds such as silicon and diamond; clay such as montmorillonite;
  • the inorganic oxide may be boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or other mineral resource-derived substances or artificial products thereof.
  • a conductive material exemplified by a metal a conductive oxide such as SnO 2 , tin-indium oxide (ITO), a carbonaceous material such as carbon black, graphite, or the like is used as a material having electrical insulation (for example, fine particles that have been provided with electrical insulation properties by coating with the above-described inorganic oxide or the like may be used.
  • Organic fine particles include crosslinked polymethyl methacrylate, crosslinked polystyrene, crosslinked polydivinylbenzene, crosslinked styrene-divinylbenzene copolymer, polyimide, melamine resin, phenol resin, benzoguanamine-formaldehyde condensate, etc.
  • examples thereof include various crosslinked polymer fine particles [those not corresponding to the resin (A)] and heat-resistant polymer fine particles such as PP, polysulfone, polyacrylonitrile, aramid, polyacetal, and thermoplastic polyimide.
  • the organic resin (polymer) constituting these organic fine particles is a mixture, modified body, derivative, or copolymer (random copolymer, alternating copolymer, block copolymer, graft copolymer) of the above exemplified materials. Polymer) or a crosslinked product (in the case of the above-mentioned heat-resistant polymer).
  • the above-mentioned various fine particles may be used singly or in combination of two or more, but it is more preferable to use at least one of alumina, silica and boehmite. preferable.
  • the heat-resistant fine particles may have a nearly spherical shape or a plate-like shape, but at least the heat-resistant fine particles contained in the heat-resistant porous layer (II) It is preferable that some are plate-like particles. All of the heat-resistant fine particles may be plate-like particles. By using plate-like particles for the heat resistant porous layer (II), the effect of preventing short circuit can be further enhanced.
  • Examples of the plate-like heat-resistant fine particles include various commercially available products such as “Sun Outdoor (trade name)” (SiO 2 ) manufactured by Asahi Glass S Tech Co., Ltd. and “NST-B1 (trade name)” manufactured by Ishihara Sangyo Co., Ltd.
  • Pulverized product (TiO 2 ), plate-shaped barium sulfate “H series (trade name)”, “HL series (trade name)” manufactured by Sakai Chemical Industry, “micron white (trade name)” (talc) manufactured by Hayashi Kasei “Bengel (trade name)” (bentonite) manufactured by Hayashi Kasei Co., Ltd., “BMM (trade name)” and “BMT (trade name)” (boehmite) manufactured by Kawai Lime Co., Ltd., and “Cerasur BMT-B ( "Product name)” [Alumina (Al 2 O 3 )], "Seraph (trade name)” (alumina) manufactured by Kinsei Matec, "Yodogawa Mica Z-20 (trade name)” (sericite) manufactured by Yodogawa Mining It is available.
  • SiO 2 , Al 2 O 3 , ZrO, and CeO 2 can be produced by the method disclosed in Japanese Patent Laid-Open No. 2003-206475
  • the aspect ratio (ratio between the maximum length in the plate-like particles and the thickness of the plate-like particles) is preferably 5 or more, more preferably 10 or more, Preferably it is 100 or less, More preferably, it is 50 or less.
  • the average value of the ratio of the length in the major axis direction to the length in the minor axis direction (length in the major axis direction / length in the minor axis direction) of the flat plate surface of the heat-resistant fine particles is 3 or less, more preferably 2 or less. It is desirable that the value be close to.
  • the aspect ratio of the plate-like particles and the average value of the ratio between the long axis direction length and the short axis direction length of the flat plate surface are determined by, for example, image analysis of an image taken with a scanning electron microscope (SEM). be able to.
  • SEM scanning electron microscope
  • the form of the plate-like particles in the heat-resistant porous layer (II) is preferably such that the flat plate surface is substantially parallel to the separator surface.
  • the plate-like particles in the vicinity of the separator surface preferably have an average angle between the flat plate surface and the separator surface of 30 ° or less [most preferably, the average angle is 0 °, that is, in the vicinity of the separator surface.
  • the plate-like flat surface is parallel to the separator surface].
  • “near the surface” refers to a range of about 10% from the surface of the separator to the entire thickness.
  • the internal short circuit that can be caused by the protrusion of lithium dendrite deposited on the electrode surface or the active material on the electrode surface is more effective Can be prevented.
  • the presence form of the plate-like particles in the heat resistant porous layer (II) can be grasped by observing the cross section of the separator with an SEM.
  • the heat-resistant fine particles contained in the heat-resistant porous layer (II) are fine particles having a secondary particle structure in which primary particles are aggregated. All of the heat-resistant fine particles may be fine particles having the secondary particle structure.
  • heat-resistant fine particles having the secondary particle structure examples include “Boehmite C06 (trade name)”, “Boehmite C20 (trade name)” (boehmite) manufactured by Daimei Chemical Co., Ltd., “ED-1 ( Product name) "(CaCO 3 ), J. MoI. M.M. Examples include “Zeolex 94HP (trade name)” (clay) manufactured by Huber.
  • the particle diameter of the heat-resistant fine particles is an average particle diameter measured by the above method, preferably 0.01 ⁇ m or more, and more preferably 0.1 ⁇ m or more. That is, if heat-resistant fine particles having a particle size that is too small are used, the pore size of the heat-resistant porous layer (II) becomes small, and for example, it becomes difficult to set the bubble point pore size of the multilayer porous membrane to the above-mentioned suitable value. Furthermore, since there is a possibility that the path of the pores in the multilayer porous membrane becomes too complicated, it is difficult to adjust the air permeability of the multilayer porous membrane to the preferred value.
  • the average particle diameter of the heat resistant fine particles is 15 ⁇ m or less. Preferably, it is 5 ⁇ m or less.
  • the amount of the heat-resistant fine particles in the heat-resistant porous layer (II) is a volume ratio in the heat-resistant porous layer (II), more preferably 70% by volume or more, and still more preferably 90% by volume or more.
  • the preferable upper limit value of the heat-resistant fine particle amount in the heat-resistant porous layer (II) is, for example, 99% by volume in the volume ratio of the heat-resistant porous layer (II). It is. If the amount of heat-resistant fine particles in the heat-resistant porous layer (II) is less than 50% by volume, for example, it is necessary to increase the amount of organic binder in the heat-resistant porous layer (II).
  • the pores of the porous layer (II) are easily filled with an organic binder, and there is a possibility that the function as a separator is lowered. There exists a possibility that the space
  • the heat resistant porous layer (II) may contain an organic binder in order to ensure the shape stability of the separator and to integrate the heat resistant porous layer (II) and the resin porous membrane (I).
  • an organic binder for example, EVA (with a structural unit derived from vinyl acetate of 20 to 35 mol%), ethylene-acrylic acid copolymer such as ethylene-ethyl acrylate copolymer, fluorine-based rubber, styrene-butadiene rubber ( SBR), carboxymethylcellulose (CMC), hydroxyethylcellulose (HEC), polyvinyl alcohol (PVA), polyvinyl butyral (PVB), polyvinylpyrrolidone (PVP), poly-N-vinylacrylamide (PNVA), cross-linked acrylic resin, polyurethane, epoxy Resins and the like can be mentioned, and in particular, a heat-resistant binder having a heat-resistant temperature of 150 ° C. or higher is preferably used.
  • highly flexible binders such as EVA, ethylene-acrylic acid copolymer, fluorine rubber, and SBR are preferable.
  • highly flexible organic binders include Mitsui DuPont Polychemical's “Evaflex Series (EVA)”, Nihon Unicar's EVA, Mitsui DuPont Polychemical's “Evaflex-EAA Series (Ethylene).
  • EVA Evaflex Series
  • EVA Nihon Unicar's EVA
  • -Acrylic acid copolymer) ", Nippon Unicar EEA, Daikin Industries” DAI-EL Latex Series (Fluororubber) ", JSR" TRD-2001 (SBR) ", Nippon Zeon” EM-400B “ (SBR) ".
  • the said organic binder for heat resistant porous layer (II) when using the said organic binder for heat resistant porous layer (II), it is the form of the emulsion dissolved or disperse
  • the heat-resistant temperature is 150 ° C. or higher, it has electrical insulation, is electrochemically stable, and is stable to the electrolyte used in the battery and the solvent used in the production of the separator. If so, the material is not particularly limited.
  • the term “fibrous material” in the present specification means that the aspect ratio [length in the long direction / width in the direction perpendicular to the long direction (diameter)] is 4 or more, and the aspect ratio is It is preferable that it is 10 or more.
  • Specific constituent materials of the fibrous material include, for example, cellulose and its modified products [CMC, hydroxypropyl cellulose (HPC), etc.], polyolefin [PP, copolymers of propylene, etc.], polyester [polyethylene terephthalate (PET), etc. , Polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.], polyacrylonitrile (PAN), aramid, polyamideimide, polyimide and other resins; glass, alumina, zirconia, silica and other inorganic oxides; A fibrous material may be formed by using two or more of these constituent materials in combination.
  • the fibrous material may contain various known additives (for example, an antioxidant in the case of a resin) as necessary.
  • a porous substrate can be used for the heat resistant porous layer (II).
  • the porous substrate has a heat resistant temperature of 150 ° C. or more formed by forming a sheet-like material such as a woven fabric or a nonwoven fabric (including paper), and a commercially available nonwoven fabric or the like is used as the substrate. Can do.
  • the “heat resistance” of the porous substrate means that a substantial dimensional change due to softening or the like does not occur, and the change in the length of the object, that is, the porous substrate with respect to the length at room temperature.
  • the heat resistance is evaluated based on whether or not the upper limit temperature (heat resistance temperature) at which the shrinkage ratio (shrinkage ratio) can be maintained at 5% or less is sufficiently higher than the shutdown temperature.
  • the porous substrate desirably has a heat resistance temperature that is 20 ° C. or more higher than the shutdown temperature, and more specifically, the heat resistance temperature of the porous substrate is 150 ° C. or more. It is preferable that it is 180 degreeC or more.
  • the diameter of the fibrous material may be equal to or less than the thickness of the heat-resistant porous layer (II), and is, for example, 0.01 to 5 ⁇ m. Preferably there is. If the diameter is too large, the entanglement between the fibrous materials is insufficient. For example, when a porous substrate is formed by forming a sheet-like material, the strength may be reduced and handling may be difficult. On the other hand, if the diameter is too small, the gap of the separator becomes too small and the ion permeability tends to decrease, and the effect of suppressing the deterioration of battery characteristics such as load characteristics may be reduced.
  • the content of the fibrous material in the separator is, for example, preferably 10% by volume or more, and 20% by volume, by volume ratio in the separator (a ratio in the total volume of 100% by volume of the constituent components excluding the pores). More preferably, it is preferably 90% by volume or less, and more preferably 80% by volume or less.
  • the state of the presence of the fibrous material in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, and more preferably 20 ° or less. .
  • the proportion of the porous substrate is the volume ratio of the porous substrate in the heat-resistant porous layer (II) [heat-resistant porous layer excluding pores (II) It is desirable to adjust the content of other components so that it is 10 vol% or more and 90 vol% or less.
  • the resin (C) is not particularly limited as long as it is electrochemically stable and stable to the organic electrolyte solution of the battery and can constitute heat-resistant fine particles. Higher one is desirable. More specifically, polyolefins such as PE, copolymerized polyolefin, polyolefin derivatives (such as chlorinated polyethylene), polyolefin wax, petroleum wax, carnauba wax, and the like can be given. Examples of the copolymer polyolefin include an ethylene-vinyl monomer copolymer, more specifically, an ethylene-propylene copolymer, EVA, an ethylene-acrylic acid copolymer (ethylene-methyl acrylate copolymer, ethylene-ethyl acrylate).
  • Copolymer and the like.
  • ionomer resin silicon rubber, polyurethane, or the like can be used.
  • various cross-linked polymers such as cross-linked polymethyl methacrylate, cross-linked polystyrene, cross-linked polydivinylbenzene, cross-linked styrene-divinylbenzene copolymer (those that do not correspond to those constituting the heat-resistant fine particles described above), etc. Can also be used.
  • the particle size of the resin (C) fine particles is preferably an average particle size measured by the same method as that for the heat-resistant fine particles, and is preferably 0.1 to 20 ⁇ m.
  • the content thereof is the volume ratio in the heat-resistant porous layer (II) [the total volume of the constituent components of the heat-resistant porous layer (II) excluding the void portion is 100 volumes. % In%] is preferably 10 to 30% by volume.
  • the thickness of the separator is preferably 6 ⁇ m or more, and more preferably 13 ⁇ m or more.
  • the thickness of the separator is preferably 45 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the thickness of the resin porous membrane (I) is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less, and 20 ⁇ m. It is particularly preferred that The thickness of the heat-resistant porous layer (II) is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more, and preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and 6 ⁇ m. It is particularly preferred that The ratio a / b between the thickness a of the resin porous membrane (I) and the thickness b of the heat resistant porous layer (II) is preferably 0.5 or more, and preferably 10 or less.
  • the proportion of the resin porous membrane (I) in the separator becomes too small, and the original function of the separator may be impaired, or the shutdown characteristics may be deteriorated.
  • the proportion of the heat resistant porous layer (II) in the separator becomes too small, and the effect of improving the heat resistance of the entire separator may be reduced.
  • the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too small, a short circuit may occur due to the piercing of the separator when lithium dendrite crystals are generated. By setting the separator to the above-described configuration, the puncture strength can be ensured.
  • the separator of the present invention preferably has a thermal shrinkage rate at 150 ° C. of 5% or less. If the separator has such characteristics, even when the inside of the battery reaches about 150 ° C., the separator hardly contracts, so that a short circuit due to contact between the positive and negative electrodes can be prevented more reliably, and the battery at high temperature The safety of the can be further increased. By adopting the above-described configuration for the separator, it is possible to ensure the heat shrinkage rate.
  • 150 ° C. heat shrinkage rate means that the separator is put in a thermostatic bath, the temperature is raised to 150 ° C., left for 3 hours, taken out, and compared with the size of the separator before being put in the thermostatic bath. The percentage of reduction of the required dimension is expressed as a percentage.
  • the following method (a) or (b) can be adopted as the method for producing the separator of the present invention.
  • a heat-resistant porous layer (II) -forming composition containing a heat-resistant fine particle liquid composition such as slurry
  • the resin porous film (I) And a single separator.
  • a woven fabric composed of at least one kind of fibrous material containing each of the exemplified materials as a constituent component, or a structure in which these fibrous materials are entangled with each other.
  • porous sheets such as non-woven fabrics. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • the heat-resistant porous layer (II) -forming composition contains fine particles formed of resin (C), an organic binder, and the like in addition to heat-resistant fine particles, and these contain a solvent (including a dispersion medium; the same applies hereinafter). It is dispersed.
  • the organic binder can be dissolved in a solvent.
  • the solvent used in the composition for forming the heat resistant porous layer (I) may be any solvent that can uniformly disperse the heat resistant fine particles, the resin (C) fine particles, and the like, and can uniformly dissolve or disperse the organic binder.
  • organic solvents such as aromatic hydrocarbons such as toluene, furans such as tetrahydrofuran, and ketones such as methyl ethyl ketone and methyl isobutyl ketone are generally preferably used.
  • alcohols ethylene glycol, propylene glycol, etc.
  • various propylene oxide glycol ethers such as monomethyl acetate may be appropriately added to these solvents.
  • water when used as an emulsion, water may be used as a solvent.
  • alcohols methyl alcohol, ethyl alcohol, isopropyl alcohol, ethylene glycol, etc.
  • Interfacial tension can also be controlled by appropriately adding various surfactants such as fluorine and polyether.
  • the composition for forming the heat-resistant porous layer (II) has a solid content containing, for example, heat-resistant fine particles, an organic binder, and, if necessary, fine particles of the resin (C), for example, 10 to 80% by mass. preferable.
  • the pore diameter of the porous substrate is relatively large, for example, when it is 5 ⁇ m or more, this tends to cause a short circuit of the battery. Therefore, in this case, it is preferable to have a structure in which all or part of the heat-resistant fine particles and the fine particles of the resin (C) are present in the voids of the porous substrate.
  • resin (C) fine particles and the like are present in the voids of the porous substrate.
  • the heat-resistant porous layer (II) containing plate-like particles is formed in order to increase the orientation of the plate-like particles contained in the separator and to make the function work more effectively.
  • the composition may be applied to a porous substrate and impregnated, and then a shear or magnetic field may be applied to the composition.
  • a shear or magnetic field may be applied to the composition.
  • the composition can be shared by passing through a certain gap. it can.
  • each constituent such as heat-resistant fine particles such as plate-like particles and resin (C) fine particles
  • the constituents are unevenly distributed, It is good also as a form which the said structure gathered in layers in parallel or substantially parallel.
  • the heat-resistant porous layer (II) -forming composition further contains a fibrous material as required, and this is applied to the surface of the resin porous membrane (I). And drying at a predetermined temperature.
  • a hydrophobic membrane such as polyolefin is used as the resin porous membrane (I), and water or the like is used as a medium for the composition for forming the heat resistant porous layer (II)
  • the surface of the resin porous membrane (I) is subjected to surface treatment such as corona treatment and plasma treatment in advance to improve the wettability of the surface of the resin porous membrane (I), and then the heat resistant porous layer (II) is formed. It is desirable to apply the composition.
  • the interfacial tension of the composition for forming a heat resistant porous layer (II) may be appropriately adjusted and then applied to the surface of the resin porous membrane (I).
  • the heat-resistant porous layer (II) forming composition can be applied by various known methods such as a gravure coater, a die coater, a dip coater, and a spray coater.
  • the battery to which the separator of the present invention can be applied that is, the battery of the present invention is not particularly limited as long as it is a secondary battery using an organic electrolyte, and secondary batteries having various configurations and structures are applicable.
  • lithium secondary battery examples include a cylindrical shape (such as a rectangular tube shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the positive electrode is not particularly limited as long as it is a positive electrode used in a conventionally known lithium secondary battery, that is, a positive electrode containing an active material capable of occluding and releasing Li ions.
  • an active material a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn
  • spinel lithium manganese oxide in which 2 O 4 or a part of the element is substituted with another element, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It is.
  • lithium-containing transition metal oxide having a layered structure examples include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiNi 3 / 5 Mn 1/5 Co 1/5 O 2 etc.).
  • a carbon material such as carbon black is used as the conductive aid, and a fluororesin such as polyvinylidene fluoride (PVDF) is used as the binder.
  • PVDF polyvinylidene fluoride
  • the positive electrode mixture is a mixture of these materials and an active material.
  • the agent layer is formed on the surface of the current collector, for example.
  • a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • the lead part on the positive electrode side is usually provided by leaving the exposed part of the current collector without forming the positive electrode mixture layer on a part of the current collector and forming the lead part at the time of producing the positive electrode.
  • the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known lithium secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions.
  • an active material capable of occluding and releasing Li ions for example, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials
  • MCMB mesocarbon microbeads
  • lithium metal such as elements such as Si, Sn, Ge, Bi, Sb, and In and alloys thereof, lithium-containing nitrides, or oxides such as Li 4 Ti 5 O 12
  • lithium metal or a lithium / aluminum alloy can also be used as the negative electrode active material.
  • a negative electrode mixture in which a conductive additive (carbon material such as carbon black) or a binder such as PVDF is appropriately added to these negative electrode active materials is finished into a molded body (negative electrode mixture layer) using the current collector as a core material. Or those obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on the surface of the current collector.
  • the current collector When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the electrode can be used in the form of a laminate in which the positive electrode and the negative electrode are laminated via the separator of the present invention, or an electrode wound body in which this is wound.
  • the heat-resistant porous layer (II) As a heat-resistant fine particle used for the heat-resistant porous layer (II), when a material excellent in oxidation resistance (for example, an inorganic oxide) is used, by directing the heat-resistant porous layer (II) to the positive electrode side, Oxidation of the separator by the positive electrode can be suppressed, and a battery having excellent storage characteristics at high temperatures and charge / discharge cycle characteristics can be obtained. Therefore, in the battery of the present invention, it is more preferable that the heat resistant porous layer (II) of the separator is directed to the positive electrode side.
  • a material excellent in oxidation resistance for example, an inorganic oxide
  • the organic electrolytic solution a solution in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (R f OSO 2 ) 2 [where R f is a fluoroalkyl group] and the like are used. be able to.
  • the organic solvent used in the organic electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in the voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulfites such as ethylene
  • a combination that can obtain high conductivity such as a mixed solvent of ethylene carbonate and chain carbonate.
  • vinylene carbonates, 1,3-propane sultone, diphenyl disulfide, cyclohexyl benzene, biphenyl, fluorobenzene, t for the purpose of improving safety, charge / discharge cycleability, and high-temperature storage properties of these electrolytes -Additives such as butylbenzene can be added as appropriate.
  • the concentration of this lithium salt in the organic electrolyte is preferably 0.5 to 1.5 mol / l, more preferably 0.9 to 1.25 mol / l.
  • the positive electrode having the positive electrode mixture layer and the negative electrode having the negative electrode mixture layer as described above are, for example, a positive electrode mixture in which the positive electrode mixture is dispersed in a solvent such as N-methyl-2-pyrrolidone (NMP).
  • NMP N-methyl-2-pyrrolidone
  • a layer forming composition (slurry, etc.) or a negative electrode active material layer forming composition (slurry, etc.) in which a negative electrode mixture is dispersed in a solvent such as NMP is applied to the surface of the current collector and dried.
  • the melting point of the resin (A) constituting the resin porous membrane (I) shown in this example is a melting temperature measured using a differential scanning calorimeter (DSC) in accordance with the provisions of JIS K 7121.
  • the porosity of the porous membrane (I) and the heat resistant porous layer (II) is the porosity determined by the method described above.
  • the physical property value of the separator was measured by the method shown below.
  • ⁇ Shutdown temperature, shutdown speed, and resistance after shutdown> A stainless steel plate of 16 mm ⁇ sandwiched between 25 mm ⁇ separators, and an electrolytic solution (a solution in which ethylene carbonate and methylethyl carbonate were mixed at a volume ratio of 1: 2 and LiPF 6 was dissolved at a concentration of 1.0 mol / l)
  • a sealed cell was prepared by injection. The cell was heated to 150 ° C. at a rate of 1 ° C./min in a thermostatic bath, and the resistance value at 1 KHz was measured with a “3560 type milliohm high tester” manufactured by HIOKI. Moreover, the thermocouple was arrange
  • the resistance value of the separator after the shutdown was obtained by the equation (2).
  • the resistance value in that case was set to “> 3 k ⁇ ” (since the area of the stainless steel plate used for the measurement is about 2 cm 2 , each implementation described later) In the example, when the measurement result exceeds 3 k ⁇ , it is described as “> 1.5 k ⁇ / cm 2 ”).
  • Example 1 1000 g of plate boehmite (average particle size 1 ⁇ m, aspect ratio 10) is dispersed in 1000 g of water as heat-resistant fine particles, and 120 g of SBR latex (solid content ratio 40% by mass) is further added as an organic binder to uniformly disperse it.
  • a composition for forming a porous layer (II) was prepared.
  • the resin porous membrane (I) a microporous membrane in which three layers of PP layer and PE layer are laminated in the order of PP / PE / PP (total thickness: 16 ⁇ m, thickness of each layer; PP layer: 5 ⁇ m / PE layer) 6 ⁇ m / PP layer: 5 ⁇ m, porosity 39%, PE melting point 134 ° C., PP melting point 163 ° C.).
  • the plate-like boehmite which is heat-resistant fine particles, is applied to one side of the resin porous membrane (I) with a blade coater and dried by applying the composition for forming the heat-resistant porous layer (II) to a thickness of 5 ⁇ m.
  • a separator was prepared by forming a heat-resistant porous layer (II) containing as a main component.
  • the porosity of the heat resistant porous layer (II) calculated with the specific gravity of the organic binder being 1.2 g / cm 3 and the specific gravity of boehmite being 3 g / cm 3 is 53%, and in the heat resistant porous layer (II) The volume ratio of the heat-resistant fine particles was 89% (89% by volume).
  • This separator had a thermal shrinkage rate of 5%, a shutdown temperature of 131 ° C., and a shutdown rate of 79 ⁇ / min ⁇ cm 2 . Also, the resistance value after shutdown was> 1.5 k ⁇ / cm 2 .
  • Example 2 A separator was produced in the same manner as in Example 1 except that secondary particulate boehmite (average particle size 0.6 ⁇ m) was used as the heat-resistant fine particles.
  • the porosity of the heat resistant porous layer (II) was 59%, and the volume ratio of the heat resistant fine particles in the heat resistant porous layer (II) was 89%.
  • this separator had a heat shrinkage rate of 3%, and the shutdown temperature, shutdown speed, and resistance value after shutdown were almost the same as those in Example 1.
  • Example 3 A separator was produced in the same manner as in Example 1 except that granular alumina (average particle size 0.4 ⁇ m) was used as the heat-resistant fine particles.
  • the porosity of the heat resistant porous layer (II) was 50%, and the volume ratio of the heat resistant fine particles in the heat resistant porous layer (II) was 86%.
  • this separator had a heat shrinkage rate of 7%, and the shutdown temperature, shutdown speed, and resistance value after shutdown were almost the same as those in Example 1.
  • Comparative Example 1 A separator was prepared in the same manner as in Example 1 except that a PE microporous film (thickness 16 ⁇ m, porosity 39%, PE melting point 137 ° C.) was used as the resin porous film (I). This separator had a thermal shrinkage rate of 5%, a shutdown temperature of 134 ° C., and a shutdown rate of 9.2 ⁇ / min ⁇ cm 2 . The resistance value after shutdown was 139 ⁇ / cm 2 .
  • Comparative Example 2 A separator was formed without forming the heat resistant porous layer (II) on the resin porous membrane (I) used in Example 1. This separator had a thermal shrinkage of 49%, a shutdown temperature of 130 ° C., a shutdown speed of 79 ⁇ / min ⁇ cm 2 , and a resistance value after shutdown of> 1.5 k ⁇ / cm 2 .
  • a negative electrode mixture-containing paste was prepared by mixing 95 parts by mass of graphite as a negative electrode active material and 5 parts by mass of PVDF as a binder so as to be uniform using NMP as a solvent.
  • This negative electrode mixture-containing paste was intermittently applied on both sides of a 10 ⁇ m-thick current collector made of copper foil so that the coating length was 790 mm on the front surface and 810 mm on the back surface, dried, and then subjected to calendering to obtain a total thickness.
  • the thickness of the negative electrode mixture layer was adjusted so as to be 80 ⁇ m, and the negative electrode mixture layer was cut to have a width of 56 mm to produce a negative electrode having a length of 920 mm and a width of 56 mm. Further, a tab was welded to the exposed portion of the copper foil of the negative electrode to form a lead portion.
  • the thickness of the positive electrode mixture layer was adjusted and cut so as to have a width of 54 mm to produce a positive electrode having a length of 910 mm and a width of 54 mm. Further, a tab was welded to the exposed portion of the aluminum foil of the positive electrode to form a lead portion.
  • Example 4 The separator of Example 1 was interposed between the negative electrode produced in Production Example 1 and the positive electrode produced in Production Example 2 so that the heat-resistant porous layer (II) was on the positive electrode side, and wound in a spiral shape.
  • An electrode winding body was produced. This electrode winding body was put into a cylindrical iron outer can having a diameter of 18 mm and a length of 650 mm, and an organic electrolyte (LiPF 6 in a solvent in which ethylene carbonate and methyl ethyl carbonate were mixed at a volume ratio of 1: 2 at a concentration of 1.2 mol / ml). After the injection of the solution dissolved in 1), sealing was performed to produce a lithium secondary battery.
  • LiPF 6 organic electrolyte
  • Examples 5 to 6 and Comparative Examples 3 to 4 A lithium secondary battery was produced in the same manner as in Example 4 except that the separators in Examples 2 and 3 and Comparative Examples 1 and 2 were used instead of the separator in Example 1.
  • lithium secondary batteries of Examples 4 to 6 and Comparative Examples 3 to 4 were charged / discharged under the following conditions to measure the charge capacity and the discharge capacity, and the battery characteristics (charge characteristics) were evaluated. .
  • the charging was constant current-constant voltage charging in which constant current charging was performed until the battery voltage reached 4.2 V at a current value of 0.2 C and then constant voltage charging at 4.2 V was performed.
  • the total charging time until the end of charging was 15 hours.
  • Each battery after charging was discharged at a discharge current of 0.2 C until the battery voltage reached 3.0 V, and the charge / discharge characteristics were evaluated. As a result, it was confirmed that all the batteries were normally charged and discharged.
  • lithium secondary batteries of Examples 4 to 6 and Comparative Examples 3 to 4 charged under the same conditions as described above were continuously charged for 1 hour at a current value of 20 V and 1 C, and an overcharge test was performed.
  • the lithium secondary batteries of Examples 4 to 6 and Comparative Examples 3 to 4 charged under the same conditions as described above were subjected to a temperature increase test by the following method.
  • Each battery after charging is placed in a thermostatic bath, heated from 30 ° C. to 150 ° C. at a rate of 1 ° C. per minute, heated and maintained at a temperature of 150 ° C. for another 30 minutes, and the surface temperature of the battery Was measured.
  • Table 1 shows the evaluation results for the lithium secondary batteries of Examples 4 to 6 and Comparative Examples 3 to 4.
  • the battery of Comparative Example 1 showed no difference in the temperature increase test compared to the batteries of Examples 4 to 6, but in the overcharge test, the battery rapidly increased before reaching 1 hour. Voltage drop and temperature rise occurred.
  • the battery of Comparative Example 2 showed no difference in the overcharge test as compared with Examples 4 to 6, but the temperature increase test showed an increase in temperature. From this, it was found that the batteries of Examples 4 to 6 were excellent in safety.
  • the battery of the present invention can be applied to the same applications as those in which conventionally known batteries are used, such as power supplies for various electronic devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Cell Separators (AREA)
  • Secondary Cells (AREA)

Abstract

【課題】 安全性を向上させた電池を構成し得る電池用セパレータと、該セパレータを有する電池を提供する。 【解決手段】 本発明の電池用セパレータは、樹脂多孔質膜(I)と、耐熱性微粒子を主体として含む耐熱多孔質層(II)とを少なくとも有する多層多孔質膜からなり、シャットダウン温度が100~150℃であり、かつシャットダウン速度が50Ω/min・cm以上であることを特徴とするものである。また、本発明の電池は、Liイオンを吸蔵放出可能な活物質を有する正極と、Liイオンを吸蔵放出可能な活物質を有する負極と、有機電解液と、本発明の電池用セパレータとを有することを特徴とするものである。

Description

電池用セパレータおよび電池
 本発明は、安全性を向上させた電池を構成し得る電池用セパレータと、該セパレータを有する電池に関するものである。
 リチウム二次電池は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられている。例えば、リチウム二次電池では、携帯機器の高性能化に伴って高容量化が更に進む傾向にあり、安全性の確保が重要となっている。
 現行のリチウム二次電池では、正極と負極との間に介在させるセパレータとして、例えば厚みが20~30μm程度のポリオレフィン系の微多孔膜が使用されている。また、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点の低いポリエチレン(PE)が適用されることがある。
 ところで、こうしたセパレータとしては、例えば、多孔質化と強度向上のために一軸延伸または二軸延伸したフィルムが用いられている。このようなセパレータは、単独で存在する膜として供給されるために作業性などの点で一定の強度が要求され、これを前記延伸によって確保している。しかし、このような延伸フィルムでは構成樹脂の結晶化度が増大しており、シャットダウン温度も電池の熱暴走温度に近い温度にまで高まっているため、電池の安全性確保のためのマージンが十分であるとは言い難い。
 また、前記延伸によってセパレータにはひずみが生じているが、このようなセパレータが高温に曝されると、残留応力によって収縮が起こるという問題がある。収縮温度は、融点、すなわちシャットダウン温度と非常に近いところに存在する。このため、ポリオレフィン系の微多孔膜セパレータを使用するときには、充電異常時などに電池の温度がシャットダウン温度に達すると、電流を直ちに減少させて電池の温度上昇を防止しなければならない。空孔が十分に閉塞せず電流を直ちに減少できなかった場合には、電池の温度は容易にセパレータの収縮温度にまで上昇するため、内部短絡による発火の危険性があるからである。
 前記のようなセパレータの熱収縮に伴う電池の安全性や、各種原因による内部短絡に対する信頼性を高めるべく、本発明者らは、シャットダウン機能を確保するための樹脂を主体として含む第1セパレータ層と、耐熱温度が150℃以上のフィラーを主体として含む第2セパレータ層とを有する多孔質の電気化学素子用セパレータを開発し、既に特許出願を済ませている(特許文献1)。
 特許文献1に開示の電池化学素子用セパレータにおいては、第2セパレータ層がセパレータ本来の機能、主に正極と負極との直接の接触による短絡を防止する機能を確保するための層であり、第2セパレータ層の有する耐熱温度が150℃以上のフィラーによって、前記の機能を確保することに加えて、セパレータの熱収縮も防止している。そして、第2セパレータ層では保持し得ないシャットダウン機能を、第1セパレータ層を併設することで確保している。
国際公開第2007/66768号
 しかしながら、電池の更なる高容量化や更なる高出力密度化が進んだ場合、特許文献1に記載のセパレータであっても電池の安全性を十分に確保し得ないことも予想され、このような点において、特許文献1に記載の技術も未だ改善の余地を残している。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、安全性を向上させた電池を構成し得る電池用セパレータと、該セパレータを有する電池を提供することにある。
 前記目的を達成し得た本発明の電池用セパレータは、樹脂多孔質膜(I)と、耐熱性微粒子を主体として含む耐熱多孔質層(II)とを少なくとも有する多層多孔質膜からなり、シャットダウン温度が100~150℃であり、かつシャットダウン速度が50Ω/min・cm以上であることを特徴とするものである。本発明の電池用セパレータにおいて、前記シャットダウン温度および前記シャットダウン速度は、それぞれ下記の方法により求められる。
シャットダウン温度:
 直径16mmの2枚のステンレス鋼板に直径25mmとした前記電池用セパレータを挟んだ積層体を挿入し、更にエチレンカーボネートとメチルエチルカーボネートとを体積比1:2で混合した溶媒にLiPFを1.0mol/lの濃度で溶解した電解液を注入して密閉したセルを、恒温槽に入れ、槽内の温度を1℃/minの割合で昇温し、その間に前記積層体に係る2枚のステンレス鋼板の間の抵抗値を測定し続け、前記抵抗値が40Ωになった温度を、セパレータのシャットダウン温度とする。
シャットダウン速度:
 前記シャットダウン温度測定後に、槽内の昇温と、前記積層体に係る2枚のステンレス鋼板の間の抵抗値の測定とを継続し、前記シャットダウン温度の前後それぞれ10Ω、計20Ωの間の前記抵抗値の変化から、下記(1)式を用いてセパレータのシャットダウン速度を算出する。
 VSD = (50-30)/{(t50-t30)・S}   (1)
[前記(1)式中、VSD:シャットダウン速度(Ω/min・cm)、t50:抵抗値が50Ωに達するまでの経過時間(分)、t30:抵抗値が30Ωに達するまでの経過時間(分)、S:ステンレス鋼板の面積(cm)である。]
 また、本発明の電池は、Li(リチウム)イオンを吸蔵放出可能な活物質を有する正極と、Liイオンを吸蔵放出可能な活物質を有する負極と、有機電解液と、本発明の電池用セパレータとを有することを特徴とするものである。
 本発明によれば、安全性を向上させた電池を構成し得る電池用セパレータと、該セパレータを有する電池を提供することができる。すなわち、本発明の電池は、安全性が優れている。
 本発明の電池用セパレータは、樹脂多孔質膜(I)と、耐熱性微粒子を主体として含む耐熱多孔質層(II)とを少なくとも有する多層多孔質膜からなるものである。
 本発明の電池用セパレータ(以下、単に「セパレータ」という場合がある)に係る樹脂多孔質膜(I)は、前記方法により求められるシャットダウン温度(以下、単に「シャットダウン温度」という)が100~150℃であり、かつ前記方法により求められるシャットダウン速度(以下、単に「シャットダウン速度」という)が50Ω/min・cm以上である。
 本発明のセパレータは、シャットダウン速度が、50Ω/min・cm以上であり、70Ω/min・cm以上であることが好ましい。このようなシャットダウン速度を有するセパレータであれば、これを用いた電池において、内部短絡、過充電といった異常によって電池の温度が上昇しても、素早くセパレータの孔を閉塞することができ、それ以上電流が流れることを抑制できるため、電池の安全性を高いレベルで確保することが可能となる。
 本発明のセパレータにおけるシャットダウン速度の上限値については、特に制限はないが、通常は、1000Ω/min・cm程度である。
 また、本発明のセパレータは、前記方法により測定されるシャットダウン温度が、100℃以上であり、110℃以上であることが好ましく、また、150℃以下であり、140℃以下であることが好ましい。セパレータがこのようなシャットダウン温度を有することで、通常使用時には良好なリチウムイオン伝導性を確保しつつ、異常時にはシャットダウンにより安全性を確保し得る電池を構成可能なセパレータとすることができる。
 更に、本発明のセパレータは、下記方法により求められるシャットダウン後の抵抗値(以下、単に「シャットダウン後の抵抗値」という)が、500Ω/cm以上であることが好ましく、1000Ω/cm以上であることがより好ましい。シャットダウン後の抵抗値が低いセパレータの場合には、シャットダウンが起こった後にも正負極間に微小な電流が流れ続けることがあり、これにより、このセパレータを用いた電池の安全性向上効果が小さくなる虞がある。しかし、シャットダウン後にこのような抵抗値を有するセパレータであれば、シャットダウン時の正負極間に流れる電流値を極力小さく抑えることができるため、より安全性に優れた電池を構成できる。
 また、シャットダウン後の抵抗値の上限値については、特に制限はないが、通常は、10000Ω/cm程度である。
 セパレータにおける前記シャットダウン後の抵抗値は、下記の方法により求められる。前記シャットダウン温度測定後に、槽内の昇温と、前記積層体に係る2枚のステンレス鋼板の間の抵抗値の測定とを継続して、最高到達抵抗値を測定し、下記(2)式によりシャットダウン後の抵抗値を算出する。
 RSD = R/S        (2)
ここで、前記(2)式中、RSD:シャットダウン後のセパレータの抵抗値(Ω/cm)、R:シャットダウン後の最高到達抵抗値(Ω)、S:ステンレス鋼板の面積(cm)である。
 また、本発明のセパレータの透気度は、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値で表したときに、10~600sec/100mlであることが好ましい。セパレータの透気度が大きすぎるとイオン透過性が小さくなり、小さすぎると、セパレータの強度が小さくなることがある。
 更に、本発明のセパレータは、セパレータ全体のバブルポイント細孔径をS(μm)、樹脂多孔質膜(I)のバブルポイント細孔径をR(μm)としたとき、R-S≦0.01の関係を満たすことが好ましい。
 なお、本明細書でいう「バブルポイント細孔径」とは、JIS K 3832に規定される方法によって測定されるバブルポイント値P(Pa)を用い、下記(3)式によって算出される細孔径(最大孔径)であり、例えば、後述する実施例において用いた装置を使用することで測定することができる。
 d = (K4γcosθ)/P          (3)
ここで、前記(3)式中、d:バブルポイント細孔径(μm)、γ:表面張力(mN/m)、θ:接触角(°)、K:キャピラリー定数、である。
 すなわち、セパレータ全体のバブルポイント細孔径Sと、樹脂多孔質膜(I)のバブルポイント細孔径Rとの差R-Sが小さいほど、耐熱多孔質層(II)の孔径が、樹脂多孔質膜(I)の孔径と同等か、より大きいことを意味している。このようなセパレータを用いた電池では、電池内でのイオンの移動が耐熱多孔質層(II)によって阻害され難く、負荷特性などの電池特性の低下が、より良好に抑制される。R-Sの値は、0.001以下であることがより好ましい。
 なお、セパレータ全体のバブルポイント細孔径は、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、5μm以下であることが好ましく、1μm以下であることがより好ましい。更に、樹脂多孔質膜(I)のバブルポイント細孔径は、0.01μm以上であることが好ましく、0.05μm以上であることがより好ましく、また、0.5μm以下であることが好ましく、0.3μm以下であることがより好ましい。
 また、本発明のセパレータにおいては、樹脂多孔質膜(I)の空孔率Aが30~70%、耐熱多孔質層(II)の空孔率Bが30~75%であることが好ましく、更に、A≦Bの関係を満たすことがより好ましい。
 樹脂多孔質膜(I)の空孔率や耐熱多孔質層(II)の空孔率を前記の下限値以上とすることで、電池内において、イオンをより移動させやすくして、負荷特性などの電池特性の低下を、より良好に抑制することができる。また、樹脂多孔質膜(I)の空孔率や耐熱多孔質層(II)の空孔率を前記の上限値以下とすることで、樹脂多孔質膜(I)や耐熱多孔質層(II)の強度を高めて、それらの取り扱い性を良好にすることができる。更に、樹脂多孔質膜(I)の空孔率Aと、耐熱多孔質層(II)の空孔率Bとを、A≦Bの関係を満たすようにすることで、電池内でのイオンの移動を、耐熱多孔質層(II)によって阻害され難くして、負荷特性などの電池特性の低下を、更に良好に抑制することができる。
 また、セパレータ全体の空孔率は、非水電解質の保持量を確保してイオン透過性を良好にするために、乾燥した状態で、30%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。なお、セパレータの空孔率:C(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(4)式を用いて各成分iについての総和を求めることにより計算できる。
  C = {1-(m/t)/(Σa・ρ)}×100    (4)
ここで、前記(4)式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
 また、前記(4)式において、mを樹脂多孔質膜(I)の単位面積あたりの質量(g/cm)とし、tを樹脂多孔質膜(I)の厚み(cm)とすることで、前記(4)式を用いて、セパレータの空孔率:Cの代わりに、樹脂多孔質膜(I)の空孔率:A(%)を求めることができる。更に、前記(4)式において、mを耐熱多孔質層(II)の単位面積あたりの質量(g/cm)とし、tを耐熱多孔質層(II)の厚み(cm)とすることで、前記(4)式を用いて、セパレータの空孔率:Cの代わりに、耐熱多孔質層(II)の空孔率:B(%)を求めることができる。
 本発明のセパレータを構成する多層多孔質膜に係る樹脂多孔質膜(I)としては、正極と負極との短絡を防止しつつ、イオンを透過する特性を有し、電池内での酸化還元反応に対して安定で、かつ電池に用いる有機電解液などの電解液に安定であれば、特に制限はない。
 ただし、樹脂多孔質膜(I)は、一定温度以上で溶融または軟化する特性を有することで、セパレータに前記のシャットダウン特性をもたらし得る樹脂を含有している必要がある。より具体的には、樹脂多孔質膜(I)は、融点が80~150℃の樹脂[以下、樹脂(A)という]を含有していることが好ましい。
 本明細書でいう樹脂(A)およびその他の樹脂の融点は、例えば、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定される融解温度により求めることができる。
 前記の融点を有する樹脂(A)の具体例としては、ポリエチレン(PE)、共重合ポリオレフィン、またはポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。前記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体(EVA)、エチレン-アクリル酸共重合体(エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体など)などが例示できる。前記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが望ましい。また、ポリシクロオレフィンなどを用いることもできる。
 樹脂(A)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を用いても構わない。樹脂多孔質膜(I)に係る樹脂(A)としては、PE、ポリオレフィンワックス、またはエチレン由来の構造単位が85モル%以上のEVAが好ましく、PE単独またはPEを主成分とすることがより好ましい。樹脂(A)は、必要に応じて、樹脂に添加される公知の各種添加剤(例えば、酸化防止剤など)を含有していても構わない。
 樹脂多孔質膜(I)としては、例えば、前記の樹脂(A)を主体とする微多孔膜が挙げられる。ここでいう「樹脂(A)を主体とする微多孔膜」とは、微多孔膜における樹脂(A)の体積割合(空孔部分を除く微多孔膜の構成成分の全体積100体積%中の割合)が、50体積%以上であることを意味している。
 このような微多孔膜としては、例えば、従来から知られているリチウム二次電池などの電池で使用されているポリオレフィン(PE、エチレン-プロピレン共重合体などの共重合ポリオレフィンなど)製の微多孔膜、すなわち、無機フィラーなどを混合したポリオレフィンを用いて形成したフィルムやシートに、一軸または二軸延伸を施して微細な空孔を形成したものなどを用いることができる。また、前記の樹脂(A)と他の樹脂とを混合してフィルムやシートとし、その後、前記他の樹脂のみを溶解する溶媒中に、これらフィルムやシートを浸漬して、前記他の樹脂のみを溶解させて空孔を形成したものを、樹脂多孔質膜(I)として用いることもできる。
 また、樹脂多孔質膜(I)には、セパレータにシャットダウン機能を付与する作用を損なわない範囲で、その強度などを向上するためにフィラーなどを含有させることもできる。樹脂多孔質膜(I)に使用可能なフィラーとしては、例えば、後述する耐熱多孔質層(II)に使用可能な耐熱性微粒子と同じものが挙げられる。
 樹脂多孔質膜(I)に使用するフィラーの粒径は、平均粒径で、例えば、好ましくは0.01μm以上、より好ましくは0.1μm以上であって、好ましくは10μm以下、より好ましくは1μm以下である。本明細書でいう平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、フィラーを溶解しない媒体に、これら微粒子を分散させて測定した数平均粒子径として規定することができる[後述する耐熱多孔質層(II)に係る耐熱性微粒子についても同じである。]。
 また、樹脂多孔質膜(I)は、複数の層(2層、3層、4層、5層など)を有する積層膜であり、かつそのうちの少なくとも2層が、互いに異なる樹脂を主体とする層であることが好ましい。例えば、樹脂多孔質膜(I)が2層で構成されている場合には、これらの層は、互いに異なる樹脂を主体とする層とする。また、樹脂多孔質層(I)が3層で構成されている場合には、そのうちの2層は、互いに異なる樹脂を主体とする層とし、残りの層は、前記2層のうちのいずれか一方の層が主体とする樹脂と同じ樹脂を主体とする層であってもよく、前記2層が主体とする樹脂とは異なる種類の樹脂を主体とする層であってもよい。
 樹脂多孔質膜(I)が前記の積層膜の場合、例えば、樹脂(A)のうちの1種を主体とする層と、樹脂(A)のうちの他の種類の樹脂を主体とする層との積層膜(微多孔膜)であってもよいが、樹脂(A)を主体とする層と、樹脂(A)よりも融点の高い樹脂[融点が150℃よりも高い樹脂。以下、「樹脂(B)」という。]を主体とする層との積層膜(微多孔膜)が好ましい。より具体的には、PEを主体とする層(以下、「PE層」という)と、ポリプロピレン(PP)を主体とする層(以下、「PP層」という)とを有する積層微多孔膜が好ましい。このような積層膜の場合、例えば、電池内の温度上昇によって樹脂(A)を主体とする層が溶融してシャットダウンが起きた際にも、樹脂(B)を主体とする層がセパレータの実質的な形態を維持するため、セパレータのシャットダウン速度、およびシャットダウン後の抵抗値をより高めることが可能となり、シャットダウン速度およびシャットダウン後の抵抗値を前記の値に調整することが容易となる。
 また、樹脂多孔質膜(I)に係る樹脂(A)を主体とする層と耐熱多孔質層(II)とを直接積層した場合には、樹脂(A)を主体とする層のみからなるセパレータ[樹脂(A)を主体とする樹脂多孔質膜のみからなるセパレータ]を用いた場合に比べて、シャットダウン速度が低下することがある。そのため、本発明のセパレータは、耐熱多孔質層(II)と、樹脂(A)を主体とする層との間に、樹脂(B)を主体とする層を有する構成とすることが好ましく、これにより、シャットダウン速度を前記の値に調整することが、より容易となる。
 樹脂多孔質膜(I)が、樹脂(A)を主体とする層と樹脂(B)を主体とする層とを有する場合、樹脂(B)を主体とする層の厚みは、樹脂(A)を主体とする層のシャットダウン特性への耐熱多孔質層(II)の影響を抑える観点から、2μm以上であることが好ましく、4μm以上であることがより好ましい。一方、セパレータ全体の厚みの増大を抑える観点からは、樹脂(B)を主体とする層の厚みは、10μm以下であることが好ましく、7μm以下であることがより好ましい。
 また、樹脂多孔質膜(I)が、樹脂(A)を主体とする層と樹脂(B)を主体とする層とを有する場合、それぞれの層による効果を高めるために、樹脂(B)の融点は、樹脂(A)の融点よりも、20℃以上高いことが好ましく、25℃以上高いことがより好ましい。
 樹脂微多孔膜(I)は、PP層とPP層との間にPE層が介在する3層構造の積層微多孔膜であることが特に好ましく、この場合には、シャットダウン時にPE層が潰れて、溶融したPEがセパレータの孔を塞ぐ速度が速くなるため、シャットダウン速度を前記の値に調整することが更に容易となる。
 前記の「樹脂(A)を主体とする層」とは、当該層における樹脂(A)の体積割合(空孔部分を除く当該層の構成成分の全体積100体積%中の割合。以下、同じ。)が、50体積%以上であることを意味している。樹脂(A)を主体とする層は、樹脂(A)の体積割合が100体積%であってもよい。また、前記の「樹脂(B)を主体とする層」とは、当該層における樹脂(B)の体積割合(空孔部分を除く当該層の構成成分の全体積100体積%中の割合。以下、同じ。)が、50体積%以上であることを意味している。樹脂(B)を主体とする層は、樹脂(B)の体積割合が100体積%であってもよい。
 そして、前記の「PEを主体とする層」とは、当該層におけるPEの体積割合(空孔部分を除く当該層の構成成分の全体積100体積%中の割合。以下、同じ。)が、50体積%以上であることを意味している。PEを主体とする層は、PEの体積割合が100体積%であってもよい。また、前記の「PPを主体とする層」とは、当該層におけるPPの体積割合(空孔部分を除く当該層の構成成分の全体積100体積%中の割合。以下、同じ。)が、50体積%以上であることを意味している。PPを主体とする層は、PPの体積割合が100体積%であってもよい。
 樹脂多孔質膜(I)における樹脂(A)の含有量は、シャットダウンの効果をより得やすくするために、例えば、下記のようであることが好ましい。セパレータの構成成分の全体積中(空孔部分を除く全体積100体積%中)における樹脂(A)の体積は、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。また、樹脂(A)の体積が、樹脂多孔質膜(I)の構成成分の全体積中(空孔部分を除く全体積中)、15体積%以上であることが好ましく、20体積%以上であることがより好ましく、また、80体積%以下であることが好ましく、70体積%以下であることがより好ましい。
 本発明のセパレータを構成する多層多孔質膜に係る耐熱多孔質層(II)は、セパレータに耐熱性を付与する役割を担う層であり、例えば、電池が高温となった場合、樹脂多孔質膜(I)が収縮しようとしても、収縮し難い耐熱多孔質層(II)がセパレータの骨格として作用し、樹脂多孔質膜(I)の熱収縮、すなわちセパレータ全体の熱収縮を抑制する。
 なお、耐熱多孔質層(II)は、耐熱性微粒子を主体として含むものであるが、本明細書でいう「耐熱性微粒子を主体として含む」とは、耐熱多孔質層(II)中の体積割合(空孔部分を除く当該層の構成成分の全体積100体積%中の割合。ただし、後記の多孔質基体を有する場合においては、多孔質基体を除いた構成成分の全体積100体積%中の割合。以下、同じ。)で、耐熱性微粒子が50体積%以上であることを意味している。
 耐熱性微粒子としては耐熱温度が150℃以上の耐熱性および電気絶縁性を有しており、電池の有する有機電解液やセパレータ製造の際に使用する溶媒(詳しくは後述する)に対して安定であり、更に電池の作動電圧範囲において酸化還元されにくい電気化学的に安定なものであれば、有機微粒子でも無機微粒子でもよいが、安定性などの点から無機微粒子がより好ましく用いられる。なお、後記の多孔質基体を除き、本明細書でいう「耐熱温度が150℃以上」とは、少なくとも150℃において軟化などの変形が見られないことを意味している。
 より具体的には、無機微粒子としては、例えば、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO、BaTiO、ZrOなどの無機酸化物;窒化アルミニウム、窒化ケイ素などの無機窒化物;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶;シリコン、ダイヤモンドなどの共有結合性結晶;モンモリロナイトなどの粘土;などの微粒子が挙げられる。ここで、前記無機酸化物は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などであってもよい。また、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた微粒子であってもよい。
 また、有機微粒子(有機粉末)としては、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、ポリイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子微粒子[ただし、樹脂(A)に該当しないもの]や、PP、ポリスルフォン、ポリアクリロニトリル、アラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子微粒子などが例示できる。また、これらの有機微粒子を構成する有機樹脂(高分子)は、前記例示の材料の混合物、変性体、誘導体、共重合体(ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体)、架橋体(前記の耐熱性高分子の場合)であってもよい。
 耐熱性微粒子には、前記例示の各種微粒子を1種単独で使用してもよく、2種以上を併用してもよいが、アルミナ、シリカおよびベーマイトのうちの少なくとも1種を使用することがより好ましい。
 耐熱性微粒子の形態としては、例えば、球状に近い形状を有していてもよく、板状の形状を有していてもよいが、耐熱多孔質層(II)に含まれる耐熱性微粒子の少なくとも一部が板状粒子であることが好ましい。耐熱性微粒子の全てが板状粒子でもよい。耐熱多孔質層(II)に板状粒子を使用することで、短絡防止作用をより高めることができる。
 板状の耐熱性微粒子としては、各種市販品が挙げられ、例えば、旭硝子エスアイテック社製「サンラブリー(商品名)」(SiO)、石原産業社製「NST-B1(商品名)」の粉砕品(TiO)、堺化学工業社製の板状硫酸バリウム「Hシリーズ(商品名)」、「HLシリーズ(商品名)」、林化成社製「ミクロンホワイト(商品名)」(タルク)、林化成社製「ベンゲル(商品名)」(ベントナイト)、河合石灰社製「BMM(商品名)」や「BMT(商品名)」(ベーマイト)、河合石灰社製「セラシュールBMT-B(商品名)」[アルミナ(Al)]、キンセイマテック社製「セラフ(商品名)」(アルミナ)、斐川鉱業社製「斐川マイカ Z-20(商品名)」(セリサイト)などが入手可能である。この他、SiO、Al、ZrO、CeOについては、特開2003-206475号公報に開示の方法により作製することができる。
 耐熱性微粒子が板状粒子の場合の形態としては、アスペクト比(板状粒子中の最大長さと板状粒子の厚みとの比)が、好ましくは5以上、より好ましくは10以上であって、好ましくは100以下、より好ましくは50以下である。また、耐熱性微粒子の平板面の長軸方向長さと短軸方向長さの比(長軸方向長さ/短軸方向長さ)の平均値は、3以下、より好ましくは2以下で、1に近い値であることが望ましい。
 板状粒子におけるアスペクト比、および前記の平板面の長軸方向長さと短軸方向長さの比の平均値は、例えば、走査型電子顕微鏡(SEM)により撮影した画像を画像解析することにより求めることができる。
 耐熱性微粒子として板状粒子を用いる場合、耐熱多孔質層(II)中での板状粒子の存在形態は、平板面がセパレータの面に対して略平行であることが好ましく、より具体的には、セパレータの表面近傍における板状粒子について、その平板面とセパレータ面との平均角度が30°以下であることが好ましい[最も好ましくは、当該平均角度が0°、すなわち、セパレータの表面近傍における板状の平板面が、セパレータの面に対して平行である]。ここでいう「表面近傍」とは、セパレータの表面から全体厚みに対しておよそ10%の範囲を指す。板状粒子の存在形態が前記のような状態となるように板状粒子の配向性を高めることで、電極表面に析出するリチウムデンドライトや電極表面の活物質の突起により生じ得る内部短絡をより効果的に防ぐことができる。なお、耐熱多孔質層(II)中における板状粒子の存在形態は、セパレータの断面をSEMにより観察することにより把握することができる。
 また、耐熱多孔質層(II)に含まれる耐熱性微粒子の少なくとも一部が、一次粒子が凝集した二次粒子構造を有する微粒子であることが好ましい。耐熱性微粒子の全部が、前記二次粒子構造を有する微粒子であってもよい。耐熱多孔質層(II)が前記二次粒子構造の耐熱性微粒子を含有することで、前述した板状粒子を用いた場合と同様の短絡防止効果を確保することができ、また、粒子同士の密着をある程度防止して粒子同士の空隙を適度に保つことが可能となることから、耐熱多孔質層(II)のイオン透過性を高めることが容易となる。前記二次粒子構造の耐熱性微粒子の例としては、大明化学社製「ベーマイト C06(商品名)」、「ベーマイト C20(商品名)」(ベーマイト)、米庄石灰工業社製「ED-1(商品名)」(CaCO)、J.M.Huber社製「Zeolex 94HP(商品名)」(クレイ)などが挙げられる。
 耐熱性微粒子の粒径は、前記の方法により測定される平均粒径で、0.01μm以上であることが好ましく、0.1μm以上であることがより好ましい。すなわち、粒径が小さすぎる耐熱性微粒子を用いると、耐熱多孔質層(II)の細孔径が小さくなって、例えば、多層多孔質膜のバブルポイント細孔径を前記好適値にすることが難しくなり、更に、多層多孔質膜中の細孔の経路が複雑になりすぎる虞があることから、多層多孔質膜の透気度を前記好適値に調整し難くなる。また、耐熱性微粒子の粒径があまり大きすぎると、耐熱多孔質層(II)の形成によるセパレータの耐熱性向上効果が小さくなる虞があることから、耐熱性微粒子の平均粒径は、15μm以下であることが好ましく、5μm以下であることがより好ましい。
 耐熱多孔質層(II)における耐熱性微粒子の量は、耐熱多孔質層(II)中の体積割合で、70体積%以上であることがより好ましく、90体積%以上であることが更に好ましい。耐熱多孔質層(II)中の耐熱性微粒子の量を前記のように多くすることで、電池が高温となった際の正極と負極との直接の接触による短絡の発生をより良好に抑制することができる。
 また、耐熱多孔質層(II)には、耐熱性微粒子同士を結着したり、必要に応じて樹脂多孔質膜(I)と耐熱多孔質層(II)とを結着したりするために有機バインダを含有させることが好ましく、このような観点から、耐熱多孔質層(II)における耐熱性微粒子量の好適上限値は、例えば、耐熱多孔質層(II)の体積割合で、99体積%である。なお、耐熱多孔質層(II)における耐熱性微粒子の量を50体積%未満とすると、例えば、耐熱多孔質層(II)中の有機バインダ量を多くする必要が生じるが、その場合には耐熱多孔質層(II)の空孔が有機バインダによって埋められやすく、セパレータとしての機能が低下する虞があり、また、開孔剤などを用いて多孔質化した場合には、耐熱性微粒子同士の間隔が大きくなりすぎて、セパレータの熱収縮を抑制する効果が低下する虞がある。
 耐熱多孔質層(II)の空孔を確保するにあたり、耐熱性微粒子の含有量が少ない場合には、後述する樹脂(C)の微粒子などを含有させることが好ましい。
 耐熱多孔質層(II)には、セパレータの形状安定性の確保や、耐熱多孔質層(II)と樹脂多孔質膜(I)との一体化などのために、有機バインダを含有させることが好ましい。有機バインダとしては、例えば、EVA(酢酸ビニル由来の構造単位が20~35モル%のもの)、エチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体、フッ素系ゴム、スチレンブタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)、ヒドロキシエチルセルロース(HEC)、ポリビニルアルコール(PVA)、ポリビニルブチラール(PVB)、ポリビニルピロリドン(PVP)、ポリ-N-ビニルアクリルアミド(PNVA)、架橋アクリル樹脂、ポリウレタン、エポキシ樹脂などが挙げられるが、特に、150℃以上の耐熱温度を有する耐熱性のバインダが好ましく用いられる。有機バインダは、前記例示のものを1種単独で用いてもよく、2種以上を併用してもよい。
 前記例示の有機バインダの中でも、EVA、エチレン-アクリル酸共重合体、フッ素系ゴム、SBRなどの柔軟性の高いバインダが好ましい。このような柔軟性の高い有機バインダの具体例としては、三井デュポンポリケミカル社の「エバフレックスシリーズ(EVA)」、日本ユニカー社のEVA、三井デュポンポリケミカル社の「エバフレックス-EEAシリーズ(エチレン-アクリル酸共重合体)」、日本ユニカー社のEEA、ダイキン工業社の「ダイエルラテックスシリーズ(フッ素ゴム)」、JSR社の「TRD-2001(SBR)」、日本ゼオン社の「EM-400B(SBR)」などがある。
 なお、前記の有機バインダを耐熱多孔質層(II)に使用する場合には、後述する耐熱多孔質層(II)形成用の組成物の溶媒に溶解させるか、または分散させたエマルジョンの形態で用いればよい。
 また、セパレータの形状安定性や柔軟性を確保するために、耐熱多孔質層(II)において、繊維状物や、後記の樹脂(C)の微粒子などを混在させてもよい。繊維状物としては、耐熱温度が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、更に電池の有する電解液や、セパレータ製造の際に使用する溶媒に安定であれば、特に材質に制限はない。本明細書でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。
 繊維状物の具体的な構成材料としては、例えば、セルロースおよびその変成体[CMC、ヒドロキシプロピルセルロース(HPC)など]、ポリオレフィン[PP、プロピレンの共重合体など]、ポリエステル[ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など]、ポリアクリロニトリル(PAN)、アラミド、ポリアミドイミド、ポリイミドなどの樹脂;ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物;などを挙げることができ、これらの構成材料を2種以上併用して繊維状物を構成してもよい。また、繊維状物は、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。
 また、耐熱多孔質層(II)に多孔質基体を用いることができる。多孔質基体は、前記の繊維状物が織布、不織布(紙を含む)などのシート状物を形成してなる耐熱温度が150℃以上のものであり、市販の不織布などを基体として用いることができる。この態様のセパレータでは、多孔質基体の空隙内に耐熱性微粒子を含有させることが好ましいが、多孔質基体と耐熱性微粒子とを結着させるために、前記の有機バインダを用いることもできる。
 なお、多孔質基体の「耐熱性」は、軟化などによる実質的な寸法変化が生じないことを意味し、対象物の長さの変化、すなわち、多孔質基体においては、室温での長さに対する収縮の割合(収縮率)が5%以下を維持することのできる上限温度(耐熱温度)がシャットダウン温度よりも十分に高いか否かで耐熱性を評価する。シャットダウン後の電池の安全性を高めるために、多孔質基体は、シャットダウン温度よりも20℃以上高い耐熱温度を有することが望ましく、より具体的には、多孔質基体の耐熱温度は、150℃以上であることが好ましく、180℃以上であることがより好ましい。
 繊維状物(多孔質基体を構成する繊維状物、その他の繊維状物を含む)の直径は、耐熱多孔質層(II)の厚み以下であればよいが、例えば、0.01~5μmであることが好ましい。径が大きすぎると、繊維状物同士の絡み合いが不足するため、例えばシート状物を形成して多孔質基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、径が小さすぎると、セパレータの空隙が小さくなりすぎて、イオン透過性が低下する傾向にあり、負荷特性などの電池特性の低下抑制効果が小さくなることがある。
 セパレータにおける繊維状物の含有量は、セパレータ中の体積割合(空孔部分を除く構成成分の全体積100体積%中の割合)で、例えば、10体積%以上であることが好ましく、20体積%以上であることがより好ましく、また、90体積%以下であることが好ましく、80体積%以下であることがより好ましい。セパレータ中での繊維状物の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。
 また、繊維状物を多孔質基体として用いる場合には、多孔質基体の占める割合が、耐熱多孔質層(II)中における多孔質基体の体積割合[空孔部分を除く耐熱多孔質層(II)の構成成分の全体積100体積%中の割合]で、10体積%以上90体積%以下となるように、他の成分の含有量を調整することが望ましい。
 樹脂(C)としては、電気化学的に安定であり、かつ電池の有する有機電解液に安定であるものであり、耐熱性微粒子を構成し得るもの以外であれば特に制限はないが、柔軟性の高いものが望ましい。より具体的には、より具体的には、PE、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどのポリオレフィン類が挙げられる。前記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-プロピレン共重合体、EVA、エチレン-アクリル酸共重合体(エチレン-メチルアクリレート共重合体、エチレン-エチルアクリレート共重合体など)など挙げられる。また、アイオノマー樹脂、シリコンゴム、ポリウレタンなどを用いることができる。更に、架橋ポリメタクリル酸メチル、架橋ポリスチレン、架橋ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、などの各種架橋高分子(ただし、前述した耐熱性微粒子を構成するものに該当しないもの)なども用いることができる。
 樹脂(C)の微粒子の粒径は、耐熱性微粒子などと同じ方法で測定される平均粒径で、0.1~20μmであることが好ましい。また、樹脂(C)の微粒子を使用する場合、その含有量は、耐熱多孔質層(II)中の体積割合[空孔部分を除く耐熱多孔質層(II)の構成成分の全体積100体積%中の割合]で、10~30体積%であることが好ましい。
 電池における短絡防止効果をより高め、セパレータの強度を確保して取り扱い性を良好にする観点から、セパレータの厚みは、6μm以上であることが好ましく、13μm以上であることがより好ましい。他方、電池のエネルギー密度をより高める観点からは、セパレータの厚みは、45μm以下であることが好ましく、20μm以下であることがより好ましい。
 また、樹脂多孔質膜(I)の厚みは、5μm以上であることが好ましく、10μm以上であることがより好ましく、また、40μm以下であることが好ましく、30μm以下であることがより好ましく、20μm以下であることが特に好ましい。そして、耐熱多孔質層(II)の厚みは、1μm以上であることが好ましく、3μm以上であることがより好ましく、また、15μm以下であることが好ましく、10μm以下であることがより好ましく、6μm以下であることが特に好ましい。また、樹脂多孔質膜(I)の厚みaと耐熱多孔質層(II)の厚みbとの比a/bは、0.5以上であることが好ましく、10以下であることが好ましい。前記a/bが小さすぎると、セパレータにおいて樹脂多孔質膜(I)の占める割合が小さくなりすぎて、セパレータ本来の機能が損なわれたり、シャットダウン特性が低下したりする虞がある。また、前記a/bが大きすぎると、セパレータにおいて耐熱多孔質層(II)の占める割合が小さくなりすぎて、セパレータ全体の耐熱性向上効果が小さくなる虞がある。
 セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムのデンドライト結晶が発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。セパレータを前記の構成とすることで、前記の突き刺し強度を確保することができる。
 また、本発明のセパレータは、150℃での熱収縮率が5%以下であることが好ましい。このような特性のセパレータであれば、電池内部が150℃程度になっても、セパレータの収縮が殆ど生じないため、正負極の接触による短絡をより確実に防止することができ、高温での電池の安全性をより高めることができる。セパレータを前記の構成を採用することで、前記の熱収縮率を確保することができる。
 前記の「150℃の熱収縮率」とは、セパレータを恒温槽に入れ、温度を150℃まで上昇させて3時間放置した後に取り出して、恒温槽に入れる前のセパレータの寸法と比較することで求められる寸法の減少割合を百分率で表したものである。
 本発明のセパレータの製造方法には、例えば、下記の(a)または(b)の方法を採用できる。製造方法(a)は、多孔質基体に、耐熱性微粒子を含有する耐熱多孔質層(II)形成用組成物(スラリーなどの液状組成物など)を塗布した後、樹脂多孔質膜(I)と重ね合わせて乾燥し、1つのセパレータとする方法である。
 前記の場合の多孔質基体としては、具体的には、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布が例示できる。
 耐熱多孔質層(II)形成用組成物は、耐熱性微粒子の他、樹脂(C)などで形成された微粒子、有機バインダなどを含有し、これらを溶媒(分散媒を含む。以下同じ。)に分散させたものである。なお、有機バインダについては溶媒に溶解させることもできる。耐熱多孔質層(I)形成用組成物に用いられる溶媒は、耐熱性微粒子、樹脂(C)の微粒子などを均一に分散でき、また、有機バインダを均一に溶解または分散できるものであればよいが、例えば、トルエンなどの芳香族炭化水素、テトラヒドロフランなどのフラン類、メチルエチルケトン、メチルイソブチルケトンなどのケトン類など、一般に有機溶媒が好適に用いられる。なお、これらの溶媒に、界面張力を制御する目的で、アルコール(エチレングリコール、プロピレングリコールなど)、または、モノメチルアセテートなどの各種プロピレンオキサイド系グリコールエーテルなどを適宜添加してもよい。また、有機バインダが水溶性である場合、エマルジョンとして使用する場合などでは、水を溶媒としてもよく、この際にもアルコール類(メチルアルコール、エチルアルコール、イソプロピルアルコール、エチレングリコールなど)、シリコーン系、フッ素系、ポリエーテル系などの各種界面活性剤などを適宜加えて界面張力を制御することもできる。
 耐熱多孔質層(II)形成用組成物は、耐熱性微粒子や有機バインダ、更には必要に応じて樹脂(C)の微粒子などを含む固形分含量を、例えば10~80質量%とすることが好ましい。
 前記多孔質基体の空孔の開口径が比較的大きい場合、例えば、5μm以上の場合には、これが電池の短絡の要因となりやすい。よって、この場合には、耐熱性微粒子や樹脂(C)の微粒子などの全部または一部が、多孔質基体の空隙内に存在する構造とすることが好ましい。多孔質基体の空隙内に耐熱性微粒子、樹脂(C)の微粒子などを存在させるには、例えば、これらを含有する耐熱多孔質層(II)形成用組成物を多孔質基体に塗布した後に一定のギャップを通し、余分の組成物を除去した後、乾燥するなどの工程を用いればよい。
 耐熱性微粒子として板状粒子を用いる場合、セパレータに含有させる板状粒子の配向性を高めてその機能をより有効に作用させるためには、板状粒子を含有する耐熱多孔質層(II)形成用組成物を多孔質基体に塗布し含浸させた後、前記組成物にシェアや磁場をかけるといった方法を用いればよい。例えば、前記のように、板状粒子を含有する耐熱多孔質層(II)形成用組成物を多孔質基体に塗布した後、一定のギャップを通すことで、前記組成物にシェアをかけることができる。
 また、板状粒子を始めとする耐熱性微粒子や樹脂(C)の微粒子など、それぞれの構成物の持つ作用をより有効に発揮させるために、前記構成物を偏在させて、セパレータの膜面と平行または略平行に、前記構成物が層状に集まった形態としてもよい。
 本発明のセパレータの製造方法(b)は、耐熱多孔質層(II)形成用組成物に、更に必要に応じて繊維状物を含有させ、これを樹脂多孔質膜(I)の表面に塗布し、所定の温度で乾燥する方法である。製造方法(b)でセパレータを製造するに当たり、樹脂多孔質膜(I)としてポリオレフィンなどの疎水性を有する膜を用い、耐熱多孔質層(II)形成用組成物の媒体として水などを用いる場合、コロナ処理、プラズマ処理などの表面処理を樹脂多孔質膜(I)表面に予め施すことで、樹脂多孔質膜(I)の表面の濡れ性を高めてから、耐熱多孔質層(II)形成用組成物の塗布を行うことが望ましい。また、前述したように耐熱多孔質層(II)形成用組成物の界面張力を適宜調整してから、樹脂多孔質膜(I)の表面に塗布してもよい。
 耐熱多孔質層(II)形成用組成物は、グラビアコーター、ダイコーター、ディップコーター、スプレーコーターなどの各種公知の方法によって塗布することができる。
 本発明のセパレータを適用できる電池、すなわち、本発明の電池は、有機電解液を用いる二次電池であれば特に限定されるものではなく、各種の構成や構造を有する二次電池が該当する。
 以下、一例として、リチウム二次電池への適用について詳述する。リチウム二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 正極としては、従来から知られているリチウム二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiNi3/5Mn1/5Co1/5など)などを例示することができる。
 導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、ポリフッ化ビニリデン(PVDF)などフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極合剤層が、例えば集電体表面に形成される。
 また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。
 正極側のリード部は、通常、正極作製時に、集電体の一部に正極合剤層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
 負極としては、従来から知られているリチウム二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素およびその合金、リチウム含有窒化物、またはLiTi12などの酸化物などの、リチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極合剤層)に仕上げたもの、または前記の各種合金やリチウム金属の箔を単独もしくは集電体表面に積層したものなどが用いられる。
 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
 電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層体や、更にこれを巻回した電極巻回体の形態で用いることができる。
 なお、耐熱多孔質層(II)に用いる耐熱性微粒子として、耐酸化性に優れた材料(例えば、無機酸化物)を用いた場合、耐熱多孔質層(II)を正極側に向けることによって、正極によるセパレータの酸化を抑制することが可能となり、高温時の保存特性や充放電サイクル特性に優れた電池とすることができる。よって、本発明の電池においては、セパレータの耐熱多孔質層(II)を正極側に向ける構成とすることがより好ましい。
 有機電解液としては、リチウム塩を有機溶媒に溶解した溶液が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(ROSO〔ここでRはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
 有機電解液に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類;などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの電解液に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキシルベンゼン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
 このリチウム塩の有機電解液中の濃度としては、0.5~1.5mol/lとすることが好ましく、0.9~1.25mol/lとすることがより好ましい。
 なお、前記のような正極合剤層を有する正極や、負極合剤層を有する負極は、例えば、正極合剤をN-メチル-2-ピロリドン(NMP)などの溶媒に分散させた正極合剤層形成用組成物(スラリーなど)や、負極合剤をNMPなどの溶媒に分散させた負極活物質層形成用組成物(スラリーなど)を集電体表面に塗布し、乾燥することにより作製される。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではない。
 本実施例で示す樹脂多孔質膜(I)を構成する樹脂(A)の融点は、JIS K 7121の規定に準じて、示差走査熱量計(DSC)を用いて測定した融解温度であり、樹脂多孔質膜(I)および耐熱多孔質層(II)の空孔率は、前述の方法により求めた空孔率である。また、下記に示す方法でセパレータの物性値を測定した。
<熱収縮率>
 4cm×4cmに切り出した各セパレータの試験片を、クリップで固定した2枚のステンレス鋼板で挟みこみ、これらを150℃の恒温槽内に30分放置した後に取り出し、各試験片の長さを測定し、試験前の長さと比較して長さの減少割合を熱収縮率とした。
<シャットダウン温度、シャットダウン速度およびシャットダウン後の抵抗値>
 16mmφのステンレス鋼板で、25mmφに切ったセパレータを挟み込み、電解液(エチレンカーボネートとメチルエチルカーボネートとを体積比1:2で混合し、LiPFを1.0mol/lの濃度で溶解した溶液)を注入して密閉したセルを作製した。このセルを恒温槽中で、1℃/minの割合で150℃まで昇温し、HIOKI製「3560型ミリオームハイテスター」で1KHzでの抵抗値を測定した。また、熱電対をセル表面に配置して、セル表面の温度を同時に読み取った。前記の測定で、抵抗値が40Ωとなった温度をシャットダウン温度とした。また、シャットダウン温度の前後それぞれ10Ω、計20Ωの抵抗値の変化から、前記(1)式を用いてシャットダウン速度を計算した。
 また、シャットダウン後、引き続きセパレータの抵抗値の測定を継続して、最高到達抵抗値を測定し、前記(2)式によりシャットダウン後のセパレータの抵抗値を求めた。なお、装置の仕様上3kΩを超える抵抗値は測定できないので、その場合の抵抗値は「>3kΩ」とした(測定に使用したステンレス鋼板の面積が約2cmであることから、後記の各実施例では、測定結果が3kΩを超える場合、「>1.5kΩ/cm」と記載する)。
実施例1
 耐熱性微粒子として板状ベーマイト(平均粒径1μm、アスペクト比10)1000gを水1000gに分散させ、更に有機バインダとしてSBRラテックス(固形分比率40質量%)120gを加えて均一に分散させて、耐熱多孔質層(II)形成用組成物を調製した。
 また、樹脂多孔質膜(I)として、PP層とPE層とを、PP/PE/PPの順に3層積層した微多孔膜(総厚み:16μm、各層の厚み;PP層:5μm/PE層:6μm/PP層:5μm、空孔率39%、PEの融点134℃、PPの融点163℃)を用意した。樹脂多孔質膜(I)の片面に、前記の耐熱多孔質層(II)形成用組成物をブレードコーターにより塗布して乾燥し、厚みが5μmとなるように、耐熱性微粒子である板状ベーマイトを主体として含む耐熱多孔質層(II)を形成して、セパレータを作製した。なお、有機バインダの比重を1.2g/cm、ベーマイトの比重を3g/cmとして算出した耐熱多孔質層(II)の空孔率は53%であり、耐熱多孔質層(II)における耐熱性微粒子の体積割合は、89%(89体積%)であった。
 また、このセパレータの熱収縮率は5%で、シャットダウン温度は131℃、シャットダウン速度は79Ω/min・cmであった。また、シャットダウン後の抵抗値は>1.5kΩ/cmであった。
実施例2
 耐熱性微粒子として二次粒子状ベーマイト(平均粒径0.6μm)を用いた以外は実施例1と同様にしてセパレータを作製した。このセパレータは、耐熱多孔質層(II)の空孔率が59%であり、耐熱多孔質層(II)における耐熱性微粒子の体積割合は89%であった。また、このセパレータは、熱収縮率が3%で、シャットダウン温度、シャットダウン速度およびシャットダウン後の抵抗値は、実施例1とほぼ同じであった。
実施例3
 耐熱性微粒子として粒状アルミナ(平均粒径0.4μm)を用いた以外は実施例1と同様にしてセパレータを作製した。このセパレータは、耐熱多孔質層(II)の空孔率が50%であり、耐熱多孔質層(II)における耐熱性微粒子の体積割合は86%であった。また、このセパレータは、熱収縮率が7%で、シャットダウン温度、シャットダウン速度、およびシャットダウン後の抵抗値は、実施例1とほぼ同じであった。
比較例1
 樹脂多孔質膜(I)として、PE製微多孔膜(厚み16μm、空孔率39%、PEの融点137℃)を用いた以外は実施例1と同様にしてセパレータを作製した。このセパレータは、熱収縮率が5%、シャットダウン温度は134℃、シャットダウン速度は9.2Ω/min・cmであった。また、シャットダウン後の抵抗値は139Ω/cmであった。
比較例2
 実施例1で用いた樹脂多孔質膜(I)に耐熱多孔質層(II)を形成せずにセパレータとした。このセパレータは、熱収縮率が49%、シャットダウン温度は130℃、シャットダウン速度は79Ω/min・cm、シャットダウン後の抵抗値は>1.5kΩ/cmであった。
製造例1(負極の作製)
 負極活物質である黒鉛:95質量部と、バインダであるPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。この負極合剤含有ペーストを、銅箔からなる厚さ10μmの集電体の両面に、塗布長が表面790mm、裏面810mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って全厚が80μmになるように負極合剤層の厚みを調整し、幅56mmになるように切断して、長さ920mm、幅56mmの負極を作製した。更にこの負極の銅箔の露出部にタブを溶接してリード部を形成した。
製造例2(正極の作製)
 正極活物質であるLiNi0.6Co0.2Mn0.2:85質量部、導電助剤であるアセチレンブラック:10質量部、およびバインダであるPVDF:5質量部を、NMPを溶剤として均一になるように混合して、正極合剤含有ペーストを調製した。このペーストを、集電体となる厚さ20μmのアルミニウム箔の両面に、塗布長が表面795mm、裏面805mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が95μmになるように正極合剤層の厚みを調整し、幅54mmになるように切断して、長さ910mm、幅54mmの正極を作製した。更にこの正極のアルミニウム箔の露出部にタブを溶接してリード部を形成した。
実施例4
 製造例1で作製した負極と製造例2で作製した正極との間に、実施例1のセパレータを、耐熱多孔質層(II)が正極側となるように介在させ、渦巻状に巻回して電極巻回体を作製した。この電極巻回体を直径18mm、長さ650mmの円筒状鉄製外装缶に入れ、有機電解液(エチレンカーボネートとメチルエチルカーボネートを体積比1:2に混合した溶媒にLiPFを濃度1.2mol/lで溶解した溶液)を注入した後に封止を行ってリチウム二次電池を作製した。
実施例5~6、比較例3~4
 実施例1のセパレータに代えて、それぞれ実施例2~3、比較例1~2のセパレータを用いた以外は実施例4と同様にしてリチウム二次電池を作製した。
 また、実施例4~6および比較例3~4のリチウム二次電池について、以下の条件で充放電を行って充電容量および放電容量をそれぞれ測定し、これらの電池特性(充電特性)を評価した。
 充電は、0.2Cの電流値で電池電圧が4.2Vになるまで定電流充電を行い、次いで、4.2Vでの定電圧充電を行う定電流-定電圧充電とした。充電終了までの総充電時間は15時間とした。充電後の各電池を、0.2Cの放電電流で、電池電圧が3.0Vになるまで放電させて充放電特性を評価したところ、全ての電池で正常に充放電することを確認した。
 また、前記と同様の条件で充電した実施例4~6および比較例3~4のリチウム二次電池を、20V、1Cの電流値で1時間の連続充電を行い、過充電試験を実施した。
 更に、前記と同様の条件で充電した実施例4~6および比較例3~4のリチウム二次電池について、以下の方法により、昇温試験を行った。充電後の各電池を恒温槽に入れ、30℃から150℃まで毎分1℃の割合で温度上昇させて加熱し、150℃に達した状態で更に30分間温度を維持し、電池の表面温度を測定した。
 実施例4~6および比較例3~4のリチウム二次電池における前記の各評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、比較例1の電池は、昇温試験においては実施例4~6の電池と比べて差がなかったものの、過充電試験においては、1時間に達する前に、急激な電圧低下と温度上昇が起こった。一方、比較例2の電池は、過充電試験においては実施例4~6に比べて差がなかったものの、昇温試験においては温度上昇がみられた。このことから実施例4~6の電池は安全性に優れていることが判明した。
 本発明の電池は、各種電子機器の電源用途など、従来から知られている電池が用いられている各種用途と同じ用途に適用することができる。

Claims (10)

  1.  樹脂多孔質膜(I)と、耐熱性微粒子を主体として含む耐熱多孔質層(II)とを少なくとも有する多層多孔質膜からなり、
     シャットダウン温度が100~150℃であり、かつシャットダウン速度が50Ω/min・cm以上であることを特徴とする電池用セパレータ。
  2.  シャットダウン後の抵抗値が500Ω/cm以上である請求項1に記載の電池用セパレータ。
  3.  樹脂多孔質膜(I)は、複数の層を有する積層膜であり、かつ前記複数の層のうちの少なくとも2層が、互いに種類の異なる樹脂を主体とする層である請求項1または2に記載の電池用セパレータ。
  4.  樹脂多孔質膜(I)は、融点が80~150℃の樹脂を主体とする層と、融点が150℃よりも高い樹脂を主体とする層との積層膜であり、
     前記耐熱多孔質層(II)と、前記融点が80~150℃の樹脂を主体とする層との間に、前記融点が150℃よりも高い樹脂を主体とする層を有している請求項3に記載の電池用セパレータ。
  5.  耐熱多孔質層(II)と前記融点が80~150℃の樹脂を主体とする層との間に配置された前記融点が150℃よりも高い樹脂を主体とする層の厚みが2μm以上である請求項4に記載の電池用セパレータ。
  6.  樹脂多孔質膜(I)は、ポリオレフィン製である請求項1~5のいずれかに記載の電池用セパレータ。
  7.  耐熱多孔質層(II)に含まれる耐熱性微粒子が、アルミナ、シリカおよびベーマイトよりなる群から選択される少なくとも1種の微粒子である請求項1~6のいずれかに記載の電池用セパレータ。
  8.  耐熱多孔質層(II)に含まれる耐熱性微粒子の少なくとも一部が、板状粒子である請求項1~7のいずれかに記載の電池用セパレータ。
  9.  耐熱多孔質層(II)に含まれる耐熱性微粒子の少なくとも一部が、一次粒子が凝集した二次粒子構造を有する微粒子である請求項1~8のいずれかに記載の電池用セパレータ。
  10.  Liイオンを吸蔵放出可能な活物質を有する正極と、Liイオンを吸蔵放出可能な活物質を有する負極と、有機電解液と、請求項1~9のいずれかに記載の電池用セパレータとを有することを特徴とする電池。
                  
PCT/JP2011/055198 2011-03-07 2011-03-07 電池用セパレータおよび電池 WO2012120608A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2011/055198 WO2012120608A1 (ja) 2011-03-07 2011-03-07 電池用セパレータおよび電池
KR1020127034363A KR101407651B1 (ko) 2011-03-07 2011-03-07 전지용 세퍼레이터 및 전지
JP2012523530A JP5650738B2 (ja) 2011-03-07 2011-03-07 電池用セパレータおよび電池
CN201180032563.3A CN102959765B (zh) 2011-03-07 2011-03-07 电池用隔膜以及电池
EP11860631.8A EP2573837B1 (en) 2011-03-07 2011-03-07 Battery separator and battery
US13/711,875 US20130101888A1 (en) 2011-03-07 2012-12-12 Battery separator and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2011/055198 WO2012120608A1 (ja) 2011-03-07 2011-03-07 電池用セパレータおよび電池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/711,875 Continuation US20130101888A1 (en) 2011-03-07 2012-12-12 Battery separator and battery

Publications (1)

Publication Number Publication Date
WO2012120608A1 true WO2012120608A1 (ja) 2012-09-13

Family

ID=46797616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/055198 WO2012120608A1 (ja) 2011-03-07 2011-03-07 電池用セパレータおよび電池

Country Status (6)

Country Link
US (1) US20130101888A1 (ja)
EP (1) EP2573837B1 (ja)
JP (1) JP5650738B2 (ja)
KR (1) KR101407651B1 (ja)
CN (1) CN102959765B (ja)
WO (1) WO2012120608A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022862A1 (ja) * 2013-08-13 2015-02-19 日立マクセル株式会社 電気化学素子用セパレータおよび電気化学素子
JP2020136094A (ja) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 非水電解質二次電池

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6336703B2 (ja) * 2011-10-05 2018-06-06 日産自動車株式会社 耐熱絶縁層付セパレータ
KR102448882B1 (ko) * 2013-04-29 2022-09-28 옵토도트 코포레이션 증가된 열 전도율을 갖는 나노기공성 복합체 분리기들
DE102014219451A1 (de) * 2014-09-25 2016-03-31 Robert Bosch Gmbh Galvanisches Element
CN104868156A (zh) * 2014-12-22 2015-08-26 上海恩捷新材料科技股份有限公司 锂离子电池
JP6380307B2 (ja) * 2015-09-09 2018-08-29 トヨタ自動車株式会社 電池用セパレータ
KR101874159B1 (ko) * 2015-09-21 2018-07-03 주식회사 엘지화학 리튬 이차전지용 전극의 제조방법 및 이로부터 제조된 리튬 이차전지용 전극
CN105576173A (zh) * 2015-12-16 2016-05-11 安徽壹石通材料科技股份有限公司 一种陶瓷涂层材料的制备方法及其应用
KR102544227B1 (ko) * 2016-04-12 2023-06-16 에스케이이노베이션 주식회사 리튬이차전지용 분리막 및 이를 포함하는 리튬이차전지
CN109314203B (zh) * 2016-06-08 2021-11-30 远景Aesc 日本有限公司 非水电解质二次电池
CN109891633B (zh) * 2016-11-18 2022-09-16 株式会社Lg新能源 隔板和包括该隔板的电化学装置
CN107394091A (zh) * 2017-07-18 2017-11-24 合肥国轩高科动力能源有限公司 一种用于锂离子电池隔膜涂覆的陶瓷浆料及含该浆料的隔膜的制备方法
WO2019146155A1 (ja) * 2018-01-24 2019-08-01 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池
JP2020149921A (ja) * 2019-03-15 2020-09-17 Tdk株式会社 非水電解質二次電池用負極及びこれを用いた非水電解質二次電池
CN110429229A (zh) * 2019-07-31 2019-11-08 宁德新能源科技有限公司 多层隔离膜及使用其的装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206475A (ja) 2001-09-26 2003-07-22 Hitachi Maxell Ltd 非磁性板状粒子とその製造方法、およびこの粒子を用いた研磨材、研磨体、研磨液
JP2007118588A (ja) * 2005-09-28 2007-05-17 Tonen Chem Corp ポリエチレン多層微多孔膜及びその製造方法、並びに電池用セパレータ
WO2007066768A1 (ja) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
WO2009028734A1 (en) * 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
JP2010036355A (ja) * 2008-07-31 2010-02-18 Asahi Kasei E-Materials Corp 多層微多孔膜の製造方法および非水電解液二次電池用セパレータ
JP2010277723A (ja) * 2009-05-26 2010-12-09 Hitachi Maxell Ltd 電気化学素子
JP2011008966A (ja) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp 多層多孔膜
JP2011044419A (ja) * 2009-07-21 2011-03-03 Hitachi Maxell Ltd リチウムイオン二次電池用セパレータおよびリチウムイオン二次電池

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100467705B1 (ko) * 2002-11-02 2005-01-24 삼성에스디아이 주식회사 무기 보호막을 갖는 세퍼레이타 및 이를 채용한 리튬 전지
CN102218880A (zh) * 2004-10-01 2011-10-19 旭化成电子材料株式会社 聚烯烃微孔膜
US8795565B2 (en) * 2006-02-21 2014-08-05 Celgard Llc Biaxially oriented microporous membrane
US10862091B2 (en) * 2007-05-10 2020-12-08 Maxell Holdings, Ltd. Electrochemical device comprising separator with laminated porous layers
EP2517879B2 (en) * 2007-06-06 2020-03-18 Asahi Kasei Kabushiki Kaisha Multilayer porous film
JP5077131B2 (ja) * 2007-08-02 2012-11-21 ソニー株式会社 正極活物質、並びにそれを用いた正極、および非水電解質二次電池
JP5334281B2 (ja) * 2008-02-20 2013-11-06 日立マクセル株式会社 リチウム二次電池
JP2010034024A (ja) * 2008-06-25 2010-02-12 Hitachi Maxell Ltd リチウムイオン二次電池
CN102210040A (zh) * 2008-11-07 2011-10-05 丰田自动车株式会社 电池、车辆以及电池搭载设备
CN102460773A (zh) * 2009-06-10 2012-05-16 日立麦克赛尔株式会社 电化学元件用隔膜以及使用该隔膜的电化学元件
JP2011028947A (ja) * 2009-07-23 2011-02-10 Teijin Ltd 非水系二次電池用セパレータおよび非水系二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003206475A (ja) 2001-09-26 2003-07-22 Hitachi Maxell Ltd 非磁性板状粒子とその製造方法、およびこの粒子を用いた研磨材、研磨体、研磨液
JP2007118588A (ja) * 2005-09-28 2007-05-17 Tonen Chem Corp ポリエチレン多層微多孔膜及びその製造方法、並びに電池用セパレータ
WO2007066768A1 (ja) 2005-12-08 2007-06-14 Hitachi Maxell, Ltd. 電気化学素子用セパレータとその製造方法、並びに電気化学素子とその製造方法
WO2009028734A1 (en) * 2007-08-31 2009-03-05 Tonen Chemical Corporation Multi-layer, microporous polyolefin membrane, its production method, battery separator and battery
JP2010036355A (ja) * 2008-07-31 2010-02-18 Asahi Kasei E-Materials Corp 多層微多孔膜の製造方法および非水電解液二次電池用セパレータ
JP2010277723A (ja) * 2009-05-26 2010-12-09 Hitachi Maxell Ltd 電気化学素子
JP2011008966A (ja) * 2009-06-23 2011-01-13 Asahi Kasei E-Materials Corp 多層多孔膜
JP2011044419A (ja) * 2009-07-21 2011-03-03 Hitachi Maxell Ltd リチウムイオン二次電池用セパレータおよびリチウムイオン二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2573837A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015022862A1 (ja) * 2013-08-13 2015-02-19 日立マクセル株式会社 電気化学素子用セパレータおよび電気化学素子
JP2020136094A (ja) * 2019-02-20 2020-08-31 トヨタ自動車株式会社 非水電解質二次電池
JP7096978B2 (ja) 2019-02-20 2022-07-07 トヨタ自動車株式会社 非水電解質二次電池

Also Published As

Publication number Publication date
JPWO2012120608A1 (ja) 2014-07-07
CN102959765B (zh) 2015-11-25
US20130101888A1 (en) 2013-04-25
KR101407651B1 (ko) 2014-06-13
EP2573837B1 (en) 2016-02-24
KR20130046401A (ko) 2013-05-07
EP2573837A1 (en) 2013-03-27
CN102959765A (zh) 2013-03-06
EP2573837A4 (en) 2013-10-09
JP5650738B2 (ja) 2015-01-07

Similar Documents

Publication Publication Date Title
JP5650738B2 (ja) 電池用セパレータおよび電池
JP5937776B2 (ja) 電池用セパレータおよび電池
JP5193998B2 (ja) 電気化学素子用セパレータ、電気化学素子用電極および電気化学素子
JP5093882B2 (ja) 電気化学素子用セパレータ、電気化学素子および電気化学素子の製造方法
JP5477985B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5219191B2 (ja) 電気化学素子用セパレータおよび電気化学素子
JP5158678B2 (ja) 非水電解質電池用セパレータおよび非水電解質電池
JP5611505B2 (ja) 電池用セパレータおよびリチウム二次電池
JP4994054B2 (ja) 電池用セパレータおよびリチウム二次電池
WO2013051079A1 (ja) 耐熱性多孔質膜、非水電池用セパレータおよび非水電池
JP2009032677A (ja) セパレータ用多孔質膜およびその製造方法、電池用セパレータおよびその製造方法、電池用電極およびその製造方法、ならびにリチウム二次電池
JP2008041581A (ja) 巻回体電極群、角形二次電池およびラミネート形二次電池
JP2008027839A (ja) ライナー付き多孔質膜、多孔質膜の製造方法、およびリチウム二次電池の製造方法
JP2008004438A (ja) 電池用セパレータ、およびリチウム二次電池
JP2009064566A (ja) 電池用セパレータおよび非水電解質電池
JP2016181324A (ja) 電気化学素子用セパレータ
JP5148360B2 (ja) セパレータ用多孔質基体、電気化学素子用セパレータ、電極および電気化学素子
JP2008004442A (ja) リチウム二次電池用セパレータおよびリチウム二次電池
JP2008004439A (ja) 電池用セパレータ、およびリチウム二次電池
JPWO2012005152A1 (ja) 非水電池用セパレータおよび非水電池
JP5376622B2 (ja) 電気化学素子用セパレータおよび電気化学素子
WO2015022862A1 (ja) 電気化学素子用セパレータおよび電気化学素子
JPWO2013051079A1 (ja) 耐熱性多孔質膜、非水電池用セパレータおよび非水電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180032563.3

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2012523530

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860631

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011860631

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20127034363

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE