JP2020136094A - 非水電解質二次電池 - Google Patents

非水電解質二次電池 Download PDF

Info

Publication number
JP2020136094A
JP2020136094A JP2019028722A JP2019028722A JP2020136094A JP 2020136094 A JP2020136094 A JP 2020136094A JP 2019028722 A JP2019028722 A JP 2019028722A JP 2019028722 A JP2019028722 A JP 2019028722A JP 2020136094 A JP2020136094 A JP 2020136094A
Authority
JP
Japan
Prior art keywords
layer
thickness
separator
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2019028722A
Other languages
English (en)
Other versions
JP7096978B2 (ja
Inventor
純平 寺島
Junpei Terajima
純平 寺島
亮 花▲崎▼
Akira Hanazaki
亮 花▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2019028722A priority Critical patent/JP7096978B2/ja
Publication of JP2020136094A publication Critical patent/JP2020136094A/ja
Application granted granted Critical
Publication of JP7096978B2 publication Critical patent/JP7096978B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

【課題】セパレータの抵抗特性と短絡耐性とが両立された非水電解質二次電池を提供する。【解決手段】ここに開示される非水電解質二次電池は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、を備える。前記セパレータは、第1層、第2層、第3層、および第4層の順に積層された、少なくとも4つの多孔質層を含む。前記第1層は、前記正極に接している。前記第1層は、セラミック粒子を含有する。前記第1層の密度は、1.0g/cm3以上1.5g/cm3以下である。前記第2層、前記第3層、および前記第4層はそれぞれ、樹脂層である。前記第3層の細孔径は、0.11μm以上0.21μm以下である。前記第2層の厚みに対する前記第3層の厚みの比(第3層の厚み/第2層の厚み)は、1.55以上2.5以下である。前記第1層、前記第2層、前記第3層、および前記第4層の総厚みは、16μm以上22μm以下である。【選択図】図3

Description

本発明は、非水電解質二次電池に関する。
近年、リチウムイオン二次電池等の非水電解質二次電池は、パソコン、携帯端末等のポータブル電源や、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両駆動用電源などに好適に用いられている。
非水電解質二次電池は一般的に、正極と、負極と、当該正極と当該負極との間に介在するセパレータと、を備える構成を有する。非水電解質二次電池の特性向上を目的として、複層構造を有するセパレータを使用することが知られている(例えば、特許文献1〜3参照)。
特許文献1には、高分子樹脂を含む微多孔膜と、当該微多孔膜の主面上に設けられ、無機粒子を含有する微多孔膜とを備えるセパレータが開示されている。特許文献1では、充放電に伴う電極の膨張が生じた場合でも、セパレータの細孔が保持されるように、高分子樹脂を含む微多孔膜の平均細孔径や平均膜厚等を規定することが行われている。特許文献2には、ポリエチレン層の両面にポリプロピレン層が形成された三層構造の樹脂多孔質膜と、耐熱性微粒子を含む耐熱多孔層とを備えるセパレータが開示されている。
特開2011−138761号公報 国際公開公報2012/050152号
しかしながら、本発明者らが鋭意検討した結果、従来技術においては、セパレータの抵抗特性と短絡耐性との両立に改善の余地があることを見出した。
かかる事情に鑑み、本発明は、セパレータの抵抗特性と短絡耐性とが両立された非水電解質二次電池を提供することを目的とする。
ここに開示される非水電解質二次電池は、正極と、負極と、前記正極と前記負極との間に介在するセパレータと、を備える。前記セパレータは、第1層、第2層、第3層、および第4層の順に積層された、少なくとも4つの多孔質層を含む。前記第1層は、前記正極に接している。前記第1層は、セラミック粒子を含有する。前記第1層の密度は、1.0g/cm以上1.5g/cm以下である。前記第2層、前記第3層、および前記第4層はそれぞれ、樹脂層である。前記第3層の細孔径は、0.11μm以上0.21μm以下である。前記第2層の厚みに対する前記第3層の厚みの比(第3層の厚み/第2層の厚み)は、1.55以上2.5以下である。前記第1層、前記第2層、前記第3層、および前記第4層の総厚みは、16μm以上22μm以下である。
このような構成によれば、セパレータの抵抗特性と短絡耐性とが両立された非水電解質二次電池を提供することができる。
本発明の一実施形態に係るリチウムイオン二次電池の内部構造を模式的に示す断面図である。 本発明の一実施形態に係るリチウムイオン二次電池の捲回電極体の構成を示す模式図である。 本発明の一実施形態に用いられるセパレータの模式断面図である。
以下、本発明による実施の形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄(例えば、本発明を特徴付けない非水電解質二次電池の一般的な構成および製造プロセス)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。
なお、本明細書において「二次電池」とは、繰り返し充放電可能な蓄電デバイス一般をいい、いわゆる蓄電池ならびに電気二重層キャパシタ等の蓄電素子を包含する用語である。
以下、扁平角型のリチウムイオン二次電池を例にして、本発明について詳細に説明するが、本発明をかかる実施形態に記載されたものに限定することを意図したものではない。
図1に示すリチウムイオン二次電池100は、扁平形状の捲回電極体20と非水電解質80とが扁平な角形の電池ケース(即ち外装容器)30に収容されることにより構築される密閉型電池である。電池ケース30には外部接続用の正極端子42および負極端子44と、電池ケース30の内圧が所定レベル以上に上昇した場合に該内圧を開放するように設定された薄肉の安全弁36とが設けられている。また、電池ケース30には、非水電解質80を注入するための注入口(図示せず)が設けられている。正極端子42は、正極集電板42aと電気的に接続されている。負極端子44は、負極集電板44aと電気的に接続されている。電池ケース30の材質としては、例えば、アルミニウム等の軽量で熱伝導性の良い金属材料が用いられる。
捲回電極体20は、図1および図2に示すように、長尺状の正極集電体52の片面または両面(ここでは両面)に長手方向に沿って正極活物質層54が形成された正極シート50と、長尺状の負極集電体62の片面または両面(ここでは両面)に長手方向に沿って負極活物質層64が形成された負極シート60とが、2枚の長尺状のセパレータシート70を介して重ね合わされて長手方向に捲回された形態を有する。なお、捲回電極体20の捲回軸方向(即ち、上記長手方向に直交するシート幅方向)の両端から外方にはみ出すように形成された正極活物質層非形成部分52a(即ち、正極活物質層54が形成されずに正極集電体52が露出した部分)と負極活物質層非形成部分62a(即ち、負極活物質層64が形成されずに負極集電体62が露出した部分)には、それぞれ正極集電板42aおよび負極集電板44aが接合されている。
正極シート50および負極シート60には、従来のリチウムイオン二次電池に用いられているものと同様のものを特に制限なく使用することができる。典型的な一態様を以下に示す。
正極シート50を構成する正極集電体52としては、例えばアルミニウム箔等が挙げられる。正極活物質層54に含まれる正極活物質としては、例えばリチウム遷移金属酸化物(例、LiNi1/3Co1/3Mn1/3、LiNiO、LiCoO、LiFeO、LiMn、LiNi0.5Mn1.5等)、リチウム遷移金属リン酸化合物(例、LiFePO等)等が挙げられる。正極活物質層54は、活物質以外の成分、例えば導電材やバインダ等を含み得る。導電材としては、例えばアセチレンブラック(AB)等のカーボンブラックやその他(例、グラファイト等)の炭素材料を好適に使用し得る。バインダとしては、例えばポリフッ化ビニリデン(PVDF)等を使用し得る。
負極シート60を構成する負極集電体62としては、例えば銅箔等が挙げられる。負極活物質層64に含まれる負極活物質としては、例えば黒鉛、ハードカーボン、ソフトカーボン等の炭素材料を使用し得る。負極活物質層64は、活物質以外の成分、例えばバインダや増粘剤等を含み得る。バインダとしては、例えばスチレンブタジエンラバー(SBR)等を使用し得る。増粘剤としては、例えばカルボキシメチルセルロース(CMC)等を使用し得る。
セパレータ70は、図3の模式断面図に示すように、第1層72、第2層74、第3層76、および第4層78の順に積層された4つの多孔質層を含む。第1層72は、正極50側に配置されており、正極50(具体的には、正極活物質層54)と接している。第4層78は、負極60側に配置されており、負極60(具体的には、負極活物質層64)と接している。なお、セパレータ70は、本発明の効果を著しく損なわない限り、この4つの層以外にも、負極60側にさらに層を有していてもよい。
セパレータ70は、例えば、電池ケース30の外部から荷重が印加されていること等によって、正極50および負極60と密着していることが好ましい。
第1層72は、セラミック粒子を含有する。したがって、第1層72は、耐熱層(HRL)としての機能を有し得る。この機能により、短絡時の電流集中による発熱によってセパレータ70の樹脂成分が溶解して短絡が拡がることを抑制することができる。
第1層72では、セラミック粒子間の空隙により、多孔質構造が形成される。
セラミック粒子としては、例えば、アルミナ、シリカ、チタニア、ジルコニア、マグネシア、セリア、酸化亜鉛等の酸化物系セラミックス、窒化ケイ素、窒化チタン、窒化ホウ素等の窒化物系セラミックス、シリコンカーバイド、炭酸カルシウム、ベーマイト、タルク、カオリンクレー、モンモリロナイト、マイカ、ゼオライト、ケイ酸カルシウム、ケイ酸マグネシウム、ケイ酸アルミニウム、ケイ砂等の粒子が挙げられ、なかでも、ベーマイト粒子およびアルミナ粒子が好ましい。これらは融点が高く、耐熱性に優れる。またモース硬度が比較的高く、機械的強度および耐久性にも優れる。さらに比較的安価なため原料コストを抑えることができる。
第1層72中のセラミック粒子の含有量は、特に制限はないが、好ましくは90重量%以上97重量%以下である。
第1層72は、必要に応じ、バインダ等をさらに含有していてもよい。
バインダの例としては、ポリテトラフルオロエチレン(PTFE)等のフッ素系ポリマー、アクリル系バインダ、スチレンブタジエンゴム(SBR)、ポリオレフィン系バインダ等が挙げられる。
第1層72中のバインダの含有量は、特に制限はないが、好ましくは3重量%以上10重量%以下である。
第1層72の密度は、1.0g/cm以上1.5g/cm以下である。この数値範囲の意義については後述する。
第1層72の厚みは、好ましくは、1.5μm以上6μm以下である。
第2層74、第3層76、および第4層78はそれぞれ、樹脂層、具体的には、樹脂多孔質層である。樹脂層を構成する樹脂としては、ポリエチレン(PE)、ポリプロピレン(PP)等のポリオレフィン、ポリエステル、セルロース、ポリアミド等が挙げられる。
好適には、第2層74がPP層、第3層76がPE層、および第4層78がPP層の組み合わせである。
これらの樹脂層は、延伸等によって多孔化された多孔質膜であってよい。あるいは、樹脂微粒子から形成された多孔質層であってもよい。
第2層74と第3層76とは、熱溶着、接着剤による接着等によって接合されていることが好ましい。第3層76と第4層78とは、熱溶着、接着剤による接着等によって接合されていることが好ましい。
第3層76の細孔径は、0.11μm以上0.21μm以下である。この数値範囲の意義については後述する。
なお、細孔径は、例えば、水銀圧入法により求めることができる。具体的には、水銀ポロシメータを用いて第3層76の細孔分布曲線を取得し、ピーク位置の細孔径を、第3層76の細孔径とすることができる。
第2層74の厚みに対する第3層76の厚みの比(第3層76の厚み/第2層74の厚み)は、1.5以上2.5以下である。この数値範囲の意義については後述する。
第2層74の厚みは、好ましくは3μm以上5μm以下である。
第3層76の厚みは、好ましくは4.65μm以上10μm以下である。
第4層78の厚みは、好ましくは3μm以上5μm以下である。
本実施形態においては、第1層72、第2層74、第3層76、および第4層78の総厚みは、16μm以上22μm以下である。
本実施形態におけるこの総厚みの範囲は、従来のセパレータの総厚みに対しては、厚みが小さい領域にある。セパレータの厚みが小さいと、セパレータの抵抗を小さくすることができる。しかしながら、従来技術においては、本実施形態のように総厚みが小さい場合には、内部短絡が発生しやすい。これは、次の現象が起こることによる。
非水電解質二次電池では出荷前に、電池内部に存在する金属製の異物を酸化反応で電解質中に溶解させることにより除去することが行われるが、正極において溶解した異物は、負極まで拡散して還元反応によって金属として析出する。この析出した金属は、セパレータの総厚みが小さいと、セパレータを突き破って内部短絡を起こす。
本実施形態においては、上記のように総厚みが小さいにも関わらずこの内部短絡が抑制される。その具体的内容は次の通りである。
正極50において、酸化反応により異物を溶解させる必要があるため、正極50近傍に非水電解質の非水溶媒が十分に存在していることが必要である。そのため、本実施形態においては、本実施形態では、第1層72の密度を1.0g/cm以上1.5g/cm以下という小さい範囲に限定している。そして、細孔径を0.11μm以上0.21μm以下とした第3層76の厚みを、第2層74の厚みよりも大きくしている(具体的には、第3層76の厚み/第2層74の厚み=1.5以上2.5以下、すなわち、第3層76の厚みは、第2層74の厚みの1.5倍〜2.5倍である)。このように第3層76の空間を大きくすることで、析出した金属をトラップしてセパレータ70を貫通することを抑制することができる。その結果、内部短絡を抑制することができる。
セパレータ70の細孔容積は、好ましくは0.7mL/g以上であり、より好ましくは0.75mL/g以上である。一方、セパレータ70の細孔容積は。好ましくは1.5mL/g以下であり、より好ましくは1.2mL/g以下である。セパレータ70の細孔容積は、例えば、水銀ポロシメータを用いて測定することができる。
非水電解質80は、典型的には非水溶媒および支持塩を含有する。
非水溶媒としては、一般的なリチウムイオン二次電池の電解液に用いられる各種のカーボネート類、エーテル類、エステル類、ニトリル類、スルホン類、ラクトン類等の有機溶媒を、特に限定なく用いることができる。なかでも、カーボネート類が好ましく、その具体例としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、モノフルオロエチレンカーボネート(MFEC)、ジフルオロエチレンカーボネート(DFEC)、モノフルオロメチルジフルオロメチルカーボネート(F−DMC)、トリフルオロジメチルカーボネート(TFDMC)等が挙げられる。このような非水溶媒は、1種を単独で、あるいは2種以上を適宜組み合わせて用いることができる。
支持塩としては、例えば、LiPF、LiBF、LiClO等のリチウム塩(好ましくはLiPF)を好適に用いることができる。支持塩の濃度は、0.7mol/L以上1.3mol/L以下が好ましい。
なお、上記非水電解質80は、本発明の効果を著しく損なわない限りにおいて、例えば、ビフェニル(BP)、シクロヘキシルベンゼン(CHB)等のガス発生剤;ホウ素原子および/またはリン原子を含むオキサラト錯体化合物、ビニレンカーボネート(VC)等の被膜形成剤;分散剤;増粘剤等の各種添加剤を含み得る。
以上のようにして構成されるリチウムイオン二次電池100は、各種用途に利用可能である。好適な用途としては、電気自動車(EV)、ハイブリッド自動車(HV)、プラグインハイブリッド自動車(PHV)等の車両に搭載される駆動用電源が挙げられる。リチウムイオン二次電池100は、典型的には複数個を直列および/または並列に接続してなる組電池の形態でも使用され得る。
なお、一例として扁平形状の捲回電極体20を備える角形のリチウムイオン二次電池100について説明した。しかしながら、リチウムイオン二次電池は、積層型電極体を備えるリチウムイオン二次電池として構成することもできる。また、リチウムイオン二次電池は、円筒形リチウムイオン二次電池、ラミネート型リチウムイオン二次電池等として構成することもできる。また、ここに開示される技術は、リチウムイオン二次電池以外の非水電解質二次電池にも適用可能である。
以下、本発明に関する実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。
<セパレータの準備>
ポリエチレン層の両面にポリプロピレン層が形成された三層構造(PP/PE/PP)の多孔質フィルムの片面に、無機粒子を含有する耐熱層が設けられたセパレータシートを用意した。このセパレータシートにおいては、耐熱層が上記第1層、これに隣接するPP層が上記第2層、PE層が上記第3層、負極側のPP層が上記第4層に該当する。かかる構成のセパレータシートについて、総厚み、細孔容積、各層の厚み、耐熱層(第1層)の無機粒子の材質、耐熱層(第1層)の密度、第3層(PE層)の細孔径が異なるものを用意した。なお、セパレータシートの細孔容積および第3層(PE層)の細孔径は、水銀ポロシメータを用いて測定した値である。
<セパレータ抵抗の評価>
上記用意したセパレータを用い、セパレータの枚数が異なる3種のCR2032型コイン電池を作製した。具体的には、2枚のアルミ箔の間に、φ18mmで打ち抜いたセパレータを1枚、2枚、または3枚配置して、非水電解質を含浸させて、電池を作製した。非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを用いた。
この電池のインピーダンスを測定し、セパレータの枚数とインピーダンスの直流成分値とのプロットし、一次近似直線の傾きを、セパレータ抵抗として求めた。
各試験例について、使用したセパレータの構成と、セパレータ抵抗の評価結果を表1に示す。
<短絡耐性評価>
正極活物質粉末としてのLiNi1/3Co1/3Mn1/3(LNCM)と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、LNCM:AB:PVdF=90:8:2の質量比でN−メチルピロリドン(NMP)と混合し、正極活物質層形成用スラリーを調製した。このスラリーを、長尺状のアルミニウム箔の両面に帯状に塗布して乾燥した後、プレスすることにより正極シートを作製した。
負極活物質としての天然黒鉛(C)と、バインダとしてのスチレンブタジエンゴム(SBR)と、増粘剤としてのカルボキシメチルセルロース(CMC)とを、C:SBR:CMC=98:1:1の質量比でイオン交換水と混合して、負極活物質層形成用スラリーを調製した。このスラリーを、長尺状の銅箔の両面に帯状に塗布して乾燥した後、プレスすることにより負極シートを作製した。
上記で作製した正極シートと、負極シートと、2枚の上記用意したセパレータシートとを積層し、捲回した後、側面方向から押圧して拉げさせることによって扁平形状の捲回電極体を作製した。積層の際には、セパレータシートの耐熱層が正極に対向する(接する)ようにした。
所定の厚みの鉄板を円柱状に打ち抜き、捲回電極体内に挿入した。
次に、捲回電極体に正極端子および負極端子を接続し、電解液注入口を有する角型の電池ケースに収容した。
続いて、電池ケースの電解液注入口から非水電解質を注入し、当該注入口を気密に封止した。なお、非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを用いた。
このようにして作製した評価用リチウムイオン二次電池を、4Cの電流値で4Vまで充電した後、63℃で20時間エージング処理した。その後、3日間放置した。20℃での電圧を基準として、3日間放置した際の電圧降下量を測定した。電圧降下量が0.2V以上であった電池に対し、短絡があったと判定した。
捲回電極体内に挿入する鉄板の厚みを変化させて、短絡の有無を調べ、短絡があった鉄板の厚み(μm)の中で最も厚みが小さいものを、短絡耐性の指標とした。
各試験例について、使用したセパレータの構成と、短絡耐性の評価結果を表1に示す。
Figure 2020136094
表1の結果より、セパレータ抵抗は、セパレータの総厚みが大きいほど、高くなることがわかる。セパレータの総厚みが24μmである試験例1では、セパレータ抵抗が高くなり過ぎており、セパレータの総厚みが16μm〜22μmである試験例2〜11において、良好な抵抗値が得られた。
また、セパレータの総厚みが16μm〜22μmである試験例の中で、第2層の厚みに対する第3層の厚みの比(厚み比)が小さい試験例2および3では短絡耐性が低かった。一方で、厚み比が1.55〜2.5である試験例4〜11において、良好な短絡耐性が得られた。
したがって、セパレータ抵抗と短絡耐性を両立させるには、セパレータの総厚みを16μm〜22μmとし、第3層の厚みを大きくする、具体的には、第2層の厚みに対する第3層の厚みの比を1.55〜2.5とすることが有効であることがわかる。
<短絡率評価>
上記短絡耐性評価と同様の方法で、正極シートおよび負極シートを作製した。
作製した正極シートと、負極シートと、2枚の上記用意したセパレータシートとを積層し、捲回した後、側面方向から押圧して拉げさせることによって扁平形状の捲回電極体を作製した。積層の際には、セパレータシートの耐熱層が正極に対向する(接する)ようにした。
次に、捲回電極体に正極端子および負極端子を接続し、電解液注入口を有する角型の電池ケースに収容した。
続いて、電池ケースの電解液注入口から非水電解質を注入し、当該注入口を気密に封止した。なお、非水電解質には、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)とジメチルカーボネート(DMC)とをEC:EMC:DMC=3:4:3の体積比で含む混合溶媒に、支持塩としてのLiPFを1.1mol/Lの濃度で溶解させたものを用いた。
このようにして作製した評価用リチウムイオン二次電池を1000個作製した。
各評価用リチウムイオン二次電池を、4Cの電流値で4Vまで充電した後、63℃で20時間エージング処理した。その後、3日間放置した。20℃での電圧を基準として、3日間放置した際の電圧降下量を測定した。電圧降下量が0.2V以上であった電池に対し、短絡があったと判定した。
1000個の評価用リチウムイオン二次電池のうち、短絡があったものの割合を、短絡率(%)として求めた。
各試験例について、使用したセパレータの構成と、短絡率の評価結果を表2に示す。
Figure 2020136094
表2の結果より、セパレータの細孔容積が大きいと短絡率が低くなる傾向にあることがわかる。
ここで、セパレータの細孔容積を大きくする方法として、第3層等の各層の厚みを大きくする方法があるが、上述のように抵抗の観点からセパレータの総厚みには制限があるために、得策とはいえない。
内部短絡抑制のためにはまず酸化反応により異物を溶解させる必要があるため、正極近傍に非水電解質の非水溶媒が多く保持されるようにすることを考慮すれば、第1層の密度を小さくすることが有効であると考えられる。また、第2層よりも厚みの大きい第3層の細孔径を制御することが有効であると考えられる。
これらのことから、表2の結果より、第1層の密度を1.0g/cm以上1.5g/cm以下という小さい範囲し、第3層の細孔径を0.11μm以上0.21μm以下の範囲にすることが有効であるといえる。
以上の結果を統合すると、無機粒子を含有する第1層と、樹脂層である第2層〜第4層とを備えるセパレータにおいて、第1層の密度を1.0g/cm以上1.5g/cm以下とし、第3層の細孔径を0.11μm以上0.21μm以下とし、第2層の厚みに対する第3層の厚みの比(第3層/第2層)を1.55以上2.5以下とし、4つの層の総厚みを16μm以上22μm以下とすれば、セパレータの抵抗特性と短絡耐性とを両立できることがわかる。
すなわち、上記説明した本実施形態の非水電解質二次電池によれば、セパレータの抵抗特性と短絡耐性とを両立できることがわかる。
以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。
20 捲回電極体
30 電池ケース
36 安全弁
42 正極端子
42a 正極集電板
44 負極端子
44a 負極集電板
50 正極シート(正極)
52 正極集電体
52a 正極活物質層非形成部分
54 正極活物質層
60 負極シート(負極)
62 負極集電体
62a 負極活物質層非形成部分
64 負極活物質層
70 セパレータシート(セパレータ)
72 第1層
74 第2層
76 第3層
78 第4層
80 非水電解質
100 リチウムイオン二次電池

Claims (1)

  1. 正極と、
    負極と、
    前記正極と前記負極との間に介在するセパレータと、
    を備える非水電解質二次電池であって、
    前記セパレータは、第1層、第2層、第3層、および第4層の順に積層された、少なくとも4つの多孔質層を含み、
    前記第1層は、前記正極に接しており、
    前記第1層は、セラミック粒子を含有し、
    前記第1層の密度は、1.0g/cm以上1.5g/cm以下であり、
    前記第2層、前記第3層、および前記第4層はそれぞれ、樹脂層であり、
    前記第3層の細孔径は、0.11μm以上0.21μm以下であり、
    前記第2層の厚みに対する前記第3層の厚みの比(第3層の厚み/第2層の厚み)は、1.55以上2.5以下であり、
    前記第1層、前記第2層、前記第3層、および前記第4層の総厚みが、16μm以上22μm以下である、
    非水電解質二次電池。
JP2019028722A 2019-02-20 2019-02-20 非水電解質二次電池 Active JP7096978B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019028722A JP7096978B2 (ja) 2019-02-20 2019-02-20 非水電解質二次電池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019028722A JP7096978B2 (ja) 2019-02-20 2019-02-20 非水電解質二次電池

Publications (2)

Publication Number Publication Date
JP2020136094A true JP2020136094A (ja) 2020-08-31
JP7096978B2 JP7096978B2 (ja) 2022-07-07

Family

ID=72263499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019028722A Active JP7096978B2 (ja) 2019-02-20 2019-02-20 非水電解質二次電池

Country Status (1)

Country Link
JP (1) JP7096978B2 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279718A (ja) * 1997-04-10 1998-10-20 Nitto Denko Corp 多孔質フィルム、電池用セパレータおよび電池
JP3680759B2 (ja) * 2001-04-20 2005-08-10 ソニー株式会社 非水電解液二次電池
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池
JP2011044419A (ja) * 2009-07-21 2011-03-03 Hitachi Maxell Ltd リチウムイオン二次電池用セパレータおよびリチウムイオン二次電池
JP2011154936A (ja) * 2010-01-28 2011-08-11 Hitachi Maxell Ltd 電池用セパレータおよびリチウム二次電池
WO2012120608A1 (ja) * 2011-03-07 2012-09-13 日立マクセル株式会社 電池用セパレータおよび電池
WO2015190264A1 (ja) * 2014-06-10 2015-12-17 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
JP2018032649A (ja) * 2012-09-07 2018-03-01 旭化成株式会社 非水電解液二次電池用セパレータ及び非水電解液二次電池

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10279718A (ja) * 1997-04-10 1998-10-20 Nitto Denko Corp 多孔質フィルム、電池用セパレータおよび電池
JP3680759B2 (ja) * 2001-04-20 2005-08-10 ソニー株式会社 非水電解液二次電池
JP2009199793A (ja) * 2008-02-20 2009-09-03 Hitachi Maxell Ltd リチウム二次電池
JP2011044419A (ja) * 2009-07-21 2011-03-03 Hitachi Maxell Ltd リチウムイオン二次電池用セパレータおよびリチウムイオン二次電池
JP2011154936A (ja) * 2010-01-28 2011-08-11 Hitachi Maxell Ltd 電池用セパレータおよびリチウム二次電池
WO2012120608A1 (ja) * 2011-03-07 2012-09-13 日立マクセル株式会社 電池用セパレータおよび電池
JP2018032649A (ja) * 2012-09-07 2018-03-01 旭化成株式会社 非水電解液二次電池用セパレータ及び非水電解液二次電池
WO2015190264A1 (ja) * 2014-06-10 2015-12-17 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法

Also Published As

Publication number Publication date
JP7096978B2 (ja) 2022-07-07

Similar Documents

Publication Publication Date Title
JP5822089B2 (ja) 密閉型リチウム二次電池
JP6233649B2 (ja) 非水系二次電池
WO2013069399A1 (ja) 耐熱絶縁層付セパレータ
WO2013051416A1 (ja) 電気デバイス
WO2015034080A1 (ja) セパレータ及びそれを用いた蓄電デバイス
JP2010102868A (ja) リチウム二次電池
US20190081349A1 (en) Nonaqueous electrolyte secondary battery
JP6836727B2 (ja) 非水電解液リチウムイオン二次電池
JP5835617B2 (ja) 密閉型リチウム二次電池
JP2020113486A (ja) 正極
JP6770688B2 (ja) リチウムイオン二次電池
JP6894201B2 (ja) 非水電解質二次電池
JP6274532B2 (ja) 非水電解質二次電池の製造方法
JP2020202038A (ja) 非水電解質二次電池
JP2021044138A (ja) 非水電解液二次電池
CN111653725B (zh) 非水系锂离子二次电池的负极和使用该负极的非水系锂离子二次电池
JP7436227B2 (ja) 二次電池用電解液および二次電池
JP6818241B2 (ja) 非水電解液二次電池用捲回電極体
JP7096978B2 (ja) 非水電解質二次電池
JP7071699B2 (ja) 非水電解液二次電池
JP2021182478A (ja) 非水電解液二次電池
JP6778396B2 (ja) 非水電解質二次電池
JP2020202039A (ja) 非水電解質二次電池
JP2021039874A (ja) 非水電解質二次電池
JP6185403B2 (ja) 二次電池および該電池用のセパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220526

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220608

R151 Written notification of patent or utility model registration

Ref document number: 7096978

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151