JP2010219048A - 開放多孔質電気伝導性ナノ複合材料 - Google Patents

開放多孔質電気伝導性ナノ複合材料 Download PDF

Info

Publication number
JP2010219048A
JP2010219048A JP2010056747A JP2010056747A JP2010219048A JP 2010219048 A JP2010219048 A JP 2010219048A JP 2010056747 A JP2010056747 A JP 2010056747A JP 2010056747 A JP2010056747 A JP 2010056747A JP 2010219048 A JP2010219048 A JP 2010219048A
Authority
JP
Japan
Prior art keywords
nanoparticulate
nanocomposite
electrode
carbon
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010056747A
Other languages
English (en)
Other versions
JP5702073B2 (ja
Inventor
Reinhard Nesper
レインハルト・ネスパー
Rahul Fotedar
ラハル・フォテダー
Yoann Mettan
ヨアン・メッタン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Belenos Clean Power Holding AG
Original Assignee
Belenos Clean Power Holding AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Belenos Clean Power Holding AG filed Critical Belenos Clean Power Holding AG
Publication of JP2010219048A publication Critical patent/JP2010219048A/ja
Application granted granted Critical
Publication of JP5702073B2 publication Critical patent/JP5702073B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】アノードおよびカソードの双方、好ましくはカソード用の電極材料を提供すること。
【解決手段】導電性ナノ粒子状ポリマーおよび電子活性材料、特にPEDOTおよびLiFePO4のナノ複合材は、カーボンブラックおよびグラファイト充填非導電性結合剤中の裸または炭素被覆LiFePO4と比較して、極めてより良好であることが判明した。導電性ポリマーを含有する複合材は、他の2つの試料よりも性能が優れていた。特にPEDOT複合材の性能は、高電流領域においてより良好であり、200サイクル後82%の容量保持を示した。したがって、導電性ナノ粒子状ポリマーおよび電子活性材料、特にLiFePO4およびPEDOTナノスタブで作製された複合材をベースとした電極は、そのより高いエネルギー密度および厳しい充電条件に対する増加した耐性により、LiFePO4等の材料の高電力の適用性を劇的に拡張することが判明した。
【選択図】なし

Description

本発明は、ナノ複合材に組み込まれたナノ粒子状リチウム化合物をベースとした、充電式リチウム電池の電極用の電極材料に関する。本発明はまた、そのような電極材料の製造のための方法に関する。
充電式リチウム電池は、特に、電話、コンピュータおよびビデオ機器等の携帯型電子機器に使用され、最近では電気自転車および自動車等の車にも使用されている。これらの用途では、これらの電池に対する要求が厳しい。特に、それらは所与の体積または重量当たり最大のエネルギー量を貯蔵する必要がある。それらはまた、信頼性があり、環境適合性である必要がある。したがって、高いエネルギー密度および高い比エネルギーが、特にそのような電池の電極材料に課せられる2つの基本要件である。
そのような電極材料に対するさらなる重要な要件は、サイクル耐性である。ここで、各サイクルは、1回の充電および放電プロセスを含む。サイクル耐性は、いくつかのサイクルの後に利用可能な比電荷を実質的に決定する。サイクル毎に99%のサイクル耐性を仮定したとしても、100サイクル後の利用可能な比電荷は、最初の値のわずか37%となる。したがって、そのような99%という比較的高い値であっても、概して不十分である。したがって、好適な上述の種類の充電式の高性能電池は、可能な限り少ない重量および体積で特定量のエネルギーを貯蔵できる必要があるだけでなく、このエネルギーを数百回放電および充電する能力を有する必要がある。ここで重大な要因は、かなりの程度まで電極材料である。
そのような電池の大きな経済的重要性のため、上述の要件を最大限に満たす電極材料を発見するべく数々の取り組みがなされてきた。
現在まで、充電式リチウム電池の陽極に使用される材料は、特に遷移金属酸化物または遷移金属硫化物、有機分子およびポリマーであった。特に、遷移金属酸化物および硫化物は、実用に成功していることが示されている。そのような材料は、挿入電極材料と言われ、室温で充電可能な多くの電池に見られる。そのような材料がより広く普及している理由は、電気化学的挿入反応がトポケミカルであり、したがって部分的に構造保持的であるという事実にある。
リチウム挿入反応に基づく充電式電池の考えは、1970年代に発達した。その間、この原理に基づく数々の電極が提案され、実装されてきた。リチウムセルの充電能力は、主に、Li+の挿入および除去の間のゲスト材料の寸法安定性に基づく。
上述したように、いくつかの遷移金属酸化物、硫化物、リン酸塩およびハロゲン化物が、可逆性の高い陽極用材料として知られている。それらは、特に、リチウムコバルト酸化物、リチウムニッケル酸化物、リチウムマンガン酸化物およびリチウムバナジウム酸化物、オキシリン酸銅、硫化銅、硫化鉛および硫化銅、硫化鉄、塩化銅等を含む。しかし、これらの材料は幾分不適当である。つまり、例えばリチウムコバルト酸化物は比較的高価であり、特に環境適合性ではない。環境適合性の観点から、リチウムマンガン酸化物が特に好適である。しかしながら、これらの酸化物は一般にスピネル構造を有し、そのためそれらはより低い比電荷を有することとなるか、またはリチウム交換に関するサイクル下での安定性が低くなることが判明している。また、リチウムの除去により、斜方晶系リチウムマンガン酸化物はスピネル構造をとることが試験により示されている。従来技術に関しては、Martin Winter、Juergen O.Besenhard、Michael E.SparhおよびPetr Novakによる、出版物「Insertion Electrode Materials for Rechargeable Lithium Batteries」、ADVANCED MATERIALS 1998、10、11月、no.10、725〜763頁、ならびに、M.E.Spahrによる論文ETH no.12281、「Synthese und Charakterisierung neuartiger Oxide, Kohlenstoffverbindungen, Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung」(「Synthesis and characterization of new types of oxides, carbon compounds, silicides and nano-structured materials and their electro- and magneto-chemical analysis」)を参照されたい。
したがって、特に高い比エネルギーおよび大電力密度の点で改善された電池が依然として大いに求められている。
WO01/41238 国際公開 WO 2005/051840 A1
Martin Winter、Juergen O.Besenhard、Michael E.SparhおよびPetr Novakによる、出版物「Insertion Electrode Materials for Rechargeable Lithium Batteries」、ADVANCED MATERIALS 1998、10、11月、no.10、725〜763頁 M.E.Spahrによる論文ETH no.12281、「Synthese und Charakterisierung neuartiger Oxide,Kohlenstoffverbindungen,Silicide sowie nanostrukturierter Materialien und deren elektro- und magnetochemische Untersuchung」(「Synthesis and characterization of new types of oxides,carbon compounds,silicides and nano-structured materials and their electro- and magneto-chemical analysis」) Yong-Jun Li, Wei-Jun Huang, and Shi-Gang Sun. Angew. Chem. 118, 2599, (2006) Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. J. Electrochem. Soc., 144, 1188 (1997) S. Franger, F. Le Cras, C. Bourbon and H. Rouault, Electrochem. Solid-State Lett., 5, A231 (2002) S. Yang, P. Y. Zavalij and M. S. Whittingham, Electrochem. Commun., 3, 505(2001). S. Franger, F. Le Cras, C. Bourbon and H. Rouault, J. Power Sources, 119, 252 (2003) Chung, S.-Y., Bloking, J. T. & Chiang, Y.-M. Nature Mater., 1, 123 (2002) S. Y. Chung and Y.-M. Chiang, Electrochem. Solid-State Lett., 6, A278 (2003) F. Croce, A. D. Epifanio, J. Hassoun, A. Deptula, J. Olczac, and B. Scrosati, Electrochem. Solid-State Lett., 5, A47 (2002) A. Yamada, S. C. Chung and K. Hinokuma, J. Electrochem. Soc., 148, A224, (2001) Zhaohui Chen and J. R. Dahn, J. Electrochem. Soc., 149, A1184 (2002) Prosini, P. P., Zane, D. & Pasquali, M. Electrochim. Acta., 46, 3517 (2001) G. Heywang and F. Jonas, Adv. Mater., 4, 116 (1992) L. B. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, and J. R. Reynolds, Adv. Mater. Weinheim, Ger., 12, 481 (2000) H. Yamato, M. Ohwa and W. Wernet. J. Electroanal. Chem., 397, 136 (1995) I. Winter, C. Reese, J. Hormes, G. Heywang and F. Jonas. Chem. Phys., 194, 207 (1995)
したがって、本発明が解決しようとする課題は、サイクル中の分極がより低いかまたは分極を示さず、好ましくは良好な電気化学応答/高放電容量を有し、また好ましくは比較的環境適合性でもある、アノードおよびカソードの双方、しかし好ましくはカソード用の電極材料を提供することである。
この課題は、ナノ複合材である電極材料により解決され、前記ナノ複合材は、
−−開放多孔質材料であり、
−−電子伝導性である。
一実施形態において、ナノ複合材電極材料は、充電式リチウム電池の陽極または陰極用であり、前記電極材料はナノ複合材であり、前記ナノ複合材は、一様に分布したナノ粒子状電子活性材料と、ナノ粒子状電子伝導性結合剤材料とを備える開放多孔質材料であり、電子活性材料のナノ粒子の平均粒径およびナノ粒子状電子伝導性結合剤材料の平均粒径は、
ともに好ましくは+100%/−50%(2倍)以下で異なり、および/またはともに好ましくは500nm未満の範囲内である。
開放多孔質材料とは、電解質およびLi+の拡散が容易に可能となるほど細孔が大きく、また相互接続されていることを意味する。
現在、驚くべきことに、電子活性材料(EAM)、例えば電子およびLi+放出または電子およびLi+受容材料が、ほぼ同じ粒径の電子伝導性結合剤(CB)のナノ粒子により相互接続されたナノ粒子の形態である場合、開放多孔質材料を容易に得ることができることが判明している。
ナノ粒子の形態(以降ナノ粒子状と呼ばれる)で使用される限り、粗大粒子の形態では導電性が低い、またはさらに絶縁体である材料も、本発明のカソード用EAMとして使用することができる。唯一の必須要件は、材料が電子およびLi+イオンを放出することができることである。
好適なEAMは、Li+イオンをすでに備えている、または第1の負荷サイクル中にLi含有化合物を形成し得る、すべての化合物である。負荷中のLi含有化合物の生成は、安定性が不十分な、またはさらに不安定なLi含有化合物の場合には有利である。
EAMの例は、遷移金属および主族金属の酸化物、窒化物、炭化物、ホウ酸塩、リン酸塩、硫化物、ハロゲン化物等、ならびにこれらの混合物だけでなく、最新技術において、例えばWO01/41238に挙げられているすべてのEAMである。
本明細書において使用されるナノ粒子は、一般に、5nmから500nmの範囲内、好ましくは5nmから400nmの範囲内、より好ましくは20nmから300nmの範囲内の平均一次粒径を有する。
好ましいEAMは、Lix38、Lixn38であり、LiFePO4が現在特に好ましい。
アノード材料に好適なEAMは、ケイ素、LixAlSin、LixSiSnn等の合金、およびLixVN等の窒化物である。
本発明によれば、ナノ粒子状形態のこれらのEAMが、これもまたナノ粒子状形態であり同様の平均粒径を有する電気伝導性結合剤(CB)、および任意選択で同様の粒径を有する導電性充填剤と混合される。繊維、ナノチューブ等の形態のCBを有することが可能であるが、費用上の理由から、現在ナノスタブまたは略球状のナノ粒子が好ましい。
本発明のナノ複合材は、互いに十分に混合され、好ましくは混合貯蔵および使用温度での結合剤の十分な粘性により、加熱ありもしくはなしでの圧力処理により、または溶媒蒸発により安定化された、EAMおよびCBナノ粒子、ならびに任意選択で導電性充填剤粒子を含む。導電性結合剤のガラス転移点が低い熱可塑性材料が、粒子の結合だけでなく、導電体、通常はアルミニウム電極/基板へのナノ複合材の結合にとっても好ましい。
電気伝導性ポリマーは、ポリアセチレン、ポリアニリン、ポリピロールおよびポリチオフェンを包含する。これらのポリマーは、所望の特徴に依存して置換されていても置換されていなくてもよい。現在好ましい結合剤は、以下でPEDOTと呼ばれるポリ(3,4−エチレンジオキシチオフェン)である。このポリマーは導電性であり、好適な粘性を有し、容易にナノ粒子状形態で生成され得る。
ある特定の実施形態において、CBナノ粒子は、ナノ複合材の重量を基準として、4%から10%の量で存在する。
ナノ粒子に電導性を付与する、またはその導電性を改善するためには、ナノ粒子は有利には導電層、特に炭素/グラファイト/グラフェン層で被覆され得る。
ナノ粒子状EAMを生成するための方法、ナノ粒子状EAMを被覆するための方法、ナノ粒子状CBを生成するための方法、ならびに本発明のナノ複合材を生成するための方法を、以下に説明する。
EAMは、酸化物、窒化物等の場合は熱分解により、または特にLiFePO4の場合はソルボサーマル合成により調製することができる。ソルボサーマルプロセスは、合成された粒子の形態および粒度分布の改変の制御等、多くの利点を提供する。物質を保護するために必要な不活性ガスは、ソルボサーマル合成においては不要であるかまたは無視することができ、プロセスは一般に、通常の簡便な合成よりもずっと迅速でエネルギー効率的であり、ナノ粒子形成に関して良好である。LiFePO4試料は、好ましくは、以下の反応を使用して、Nusplらの特許文献2のにより説明されるような最適化されたソルボサーマル合成により調製される。
FeSO4+H3PO4+3LiOH・H2O→LiFePO4+Li2SO4+11H2
ナノ粒子状EAMの炭素被覆は、例えば糖またはケトン等の様々な有機前駆体の熱分解による炭素堆積により行うことができる。
PEDOT等のナノ粒子状電気伝導性ポリマーは、Sunら[2]により説明されるような逆マイクロエマルジョン技術を使用して調製することができる。PEDOT合成の場合、重合補助剤としてのFeCl3/ビス(2−エチルヘキシル)スルホスクシネート粒子等の粒子/液滴を含む乳化された酸化剤を含むマイクロエマルジョンが調製される。
本発明のナノ複合材を形成するために、ナノ粒子状CPは、任意選択でカーボンブラック等のナノ粒子状電子伝導性充填剤とともに、好ましくはアセトニトリル等の好適な溶媒に懸濁され、次いでナノ粒子状のEAMが添加され、混合物が均質化され、乾燥され、任意選択で加熱ありまたはなしで圧縮される(選択肢として、EAMナノ粒子は、前のステップの間に炭素被覆されていてもよい)。
以下の本発明の詳細な説明から、本発明がよりよく理解され、また上に記載したもの以外の目的が明らかとなる。そのような説明は添付の図面を参照する。
炭素被覆ありおよびなしのLiFePO4のXRDパターンである。 炭素被覆および未処理LiFePO4の粒度分布の比較を示す図である。 炭素被覆LiFePO4、グラファイトおよび標準的結合剤からなる電池複合材のSEM写真である。 個々のPEDOTナノスタブの凝集から形成される多孔質構造を有するナノサイズメッシュの形成が得られる、PEDOTの逆マイクロエマルジョンによる合成の生成物を示す図である。 3つの試料、つまり従来の結合剤および充填剤と合わせたLiFePO4、従来の結合剤および充填剤と合わせた炭素被覆LiFePO4、ならびに本発明の組成物の、20mA(約0.1C)の比電流でのサイクル後の初期放電容量を示す。 従来(LC)および本発明(LP)の結合剤と合わせた炭素被覆LiFePO4の、135mA(約0.8C)の比電流での性能を比較した図であり、図8aは、LCに対する10回目、50回目および100回目のサイクル後の放電曲線を示し、そして、図8bは、LPに対する10回目、50回目および100回目のサイクル後の放電曲線を示す。 LCの56mAh/gと比較した、次の100サイクルに対するLC試料およびLP試料の双方を示す。 様々な電流でのサイクル数の関数としての放電電位を示す図である。
ここで、LiFePO4およびPEDOTの系に関して、本発明をさらに説明する。
LiFePO4は、安価な前駆体から生成可能であり、非毒性であり、環境に優しく、また卓越した化学的および熱的安定性を有するため、非常に有望なEAMである。この材料は、極めて速いリチウムイオン移動度を促進し、それにより高電力用途に望ましいものとなっている[3]。しかしながら、この材料の低い固有電子伝導性は、電気化学応答を大きく制限する[3]。その粒径の低下[4〜6]、極薄炭素による被覆[7]、超多価イオン[8]によるドーピング、電極複合材への金属粒子の添加[9]等、その特性を改善するためのいくつかの試みがなされたが、これらはすべて、良好な結果は言うまでもなく、許容される結果に結びつかなかった方法のいくつかである。
LiFePO4の性能の最も大きな向上は、糖等の各種有機前駆体の熱分解により堆積された炭素でそれを表面被覆することにより得られている。また、電池の定格容量は、電極材料中のリチウムの固体拡散を向上させる結果となる粒径の低下により大きく改善することができる(非特許文献11)ことが知られている。しかしながら、小さい粒径に起因して増加した表面により、電極複合材中の炭素/グラファイトおよび結合剤がさらに多量に必要とされ、これは電池のタップ密度の著しい減少につながるため、ナノ構造化EAMの使用によって問題が生じる(非特許文献11〜13)。したがって、最適な電極組成物を設計するには、粒径と、添加される導電性添加剤およびその他の添加剤の量との間をうまく調整する必要がある。ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、ポリイソブテン等のポリマー結合剤が、現在、グラファイト、カーボンブラックおよび活性材料(例えばLiFePO4)を互いに、および電流コレクタに結合するために採用されている。ナノ球形粒子のための結合剤およびその他の導電性添加剤の正味量は、典型的には、電極中20質量%超までに至る。まして、現在使用されている結合剤は電気化学的および電子的に不活性であり、したがって、さらなる重量の追加、およびカソード複合材の導電性の低下のそれぞれにより、カソードの比エネルギーおよび反応速度を実質的に低下させる。全体として、これは、高電力用途に対する材料の魅力を減退させる結果となる。
本発明者らは、電極複合材中の効果的な導電性添加剤および結合剤として二重に利用することができるナノ構造化ポリマー結合剤が、この問題を軽減し、さらに電池の高率性能を高める可能性があると考えた。そのようなナノ構造化ポリマー結合剤は、現在、いくつかの利点を有することが判明している。好適なナノ粒子径および形状が使用されれば、結合剤はナノ粒子状EAMと一様に混合する。粒子状構造に起因して、Li+拡散を促進する細孔が形成され、ナノ粒子または細孔の存在のそれぞれによって、必要とされる結合剤の量が低減され、それにより重量が低減されるとともに電気化学的特性、すなわち電力密度および比エネルギーが向上することとなる。
ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)は、導電性ポリマー結合剤としての魅力的な候補である。高い化学的および環境的安定性という長所に加え、様々な粒径および形態でのPEDOTの合成が、これまで広範囲にわたり研究されている(非特許文献13〜17)。モノマー3,4−エチレンジオキシチオフェンは、ピロールよりも高い疎水性および遅い反応速度を示し、これにより、チューブ状構造の形成とは対照的に、ナノスタブまたはナノ粒子としてのPEDOTの比較的単純な合成がもたらされる。この形態は、同じ粒径および立体構造で合成され、したがって均一な複合材中で互いに混合し得るLiFePO4粒子等のナノ粒子に有益であることが判明した。
さらなる利点はPEDOTの粘性であり、0.5バールから2バール、すなわちそれぞれ5・104Paから2・105Paの圧力、および室温で加圧すると良好な粒子間接着および十分な基板接着が得られる。
微小粒子は高められた表面反応性およびファンデルワールス力により粘着性であるため、所望の安定性に依存して加熱は不必要となり得る。
PEDOTおよびLiFePO4のナノ複合材等のナノ複合材は、逆マイクロエマルジョンの技術を使用してうまく合成することができる。逆マイクロエマルジョンにより合成されたナノ構造化ポリ(3,4−エチレンジオキシチオフェン)の独特の有益な効果およびそのような複合材の構造的特性が研究されており、その電気化学的特性が裸および炭素被覆LiFePO4と比較されている。
それにより、ナノ粒子状形態の導電性被覆が施されたEAM、つまりLiFePO4の、ナノ粒子形態の導電性ポリマー結合剤との複合材によって、さらに改善された特徴が得られることが判明した。
特徴のさらなる改善のために、ナノ粒子状結合剤は、カーボンブラック等の電子伝導性ナノ粒子状充填剤と、例えば全電極材料の2重量%から10重量%、好ましくは約5%の量で混合することができる。
実験
I.材料調製
I.1.リチウム鉄リン酸塩
最適化されたソルボサーマル合成によりリチウム鉄リン酸塩試料を調製した。出発材料は、化学量論比1:1:3のFeSO4・7H2O(Aldrich社製、純度99%)、H3PO4(Aldrich社製、純度>85%)、LiOH(Aldrich社製、純度>98%)であった。まず、FeSO4およびH3PO4の水溶液を調製し、互いに混合した。混合物をParrオートクレーブに移し、これを窒素で数回洗浄する。LiOHの溶液を徐々に反応混合物中にポンプで注入してから、オートクレーブを封止する。反応混合物を解凝集し、160℃で一晩加熱する。得られた沈殿物を濾過し、水で十分洗浄して過剰な塩等をすべて除去する。次いで、湿潤した沈殿物を真空中で一晩乾燥させると、LiFePO4の乾燥したオリーブグリーンの固体粉末が形成される。
I.2.炭素被覆試料
いくつかの炭素含有有機前駆体を使用して、LiFePO4を炭素で被覆した。ポリアクリロニトリル(PAN)、1,2,4,5−ベンゼンテトラカルボン酸(ピロメリット酸)および乳糖をそれぞれ使用して、別個のバッチの炭素被覆LiFePO4を合成した。典型的な実験において、特定量の前駆体(表1)を液体媒体中でLiFePO4100mgと混合し、高分散懸濁液を形成した。懸濁液を乾燥させ、続いて2.5℃/minの速度で650℃まで加熱して、6時間該温度に維持することにより焼成した。Fe+2のFe+3への酸化を回避するために、熱処理は不活性窒素環境下または真空下で行った。
表1は、LiFePO4の重量に対する添加した有機前駆体の初期量の重量、および被覆された試料の最終炭素含量を示す。炭素の量は、熱重量分析により決定された。
さらに、フロー・オーブン内でプロピレンガスを熱的に分解して炭素をLiFePO4上に堆積させた。オーブンの温度は700℃に設定した。ガスの流速は20ml/分であり、プロセスは4時間行った。堆積させた炭素の量は、約0.1重量%であった。すべての炭素被覆試料のXRDパターンは、未処理LiFePO4と完全に一致し、炭素の存在は結晶化度をまったく阻害しない。図1は、乳糖により炭素被覆されたLiFePO4の、未処理LiFePO4と比較したRDパターンを示す。アニール後に得られた炭素被覆試料の粒度分布は、合成されたままの未処理LiFePO4のものよりも広い。これは、高温での一次粒子のオストワルド熟成に起因して生じた可能性がある。しかしながら、粒度分布は、LiFePO4/FePO4体積によりリチウムイオンがまだ効果的に拡散し得る程十分狭い状態を保っており、放電容量は高い交換率であっても影響されない。
乳糖の組成物により調製された炭素被覆試料の粒度分布の、未処理の被覆なしLiFePO4との比較を、図2に示す。炭素被覆試料のD80値は、30μm以下であることが判明したが、これは元の試料と比較して約3倍成長している。
炭素被覆LiFePO4粒子の周囲の炭素の極めて薄いアモルファス層は、高分解能TEM(図示せず)により描写され得る。層の平均厚さは、約2nmであることが判明した。層は極めて多孔性であるようであったが、これは活性材料への、および該材料からのリチウムイオンの容易な拡散を促進するはずである。また、鮮明なTEM画像において、オリビン型LiFePO4の[301]分離部分の間の約3Åの距離が観察される。
好ましい手順において、炭素被覆試料は、不活性環境における乳糖(15重量%)の存在下での熱処理により作製された。乾燥後、粉末を650℃で焼成し(2.5℃/分の速度での該温度までの加熱、および該温度での粉末の維持に全体で6時間かけた)、次に粉砕または解凝集プロセスを行った。炭素の量は、熱重量分析により、3重量%未満であると決定された。
I.3.逆エマルジョンによる合成によるPEDOTナノスタブの調製
PEDOTナノ粒子の合成には、Sunらの非特許文献3の記述における逆マイクロエマルジョンの技術を使用した。まず、ビス(2‐エチルヘキシル)スルホコハク酸ナトリウム(AOT)8.5g(19.12mmol)を、100%出力(410W)の超音波浴中でn−ヘキサン70mlに溶解した。次いで、蒸留水1ml中無水FeCl31.6g(10.00mmol)の混合物を、パスツールピペットで滴下により添加した。すべての酸化剤を添加したら、得られた溶液を超音波浴から取り出し、白濁した黄色の沈殿物が現れるまで穏やかに手で振盪した。次いでエチレンジオキシチオフェン(EDOT)0.38mlをエマルジョンに一度に添加した。次いで得られた混合物をロータリーエバポレータ中で1時間、10℃に維持した。水浴の温度が約20℃となったら重合が開始した。その後、水浴の温度を3時間、30℃に維持した。その間、反応混合物は緑色に、続いて黒色に変化した。次いで生成物を吸引濾過してエタノールおよびアセトンで洗浄した。100℃で一晩乾燥させると、青/黒色のPEDOTナノ粉末を得た。
II.化学的、電気化学的および構造的特性決定
鉄の強い蛍光性のため、λCuKα1=1.54056Å照射(40mA、40kV)およびゲルマニウム単色光分光器を用いたBragg−Bentano型配置粉末X線回折装置Bruker AXS mod.D8Advanceを使用した。試料は、回転平板ホルダ上に載せた。石英試料を外部標準物質として使用した。
動作電圧1kVのZeiss Gemini1530を使用して走査型電子顕微鏡(SEM)分析を行った。透過型電子顕微鏡(TEM)による測定のために、銅グリッド上に支持された穴の開いた炭素箔上に材料を堆積させた。TEM検査は、C30ST顕微鏡(Philips社製;LaB6カソード、動作電圧300kV、点解像度約2Å)を使用して行った。導電性は、4点導電性試験法を使用して測定した。
III.電気化学的測定
分析した3つの試料の組成は表2に要約されるが、表中、L1は未処理の被覆なしLiFePO4で得られた参照材料を示し、LCは炭素被覆LiFePO4による参照材料を示し、LPは本発明の材料である炭素被覆LiFePO4およびPEDOTナノ粒子の混合物を示す。
電気化学的測定のために、L1およびLCをカーボンブラック、グラファイトおよびポリイソブテン系ポリマー結合剤と混合することにより、それらの電極を作製した。活性材料:Ensaco250(TIMCAL社製):グラファイトSFG6(TIMCAL社製):Oppanol(BASF社製)=75:18:6:2の比率で成分を混合した。活性材料および添加剤は、見た目の機械的均質化が得られるまで(35分)、乳鉢内で手作業により互いに混合および粉砕した。乳鉢を90℃に昇温し、n−ヘキサン中0.2%のOppanol溶液を混合物に添加した。n−ヘキサンが完全に蒸発するまで懸濁液を混合した。次いで、15mgから30mgの試料を丸薬(直径13mm)状に手で圧縮し、次いで作製されたカソードを乾燥さた。電極として使用される混合LPには、5%のみの炭素を使用し、グラファイトは使用しない。
LP試料の調製のために、PEDOTナノ粒子をアセトニトリル溶液に分散させ、次いで10重量%で未処理LiFePO4と混合した。
アルゴン充填グローブ・ボックス内で、対極としてリチウム金属箔を使用してセルを組み立てた。使用した電解質は、エチレンカーボネートおよびジメチルカーボネートの1:1(重量比)混合物中のLiPF6の1M溶液からなる、MERCK社製Selectipur、LP30であった。
電気化学的測定はすべて、Astrol Electronic AG(スイス)により提供されたコンピュータ制御充電システムを使用して行った。セルには、複合材中の活性材料(LiFePO4)の重量を基準とした比電流における1.5〜4.0V対Li/Li+の範囲内での定電流サイクルを課した。
結果および考察
I.構造および形態の影響
図1は、L1のXRDパターンを示しており、これは空間群Pnmaを有する斜方晶系結晶構造と一致する。パターンは、LiFePO4の理論的パターンに完全に対応しており、不純物は検出されなかった。炭素被覆試料LCのXRDパターンは、裸の試料L1と完全に一致し、炭素の存在は結晶化度をまったく阻害しない。一次粒径はScherrerの式d=0.9λ/βcosθを用いて計算され、式中βはXRD線の半値幅であり、λはオングストローム単位の波長である。XRD(020)線から得られる幅を用いて推定される単結晶径は、31.6nmである。LC1のSEM画像(図示せず)は、粒子が平均粒径200nmの明確な楕円形態を有していたことを示す。LCの形態は、L1との有意な相違を示さなかった。LCの高分解能TEM画像(図示せず)は、LiFePO4粒子の周りの炭素の極めて薄いアモルファス層を示す。層の平均厚さは、約2nmと測定された。層は極めて多孔性であるようであったが、これは活性材料内のリチウムイオンの容易な拡散を促進するはずである。面間距離は約3Åと読み取れたが、これはオリビンの[301]面間隔と極めて類似している。炭素被覆試料は、10-4S/cmの範囲内の導電性を有していたが、これは未処理LiFePO4(10-9S/cm)よりも数桁高い。LC、グラファイトおよび標準的結合剤からなる電池複合材のSEM写真(図示せず、または図3)は、理想的には絶縁性LiFePO4粒子間の導電的相互接続としての役割を果たすべきであるマイクロサイズのグラファイトが、ナノサイズの活性材料と比較して完全に範囲外であることを示す。これはマトリックス内の隔離されたアイランドとして残留し、電子パーコレーション・ネットワークに有益となり難く、一方で電極複合材の重量に大きく寄与する。この問題はLPにおいて無事に解決された。PEDOTの逆マイクロエマルジョンによる合成は、ナノサイズのメッシュ(図示せず、または図4に示される)の形成をもたらす。個々のPEDOTナノスタブの凝集から、多孔質構造が形成されている。PEDOT粒子の導電性多孔質ナノメッシュはLiFePO4粒子を完全に包み込んでおり、これにより複合材全体がさらにより導電性となる。PEDOT粒子はまた、電極成分を互いに、および電流コレクタに結合する結合剤として機能する。これにより、任意の別個の結合剤の使用が不要となり、したがって電極のバルクから不活性分が削減される。
II.電気化学に関する結果
すべての試料のこの電気化学的特性を系統的に調査した。図7は、20mA(約0.1C)の比電流でサイクルに課した3つすべての試料の初期放電容量を示す。試料はすべて、著しい平坦な電圧水平域を有する。この比較的低い電流では、炭素被覆試料(LC)およびポリマー複合材試料(LP)の双方が、LiFePO4の理論容量170mAh/gに非常に近い、約166mAh/gの容量を有する。被覆なし試料(L1)は、他の2つの試料より極めて低い110mAh/gの開始容量を有する。3つすべての試料において、この電流での放電容量は、非常に多くのサイクル数に対し安定性を維持している。この性能の相違は、電極の性能に対する導電性の影響を明確に示す。
被覆ありおよび被覆なしの活性材料の性能の差が明瞭かつ顕著であったため、本発明者らはLCおよびLPのより高い電流での試験のみを進めた。図8aおよび図8bは、135mA(約0.8C)の比電流でのLCおよびLPの性能を比較している。LPの初期放電容量は158.5mAh/gである。図8aは、10回目、50回目および100回目のサイクル後の放電曲線を示す。これらのサイクルにおける容量は、それぞれ、158mAh/g、159mAh/gおよび141mAh/gである。これはサイクル当たり約0.17mAh/gの降下を表しており、100サイクル後に初期放電容量の90%が維持されることを示唆している。一方、試料LCは、145mAh/gの初期放電容量を有するが、これは10回目、50回目および100回目のサイクルに対し、それぞれ128mAh/g、112mAh/gおよび97mAh/gとなっている。これはサイクル当たり約0.33mAh/gの降下を表しており、100サイクル後には元の容量の67%しか維持されない。したがって、LPの場合、開始容量および容量保持の双方がLCよりも著しく良好である。図9に示されるように、次の100サイクルに対しては、両試料ともに同じ割合でほぼ直線的な低下を示す。2100サイクル後のLPの最終放電容量は、LCの56mAh/gに対し、130mAh/gである。
図8aの挿入図は、対応する10回目、50回目および100回目の放電サイクルにおけるこれら両試料の微分比容量プロット(DSCP)を示す。これらの微分比容量プロットのピークは、活性材料からのリチウム・インターカレーション/脱インターカレーションのアノードおよびカソードの水平域に対応する。アノードおよびカソード双方のピークが、LiFePO4におけるリチウム抽出/挿入電位である3.4V近傍で生じている。2つのプロット間の主な差は、アノードおよびカソードピーク間の分極ギャップおよびピークの強度である。LPの場合、間隔は約0.1Vであり、一方LCでは0.6Vである。この間隔は、電極ミックス内での過電位の量を示し、LCにおけるより高い電極抵抗を主に示唆している。ポリマー複合材LPのピーク強度はLCよりも非常に高く、これは後者よりも良好なLi挿入反応速度を示す。
LPに対するさらに厳しい条件の影響を調べるために、ある範囲の電流密度において試料を試験した。図10は、様々な電流でのサイクル数の関数としての放電電位を示す。C/5では、試料はほぼ理論容量である170mAh/gを示す。この値は、電流の増加と共に徐々に減少するが、10Cに対応する高電流下であっても、比較的安定した約130mAh/gの放電容量が観察される。電流がその初期値まで降下した後は、元の容量のほとんどが保持される。
PEDOTおよびLiFePO4の複合材の性能は、裸のおよび炭素被覆LiFePO4と比較して著しく良好であった。導電性ポリマーを含有する複合材は、他の2つの試料よりも性能が優れていると同時に、電極の重量に対するその総添加剤含量はわずか50%である。
本発明の現在好ましい実施形態を示し説明してきたが、本発明はこれらに制限されず、以下の特許請求の範囲内において、その他様々な様式で具現化され実践され得ることを明確に理解されたい。
L1 未処理の被覆なしLiFePO4で得られた参照材料;
LC 炭素被覆LiFePO4による参照材料;
LP 本発明の材料である炭素被覆LiFePO4およびPEDOTナノ粒子の混合物。

Claims (16)

  1. 充電式リチウム電池の陽極または陰極用の電極材料であって、前記電極材料はナノ複合材であり、前記ナノ複合材は、一様に分布したナノ粒子状電子活性材料と、ナノ粒子状電子伝導性結合剤材料とを備える開放多孔質材料であり、電子活性材料のナノ粒子の平均粒径およびナノ粒子状電子伝導性結合剤材料の平均粒径は、
    ともに2倍以下で異なり、および/または
    ともに5nmから500nmの範囲内である、電極材料。
  2. 電極が陽極であり、電気活性材料が、遷移金属および主族金属の酸化物、窒化物、炭化物、ホウ酸塩、リン酸塩、硫化物、ハロゲン化物等、ならびにこれらの混合物から選択される、請求項1に記載のナノ複合材の電極材料。
  3. 電気活性材料がLiFePO4である、請求項2に記載のナノ複合材の電極材料。
  4. 電極が陰極であり、電子活性アノード材料が、ケイ素、LixAlSin、LixSiSnn等の合金、およびLixVN等の窒化物から選択される、請求項1に記載のナノ複合材の電極材料。
  5. 電子活性ナノ粒子が、導電層、特に炭素またはグラファイト/グラフェン層で被覆されている、請求項1から4のいずれか一項に記載のナノ複合材の電極材料。
  6. 電気伝導性ポリマーが、ポリアセチレン、ポリアニリン、ポリピロールおよびポリチオフェンから選択される、請求項1から5のいずれか一項に記載のナノ複合材の電極材料。
  7. 結合剤が、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)である、請求項1から6のいずれか一項に記載のナノ複合材の電極材料。
  8. 平均粒径が、5nmから400nmの範囲内、より好ましくは20nmから300nmの範囲内である、請求項1から7のいずれか一項に記載のナノ複合材の電極材料。
  9. 電気伝導性ナノ粒子が、ナノ複合材の重量を基準として4%から10%の量で存在する、請求項1から8のいずれか一項に記載のナノ複合材の電極材料。
  10. 少なくとも1種のナノ粒子状導電性材料、例えば炭素材料を、好ましくは2%から10%、より好ましくは約5%の量で含む、請求項1から9のいずれか一項に記載のナノ複合材の電極材料。
  11. 圧力下で前駆体塩の水溶液をソルボサーマル法により処理するステップを含む、ナノ粒子状電子活性材料を生成する方法。
  12. 電子活性材料を糖溶液中に分散させるステップと、糖を熱的に分解して炭素および/またはグラファイト被覆を形成するステップとを含む、ナノ粒子状電子活性材料を被覆する方法。
  13. ナノ粒子状電子活性材料が、炭素被覆の前および/または後に粉砕される、請求項12に記載の方法。
  14. 乳化された粒子中に酸化剤および粒子形成物質、特にFeCl3およびビス(2−エチルヘキシル)スルホスクシネートを含む逆マイクロエマルジョンを調製するステップを含む、ナノ粒子状導電性結合剤を生成する方法。
  15. ナノ粒子状電子活性材料と、ナノ粒子状導電性結合剤とを含むナノ複合材を生成する方法であって、ナノ粒子状電気伝導性結合剤およびナノ粒子状電子活性材料を十分混合するステップと、混合物を圧力および熱、好ましくは0.5バールから2バール、すなわち5・104から2・105Paおよび室温に曝露するステップとを含む、ナノ複合材を生成する方法。
  16. 電極、特に充電式Li電池のカソードの製造における結合剤としてのナノ粒子状電気伝導性結合剤の使用。
JP2010056747A 2009-03-12 2010-03-12 開放多孔質電気伝導性ナノ複合材料 Active JP5702073B2 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US15972209P 2009-03-12 2009-03-12
US61/159,722 2009-03-12
EP09157137.2A EP2228855B1 (en) 2009-03-12 2009-04-01 Open porous electrically conductive nanocomposite material
EP09157137.2 2009-04-01

Publications (2)

Publication Number Publication Date
JP2010219048A true JP2010219048A (ja) 2010-09-30
JP5702073B2 JP5702073B2 (ja) 2015-04-15

Family

ID=40843372

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2010056721A Pending JP2010232174A (ja) 2009-03-12 2010-03-12 窒化物および炭化物アノード材料
JP2010056747A Active JP5702073B2 (ja) 2009-03-12 2010-03-12 開放多孔質電気伝導性ナノ複合材料

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2010056721A Pending JP2010232174A (ja) 2009-03-12 2010-03-12 窒化物および炭化物アノード材料

Country Status (8)

Country Link
US (2) US9761867B2 (ja)
EP (2) EP2228855B1 (ja)
JP (2) JP2010232174A (ja)
KR (2) KR20100103428A (ja)
CN (2) CN102064313B (ja)
AU (2) AU2010200959A1 (ja)
IL (2) IL204435A0 (ja)
TW (2) TWI458169B (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099467A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質の作製方法および蓄電装置
WO2012132307A1 (en) * 2011-03-25 2012-10-04 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery
WO2013027561A1 (en) * 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
JP2013171837A (ja) * 2012-02-17 2013-09-02 Belenos Clean Power Holding Ag カソードの配合活性材料を有する、非水性二次電池
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
JP2013539193A (ja) * 2010-10-07 2013-10-17 バッテル メモリアル インスティチュート 充電式リチウム−硫黄電池電極用のグラフェン−硫黄ナノ複合体
JP2014504436A (ja) * 2010-12-31 2014-02-20 深▲セン▼大学 類グラフェンを含有したリチウムイオン電池の正極素材の製造方法
JP2016185902A (ja) * 2010-05-14 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グラフェンで金属と金属酸化物をカプセル化する方法とこれらの材料の使用方法
JP2018018828A (ja) * 2010-04-28 2018-02-01 株式会社半導体エネルギー研究所 二次電池用電極
JP2018160383A (ja) * 2017-03-23 2018-10-11 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料およびその製造方法、リチウムイオン二次電池用正極、リチウムイオン二次電池

Families Citing this family (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2237346B1 (en) * 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2228855B1 (en) * 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
EP2287946A1 (en) * 2009-07-22 2011-02-23 Belenos Clean Power Holding AG New electrode materials, in particular for rechargeable lithium ion batteries
CN103053055B (zh) 2010-08-19 2016-10-12 株式会社半导体能源研究所 电气设备
EP2698854B1 (en) 2010-10-22 2017-02-22 Belenos Clean Power Holding AG Method of an electrode (anode and cathode) performance enhancement by composite formation with graphene oxide
KR101173868B1 (ko) * 2010-12-03 2012-08-14 삼성에스디아이 주식회사 리튬 이차 전지용 양극 활물질 및 이를 포함하는 리튬 이차 전지
US8945498B2 (en) 2011-03-18 2015-02-03 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing lithium-containing composite oxide
CN102168191B (zh) * 2011-04-12 2012-07-04 郑建伟 一种防止合金烧制后粘连和氧化的钒氮合金制备方法
KR102198085B1 (ko) 2011-06-03 2021-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 정극, 리튬 이온 이차 전지, 이동체, 차량, 시스템, 및 전자 기기
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
TWI582041B (zh) 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 單層和多層石墨烯,彼之製法,含彼之物件,以及含彼之電器裝置
US9218916B2 (en) 2011-06-24 2015-12-22 Semiconductor Energy Laboratory Co., Ltd. Graphene, power storage device, and electric device
JP5867801B2 (ja) * 2011-07-13 2016-02-24 国立研究開発法人物質・材料研究機構 高窒素含有遷移金属窒化物の製造方法及び高窒素含有遷移金属窒化物
JP6025284B2 (ja) 2011-08-19 2016-11-16 株式会社半導体エネルギー研究所 蓄電装置用の電極及び蓄電装置
KR20130024769A (ko) 2011-08-30 2013-03-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 축전 장치
JP6000017B2 (ja) 2011-08-31 2016-09-28 株式会社半導体エネルギー研究所 蓄電装置及びその作製方法
US9249524B2 (en) 2011-08-31 2016-02-02 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of composite oxide and manufacturing method of power storage device
JP6029898B2 (ja) 2011-09-09 2016-11-24 株式会社半導体エネルギー研究所 リチウム二次電池用正極の作製方法
US9401247B2 (en) 2011-09-21 2016-07-26 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device and power storage device
KR101308145B1 (ko) 2011-09-30 2013-09-16 아주대학교산학협력단 고안정성 고용량 고속방전 가능 양극 활물질, 그 제조방법 및 이를 구비한 리튬이차전지
KR102120603B1 (ko) 2011-09-30 2020-06-08 가부시키가이샤 한도오따이 에네루기 켄큐쇼 그래핀 및 축전 장치, 및 이들의 제작 방법
CN103035922B (zh) 2011-10-07 2019-02-19 株式会社半导体能源研究所 蓄电装置
US9487880B2 (en) 2011-11-25 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Flexible substrate processing apparatus
JP6016597B2 (ja) 2011-12-16 2016-10-26 株式会社半導体エネルギー研究所 リチウムイオン二次電池用正極の製造方法
JP6009343B2 (ja) 2011-12-26 2016-10-19 株式会社半導体エネルギー研究所 二次電池用正極および二次電池用正極の作製方法
JP6216965B2 (ja) * 2012-01-31 2017-10-25 住友大阪セメント株式会社 電極材料と電極板及びリチウムイオン電池並びに電極材料の製造方法、電極板の製造方法
US9680272B2 (en) 2012-02-17 2017-06-13 Semiconductor Energy Laboratory Co., Ltd. Method for forming negative electrode and method for manufacturing lithium secondary battery
DE102012101457A1 (de) * 2012-02-23 2013-08-29 Westfälische Wilhelms-Universität Münster Elektrodenmaterial für Lithium-basierte elektrochemische Energiespeicher
JP5719859B2 (ja) 2012-02-29 2015-05-20 株式会社半導体エネルギー研究所 蓄電装置
JP6077347B2 (ja) 2012-04-10 2017-02-08 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
CN103427125B (zh) * 2012-05-15 2016-04-13 清华大学 硫基聚合物锂离子电池的循环方法
KR20130143151A (ko) * 2012-06-14 2013-12-31 주식회사 동진쎄미켐 리튬 이차 전지용 양극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차 전지
US9225003B2 (en) 2012-06-15 2015-12-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing storage battery electrode, storage battery electrode, storage battery, and electronic device
JP6207923B2 (ja) 2012-08-27 2017-10-04 株式会社半導体エネルギー研究所 二次電池用正極の製造方法
JP6159228B2 (ja) 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
KR20140065644A (ko) * 2012-11-19 2014-05-30 주식회사 엘지화학 양극 활물질 조성물 및 이를 포함하는 리튬 이차 전지
US9673454B2 (en) 2013-02-18 2017-06-06 Semiconductor Energy Laboratory Co., Ltd. Sodium-ion secondary battery
CN108439366A (zh) 2013-03-15 2018-08-24 西弗吉尼亚大学研究公司 用于纯碳产生的工艺、组合物和其方法
US9490472B2 (en) 2013-03-28 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing electrode for storage battery
US20150044560A1 (en) 2013-08-09 2015-02-12 Semiconductor Energy Laboratory Co., Ltd. Electrode for lithium-ion secondary battery and manufacturing method thereof, and lithium-ion secondary battery
TWI611032B (zh) * 2013-09-05 2018-01-11 攀時歐洲公司 導電靶材
WO2015080302A1 (ko) 2013-11-26 2015-06-04 에스케이이노베이션 주식회사 리튬복합인산염계 화합물 및 이의 제조방법
KR101581105B1 (ko) * 2014-01-23 2015-12-29 울산대학교 산학협력단 폴리아닐린 나노페이스트 및 이의 제조방법
JP6745587B2 (ja) 2014-05-29 2020-08-26 株式会社半導体エネルギー研究所 電極の製造方法
DE102014214899A1 (de) * 2014-07-30 2016-02-04 Bayerische Motoren Werke Aktiengesellschaft Kompositelektrode für eine elektrochemische Zelle und elektrochemische Zelle
EP3197832B1 (en) 2014-09-25 2022-06-22 Drexel University Physical forms of mxene materials exhibiting novel electrical and optical characteristics
JP2018501171A (ja) 2014-10-21 2018-01-18 ウエスト バージニア ユニバーシティ リサーチ コーポレーション 炭素、カーバイド電極及び炭素組成物の製造法並びに製造装置
CN104617256B (zh) * 2015-01-21 2017-07-28 上海轻丰新材料科技有限公司 纳米氧化锌‑石墨‑石墨烯复合材料及其制备方法和应用
WO2017011044A2 (en) 2015-04-20 2017-01-19 Drexel University Two-dimensional, ordered, double transition metals carbides having a nominal unit cell composition m'2m"nxn+1
WO2017083825A1 (en) * 2015-11-13 2017-05-18 David Mitlin Activated carbons from dairy products
US11111586B2 (en) 2016-02-23 2021-09-07 South Dakota Board Of Regents Self-organized and electrically conducting PEDOT polymer matrix for applications in sensors and energy generation and storage
JP2019519451A (ja) * 2016-04-20 2019-07-11 ウエスト バージニア ユニバーシティ リサーチ コーポレーション ナノオーダー構造体カーバイド化合物を用いたカーバイドのカーボン化反応のための方法、装置、及び電極
CN112911917A (zh) * 2016-04-22 2021-06-04 德雷塞尔大学 用于emi屏蔽的二维金属碳化物、氮化物和碳氮化物膜和复合物
US20180013151A1 (en) * 2016-07-08 2018-01-11 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material, power storage device, electronic device, and method for manufacturing positive electrode active material
CN106571244A (zh) * 2016-11-02 2017-04-19 南京工业大学 二维过渡族金属碳(氮)化合物与二维过渡族金属硫化物纳米复合粉体及制备和应用
JP6667422B2 (ja) * 2016-11-22 2020-03-18 三菱マテリアル電子化成株式会社 黒色膜形成用混合粉末及びその製造方法
CN106711422A (zh) * 2017-01-11 2017-05-24 安徽工业大学 一种Co3C@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106654281A (zh) * 2017-01-11 2017-05-10 安徽工业大学 一种TaC@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106602033A (zh) * 2017-01-11 2017-04-26 安徽工业大学 一种ZrC@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106684356A (zh) * 2017-01-11 2017-05-17 安徽工业大学 一种vc@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106784721A (zh) * 2017-01-11 2017-05-31 安徽工业大学 一种yc2 @洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106532020A (zh) * 2017-01-11 2017-03-22 安徽工业大学 一种Mo2C@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106684385A (zh) * 2017-01-11 2017-05-17 安徽工业大学 一种Ni3C@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN106654280A (zh) * 2017-01-11 2017-05-10 安徽工业大学 一种w2c@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
CN107068992A (zh) * 2017-01-11 2017-08-18 安徽工业大学 一种TiC@洋葱状碳/无定形碳纳米复合物及其制备方法和应用
US11278862B2 (en) 2017-08-01 2022-03-22 Drexel University Mxene sorbent for removal of small molecules from dialysate
CN107732170B (zh) * 2017-09-19 2019-10-29 浙江大学 一种高效锂金属复合材料及其制备方法和作为负极的应用
US11349117B2 (en) 2018-01-17 2022-05-31 The Research Foundation For The State University Of New York Magnetite (Fe3O4)—multiwalled carbon nanotube composite structures with performance as high rate electrode materials for Li-ion batteries
CN108284647B (zh) * 2018-01-24 2020-12-22 河南蓝翎环科防水材料有限公司 具有自愈性、自粘性的防水卷材及防水结构
CN112018381B (zh) * 2019-05-28 2023-12-15 丰田自动车株式会社 活性物质和氟离子电池
JP7147726B2 (ja) * 2019-05-28 2022-10-05 トヨタ自動車株式会社 活物質およびフッ化物イオン電池
CN110963505B (zh) * 2019-12-06 2023-04-28 深圳市中科墨磷科技有限公司 一种Li插层H型二维纳米片的制备方法及其在光电固氮中的应用
KR20210150217A (ko) * 2020-06-03 2021-12-10 주식회사 엘지에너지솔루션 배터리 상태 진단 장치 및 방법
WO2022050101A1 (ja) * 2020-09-01 2022-03-10 株式会社Gsユアサ 正極活物質、正極、非水電解質蓄電素子、蓄電装置、正極活物質の製造方法、正極の製造方法、及び非水電解質蓄電素子の製造方法
CN113135553B (zh) * 2021-04-22 2022-11-04 陕西科技大学 一种氮化钨包覆氮化钒粉体及其制备方法和应用

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116393A (ja) * 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
JP2005340165A (ja) * 2004-03-23 2005-12-08 Shirouma Science Co Ltd リチウム二次電池用正極材料
WO2006080110A1 (ja) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. リチウム二次電池用正極材料
JP2007250993A (ja) * 2006-03-17 2007-09-27 Kaneka Corp 粉体の導電性高分子を電極に用いた電気化学素子
WO2007116363A2 (en) * 2006-04-07 2007-10-18 High Power Lithium S.A. Lithium rechargeable electrochemical cell
WO2008081944A1 (ja) * 2006-12-28 2008-07-10 Gs Yuasa Corporation 非水電解質二次電池用正極材料、それを備えた非水電解質二次電池、及びその製造法
JP2008258143A (ja) * 2007-04-03 2008-10-23 Toyota Motor Engineering & Manufacturing North America Inc 活性担持マトリックスにおけるスズ
WO2009012899A1 (de) * 2007-07-25 2009-01-29 Varta Microbattery Gmbh Elektroden und lithium-ionen-zellen mit neuartigem elektrodenbinder
JP2010219047A (ja) * 2009-03-12 2010-09-30 Swatch Group Research & Development Ltd 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材

Family Cites Families (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2007105A (en) * 1933-07-18 1935-07-02 Firm Bulova Watch Company Inc Self-winding wrist watch
US5437940A (en) * 1986-10-14 1995-08-01 Westinghouse Electric Corporation High power energy compression device
US4999263A (en) * 1987-04-15 1991-03-12 Ricoh Company, Ltd. Sheet-shaped electrode, method or producing the same, and secondary battery
US4849309A (en) * 1988-08-01 1989-07-18 The United States Of America As Represented By The United States Department Of Energy Overcharge tolerant high-temperature cells and batteries
JPH0817094B2 (ja) * 1989-11-24 1996-02-21 セントラル硝子株式会社 電極材料およびその製造法
US5418090A (en) * 1993-02-17 1995-05-23 Valence Technology, Inc. Electrodes for rechargeable lithium batteries
JPH06290782A (ja) * 1993-03-30 1994-10-18 Sanyo Electric Co Ltd 非水系電解質二次電池
JP3423082B2 (ja) * 1994-08-31 2003-07-07 三洋電機株式会社 リチウム二次電池
EP0810681B1 (en) 1996-05-31 2002-03-27 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
JP4172443B2 (ja) 1996-07-19 2008-10-29 ソニー株式会社 非水電解液二次電池用負極材料及び非水電解液二次電池
JP3526707B2 (ja) 1996-11-27 2004-05-17 株式会社トクヤマ 非水電解液二次電池用負極活物質および非水電解液二次電池
JP4453111B2 (ja) 1997-10-27 2010-04-21 三菱化学株式会社 負極材料とその製造方法、負極活物質、および非水系二次電池
WO1999023712A1 (en) * 1997-10-30 1999-05-14 T/J Technologies, Inc. Transition metal-based ceramic material and articles fabricated therefrom
JP4078698B2 (ja) 1997-12-03 2008-04-23 宇部興産株式会社 非水二次電池用負極材料とその製造方法および電池
CN1262533A (zh) * 1999-01-28 2000-08-09 中国科学院物理研究所 一种二次锂电池
JP4547748B2 (ja) * 1999-10-29 2010-09-22 パナソニック株式会社 非水電解質電池
EP1249047B1 (en) * 1999-11-08 2010-08-25 NanoGram Corporation Electrodes including particles of specific sizes
US6998069B1 (en) 1999-12-03 2006-02-14 Ferro Gmbh Electrode material for positive electrodes of rechargeable lithium batteries
JP4106644B2 (ja) 2000-04-04 2008-06-25 ソニー株式会社 電池およびその製造方法
JP2002008647A (ja) * 2000-06-23 2002-01-11 Ryoji Mishima 非水電解質二次電池負極材
US7387851B2 (en) * 2001-07-27 2008-06-17 A123 Systems, Inc. Self-organizing battery structure with electrode particles that exert a repelling force on the opposite electrode
EP1207572A1 (en) * 2000-11-15 2002-05-22 Dr. Sugnaux Consulting Mesoporous electrodes for electrochemical cells and their production method
CA2327370A1 (fr) * 2000-12-05 2002-06-05 Hydro-Quebec Nouvelle methode de fabrication de li4ti5o12 pur a partir du compose ternaire tix-liy-carbone: effet du carbone sur la synthese et la conductivite de l'electrode
EP1244168A1 (en) * 2001-03-20 2002-09-25 Francois Sugnaux Mesoporous network electrode for electrochemical cell
EP1244114A1 (de) * 2001-03-20 2002-09-25 ILFORD Imaging Switzerland GmbH Elektrisch aktive Filme
KR20040047780A (ko) * 2001-07-27 2004-06-05 메사추세츠 인스티튜트 오브 테크놀로지 베터리 구조, 자기 조직화 구조 및 관련 방법
JP4619000B2 (ja) * 2001-07-27 2011-01-26 マサチューセッツ インスティテュート オブ テクノロジー 電池構造、自己組織化構造、及び関連方法
EP1484809A4 (en) * 2002-02-07 2008-08-13 Noboru Oyama REDOXACTIVE REVERSIBLE ELECTRODE AND NOVEL CELL THEREOF
JP2004022507A (ja) * 2002-06-20 2004-01-22 Sony Corp 電極およびそれを用いた電池
JP3586270B2 (ja) 2002-08-15 2004-11-10 株式会社東芝 正極活物質及び非水電解質電池
US7531267B2 (en) * 2003-06-02 2009-05-12 Kh Chemicals Co., Ltd. Process for preparing carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder
CA2432397A1 (fr) * 2003-06-25 2004-12-25 Hydro-Quebec Procede de preparation d'electrode a partir d'un silicium poreux, electrode ainsi obtenue et systeme electrochimique contenant au moins une telle electrode
DE10353266B4 (de) 2003-11-14 2013-02-21 Süd-Chemie Ip Gmbh & Co. Kg Lithiumeisenphosphat, Verfahren zu seiner Herstellung und seine Verwendung als Elektrodenmaterial
KR100537745B1 (ko) * 2004-06-21 2005-12-19 한국전기연구원 리튬이차전지용 음극 활물질 및 그 제조방법
US7927742B2 (en) * 2004-10-29 2011-04-19 Medtronic, Inc. Negative-limited lithium-ion battery
DE102004053479A1 (de) * 2004-11-05 2006-05-11 Dilo Trading Ag Hochleistungsbatterien mit Titanaten als negativem und Eisenphosphat als positivem Elektrodenmaterial und Verfahren zur Herstellung der Hochleistungsbatterien
KR100661116B1 (ko) * 2004-11-22 2006-12-22 가부시키가이샤후지쿠라 전극, 광전 변환 소자 및 색소 증감 태양 전지
US7615314B2 (en) * 2004-12-10 2009-11-10 Canon Kabushiki Kaisha Electrode structure for lithium secondary battery and secondary battery having such electrode structure
FR2885734B1 (fr) 2005-05-13 2013-07-05 Accumulateurs Fixes Materiau nanocomposite pour anode d'accumulateur au lithium
KR20080033335A (ko) * 2005-07-01 2008-04-16 신벤션 아게 다공성 망상 복합 물질의 제조 방법
US7968231B2 (en) * 2005-12-23 2011-06-28 U Chicago Argonne, Llc Electrode materials and lithium battery systems
JP2008041465A (ja) * 2006-08-08 2008-02-21 Sony Corp 非水電解質二次電池用負極、その製造方法及び非水電解質二次電池
US7722991B2 (en) * 2006-08-09 2010-05-25 Toyota Motor Corporation High performance anode material for lithium-ion battery
US7940447B2 (en) * 2006-12-04 2011-05-10 3M Innovative Properties Company Electrochromic device
JP5142515B2 (ja) 2006-12-19 2013-02-13 三洋電機株式会社 非水電解質二次電池
CN100461507C (zh) * 2006-12-27 2009-02-11 中国科学院上海微系统与信息技术研究所 纳米磷酸亚铁锂-碳复合正极材料的制备方法
WO2008097990A1 (en) * 2007-02-07 2008-08-14 Valence Technology, Inc. Oxynitride-based electrode active materials for secondary electrochemical cells
US8936874B2 (en) * 2008-06-04 2015-01-20 Nanotek Instruments, Inc. Conductive nanocomposite-based electrodes for lithium batteries
JP5541560B2 (ja) * 2008-10-03 2014-07-09 株式会社Gsユアサ 正極材料、正極材料の製造方法、及び該製造方法で製造された正極材料が備えられている非水電解質二次電池
JP5684462B2 (ja) * 2008-12-22 2015-03-11 昭和電工パッケージング株式会社 正極タブリード及び電池
US8241793B2 (en) * 2009-01-02 2012-08-14 Nanotek Instruments, Inc. Secondary lithium ion battery containing a prelithiated anode
US9093693B2 (en) * 2009-01-13 2015-07-28 Samsung Electronics Co., Ltd. Process for producing nano graphene reinforced composite particles for lithium battery electrodes
EP2237346B1 (en) 2009-04-01 2017-08-09 The Swatch Group Research and Development Ltd. Electrically conductive nanocomposite material comprising sacrificial nanoparticles and open porous nanocomposites produced thereof
EP2228855B1 (en) * 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
US8624105B2 (en) * 2009-05-01 2014-01-07 Synkera Technologies, Inc. Energy conversion device with support member having pore channels

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116393A (ja) * 2003-10-09 2005-04-28 Sumitomo Osaka Cement Co Ltd 電極材料粉体の製造方法と電極材料粉体及び電極並びにリチウム電池
JP2005340165A (ja) * 2004-03-23 2005-12-08 Shirouma Science Co Ltd リチウム二次電池用正極材料
WO2006080110A1 (ja) * 2005-01-26 2006-08-03 Shirouma Science Co., Ltd. リチウム二次電池用正極材料
JP2007250993A (ja) * 2006-03-17 2007-09-27 Kaneka Corp 粉体の導電性高分子を電極に用いた電気化学素子
WO2007116363A2 (en) * 2006-04-07 2007-10-18 High Power Lithium S.A. Lithium rechargeable electrochemical cell
WO2008081944A1 (ja) * 2006-12-28 2008-07-10 Gs Yuasa Corporation 非水電解質二次電池用正極材料、それを備えた非水電解質二次電池、及びその製造法
JP2008258143A (ja) * 2007-04-03 2008-10-23 Toyota Motor Engineering & Manufacturing North America Inc 活性担持マトリックスにおけるスズ
WO2009012899A1 (de) * 2007-07-25 2009-01-29 Varta Microbattery Gmbh Elektroden und lithium-ionen-zellen mit neuartigem elektrodenbinder
JP2010219047A (ja) * 2009-03-12 2010-09-30 Swatch Group Research & Development Ltd 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材

Cited By (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018828A (ja) * 2010-04-28 2018-02-01 株式会社半導体エネルギー研究所 二次電池用電極
US10916774B2 (en) 2010-04-28 2021-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
US10224548B2 (en) 2010-04-28 2019-03-05 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage
JP2016185902A (ja) * 2010-05-14 2016-10-27 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se グラフェンで金属と金属酸化物をカプセル化する方法とこれらの材料の使用方法
US8999574B2 (en) 2010-10-07 2015-04-07 Battelle Memorial Institute Method of preparing graphene-sulfur nanocomposites for rechargeable lithium-sulfur battery electrodes
JP2013539193A (ja) * 2010-10-07 2013-10-17 バッテル メモリアル インスティチュート 充電式リチウム−硫黄電池電極用のグラフェン−硫黄ナノ複合体
JP2012099467A (ja) * 2010-10-08 2012-05-24 Semiconductor Energy Lab Co Ltd 蓄電装置用正極活物質の作製方法および蓄電装置
US9490474B2 (en) 2010-10-08 2016-11-08 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
US10164243B2 (en) 2010-10-08 2018-12-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing positive electrode active material for energy storage device and energy storage device
JP2014504436A (ja) * 2010-12-31 2014-02-20 深▲セン▼大学 類グラフェンを含有したリチウムイオン電池の正極素材の製造方法
US11101460B2 (en) 2011-03-25 2021-08-24 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing electrode comprising graphene layer on current collector
KR20140027166A (ko) * 2011-03-25 2014-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 2차 전지
US10205160B2 (en) 2011-03-25 2019-02-12 Semiconductor Energy Laboratory Co., Ltd. Graphene composite oxide layered electrode for lithium-ion secondary batteries
KR101954780B1 (ko) 2011-03-25 2019-03-06 가부시키가이샤 한도오따이 에네루기 켄큐쇼 리튬 이온 2차 전지
US9059478B2 (en) 2011-03-25 2015-06-16 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery with graphene and composite oxide layered electrode
JP2012216515A (ja) * 2011-03-25 2012-11-08 Semiconductor Energy Lab Co Ltd リチウムイオン二次電池
JP2017098270A (ja) * 2011-03-25 2017-06-01 株式会社半導体エネルギー研究所 リチウムイオン二次電池
WO2012132307A1 (en) * 2011-03-25 2012-10-04 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion secondary battery
US11898261B2 (en) 2011-08-19 2024-02-13 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
JP2019011248A (ja) * 2011-08-19 2019-01-24 株式会社半導体エネルギー研究所 グラフェン被覆シリコン
JP2013060355A (ja) * 2011-08-19 2013-04-04 Semiconductor Energy Lab Co Ltd グラフェン被覆物体の作製方法、炭素系被膜を用いた二次電池の負極、及びそれを用いた二次電池
US9815691B2 (en) 2011-08-19 2017-11-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
WO2013027561A1 (en) * 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US10544041B2 (en) 2011-08-19 2020-01-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
US11248307B2 (en) 2011-08-19 2022-02-15 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
CN103765641A (zh) * 2011-08-29 2014-04-30 株式会社半导体能源研究所 锂离子电池用正极活性物质的制造方法
US8470477B2 (en) 2011-08-29 2013-06-25 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US8685570B2 (en) 2011-08-29 2014-04-01 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US10096428B2 (en) 2011-08-29 2018-10-09 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
US9711292B2 (en) 2011-08-29 2017-07-18 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
WO2013031929A1 (en) * 2011-08-29 2013-03-07 Semiconductor Energy Laboratory Co., Ltd. Method of manufacturing positive electrode active material for lithium ion battery
JP2013171837A (ja) * 2012-02-17 2013-09-02 Belenos Clean Power Holding Ag カソードの配合活性材料を有する、非水性二次電池
KR101534386B1 (ko) * 2012-02-17 2015-07-06 벨레노스 클린 파워 홀딩 아게 배합된 캐소드 활물질을 갖는 비수계 이차 배터리
WO2013128936A1 (ja) * 2012-02-28 2013-09-06 株式会社豊田自動織機 活物質複合体及びその製造方法、非水電解質二次電池用正極活物質、並びに非水電解質二次電池
JP2018160383A (ja) * 2017-03-23 2018-10-11 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料およびその製造方法、リチウムイオン二次電池用正極、リチウムイオン二次電池

Also Published As

Publication number Publication date
EP2228854B1 (en) 2014-03-05
EP2228855A1 (en) 2010-09-15
CN102064313A (zh) 2011-05-18
JP5702073B2 (ja) 2015-04-15
IL204466A0 (en) 2010-12-30
JP2010232174A (ja) 2010-10-14
EP2228854A1 (en) 2010-09-15
KR20100103429A (ko) 2010-09-27
TW201106522A (en) 2011-02-16
TWI458169B (zh) 2014-10-21
KR20100103428A (ko) 2010-09-27
IL204435A0 (en) 2010-12-30
AU2010200960A1 (en) 2010-09-30
KR101313350B1 (ko) 2013-10-01
TW201037884A (en) 2010-10-16
US20100233546A1 (en) 2010-09-16
US9761867B2 (en) 2017-09-12
EP2228855B1 (en) 2014-02-26
US8426061B2 (en) 2013-04-23
CN102064313B (zh) 2015-09-02
AU2010200959A1 (en) 2010-09-30
US20100233538A1 (en) 2010-09-16
CN101916859A (zh) 2010-12-15

Similar Documents

Publication Publication Date Title
JP5702073B2 (ja) 開放多孔質電気伝導性ナノ複合材料
JP5650418B2 (ja) 犠牲ナノ粒子を含む電気伝導性ナノ複合材料およびそれから生成される開放多孔質ナノ複合材
TWI458165B (zh) 包含犠牲性奈米粒子及其所產生之開孔式奈米複合物之導電性奈米複合物材料
Du et al. Core-shell structured ZnS-C nanoparticles with enhanced electrochemical properties for high-performance lithium-ion battery anodes
Li et al. Lithium polyacrylate as a binder for tin–cobalt–carbon negative electrodes in lithium-ion batteries
Qin et al. Morphology controlled synthesis and modification of high-performance LiMnPO 4 cathode materials for Li-ion batteries
Kim et al. High-performance FeSb–TiC–C nanocomposite anodes for sodium-ion batteries
US20140072879A1 (en) Encapsulated phthalocyanine particles, high-capacity cathode containing these particles, and rechargeable lithium cell containing such a cathode
Yin et al. Effects of binders on electrochemical properties of the SnS2 nanostructured anode of the lithium-ion batteries
Zou et al. Preparation of carbon-coated LiFe0. 2Mn0. 8PO4 cathode material and its application in a novel battery with Li4Ti5O12 anode
Yan et al. Synergetic Fe substitution and carbon connection in LiMn1− xFexPO4/C cathode materials for enhanced electrochemical performances
Yang et al. Li3V2 (PO4) 3/C composite materials synthesized using the hydrothermal method with double-carbon sources
JP2022553798A (ja) 乱層炭素コーティングを含む熱不均化されたアノード活物質
Ding et al. Synthesis of high rate performance LiFe1− xMnxPO4/C composites for lithium-ion batteries
Kim et al. Effect of synthetic conditions on the electrochemical properties of LiMn0. 4Fe0. 6PO4/C synthesized by sol–gel technique
Yang et al. Engineered Si@ alginate microcapsule-graphite composite electrode for next generation high-performance lithium-ion batteries
US10374215B2 (en) Centrifugation-assisted preparation of additive-free carbon-decorated magnetite electrodes
Fathollahi et al. LiFePO4/C composite cathode via CuO modified graphene nanosheets with enhanced electrochemical performance
Gómez-Cámer et al. Electrochemical study of Si/C composites with particulate and fibrous morphology as negative electrodes for lithium-ion batteries
Zhao et al. Environmentally benign and scalable synthesis of LiFePO4 nanoplates with high capacity and excellent rate cycling performance for lithium ion batteries
WO2018156355A1 (en) Core-shell electrochemically active particles with modified microstructure and use for secondary battery electrodes
Wi et al. Evaluation of graphene-wrapped LiFePO 4 as novel cathode materials for Li-ion batteries
Wang et al. Enhanced electrochemical performance of Li3V2 (PO4) 3 structurally converted from LiVOPO4 by graphite nanofiber addition
Shin et al. Li (Mn0. 4Fe0. 6) PO4 cathode active material: Synthesis and electrochemical performance evaluation
Lu et al. Cesium-doped graphene grown in situ with ultra-small TiO 2 nanoparticles for high-performance lithium-ion batteries

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20100623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100623

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140408

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20140708

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20140711

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140717

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140819

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141203

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20141210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150219

R150 Certificate of patent or registration of utility model

Ref document number: 5702073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250