TWI611032B - 導電靶材 - Google Patents

導電靶材 Download PDF

Info

Publication number
TWI611032B
TWI611032B TW103126722A TW103126722A TWI611032B TW I611032 B TWI611032 B TW I611032B TW 103126722 A TW103126722 A TW 103126722A TW 103126722 A TW103126722 A TW 103126722A TW I611032 B TWI611032 B TW I611032B
Authority
TW
Taiwan
Prior art keywords
target
carbon
conductive target
conductive
present
Prior art date
Application number
TW103126722A
Other languages
English (en)
Other versions
TW201510248A (zh
Inventor
彼德 波爾瑟克
安瑞克 法蘭斯格
馬克思 沃爾夫
Original Assignee
攀時歐洲公司
攀時組成物質有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 攀時歐洲公司, 攀時組成物質有限公司 filed Critical 攀時歐洲公司
Publication of TW201510248A publication Critical patent/TW201510248A/zh
Application granted granted Critical
Publication of TWI611032B publication Critical patent/TWI611032B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/34Arrangements of heating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/3414Targets
    • H01J37/3426Material
    • H01J37/3429Plural materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/013Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics containing carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/447Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on phosphates, e.g. hydroxyapatite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • C04B35/645Pressure sintering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/02Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/06Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air lump and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C1/00Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air
    • F23C1/10Combustion apparatus specially adapted for combustion of two or more kinds of fuel simultaneously or alternately, at least one kind of fuel being either a fluid fuel or a solid fuel suspended in a carrier gas or air liquid and pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/007Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel liquid or pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K3/00Feeding or distributing of lump or pulverulent fuel to combustion apparatus
    • F23K3/02Pneumatic feeding arrangements, i.e. by air blast
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B7/00Rotary-drum furnaces, i.e. horizontal or slightly inclined
    • F27B7/20Details, accessories, or equipment peculiar to rotary-drum furnaces
    • F27B7/36Arrangements of air or gas supply devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D99/00Subject matter not provided for in other groups of this subclass
    • F27D99/0001Heating elements or systems
    • F27D99/0033Heating elements or systems using burners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/40Printed batteries, e.g. thin film batteries
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3201Alkali metal oxides or oxide-forming salts thereof
    • C04B2235/3203Lithium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/422Carbon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/666Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本發明係關於一種導電靶材,其包含主要一種鋰化合物、較佳磷酸鋰,及碳,以及典型雜質。本發明進一步係關於一種製造導電靶材之方法且係關於其用途。

Description

導電靶材
本發明係關於一種導電靶材,其包含主要一種鋰化合物、較佳磷酸鋰,及碳,以及典型雜質。本發明進一步係關於一種製造導電靶材之方法且係關於其用途。
由以下構成之靶材係用於物理氣相沈積(PVD)系統中用於沈積鋰離子電解質層:鋰化合物,例如磷酸鋰(Li3PO4)、氧化鋰鑭鋯(Li7La3Zr2O12),或其他含鋰化合物,例如Li3P、Li2O、Li3N、LiBO2、Li2SO4、Lil或LiBP,或含有鋰化合物之複合材料,例如Li2SO4-SiS2-P2S5。以此方式沈積之層可用於製造薄膜電池,其中經沈積之鋰離子電解質層應具有極低電導率,且較佳應為電絕緣。其作為電解質層之適合性產生於其離子電導率。
一般而言,藉助於RF/HF(射頻/高頻)反應濺鍍方法實現該等鋰離子電解質層之沈積;例如,在沈積操作過程中在氮氣及/或氧氣之參與下濺鍍磷酸鋰標靶,形成具有高離子電導率之含氮LiPON層。習知的由鋰化合物、尤其磷酸鋰構成之單相靶材及其製造鋰離子電解質層之用途係描述於例如WO 2008 58171 A2中。
當然,同樣可能亦藉由沈積相應靶材來製造其他類型之鋰離子電解質層。然而,習知的由鋰化合物、例如磷酸鋰(Li3PO4)構成之靶材之低電導率極大地限制DC(直流)及脈衝DC濺鍍方法之使用,且因此限 制所製造之鋰離子電解質層之可達成的沈積速率。充分絕緣靶材無法經由DC及脈衝DC濺鍍來沈積。
例如根據描述陶瓷靶材中之摻雜元素(尤其銀、錫、鋅、鉍及銻)之用途的WO 2007 042394 A1,已知可能隨後亦用於DC或脈衝DC濺鍍方法之導電靶材。
然而,摻雜金屬元素之缺點在於,為了防止此等元素在其沈積過程中併入層中且因此在該層中能夠導電,高度複雜性為必需的。舉例而言,分別選擇性將金屬元素或者在濺鍍方法過程中形成之其化合物沈積於經冷卻之板片或碟片上可為必需的。
經由提供本質上導電靶材來製造鋰離子電解質層之方法描述於US 2009 0159433 A1中。在此方法中,以反應濺鍍方法(DC、脈衝DC、AC或RF),在氧氣及氮氣存在下侵蝕由若干不同的鋰及/或磷化合物(例如Li3P、Li3N或P2O3)組成之標靶,且由此製造鋰離子電解質層。此處必須經由靶材中之不同的個別化合物之比率及經由濺鍍氛圍中氧氣比氮氣之比率,設定所製造之薄層之所要組成。此隨後在方法參數之選擇中以及在同樣需要高成本的相應靶材之製造中,導致高度複雜性。
就在靶材中使用複數種不同化合物而言,亦存在沈積具有非均質性質之層的風險。此對於該等鋰離子電解質層之所需恆定離子電導率尤其不利。另外,存在複數種具有不同熱導率及/或熱膨脹係數之化合物導致熱震穩定性降低,該降低之熱震穩定性可能隨後對靶材之機械強度產生不利影響。
就在靶材中使用複數種不同化合物而言,另一缺點為各種化合物存在不同濺鍍速率。此可能會致使難以沈積具有恆定厚度之層。
因此,本發明之一目標為提供一種導電靶材,其適用於藉助 於DC或脈衝DC濺鍍來沈積鋰離子電解質層。
待沈積之層的所要化學組成應易於設定且在全層中為均質的。另外,導電靶材應具有高熱震穩定性以及高程序穩定性,且因而確保低成本。應避免所提及之缺點。
藉由根據申請專利範圍第1項之導電靶材及藉由根據申請專利範圍第11項之製造導電靶材之方法,實現該目標。根據申請專利範圍附屬項,本發明之有利發展為顯而易見的。
本發明之導電靶材包含主要一種鋰化合物及碳以及典型雜質。其特徵在於該碳主要以元素形式以大於50%之比例存在。
1‧‧‧富含主要一種鋰化合物之區域,此情況下為富含磷酸鋰之區域
2‧‧‧元素碳區域
3‧‧‧與影像斷面對應之一部分滲透碳簇
圖式展示:圖1 本發明之導電靶材之微觀結構,其為光學顯微鏡影像。此光學顯微鏡影像展示:富含主要一種鋰化合物之區域,在此情況下為富含磷酸鋰之區域1,元素碳區域2,及與影像斷面對應之一部分滲透碳簇3
圖2 藉助於x射線繞射(XRD)對本發明之導電靶材進行之相測定(所使用之JCPDS卡:Li3PO4:00-015-0760;碳(石墨)00-023-0064;Li2CO3:00-022-1141)
圖3 本發明之靶材中的電導率[S/mm]對比所引入之碳含量[at%]
圖4 本發明之導電靶材之沈積速率及輸入功率與先前技術的比較
此處「主要一種鋰化合物(Essentially one lithium compound)」應理解為意謂靶材包含主要一種鋰化合物,其以靶材之切割表面上之面積計,較佳佔大於或等於80%之比例。
此處術語「鋰化合物(lithium compound)」包括可以化學計量或非化學計量形式存在之鋰的所有結晶及非晶形化合物。可用於實施本 發明之鋰化合物之實例為磷酸鋰(Li3PO4)、碳酸鋰(Li2CO3),以及Li2SO4、Li7La3Zr2O12、Li3P、Li2O、Li3N、LiBO2、Lil或LiBP。
為了測定主要一種鋰化合物以面積(在導電靶材之切割表面上所量測)計之比例,製造金相斷面,且藉由光學顯微法或電子顯微法分析該金相斷面。藉助於市售影像分析軟體,在由此產生之顯微鏡影像上執行面積分析為可能的。經由用於測定該微觀結構之個別相組分之影像分析,典型地經由對比待識別之相,實現此舉。
已發現將鋰化合物磷酸鋰(Li3PO4)用於本發明之導電靶材將為特別有利的,因為可由此在製造鋰離子電解質層之過程中實現特別高之沈積速率。出於此原因,在本發明之較佳具體實例中,主要一種鋰化合物為磷酸鋰。
較佳地,本發明之導電靶材由此包含磷酸鋰及碳,以及典型雜質。其特徵在於該碳主要以元素形式以大於50%之比例存在。
當本發明之導電靶材中存在之碳以元素形式以大於75%之比例存在時,為更佳的。
當所存在之碳以元素形式以大於90%之比例存在時,為更佳的。
當所存在之碳以元素形式以大於95%之比例存在時,為更佳的。
當所存在之碳以元素形式以大於99%之比例存在時,為更佳的。
當所存在之碳僅僅以元素形式以可忽略之比例溶解於主要一種鋰化合物(較佳磷酸鋰)中而存在時,為尤其較佳的。
「典型雜質(Typical impurity)」係指由來源於所使用之原材料之氣體或隨附元素所產生的製造相關污染。該等雜質在本發明之導電靶 材中之比例為大約1000ppm以下。如吾人所熟知,用於化學元素分析之適合方法視待分析之化學元素而定。為了化學分析本發明之導電靶材,使用電感耦合電漿光學發射光譜法(optical emission spectrometry with inductively coupled plasma,ICP-OES)、X射線螢光分析(X-ray fluorescence analysis,RFA)及輝光放電質譜法(glow discharge mass spectrometry,GDMS)。
此處碳之元素形式係指純碳,例如呈石墨形式。本發明之導電靶材中存在之碳由此較佳較小程度地或僅可忽略程度地溶解於主要一種鋰化合物(較佳磷酸鋰)中,以及僅形成可忽略地小含量(若存在)之額外化合物。
元素碳之其他表現為例如鑽石、富勒烯(fullerene)或其他非晶形碳,但在本發明之上下文中,其他晶體結構及sp2:sp3混成化比率亦應被視為元素碳。
本發明之靶材中存在之碳的元素形式避免靶材中之若干不同化合物之上述缺點。
在本發明之靶材中,碳由此形成微觀結構之單獨組分,且並非該微觀結構之另一組分之主要成分。此形式之碳使得本發明之導電靶材之電導率顯著提高。
此處以元素形式存在之碳的比例應理解為意謂佔靶材中存在之全部碳的比率。
以元素形式存在之碳的比例愈高,藉由本發明之靶材中之具體碳含量(例如以at%計)可達成之電導率及熱導率愈高。
本發明之導電靶材較佳包含至少一個自靶材之一側滲透至該靶材之相對側的碳簇。
與習知的不具有滲透碳簇之靶材相比,此種滲透碳簇為電導率顯著提高之原因,因為電流可沿至少一個滲透碳簇自導電靶材之一側流 至導電靶材之另一側。
此種滲透碳簇應理解為本發明之靶材中存在之全部碳的一部分,且從而較佳由元素碳組成。
滲透簇為來自滲透理論之中心術語,該滲透理論作為描述例如合金之電導率之現象的方法為熟習此項技術者已知。當簇連接嵌入空間之相對邊緣時,該簇被稱作滲透。
本發明之導電靶材具有較佳二相微觀結構,其中以網路方式將碳配置於富含主要一種鋰化合物之區域(較佳富含磷酸鋰之區域)周圍。
此處微觀結構應理解為意謂靶材之特定組分(相)之配置。可藉助於光學顯微鏡或掃描電子顯微鏡(SEM)藉由習用方法,例如在製造金相斷面後觀測材料之微觀結構。
圖1舉例而言展示本發明之導電靶材之微觀結構的光學顯微鏡影像。此光學顯微鏡影像展示:富含主要一種鋰化合物之區域,在此情況下為富含磷酸鋰之區域1,元素碳區域2,及與影像斷面對應之一部分滲透碳簇3。
此處「二相(Biphasic)」應理解為意謂至少兩種特徵為化學組成及/或晶體結構不同之不同組分(相)存在於本發明之導電靶材中。就包含主要一種鋰化合物(較佳磷酸鋰)及碳以及典型雜質之本發明之導電靶材而言,主要一種鋰化合物(較佳磷酸鋰)形成較佳二相微觀結構之第一相,且元素碳形成較佳二相微觀結構之第二相。此處較小比例之典型雜質不應被視為與本發明之導電靶材之較佳二相微觀結構有關的其他相。
在本發明之具體實例中,除主要一種鋰化合物、較佳磷酸鋰及碳之外,導電靶材之微觀結構亦可包含較小比例之其他鋰化合物,例如碳酸鋰(Li2CO3)。該等化合物可已經以較小含量存在於起始粉末中,或在例如壓實過程之製造製程之過程中形成。該等較小比例之其他鋰化合物亦 不應被視為與本發明之導電靶材之較佳二相微觀結構有關的其他相。
藉助於x射線繞射測定法(XRD)使用相關JCPDS卡(考慮到各別x射線晶體法偵測極限),可能偵測到或排除該等化合物之存在。亦可能藉由此方法測定較佳二相微觀結構之存在。
圖2舉例而言展示藉助於x射線繞射(XRD)對本發明之導電靶材進行之相測定(所使用之JCPDS卡:Li3PO4:00-015-0760;碳(石墨)00-023-0064;Li2CO3:00-022-1141)。
在本發明之導電靶材中,由此存在至少兩種相互可識別組分(相)。微觀結構之大部分由主要一種鋰化合物、較佳磷酸鋰組成,當在顯微鏡中觀測時,其以均質二維區域形式存在。
元素碳以網路方式配置於此等二維區域周圍,此處網路係指碳之較佳相干形式。可能經由選擇所使用之起始粉末之粒度及所執行之混合操作,影響在製造製程中此網路形成之程度。
另外,添加之碳的含量(例如以at%計)以及所使用之起始粉末之粒度亦影響網路之形成,且影響所形成之主要一種鋰化合物區域(較佳磷酸鋰區域)及碳區域之三維及因此可見之二維程度。
舉例而言,假定碳含量相同,起始粉末、尤其主要一種鋰化合物、較佳磷酸鋰之所選粒度愈小,網路愈難以形成。
典型地,在貫穿三維靶材之二維斷面中分析本發明之導電靶材之微觀結構。本發明之導電靶材之三維微觀結構基本上為均向性的,意謂在與觀測平面有關之微觀結構中,基本上不存在差異(若存在),且材料性質與方向無相關性。
本發明之導電靶材較佳具有介於3%與20%之間的比例之碳,該比例以在靶材之切割表面上所量測之面積計。
為了測定碳以面積(在導電靶材之切割表面上所量測)計之 比例,製造金相斷面,且藉由光學顯微法或電子顯微法分析該金相斷面。藉助於市售影像分析軟體,在由此產生之顯微鏡影像上執行面積分析為可能的。經由用於測定該微觀結構之個別相組分之影像分析,典型地經由對比待識別之相,實現此舉。
若碳以面積(在靶材之切割表面上所量測)計之比例低於3%,則靶材之所要電學性質不再達到最佳程度。以面積計低於3%之過低比例的碳之另一缺點為可加工性降低,尤其就經由放電電漿燒結(SPS)製造而言。
以面積計大於20%之碳比例已使得碳向藉助於導電靶材沈積之層中之併入增加。因此,可出現所要層性質可能不再達到最佳程度之情況。
優先考慮5%至15%之比例之碳,該比例以在本發明之導電靶材之切割表面上所量測的面積計。在此範圍內,可達成之性質組合為特別有利的,且可能實現特別高之輸入功率及沈積速率。更特定而言,在濺鍍方法過程中,藉由移除在此較佳範圍內經最佳化之熱量,以便維持所量測之碳以面積計之比例,來確保此舉。
本發明之導電靶材較佳含有介於3at%與20at%之間的碳。
經由向wt%之轉換及適合含量之粉末之起始重量,設定本發明之導電靶材之以at%計的碳含量。在成品靶材中,可經由熱氣提取(亦燃燒分析),檢核或偵測以at%計之碳含量。此涉及在氧化鋁坩堝中在氧氣流中、在<1600℃之溫度下焚化所存在之碳,且藉助於紅外單元,以該碳之氧化物形式對其進行測定。
在低於3at%之碳含量下,在製造中可加工性已可能降低,尤其就藉助於放電電漿燒結(SPS)製造而言。在超過20at%之碳含量下,碳向藉助於導電靶材沈積之層中的引入可能已增加。因此,可出現所要層 性質可能不再以最佳方式達成之情況。
優先考慮5at%至15at%的本發明之導電靶材之碳含量。在遠超過約5at%之含量時,所達成之電導率已足夠高,從而可能達成沈積速率之5至10倍提高。鑒於濺鍍方法之額外最佳化,亦可能進一步提高可達成之沈積速率。
所述內含物中碳之添加在本發明之導電靶材製造過程中額外調節粉末混合物之熱導率,且因此達成更佳之可壓實性。
本發明之導電靶材之電導率較佳為至少0.01S/mm。
較佳至少0.01S/mm之電導率確保可能藉助於DC或脈衝DC濺鍍方法沈積靶材。此可達成RF濺鍍方法中所達成之沈積速率之5至10倍的沈積速率。因而可能極大降低具有特定所需厚度之鋰離子電解質層之沈積所需的時間,且因此可能大幅降低所產生之成本。
優先考慮至少0.02S/mm之本發明之導電靶材的電導率。
由此可能進一步提高所達成之沈積速率且進一步降低沈積製程之成本。
電導率可藉助於傳遞量測法(例如四點量測法)藉由習知儀器、以簡單方式量測,且描述材料導電之能力。
本發明之導電靶材之熱導率較佳為至少2.5mm2/s。
與例如磷酸鋰(Li3PO4)之純鋰化合物相比,本發明之導電靶材之此增加的熱導率能夠在濺鍍方法過程中使輸入功率更高,因為可能更快速地移除靶材內所產生之熱量且降低靶材內所形成之溫度。
優先考慮至少3mm2/s之本發明之導電靶材的熱導率,因為由此可能進一步提高進入靶材之輸入功率。
此等熱導率值適用於室溫。
典型地,熱導率隨溫度上升而降低。然而,當即使在100℃ 與250℃之間的此類材料典型使用溫度下本發明之導電靶材之熱導率至少為1.5mm2/s時,亦為有利的。
熱導率可藉助於雷射閃爍法以簡單方式測定,且為特定材料之性質,該性質描述由於溫度梯度之結果由熱傳導所造成的空間溫度分佈隨時間之變化。
本發明之導電靶材較佳具有介於10ppm/K與20ppm/K之間的熱膨脹係數。
在室溫下及在約100℃至250℃之本發明之靶材典型使用溫度下,均獲得此數值範圍。相比而言,例如,在室溫下純單相磷酸鋰(Li3PO4)具有約2ppm/K之熱膨脹係數,其即使在高溫下亦不顯著增加。
本發明之導電靶材之高熱膨脹係數與彼等典型用於支撐元件(例如銅背板,銅之熱膨脹係數約16ppm/K)之材料相匹配。此熱膨脹係數匹配確保在使用過程中,靶材之抗熱震性及溫度擺幅穩定性增加。另外,因而非常實質上地避免靶材在視情況接合至支撐元件(視情況選用之接合步驟)後剝落。
本發明之靶材之熱膨脹係數可藉助於熱膨脹計量測法以簡單方式測定。
本發明之靶材之最佳化熱性質之另一益處為使用較高熔點之焊料材料,此舉允許例如Sn接合(視情況選用之接合步驟)至支撐元件。此可進一步在濺鍍方法中提高輸入功率。
本發明之導電靶材之相對密度較佳為至少95%。優先考慮至少99%之相對密度。導電靶材之相對密度愈高,其性質愈為有利。具有低於95%之相對密度之靶材具有多孔結構,其可充當虛漏且充當雜質來源。另外,具有過低相對密度之靶材傾向於吸收水及其他雜質,其隨後可能會導致沈積製程難以控制。
如吾人所熟知,相對密度可藉助於浮力法經由阿基米德原理(Archimedes' principle)、以簡單方式測定。
本發明之導電靶材之機械強度較佳為足夠高以確保在製造製程之過程中進行可能的機械加工。
本發明之導電靶材較佳意欲用於沈積用於薄膜電池之鋰離子電解質層。
沈積用於不同製造設備中之薄膜電池及用於待塗佈之基板之不同幾何形狀的鋰離子電解質層之預期用途,向本發明之導電靶材施加各種幾何要求。因此,該種材料可呈板片、圓盤、條棒、管子或具有複雜形狀之另一三維體形式。該種複雜形狀體可例如具有罐或空心陰極之形式。
藉由本發明之靶材沈積之鋰離子電解質層應僅具有極低電導率或較佳為電絕緣的。根據該種層之離子電導率,其作為電解質之適合性為顯而易見的。因此,本發明之導電靶材中存在之碳必須基本上不併入(若有的話)所沈積之層。較佳地,所存在之碳以CO或CO2形式與濺鍍氛圍之殘餘氣體中存在之氧氣鍵結,且因而經抽出。可藉由視情況選用之反應濺鍍步驟,甚至進一步降低所沈積之層中之碳含量。以此方式,靶材中存在之碳無法削弱藉由本發明之靶材沈積之鋰離子電解質層的功能。
一種自主要一種鋰化合物及碳以及典型雜質製造本發明之導電靶材之方法,較佳包含以下步驟:
- 製造包含主要一種鋰化合物及碳之粉末混合物
- 將粉末混合物引入模具中
- 藉助於壓力及/或溫度壓實粉末混合物。
因為已發現將鋰化合物磷酸鋰(Li3PO4)用於本發明之導電靶材為特別有利的,所以用於製造適用於根據本發明之方法的粉末混合物之主要一種鋰化合物較佳亦為磷酸鋰。
因此,在本發明之較佳具體實例中,自磷酸鋰及碳以及典型雜質製造導電靶材之方法,較佳包含以下步驟:
- 製造磷酸鋰及碳之粉末混合物
- 將粉末混合物引入模具中
- 藉助於壓力及/或溫度壓實粉末混合物。
藉由稱重所需粉末之量及在適合混合單元中混合直至保證粉末混合物中之組分均質分佈,來實現用於本發明之導電靶材之粉末混合物的製造。
將由此產生之粉末混合物引入模具中,根據後續壓實步驟,該模具可具有各種三維量度且可由不同材料製造。用於該等模具之典型材料為例如石墨、碳纖維增強碳(carbon fibre-reinforced carbon,CFC)、Mo或鈦鋯鉬(titanium-zirconium-molybdenum,TZM)。
隨後壓實引入模具中之粉末混合物;可藉由壓力、藉由溫度或藉由壓力與溫度實現壓實步驟。
適用於壓實步驟之方法為例如熱壓及放電電漿燒結(SPS),但其他壓實方法亦為可能的。
製造本發明之導電靶材之方法中可視情況存在的其他可能步驟為:
- 執行乾燥粉末及/或粉末混合物之步驟
- 機械加工
- 將經加工之坯料接合至一或多個支撐元件。
如經驗表明,粉末及/或粉末混合物、尤其所使用之主要一種鋰化合物之粉末(亦即較佳磷酸鋰粉末)的乾燥確保,耗散市售粉末中存在之結晶水,且因此降低粉末之氧含量且因而降低粉末混合物之氧含量。因此,此能夠更精確地控制導電靶材之化學組成,且因此亦能夠更精 確地控制由此沈積之鋰離子電解質層。可例如藉由執行熱重量分析量測法,實現乾燥步驟所需最佳溫度之最佳化。
在經由壓力及/或溫度壓實粉末混合物之後,可能需要對所獲得之坯料進行機械加工操作。該種加工步驟較佳必須以乾燥形式實現,因為在濕式加工情況下可能會發生至少坯料表面上之侵蝕。例如藉助於翻轉、碾磨或研磨之此種機械加工操作可調節或縮窄導電靶材之最終幾何形狀,以及例如設定其表面之特定所要粗糙度。
如已描述的,該種機械加工操作可在壓實粉末混合物以產生坯料後,以及在視情況選用之接合步驟後,或作為最終加工操作執行。
可藉由接合步驟,將本發明之導電靶材額外接合至一或多個適合支撐元件,例如背板或支撐管。該等支撐元件可由例如Cu、Cu合金、Ti或Ti合金製造。亦可能使用其他用於製造相應支撐元件之材料。就該種接合步驟而言,優先考慮使用具有低熔點之元件或合金,例如銦。另外,為了確保更好地潤濕,視情況可能使用例如WNi之黏著促進劑。
較佳經由熱壓(HP)或放電電漿燒結(SPS),實現製造本發明之導電靶材之方法中的壓實步驟。然而其他壓實方法,諸如熱均衡加壓(HIP)或冷均衡加壓(CIP),及後續燒結亦為可能的。
就藉助於SPS之壓實而言,藉由在模具中經由引入電流直接加熱至燒結溫度,經由壓力及溫度,實現經填充入合適模具中之粉末混合物的壓實。
使用用於壓實步驟之SPS之優勢為大幅縮短所需燒結時間,從而不需要在燒結之前所產生之生坯。
藉助於SPS壓實本發明之導電靶材較佳在介於700℃與900℃之間的溫度下進行。然而,此並不排除在低於或高於該指定範圍之溫度下壓實。
藉助於SPS壓實本發明之導電靶材較佳在介於10巴與60巴之間的壓力下進行。然而,此並不排除在低於或高於該指定範圍之壓力下壓實。
就藉助於HP壓實而言,藉由用經熱加之模具(例如石墨模具)加熱至燒結溫度,經由壓力及溫度,實現經填充入模具中之粉末混合物的壓實。
藉助於HP壓實本發明之導電靶材較佳在介於700℃與900℃之間的溫度下進行。然而,此並不排除在低於或高於該指定範圍之溫度下壓實。
較佳地,藉助於HP壓實本發明之導電靶材在介於10巴與60巴之間的壓力下進行。然而,此並不排除在低於或高於該指定範圍之壓力下壓實。
壓實所需時間視在各情況下所產生之導電靶材之尺寸而定,且可藉助於在實施壓實製程之過程中循環最佳化以簡單方式確定。
參考附圖,根據以下工作實施例之描述,本發明之其他優勢及適宜態樣為顯而易見的。
工作實施例
實施例1
在Turbula混合器中,將具有3.64μm(D50=3.09μm,D90=6.81μm)之體積加權平均粒度之磷酸鋰粉末與5at%之具有3.88μm(D50=3.49μm,D90=6.81μm)之體積流量加權平均粒度的碳粉末混合30分鐘。將由此獲得之粉末混合物引入熱壓機之石墨模具中,且在Ar氛圍下、在875℃之溫度及約3MPa之壓力下,將該粉末混合物在其中壓實2h,以產生具有261×241mm之尺寸及10mm之厚度的靶材。藉助於噴砂清潔由此獲得之靶材,且隨後在乾燥條件下將該靶材加工成最終幾何形狀。藉助於接合至銅背板 之步驟,產生成品標靶。
實施例2
在Turbula混合器中,將具有3.64μm(D50=3.09μm,D90=6.81μm)之體積加權平均粒度之磷酸鋰粉末與10at%之具有3.88μm(D50=3.49μm,D90=6.81μm)之體積流量加權平均粒度的碳粉末混合30分鐘。將由此獲得之粉末混合物引入放電電漿燒結(SPS)系統之石墨模具中,且在20巴之壓力及875℃之溫度下,將該粉末混合物在其中壓實,整個壓實過程維持1h,以產生具有73.5mm之直徑及5mm之厚度的盤形靶材。隨後藉助於乾燥加工步驟將由此獲得之靶材研磨成成品,且藉助於接合至銅背板之步驟,加工該靶材以產生成品標靶。
實施例3
類似於實施例1及實施例2製造、包含磷酸鋰及碳(10at%)之由本發明之導電靶材構成的標靶,係用以藉由以10W/cm2之輸入功率、在Ar氛圍(壓力7.5×10-3毫巴)下對靶材執行DC濺鍍實驗,來確定沈積速率。在990s之時間段內,達成1.5μm之層厚度。藉助於四點量測法對此層之電導率的量測並不產生可量測之電導率。
1‧‧‧富含主要一種鋰化合物之區域,此情況下為富含磷酸鋰之區域
2‧‧‧元素碳區域
3‧‧‧與影像斷面對應之一部分滲透碳簇

Claims (13)

  1. 一種導電靶材,其包含主要一種鋰化合物及碳以及典型雜質,其特徵在於該碳主要以元素形式以大於50%之比例存在。
  2. 如申請專利範圍第1項之導電靶材,其特徵在於該主要一種鋰化合物為磷酸鋰。
  3. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該靶材包含至少一個自該靶材之一側滲透至該靶材之相對側的碳簇。
  4. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該靶材具有二相微觀結構,其中以網路方式將碳配置於富含該主要一種鋰化合物之區域、較佳富含磷酸鋰之區域周圍。
  5. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該靶材具有介於3%與20%之間的比例之碳,該比例以在該靶材之切割表面上所量測之面積計。
  6. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該導電靶材含有介於3at%與20at%之間的碳。
  7. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該靶材之電導率為至少0.01S/mm。
  8. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該靶材之熱導率為至少2.5mm2/s。
  9. 如申請專利範圍第1項或第2項之導電靶材,其特徵在於該導電靶材具有介於10ppm/K與20ppm/K之間的熱膨脹係數。
  10. 一種如申請專利範圍第1項至第9項中任一項之導電靶材的用途,其用於沈積用於薄膜電池之鋰離子電解質層。
  11. 一種製造包含主要一種鋰化合物及碳以及典型雜質之導電靶材之方法,其特徵在於該方法包含以下步驟: - 製造包含主要一種鋰化合物及碳之粉末混合物- 將該粉末混合物引入模具中- 藉助於壓力及/或溫度壓實該粉末混合物。
  12. 如申請專利範圍第11項之製造導電靶材之方法,其特徵在於該主要一種鋰化合物為磷酸鋰。
  13. 如申請專利範圍第11項或第12項中任一項之製造導電靶材之方法,其特徵在於藉助於熱壓(HP)或放電電漿燒結(SPS)實現該壓實步驟。
TW103126722A 2013-09-05 2014-08-05 導電靶材 TWI611032B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT2882013 2013-09-05
??AGM288/2013 2013-09-05

Publications (2)

Publication Number Publication Date
TW201510248A TW201510248A (zh) 2015-03-16
TWI611032B true TWI611032B (zh) 2018-01-11

Family

ID=52627596

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103126722A TWI611032B (zh) 2013-09-05 2014-08-05 導電靶材

Country Status (7)

Country Link
US (1) US11081325B2 (zh)
EP (1) EP3041809B1 (zh)
JP (1) JP6657094B2 (zh)
KR (2) KR102389964B1 (zh)
CN (1) CN105579419B (zh)
TW (1) TWI611032B (zh)
WO (1) WO2015031920A1 (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014105531A1 (de) * 2014-04-17 2015-10-22 Schmid Energy Systems Gmbh LiPON oder LiPSON Festelektrolyt-Schichten und Verfahren zur Herstellung solcher Schichten
CN106058305B (zh) * 2016-08-12 2019-02-05 合肥国轩高科动力能源有限公司 一种用pld原位制备微型全固态薄膜锂离子电池的方法
JP6627708B2 (ja) * 2016-10-07 2020-01-08 トヨタ自動車株式会社 リチウムイオン二次電池、及び、リチウムイオン二次電池の製造方法
JP6982779B2 (ja) * 2017-04-25 2021-12-17 トヨタ自動車株式会社 非水系二次電池の製造方法
CN109553409A (zh) * 2018-12-28 2019-04-02 有研工程技术研究院有限公司 一种固态电解质薄膜用Li3PO4靶材的制备方法和应用
CN114094055A (zh) * 2021-11-11 2022-02-25 杭州电子科技大学 一种磷化锂电极的制备方法
CN114242947A (zh) * 2021-12-22 2022-03-25 杭州电子科技大学 一种碳包覆磷化锂电极及其制备方法
CN114314537B (zh) * 2021-12-30 2023-08-15 杭州电子科技大学 一种磷化锂基复合材料的制备方法及其作为补锂材料的应用
BE1030855B1 (nl) 2022-09-09 2024-04-08 Soleras Advanced Coatings Bv Geleidend sputterdoel en methode om daarmee een laag af te zetten

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234977A (ja) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd リチウム二次電池用正極材料およびその製造方法ならびにそれを用いたリチウム二次電池
TW201037884A (en) * 2009-03-12 2010-10-16 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1314884A (en) 1970-05-28 1973-04-26 Mullard Ltd Manufacturing target electrodes for x-ray tubes
JPS583966B2 (ja) * 1979-10-29 1983-01-24 日本黒鉛工業株式会社 高温パッキング用黒鉛圧縮成形体の製造方法
KR100455700B1 (ko) * 2001-11-27 2004-11-06 일진나노텍 주식회사 탄소 나노튜브를 이용하는 마이크로 전지 및 이를제조하는 방법
JP4641375B2 (ja) * 2003-10-20 2011-03-02 日立マクセル株式会社 オリビン型リン酸リチウムと炭素材料との複合体の製造方法
WO2007042394A1 (en) 2005-10-13 2007-04-19 Nv Bekaert Sa A method to deposit a coating by sputtering
US8197781B2 (en) 2006-11-07 2012-06-12 Infinite Power Solutions, Inc. Sputtering target of Li3PO4 and method for producing same
WO2009014394A2 (en) * 2007-07-25 2009-01-29 Nuricell, Inc. Method for depositing ceramic thin film by sputtering using non-conductive target
WO2009023744A1 (en) 2007-08-13 2009-02-19 University Of Virginia Patent Foundation Thin film battery synthesis by directed vapor deposition
CN101903560B (zh) * 2007-12-21 2014-08-06 无穷动力解决方案股份有限公司 用于电解质膜的溅射靶的方法
EP2135973A1 (en) 2008-06-18 2009-12-23 Centre National de la Recherche Scientifique Method for the manufacturing of sputtering targets using an inorganic polymer
TWI440597B (zh) * 2008-08-26 2014-06-11 Basf Se 於水熱條件下合成LiFePO4
JP5484928B2 (ja) 2010-01-19 2014-05-07 株式会社オハラ 全固体電池
CN102206802B (zh) * 2010-03-29 2012-12-19 苏州晶纯新材料有限公司 全固态薄膜锂离子电池相关靶材及其制造方法
KR101130302B1 (ko) 2010-08-26 2012-03-22 한국기계연구원 스파크 플라즈마 소결에 의한 세라믹 분말 대량 합성용 금형
JP2013122080A (ja) * 2011-12-12 2013-06-20 Ulvac Japan Ltd スパッタリング装置
CN103401016B (zh) * 2013-08-05 2015-08-19 宁德时代新能源科技有限公司 高能量密度锂离子电池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004234977A (ja) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd リチウム二次電池用正極材料およびその製造方法ならびにそれを用いたリチウム二次電池
TW201037884A (en) * 2009-03-12 2010-10-16 Belenos Clean Power Holding Ag Open porous electrically conductive nanocomposite material

Also Published As

Publication number Publication date
EP3041809B1 (de) 2021-03-03
CN105579419A (zh) 2016-05-11
KR20210089271A (ko) 2021-07-15
CN105579419B (zh) 2020-07-03
TW201510248A (zh) 2015-03-16
EP3041809A1 (de) 2016-07-13
JP2016536463A (ja) 2016-11-24
JP6657094B2 (ja) 2020-03-04
KR20160051772A (ko) 2016-05-11
WO2015031920A1 (de) 2015-03-12
US20160217984A1 (en) 2016-07-28
KR102389964B1 (ko) 2022-04-22
US11081325B2 (en) 2021-08-03

Similar Documents

Publication Publication Date Title
TWI611032B (zh) 導電靶材
US8197781B2 (en) Sputtering target of Li3PO4 and method for producing same
TWI622661B (zh) W-Ni濺鍍靶及其製法和用途
EP2039665A2 (en) Method of producing a lithium phosphate sintered body and sputtering target
KR101880783B1 (ko) 산화물 소결체 및 그것을 가공한 태블렛
KR101726117B1 (ko) LiCoO2 함유 소결체 및 스퍼터링 타깃, 및 LiCoO2 함유 소결체의 제조 방법
CN107299313A (zh) 用于制备立方氧化锆层的方法
US10329661B2 (en) Cu—Ga—In—Na target
KR102030892B1 (ko) Ito 스퍼터링 타겟 및 그 제조 방법 그리고 ito 투명 도전막 및 ito 투명 도전막의 제조 방법
Jiang et al. Ultrafast sintering of Na3Zr2Si2PO12 solid electrolyte for long lifespan solid-state sodium ion batteries
US20110268599A1 (en) PROCESS FOR PREPARING ZnAl TARGET MATERIAL AND ZnAl TARGET MATERIAL MADE THEREBY
JP5730903B2 (ja) スパッタリングターゲット
JP5973041B2 (ja) Cu−Gaスパッタリングターゲット及びCu−Gaスパッタリングターゲットの製造方法
CN104245623A (zh) 含Li磷酸化合物烧结体和溅射靶,及其制造方法
Zhao et al. Protective properties of YSZ/Ti film deposited on CoSb3 thermoelectric material
JP2003001748A (ja) 複合材及びその製造方法
Tomozawa et al. Ti-O Direct-Current-Sintered Bodies and Their Use for Sputter Deposition of TiO Thin Films: Fabrication and Characterization
CN106795622B (zh) 包含Al-Te-Cu-Zr基合金的溅射靶及其制造方法
JP2020183552A (ja) In−Ag合金スパッタリングターゲット部材及びその製造方法
Pang et al. KINETICS OF PHASE DECOMPOSITION IN Ti 4 AlN 3 AND Ti 2 AlN- A COMPARATIVE DIFFRACTION STUDY