CN107732170B - 一种高效锂金属复合材料及其制备方法和作为负极的应用 - Google Patents

一种高效锂金属复合材料及其制备方法和作为负极的应用 Download PDF

Info

Publication number
CN107732170B
CN107732170B CN201710845918.XA CN201710845918A CN107732170B CN 107732170 B CN107732170 B CN 107732170B CN 201710845918 A CN201710845918 A CN 201710845918A CN 107732170 B CN107732170 B CN 107732170B
Authority
CN
China
Prior art keywords
lithium metal
tic
composite material
metal composite
dimensional porous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710845918.XA
Other languages
English (en)
Other versions
CN107732170A (zh
Inventor
夏新辉
刘苏福
邓盛珏
王秀丽
涂江平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710845918.XA priority Critical patent/CN107732170B/zh
Publication of CN107732170A publication Critical patent/CN107732170A/zh
Application granted granted Critical
Publication of CN107732170B publication Critical patent/CN107732170B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明公开了一种高效锂金属复合材料及其制备方法和作为负极的应用,通过化学气相沉积法,反应1~5小时合成了TiC/C三维多孔骨架层,以此为载体,通过熔融锂浸润法,制备高效锂金属复合材料。高效锂金属复合材料包括Ti6Al4V基底、生长在基底上的TiC/C三维多孔骨架层,以及吸附在骨架层中的锂金属相,TiC/C三维多孔骨架层包括碳化钛纳米管,以及包裹在碳化钛纳米管上的无定型碳。本发明高效锂金属复合材料具有高库伦效率和显著抑制枝晶生长等特点,与磷酸铁锂或硫正极材料匹配时,也可显著提高全电池的能量密度和循环稳定性。

Description

一种高效锂金属复合材料及其制备方法和作为负极的应用
技术领域
本发明涉及锂金属二次电池负极材料的技术领域,具体涉及一种高效锂金属复合材料及其制备方法和作为锂金属负极材料的应用。
背景技术
锂离子电池的商业化大大推动了电子储能设备的快速发展。但锂离子电池负极活性石墨材料的理论容量仅为372mAh g-1,严重限制了电池能量密度的进一步提升。随着电子产品及电动汽车对高能量密度电池需求的提高,锂离子电池遇到了极大的发展瓶颈。而纯Li金属质量能量密度高达3860mAh g-1,并具有最负的电势(-3.04V vs.标准氢电势),是最为理想的负极材料。
尽管Li金属在电化学储能领域具有巨大的潜力,但其在二次电池的商业化运用上却始终没有实现。主要是金属锂直接作为负极存在两个非常严重的问题:(1)金属锂过于活泼,几乎与所有电解液会发生副反应,导致电池活性物质消耗,库伦效率低下;(2)在电化学循环过程中,由于没有骨架束缚作用,锂离子的不均匀沉积很容易导致“锂枝晶”和“死锂”的产生,这也使得本不稳定的固态电解质膜(SEI)易损,更为严重的是枝晶的不断生长会刺破隔膜,造成安全隐患。
为解决锂金属负极的问题,研究人员提出了许多解决策略,如利用电解液添加剂稳定锂金属表面SEI膜性能,采取物理或化学法在负极表面构建缓冲层或离子迁移层以促使Li离子的均匀沉积等。但这些方法不能从根本上解决锂金属体积的肆意膨胀和锂枝晶的生长。近年来,对锂金属多孔“宿主”的设计愈发引起科研人员的兴趣,因为多孔基体不仅可以降低反应电流密度并抑制枝晶生长,而且其骨架可以在循环过程束缚锂金属体积扩张并从而稳定SEI膜。此前,疏锂性的碳纤维和多孔碳化木材作为锂金属的宿主,以实现锂金属低过电压和优异的循环性能。但这些材料表现为疏锂性,润湿角很大,都需要引入第二相(如Si,ZnO)与熔融Li反应以实现锂金属的良好吸附。这些副反应的杂质产物将会被引入到Li金属中,并对锂金属的循环性能及表面SEI膜的稳定性造成一定影响。因此必须发展亲锂性的高导电多孔骨架。
发明内容
针对背景技术中的问题,本发明的目的在于提供一种高效锂金属复合材料及其制备方法和作为锂金属负极的应用,该方法能够直接合成具有亲锂性能的三维多孔骨架,通过熔融浸润法直接将金属锂束缚在该基体中,以制备出内部具有骨架结构的锂金属负极。
一种高效锂金属复合材料的制备方法,包括以下步骤:
1)将Ti6Al4V片清洗,之后干燥得到清洗后的Ti6Al4V片;
2)在惰性气体保护下,将清洗后的Ti6Al4V片升温至600-1000℃后,在600-1000℃下与丙酮反应1-5小时后,制备得到TiC/C三维多孔骨架层;
3)在充满惰性气体环境中,熔融Li金属,待Li金属在300-500℃下完全熔融后,将制得的TiC/C三维多孔骨架层与熔融Li接触,熔融液态Li则会完全吸附在TiC/C三维多孔骨架层中的TiC/C骨架中,冷却凝固,得到高效锂金属复合材料。
步骤1)中,所述的Ti6Al4V片的厚度为0.1mm~1mm,进一步优选为0.2mm~0.5mm,最优选,为0.3mm。
所述的清洗包括:将Ti6Al4V片先在乙醇中超声清洗,然后用去离子水洗涤。
所述的超声清洗的时间为10分钟~30分钟,更进一步优选,为15分钟~25分钟,最优选地为20分钟。
所述的干燥采用在真空烘箱中干燥。
步骤2)中,将清洗后的Ti6Al4V片1-3小时升温至600-1000℃。
所述的惰性气体为氩气。
所述的反应采取惰性气体鼓泡法以50-300sccm的流速将丙酮气体引入反应。
反应后,通入惰性气体并冷却至环境温度。
步骤3)中,采用熔融浸润法制备高效锂金属复合材料。
所述的惰性气体为氩气。
充满惰性气体环境中,水和氧含量均低于0.1ppm。
20-60秒时间后,熔融液态Li则会完全吸附在TiC/C核壳结构的纳米线阵列基底中的TiC/C骨架中。
得到的高效锂金属复合材料具有三维核壳结构的纳米阵列骨架,能够提高锂金属库伦效率,并且能够抑制枝晶生长,特别适用作为锂金属负极材料。
所述的高效锂金属复合材料包括Ti6Al4V基底、生长在所述Ti6Al4V基底上的TiC/C三维多孔骨架层,以及吸附在所述TiC/C三维多孔骨架层中的锂金属相。所述的TiC/C三维多孔骨架层包括生长在所述Ti6Al4V基底上的碳化钛(TiC)纳米管,以及包裹在所述碳化钛(TiC)纳米管上的无定型碳(C),碳化钛(TiC)纳米管和无定型碳(C)形成三维多孔骨架,金属锂可吸附在三维多孔骨架中,制备出内部具有骨架结构的锂金属负极。
所述的碳化钛(TiC)纳米管的管径(直径)为50-100nm,所述TiC/C三维多孔骨架层的厚度为200-600nm。
碳化钛(TiC)纳米管外包裹有均匀的无定型碳(C)材料,所述的TiC管径为50-100nm,所述TiC/C三维多孔骨架层的厚度为200-600nm。
TiC/C三维多孔骨架层采用简易的一步化学气相沉积法制备,其中TiC管径为50-100nm,C层为典型的无定型碳。
本发明相比于现有技术,具有如下优点及突出效果:
本发明制备方法方便,三维TiC/C多孔骨架具有良好的吸附熔融锂性能,无需引入第二相,避免了有害杂质在负极的富集;纳米骨架高比表面积极大地降低了电流密度,抑制枝晶的生长;阵列基底的结构对电极表面电场的均匀分布起到很好促进作用,利于锂离子均匀形核长大;循环过程复合锂金属显著减低了界面阻抗,电荷转移阻抗与SEI膜阻抗均显著低于纯锂金属;相比于纯铜片集流体,三维TiC/C纳米线阵列骨架能有效地提高锂金属的库伦效率,且SEI膜稳定性得以改善;该复合负极提高了锂金属的安全性能与循环性能,有助于推进高能量密度、高稳定性的锂金属二次电池的发展。
附图说明
图1为实施例2中制得的TiC/C纳米线骨架的扫描电镜图;
图2为实施例2中制得的TiC/C纳米线骨架的透射电镜图;
图3中(a)为实施例2中制得的TiC/C纳米线骨架的扫描透射电镜图,图3中(b)为实施例2中制得的TiC/C纳米线骨架的C元素分布谱图,图3中(c)为实施例2中制得的TiC/C纳米线骨架的Ti元素分布谱图;
图4为实施例2中制得的TiC/C/Li复合锂金属负极的扫描电镜图。
具体实施方式
下面结合实施例来详细说明本发明,但本发明并不仅限于此。
实施例1
将Ti6Al4V薄片(0.3mm)在乙醇中超声清洗20分钟,然后用去离子水洗涤3次,并在真空烘箱中干燥。将清洗后的Ti6Al4V薄片置于管式炉的中心。在反应之前,通过纯氩气除去管中的残余氧气,以确保反应在惰性气氛下,待1小时升温至600℃后,采取氩气鼓泡法以50sccm的流速将丙酮气体引入反应室中。在600℃下反应1小时后,改通纯氩气并冷却至室温25℃。制备得到TiC/C核壳结构的纳米线阵列基底。随后在充满氩气手套箱中熔融固态金属Li(水、氧含量均低于0.1ppm),待金属Li在300℃下完全熔融后,将制得的TiC/C阵列基底与熔融Li接触。20秒时间后,熔融液态Li则会吸附在TiC/C骨架中。待于手套箱中冷却凝固,即形成具有纳米线阵列基底的TiC/C/Li复合锂金属负极材料(即高效锂金属复合材料)。
实施例2
将Ti6Al4V薄片(0.3mm)在乙醇中超声清洗20分钟,然后用去离子水洗涤3次,并在真空烘箱中干燥。将清洗后的Ti6Al4V薄片置于管式炉的中心。在反应之前,通过纯氩气除去管中的残余氧气,以确保反应在惰性气氛下,待2小时升温至800℃后,采取氩气鼓泡法以150sccm的流速将丙酮气体引入反应室中。在800℃下反应3小时后,改通纯氩气并冷却至室温25℃。制备得到TiC/C核壳结构的纳米线阵列基底。随后在充满氩气手套箱中熔融固态金属Li(水、氧含量均低于0.1ppm),待金属Li在400℃下完全熔融后,将制得的TiC/C阵列基底与熔融Li接触。40秒时间后,熔融液态Li则会吸附在TiC/C骨架中。待于手套箱中冷却凝固,即形成具有纳米线阵列基底的TiC/C/Li复合锂金属负极材料(即高效锂金属复合材料)。
实施例2中制得的TiC/C纳米线骨架的扫描电镜图如图1所示,实施例2中制得的TiC/C纳米线骨架的透射电镜图如图2所示;实施例2中制得的TiC/C纳米线骨架的元素分布谱图如图3所示;实施例2中制得的TiC/C/Li复合锂金属负极的扫描电镜图如图4所示。
高效锂金属复合材料包括Ti6Al4V基底、生长在Ti6Al4V基底上的TiC/C三维多孔骨架层,以及吸附在TiC/C三维多孔骨架层中的锂金属相。TiC/C三维多孔骨架层包括生长在Ti6Al4V基底上的碳化钛(TiC)纳米管,以及包裹在所述碳化钛(TiC)纳米管上的无定型碳(C),碳化钛(TiC)纳米管和无定型碳(C)形成三维多孔骨架,金属锂可吸附在三维多孔骨架中,制备出内部具有骨架结构的锂金属负极。碳化钛(TiC)纳米管的管径为50-100nm,TiC/C三维多孔骨架层的厚度为200-600nm。
实施例3
将Ti6Al4V薄片(0.3mm)在乙醇中超声清洗20分钟,然后用去离子水洗涤5次,并在真空烘箱中干燥。将清洗后的Ti6Al4V薄片置于管式炉的中心。在反应之前,通过纯氩气除去管中的残余氧气,以确保反应在惰性气氛下,待3小时升温至1000℃后,采取氩气鼓泡法以300sccm的流速将丙酮气体引入反应室中。在1000℃下反应5小时后,改通纯氩气并冷却至室温25℃。制备得到TiC/C核壳结构的纳米线阵列基底。随后在充满氩气手套箱中熔融固态金属Li(水、氧含量均低于0.1ppm),待金属Li在500℃下完全熔融后,将制得的TiC/C阵列基底与熔融Li接触。60秒时间后,熔融液态Li则会吸附在TiC/C骨架中。待于手套箱中冷却凝固,即形成具有纳米线阵列基底的TiC/C/Li复合锂金属负极材料(即高效锂金属复合材料)。
性能测试
将上述实施例1~3制成的TiC/C/Li复合锂金属电极材料分别作为扣式电池的对电极和工作电极,电解液为1mol/L的六氟磷锂(LiPF6)电解质溶于体积比为1:1的碳酸乙烯酯(EC)和碳酸二乙酯(DEC)电解剂中,电流密度为1mA cm-2,循环电量为1mAh cm-2,在25±1℃环境中测量对称电极体系中锂金属负极的过电位。测试库伦效率时将上述实施例1~3制成的TiC/C骨架材料为扣式电池的工作电极,纯锂片为对电极,电解液为1mol/L二(三氟甲基磺酸)亚胺锂(LiTFSI)电解质溶于体积比为1:1的1,3-二氧戊环(DOL)和乙二醇二甲醚(DME)电解剂中,电解液中含质量分数为1%的LiNO3添加剂,电流密度为1mA cm-2,循环过程电沉积锂量为1mAh cm-2,脱锂电位为1V。
性能测试结果如下:
实施例1、实施例2和实施例3的TiC/C/Li复合锂金属材料在1mAcm-2电流密度下循环200次,过电压分别可以稳定在46mV,42mV和44mV以内,电压平台稳定,无明显波动。此外,在1mA cm-2电流密度下,采用实施例1、实施例2和实施例3的TiC/C纳米阵列骨架,锂金属的循环100圈的库仑效率可以分别维持在97.8%,98.5%和98.2%以上。可见,上述制得的TiC/C/Li复合锂金属材料的过电压低,循环稳定性好,库伦效率高。
这是因为TiC/C纳米线阵列为金属锂提供了载体,其高比表面积降低了电流密度,阵列结构使得电极表面的电场分布更为均匀,有效地抑制了锂枝晶的产生并防止了锂金属表面的SEI膜易损。
因此,本发明TiC/C/Li复合锂金属电极材料具有高库伦效率和显著抑制枝晶生长等特点,在锂金属二次电池的锂金属负极改性上具有很好的指导意义。

Claims (10)

1.一种锂金属复合材料的制备方法,其特征在于,包括以下步骤:
1)将Ti6Al4V片清洗,之后干燥得到清洗后的Ti6Al4V片;
2)在惰性气体保护下,将清洗后的Ti6Al4V片升温至600-1000℃后,在600-1000℃下与丙酮反应1-5小时后,制备得到TiC/C三维多孔骨架层;
3)在充满惰性气体环境中,熔融Li金属,待Li金属在300-500℃下完全熔融后,将制得的TiC/C三维多孔骨架层与熔融Li接触,熔融液态Li则会完全吸附在TiC/C三维多孔骨架层中的TiC/C骨架中,冷却凝固,得到锂金属复合材料。
2.根据权利要求1所述的锂金属复合材料的制备方法,其特征在于,步骤1)中,所述的Ti6Al4V片的厚度为0.1mm~1mm;
所述的清洗包括:将Ti6Al4V片先在乙醇中超声清洗,然后用去离子水洗涤;
所述的超声清洗的时间为10分钟~30分钟;
所述的干燥采用在真空烘箱中干燥。
3.根据权利要求1所述的锂金属复合材料的制备方法,其特征在于,步骤2)中,将清洗后的Ti6Al4V片1-3小时升温至600-1000℃。
4.根据权利要求1所述的锂金属复合材料的制备方法,其特征在于,步骤2)中,所述的反应采取惰性气体鼓泡法以50-300sccm的流速将丙酮气体引入反应。
5.根据权利要求1所述的锂金属复合材料的制备方法,其特征在于,步骤2)中,反应后,通入惰性气体并冷却至环境温度。
6.根据权利要求1所述的锂金属复合材料的制备方法,其特征在于,步骤3)中,20秒-60秒时间后,熔融液态Li则会完全吸附在TiC/C核壳结构的纳米线阵列基底中的TiC/C骨架中。
7.根据权利要求1~6任一项所述的制备方法制备的锂金属复合材料。
8.根据权利要求7所述的锂金属复合材料,其特征在于,所述的锂金属复合材料包括Ti6Al4V基底、生长在所述Ti6Al4V基底上的TiC/C三维多孔骨架层,以及吸附在所述TiC/C三维多孔骨架层中的锂金属相;
所述的TiC/C三维多孔骨架层包括生长在所述Ti6Al4V基底上的碳化钛纳米管,以及包裹在所述碳化钛纳米管上的无定型碳。
9.根据权利要求8所述的锂金属复合材料,其特征在于,所述的碳化钛纳米管的管径为50nm-100nm,所述的TiC/C三维多孔骨架层的厚度为200nm-600nm。
10.根据权利要求7、8、9任一项所述的锂金属复合材料作为锂金属负极材料的应用。
CN201710845918.XA 2017-09-19 2017-09-19 一种高效锂金属复合材料及其制备方法和作为负极的应用 Active CN107732170B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710845918.XA CN107732170B (zh) 2017-09-19 2017-09-19 一种高效锂金属复合材料及其制备方法和作为负极的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710845918.XA CN107732170B (zh) 2017-09-19 2017-09-19 一种高效锂金属复合材料及其制备方法和作为负极的应用

Publications (2)

Publication Number Publication Date
CN107732170A CN107732170A (zh) 2018-02-23
CN107732170B true CN107732170B (zh) 2019-10-29

Family

ID=61207627

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710845918.XA Active CN107732170B (zh) 2017-09-19 2017-09-19 一种高效锂金属复合材料及其制备方法和作为负极的应用

Country Status (1)

Country Link
CN (1) CN107732170B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108470882A (zh) * 2018-03-30 2018-08-31 江汉大学 氧化锡改性碳布基锂及钠金属负极及其制备方法
CN109216681B (zh) * 2018-09-21 2022-02-11 合肥工业大学 一种基于TiO2纳米管阵列/泡沫钛的锂金属负极材料及其制备方法
CN109332719B (zh) * 2018-10-08 2021-05-18 电子科技大学 一种铜纳米线及其制备方法
CN109755476A (zh) * 2019-03-15 2019-05-14 江汉大学 基于氧化锡包覆三维导电骨架的锂金属负极及其制备方法
CN113471445B (zh) 2019-03-25 2022-08-19 宁德新能源科技有限公司 负极极片与包含其的电化学装置及电子装置
CN110416522B (zh) * 2019-08-02 2021-08-31 上海汽车集团股份有限公司 一种含锂复合负极材料、其制备方法和其在锂二次电池中的应用
CN113135571A (zh) * 2021-03-10 2021-07-20 汕头大学 一种氮掺杂碳包覆TiC的材料及其制备方法和应用
CN115763794A (zh) * 2021-09-02 2023-03-07 天津中能锂业有限公司 具有亲锂性修饰层的网络骨架材料与金属锂的复合物及其制备方法
CN115548342B (zh) * 2022-10-19 2023-05-12 山东省科学院新材料研究所 一种3D TiC复合材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374991A (zh) * 2014-08-13 2016-03-02 中国科学院苏州纳米技术与纳米仿生研究所 金属锂-骨架碳复合材料及其制备方法、负极和二次电池
CN105789559A (zh) * 2016-04-21 2016-07-20 清华大学 一种柔性锂金属电池负极及其制备方法
CN105932295A (zh) * 2016-04-22 2016-09-07 清华大学深圳研究生院 金属锂二次电池及其负极和多孔铜集流体
CN106898778A (zh) * 2017-04-17 2017-06-27 中国科学院化学研究所 一种金属二次电池负极用三维集流体及其制备方法和用途
CN105098162B (zh) * 2015-09-14 2017-07-28 哈尔滨工业大学 一种可用于锂离子电池负极的碳化钛纳米片/石墨烯复合材料的制备方法
CN107123800A (zh) * 2017-05-20 2017-09-01 西南大学 Ti3C2@SnSx(x=1、2)负极材料的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2228855B1 (en) * 2009-03-12 2014-02-26 Belenos Clean Power Holding AG Open porous electrically conductive nanocomposite material
CN102449823B (zh) * 2009-05-28 2015-05-13 德克萨斯大学系统董事会 用于锂离子电池的新型组合阳极材料

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105374991A (zh) * 2014-08-13 2016-03-02 中国科学院苏州纳米技术与纳米仿生研究所 金属锂-骨架碳复合材料及其制备方法、负极和二次电池
CN105098162B (zh) * 2015-09-14 2017-07-28 哈尔滨工业大学 一种可用于锂离子电池负极的碳化钛纳米片/石墨烯复合材料的制备方法
CN105789559A (zh) * 2016-04-21 2016-07-20 清华大学 一种柔性锂金属电池负极及其制备方法
CN105932295A (zh) * 2016-04-22 2016-09-07 清华大学深圳研究生院 金属锂二次电池及其负极和多孔铜集流体
CN106898778A (zh) * 2017-04-17 2017-06-27 中国科学院化学研究所 一种金属二次电池负极用三维集流体及其制备方法和用途
CN107123800A (zh) * 2017-05-20 2017-09-01 西南大学 Ti3C2@SnSx(x=1、2)负极材料的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Core–shell TiC/C quasi-aligned nanofiber arrays on biomedical Ti6Al4V for sensitive electrochemical biosensing";Liangsheng Hu etal;《C h e m . C o m m u n . 》;20101231;第46卷;第6828–6830页 *

Also Published As

Publication number Publication date
CN107732170A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
CN107732170B (zh) 一种高效锂金属复合材料及其制备方法和作为负极的应用
Zhang et al. Recent progress in self‐supported metal oxide nanoarray electrodes for advanced lithium‐ion batteries
CN103474632B (zh) 一种用于锂电池的负极材料及其制备方法和应用
Sun et al. A gradient topology host for a dendrite-free lithium metal anode
CN102169996B (zh) 一种具有核壳结构的微球复合负极材料及其制备方法
CN104617278B (zh) 一种纳米硅金属复合材料及其制备方法
CN107785603B (zh) 锂硫电池电解液及其制备方法以及使用所述电解液的电池
CN108649190A (zh) 具有三维多孔阵列结构的垂直石墨烯/钛铌氧/硫碳复合材料及其制备方法和应用
Liu et al. Recent development in lithium metal anodes of liquid-state rechargeable batteries
CN108306009B (zh) 一种氧化硅碳复合负极材料、其制备方法及锂离子电池
CN104638253B (zh) 一种作为锂离子电池负极的Si@C‑RG核壳结构复合材料的制备方法
CN106654221A (zh) 用于锂离子电池负极的三维多孔碳包覆硒化锌材料及其制备方法
CN104752698A (zh) 一种用于锂离子电池负极的硅碳复合材料及其制备方法
CN106629665B (zh) 熔盐法制备硫掺杂硬碳纳米片及其在钠离子电池中的应用
CN106784833A (zh) 硅碳负极材料及其制备方法
CN110010895A (zh) 碳纤维负载氧化镁颗粒交联纳米片阵列复合材料及其制备方法和应用
CN104868098A (zh) 一种碳复合Cu3P-Cu锂离子电池负极及其制备方法
CN106784698A (zh) Si/SiC/C复合材料和制备方法以及锂离子电池负极和电池
CN108923037A (zh) 一种富硅SiOx-C材料及其制备方法和应用
CN104466104A (zh) 一种锂离子电池锗石墨烯复合负极材料及其制备方法
CN109346723A (zh) 基于钼箔负载的二硫化钼纳米片阵列结构的锂离子电池的制备方法
CN116093259A (zh) 一种半固态锂电负极结构及其制备方法
CN103400980A (zh) 三氧化二铁/氧化镍核壳纳米棒阵列薄膜及其制备方法和应用
CN108963237A (zh) 一种钠离子电池负极材料的制备方法
CN109332719B (zh) 一种铜纳米线及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant