JP2010178548A - モータ制御装置 - Google Patents

モータ制御装置 Download PDF

Info

Publication number
JP2010178548A
JP2010178548A JP2009019976A JP2009019976A JP2010178548A JP 2010178548 A JP2010178548 A JP 2010178548A JP 2009019976 A JP2009019976 A JP 2009019976A JP 2009019976 A JP2009019976 A JP 2009019976A JP 2010178548 A JP2010178548 A JP 2010178548A
Authority
JP
Japan
Prior art keywords
angle
torque
value
control
steering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009019976A
Other languages
English (en)
Other versions
JP5376215B2 (ja
Inventor
Tomohito Shinoda
智史 篠田
Yoshinobu Hiyamizu
由信 冷水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2009019976A priority Critical patent/JP5376215B2/ja
Priority to EP10151953.6A priority patent/EP2216895A3/en
Priority to US12/696,604 priority patent/US8855857B2/en
Priority to CN201010108258.5A priority patent/CN101795106B/zh
Publication of JP2010178548A publication Critical patent/JP2010178548A/ja
Application granted granted Critical
Publication of JP5376215B2 publication Critical patent/JP5376215B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/02Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation specially adapted for optimising the efficiency at low load
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)
  • Power Steering Mechanism (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

【課題】回転角センサを用いない新たな制御方式でモータを制御する。
【解決手段】仮想回転座標系であるγδ座標系のγ軸電流Iγでモータが駆動される。γδ座標系は、制御上の回転角である制御角θに従う座標系である。制御角θとロータ角θとの差(負荷角θ)に応じたアシストトルクが発生する。一方、検出操舵トルクTがフィードバックされ、検出操舵トルクTを指示操舵トルクTに近づけるように、加算角αが生成される。加算角αが制御角θの前回値θ(n-1)に加算されることにより、制御角θの今回値θ(n)が求められる。加算角αは、加算角リミッタ24による制限を受ける。検出操舵トルクTが飽和状態となると、初期化部29により、加算角α等の初期化が行われる。検出操舵トルクTの飽和に応答して初期化が行われたときは、検出操舵トルクTの絶対値が所定のしきい値以下となるまで、初期化処理が禁止される。
【選択図】図1

Description

この発明は、ブラシレスモータを駆動するためのモータ制御装置に関する。ブラシレスモータは、たとえば、車両用操舵装置の駆動源として使用可能である。車両用操舵装置の一例は、電動パワーステアリング装置である。
ブラシレスモータを駆動制御するためのモータ制御装置は、一般に、ロータの回転角を検出するための回転角センサの出力に応じてモータ電流の供給を制御するように構成されている。回転角センサとしては、一般的には、ロータ回転角(電気角)に対応した正弦波信号および余弦波信号を出力するレゾルバが用いられる。しかし、レゾルバは、高価であり、配線数が多く、また、設置スペースも大きい。そのため、ブラシレスモータを備えた装置のコスト削減および小型化が阻害されるという課題がある。
そこで、回転角センサを用いることなくブラシレスモータを駆動するセンサレス駆動方式が提案されている。センサレス駆動方式は、ロータの回転に伴う誘起電圧を推定することによって、磁極の位相(ロータの電気角)を推定する方式である。ロータ停止時および極低速回転時には、誘起電圧を推定できないので、別の方式で磁極の位相が推定される。具体的には、ステータに対してセンシング信号を注入し、このセンシング信号に対するモータの応答が検出される。このモータ応答に基づいて、ロータ回転位置が推定される。
特開2007-267549号公報
上記のセンサレス駆動方式は、誘起電圧やセンシング信号を用いてロータの回転位置を推定し、その推定によって得られた回転位置に基づいてモータを制御するものである。しかし、この駆動方式は、いずれの用途にも適しているわけではなく、たとえば、車両の舵取り機構に操舵補助力を与える電動パワーステアリング装置の駆動源として用いられるブラシレスモータの制御に適用するための手法は未だ確立されていない。そのため、別の方式によるセンサレス制御の実現が望まれている。
そこで、この発明の目的は、回転角センサを用いない新たな制御方式でモータを制御することができるモータ制御装置を提供することである。
上記の目的を達成するための請求項1記載の発明は、ロータ(50)と、このロータに対向するステータ(55)とを備えたモータ(3)を制御するためのモータ制御装置(5)であって、制御上の回転角である制御角(θ)に従う回転座標系の軸電流値(Iγ )で前記モータを駆動する電流駆動手段(31〜36)と、前記制御角に加算すべき加算角(α)を演算する加算角演算手段(22,23)と、所定の演算周期毎に、前記加算角演算手段によって演算された加算角を制御角の前回値に加算することによって制御角の今回値を求める制御角演算手段(26)と、モータによって駆動される駆動対象(2)に加えられる、モータトルク以外のトルクを検出するためのトルク検出手段(1)と、前記トルク検出手段の検出トルクに応じてモータ制御態様を変更するための変更手段(29)と、前記変更手段が検出トルクに応答して作動した後、前記検出トルクの絶対値が所定値以下になるまで前記変更手段の作動を禁止する禁止手段(S17)とを含む、モータ制御装置である。なお、括弧内の英数字は後述の実施形態における対応構成要素等を表す。以下、この項において同じ。
この構成によれば、制御角に従う回転座標系(γδ座標系。以下「仮想回転座標系」といい、この仮想回転座標系の座標軸を「仮想軸」という。)の軸電流値(以下「仮想軸電流値」という。)によってモータが駆動される一方で、制御角は、演算周期毎に加算角を加算することによって更新される。これにより、制御角を更新しながら、すなわち、仮想回転座標系の座標軸(仮想軸)を更新しながら、仮想軸電流値でモータを駆動することによって、必要なトルクを発生させることができる。こうして、回転角センサを用いることなく、モータから適切なトルクを発生させることができる。
さらに、この発明では、駆動対象に加えられる、モータトルク以外のトルクがトルク検出手段によって検出される。その検出トルクに応じて、モータ制御態様が変更される。したがって、検出トルクが大きくなって制御が不安定になるおそれがあるときには、制御態様を変更することにより、制御の安定化を図ることができる。
モータ制御態様を変更しても検出トルクが変化するまでには或る程度の応答時間が必要となる。これは、たとえば、トルク検出手段の応答性やその他の要因による。そのため、モータ制御態様を変更してから、それに応じて検出トルクが変化するまでに、検出トルクの値がモータ制御態様の変更条件を満たすおそれがある。
そこで、この発明では、検出トルクに応答してモータ制御態様が変更された後は、検出トルクの絶対値が所定値以下となるまでは、変更手段によるモータ制御態様の変更が禁止される。これにより、検出トルクの応答遅れに起因してモータ制御態様が変更されることを抑制または防止できる。
たとえば、前記変更手段は、前記トルク検出手段によって検出されるトルクが飽和しているか否かに応じて、モータ制御態様を変更するものであることが好ましい。たとえば、検出トルクが飽和していなければ通常のモータ制御態様とされ、検出トルクが飽和すると通常のモータ制御態様とは異なる制御態様に変更される。これにより、検出トルクが飽和し、制御異常の兆候が現れたときには、モータ制御態様を変更することができる。その結果、制御異常状態に陥ることを抑制したり、制御異常状態からの早期復帰を促したりすることができる。
検出トルクの飽和とは、具体的には、検出トルク絶対値が所定の飽和値(Tmax)以上となることをいう。この場合の飽和値は、トルク検出手段の仕様に応じて定めることができる。すなわち、トルク検出手段の出力信号において信頼性のある出力信号範囲の境界値に応じて前記飽和値を設定すればよい。
前記禁止手段は、検出トルク絶対値が前記飽和値よりも小さな所定値以下になるまで前記変更手段の作動を禁止するものであることが好ましい。これにより、モータ制御態様の変更に応答して検出トルク絶対値が充分に小さな値となるまで、変更手段の作動を禁止できる。したがって、検出トルクの応答遅れに起因するモータ制御態様変更を抑制または防止できる。
請求項2記載の発明は、前記加算角の絶対値が所定値以上のときには、前記禁止手段が作動中であっても前記変更手段の作動を許可する許可手段(S21,S22)をさらに含む、請求項1記載のモータ制御装置である。
請求項3記載の発明は、前記加算角を所定の制限値で制限する加算角制限手段(24)と、前記禁止手段の作動中に、前記加算角の絶対値が前記制限値よりも小さな所定値(αth1)以上となったときに、前記変更手段の作動を許可する許可手段(S21,S22)とをさらに含む、請求項1記載のモータ制御装置である。
これらの構成によれば、加算角が監視され、加算角の絶対値が所定値以上となると、禁止手段が作動中であっても、モータ制御態様が変更される。加算角の絶対値が大きくなると、演算周期間の制御角変化幅が大きくなり、制御角を必要なモータトルクに対応した適値に収束させることが困難になるおそれがあり、制御異常状態に至るおそれがある。たとえば、検出トルクが飽和状態となり、必要なモータトルクが大きくなると、加算角の絶対値が大きくなって、制御異常に至る場合がある。この場合には、検出トルクに応答してモータ制御態様が変更されることによって制御異常からの復帰が図られるのであるが、前述のとおり、検出トルクがモータ制御態様の変更に応答するには或る程度の時間を要する。この間に、加算角の絶対値が大きくなって、再び、制御異常状態に陥るおそれがある。そこで、加算角を監視しておき、この加算角の絶対値が所定値以上となったときにモータ制御態様を変更することとしておけば、制御異常状態に至ることを未然に回避できる。
請求項3の構成では、さらに、加算角に適切な制限を加えることによって、実際のロータの回転に比して過大な絶対値の加算角が制御角に加算されることを抑制できる。これにより、適切にモータを制御することができる。一方、たとえば、検出トルクが飽和して変更手段によるモータ制御態様の変更が行われ、モータ制御態様の再度の変更が禁止されている期間中には、加算角の絶対値が前記制限値よりも小さな所定値に達すると、前記禁止にかかわらず、モータ制御態様が変更される。これにより、検出トルクの応答遅れに起因して再び制御異常状態に至ることをより確実に抑制または防止できる。
前記変更手段は、前記加算角演算手段を初期化するものであってもよい。この構成によれば、操舵トルクに応じて加算角演算手段が初期化されることにより、制御の安定化を図ることができる。たとえば、検出トルクが飽和し、したがって、前記加算角の絶対値が大きな値になって制御異常を来していると考えられるときに、加算角演算手段を初期化することによって、制御異常からの早期復帰を促すことができる。
より具体的には、前記モータ制御装置は、前記モータの駆動対象に作用させるべき指示トルク(モータトルク以外のトルクの指示値)を設定する指示トルク設定手段(21)を含むものであってもよい。この場合に、前記加算角演算手段は、前記検出トルクを前記指示トルクに近づけるように前記加算角を演算するフィードバック制御手段(22,23)を含むものであってもよい。前記フィードバック制御手段は積分制御を含むフィードバック制御演算(比例積分制御、比例積分微分制御など)を行うものであってもよい。この場合において、前記変更手段は、積分値を初期化(零にリセット)するものであってもよい。また、前記変更手段は、積分値に加えて加算角も初期化(零にリセット)するものであってもよい。具体的には、比例項および積分項をいずれも初期化(零にリセット)することによって、加算角および積分値を初期化できる。
前記モータは、車両の舵取り機構(2)に駆動力を付与するものであってもよい。この場合に、前記トルク検出手段は、前記車両の操向のために操作される操作部材(10)に加えられる操舵トルクを検出するものであってもよい。また、前記指示トルク設定手段は、操舵トルクの目標値としての指示操舵トルクを設定するものであってもよい。そして、前記加算角演算手段は、前記指示トルク設定手段によって設定される指示トルクと前記トルク検出手段によって検出される操舵トルクとの偏差に応じて前記加算角を演算するものであってもよい。
この構成によれば、指示操舵トルクが設定され、この指示操舵トルクと操舵トルク(検出値)との偏差に応じて前記加算角が演算される。これにより、操舵トルクが当該指示操舵トルクとなるように加算角が定められ、それに応じた制御角が定められることになる。したがって、指示操舵トルクを適切に定めておくことによって、モータから適切な駆動力を発生させて、これを舵取り機構に付与することができる。すなわち、ロータの磁極方向に従う回転座標系(dq座標系)の座標軸と前記仮想軸とのずれ量(負荷角)が指示操舵トルクに応じた値に導かれる。その結果、適切なトルクがモータから発生され、運転者の操舵意図に応じた駆動力を舵取り機構に付与できる。
前記モータ制御装置は、前記操作部材の操舵角を検出する操舵角検出手段(4)をさらに含み、前記指示トルク設定手段は、前記操舵角検出手段によって検出される操舵角に応じて指示操舵トルクを設定するものであることが好ましい。この構成によれば、操作部材の操舵角に応じて指示操舵トルクが設定されるので、操舵角に応じた適切なトルクをモータから発生させることができ、運転者が操作部材に加える操舵トルクを操舵角に応じた値へと導くことができる。これにより、良好な操舵感を得ることができる。
前記指示トルク設定手段は、前記車両の車速を検出する車速検出手段(6)によって検出される当該車速に応じて指示操舵トルクを設定するものであってもよい。この構成によれば、車速に応じて指示操舵トルクが設定されるので、いわゆる車速感応制御を行うことができる。その結果、良好な操舵感を実現できる。たとえば、車速が大きいほど、すなわち、高速走行時ほど指示操舵トルクを小さく設定することより、すぐれた操舵感が得られる。
この発明の一実施形態に係るモータ制御装置を適用した電動パワーステアリング装置の電気的構成を説明するためのブロック図である。 モータの構成を説明するための図解図である。 前記電動パワーステアリング装置の制御ブロック図である。 操舵角に対する指示操舵トルクの特性例を示す図である。 操舵トルクリミッタの働きを説明するための図である。 γ軸指示電流値の設定例を示す図である。 加算角リミッタの働きを説明するためのフローチャートである。 加算角監視部、操舵トルク監視部および初期化部による処理を説明するためのフローチャートである。 検出操舵トルクの時間変化の一例を示す図である。 この発明の第2の実施形態に係る動作を説明するためのフローチャートである。 前記第2の実施形態における動作例を説明するための図である。 指示操舵トルクの他の設定例を説明するための図である。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の一実施形態に係るモータ制御装置を適用した電動パワーステアリング装置(車両用操舵装置の一例)の電気的構成を説明するためのブロック図である。この電動パワーステアリング装置は、車両を操向するための操作部材としてのステアリングホイール10に加えられる操舵トルクTを検出するトルクセンサ1と、車両の舵取り機構2に減速機構7を介して操舵補助力を与えるモータ3(ブラシレスモータ)と、ステアリングホイール10の回転角である操舵角を検出する舵角センサ4と、モータ3を駆動制御するモータ制御装置5と、当該電動パワーステアリング装置が搭載された車両の速度を検出する車速センサ6とを備えている。
モータ制御装置5は、トルクセンサ1が検出する操舵トルク、舵角センサ4が検出する操舵角および車速センサ6が検出する車速に応じてモータ3を駆動することによって、操舵状況および車速に応じた適切な操舵補助を実現する。
モータ3は、この実施形態では、三相ブラシレスモータであり、図2に図解的に示すように、界磁としてのロータ50と、このロータ50に対向するステータ55に配置されたU相、V相およびW相のステータ巻線51,52,53とを備えている。モータ3は、ロータの外部にステータを対向配置したインナーロータ型のものであってもよいし、筒状のロータの内部にステータを対向配置したアウターロータ型のものであってもよい。
各相のステータ巻線51,52,53の方向にU軸、V軸およびW軸をとった三相固定座標(UVW座標系)が定義される。また、ロータ50の磁極方向にd軸(磁極軸)をとり、ロータ50の回転平面内においてd軸と直角な方向にq軸(トルク軸)をとった二相回転座標系(dq座標系。実回転座標系)が定義される。dq座標系は、ロータ50とともに回転する回転座標系である。dq座標系では、q軸電流のみがロータ50のトルク発生に寄与するので、d軸電流を零とし、q軸電流を所望のトルクに応じて制御すればよい。ロータ50の回転角(ロータ角)θは、U軸に対するd軸の回転角である。dq座標系は、ロータ角θに従う実回転座標系である。このロータ角θを用いることによって、UVW座標系とdq座標系との間での座標変換を行うことができる。
一方、この実施形態では、制御上の回転角を表す制御角θが導入される。制御角θは、U軸に対する仮想的な回転角である。この制御角θに対応する仮想的な軸をγ軸とし、このγ軸に対して90°進んだ軸をδ軸として、仮想二相回転座標系(γδ座標系。仮想回転座標系)を定義する。制御角θがロータ角θに等しいとき、仮想回転座標系であるγδ座標系と実回転座標系であるdq座標系とが一致する。すなわち、仮想軸としてのγ軸は実軸としてのd軸と一致し、仮想軸としてのδ軸は実軸としてのq軸と一致する。γδ座標系は、制御角θに従う仮想回転座標系である。UVW座標系とγδ座標系との座標変換は、制御角θを用いて行うことができる。
制御角θとロータ角θとの差を負荷角θ(=θ−θ)と定義する。
制御角θに従ってγ軸電流Iγをモータ3に供給すると、このγ軸電流Iγのq軸成分(q軸への正射影)がロータ50のトルク発生に寄与するq軸電流Iとなる。すなわち、γ軸電流Iγとq軸電流Iとの間に、次式(1)の関係が成立する。
=Iγ・sinθ …(1)
再び図1を参照する。モータ制御装置5は、マイクロコンピュータ11と、このマイクロコンピュータ11によって制御され、モータ3に電力を供給する駆動回路(インバータ回路)12と、モータ3の各相のステータ巻線に流れる電流を検出する電流検出部13とを備えている。
電流検出部13は、モータ3の各相のステータ巻線51,52,53に流れる相電流I,I,I(以下、総称するときには「三相検出電流IUVW」という。)を検出する。これらは、UVW座標系における各座標軸方向の電流値である。
マイクロコンピュータ11は、CPUおよびメモリ(ROMおよびRAMなど)を備えており、所定のプログラムを実行することによって、複数の機能処理部として機能するようになっている。この複数の機能処理部には、操舵トルクリミッタ20と、指示操舵トルク設定部21と、トルク偏差演算部22と、PI(比例積分)制御部23と、加算角リミッタ24と、加算角監視部25と、制御角演算部26と、操舵トルク監視部27と、初期化部29と、指示電流値生成部31と、電流偏差演算部32と、PI制御部33と、γδ/UVW変換部34と、PWM(Pulse Width Modulation)制御部35と、UVW/γδ変換部36とが含まれている。
指示操舵トルク設定部21は、舵角センサ4によって検出される操舵角と、車速センサ6によって検出される車速とに基づいて、指示操舵トルクTを設定する。たとえば、図4に示すように、操舵角が正の値(右方向へ操舵した状態)のとき指示操舵トルクTは正の値(右方向へのトルク)に設定され、操舵角が負の値(左方向へ操舵した状態)のとき指示操舵トルクTは負の値(左方向へのトルク)に設定される。そして、操舵角の絶対値が大きくなるに従って、その絶対値が大きくなるように(図4の例では非線型に大きくなるように)指示操舵トルクTが設定される。ただし、所定の上限値(正の値。たとえば、+6Nm)および下限値(負の値。たとえば−6Nm)の範囲内で指示操舵トルクTの設定が行われる。また、指示操舵トルクTは、車速が大きいほど、その絶対値が小さくなるように設定される。すなわち、車速感応制御が行われる。
操舵トルクリミッタ20は、トルクセンサ1の出力を所定の上限飽和値+Tmax(+Tmax>0。たとえば+Tmax=7Nm)と下限飽和値−Tmax(−Tmax<0。たとえば−Tmax=−7Nm)との間に制限する。具体的には、操舵トルクリミッタ20は、図5に示すように、上限飽和値+Tmaxと下限飽和値−Tmaxの間では、トルクセンサ1の検出操舵トルクTをそのまま出力する。また、操舵トルクリミッタ20は、トルクセンサ1の検出操舵トルクTが上限飽和値+Tmax以上であれば、上限飽和値+Tmaxを出力する。そして、操舵トルクリミッタ20は、トルクセンサ1の検出操舵トルクTが下限飽和値−Tmax以下であれば、下限飽和値−Tmaxを出力する。飽和値+Tmaxおよび−Tmaxは、トルクセンサ1の出力信号が安定な領域(信頼性のある領域)の境界を画定するものである。つまり、トルクセンサ1の出力信号は、上限飽和値Tmaxを超える区間、および下限飽和値−Tmaxを下回る区間では不安定であり、実際の操舵トルクに対応しなくなる。換言すれば、飽和値+Tmax,−Tmaxは、トルクセンサ1の出力特性に応じて定められる。
トルク偏差演算部22は、指示操舵トルク設定部21によって設定される指示操舵トルクTとトルクセンサ1によって検出され、操舵トルクリミッタ20による制限処理を受けた操舵トルクT(以下、区別するために「検出操舵トルクT」という。)との偏差(トルク偏差)ΔT(=T−T)を求める。PI制御部23は、このトルク偏差ΔTに対するPI演算を行う。すなわち、トルク偏差演算部22およびPI制御部23によって、検出操舵トルクTを指示操舵トルクTに導くためのトルクフィードバック制御手段が構成されている。PI制御部23は、トルク偏差ΔTに対するPI演算を行うことで、制御角θに対する加算角αを演算する。したがって、前記トルクフィードバック制御手段は、加算角αを演算する加算角演算手段を構成している。
加算角リミッタ24は、PI制御部23によって求められた加算角αに対して制限を加える加算角制限手段である。より具体的には、加算角リミッタ24は、所定の上限値UL(正の値)と下限値LL(負の値)との間の値に加算角αを制限する。上限値ULおよび下限値LLは、所定の制限値ωmax(ωmax>0。たとえばωmax=45度)に基づいて定められる。この所定の制限値ωmaxは、たとえば、最大操舵角速度に基づいて定められる。最大操舵角速度とは、ステアリングホイール10の操舵角速度として想定され得る最大値であり、たとえば、800deg/sec程度である。
最大操舵角速度のときのロータ50の電気角の変化速度(電気角での角速度。最大ロータ角速度)は、次式(2)のとおり、最大操舵角速度と、減速機構7の減速比と、ロータ50の極対数との積で与えられる。極対数とは、ロータ50が有する磁極対(N極とS極との対)の個数である。
最大ロータ角速度=最大操舵角速度×減速比×極対数 …(2)
制御角θの演算間(演算周期)におけるロータ50の電気角変化量の最大値(ロータ角変化量最大値)は、次式(3)のとおり、最大ロータ角速度に演算周期を乗じた値となる。
ロータ角変化量最大値=最大ロータ角速度×演算周期
=最大操舵角速度×減速比×極対数×演算周期 …(3)
このロータ角変化量最大値が一演算周期間で許容される制御角θの最大変化量である。そこで、前記ロータ角変化量最大値を制限値ωmax(>0)とすればよい。この制限値ωmaxを用いて、加算角αの上限値ULおよび下限値LLは、それぞれ次式(4)(5)で表すことができる。
UL=+ωmax …(4)
LL=−ωmax …(5)
加算角リミッタ24による制限処理後の加算角αが、制御角演算部26の加算器26Aにおいて、制御角θの前回値θ(n-1)(nは今演算周期の番号)に加算される(Z−1は信号の前回値を表す)。ただし、制御角θの初期値は予め定められた値(たとえば零)である。
加算角監視部25は、PI制御部23によって求められる加算角αの絶対値と所定のしきい値αthとを比較する。そして、加算角監視部25は、加算角αの絶対値がしきい値αth以上の状態が所定数の演算周期に渡って連続すると、異常が発生したと判断し、初期化部29に異常発生を通知する。前記しきい値αthは、前記所定の制限値ωmaxと等しい値であってもよい。この場合において、前記所定数の演算周期は、前記最大操舵角速度での最長操舵継続時間の想定値以上の値とすればよい。これにより、最大操舵角速度での最長操舵継続時間として想定される時間よりも長時間に渡って制御角θが加算角リミッタ24による制限を受け続けるときに、異常が発生したものと判断できる。
制御角演算部26は、制御角θの前回値θ(n-1)に加算角リミッタ24から与えられる加算角αを加算する加算器26Aを含む。すなわち、制御角演算部26は、所定の演算周期毎に制御角θを演算する。そして、前演算周期における制御角θを前回値θ(n-1)とし、これを用いて今演算周期における制御角θである今回値θ(n)を求める。
操舵トルク監視部27は、検出操舵トルクTが飽和値+Tmaxまたは−Tmaxであるかどうか、すなわち飽和状態かどうかを監視する。検出操舵トルクTが飽和状態である場合、操舵トルク監視部27は、制御異常が発生しているものとして、このことを初期化部29に通知する。
たとえば、操舵トルクリミッタ20は、トルクセンサ1の出力が飽和値+Tmax以上または−Tmax以下となると、このことを操舵トルク監視部27に通知してもよい。この通知に基づいて、操舵トルク監視部27は、検出操舵トルクTが飽和状態かどうかを判断してもよい。つまり、操舵トルク監視部27は、操舵トルクリミッタ20の作動状態に基づいて、検出操舵トルクTが飽和状態かどうかを判断するものであってもよい。むろん、操舵トルク監視部27は、操舵トルクリミッタ20が生成する制限後の検出操舵トルクTを監視するものであってもよいし、操舵トルクリミッタ20による制限前の検出操舵トルクTを監視するものであってもよい。また、操舵トルク監視部27は、制限前または制限後の検出操舵トルクTを、上限飽和値+Tmaxよりも若干小さな上限しきい値、および下限飽和値−Tmaxよりも若干大きな下限しきい値と比較するものであってもよい。この場合、操舵トルク監視部27は、検出操舵トルクTが、上限しきい値以上であるか、または下限しきい値以下であるときに、検出操舵トルクTが飽和状態であると判定すればよい。
初期化部29は、加算角監視部25または操舵トルク監視部27が異常発生を通知すると、これを受けて初期化処理を実行する。この初期化処理は、この実施形態では、(a)PI制御部23における積分値(トルクフィードバック制御の積分項)のリセット(積分項を零にする)、(b)PI制御部23が演算する加算角αのリセット(加算角αを零にする)、(c)制御角演算部26における前回値(前演算周期における制御角θ)のリセット(前回値を零にする)、および(d)PI制御部33における積分値(電流フィードバック制御の積分項)のリセット(積分項を零にする)を含む。加算角αのリセットは、PI制御部23における比例項および積分項をリセットすることで達成でき、この場合、PI制御部23の積分項も同時にリセットされることになる。
このような初期化処理が行われることによって、加算角αが加算角リミッタ24による制限処理を受け続けている状態を速やかに脱して、制御を再開することができる。これにより、制御角θの適値への収束を促すことができる。
なお、前記 (a)〜(d)のリセット処理の全てを行うことが最も好ましいが、少なくとも(a)の処理を行うことが好ましく、これに(b)(c)(d)のリセット処理のうちの1つまたは2つ以上を任意に組み合わせることができる。さらに、少なくとも(a)および(b)の処理を行うことがより好ましく、これに(c)(d)のうちの1つまたは両方を任意に組み合わせることができる。また、少なくとも(a)(b)(c)の処理を行えばさらに好ましく、これに(d)の処理を任意に組み合わせることができる。
指示電流値生成部31は、制御上の回転角である前記制御角θに対応する仮想回転座標系であるγδ座標系の座標軸(仮想軸)に流すべき電流値を指示電流値として生成するものである。具体的には、γ軸指示電流値Iγ およびδ軸指示電流値Iδ (以下、これらを総称するときには「二相指示電流値Iγδ 」という。)を生成する。指示電流値生成部31は、γ軸指示電流値Iγ を有意値とする一方で、δ軸指示電流値Iδ を零とする。より具体的には、指示電流値生成部31は、トルクセンサ1によって検出される検出操舵トルクTに基づいてγ軸指示電流値Iγ を設定する。
検出操舵トルクTに対するγ軸指示電流値Iγ の設定例は、図6に示されている。検出操舵トルクTが零付近の領域には不感帯NRが設定されている。γ軸指示電流値Iγ は、不感帯NRの外側の領域で急峻に立ち上がり、所定のトルク以上でほぼ一定値となるように設定される。これにより、運転者がステアリングホイール10を操作していないときには、モータ3への通電が停止され、不必要な電力消費が抑制される。
電流偏差演算部32は、指示電流値生成部31によって生成されるγ軸指示電流値Iγ に対するγ軸検出電流Iγの偏差Iγ −Iγと、δ軸指示電流値Iδ (=0)に対するδ軸検出電流Iδの偏差Iδ −Iδとを演算する。γ軸検出電流Iγおよびδ軸検出電流Iδは、UVW/γδ変換部36から偏差演算部32に与えられるようになっている。
UVW/γδ変換部36は、電流検出部13によって検出されるUVW座標系の三相検出電流IUVW(U相検出電流I、V相検出電流IおよびW相検出電流I)をγδ座標系の二相検出電流IγおよびIδ(以下総称するときには「二相検出電流Iγδ」という。)に変換する。これらが電流偏差演算部32に与えられるようになっている。UVW/γδ変換部36における座標変換には、制御角演算部26で演算される制御角θが用いられる。
PI制御部33は、電流偏差演算部32によって演算された電流偏差に対するPI演算を行うことにより、モータ3に印加すべき二相指示電圧Vγδ (γ軸指示電圧Vγ およびδ軸指示電圧Vδ )を生成する。この二相指示電圧Vγδ が、γδ/UVW変換部34に与えられる。
γδ/UVW変換部34は、二相指示電圧Vγδ に対して座標変換演算を行うことによって、三相指示電圧VUVW を生成する。三相指示電圧VUVW は、U相指示電圧V 、V相指示電圧V およびW相指示電圧V からなる。この三相指示電圧VUVW は、PWM制御部35に与えられる。
PWM制御部35は、U相指示電圧V 、V相指示電圧V およびW相指示電圧V にそれぞれ対応するデューティのU相PWM制御信号、V相PWM制御信号およびW相PWM制御信号を生成し、駆動回路12に供給する。
駆動回路12は、U相、V相およびW相に対応した三相インバータ回路からなる。このインバータ回路を構成するパワー素子がPWM制御部35から与えられるPWM制御信号によって制御されることにより、三相指示電圧VUVW に相当する電圧がモータ3の各相のステータ巻線51,52、53に印加されることになる。
電流偏差演算部32およびPI制御部33は、電流フィードバック制御手段を構成している。この電流フィードバック制御手段の働きによって、モータ3に流れるモータ電流が、指示電流値生成部31によって設定される二相指示電流値Iγδ に近づくように制御される。
図3は、前記電動パワーステアリング装置の制御ブロック図である。ただし、説明を簡単にするために、加算角リミッタ24の機能は省略してある。
指示操舵トルクTと検出操舵トルクTとの偏差(トルク偏差)ΔTに対するPI制御(Kは比例係数、Kは積分係数、1/sは積分演算子である。)によって、加算角αが生成される。この加算角αが制御角θの前回値θ(n-1)に対して加算されることによって、制御角θの今回値θ(n)=θ(n-1)+αが求められる。このとき、制御角θとロータ50の実際のロータ角θとの偏差が負荷角θ=θ−θとなる。
したがって、制御角θに従うγδ座標系(仮想回転座標系)のγ軸(仮想軸)にγ軸指示電流値Iγ に従ってγ軸電流Iγが供給されると、q軸電流I=Iγsinθとなる。このq軸電流Iがロータ50の発生トルクに寄与する。すなわち、モータ3のトルク定数Kをq軸電流I(=Iγsinθ)に乗じた値が、アシストトルクT(=K・Iγsinθ)として、減速機構7を介して、舵取り機構2に伝達される。このアシストトルクTを舵取り機構2からの負荷トルクTから減じた値が、運転者がステアリングホイール10に与えるべき操舵トルクTである。この操舵トルクTがフィードバックされることによって、この操舵トルクTを指示操舵トルクTに導くように系が動作する。つまり、検出操舵トルクTを指示操舵トルクTに一致させるべく、加算角αが求められ、それに応じて制御角θが制御される。
このように制御上の仮想軸であるγ軸に電流を流す一方で、指示操舵トルクTと検出操舵トルクTとの偏差ΔTに応じて求められる加算角αで制御角θを更新していくことにより、負荷角θが変化し、この負荷角θに応じたトルクがモータ3から発生するようになっている。これにより、操舵角および車速に基づいて設定される指示操舵トルクTに応じたトルクをモータ3から発生させることができるので、操舵角および車速に対応した適切な操舵補助力を舵取り機構2に与えることができる。すなわち、操舵角の絶対値が大きいほど操舵トルクが大きく、かつ、車速が大きいほど操舵トルクが小さくなるように、操舵補助制御が実行される。
このようにして、回転角センサを用いることなくモータ3を適切に制御して、適切な操舵補助を行うことができる電動パワーステアリング装置を実現できる。これにより、構成を簡単にすることができ、コストの削減を図ることができる。
図7は、加算角リミッタ24の働きを説明するためのフローチャートである。加算角リミッタ24は、PI制御部23によって求められた加算角αを上限値ULと比較し(ステップS1)、加算角αが上限値ULを超えている場合(ステップS1:YES)には、上限値ULを加算角αに代入する(ステップS2)。したがって、制御角θに対して上限値UL(=+ωmax)が加算されることになる。
PI制御部23によって求められた加算角αが上限値UL以下であれば(ステップS1:NO)、加算角リミッタ24は、さらに、その加算角αを下限値LLと比較する(ステップS3)。そして、その加算角αが下限値未満であれば(ステップS3:YES)、下限値LLを加算角αに代入する(ステップS4)。したがって、制御角θに対して下限値LL(=−ωmax)が加算されることになる。
PI制御部23によって求められた加算角αが下限値LL以上上限値UL以下(ステップS3:NO)であれば、その加算角αがそのまま制御角θへの加算のために用いられる。
このようにして、加算角αを上限値ULと下限値LLとの間に制限することができるので、制御の安定化を図ることができる。より具体的には、電流不足時や制御開始時に制御不安定状態(アシスト力が不安定な状態)が発生しても、この状態から安定な制御状態への遷移を促すことができる。
図8は、加算角監視部25、操舵トルク監視部27および初期化部29による処理を説明するためのフローチャートである。加算角監視部25は、PI制御部23によって求められる加算角αの絶対値をしきい値αthと比較する(ステップS11)。加算角αの絶対値がしきい値αth以上のときは(ステップS11:YES)、加算角監視部25は、さらに、|α|≧αthの状態が所定数の演算周期だけ継続しているかどうかを判断する(ステップS12)。この判断が肯定されると、異常が発生していると判断され、加算角監視部25は、初期化部29に対して異常発生を通知する。これを受けて、初期化部29は、前述の初期化処理(制御異常からの復帰処理)を行う(ステップS16)。ステップS11またはステップS12での判断が否定されれば、処理はステップS13に移る。
しきい値αthは、前記所定の制限値ωmax以下の値とすることが好ましく、たとえば、制限値ωmaxに等しい値としておけばよい。
加算角αの絶対値がしきい値αth以上である状態が継続しているときとは、加算角αが加算角リミッタ24による制限処理を受ける状態が継続している場合である。この場合、演算周期毎に制御角θが制限値ωmaxだけ変化することになるから、変化量が大きい。そのうえ、一定の制限値ωmaxずつ制御角θが変化するため、制御角θは有限個の値を循環的にとる状態となる。とくに、制限値ωmaxが360度の約数(たとえば45度)である場合には、制御角θは少数の値を循環的に取ることになる。このような状態では、制御角θは、検出操舵トルクTを指示操舵トルクTに近づけるための適値に近い値をとることができなくなるおそれがある。すなわち、制御角θは適値を飛び越えて変動し続ける。
そこで、この実施形態では、加算角αの絶対値がしきい値αth以上である状態が継続したときに、前述のような異常状態が発生していると判断し、初期化処理を実行するようにしている。この初期化処理が行われることによって、加算角αが加算角リミッタ24による制限処理を受け続けている状態を速やかに脱して、制御を再開することができる。これにより、制御角θの適値への収束を促すことができる。こうして、操舵補助力が不安定な状態から速やかに脱することができるので、操舵感を向上することができる。
一方、ステップS11またはS12での判断が否定されたときは、検出操舵トルクの飽和に応答して開始された復帰処理の過程にあるかどうかを表すフラグがチェックされる(ステップS13)。このフラグは、復帰処理過程のときにはセット状態とされ、復帰処理過程でなければリセット状態とされる。フラグがセットされていなければ、操舵トルク監視部27によって検出操舵トルクTの飽和が検知されているかどうかが判断される(ステップS14)。そして、検出操舵トルクTが飽和しているときは(ステップS14:YES)、操舵トルク監視部27は、前記フラグをセットするとともに(ステップS15)、初期化部29に対して異常発生を通知する。これを受けて、初期化部29は、前述の初期化処理を実行する(ステップS16)。これにより、検出操舵トルクTの飽和に応答して実行された初期化処理による復帰処理過程に入る。
トルクセンサ1の応答性の問題などから、初期化処理を実行しても、検出操舵トルクTが直ちに飽和状態を脱して指示操舵トルクTへと収束していくわけではない。そのため、前記復帰処理過程にはある程度の時間が必要になる。
ステップS13において、前記フラグがセットされていて、前記復帰処理過程にあると判断されると(ステップS13:YES)、操舵トルク監視部27は、初期化部29による初期化処理(復帰処理)を禁止する(ステップS17)。さらに、操舵トルク監視部27は、検出操舵トルクTの絶対値を前記飽和値Tmaxよりも小さな復帰しきい値Tth(Tth>0。たとえば、Tth=6.5Nm。図5参照)と比較する(ステップS18)。検出操舵トルクTの絶対値が復帰しきい値Tth以下であれば(ステップS18:YES)、操舵トルク監視部27は、前記フラグをリセットする(ステップS19)。
このような動作が行われることによって、検出操舵トルクTの飽和に応答して制御異常からの復帰処理(初期化処理)が開始されると、検出操舵トルクTの絶対値がしきい値Tth以下となり、前記フラグがリセットされるまで(ステップS13,S19)、初期化処理が禁止される(ステップS17)。これにより、トルクセンサ1の応答性などに起因して、初期化処理が繰り返し実行されることを回避できるので、制御角θを速やかに適値へと収束させることができる。すなわち、加算角演算の初期化が繰り返されることによって、制御角θの収束が遅延することを抑制できるから、適切なアシストトルクを速やかに発生させることができ、ステアリング操作につまり(操舵力の急増)が生じることを抑制または防止できる。これにより、操舵フィーリングを向上することができる。
図9は、検出操舵トルクTの時間変化の一例を示す図である。ただし、操舵トルクリミッタ20による制限前の検出操舵トルクTが示されている。検出操舵トルクTが上限飽和値+Tmaxに達した時刻t1において、初期化処理が行われ、たとえば、加算角αが零にリセットされる。しかし、この初期化処理によって、検出操舵トルクTが直ちに上限飽和値+Tmaxよりも小さな値となるわけではない。すなわち、検出操舵トルクTは、ある程度の時間を掛けながら減少し、時刻t2に上限飽和値+Tmaxを下回り、さらに、その後の時刻t3に復帰しきい値Tth以下となる。もしも、検出操舵トルクTの飽和に応答して行われる初期化処理に対して制限を加えなければ、時刻t1〜t2の期間に、繰り返し初期化処理が行われ、必要なアシストトルクを得ることができなくなる。これに対して、この実施形態では、時刻t1〜t3の期間には、検出操舵トルクTの飽和に応答する初期化処理が禁止される。これにより、検出操舵トルクTの応答遅れに起因する初期化処理の繰り返しを抑制または防止することができ、制御角θを速やかに適値へと収束させて、必要なアシストトルクを得ることができる。こうして、操舵フィーリングを改善することができる。
図10は、この発明の第2の実施形態に係る動作を説明するためのフローチャートであり、前述の図8の処理に代えて適用することができる処理例が示されている。この図10において、図8に示されたステップに対応するステップには同一参照符号を付して示す。また、前述の図1を再び参照する。
この実施形態では、検出操舵トルクTの飽和に応答して実行された復帰処理過程において、加算角αの絶対値と比較されるしきい値が、既定値である第1のしきい値αth(たとえば45度)からそれよりも小さな第2のしきい値αth1(たとえば15度)に変更される。
より具体的に説明する、前述のフラグがセットされていると(ステップS13:YES)、検出操舵トルクTの飽和に応答する初期化処理(復帰処理)が禁止される(ステップS17)。さらに、加算角監視部25は、PI制御部23によって求められる加算角αの絶対値を第2のしきい値αth1と比較する(ステップS21)。加算角αの絶対値がしきい値αth1以上のときは(ステップS21:YES)、加算角監視部25は、さらに、|α|≧αth1の状態が所定数の演算周期だけ継続しているかどうかを判断する(ステップS22)。この判断が肯定されると、異常が発生していると判断され、加算角監視部25は、初期化部29に対して異常発生を通知する。これを受けて、初期化部29は、前述の初期化処理(制御異常からの復帰処理)を行う(ステップS16)。ステップS21またはステップS22での判断が否定されれば、処理はステップS18に移る。
前記フラグがリセット状態であれば(ステップS13:NO)、前述の第1の実施形態の場合と同様の動作となり、加算角αに異常がある場合(ステップS11:YES、ステップS12:YES)、または検出操舵トルクTが飽和状態である場合(ステップS14:YES)には、初期化処理(ステップS16)が実行されることになる。
図11は、この実施形態における動作例を説明するための図であり、図11(a)は加算角αの時間変化例を示し、図11(b)は操舵トルクリミッタ20による制限を受ける前の検出操舵トルクTの時間変化例を示す。
検出操舵トルクTが大きくなっていくときには、大きなアシストトルクが必要であり、そのため加算角αも大きくなっていく。加算角αが第1のしきい値αthに達するよりも早く、時刻t11において検出操舵トルクTが飽和状態となると、初期化処理によって加算角αが零となる。しかし、前述のとおり、検出操舵トルクTが初期化動作に応答するまでには時間がかかる。この間には、検出操舵トルクTの飽和に応答した初期化動作は禁止されるのであるが、加算角αが急激に増大して、制御異常状態に陥るおそれがある。
そこで、この実施形態では、加算角αが第1しきい値αthに達するよりも前の小さな値(第2のしきい値αth1)に達する時刻t12において、初期化処理が行われる。これにより、検出操舵トルクTが復帰しきい値Tthにまで減少する時刻t13以前の期間に、加算角αの絶対値が過大な値(この実施形態では第1のしきい値αthたとえば、αth=ωmax)となって制御異常に至ることを回避している。これにより、加算角αが上限値(UL=+ωmax)または下限値(LL=−ωmax)と零との間での急変を繰り返すことを抑制または防止できるので、制御角θを速やかに適値へと導くことができ、ステアリング操作につまりが生じることを抑制または防止できる。
以上、この発明の2つの実施形態について説明したが、この発明はさらに他の形態で実施することもできる。たとえば、指示操舵トルク設定部21は、図12に示す特性に従って指示操舵トルクを設定するものであってもよい。すなわち、この特性例では、操舵角範囲の両端付近において、指示操舵トルクTの絶対値を急増させている。さらに具体的には、操舵角範囲の両端付近において、指示操舵トルクTの絶対値を、検出操舵トルクTの飽和値Tmaxに等しくしている。これにより、操舵角範囲の両端付近においては、トルク偏差ΔTが零となり、それに応じて加算角αが零になるので、モータ3がトルクを発生しなくなる。これにより、操舵角範囲の両端を超えた操舵を実質的に禁止することができる。ただし、ここでの「操舵角範囲」とは、ステアリングホイール10の機械的な操作範囲よりも狭い範囲である。さらに具体的には、操舵角範囲は、電流不足のために制御異常が生じる蓋然性の高い操舵角上限値および操舵角下限値に基づいて設定されている。
操舵角の絶対値が大きくなるほど負荷トルクが大きくなり、それに応じて大きなアシストトルクが必要である。しかし、モータ3が発生することができるトルクには、γ軸指示電流値Iγ に応じた上限値があり、これを超えるモータトルクを発生することはできない。もしも、指示操舵トルクTがモータトルク上限値を超えて設定されれば、検出操舵トルクTが飽和し、さらに、トルク偏差ΔTが大きくなるから、加算角αの絶対値が制限値ωmaxに達する。これにより、制御異常を来し、操舵フィーリングを損なう原因となる。
そこで、図12の指示操舵トルク特性を適用すれば、電流不足が生じない範囲に操舵角範囲を制限することができ、このような操舵角範囲の両端において仮想的なハンドルエンドを形成することができる。このようにして、電流不足に起因する制御異常を抑制または防止することができるから、操舵フィーリングを向上することができる。
また、前述の実施形態では、モータ制御態様の変更の一例として、加算角演算のためのPI制御部23,33を初期化(とくに積分項および加算角αの初期化)を行うようにしている。しかし、モータ制御態様は、PI制御部23の初期化だけに限らず、PI制御部23,33のゲインの変更、加算角リミッタ24における制限値ωmaxの変更(減少)、γ軸指示電流値Iγ の変更、制御角θの補正(たとえば一定値だけシフトする補正)などによっても行うことができる。
また、前述の実施形態では、加算角監視部25は、加算角αの絶対値がしきい値αth以上である状態の継続を監視するようにしているが、加算角リミッタ24による制限がかかっている状態の継続時間を監視する構成とすることもできる。
また、前述の実施形態では、回転角センサを備えずに、専らセンサレス制御によってモータ3を駆動する構成について説明したが、レゾルバ等の回転角センサを備え、この回転角センサの故障時に前述のようなセンサレス制御を行う構成としてもよい。これにより、回転角センサの故障時にもモータ3の駆動を継続できるから、操舵補助を継続できる。
この場合、回転角センサを用いるときには、指示電流値生成部31において、操舵トルクおよび車速に応じて、所定のアシスト特性に従ってδ軸指示電流値Iδ を発生させるようにすればよい。
さらに、前述の実施形態では、電動パワーステアリング装置にこの発明が適用された例について説明したが、この発明は、電動ポンプ式油圧パワーステアリング装置のためのモータの制御や、パワーステアリング装置以外にも、ステア・バイ・ワイヤ(SBW)システム、可変ギヤレシオ(VGR)ステアリングシステムその他の車両用操舵装置に備えられたブラシレスモータの制御のために用いることができる。むろん、車両用操舵装置に限らず、他の用途のモータの制御のためにも本発明のモータ制御装置を適用できる。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能である。
1…トルクセンサ、3…モータ、5…モータ制御装置、11…マイクロコンピュータ、26…制御角演算部、50…ロータ、51,52,52…ステータ巻線、55…ステータ

Claims (3)

  1. ロータと、このロータに対向するステータとを備えたモータを制御するためのモータ制御装置であって、
    制御上の回転角である制御角に従う回転座標系の軸電流値で前記モータを駆動する電流駆動手段と、
    前記制御角に加算すべき加算角を演算する加算角演算手段と、
    所定の演算周期毎に、前記加算角演算手段によって演算された加算角を制御角の前回値に加算することによって制御角の今回値を求める制御角演算手段と、
    モータによって駆動される駆動対象に加えられる、モータトルク以外のトルクを検出するためのトルク検出手段と、
    前記トルク検出手段の検出トルクに応じてモータ制御態様を変更するための変更手段と、
    前記変更手段が検出トルクに応答して作動した後、前記検出トルクの絶対値が所定値以下になるまで前記変更手段の作動を禁止する禁止手段と
    を含む、モータ制御装置。
  2. 前記加算角の絶対値が所定値以上のときには、前記禁止手段が作動中であっても前記変更手段の作動を許可する許可手段をさらに含む、請求項1記載のモータ制御装置。
  3. 前記加算角を所定の制限値で制限する加算角制限手段と、
    前記禁止手段の作動中に、前記加算角の絶対値が前記制限値よりも小さな所定値以上となったときに、前記変更手段の作動を許可する許可手段とをさらに含む、請求項1記載のモータ制御装置。
JP2009019976A 2009-01-30 2009-01-30 モータ制御装置 Expired - Fee Related JP5376215B2 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2009019976A JP5376215B2 (ja) 2009-01-30 2009-01-30 モータ制御装置
EP10151953.6A EP2216895A3 (en) 2009-01-30 2010-01-28 Electric motor controller and electric motor controller for vehicle steering apparatus
US12/696,604 US8855857B2 (en) 2009-01-30 2010-01-29 Electric motor controller and electric motor controller for vehicle steering apparatus
CN201010108258.5A CN101795106B (zh) 2009-01-30 2010-01-29 电动机控制装置和用于车辆用转向装置的电动机控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019976A JP5376215B2 (ja) 2009-01-30 2009-01-30 モータ制御装置

Publications (2)

Publication Number Publication Date
JP2010178548A true JP2010178548A (ja) 2010-08-12
JP5376215B2 JP5376215B2 (ja) 2013-12-25

Family

ID=42286663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019976A Expired - Fee Related JP5376215B2 (ja) 2009-01-30 2009-01-30 モータ制御装置

Country Status (4)

Country Link
US (1) US8855857B2 (ja)
EP (1) EP2216895A3 (ja)
JP (1) JP5376215B2 (ja)
CN (1) CN101795106B (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036119A (ja) * 2009-07-06 2011-02-17 Jtekt Corp モータ制御装置および車両用操舵装置
JP2013112279A (ja) * 2011-11-30 2013-06-10 Jtekt Corp 車両用操舵装置
CN108566132A (zh) * 2018-04-18 2018-09-21 昆明理工大学 一种撬棒保护动作后的双馈感应发电机三相短路电流的解析方法
KR20200077010A (ko) * 2018-12-20 2020-06-30 주식회사 만도 Eps 시스템에서의 조향 보조 모터 제어 장치 및 그 방법

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5534292B2 (ja) 2008-06-30 2014-06-25 株式会社ジェイテクト 車両用操舵装置
JP5376215B2 (ja) 2009-01-30 2013-12-25 株式会社ジェイテクト モータ制御装置
JP5495018B2 (ja) 2009-03-12 2014-05-21 株式会社ジェイテクト モータ制御装置
JP5561516B2 (ja) 2009-07-06 2014-07-30 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5532295B2 (ja) 2009-11-12 2014-06-25 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5440846B2 (ja) 2009-11-16 2014-03-12 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5614583B2 (ja) 2009-11-17 2014-10-29 株式会社ジェイテクト モータ制御装置および車両用操舵装置
JP5692569B2 (ja) 2010-08-23 2015-04-01 株式会社ジェイテクト 車両用操舵装置
JP5893876B2 (ja) * 2011-09-13 2016-03-23 トヨタ自動車株式会社 モータ制御システム
US9623899B2 (en) * 2013-02-07 2017-04-18 Nsk Ltd. Electric power steering apparatus
US9637166B2 (en) * 2013-04-04 2017-05-02 Nsk Ltd. Electric power steering apparatus
CN107207043B (zh) * 2014-12-02 2018-11-16 日本精工株式会社 电动助力转向装置
CN104990860A (zh) * 2015-07-03 2015-10-21 广州市庆瑞电子科技有限公司 一种环境试验系统中动作单元的控制方法
JP2017077868A (ja) 2015-10-22 2017-04-27 株式会社ジェイテクト 操舵制御装置
JP6700594B2 (ja) 2016-06-09 2020-05-27 株式会社ジェイテクト 操舵制御装置
JP6809093B2 (ja) * 2016-09-29 2021-01-06 株式会社デンソー モータ制御装置およびこれを用いた電動パワーステアリング装置
US10071764B2 (en) * 2016-11-11 2018-09-11 Steering Solutions Ip Holding Corporation Methods to control a steering system
GB2564645B (en) * 2017-07-17 2019-09-25 Protean Electric Ltd A control system for a vehicle
JP6943174B2 (ja) * 2017-12-25 2021-09-29 株式会社ジェイテクト 操舵制御装置
CN108229077B (zh) * 2018-02-12 2021-11-05 天津英创汇智汽车技术有限公司 卡车转向系统与悬架系统干涉量的分析方法
CN110412363B (zh) * 2019-07-17 2021-07-20 国网电力科学研究院武汉南瑞有限责任公司 一种基于速度闭环控制的软件极性判断直流电场测量系统
DE102021202482B4 (de) * 2021-03-15 2023-06-29 Continental Automotive Technologies GmbH Regelungseinrichtung und Verfahren zur Lenkwinkelregelung eines Fahrzeugs

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157646A (ja) * 1996-12-02 1998-06-16 Nippon Seiko Kk 電動パワーステアリング装置の制御装置
JP2007118823A (ja) * 2005-10-28 2007-05-17 Nsk Ltd 電動パワーステアリング制御装置
JP2007307940A (ja) * 2006-05-16 2007-11-29 Jtekt Corp 電動パワーステアリング装置
JP2008037321A (ja) * 2006-08-09 2008-02-21 Fujitsu Ten Ltd 電動パワーステアリング制御装置
JP2008087756A (ja) * 2006-09-07 2008-04-17 Nsk Ltd 電動パワーステアリング装置

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04161085A (ja) 1990-10-22 1992-06-04 Canon Inc 同期モータの制御方法
US5513720A (en) * 1991-01-23 1996-05-07 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Power steering apparatus for vehicle
JPH06305436A (ja) 1993-04-26 1994-11-01 Toyota Motor Corp 電動式パワーステアリング装置
US5568389A (en) * 1994-03-11 1996-10-22 Trw Inc. Method and apparatus for controlling an electric assist steering system
JP3525275B2 (ja) 1996-02-23 2004-05-10 光洋精工株式会社 電動パワーステアリング装置
JP3764536B2 (ja) 1996-09-04 2006-04-12 本田技研工業株式会社 電動パワーステアリング装置
JP3640120B2 (ja) 1997-02-27 2005-04-20 富士電機機器制御株式会社 同期電動機の制御装置
JP3746377B2 (ja) 1998-07-24 2006-02-15 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP2001037281A (ja) 1999-05-18 2001-02-09 Matsushita Electric Ind Co Ltd 電動機のトルク制御装置
US7076340B1 (en) * 1999-05-28 2006-07-11 Kabushiki Kaisha Yaskawa Denki Method of controlling speed of synchronous motor, and method of identifying constant of synchronous motor
JP3774599B2 (ja) * 1999-10-07 2006-05-17 株式会社ジェイテクト 電動パワーステアリング装置
JP3409753B2 (ja) * 1999-10-29 2003-05-26 トヨタ自動車株式会社 車両の電動パワーステアリング装置
JP3678097B2 (ja) * 1999-12-20 2005-08-03 三菱電機株式会社 電動パワーステアリング装置
JP3411878B2 (ja) 2000-03-06 2003-06-03 株式会社日立製作所 同期モータの回転子位置推定方法、位置センサレス制御方法及び制御装置
JP4248739B2 (ja) * 2000-08-30 2009-04-02 三菱電機株式会社 電動パワーステアリング制御装置及びその制御方法
JP3755424B2 (ja) * 2001-05-31 2006-03-15 トヨタ自動車株式会社 交流電動機の駆動制御装置
JP3867518B2 (ja) * 2001-06-06 2007-01-10 株式会社日立製作所 同期電動機のセンサレス制御システム
JP4826868B2 (ja) * 2001-08-06 2011-11-30 株式会社ジェイテクト パワーステアリング装置
JP3894286B2 (ja) 2001-10-15 2007-03-14 富士電機システムズ株式会社 永久磁石同期電動機の制御装置
JP3868287B2 (ja) 2001-12-21 2007-01-17 株式会社ジェイテクト 車両の操舵装置
JP4391719B2 (ja) 2002-03-20 2009-12-24 トヨタ自動車株式会社 モータ温度推定装置およびモータ制御装置
US6995679B2 (en) * 2002-04-30 2006-02-07 International Rectifier Corporation Electronically controlled power steering system for vehicle and method and system for motor control
JP4230276B2 (ja) * 2003-05-19 2009-02-25 本田技研工業株式会社 ブラシレスdcモータの制御装置
JP4556500B2 (ja) * 2004-06-04 2010-10-06 株式会社アドヴィックス 車両の自動操舵制御装置
JP4441909B2 (ja) * 2004-10-25 2010-03-31 株式会社デンソー 車両制御装置
JP4294573B2 (ja) * 2004-11-02 2009-07-15 本田技研工業株式会社 操舵装置
JP4589093B2 (ja) * 2004-12-10 2010-12-01 日立オートモティブシステムズ株式会社 同期モータ駆動装置及び方法
JP4367383B2 (ja) * 2005-07-08 2009-11-18 トヨタ自動車株式会社 車両の操舵アシスト装置
JP4425193B2 (ja) 2005-08-16 2010-03-03 三洋電機株式会社 モータの位置センサレス制御装置
JP4716118B2 (ja) 2006-03-29 2011-07-06 株式会社ジェイテクト モータ制御装置
JP4899611B2 (ja) * 2006-04-24 2012-03-21 株式会社ジェイテクト 電動パワーステアリング装置
JP5028863B2 (ja) * 2006-05-25 2012-09-19 日本精工株式会社 電動パワーステアリング装置の制御装置
US20090240389A1 (en) * 2006-05-31 2009-09-24 Nsk Ltd Electric power steering apparatus
JP4959233B2 (ja) * 2006-06-13 2012-06-20 富士重工業株式会社 車両の操舵制御装置
JP2008024196A (ja) 2006-07-24 2008-02-07 Nsk Ltd 電動パワーステアリング装置の制御装置
JP4329792B2 (ja) * 2006-08-10 2009-09-09 トヨタ自動車株式会社 電動パワーステアリング装置
JP4419997B2 (ja) * 2006-08-28 2010-02-24 トヨタ自動車株式会社 電動パワーステアリング装置
JP5151128B2 (ja) * 2006-11-30 2013-02-27 日本精工株式会社 電動式ステアリング装置
JP5250979B2 (ja) * 2007-02-07 2013-07-31 日本精工株式会社 電動パワーステアリング装置の制御装置
JP5104239B2 (ja) 2007-11-13 2012-12-19 富士電機株式会社 永久磁石形同期電動機の制御装置
JP5435252B2 (ja) 2008-01-30 2014-03-05 株式会社ジェイテクト 車両用操舵装置
JP4605250B2 (ja) 2008-05-14 2011-01-05 トヨタ自動車株式会社 車両のステアリング装置
CN102027670B (zh) * 2008-05-28 2013-07-31 本田技研工业株式会社 电动机的控制装置及电动转向装置
JP5217794B2 (ja) * 2008-08-29 2013-06-19 株式会社ジェイテクト 電気式動力舵取装置
JP2010095075A (ja) * 2008-10-15 2010-04-30 Jtekt Corp 車両用操舵装置
JP5376215B2 (ja) 2009-01-30 2013-12-25 株式会社ジェイテクト モータ制御装置
JP5408469B2 (ja) 2009-01-30 2014-02-05 株式会社ジェイテクト モータ制御装置
US9995507B2 (en) * 2009-04-15 2018-06-12 Richard Norman Systems for cost-effective concentration and utilization of solar energy
JP2011010379A (ja) * 2009-06-23 2011-01-13 Jtekt Corp モータ制御装置および電動パワーステアリング装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10157646A (ja) * 1996-12-02 1998-06-16 Nippon Seiko Kk 電動パワーステアリング装置の制御装置
JP2007118823A (ja) * 2005-10-28 2007-05-17 Nsk Ltd 電動パワーステアリング制御装置
JP2007307940A (ja) * 2006-05-16 2007-11-29 Jtekt Corp 電動パワーステアリング装置
JP2008037321A (ja) * 2006-08-09 2008-02-21 Fujitsu Ten Ltd 電動パワーステアリング制御装置
JP2008087756A (ja) * 2006-09-07 2008-04-17 Nsk Ltd 電動パワーステアリング装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011036119A (ja) * 2009-07-06 2011-02-17 Jtekt Corp モータ制御装置および車両用操舵装置
JP2013112279A (ja) * 2011-11-30 2013-06-10 Jtekt Corp 車両用操舵装置
CN108566132A (zh) * 2018-04-18 2018-09-21 昆明理工大学 一种撬棒保护动作后的双馈感应发电机三相短路电流的解析方法
CN108566132B (zh) * 2018-04-18 2021-10-22 昆明理工大学 一种撬棒保护动作后的双馈感应发电机三相短路电流的解析方法
KR20200077010A (ko) * 2018-12-20 2020-06-30 주식회사 만도 Eps 시스템에서의 조향 보조 모터 제어 장치 및 그 방법
KR102665382B1 (ko) * 2018-12-20 2024-05-13 에이치엘만도 주식회사 Eps 시스템에서의 조향 보조 모터 제어 장치 및 그 방법

Also Published As

Publication number Publication date
JP5376215B2 (ja) 2013-12-25
EP2216895A3 (en) 2018-03-14
CN101795106A (zh) 2010-08-04
US8855857B2 (en) 2014-10-07
US20100198462A1 (en) 2010-08-05
EP2216895A2 (en) 2010-08-11
CN101795106B (zh) 2014-07-02

Similar Documents

Publication Publication Date Title
JP5376215B2 (ja) モータ制御装置
JP5387892B2 (ja) モータ制御装置
JP5534292B2 (ja) 車両用操舵装置
JP5561516B2 (ja) モータ制御装置および車両用操舵装置
JP5440846B2 (ja) モータ制御装置および車両用操舵装置
JP5495018B2 (ja) モータ制御装置
JP5408469B2 (ja) モータ制御装置
JP2011109733A (ja) モータ制御装置および車両用操舵装置
JP5252190B2 (ja) モータ制御装置
JP5376213B2 (ja) モータ制御装置
JP2010098810A (ja) モータ制御装置
JP5440845B2 (ja) モータ制御装置および車両用操舵装置
JP2010178546A (ja) モータ制御装置
JP5561515B2 (ja) モータ制御装置
JP5376214B2 (ja) モータ制御装置
JP5641299B2 (ja) モータ制御装置および車両用操舵装置
JP2010208592A (ja) 車両用操舵装置
JP5532292B2 (ja) 車両用操舵装置
JP2011109874A (ja) モータ制御装置および車両用操舵装置
JP2010213547A (ja) モータ制御装置
JP5408475B2 (ja) 車両用操舵装置
JP5545465B2 (ja) モータ制御装置および車両用操舵装置
JP5505682B2 (ja) モータ制御装置
JP2010213550A (ja) モータ制御装置
JP2010208591A (ja) 車両用操舵装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130410

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130528

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130911

R150 Certificate of patent or registration of utility model

Ref document number: 5376215

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees