JP2009526828A - 殺ウイルス材料 - Google Patents

殺ウイルス材料 Download PDF

Info

Publication number
JP2009526828A
JP2009526828A JP2008554847A JP2008554847A JP2009526828A JP 2009526828 A JP2009526828 A JP 2009526828A JP 2008554847 A JP2008554847 A JP 2008554847A JP 2008554847 A JP2008554847 A JP 2008554847A JP 2009526828 A JP2009526828 A JP 2009526828A
Authority
JP
Japan
Prior art keywords
group
nanoparticles
phosphate
silicon
aluminum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008554847A
Other languages
English (en)
Inventor
グオゲング レン
ジョン シドニー オックスフォード
ポール ウィリアム ライプ
ロバート ランキン−ウィリアムズ
アレキサンダー マン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Queen Mary University of London
Original Assignee
Queen Mary and Westfiled College University of London
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Queen Mary and Westfiled College University of London filed Critical Queen Mary and Westfiled College University of London
Publication of JP2009526828A publication Critical patent/JP2009526828A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • A41D13/1192Protective face masks, e.g. for surgical use, or for use in foul atmospheres with antimicrobial agent
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62BDEVICES, APPARATUS OR METHODS FOR LIFE-SAVING
    • A62B23/00Filters for breathing-protection purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/603Including strand or fiber material precoated with other than free metal or alloy

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Plant Pathology (AREA)
  • Toxicology (AREA)
  • Agronomy & Crop Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Pest Control & Pesticides (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Textile Engineering (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Oncology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Communicable Diseases (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Filtering Materials (AREA)

Abstract

本発明は、ウイルス伝染を減少させるおよび/または防止する際の使用のための、一般式MnXyの化合物であって、式中、Mが(i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;nが1、2、または3に等しく、およびXが(iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;yが0、1、2、3、または4に等しい、化合物のナノ粒子の使用を提供する。ウイルス伝染を減少させるおよび/または防止する際の使用のために繊維が上記ナノ粒子でコーティングされている防護衣用品またはフィルターが提供される。

Description

本発明は、ウイルス感染の防止における金属および/または金属化合物のナノ粒子の使用に関する。
空気で運ばれるウイルス感染は一般に、ウイルス粒子を含む水分の液滴の吸入によって引き起こされる。ウイルスを含むより大きい液滴が鼻の中に堆積する一方で、より小さい液滴またはナノ粒子はヒトの気道または肺胞に運ばれる。図1に示されたようなSARSウイルスは、咳およびくしゃみによって産生されるおよそ100〜500nmのサイズの液滴によって拡大されるが、顔面汚染などの、その他の感染の経路が関与する可能性もある(Donnelly et al. Lancet, 361, 1761-1777, (2003)(非特許文献1))。したがって、濾過の観点から、ナノスケールのウイルスおよび粒子は、普通の顔面マスクの間隙を理論的に貫通することができる。現在の世界の超微細な人工または天然繊維フィラメントの直径は、およそ7マイクロメートルである。図2に示されたような標準的な顔面マスクは、繊維マット全体におよそ>20〜10μmの間隙を有する。
したがって、伝統的な濾過布材料を用いた顔面マスクは、ナノスケールのウイルスを止めるには不適当である。顔面マスクの繊維間の間隙は、平均で10〜30μm(10,000〜30,000nm)である。より小さい繊維間隙があるマスクは呼吸困難を引き起こすと考えられる。その他のナノスケールの空気で運ばれるウイルスならびに煙および超微細塵のような粒子は、ヒトの肺に侵入し、その後呼吸膜を通って血液系に侵入することができる。健康への影響は主に、粒子のサブミクロンサイズの画分(すなわち、空気動力学的直径、dp、1μm未満)に関する。煙粒子による危険はdp<100nm画分であり、およびそのような小さい粒子は燃焼過程で大量に生成される。
100nmよりも小さい粒子は、トリインフルエンザおよびHIVなどのヒトウイルスのサイズを含めた様々なサイズに及ぶナノ材料である。インフルエンザ(すなわち、SARSおよびH5N1ウイルス感染の結果)ならびにAIDSに対する世界的な懸念は今日、現代世界における十分に確認された問題であるが、ウイルス疾患の拡大を防止するのに役立つ解決策は今までのところ欠如している。しかしながら、ナノ材料は、ヒトがこれらの疾患を制圧するための極めて重要な解決策を提供する可能性がある。これらの伝染病に対処するために、解決策が緊急に必要とされている。
ナノ粒子は、電子顕微鏡、例えば、透過型または走査型電子顕微鏡(TEMまたはSEM)、原子間力顕微鏡(AFM)、X線光電子分光法(XPS)、粉末X線回折法(XRD)、およびフーリエ変換赤外分光法(FTIR)によって特徴付けることができる。
ナノ粒子は、薬物物質の溶解度および/または生物学的活性を改善するための薬学的製剤において使用を見出している。薬学的目的または学術研究目的に加えて、ナノ粒子は医療目的にも用いられている。例えば、銀ナノ粒子は、細菌を殺すのに用いられている(Furno et al J. Antimicrob Chemother, 54(6), 1019-24(2004)(非特許文献2))。
その他の研究により、銀、二酸化チタン、酸化亜鉛などの金属、および炭素で調製されたナノメートル触媒の使用が記載されている(Fang et al Virologica Sinica, 20, 70-74(2005)(非特許文献3))。そのような触媒は、ナノメートルサイズの触媒粒子の露出表面が、主として(111)型の結晶平面を含む、支持されたナノメートルサイズの金属の触媒性結晶粒子組成物である。そのような触媒は、水素の解離吸着、表面反応、および再結合/脱着、様々な水素化、ならびにメタン化、カルボニル化、ヒドロホルミル化、還元アルキル化、アミノ化、ヒドロシル化、アンモニア合成、油または脂肪硬化、およびそれらと同様のものなどの関連反応を促進するために用いられている。しかしながら、金属または金属酸化物のナノ粒子それ自体が任意の殺ウイルス特性を有することができるという示唆はない。
ウイルス学の分野におけるその他の研究により、コロイド粘土材料である、ベントナイトなどの材料の使用が調査されている。ベントナイトのナノ粒子が調製され、および殺ウイルス活性を有することが報告されている。しかしながら、本材料の複雑な性質のために、作用の機構が粒子サイズに関係があるのかまたは材料の固有の特性に関係があるのかということが明確でない(http://www.eswiconference.org-2005)。
最近、ナノ微粒子銀の使用がウイルス複製を防止する薬剤として効果的であるという報告(www.nanoscale.com)がある。しかしながら、データは、材料それ自体の物理化学的特徴に対する使用された粒子のいかなる殺ウイルス有効性も示唆していない(Elechiguerra et al J. Nanobiotechnology 3(6)(2005)(非特許文献4))。しかしながら、銀の使用は、100%完全に効果的であるわけではなく、ならびに関連する費用および毒性問題がある。
SARS、トリインフルエンザ、およびヒトインフルエンザのウイルス突発の衝撃は、現在の防御のレパートリーがウイルス感染に対していかに限定されているかということを示している。したがって、ウイルス粒子の伝染を防止するための改善された手段に対する必要性がある。
Donnelly et al. Lancet, 361, 1761-1777, (2003) Furno et al J. Antimicrob Chemother, 54(6), 1019-24(2004) Fang et al Virologica Sinica, 20, 70-74(2005) Elechiguerra et al J. Nanobiotechnology 3(6)(2005)
本発明の第一の局面によって、ウイルス伝染を減少させるおよび/または防止するための、一般式MnXyの化合物であって、式中、Mが
(i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;
または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
nが1、2、または3に等しく、
およびXが
(iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
yが0、1、2、3、または4に等しい、
化合物のナノ粒子の使用が提供される。
ナノ粒子とは、ナノメートルの次元を有する粒子を意味し、ナノ粒子は、例えば、およそ数ナノメートル〜数百ナノメートルの次元を有してもよい。ナノ粒子は、任意の所与の1つもしくは複数のウイルスと同様のサイズまたは任意の所与の1つもしくは複数のウイルスよりも小さいサイズであってもよい。
本発明による使用のためのナノ粒子は、約100nmまでの、約200nmまでの、約300nmまでの、または約500nmまでの平均粒子サイズを有してもよい。好ましい平均粒子サイズは、約1nm〜約90nm、好適には約5nm〜約75nmまたは約20nm〜約50nmの範囲にあってもよい。特に好ましい 平均粒子サイズ範囲は約20nm〜約50nmである。
粒子の好ましい比表面積は、150m2/g〜約1450m2/g、好ましくは、200m2/g〜約700m2/gの範囲にあってもよく、好適な値は、150m2/g、640m2/g、700m2/gを含んでもよい。粒子中の空隙は、およそ0.1〜約0.8ml/g、好適には0.2〜約0.7ml/g、好ましくは約0.6ml/gであってもよい。
ナノ粒子は乾燥粉末の形状であることが通常好ましいが、液体、ゾル-ゲル、またはポリマーだけでなく、ナノチューブの形状でもあり得る。粒子は、塊になっていてもよく、または自由に会合していてもよい。
ナノ粒子は、一般式MnXyにおいてyが0に等しく、およびしたがってXが存在しない場合については単一元素Mを含んでもよく、またはナノ粒子は、yが1、2、もしくは3という値を有し、かつxが式中に存在する元素MおよびXのそれぞれの価数と一致したyの値に関してそれに応じて変化する場合には、上で規定されたような化合物を含んでもよい。
あるいは、yが0に等しい場合の単一元素のナノ粒子は、ケイ素(Si)、ホウ素(B)、リン(P)、ヒ素(As)、硫黄(S)、またはガリウム(Ga)からなる群より選択される1つまたは複数の元素でドープ処理されてもよく;アルミニウム(Al)、マンガン(Mn)、マグネシウム(Mg)、ニッケル(Ni)、錫(Sn)、銅(Cu)、チタン(Ti)、タングステン(W)、銀(Ag)、または鉄(Fe)からなる群より選択される1つまたは複数の元素で合金されてもよい。
例えば、混合ナノ粒子は、以下のような異なる元素から構成されていてもよい:C-P-Ag-Zn、C-P-Cu-S、C-P-Cu-Ni-S、C-Si-Ag-Zn、C-Si-Cu-S、C-Si-Cu-Ni、C-Cu-Zn-W、C-Cu-Zn-Ag、C-Cu-Zn-W-Ag、C-W-Ti-B、C-W-Ti-N、C-Ti-N、Si-N、Ti-N、Al-N、B-N、Al-B。
ナノ粒子はまた、以下の酸化物のうちの少なくとも1つをさらに含んでもよい:TiO2、Cu2O、CuO、ZnO、NiO、Al2O3、FeO、Fe2O3、Fe3O4、CoO、Co3O4、もしくはSi2O3、またはその組み合わせ。
一般式MnXyの好ましい化合物は、酸化物、カルボネート、シリケート、炭化物、窒化物、および/またはホスフェートであってもよい。
例えば、酸化アルミニウム(Al2O3)、二酸化ケイ素(SiO2)、酸化亜鉛(ZnO)、リン酸アルミニウム(すなわち、リン酸アルミニウム(AlPO4)、リン酸水素アルミニウム(A12(HPO4)3)、リン酸二水素アルミニウム(Al(H2PO4)3))、酸化カルシウム(CaO)、炭酸カルシウム(CaCO3)、ケイ酸カルシウム(CaSiO4)、リン酸カルシウム(すなわち、リン酸カルシウム(Ca3(PO4)2)、リン酸水素カルシウム(CaHPO4)、もしくはリン酸二水素カルシウム(Ca(H2PO4)))、窒化ケイ素(Si3N4)、炭化ケイ素(SiC)、窒化ホウ素(BN)、炭化タングステン(WC)、炭化チタン(TiC)、または炭窒化チタン(TiC0.5N0.5)。
ナノ粒子はまた、内部コアおよび外部シェルを含む層状に重ねられた(コア/シェル)粒子として調製されてもよい。
本発明のその他の態様は、ナノ粒子の混合組成物の使用を含んでもよい。それゆえ、例えば、混合組成物は、上のような一般式MnXyの1つもしくは複数の化合物(すなわち、少なくとも2つのそのような化合物)を含んでもよく、またはホウ素(B)、炭素(C)、アルミニウム(Al)、ケイ素(Si)、リン(P)、カルシウム(Ca)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銀(Ag)、亜鉛(Zn)、銅(Cu)、硫黄(S)、ニッケル(Ni)、金(Au)、ジルコニウム(Zr)、イッテルビウム(Yb)、ジルコニウム(Zr)、もしくはその酸化物もしくはその組み合わせからなる群より選択される付加的な元素をさらに含んでもよい。好ましい酸化物には、例えば、二酸化チタン(TiO2)または酸化ジルコニウム(ZrO2)が含まれてもよい。
ナノ粒子の混合組成物は、銅(Cu)、酸化銅(II)(CuO)、および/または酸化銅(I)(Cu2O)であってもよい。ナノ粒子は、第一の局面に従って規定されるような一般式MnXyの化合物およびアルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)、もしくはニッケル(Ni)、またはその組み合わせのうちの1つまたは複数の混合組成物を含んでもよい。そのような態様において、ナノ粒子は以下を含んでもよい:
(i)アルミニウム(Al)および酸化アルミニウム(Al2O3)、
(ii)ケイ素(Si)および二酸化ケイ素(SiO2)、
(iii)ケイ素(Si)および炭化ケイ素(SiC)、
(iv)亜鉛(Zn)および酸化亜鉛(ZnO)、もしくは
(v)ニッケル(Ni)および酸化ニッケル(II)(NiO)
またはその組み合わせ。
ナノ粒子は、二酸化チタン(TiO2)、酸化亜鉛(ZnO)、および二酸化チタン(TiO2)のうちの1つまたは複数をさらに含んでもよい。
上記のうちの1つより多くのナノ粒子の混合物はまた、本発明に従って調製および使用されてもよい。混合ナノ材料組成物は、例えば、タンブル混合(tumble-mixing)、共堆積、機械的合金化などの、任意の好適な方法によって産生されてもよい。
したがって、本発明に従う使用はまた、混合酸化物、非化学量論的粒子にまで及ぶ。
ナノ粒子合成は、2つの主な領域:気相合成およびゾル-ゲル処理を含むと考えることができる。ナノ粒子は、大気中の値より低い不活性ガス環境下で蒸発および凝縮(核化および成長)によって生成されてもよい。ナノ粒子の産生収率を改善するために、様々なエアロゾル処理技術が用いられてもよい。これらには、燃焼炎、プラズマ、レーザーアブレーション、化学蒸気凝縮、噴霧熱分解、電気噴霧、およびプラズマ噴霧による合成が含まれる。
ゾル-ゲル処理は、ゲル化、沈殿、および熱水処置によってナノ粒子を生成するために用いることができる湿式化学合成アプローチである。半導体、金属、および金属酸化物ナノ粒子のサイズ分布は、ドーパント導入または熱処置のいずれかによって操作することができる。量子閉じ込め半導体ナノ粒子のより良いサイズおよび安定性制御は、逆ミセル、ブロックコポリマーまたはポリマーブレンドに基づくポリマーマトリックス構造体、多孔性ガラス、およびエクスサイチュー粒子キャッピング技術の使用を通じて達成することができる。
その他のナノ粒子合成技術には、音響化学処理、(例えば、ピストンギャップ式ホモジナイザーを用いた)キャビテーション処理、マイクロエマルジョン処理、および高エネルギーボールミリングが含まれる。音響化学において、音響キャビテーション過程は、極端に高い温度勾配および圧力を有する一過性の限局されたホットゾーンを生成させることができる。温度および圧力のそのような突然の変化は、音響化学的な前駆体(例えば、有機金属溶液)の破壊およびナノ粒子の形成を助ける。
流体力学キャビテーションにおいて、ゾル-ゲル溶液内部での気泡の創出および放出を通じてナノ粒子を生成する。超臨界乾燥チャンバーで急速に加圧しかつキャビテーションによる撹乱および高温加熱に曝露させることによって、ゾル-ゲル溶液を混合する。噴出した流体力学的泡は、ナノ粒子の核化、成長、およびクエンチングを招く。キャビテーションチャンバーにおける圧力および溶液保持時間を調整することによって、粒子サイズを制御することができる。
金属ナノ粒子、半導体ナノ粒子、シリカナノ粒子、硫酸バリウムナノ粒子、磁気ナノ粒子、および超伝導ナノ粒子の合成にマイクロエマルジョンを用いることができる。コサーファクタント(例えば、中間鎖長のアルコール)の添加を通じて非常に低い界面張力(約10-3mN/m)を制御することによって、著しい機械的撹拌を必要とせず自然にこれらのマイクロエマルジョンが生成される。本技術は、比較的単純でかつ安価なハードウェアを用いたナノ粒子の大規模産生に有用である。高エネルギーボールミリングは、磁気ナノ粒子、触媒ナノ粒子、および構造ナノ粒子の生成に用いられている。
遠心分離沈殿または移動度分類によるサイズ選択が必要でないほどにサイズ変動が非常に小さい単分散ナノ粒子の制御された生成を達成することが多くの場合重要である。上で考察された全ての合成技術の中で、気相合成は、核化-凝縮成長の厳密な制御ならびに拡散および撹乱による凝固の回避の組み合わせを用いることによってだけでなく、ナノ粒子の効果的な回収およびその後のそれらの取扱いによっても典型的に達成される、サイズ単分散度に関して最良の技術のうちの1つである。液体分散中でナノ粒子を回収することによって、集塊化、焼結、および組成変化に対する回収されたナノ粒子粉末の安定性を確実にすることができる。サーファクタント分子は、金属ナノ粒子の液体分散を安定化させるために用いられている。あるいは、気相反応によるおよびコロイド溶液中での酸化によるナノ粒子の不活性シリカカプセル化が金属ナノ粒子に効果的であることが示されている。
サイズ分類手順の使用を必要としない単分散ナノ粒子の生成のためのアプローチが開発されている。デンドリマーの存在下でのUV照射による金属塩の還元によって、約1nmの直径の単分散金コロイドナノ粒子を調製することができる。より高世代の表面アミノ基を持つポリ(アミドアミン)デンドリマーは、金ナノ粒子の形成のための効果的な保護作用を有し得る、球状の3D構造を有する。
これらの材料の産生に好適である1つの産生法は、高温DCプラズマを用いて不活性ガスエンベロープ内にプラズマを発生させるTesima(登録商標)過程(国際公開公報第01/78471号および第01/58625号に記載)である。材料(事前に産生されたフィードストックもしくは混合フィードストックのいずれか)、または液体を、プラズマの中に置き、それらを非常に急速に蒸発させることができる。その後、結果として生じる蒸気は、後にそれが大量の冷却ガスで冷却されるプラズマから出る。これらのガスは不活性であることができる(アルゴンもしくはヘリウムなど)か、もしくは空気であることができるかのいずれかであり、または必要とされている化学的性質/形態/サイズを発達させるための微量成分を有することができる。その後、急速冷却(1秒につき100,000度を越える)が、固形または布フィルター、サイクロン、および液体系を含むことができる技術の組み合わせを用いたその後の冷却および回収のために粒子を凍結させる。材料を不活性ガス下で容器の中かまたは様々な液体の中かのいずれかに直接回収することもできる。
本発明のある態様において、不活性ガスエンベロープ内でのプラズマの発生ならびに1つもしくは複数の元素または1つもしくは複数の元素の化合物、あるいはその混合物を含む物質および/または液体のプラズマへの挿入、それに続くプラズマから出る時の結果として生じる蒸気のガス冷却を含む過程によってナノ粒子を調製する。
ウイルス伝染の減少および/または防止を、本明細書において規定されたようなナノ粒子の組成物のウイルスの調製物への投与後の少なくとも90%のウイルス力価の減少と規定してもよい。好ましくは、ウイルス力価の減少は、少なくとも93%、94%、または95%、最も好ましくは、98%、99%、または100%である。ウイルス伝染の減少および/または防止は、ナノ粒子との接触時のウイルスの不活化によって証明される。
70%またはそれ未満のウイルス力価の減少は、感染を回避するのに十分な効果的な減少ではない。本発明は、著しい程度まで感染が防止または回避されるようにウイルス力価を減少させるための手段を提供する。
ウイルス力価は、所与の試料中のウイルス粒子の数の定量である。それは赤血球凝集アッセイ(HA)を用いることによって行なわれてもよい。ウイルスファミリーは、動物赤血球(RBC)を凝集させおよびRBCの細胞表面上のN-アセチルノイラミン酸残基に結合することができる表面またはエンベロープタンパク質を有する。RBCは、ウイルス結合の後に、定量化することができる一種の格子を形成する。
HA手順は、簡単で、単純で、かつ迅速な方法であり、および大量の試料に適用することができる。詳細な条件は、ウイルスの種類による。ウイルスの中には、あるpH値でのみRBCに結合するものもあれば、あるイオン強度で結合するものもある。しかしながら、これらは当業者に周知であり、および問題になっているウイルスに応じて容易に確認することができる。ウイルス希釈を、適当な条件下で好適な期間、RBC希釈に適用する。その後、格子の形成を計測しおよび力価を算出する。
本発明は、ウイルスのウイルス力価を減少させるための手段を提供し、好ましくは、ウイルスは、インフルエンザ、麻疹、コロナウイルス、おたふく風邪、マールブルグ、エボラ、風疹、ライノウイルス、ポリオウイルス、A型肝炎、天然痘、水痘、重症急性呼吸器症候群ウイルスまたはSARSウイルス(SARSコロナウイルスとも称される)、ヒト免疫不全ウイルス(HIV)、ならびに、サル免疫不全ウイルス(SIV)、ロタウイルス、ノーウォークウイルス、およびアデノウイルスなどの関連する非ヒト動物免疫不全レトロウイルスからなる群より選択される。ノーウォークウイルスには、その代用のネコカリシウイルスが含まれる。インフルエンザウイルスには、ヒト型およびトリ型両方のウイルスが含まれる。
したがって、本発明はまた、抗ウイルス剤としての使用のための上記のようなナノ粒子を含む組成物を提供する。ナノ粒子は、適当な担体、コーティング剤、または水、メタノール、エタノール、アセトンなどの溶媒、ポリビニル酢酸(PVA)などの、水溶性ポリマー接着剤、エポキシ樹脂、ポリエステルなどだけでなく、架橋剤、帯電防止剤の中にも好適に製剤化されてもよい。また、リン酸緩衝生理食塩水(PBS)、または模擬生体液(SBF)などの生物学的材料の溶液が用いられてもよい。
溶液中のナノ粒子の濃度は、0.001%(wt)〜約20%(wt)の範囲であってもよい。
本発明のこの局面のある態様において、ウイルス伝染を減少させるおよび/または防止するための、一般式MnXyの化合物であって、式中、Mが
(i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、もしくは銅(Cu)からなる群より選択される金属;
または(ii)ケイ素(Si)、もしくは炭素(C)からなる群より選択される非金属であって;
nが1、または2に等しく、
およびXが
(iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3 -)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
yが0、1、2、または3に等しい、
化合物の100nmまでの平均粒子サイズのナノ粒子の使用が提供される。
ウイルス伝染の減少および/または防止には、第一の場所から第二の場所への、例えば、外部の空間から内部の内腔へのウイルス伝染の防止、または障壁材料を通したウイルス伝染の防止に加えて、対象のウイルスによるウイルス感染の防止が含まれる。対象は、ヒトまたは非ヒト動物であってもよく、好適には非ヒト哺乳動物である。したがって、本発明は、ウイルス伝染に対する予防薬などの、非医療の文脈における感染制御の分野だけでなく、ヒト医薬および動物獣医薬の分野での適用での適用も見出し得る。
本発明の第二の局面によって、上で規定されたようなナノ粒子の組成物を防護衣用品に適用する工程を含む、ウイルス伝染の減少および/または防止のための方法が提供される。
本発明のこの局面に従って使用されるナノ粒子は、上記のような組成物の中に製剤化されてもよい。
コーティング過程は、例えば、噴霧コーティング、電気噴霧コーティング、ディッピング、プラズマコーティングなどの、任意の一般に好適な手段によるものであってもよい。
そのような防護衣用品は、天然または人工繊維などの、任意の好適な繊維または布から調製されてもよい。天然繊維には、綿、羊毛、セルロース(紙材料を含む)、絹、毛、ジュート、麻、サイザル麻、亜麻、木材、竹が含まれる。人工繊維には、ポリエステル、レーヨン、ナイロン、ケブラー(登録商標)、リヨセル(テンセル(登録商標))、ポリエチレン、ポリプロピレン、ポリイミド、ポリメチルメトアクリレート、ポリ(カルボキシラートフェノキシ)ホスファゼンPCPP、繊維ガラス(ガラス)、セラミック、金属、炭素が含まれる。衣用品は、顔面マスク(手術マスク、レスピレーターマスク)、帽子、フード、ズボン、シャツ、手袋、スカート、ボイラースーツ、手術衣(スクラブ)などからなる群より選択されてもよい。そのような衣類は、感染の制御が重要である病院での特定の使用を見出し得る。
本発明の第三の局面によって、上で規定されたようなナノ粒子の組成物をフィルターに適用する工程を含む、ウイルス伝染の減少および/または防止のための方法が提供される。ナノ粒子の組成物の適用は、本発明の第二の局面に関連して記載されたようなものであってもよい。
フィルターは、本発明の第二の局面に関連して上で記載されたような任意の好適な天然または人工材料から調製されてもよい。
フィルターはエアフィルターであってもよい。エアフィルターは、空気から汚染物、多くの場合固形粒子を除去する装置である。エアフィルターは、潜水用エアコンプレッサー、換気システム、および空調設備の中などの、空気の質が重要である任意のその他の状況で多くの場合使用される。エアフィルターには、ウイルス材料を取扱うための器具またはチャンバーだけでなく、建物または部屋などの囲まれた空間の中の空気も濾過する装置が含まれる。したがって、カーテンまたはスクリーンなどの防護的機能を果たすその他の用品もエアフィルターと考えてもよい。したがって、本発明のこの局面によるエアフィルターも、本発明の第二の局面によって調製されてもよい。
エアフィルターは、紙、フォーム、綿フィルター、または紡績した繊維ガラスフィルター要素から構成されていてもよい。あるいは、エアフィルターは、静電電荷を持つ繊維または要素を用いてもよい。4つの主な種類:紙、フォーム、化学合成物質、および綿の機械エアフィルターがある。
家庭暖房、換気、および空調(HVAC)システムと共にダクトの中で使用するために設計されたプリーツ紙エアフィルターの例は、3M「フィルタレット」製品である。
ポリエステル繊維を用いて、空気濾過に使用されるウェブ形成を行なうことができる。ポリエステルを綿またはその他の繊維とブレンドし、幅広い範囲の性能特徴を産生することができる。場合によって、ポリプロピレンを用いてもよい。ミクロ繊維として公知のとても小さい合成繊維を多くの種類のHEPA(高効率微粒子エアフィルター)フィルターで用いてもよい。高性能エアフィルターは、綿ガーゼの油脂加工した層を用いてもよい。
あるいは、フィルターを用いて液体を濾過してもよい。そのようなフィルターは、上記のような任意の好適な繊維から構成されていてもよい。液体を濾過するのに用いられるフィルターを用いて、ヒトもしくは動物による消費用の飲用液体、通常の家庭使用のための水、血漿もしくは生理食塩水溶液などの、医療使用のための流動物、注射用の薬学的製剤、または患者と接触するようになり得るその他の生物学的液体を濾過してもよい。
本発明の第四の局面によって、上記のようなナノ粒子の組成物でコーティングされている繊維で構成された防護衣用品が提供される。防護衣用品は好適には顔面マスクであってもよい。そのようなマスクは、使用者の顔全体またはその一部、好適には着用者の鼻および/または口の外部領域を覆ってもよい。
本発明の第五の局面によって、上記のようなナノ粒子の組成物でコーティングされている繊維で構成されたフィルターが提供される。好適にはフィルターはエアフィルターであってもよい。
防護衣用品またはフィルターに関する本発明の局面において、防護衣用品またはフィルターは、上記のような任意の供給源由来の混合繊維から作られ得るということが留意されるべきである。
本発明の好ましい態様において、本明細書において規定されたようなナノ粒子組成物でコーティングされている繊維性材料から構成された顔面マスクまたはフィルターが提供される。
本発明は、ウイルス伝染を減少させるおよび/または防止するための酸化亜鉛(ZnO)および二酸化チタン(TiO2)の混合ナノ粒子の使用も提供する。本発明のそのような混合ナノ粒子はまた、上記のような方法において、または上記のようなフィルター、もしくは上記のような防護衣用品において使用されてもよい。
本発明の第二のおよびその後の局面についての好ましい特色は、必要な変更を加えた第一の局面についてのものと同様である。
本発明はこれから、例証のみの目的のために提供されかつ本発明を限定するものとしてみなされるべきではない以下の実施例および図に関してさらに記載される。多くの図に対して実施例の中で参照する。
実施例1:ナノ材料の抗ウイルス特性に関する予備的研究
試料中に存在するインフルエンザウイルス、ヘマグルチニン(HA)抗原の量を定量するために、HA手順を用いた生物学的評価を通じて、60を超える異なる材料をスクリーニングした。
材料:
96UウェルまたはV底マイクロタイタープレート
七面鳥赤血球(TRBC)
リン酸緩衝生理食塩水(PBS)
50mlピペット
使い捨てピペットチップ
方法
1、マイクロタイタープレートの列2〜12の全てのウェルに50ml PBSを添加する。
2、最初のウェルにPBSを添加し、量は必要とされる試料の希釈剤による。
3、ウイルス試料処置:約0.1から1%のナノ粒子または試験材料を含む水溶液または懸濁を添加する。
4、適当な容量中の試料を最初の列のウェルに添加する(各試料および希釈範囲は2つ組で行なうべきである)。
5、列1〜11にプレートを横断して試料を希釈する。
6、PBS中で0.5% TRBC溶液を作る。
7、使用されている全てのウェルおよび列12(RBC対照)に50mlの0.5% TRBCを添加する。
8、TRBCの均一な分布を促進するためにプレートをミキサープラットフォームの上に30秒間置く。
9、定着させるためにプレートを室温で30分間放置する。
10、プレートを読み取る。
11、プレートを以下のように読み取りかつ等級分けするべきである。
否定的な結果
ウェルの底でペレットが形成されるはずである。プレートを45°まで傾斜させた場合、TRBCがゆっくりと下に移動するにつれて、ペレットは縞を形成するはずである。これは、TRBCを架橋するのに十分な量のウイルスウイロン(viron)がないことを示す。
肯定的な結果
TRBCが凝集しおよびウェル全体に拡散したマトリックスを形成する場合、肯定的な結果が見られる。これは、TRBCを架橋するのに十分な量でウイルスウイロンが存在することを示す(図4に示されたような2つの検査プレート)。
ウイルスの力価がTRBCとの関連で比較的高い場合、崩壊した赤血球凝集が起こる可能性がある。これは、ウェルの底のペレット上に現れることができるが、傾斜プレートでは、それはその場に残る。仮にこれが起こるならば、より低い力価を用いてアッセイを繰り返すことが賢明である。
アッセイの終点は、赤血球凝集を依然として引き起こすウイルスの最低の縮小(最高の希釈)として規定される。
ウイルスの力価を赤血球凝集単位(HAV)として記録しおよびウェルの終点での希釈と直接関連付ける。
実施例2:異なる天然および人造材料を用いた赤血球凝集アッセイ
これを検査するために、HAアッセイを用いて、天然および人造ナノ材料に対するウイルス反応のスクリーニングを開始した。目的は、インフルエンザおよびSARSを防御するためにウイルスを不活化するのに最も効果的なナノ材料を同定および分類することであった。標準的なA/B型インフルエンザウイルスを無力化または不活化する特別な特性を保有する幾つかの天然および人造ナノ材料を同定した。
検査では、異なる材料を検査するために、ニートウイルスB/GD AL444、VCI/256、およびその他のインフルエンザウイルスを用いた。
ニートHA(NHA):室温で1/512、37℃で1/256〜1/512;材料に対するウイルス反応はウイルス力価の減少%として示されている(ウイルス-材料滴定-VTMHA)。検査の間、ウイルス溶液を材料と混合した後、混合物を室温20℃でまたはインキュベーターにて30分間37℃で放置した。20よりも多くの元素のナノ粒子およびそれらの化合物がこれまで検査され、それらのうちの幾つかは、90%を越える殺ウイルス率を得ている。60を越える試料のうちの12がHA検査されたということが表1に示されている。
予備的なB/GDウイルス反応検査の結果の1つは、少しの割合のナノ材料を添加することによるHAアッセイでのウイルス量の減少であった。これらの結果は、ウイルス活性の減少を示している。ナノ材料のうちの幾つかは、赤血球に結合するウイルスの能力を完全に無力化/不活化することができた。
図5および図6は、表1および表2に関連した異なる金属、金属酸化物、およびそれらの化合物のナノ粒子を添加することによるウイルスレベル変化(%)の検査結果を示す。
(表1)抗ウイルス剤としてナノ材料を用いたHA検査結果
Figure 2009526828
ナノ材料によって産生されたウイルス力価の減少が70%未満である場合、ナノ材料は抗ウイルス効果を有さないと見なされた。
A型:ナノAl、ナノAl2O3、および関連化合物。
B型:ナノSi、ナノSiO2、および関連化合物。
C型:ナノSiCおよび関連化合物。
D型:ナノZn、ZnO、および関連化合物。
E型:ナノCu、CuO、CuO2、および関連化合物。
F型:ナノAgおよびその関連化合物。
G型:ナノNi、およびNiO2、ならびに関連化合物。
H:ナノベントナイト粒子。
I:ナノTiO2関連材料。
(表2)抗ウイルス剤(抗ウイルスナノ合成物)としてナノ材料を用いたHA検査結果
Figure 2009526828
HAアッセイ結果の解析
インフルエンザ/SARSウイルスと相互作用することができる顔面マスクおよびフィルター用の新規の材料を見出すために、生物学的アッセイを用いたナノ材料に対するウイルス反応のスクリーニングに着手した。標準的なインフルエンザウイルスを無力化または不活化する特別な特性を保有するナノ材料を同定した。短期の検査は、潜在的なナノ材料をスクリーニングしおよび顔面マスクおよびフィルターの用途でウイルスを不活化するのに使用されるべき最も効果的な材料を分類することに集中した。
理論に束縛されないが、親水性かまたは疎水性か(または同時に両方か)のいずれかであり得る小さいサイズでかつ高度に活性化されたナノ粒子(SiO2など)、ウイルスと同じサイズであるナノTiO2粒子、金属粒子(Au、Cu)、およびセラミック粒子(SiC、Al2O3)がウイルスによって取り込まれる可能性があるということが、現在の仮定である。
ナノ材料の強い表面機能性は動物細胞のウイルスとの相互作用を模倣する可能性がある。
本研究は、殺ウイルス剤としての使用のためのナノ粒子の使用を探求し、および具体的にウイルスを吸収するためのコーティング材料を開発するための標的として最も効果的なナノ粒子を同定した。抗ウイルスナノ粒子でコーティングされた低価格の顔面マスクは、誘引または接触によってウイルスを止める可能性があるが、重大なことにその後ウイルスの不活化を提供すると考えられる。100nmよりも小さいナノ材料は抗ウイルス活性の点でより効果的であるということが観察されている。SEM観察された抗ウイルスナノ粒子でコーティングされた1本の繊維を図7に示す。粒子は異なるナノ材料および化合物の混合物である。本発明によるナノ材料を、公共の建物、病院、ならびに乗り物、車、列車、船、および飛行機などの輸送の様式のための囲まれた換気布に適用することができる。ナノ粒子はまた、材料を濾過する工程、すなわち、ウイルスを不活化するための、血漿、血液、乳、精液などのような生体液の濾過などの、医療適用での使用を見出すと考えられる。
抗ウイルス特性を持った製品を産生するために、抗ウイルスナノ粒子を、布および備品、塗料/コーティング剤、ブックカバー、コンピューターのキーボードなどの異なる製品の表面にコーティングしてもよい。そのような製品は、病院、子供、患者、および高齢者に低価格でウイルスのない環境を提供するであろう。さらなる使用として、ナノ粒子ならびに空気で運ばれるインフルエンザウイルスおよびその他の感染性ウイルスの侵入および出口を防ぐための、旅客機、大型バス、および大型車などの囲まれた環境用の空気換気システムが含まれてもよい。
ナノ材料に対する予備的なB/GDウイルス反応の1つは、少しの割合のナノ材料を添加することによるHAアッセイでのウイルス量の減少を示し、それによってウイルス伝染を防止するためにどのようにしてナノ材料を使用し得るかということが示されている。材料のうちの幾つかは、HAアッセイで赤血球に結合するウイルスの能力を完全に無力化/不活化することができる。
B/GDウイルススクリーニングの予備的な結果により、少しの割合(<1%)のナノ材料または化合物を添加することによるHAアッセイでのウイルス量減少が立証された。
金属および金属酸化物でコーティングされ得るリン酸カルシウムなどの無機ナノ化合物、ならびにSiCなどのセラミックス、アルミナ、ナノAg、Cu、Zn、Al、ナノスケールのCuO、Cu2O、Al2O3、TiO2、ナノZnOなどのような金属および金属酸化物などの異なるナノ粒子を添加したウイルスレベル変化(パーセンテージで)の検査結果。表3および表4に示されたようなC-P-Ag-Zn、C-P-Cu-S、C-P-Cu-Ni-S、C-Si-Ag-Zn、C-Si-Cu-S、C-Si-Cu-Niなどの混合元素群を含むナノ化合物などの、金属および金属酸化物でコーティングされた無機化合物およびミネラル化合物の組み合わせの複合ナノクラスターも本発明の一部である。
現在の結果により、銀などのその他のナノ材料より優れた改善された抗ウイルス活性があるナノ材料の組が同定されている。本学術研究により、ナノスケールのクラスター(例えば、QinetiQ Nanomaterials Limitedなどの製造業者から入手可能なナノ粒子材料など)、無機化合物/有機化合物のナノ粒子の組み合わせ、ミネラル化合物を産生し、かつ金属および金属酸化物でコーティングされた、各々のナノ材料のうちの多数の材料の使用の利点も示されている。
本結果は、多くの種類の化合物材料:ナノAg(不良)、TiO2(不良)、ZnO(良好)、アルミナ(良好)、ならびに全てが90%を超える殺ウイルス率を示す、リン酸AlなどのAl関連化合物、CuおよびCu関連酸化物および化合物、リン酸Ca、ケイ酸Ca、および炭酸CaなどのCa2+関連化合物、SiO2およびSiCなどのSi関連化合物、ならびにリン酸AlなどのP関連化合物、ならびに活性炭素に加えて、20のナノ粒子が検査されたということを示している。
例えば、異なるインフルエンザウイルスおよびSARSウイルスに対処するための化合物のクラスターを用いて、多数のウイルスの伝染および潜在的なウイルス汚染に対処するために、本発明による多元素多酸化物の化合物および混合物を用いてもよい。
(表3)抗ウイルス適用での使用のための材料
Figure 2009526828
(表4)抗ウイルス適用のための材料の組み合わせ
Figure 2009526828
実施例3:トリH5N1インフルエンザNIBRG-14ウイルスに対するナノ粒子の殺ウイルス効力に関する予備的研究
この実施例は、MDCK細胞を用いたトリH5N1インフルエンザNIBRG-14ウイルスに対する検査ナノ材料の殺ウイルス効力を検査するための研究の結果を示している。検査において、異なる材料を検査するために、トリH5N1インフルエンザNIBRG-14ウイルスを用いた。
「反応混合物」中の検査されたウイルスの量は、106.5TCID50/ml(Tissue Culture Infective Unit、組織培養感染単位)であった。ウイルスに対するナノ材料の影響はウイルス力価の減少(%およびLog10 TCID50/ml)として示されている。蒸留水中でウイルスを希釈した(卵の中で増殖した107.5TCID50/mlウイルスのストックからの1:10希釈)。その後、ナノ材料にウイルス(200ul)を添加して「反応混合物」を形成させた。反応混合物(ナノ材料およびウイルス溶液)を室温(20℃)で軽くボルテックス(5秒間混合)し、その後ナノ材料のウイルス粒子との絶え間ない接触を確実にするためにプレートシェーカーの上で振盪しながら、室温でさらに30分間インキュベートした。
HAアッセイで先に検査された最も見込みのある材料から殺ウイルス作用の解析用に8つの検査ナノ材料を選択した。30分のインキュベーションの終わりに、反応混合物を遠心分離してナノ材料をウイルスから分離し、その後MDCK細胞に感染させるための準備として細胞維持培地に添加(1:10の比で)した。その後、MDCK細胞に対する反応混合物の連続希釈を作ることによってウイルスを定量し、「感染」力価(Log10 TCID50/ml)を作成した。アッセイの性能について調べるために、「陰性対照」(ナノ材料をウイルスと混合しなかった)およびクエン酸の「陽性対照」(およそ3.5のpHの溶液)を使用した。
結果
これらの結果は、殺ウイルス実験からのウイルス活性の減少を示している。検査ナノ材料のうちの幾つかは、良好な殺ウイルス効力およびアッセイの検出可能限界より下の減少したウイルス感染性を示した。ナノ材料の各々を含む反応混合物と陰性対照(ウイルスは含むがナノ材料は含まない)におけるウイルスの量を比較することにより、感染性ウイルスの量(Log10 TCID50/mlまたは%として示される)の減少が得られた。陽性対照(低pH)は、ウイルスが残っていることが観察されないほどに、アッセイの検出可能限界より下までウイルスの感染性を減少させた。
図8は、反応時間の終わりに検査反応混合物中に存在する感染性ウイルスの量(Log10 TCID50/ml)を示している。図9および10は、検査ナノ材料の殺ウイルス効力をそれぞれ感染力価の減少パーセンテージ(%)としておよびウイルス力価の減少(Log10 TCID50/ml)として示している。検査反応の結果および検査ナノ材料を添加することによる感染性ウイルスの量の減少(力価、%、およびLog10 TCID50/ml)が表5に示され、それによって殺ウイルスアッセイで検査ナノ材料と反応させた後に定量されたトリH5N1インフルエンザNIBRG-14ウイルスの量が報告されている。
(表5)
Figure 2009526828
検査されたナノ材料(結果は表5に示されている)は5nm〜100nmのサイズ変動を有する。炭化タングステン(R32)は99.5%の純度を有する。炭化タングステン(R36、R37、およびR38)は、異なるプラズマ条件および冷却速度/工程ならびに粒子サイズ分布で製造された。
インフルエンザおよびSARSウイルスのナノスケールの電子顕微鏡像を示す。 空気で運ばれる粒子およびウイルスを防ぐためのマスクを示す。布の間の間隙は、当今の布マスクで10μmよりも大きい。 大学学術研究棟、ショッピングセンター、および病院などのような公共の建物に使用される濾過布のSEM像を示す。 ナノ材料を抗ウイルス剤として使用するHAアッセイ検査の2例のプレートを示す。 異なる金属、金属酸化物、および化合物のナノ粒子によって引き起こされたウイルス減少の抗ウイルス効果を示す検査結果(対照は左側にある)。 ナノ銀、ナノTiO2、ナノZnO、ナノCu、ナノNi、ナノTiO2(アニターゼ(Anitase)およびロータル(Rotal)結晶の両方)、ナノZnO、ナノSiO2、ならびに鋼鉄などのナノ粒子を含む、検査された異なる金属および金属酸化物のウイルス減少。 抗菌試験用のナノおよびマイクロスケールの粒子/化合物の混合物でコーティングされた1本の繊維を示す。 窒化ケイ素(IV)、炭化タングステン、炭化チタン、炭窒化チタンのナノ化合物についてのウイルス力価の減少パーセンテージを示す。殺ウイルスアッセイで検査ナノ材料と反応させた後に定量されたトリH5N1インフルエンザNIBRG-14ウイルスの量(Log10 TCID50/ml)。 窒化ケイ素(IV)、炭化タングステン、炭化チタン、炭窒化チタンのナノ化合物についてのウイルス力価(Log10 TCID50/ml)の抗ウイルスアッセイ後のウイルス力価を示す。殺ウイルスアッセイで検査ナノ材料と反応させた後のトリH5N1インフルエンザNIBRG-14ウイルスの減少パーセンテージ(%)。 窒化ケイ素(IV)、炭化タングステン、炭化チタン、炭窒化チタンのナノ化合物についてのH5N1ウイルスの対数減少(結果はナノ化合物に関しては対数力価減少として表されている)を示す。殺ウイルスアッセイで検査ナノ材料と反応させた後のトリH5N1インフルエンザNIBRG-14ウイルスのウイルス力価減少(Log10 TCID50/ml)。

Claims (27)

  1. ウイルス伝染を減少させるおよび/または防止するための、一般式MnXyの化合物であって、式中、Mが
    (i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)、もしくは銅(Cu)からなる群より選択される金属;
    または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
    nが1、2、または3に等しく、
    およびXが
    (iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
    または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
    yが0、1、2、3、または4に等しい、
    化合物のナノ粒子の使用。
  2. ナノ粒子が100nmまでの平均粒子サイズを有する、請求項1記載の使用。
  3. ナノ粒子が約1nm〜約90nmの範囲の平均粒子サイズを有する、請求項2記載の使用。
  4. 一般式MnXyの化合物が、酸化物、カルボネート、シリケート、炭化物、窒化物、および/またはホスフェートである、請求項1〜3のいずれか一項記載の使用。
  5. 一般式MnXyの化合物が、酸化アルミニウム(Al2O3)、二酸化ケイ素(SiO2)、酸化亜鉛(ZnO)、リン酸アルミニウム(AlPO4)、リン酸水素アルミニウム(A12(HPO4)3)、リン酸二水素アルミニウム(Al(H2PO4)3)、酸化カルシウム(CaO)、炭酸カルシウム(CaCO3)、ケイ酸カルシウム(CaSiO4)、リン酸カルシウム(Ca3(PO4)2)、リン酸水素カルシウム(CaHPO4)、もしくはリン酸二水素カルシウム(Ca(H2PO4))、窒化ケイ素(SiN)、炭化ケイ素(SiC)、窒化ホウ素(BN)、炭化タングステン(WC)、および炭窒化チタン(TiC0.5N0.5)からなる群より選択される、請求項4記載の使用。
  6. ナノ粒子が、請求項1で規定されたような一般式MnXyの少なくとも2つの化合物の混合組成物を含む、請求項1〜5のいずれか一項記載の使用。
  7. ナノ粒子の混合組成物が、銅(Cu)、酸化銅(II)(CuO)、および/または酸化銅(I)(Cu2O)である、請求項5記載の使用。
  8. ナノ粒子が、請求項1で規定されたような一般式MnXyの化合物と、アルミニウム(Al)、ケイ素(Si)、亜鉛(Zn)、もしくはニッケル(Ni)、またはその組み合わせのうちの1つまたは複数との混合組成物を含む、請求項1〜5のいずれか一項記載の使用。
  9. ナノ粒子が、
    (i)アルミニウム(Al)および酸化アルミニウム(Al2O3)、
    (ii)ケイ素(Si)および二酸化ケイ素(SiO2)、
    (iii)ケイ素(Si)および炭化ケイ素(SiC)、
    (iv)亜鉛(Zn)および酸化亜鉛(ZnO)、もしくは
    (v)ニッケル(Ni)および酸化ニッケル(II)(NiO)
    またはその組み合わせ
    を含む、請求項8記載の使用。
  10. ナノ粒子が二酸化チタン(TiO2)をさらに含む、請求項1〜5のいずれか一項記載の使用。
  11. ナノ粒子が、酸化亜鉛(ZnO)および二酸化チタン(TiO2)をさらに含む、請求項10記載の使用。
  12. ナノ粒子が、ホウ素(B)、炭素(C)、アルミニウム(Al)、ケイ素(Si)、リン(P)、カルシウム(Ca)、チタン(Ti)、クロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、銀(Ag)、亜鉛(Zn)、銅(Cu)、硫黄(S)、ニッケル(Ni)、金(Au)、ジルコニウム(Zr)、イッテルビウム(Yb)、ジルコニウム(Zr)もしくはその酸化物またはその組み合わせからなる群より選択される元素をさらに含む、請求項1〜5のいずれか一項記載のナノ粒子の使用。
  13. ナノ粒子が、以下の元素の組み合わせのうちの少なくとも1つをさらに含む、請求項12記載の使用:
    C-P-Ag-Zn、C-P-Cu-S、C-P-Cu-Ni-S、C-Si-Ag-Zn、C-Si-Cu-S、C-Si-Cu-Ni、C-Cu-Zn-W、C-Cu-Zn-Ag、C-Cu-Zn-W-Ag、C-W-Ti-B、C-W-Ti-N、C-Ti-N、Si-N、Ti-N、Al-N、B-N、Al-B。
  14. ナノ粒子が、以下の酸化物のうちの少なくとも1つをさらに含む、請求項1〜5のいずれか一項記載の使用:
    TiO2、Cu2O、CuO、ZnO、NiO、Al2O3、FeO、Fe2O3、Fe3O4、CoO、Co3O4、もしくはSi2O3、またはその組み合わせ。
  15. ウイルス伝染を減少させるおよび/または防止するための酸化亜鉛(ZnO)および二酸化チタン(TiO2)の混合ナノ粒子の使用。
  16. ウイルスが、インフルエンザ、麻疹、コロナウイルス、おたふく風邪、マールブルグ、エボラ、風疹、ライノウイルス、ポリオウイルス、A型肝炎、天然痘、水痘、SARS、HIV、ロタウイルス、ノーウォークウイルス、およびアデノウイルスからなる群より選択される、請求項1〜15のいずれか一項記載の使用。
  17. 一般式MnXyの化合物であって、式中、Mが
    (i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;
    または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
    nが1、2、または3に等しく、
    およびXが
    (iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
    または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
    yが0、1、2、3、または4に等しい、
    化合物のナノ粒子の組成物を防護衣用品に適用する工程を含む、ウイルス伝染の減少および/または防止のための方法。
  18. 一般式MnXyの化合物であって、式中、Mが
    (i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;
    または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
    nが1、2、または3に等しく、
    およびXが
    (iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
    または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
    yが0、1、2、3、または4に等しい、
    化合物のナノ粒子の組成物をフィルターに適用する工程を含む、ウイルス伝染の減少および/または防止のための方法。
  19. 一般式MnXyの化合物であって、式中、Mが
    (i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;
    または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
    nが1、2、または3に等しく、
    およびXが
    (iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
    または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
    yが0、1、2、3、または4に等しい、
    化合物のナノ粒子の組成物でコーティングされた繊維から構成された防護衣用品。
  20. 天然繊維から構成されている、請求項19記載の防護衣用品。
  21. 人工繊維から構成されている、請求項19記載の防護衣用品。
  22. 顔面マスクである、請求項19、20、または21のいずれか一項記載の防護衣用品。
  23. 顔面マスク、手術マスク、レスピレーターマスク、帽子、フード、ズボン、シャツ、手袋、スカート、ボイラースーツ、手術衣からなる群より選択される、請求項19、20、または21のいずれか一項記載の衣用品。
  24. 一般式MnXyの化合物であって、式中、Mが
    (i)カルシウム(Ca)、アルミニウム(Al)、亜鉛(Zn)、ニッケル(Ni)、タングステン(W)もしくは銅(Cu)からなる群より選択される金属;
    または(ii)ケイ素(Si)、ホウ素(B)、もしくは炭素(C)からなる群より選択される非金属であって;
    nが1、2、または3に等しく、
    およびXが
    (iii)酸素(O)、窒素(N)、もしくは炭素(C)からなる群より選択される非金属;
    または(iv)ホスフェート(PO4 3-)、リン酸水素(HPO4 2-)、リン酸二水素(H2PO4 -)、カルボネート(CO3)、シリケート(SiO4 2-)、スルフェート(SO4 2-)、ニトレート(NO3 -)、ニトライト(NO2 -)からなる群より選択される陰イオンであって;
    yが0、1、2、3、または4に等しい、
    化合物のナノ粒子の組成物でコーティングされた繊維から構成されたフィルター。
  25. 天然繊維から構成されている、請求項24記載のフィルター。
  26. 人工繊維から構成されている、請求項24記載のフィルター。
  27. エアフィルターである、請求項24、25、または26のいずれか一項記載のフィルター。
JP2008554847A 2006-02-16 2007-02-16 殺ウイルス材料 Pending JP2009526828A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0603138A GB0603138D0 (en) 2006-02-16 2006-02-16 Virucidal materials
PCT/GB2007/000542 WO2007093808A2 (en) 2006-02-16 2007-02-16 Virucidal materials

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012219290A Division JP2013067618A (ja) 2006-02-16 2012-10-01 殺ウイルス材料

Publications (1)

Publication Number Publication Date
JP2009526828A true JP2009526828A (ja) 2009-07-23

Family

ID=36141961

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2008554847A Pending JP2009526828A (ja) 2006-02-16 2007-02-16 殺ウイルス材料
JP2012219290A Pending JP2013067618A (ja) 2006-02-16 2012-10-01 殺ウイルス材料

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2012219290A Pending JP2013067618A (ja) 2006-02-16 2012-10-01 殺ウイルス材料

Country Status (7)

Country Link
US (2) US20100040655A1 (ja)
EP (1) EP1991209A2 (ja)
JP (2) JP2009526828A (ja)
KR (1) KR20090003230A (ja)
CN (2) CN101453995A (ja)
GB (1) GB0603138D0 (ja)
WO (1) WO2007093808A2 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143875A (ja) * 2008-12-19 2010-07-01 Shigadry With Earth:Kk ウイルス不活性化薬剤およびその製造方法
WO2011078203A1 (ja) 2009-12-24 2011-06-30 国立大学法人 東京大学 ウイルス不活化剤
JPWO2011018899A1 (ja) * 2009-08-12 2013-01-17 株式会社東芝 抗ウイルス性材料とそれを用いた膜、繊維および製品
JP2013082654A (ja) * 2011-10-12 2013-05-09 Showa Denko Kk 抗菌抗ウイルス性組成物及びその製造方法
WO2013094573A1 (ja) 2011-12-22 2013-06-27 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法
JP2013166705A (ja) * 2010-12-22 2013-08-29 Univ Of Tokyo ウイルス不活化剤
JP2013212997A (ja) * 2012-03-30 2013-10-17 Nbc Meshtec Inc 抗ウイルス材
KR20130114686A (ko) 2010-12-22 2013-10-18 고쿠리츠다이가쿠호우진 도쿄다이가쿠 바이러스 불활화제
JP5577346B2 (ja) * 2009-10-02 2014-08-20 株式会社Nbcメッシュテック ウイルス不活化シート
WO2017199420A1 (ja) * 2016-05-20 2017-11-23 Kbツヅキ株式会社 抗ウイルス性繊維材及びその製造方法
JP2018177747A (ja) * 2017-04-21 2018-11-15 株式会社エーアンドエーマテリアル 抗ウイルス塗膜及び化粧板
WO2020137157A1 (ja) * 2018-12-27 2020-07-02 東亞合成株式会社 非エンベロープ型抗ウイルス剤及びそれを含む組成物並びに抗ウイルス製品及びその製造方法
WO2021158726A1 (en) * 2020-02-04 2021-08-12 Kuprion Inc. Air filtration media having metal nanoparticle agglomerates adhered thereto, formation thereof and use thereof
JP2022500361A (ja) * 2018-09-06 2022-01-04 シントクス テクノロジーズ インコーポレイテッド 抗病原性組成物およびその方法
WO2022019244A1 (ja) * 2020-07-22 2022-01-27 Agc株式会社 抗ウイルス材
WO2022138456A1 (ja) * 2020-12-22 2022-06-30 株式会社村田製作所 ウイルス不活化液状剤およびウイルス不活化物品
US11844344B2 (en) 2018-09-06 2023-12-19 Sintx Technologies, Inc. Systems and methods for rapid inactivation of SARS-CoV-2 by silicon nitride and aluminum nitride
US11850214B2 (en) 2018-09-06 2023-12-26 Sintx Technologies, Inc. Antiviral compositions and devices and methods of use thereof

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376771B2 (en) * 2006-11-27 2016-06-28 Mhi Health Devices, Llc Antimicrobial materials and coatings
GB2451824A (en) * 2007-08-11 2009-02-18 Qinetiq Nanomaterials Ltd Antiviral composition comprising particles of a tungsten compound
EP3167958A1 (en) 2007-10-03 2017-05-17 3M Innovative Properties Company Process for preparing microorganism concentration agent
EP2255878B1 (en) * 2008-03-04 2017-12-27 Kabushiki Kaisha Toshiba Antibacterial material and antibacterial film and antibacterial member using the same
WO2009136233A1 (en) * 2008-05-08 2009-11-12 Serum Institute Of India Ltd. Aluminium phosphate nanoparticles
GB0814237D0 (en) * 2008-08-04 2008-09-10 Intrinsiq Materials Ltd Biocidal composition
EP2332554A4 (en) 2008-09-03 2013-10-30 Nbc Meshtec Inc ANTIVIRAL AGENT
JP5723097B2 (ja) * 2008-12-25 2015-05-27 株式会社Nbcメッシュテック 抗ウイルス性塗料および抗ウイルス性塗料が塗布乾燥された部材
BRPI0918694A2 (pt) 2008-12-31 2015-12-01 3M Innovative Properties Co processo de detecção de coliforme e kit para uso do mesmo
CN102449460B (zh) * 2009-04-03 2014-11-12 3M创新有限公司 微生物浓集方法和装置
CN102449136B (zh) 2009-04-03 2014-06-11 3M创新有限公司 微生物浓集方法和装置
GB0909030D0 (en) * 2009-05-26 2009-07-01 Intrinsiq Materials Ltd Antibacterial composition
DE102009026539A1 (de) * 2009-05-28 2010-12-02 Chemische Fabrik Budenheim Kg Antimikrobiell ausgerüstete Materialien
DE102010023296A1 (de) * 2009-06-13 2010-12-30 Dirk Kienappel Schlafmaske/-brille und Verfahren zu deren Herstellung
KR101157329B1 (ko) * 2009-12-24 2012-06-15 서울대학교산학협력단 초음파 유도 부식-재증착 방법을 이용한 실리카-이산화티타늄 중공구조 나노입자의 제조방법
US9849512B2 (en) 2011-07-01 2017-12-26 Attostat, Inc. Method and apparatus for production of uniformly sized nanoparticles
US9585385B2 (en) * 2013-03-13 2017-03-07 Panasonic Intellectual Property Management Co., Ltd. Copper complex titanium oxide dispersion liquid, coating agent composition, and antibacterial/antiviral member
JP6145758B2 (ja) * 2013-12-17 2017-06-14 パナソニックIpマネジメント株式会社 抗ウイルス性樹脂組成物及び抗ウイルス性部材
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
JP6290688B2 (ja) * 2014-03-31 2018-03-07 株式会社Nbcメッシュテック 殺菌・抗ウイルス性部材
JP6374824B2 (ja) * 2014-03-31 2018-08-15 日本製紙株式会社 繊維複合体およびその製造方法
CN104128043A (zh) * 2014-08-18 2014-11-05 福州固力工业成套设备有限公司 一种纳米空气滤芯
US10190253B2 (en) 2014-09-23 2019-01-29 Attostat, Inc Nanoparticle treated fabrics, fibers, filaments, and yarns and related methods
US9885001B2 (en) 2014-09-23 2018-02-06 Attostat, Inc. Fuel additive composition and related methods
US9919363B2 (en) 2014-09-23 2018-03-20 Attostat, Inc. System and method for making non-spherical nanoparticles and nanoparticle compositions made thereby
US9883670B2 (en) 2014-09-23 2018-02-06 Attostat, Inc. Compositions and methods for treating plant diseases
US20160081346A1 (en) * 2014-09-23 2016-03-24 Attostat, Inc. Antimicrobial compositions and methods
WO2016099417A1 (en) * 2014-12-16 2016-06-23 Kaya Cengiz A modular antimicrobial and antiviral face mask and a manufacturing method against epidemics
CA2972949A1 (en) * 2015-01-06 2016-07-14 Osamu Yamada Medicinal composition, blood treatment device, cosmetic, food and drink using combustion synthesis material
TWI556743B (zh) * 2015-03-06 2016-11-11 Weng Wei Cong Inhibition of bacteria and inhibition of algae growth of the composite material
US9839652B2 (en) 2015-04-01 2017-12-12 Attostat, Inc. Nanoparticle compositions and methods for treating or preventing tissue infections and diseases
EP3283580A4 (en) 2015-04-13 2019-03-20 Attostat, Inc. ANTI-CORROSION NANOPARTICLE COMPOSITIONS
US11473202B2 (en) 2015-04-13 2022-10-18 Attostat, Inc. Anti-corrosion nanoparticle compositions
CN104988791A (zh) * 2015-06-25 2015-10-21 广东义晟实业有限公司 一种抗病毒添加剂及添加该添加剂的胶水和uv漆
CN115197940A (zh) 2015-07-14 2022-10-18 雅培分子公司 使用铜-钛氧化物纯化核酸
CN105595466A (zh) * 2015-11-13 2016-05-25 无锡桥阳机械制造有限公司 一种同时防治雾霾和氮氧化物污染的口罩
US10201571B2 (en) 2016-01-25 2019-02-12 Attostat, Inc. Nanoparticle compositions and methods for treating onychomychosis
TWM526652U (zh) * 2016-02-01 2016-08-01 Xiao qiao an 照明裝置
WO2017209546A1 (ko) * 2016-06-01 2017-12-07 주식회사 쇼나노 탄소족 질소계 비산화물 나노입자를 포함하는 항균제 및 그 제조방법
CL2016001863A1 (es) * 2016-07-22 2016-09-16 Univ De Santiago 40 Polimero con incorporación de nanopartículas de mgo y cao para envase de alimento.
US11018376B2 (en) 2017-11-28 2021-05-25 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
US11646453B2 (en) 2017-11-28 2023-05-09 Attostat, Inc. Nanoparticle compositions and methods for enhancing lead-acid batteries
CN107873731B (zh) * 2017-12-27 2021-02-12 扬州大学 一种用于抗流感病毒的Fe3O4纳米材料及其活性评价方法和应用
CN108653240B (zh) * 2018-06-22 2021-03-02 苏州冠洁纳米材料科技有限公司 碳和铜的复合纳米粒子的应用
JP7026904B2 (ja) * 2018-08-01 2022-03-01 株式会社フェローテックマテリアルテクノロジーズ セラミックス抗菌材料、抗菌部品、抗菌部品の製造方法およびセラミックス複合材料
US11857001B2 (en) 2018-09-06 2024-01-02 Sintx Technologies, Inc. Antipathogenic face mask
KR102264622B1 (ko) * 2019-04-09 2021-06-15 원광대학교산학협력단 성게모양 나노구조 입자기반 살균성 인체삽입물 및 제조방법
CN112168843A (zh) * 2019-07-05 2021-01-05 普惠德生技股份有限公司 经烧结的纳米粒子及其抗病毒的用途
KR102139160B1 (ko) * 2019-12-16 2020-07-29 (주)브레인엠알오 다중 필터 마스크.
CN116547050A (zh) * 2020-02-04 2023-08-04 库普利昂公司 粘附有金属纳米颗粒附聚体的空气过滤介质、其形成及其用途
TWI744790B (zh) * 2020-02-11 2021-11-01 安博奈米科技股份有限公司 多功能布及多功能罩
US11253051B2 (en) * 2020-06-26 2022-02-22 Savage Brands, Inc. Protective case for face mask
EP4132309A1 (en) * 2020-04-09 2023-02-15 Folia Water, Inc. Article for infection prevention for fomite materials
JP2023522184A (ja) * 2020-04-14 2023-05-29 シントクス テクノロジーズ インコーポレイテッド 抗病原性フェイスマスク
CN112871129A (zh) * 2020-04-21 2021-06-01 中国科学院大连化学物理研究所 一种吸附灭活病毒大孔功能材料的制备方法与应用
GB2594302A (en) * 2020-04-22 2021-10-27 Michael Mennie Trevor Filter element for personal protective equipment
US20230172292A1 (en) * 2020-04-22 2023-06-08 Kuprion Inc. Protective coverings and dry wipes comprising metal nanoparticle agglomerates for infection control applications and formation and use thereof
CN113559615A (zh) * 2020-04-29 2021-10-29 成都易态科技有限公司 镍铜合金在制备用于阻隔和/或抑制病毒的过滤材料上的用途
IT202000010234A1 (it) * 2020-05-07 2021-11-07 Kolzer Srl Mascherina di tipo migliorato per la protezione della bocca e del naso da batteri, virus e simili
US20210352983A1 (en) * 2020-05-13 2021-11-18 Daniel Francis Davidson Bioactive filter for viral deactivation
CN112874086A (zh) * 2020-07-17 2021-06-01 中国科学院大连化学物理研究所 一种复合型吸附灭活病毒无纺布的制备方法与应用
CN112874048A (zh) * 2020-07-17 2021-06-01 中国科学院大连化学物理研究所 一种复合型吸附灭活病毒布料的制备方法与应用
US20220062859A1 (en) * 2020-08-28 2022-03-03 Echo Scientific LLC "Trapping and Sequestering of Contaminants with PreHydrated Microparticles"
KR102285753B1 (ko) * 2020-09-18 2021-08-05 (주)엘에스케이화인텍스 살코로나바이러스성 휴대폰 케이스 및 이에 사용되는 원단
ES2904257A1 (es) * 2020-10-02 2022-04-04 Zapico Rodriguez Ines Procedimiento de desinfección
US11123584B1 (en) 2020-10-05 2021-09-21 Iowa State University Research Foundation, Inc. Personal protective anti-viral face mask
EP3984526A1 (en) 2020-10-14 2022-04-20 Indian Oil Corporation Limited Anti-viral formulation of active nano ingredients for coating on personal protective equipment and for aerosol based disinfectant composition
US20220143080A1 (en) * 2020-11-12 2022-05-12 Thermolife International, Llc Methods of increasing blood oxygen saturation
US11865139B2 (en) 2020-11-12 2024-01-09 Thermolife International, Llc Method of treating migraines and headaches
CN114635280B (zh) * 2020-12-01 2024-01-26 苏州汇涵医用科技发展有限公司 一种医用抗病毒无纺布及其制备方法和应用
US11083231B1 (en) * 2020-12-08 2021-08-10 Randall J Lewis Sanitizing face mask
JP2023553954A (ja) * 2020-12-09 2023-12-26 シントクス テクノロジーズ インコーポレイテッド 窒化物系抗病原体性組成物及びデバイス、並びにその使用方法
CN114642214A (zh) * 2020-12-18 2022-06-21 超能高新材料股份有限公司 一种抗菌材料
US20220192187A1 (en) * 2020-12-23 2022-06-23 Uop Llc Composite virucidal filter media
KR20230137386A (ko) * 2021-01-29 2023-10-04 신티엑스 테크놀로지스, 잉크. 항바이러스 조성물 및 디바이스, 및 이를 사용하는 방법
CN114903914B (zh) * 2021-02-10 2023-03-28 深圳先进技术研究院 金纳米材料在抑制冠状病毒中的应用
EP4307899A1 (en) * 2021-03-15 2024-01-24 Kuprion Inc. Biofilm-resistant articles coated with metal nanoparticle agglomerates
CN113662006B (zh) * 2021-06-30 2022-05-20 南京凯创协同纳米技术有限公司 一种可杀灭细菌灭活病毒的微纳锌的制备方法
CN114128723B (zh) * 2021-11-09 2023-07-04 苏州大学 一种抗病毒纳米材料及其应用
WO2023082118A1 (zh) * 2021-11-10 2023-05-19 苏州大学 一种新型抗病毒纳米材料及其应用
WO2023094383A1 (en) * 2021-11-26 2023-06-01 Unilever Ip Holdings B.V. Oral care composition comprising a bipolar composite material
CN115055200B (zh) * 2022-07-06 2023-07-21 杭州师范大学 一种Cu2O/HBN复合材料的制备方法及固氮应用
CN116218267B (zh) * 2023-03-17 2023-12-05 佛山(华南)新材料研究院 一种抗菌杀毒涂料及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197309A (ja) * 1993-12-28 1995-08-01 Sumitomo Osaka Cement Co Ltd 繊維とその製造方法ならびに繊維製品
JPH08505858A (ja) * 1991-08-09 1996-06-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 抗菌性組成物、その製造方法および使用
JP2000093889A (ja) * 1998-09-18 2000-04-04 Nippon Light Metal Co Ltd 抗菌・親水性表面処理組成物及び抗菌・親水性表面処理皮膜
JP2003221304A (ja) * 2002-01-28 2003-08-05 Catalysts & Chem Ind Co Ltd 抗ウイルス剤、これを含有する塗料および基材
WO2005013695A1 (ja) * 2003-08-12 2005-02-17 Mochigase Electrical Equipment Co., Ltd. 抗ウイルス剤、これを用いた繊維及び抗ウイルス部材
JP2005520070A (ja) * 2002-02-25 2005-07-07 ジェンテックス コーポレーション 多機能防護性繊維および使用方法
JP2006232729A (ja) * 2005-02-24 2006-09-07 Taki Chem Co Ltd ファージ・ウイルスの不活性化剤及び水溶性塗料

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6653519B2 (en) * 1998-09-15 2003-11-25 Nanoscale Materials, Inc. Reactive nanoparticles as destructive adsorbents for biological and chemical contamination
JP2000288108A (ja) * 1999-03-31 2000-10-17 Supatta Kk 抗菌性金属スパッタリングマスク
JP2001087614A (ja) * 1999-09-22 2001-04-03 Mitsubishi Paper Mills Ltd 空気清浄化フィルター
JP3727846B2 (ja) * 2000-12-26 2005-12-21 日本テクノ株式会社 減菌性粒子を用いた減菌方法
US20030108612A1 (en) * 2001-10-31 2003-06-12 Xu Xiaohong Nancy Metallic nanoparticles for inhibition of bacterium growth
AU2003205058A1 (en) * 2002-01-08 2003-07-24 Bernard Techologies, Inc. Antimicrobial body covering articles
DE10225324A1 (de) * 2002-06-06 2003-12-18 Itn Nanovation Gmbh Antimikrobielle Beschichtung
US20040178135A1 (en) * 2003-03-13 2004-09-16 Beplate Douglas K. Filtering device incorporating nanoparticles
CN2606602Y (zh) * 2003-03-26 2004-03-17 安信纳米生物科技(深圳)有限公司 抗菌口罩
US7311933B2 (en) * 2004-04-13 2007-12-25 Eastman Kodak Company Packaging material for inhibiting microbial growth
CA2587376A1 (en) * 2004-11-12 2006-05-18 Board Of Regents, The University Of Texas System Protein-noble metal nanoparticles
JP2008523063A (ja) * 2004-12-06 2008-07-03 ノヴァセントリックス コープ 金属ナノ材料組成の抗ウィルス使用法
DE102005041005B4 (de) * 2005-08-29 2022-10-20 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanopartikuläres Silber enthaltende biozide Zusammensetzung, die Verwendung dieser Zusammensetzung sowie ein Verfahren zur Herstellung von biozid ausgerüsteten Produkten mittels dieser Zusammensetzung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08505858A (ja) * 1991-08-09 1996-06-25 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー 抗菌性組成物、その製造方法および使用
JPH07197309A (ja) * 1993-12-28 1995-08-01 Sumitomo Osaka Cement Co Ltd 繊維とその製造方法ならびに繊維製品
JP2000093889A (ja) * 1998-09-18 2000-04-04 Nippon Light Metal Co Ltd 抗菌・親水性表面処理組成物及び抗菌・親水性表面処理皮膜
JP2003221304A (ja) * 2002-01-28 2003-08-05 Catalysts & Chem Ind Co Ltd 抗ウイルス剤、これを含有する塗料および基材
JP2005520070A (ja) * 2002-02-25 2005-07-07 ジェンテックス コーポレーション 多機能防護性繊維および使用方法
WO2005013695A1 (ja) * 2003-08-12 2005-02-17 Mochigase Electrical Equipment Co., Ltd. 抗ウイルス剤、これを用いた繊維及び抗ウイルス部材
JP2006232729A (ja) * 2005-02-24 2006-09-07 Taki Chem Co Ltd ファージ・ウイルスの不活性化剤及び水溶性塗料

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010143875A (ja) * 2008-12-19 2010-07-01 Shigadry With Earth:Kk ウイルス不活性化薬剤およびその製造方法
JPWO2011018899A1 (ja) * 2009-08-12 2013-01-17 株式会社東芝 抗ウイルス性材料とそれを用いた膜、繊維および製品
JP2015193973A (ja) * 2009-08-12 2015-11-05 株式会社東芝 抗ウイルス性繊維
JP5780960B2 (ja) * 2009-08-12 2015-09-16 株式会社東芝 抗ウイルス性材料とそれを用いた膜および製品
JP5577346B2 (ja) * 2009-10-02 2014-08-20 株式会社Nbcメッシュテック ウイルス不活化シート
WO2011078203A1 (ja) 2009-12-24 2011-06-30 国立大学法人 東京大学 ウイルス不活化剤
US9572347B2 (en) 2009-12-24 2017-02-21 The University Of Tokyo Method for inactivating a virus
JP2013166705A (ja) * 2010-12-22 2013-08-29 Univ Of Tokyo ウイルス不活化剤
KR20130114686A (ko) 2010-12-22 2013-10-18 고쿠리츠다이가쿠호우진 도쿄다이가쿠 바이러스 불활화제
JP2013082654A (ja) * 2011-10-12 2013-05-09 Showa Denko Kk 抗菌抗ウイルス性組成物及びその製造方法
US8889164B2 (en) 2011-10-12 2014-11-18 Showa Denko K.K. Antimicrobial and antiviral composition, and method of producing the same
US9210939B2 (en) 2011-12-22 2015-12-15 Showa Denko K.K. Copper-and-titanium-containing composition and production method therefor
KR101426745B1 (ko) 2011-12-22 2014-08-13 쇼와 덴코 가부시키가이샤 동 및 티탄 함유 조성물 및 그 제조 방법
JP5343176B1 (ja) * 2011-12-22 2013-11-13 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法
JP5331270B1 (ja) * 2011-12-22 2013-10-30 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法
WO2013094572A1 (ja) 2011-12-22 2013-06-27 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法
WO2013094573A1 (ja) 2011-12-22 2013-06-27 昭和電工株式会社 銅及びチタン含有組成物並びにその製造方法
JP2013212997A (ja) * 2012-03-30 2013-10-17 Nbc Meshtec Inc 抗ウイルス材
WO2017199420A1 (ja) * 2016-05-20 2017-11-23 Kbツヅキ株式会社 抗ウイルス性繊維材及びその製造方法
JPWO2017199420A1 (ja) * 2016-05-20 2019-03-14 Kbツヅキ株式会社 抗ウイルス性繊維材及びその製造方法
JP2018177747A (ja) * 2017-04-21 2018-11-15 株式会社エーアンドエーマテリアル 抗ウイルス塗膜及び化粧板
JP7422137B2 (ja) 2018-09-06 2024-01-25 シントクス テクノロジーズ インコーポレイテッド 抗病原性組成物およびその方法
JP2022500361A (ja) * 2018-09-06 2022-01-04 シントクス テクノロジーズ インコーポレイテッド 抗病原性組成物およびその方法
US11850214B2 (en) 2018-09-06 2023-12-26 Sintx Technologies, Inc. Antiviral compositions and devices and methods of use thereof
US11844344B2 (en) 2018-09-06 2023-12-19 Sintx Technologies, Inc. Systems and methods for rapid inactivation of SARS-CoV-2 by silicon nitride and aluminum nitride
CN112638158A (zh) * 2018-12-27 2021-04-09 东亚合成株式会社 抗无包膜病毒型的抗病毒剂和含有其的组合物以及抗病毒制品及其制造方法
JP7264178B2 (ja) 2018-12-27 2023-04-25 東亞合成株式会社 非エンベロープ型抗ウイルス剤及びそれを含む組成物並びに抗ウイルス製品及びその製造方法
JPWO2020137157A1 (ja) * 2018-12-27 2021-11-11 東亞合成株式会社 非エンベロープ型抗ウイルス剤及びそれを含む組成物並びに抗ウイルス製品及びその製造方法
WO2020137157A1 (ja) * 2018-12-27 2020-07-02 東亞合成株式会社 非エンベロープ型抗ウイルス剤及びそれを含む組成物並びに抗ウイルス製品及びその製造方法
WO2021158726A1 (en) * 2020-02-04 2021-08-12 Kuprion Inc. Air filtration media having metal nanoparticle agglomerates adhered thereto, formation thereof and use thereof
WO2022019244A1 (ja) * 2020-07-22 2022-01-27 Agc株式会社 抗ウイルス材
WO2022138456A1 (ja) * 2020-12-22 2022-06-30 株式会社村田製作所 ウイルス不活化液状剤およびウイルス不活化物品

Also Published As

Publication number Publication date
GB0603138D0 (en) 2006-03-29
EP1991209A2 (en) 2008-11-19
WO2007093808A3 (en) 2007-10-25
KR20090003230A (ko) 2009-01-09
US20100040655A1 (en) 2010-02-18
CN102805081A (zh) 2012-12-05
WO2007093808A2 (en) 2007-08-23
US20130091611A1 (en) 2013-04-18
CN101453995A (zh) 2009-06-10
JP2013067618A (ja) 2013-04-18

Similar Documents

Publication Publication Date Title
JP2013067618A (ja) 殺ウイルス材料
CN106102863B (zh) 带有由不同电纺纤维相互交织而成的涂层的防护口罩、构成所述涂层的配方、以及制作所述防护口罩的方法
Ju et al. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property
EP2484368B1 (en) Virus inactivation sheet
CN111519341A (zh) 一种复方抗病毒抗菌多功能pp,pe,pet无纺布及制备与应用
US10757988B1 (en) Personal protective equipment with functionalized nanotube compositions to control pathogens such as SARS CoV-2 (coronavirus)
Zhu et al. Self-decontaminating nanofibrous filters for efficient particulate matter removal and airborne bacteria inactivation
Jazie et al. A review on recent trends of antiviral nanoparticles and airborne filters: special insight on COVID-19 virus
JP2023525365A (ja) ウイルス活性および/または抗微生物性インクおよびコーティング
Mallakpour et al. Fabrication of air filters with advanced filtration performance for removal of viral aerosols and control the spread of COVID-19
BR112012006914B1 (pt) Máscara
Jin et al. How to make personal protective equipment spontaneously and continuously antimicrobial (incorporating oxidase-like catalysts)
Zhang et al. Application of antiviral materials in textiles: A review
Dahanayake et al. Recent breakthroughs in nanostructured antiviral coating and filtration materials: a brief review
Shen et al. Electrospun nanofibrous membranes for controlling airborne viruses: present status, standardization of aerosol filtration tests, and future development
US20230380525A1 (en) Nanoparticles for use in anti pathogenic applications
WO2022098528A1 (en) Self-decontaminating nanofibrous filters
Damokhi et al. Improvement of performance and function in respiratory protection equipment using nanomaterials
WO2010015801A2 (en) Biocidal composition
WO2021255205A9 (en) Filter system
Wang et al. Reusable electrospun nanofibrous membranes with antibacterial activity for air filtration
Chen et al. Silver nanoparticles/graphene oxide arranged on polytetrafluoroethylene substrate hydrophilic modified with TiO2 to construct efficient air purification material
WO2022245254A1 (ru) Фильтрующий элемент, медицинская маска и респиратор
US20220389648A1 (en) Antimicrobial copper oxide nanoparticle coated masks and methods for producing the same
WO2009022100A1 (en) Composition comprising particles of metal compound

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120502

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20120801

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20120808

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130304