JP2007516848A - デバイス収容方法および対応装置 - Google Patents

デバイス収容方法および対応装置 Download PDF

Info

Publication number
JP2007516848A
JP2007516848A JP2006546296A JP2006546296A JP2007516848A JP 2007516848 A JP2007516848 A JP 2007516848A JP 2006546296 A JP2006546296 A JP 2006546296A JP 2006546296 A JP2006546296 A JP 2006546296A JP 2007516848 A JP2007516848 A JP 2007516848A
Authority
JP
Japan
Prior art keywords
layers
micromechanical element
layer
encapsulation
sacrificial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006546296A
Other languages
English (en)
Other versions
JP4658966B2 (ja
Inventor
マティス ユーベルマン ウィリアム
Original Assignee
キャベンディッシュ・キネティックス・リミテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キャベンディッシュ・キネティックス・リミテッド filed Critical キャベンディッシュ・キネティックス・リミテッド
Publication of JP2007516848A publication Critical patent/JP2007516848A/ja
Application granted granted Critical
Publication of JP4658966B2 publication Critical patent/JP4658966B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00301Connecting electric signal lines from the MEMS device with external electrical signal lines, e.g. through vias
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/01Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS
    • B81B2207/015Microstructural systems or auxiliary parts thereof comprising a micromechanical device connected to control or processing electronics, i.e. Smart-MEMS the micromechanical device and the control or processing electronics being integrated on the same substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B2207/00Microstructural systems or auxiliary parts thereof
    • B81B2207/09Packages
    • B81B2207/091Arrangements for connecting external electrical signals to mechanical structures inside the package
    • B81B2207/094Feed-through, via
    • B81B2207/096Feed-through, via through the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C2203/00Forming microstructural systems
    • B81C2203/01Packaging MEMS
    • B81C2203/0145Hermetically sealing an opening in the lid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5256Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising fuses, i.e. connections having their state changed from conductive to non-conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Micromachines (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

基層と一つ以上の金属化層との間に形成したマイクロメカニカル素子を収容する方法。この方法は、マイクロメカニカル素子上に一つ以上の封入層を設けること及び基層と一つ以上の封入層との間に伸張する素子を包囲する封入壁を設けることを含む。基層とマイクロメカニカル素子上に形成した一つ以上の金属化層との間に電気的接続部が設けられる。

Description

本発明は、特に半導体デバイスに使用するマイクロメカニカル素子の封入に関するが、半導体デバイスに限定されるわけではない。
近年、半導体デバイスのような種々の技術的分野においてマイクロメカニカル素子の使用の可能性が拡大している。普通マイクロメカニカル素子は半導体デバイスに一体化され、そして例えば相補形金属酸化膜半導体(CMOS)デバイス上又は内に形成したキャビティ又はボイド(Void:空隙)に収容される。CMOS基板上にマイクロメカニカル素子を一体化する際に、マイクロメカニカル素子に対して適切な環境保護を行い、そして回路の上方層に電気的に接続することは等しく重要である。
マイクロメカニカル素子、例えば電極間で可動の電荷転送素子や適当な電流の印加時に飛ぶマイクロヒューズ素子は、可動又は不動である。マイクロ電機システム(MEMS)工業の直面している重要な問題の一つに、マイクロメカニカル素子がその動作環境に極めて敏感であるということがある。そのような動作環境には、半導体デバイスの性能に有害となる熱的、化学的及び機械的暴露が含まれる。そのため、かかるマイクロメカニカル素子に、所定の形態の単数又は複数の保護シールを設けることが望ましい。
マイクロメカニカル素子を組み込んだデバイスは、例えば、その後のパッケージング工程中或いは上方層に電気的に接続するために処理されている間に、同様に損傷される可能性があり、そのため適切な保護が必要である。マイクロメカニカル素子には厳重な保護手段を必要であり、、従って本発明の目的は、デバイスのサイズ及びコストを増大することなく、マイクロメカニカル素子に対して密閉シールの形態の信頼できる包囲体を設けることにある。
従って半導体デバイスに使用する信頼できるマイクロメカニカル素子を製作したいという要望がある。本発明の目的は、ヒューズや電荷転送素子のような敏感なマイクロメカニカル素子に対して、デバイスのCMOS部と一体化する際に素子上に密閉層を形成することによって環境保護を行うことにある。デバイスのCMOS及び封入層内に埋め込まれた横壁を形成することによって、封入層の平面に対して横方に付加的なシールが設けられる。
この形式の封入は、最後の金属化層以外の各金属化処理におけるCMOS処理において、保護されるマイクロメカニカルデバイスが一体化できるので特に有用である。本発明によれば、デバイスのCMOSトランジスタレベルにより接近してマイクロメカニカル素子を形成することができる。これは、CMOSトランジスタレベルから遠く離れた金属化工程において、内部にマイクロメカニカル素子の一体化される基層が比較的厚くなる傾向があるので、特に有用である。
本発明の利点は、本発明の封入プロセスがそれ自体普通のCMOS処理に役立つことである。このようなデバイスの形成は、伝統的な及び最新の工業プロセスの実施に依存し、例えば、平坦化工程に化学機械的プロセス(CMP)が含まれることが必要である。この方法は、半導体デバイスの製作中に絶縁及び金属層を平坦化するのに普通に用いられる。
従って、本発明によれば、基層と一つ以上の金属化層との間に形成されたマイクロメカニカル素子を収容する方法であって、
マイクロメカニカル素子上に一つ以上の封入層を設ける工程、
素子を取り囲むように基層と一つ以上の封入層との間に伸張する封入壁を設ける工程、
及び基層とマイクロメカニカル素子上に形成された一つ以上の金属化層との間に電気的接続部を設ける工程
が含まれるマイクロメカニカル素子の収容方法が提供される。
好適な方法には、さらに、
マイクロメカニカル素子の少なくとも一部上に一つ以上の封入層を堆積する工程、
一つ以上の封入層を平坦化する工程、
一つ以上の封入層に一つ以上の開口部を形成する工程、
マイクロメカニカル素子と接触する一つ以上の犠牲層(Sacrifice Layer:捨て層)を設ける工程、及び
一つ以上の犠牲層を除去してマイクロメカニカル素子をキャビティ内で露出させる工程
が含まれる。
一つ以上の封入層に形成された一つ以上の開口部はドライエッチング手段を用いて露出されることが望ましい。
平坦化工程が、一つ以上の犠牲層により近接して一つ以上の封入層を後退させ、そして化学機械的研磨法(CMP)を用いて実施されるのが有用である。
一つ以上の犠牲層は同じ材料の異なった形態から構成される又は異なった材料から構成されるのが望ましい。
一つ以上の犠牲層は、シリコン窒化物、シリコン酸化物又はアモルファスシリコンのようなエッチング可能なシリコンを基材とする材料から構成されるのが最も望ましい。これらの材料はフッ素ベースの化合物を用いてエッチングできる。
一つ以上の封入層が、シリコン酸化物やシリコン窒化物のようなシリコンを基材とする材料で形成のが有用である。
一つ以上の犠牲層はプラズマエンハンスド化学的蒸着法 (PECVD)を用いて堆積されるのが望ましい。
一つ以上の犠牲層を除去する工程には、一つ以上の封入層における一つ以上の開口部を通してエッチング剤を導入する工程がを含まれるのが望ましい。
一つ以上の犠牲層は、酸素プラズマを用いてエッチングできるポリイミドのようなエッチング可能なポリマーを基材とする材料から構成されるのが望ましい。
壁は一つ以上の積層プラグで形成される。さらに、プラグは基層とマイクロメカニカル素子の下側の最上方金属化層との間に電気接続部も形成できるのが望ましい。
壁部が誘電体層と封入層を通じて進出するのが有用である。
本発明の別の態様によれば、基層上に形成されたマイクロメカニカル素子、マイクロメカニカル素子上に配置した一つ以上の封入層、及び基層から一つ以上の封入層内へ伸張するマイクロメカニカル素子を包囲する封入壁を有する半導体デバイスが提供される。
本発明のさらに別の態様によれば、マイクロメカニカル素子の形成方法であって、
パターン化され得る基層を設ける工程、
エッチング可能な材料の犠牲層を一つ以上設ける工程、
一つ以上の犠牲層をパターン化して素子の形状の少なくとも一部分を確定する工程、
機械的材料を確定する少なくとも一つの層を設ける工程、
マイクロメカニカル素子をパターン化して素子の少なくとも一部分を形成する工程及び
犠牲層の一部分を除去して素子を少なくとも部分的にフリーにする工程
が含まれるマイクロメカニカル素子の形成方法が提供される。
以下、単に例として添付図面を参照して本発明の実施形態について説明する。
図1には、当業者に知られている、標準のCMOS出発基層に実施した本発明のデバイスを示し、その内部には、マイクロメカニカル素子が形成されている。当該デバイスは、CMOSトランジスタレベル(図示していない)に堆積される基層1、誘電体3、金属相互接続体5、7、9、11、及び基層1の下側のCMOS基板層とその上に一体に形成したマイクロメカニカル素子28と上方金属相互接続層に対する接点との間を電気的に接触させる13、15、17、19に形成したビアプラグを備えている。
図1を参照すると、プラグ13、15、17、19は標準のCMOSプロセスを用いて形成され、例えば、タングステンプラグ15、17及び19は、例えば所定の厚さのTiNライナー21(訳注:TiN層21のこと)でライニングし、そしてタングステン(W)充填材が堆積されるビア(Via:ビアホール)をエッチングすることによって形成される。デバイス100の実質的な部分にわたって堆積した過剰のWは図示したようにTiN層21に戻ってエッチングされる。この処理の後、デバイス100に第2TiN層23がキャッピングされ、第2TiN層23はTiN層21と共にパターン化され、そして図示したように誘電体層3まで選択的にエッチングされる。TiN層21と共に第2TiN層23の一部は、デバイス100の動作を可能とする接点及び/又は電極を形成する。次に第1犠牲層25、例えばシリコン窒化物は誘電体層3及びTiN層21上のTiN層23上に堆積され、続いて選択的にエッチングされる。
再び図1を参照すると、マイクロメカニカル素子28を形成している材料はデバイス100上の次の層に堆積され、選択的にパターニングされエッチングされてマイクロメカニカル素子28の構造を確定する。マイクロメカニカル素子28が形成されると、マイクロメカニカル素子28が解放される前に、付加的なプロセスシーケンスが導入され、マイクロメカニカル素子の封入段階が開始する。
第2犠牲層30は、図1に示すようにマイクロメカニカル素子28及び第1犠牲層25を備える層上に堆積される。物理的又は化学的蒸着法に従う第2犠牲層30は、プラズマ励起化学蒸着法(PECVD)又は当業者に知られた他の従来方法を用いてTiN層23上に設けられる。犠牲層30は、好ましくはシリコン窒化物、シリコン酸化物、アモルファスシリコン或いはスピンオンガラス(SOG)材料のようなシリコンを基材とした材料で形成されてもよい。犠牲層30は、所望の特性をもつように選択されるべきであり、例えばエッチング可能な材料は等方性又は非等方性エッチング画できるべきであり、そして感応性マイクロメカニカル素子と好ましくない反応をさせるべきでない。
さらに、第1犠牲層25及び第2犠牲層30の両方に対してシリコン窒化物又はポリイミドを用いることができる。水素に富んだシリコン窒化物層はエッチングレートを増大でき、例えば、シリコン窒化物における種々の水素含有量によってエッチングレートは10のファクターで変えることができる。水素含有量は層のプラズマ処理中、シランとアンモニアとの比率を調整することによって調節され得る。
環境暴露からマイクロメカニカル素子28が保護されるよう密閉シールを行うために、デバイス100に第1封入層33は堆積される。この工程には、第2犠牲層30にシリコン酸化物のようなマイクロ加工可能な絶縁材料を堆積する酸化物堆積プロセスが含まれる。好ましくは、第1封入層を形成する酸化物は、化学蒸着法(CVD)を用いて図1に示すようにマイクロメカニカル素子28を実質的に覆って堆積される。
本発明の目的を達成するために、図1に示すような前の工程で得られた不均一な表面形状はさらに処理される。次の工程において、不均一な表面形状を実質的に平坦化する迅速で有効な方法を提供する化学機械的研磨法(CMP)を用いて、第1封入層33は犠牲層30から離間した所定のレベルに低減される。CMPは本明細書に記載した堆積処理において任意のレベルで容易に施される。さらに、第1封入層33において本発明のこの段階でCMPを用いることによって、本発明の封入法は特に基層に近接して各金属化シーケンスにおいてCMOSに一体化される。
次の段階において、図1のデバイスの少なくとも一部はマスキングされて図2に示すマイクロメカニカル素子の右側部においてビア26及びビア32が形成される。この工程において、タングステンプラグが導入され、このタングステンプラグはマイクロメカニカル素子28のまわりに側方シールリングを形成するのに用いられる。
図2に示すように、マスキング工程は、CMP処理した第1封入層33及び第2犠牲層30の一部を介してビア26及びビア32をエッチングするように実施され、その後、ビア26及びビア32に対してTiNライニング27(訳注:TiN層27)が(酸化物層の上下に位置し得る電気的接点の間の導電通路を形成するように)堆積される。開口部はプラズマと組合わされた方法によってエッチングされる。
次の工程において、TiNライニングしたビアにはCVDによって堆積されるタングステンが充填されてビアプラグ28、29を形成し、また再び過剰材料はドライエッチングされ又はCMPを用いて図3に示すように、犠牲層30から離間した上記の所定レベルに平坦化され得る。CMPはビア上を侵食する過剰のW又はTiN充填材を除去するのに有効であり、それにより第1封入層33を形成する酸化物の表面と平坦となるように過剰な充填堆積材を平坦化する。ビア内からW充填材を偶発的に除去すると、その後の堆積工程と抵触し、電気的接点が損なわれる恐れがあるので、避けるのが重要である。
図3を参照すると、次の工程において、更なるパターニング及びエッチング段階でデバイス100にアルミニウム(Al)/銅(Cu)金属化層40が設けられ、図3に示すようにWプラグ28、29上に導電層42を形成する。金属化層40にはさらに、TiNから構成され、良好な電気的接点をもたらす接点金属の付加的な薄膜42が堆積される。この層はパターニングされ、そして当業者には知られた方法を用いてエッチングされる。本発明において、図3には、タングステンプラグを備える壁44がマイクロメカニカル素子28のまわりに形成され、一方、タングステンプラグ45及びその上に設けられた相互接続層は金属相互接続体を形成し、デバイス100の上下の層間の電気的接続を行い、また下側のCMOSトランジスタがレベルとなることを示している。
図4に横断面図で示す次の工程では、第1封入層33(LHS)は開口部46をエッチングするようにマスクを用いてパターニングされる。開口部46の更なるエッチングが前述のマイクロメカニカル素子の形成中に形成されたTiNから成るバリヤー48で妨げられるまで、酸化物封入層33を介して及び一部第2犠牲層30を介してエッチングすることにより開口部は露出される。代表的には、エッチング工程はプラズマと組合さった方法で行われる。下側の誘電体層3を通って開口をエッチングするとデバイス100の特性を損なうので、それを阻止するようにTiNバリヤーはエッチング工程に対して十分に不活性である必要がある。
図5に示す更なる工程において、エッチング解放プロセス工程はマイクロメカニカル素子28を解放し、それにより使用時にマイクロメカニカル素子28はキャビティ50内で作動できるようになる。開口部46を介してエッチング剤を導入することによって、第1犠牲層25及び第2犠牲層30が除去され、マイクロメカニカル素子28を解放する。犠牲層25及び犠牲層30の除去には、SF6のようなフッ素を基材としたエッチング剤を用いたドライエッチングプロセスが伴う。図5には、タングステンプラグで形成された壁44が二つのホールド機能を備えることを示しており、即ちエッチング剤が壁44を越えてマイクロメカニカル素子28を解放するのを阻止し、またマイクロメカニカル素子28を包囲する側方シーリング壁を形成する。後者はマイクロメカニカル素子の動作環境においてマイクロメカニカル素子の保護を行い、或いは代わりにマイクロメカニカル素子28上の付加的な電極と成り得る。
マイクロメカニカル素子28の構造上の一体性がマイクロメカニカル素子28とエッチング剤との有害な反応によって損なわれないことが重要である。これは、エッチング解放プロセス及び該プロセスの実行される機器の条件及び適当な化学的に適合できる材料を選択することによって達成される。
図6に示す次の工程では、第2封入層60は、更なる密閉シールを形成するように、デバイス100上に即ち第1封入層及び金属化部分42に堆積される。第2封入材料は窒化物材料例えばシリコン窒化物から選択され得る。開口部46(図5)及びマイクロメカニカル素子28を収容するキャビティ50の相対寸法が決まると、シリコン窒化物層60を施すための堆積条件は、穴にプラグされることを保証するように制御される。特に、開口部46はマイクロメカニカル素子からさらに離され、マイクロメカニカル素子に堆積するのを防ぐようにする。
図7は本発明の実施形態の平面図を示し、壁44はマイクロメカニカル素子28を包囲するように側方に配置される。マイクロメカニカル素子28の解放は、例えば解放開口部46にエッチング剤を通すことによって行われる。
図8A〜図8Gは、封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程を概略図で示している。図8Aを参照すると、第1工程では、基板1上に窒素に富んだチタン窒化物の導電性層2が堆積される。この工程は反応性スパッタリングを用いて行うことができる。
図8Bに示す第2工程では、導電性層2は、殆どの半導体製造施設において普通に利用できるプロセス装置を用いてマイクロ電子工業において普通である方法によってパターニングされ、そしてエッチングされる。こうして、不動の下方第1電極11が形成される。
図8Cに示す第3工程では、シリコンを基材とする材料の犠牲層3は、できれば導電性層2又はパターニングした導電性層2’の特殊な表面処理後に、パターニングした導電性層2’に堆積される。アモルファスシリコン又はシリコン窒化物、或いは特にPECVD(プラズマエンハンスド化学的蒸着法)によって堆積したスパッタリングしたアモルファスシリコン及びシリコン窒化物を含む、適切な特性をもつ任意の他のシリコンを基材とする材料を用いることができる。さらに、チタン窒化物材料内への限定され制御された量のエッチングでチタン窒化物に対して選択的に等方性で又はほぼ等方性でこれらの材料をエッチングできるエッチングプロセスが存在する。
図8Dに示す第4工程では、犠牲層3は、殆どの半導体製造施設において普通に利用できるプロセス装置を用いてマイクロ電子工業において普通である方法によってパターニングされ、そしてエッチングされる。
図8Eに示す第5工程では、好ましくは導電性層2の特性を制御するようにバイアススパッタリングを用いて、パターニングした犠牲層に窒素に富んだチタン窒化物の構造体層4が堆積される。さらに、かかる堆積は、パターニングした導電性層2’と構造体層4’とが完成したマイクロメカニカル素子10において接触するこれら二つの層間の良好な電気的接触を達成するように制御され得る。
図8Fに示す第6工程では、構造体層4は第2工程で説明した方法と同様にしてパターニングされエッチングされる。図8Gに示す第7工程では、素子10はフッ素をベースとしたエッチングを用いてプラズマエッチングシステムでパターニングした導電性層3’をエッチング除去することによって部分的に解放される。プラズマシステムはデュアル無線周波数方式のものであってもよい。
本発明は、キャビティ内で作動できるヒューズ、スイッチ、又は他の電荷転送素子のような可動又は不動のマイクロメカニカル素子を封入するために利用できると当業者には認識される。
マイクロメカニカル素子を形成しそして第1封入層を堆積した後のデバイスの断面を示す。 第1封入層を通してのビア形成が続く第1封入層の平坦化した後のデバイスの断面を示す。 タングステンプラグに導電層及びTiN接点層を結合した状態のデバイスの断面を示す。 開口部が第1封入層に形成され、開口部の形成がストップ層で妨げられている状態のデバイスの断面を示す。 マイクロメカニカル素子が犠牲層を露出させて開口部を通るエッチを解放させるように解放され、この解放が封入壁まで行われている状態のデバイスの断面を示す。 第2封入層がデバイス上に堆積されている状態のデバイスの断面を示す。 封入壁がマイクロメカニカル素子を包囲する横方包囲体を形成している本発明によるデバイスの平面図を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第1工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第2工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第3工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第4工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第5工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第6工程を示す。 封入の行われ得るマイクロメカニカル素子を形成するために実施される種々の工程の概略図であり、第7工程を示す。
符号の説明
1 基層(基板)
2 導電性層
3 誘電体層(誘電体)
3 犠牲層
4 構造体層
5、7、9、11 金属相互接続体(金属化層)
10、28 マイクロメカニカル素子
13、15、17、19、28、29、45 ビアプラグ(電気的接続部)
21、23 TiN層
25 第1犠牲層
26、32 ビア
30 第2犠牲層
33 第1封入層
40 金属化層
44 壁
46 開口部(あるいは解放開口部)
48 バリヤー
50 キャビティ
60 第2封入層
100 デバイス

Claims (19)

  1. 基層と一つ以上の金属化層との間に形成したマイクロメカニカル素子の収容方法であって、
    前記マイクロメカニカル素子上に一つ以上の封入層を設ける工程と、
    前記素子を包囲するように前記基層と前記一つ以上の封入層との間に伸張する封入壁を設ける工程と、
    前記基層と前記マイクロメカニカル素子上に形成された前記一つ以上の金属化層との間に電気的接続部を設ける工程と、
    を備える
    ことを特徴とするマイクロメカニカル素子収容方法。
  2. 請求項1に記載の方法において、さらに、
    前記マイクロメカニカル素子の少なくとも一部の上に一つ以上の封入層を堆積する工程と、
    前記一つ以上の封入層を平坦化する工程と、
    前記一つ以上の封入層に一つ以上の開口部を形成する工程と、
    前記マイクロメカニカル素子と接触する一つ以上の犠牲層を設ける工程と、
    前記一つ以上の犠牲層を除去して前記マイクロメカニカル素子をキャビティ内に露出させる工程と、
    を備える
    ことを特徴とする方法。
  3. 請求項1または請求項2に記載の方法において、
    前記一つ以上の封入層に形成した前記一つ以上の開口部がドライエッチング手段を用いて露出される
    ことを特徴とする方法。
  4. 請求項1ないし請求項3のいずれかに記載の方法において、
    前記平坦化する工程が、前記一つ以上の封入層を後退させ、前記一つ以上の犠牲層により近接させる
    ことを特徴とする方法。
  5. 請求項4に記載の方法において、
    前記平坦化する工程が化学機械的研磨法(CMP)を備える
    ことを特徴とする方法。
  6. 請求項1ないし請求項5のいずれかに記載の方法において、
    前記一つ以上の犠牲層が同じ材料だが異なった形態で構成される
    ことを特徴とする方法。
  7. 請求項1ないし請求項5のいずれかに記載の方法において、
    犠牲材料(訳注:犠牲層のこと)が異なった材料から成る
    ことを特徴とする方法。
  8. 請求項6または請求項7に記載の方法において、
    前記一つ以上の犠牲層が、シリコン窒化物、シリコン酸化物またはアモルファスシリコンのようなエッチング可能なシリコンを基材とする材料から成る
    ことを特徴とする方法。
  9. 請求項1ないし請求項8のいずれかに記載の方法において、
    前記一つ以上の封入層が、シリコン酸化物やシリコン窒化物のようなシリコンを基材とする材料で形成される
    ことを特徴とする方法。
  10. 請求項6ないし請求項8のいずれかに記載の方法において、
    一つ以上の犠牲層がプラズマエンハンスド化学的蒸着法 (PECVD)を用いて堆積される
    ことを特徴とする方法。
  11. 請求項1ないし請求項10のいずれかに記載の方法において、
    前記一つ以上の犠牲層を除去する工程には、前記一つ以上の封入層における前記一つ以上の開口部を通してエッチング剤を導入する工程が含まれる
    ことを特徴とする方法。
  12. 請求項6または請求項7に記載の方法において、
    前記一つ以上の犠牲層が、ポリイミドのようなエッチング可能なポリマーを基材とする材料から成る
    ことを特徴とする方法。
  13. 請求項12に記載の方法において、
    エッチング剤が酸素プラズマである
    ことを特徴とする方法。
  14. 請求項11に記載の方法において、
    エッチング剤がフッ素を基材とした化合物である
    ことを特徴とする方法。
  15. 請求項1ないし請求項3のいずれかに記載の方法において、
    前記壁(訳注:封入壁のこと)が一つ以上の積層プラグで形成される
    ことを特徴とする方法。
  16. 請求項1ないし請求項14(訳注:請求項15の誤り)のいずれかに記載の方法において、
    前記プラグが前記基層と前記マイクロメカニカル素子の下側の最上方にある金属化層との間に電気接続部を形成する
    ことを特徴とする方法。
  17. 請求項14に記載の方法において、
    壁部が誘電体層と封入層とを通って伸張する
    ことを特徴とする方法。
  18. マイクロメカニカル素子の形成方法であって
    パターニングされ得る基層を設ける工程と、
    エッチング可能な材料から成る一つ以上の犠牲層を設ける工程と、
    前記一つ以上の犠牲層をパターニングして前記素子の形状の少なくとも一部分を確定する工程と、
    機械的材料を確定する少なくとも一つの層を設ける工程と、
    前記マイクロメカニカル素子をパターニングして前記素子の少なくとも一部分を形成する工程と、
    犠牲層の一部分を除去して前記素子を少なくとも部分的に解放する工程と、
    を備える
    ことを特徴とするマイクロメカニカル素子形成方法。
  19. 基層上に形成したマイクロメカニカル素子と、
    前記マイクロメカニカル素子上に配置した一つ以上の封入層と、
    前記基層から前記一つ以上の封入層内へ伸張する前記マイクロメカニカル素子を包囲する封入壁と、
    を有する
    ことを特徴とする半導体デバイス。
JP2006546296A 2003-12-24 2004-12-06 マイクロメカニカル素子の収容方法およびマイクロメカニカル素子の形成方法 Expired - Fee Related JP4658966B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GBGB0330010.0A GB0330010D0 (en) 2003-12-24 2003-12-24 Method for containing a device and a corresponding device
PCT/GB2004/005122 WO2005061376A1 (en) 2003-12-24 2004-12-06 Method for containing a device and a corresponding device

Publications (2)

Publication Number Publication Date
JP2007516848A true JP2007516848A (ja) 2007-06-28
JP4658966B2 JP4658966B2 (ja) 2011-03-23

Family

ID=30776515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006546296A Expired - Fee Related JP4658966B2 (ja) 2003-12-24 2004-12-06 マイクロメカニカル素子の収容方法およびマイクロメカニカル素子の形成方法

Country Status (6)

Country Link
US (2) US7615395B2 (ja)
EP (1) EP1697255B1 (ja)
JP (1) JP4658966B2 (ja)
CN (2) CN102161470B (ja)
GB (1) GB0330010D0 (ja)
WO (1) WO2005061376A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263902A (ja) * 2005-02-25 2006-10-05 Hitachi Ltd 集積化マイクロエレクトロメカニカルシステムおよびその製造方法
JP2011512666A (ja) * 2008-02-14 2011-04-21 キャベンディッシュ・キネティックス・リミテッド 3端子の複数回プログラム可能なメモリのビットセル及びアレイ構成
JP2012096316A (ja) * 2010-11-02 2012-05-24 Seiko Epson Corp 電子装置および電子装置の製造方法

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0330010D0 (en) 2003-12-24 2004-01-28 Cavendish Kinetics Ltd Method for containing a device and a corresponding device
US7553684B2 (en) * 2004-09-27 2009-06-30 Idc, Llc Method of fabricating interferometric devices using lift-off processing techniques
JP4544140B2 (ja) * 2005-02-16 2010-09-15 セイコーエプソン株式会社 Mems素子
GB0516148D0 (en) * 2005-08-05 2005-09-14 Cavendish Kinetics Ltd Method of integrating an element
US7541209B2 (en) * 2005-10-14 2009-06-02 Hewlett-Packard Development Company, L.P. Method of forming a device package having edge interconnect pad
GB0522471D0 (en) * 2005-11-03 2005-12-14 Cavendish Kinetics Ltd Memory element fabricated using atomic layer deposition
GB0523713D0 (en) * 2005-11-22 2005-12-28 Cavendish Kinetics Ltd Enclosure method
JP2007222956A (ja) * 2006-02-21 2007-09-06 Seiko Epson Corp Memsデバイスおよびmemsデバイスの製造方法
JP2008114354A (ja) 2006-11-08 2008-05-22 Seiko Epson Corp 電子装置及びその製造方法
US7706042B2 (en) * 2006-12-20 2010-04-27 Qualcomm Mems Technologies, Inc. MEMS device and interconnects for same
DE102007060931A1 (de) * 2006-12-21 2008-08-28 Continental Teves Ag & Co. Ohg Verkapselungsmodul, Verfahren zu dessen Herstellung und Verwendung
US7659150B1 (en) 2007-03-09 2010-02-09 Silicon Clocks, Inc. Microshells for multi-level vacuum cavities
US7923790B1 (en) 2007-03-09 2011-04-12 Silicon Laboratories Inc. Planar microshells for vacuum encapsulated devices and damascene method of manufacture
US7736929B1 (en) 2007-03-09 2010-06-15 Silicon Clocks, Inc. Thin film microshells incorporating a getter layer
US7595209B1 (en) 2007-03-09 2009-09-29 Silicon Clocks, Inc. Low stress thin film microshells
US7989262B2 (en) 2008-02-22 2011-08-02 Cavendish Kinetics, Ltd. Method of sealing a cavity
US7993950B2 (en) * 2008-04-30 2011-08-09 Cavendish Kinetics, Ltd. System and method of encapsulation
US8349635B1 (en) 2008-05-20 2013-01-08 Silicon Laboratories Inc. Encapsulated MEMS device and method to form the same
JP5374077B2 (ja) * 2008-06-16 2013-12-25 ローム株式会社 Memsセンサ
US8063454B2 (en) * 2008-08-13 2011-11-22 Micron Technology, Inc. Semiconductor structures including a movable switching element and systems including same
JP2010098518A (ja) * 2008-10-16 2010-04-30 Rohm Co Ltd Memsセンサの製造方法およびmemsセンサ
JP5677971B2 (ja) * 2008-11-07 2015-02-25 キャベンディッシュ・キネティックス・インコーポレイテッドCavendish Kinetics, Inc. 相対的に小型の複数のmemsデバイスを用いて相対的に大型のmemsデバイスを置き換える方法
US8957485B2 (en) * 2009-01-21 2015-02-17 Cavendish Kinetics, Ltd. Fabrication of MEMS based cantilever switches by employing a split layer cantilever deposition scheme
US8877648B2 (en) * 2009-03-26 2014-11-04 Semprius, Inc. Methods of forming printable integrated circuit devices by selective etching to suspend the devices from a handling substrate and devices formed thereby
US8247253B2 (en) 2009-08-11 2012-08-21 Pixart Imaging Inc. MEMS package structure and method for fabricating the same
US8158200B2 (en) * 2009-08-18 2012-04-17 University Of North Texas Methods of forming graphene/(multilayer) boron nitride for electronic device applications
CN102001613B (zh) * 2009-09-02 2014-10-22 原相科技股份有限公司 微电子装置及制造方法、微机电封装结构及封装方法
US8030112B2 (en) * 2010-01-22 2011-10-04 Solid State System Co., Ltd. Method for fabricating MEMS device
EP2542499B1 (en) * 2010-03-01 2017-03-22 Cavendish Kinetics Inc. Cmp process flow for mems
US8530985B2 (en) * 2010-03-18 2013-09-10 Chia-Ming Cheng Chip package and method for forming the same
CN103155069B (zh) 2010-09-21 2015-10-21 卡文迪什动力有限公司 上拉式电极和华夫饼型微结构
US8852984B1 (en) * 2011-03-30 2014-10-07 Silicon Laboratories Technique for forming a MEMS device
US8877536B1 (en) * 2011-03-30 2014-11-04 Silicon Laboratories Inc. Technique for forming a MEMS device using island structures
US9455353B2 (en) 2012-07-31 2016-09-27 Robert Bosch Gmbh Substrate with multiple encapsulated devices
JP2014086447A (ja) * 2012-10-19 2014-05-12 Seiko Epson Corp 電子装置及びその製造方法
US20140147955A1 (en) * 2012-11-29 2014-05-29 Agency For Science, Technology And Research Method of encapsulating a micro-electromechanical (mems) device
US9018715B2 (en) 2012-11-30 2015-04-28 Silicon Laboratories Inc. Gas-diffusion barriers for MEMS encapsulation
US20150048514A1 (en) * 2013-08-14 2015-02-19 Qualcomm Mems Technologies, Inc. Stacked via structures and methods of fabrication
US9466554B2 (en) * 2014-02-13 2016-10-11 Qualcomm Incorporated Integrated device comprising via with side barrier layer traversing encapsulation layer
US9637371B2 (en) 2014-07-25 2017-05-02 Semiconductor Manufacturing International (Shanghai) Corporation Membrane transducer structures and methods of manufacturing same using thin-film encapsulation
ES2732024T3 (es) 2015-04-21 2019-11-20 Univ Catalunya Politecnica Circuito integrado que comprende estructuras micromecánicas multicapa con masa mejorada y fiabilidad y método de fabricación del mismo
CN107445135B (zh) * 2016-05-31 2020-07-31 上海丽恒光微电子科技有限公司 半导体器件及其封装方法
DE102017218883A1 (de) * 2017-10-23 2019-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikroelektromechanisches Bauteil sowie ein Verfahren zu seiner Herstellung
US10793422B2 (en) 2018-12-17 2020-10-06 Vanguard International Semiconductor Singapore Pte. Ltd. Microelectromechanical systems packages and methods for packaging a microelectromechanical systems device
US11884536B2 (en) * 2020-10-23 2024-01-30 AAC Technologies Pte. Ltd. Electrical interconnection structure, electronic apparatus and manufacturing methods for the same
CN116199183B (zh) * 2023-04-28 2023-07-14 润芯感知科技(南昌)有限公司 一种半导体器件及其制造方法

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198378A (ja) * 1987-02-13 1988-08-17 Nissan Motor Co Ltd 振動センサの製造方法
JPH05297413A (ja) * 1991-12-19 1993-11-12 Sony Corp 液晶表示装置
JPH09148467A (ja) * 1995-11-24 1997-06-06 Murata Mfg Co Ltd 動作素子の真空封止の構造およびその製造方法
JPH09257618A (ja) * 1996-03-26 1997-10-03 Toyota Central Res & Dev Lab Inc 静電容量型圧力センサおよびその製造方法
JPH1070287A (ja) * 1996-08-26 1998-03-10 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JPH10111195A (ja) * 1996-10-09 1998-04-28 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JPH10281862A (ja) * 1997-04-08 1998-10-23 Yokogawa Electric Corp 振動式赤外線センサとその製造方法
JPH11177067A (ja) * 1997-12-09 1999-07-02 Sony Corp メモリ素子およびメモリアレイ
JP2000186931A (ja) * 1998-12-21 2000-07-04 Murata Mfg Co Ltd 小型電子部品及びその製造方法並びに該小型電子部品に用いるビアホールの成形方法
JP2001133703A (ja) * 1999-11-04 2001-05-18 Seiko Epson Corp 半導体基板上に構造物を有する装置の製造方法および装置
JP2002009078A (ja) * 2000-05-15 2002-01-11 Asm Microchemistry Oy 交互層蒸着前の保護層
WO2002052642A2 (en) * 2000-12-26 2002-07-04 Honeywell International Inc. Method for eliminating reaction between photoresist and organosilicate glass
JP2002280470A (ja) * 2001-03-22 2002-09-27 Aisin Seiki Co Ltd 半導体装置及びその製造方法
WO2002078082A2 (en) * 2001-03-23 2002-10-03 International Business Machines Corporation Electronic structure
JP2003035874A (ja) * 2001-07-23 2003-02-07 Nikon Corp 薄膜スライド接続機構及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
JP2003506871A (ja) * 1999-08-02 2003-02-18 ハネウエル・インコーポレーテッド デュアルウエハー付設法
JP2003509847A (ja) * 1999-09-08 2003-03-11 アライドシグナル インコーポレイテッド デュアルダマシンプロセスにおける低誘電率エッチストップ層
WO2003040436A1 (en) * 2001-11-08 2003-05-15 Advanced Micro Devices, Inc. Method of eliminating voids in w plugs
WO2003085719A2 (en) * 2002-04-02 2003-10-16 Dow Global Technologies Inc. Process for making air gap containing semiconducting devices and resulting semiconducting device
JP2003531474A (ja) * 1999-10-15 2003-10-21 エーエスエム アメリカ インコーポレイテッド ダマシン・メタライゼーションのための正角ライニング層

Family Cites Families (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63307758A (ja) 1987-06-09 1988-12-15 Nec Corp 集積回路装置
US5504026A (en) * 1995-04-14 1996-04-02 Analog Devices, Inc. Methods for planarization and encapsulation of micromechanical devices in semiconductor processes
US5578976A (en) 1995-06-22 1996-11-26 Rockwell International Corporation Micro electromechanical RF switch
US5696662A (en) 1995-08-21 1997-12-09 Honeywell Inc. Electrostatically operated micromechanical capacitor
US6012336A (en) * 1995-09-06 2000-01-11 Sandia Corporation Capacitance pressure sensor
DE19638666C1 (de) 1996-01-08 1997-11-20 Siemens Ag Schmelzsicherung mit einer Schutzschicht in einer integrierten Halbleiterschaltung sowie zugehöriges Herstellungsverfahren
US5730835A (en) 1996-01-31 1998-03-24 Micron Technology, Inc. Facet etch for improved step coverage of integrated circuit contacts
US5919548A (en) * 1996-10-11 1999-07-06 Sandia Corporation Chemical-mechanical polishing of recessed microelectromechanical devices
US6268661B1 (en) * 1999-08-31 2001-07-31 Nec Corporation Semiconductor device and method of its fabrication
US5980349A (en) * 1997-05-14 1999-11-09 Micron Technology, Inc. Anodically-bonded elements for flat panel displays
FR2781499B1 (fr) * 1998-07-24 2000-09-08 Atochem Elf Sa Compositions de nettoyage ou de sechage a base de 1,1,1,2,3,4,4,5,5, 5 - decafluoropentane
US6153839A (en) 1998-10-22 2000-11-28 Northeastern University Micromechanical switching devices
KR20080047629A (ko) 1998-12-02 2008-05-29 폼팩터, 인크. 전기 접촉 구조체의 제조 방법
US6174820B1 (en) * 1999-02-16 2001-01-16 Sandia Corporation Use of silicon oxynitride as a sacrificial material for microelectromechanical devices
US6274440B1 (en) 1999-03-31 2001-08-14 International Business Machines Corporation Manufacturing of cavity fuses on gate conductor level
US6633055B2 (en) * 1999-04-30 2003-10-14 International Business Machines Corporation Electronic fuse structure and method of manufacturing
US6500694B1 (en) * 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
US6310339B1 (en) 1999-10-28 2001-10-30 Hrl Laboratories, Llc Optically controlled MEM switches
US20010040675A1 (en) 2000-01-28 2001-11-15 True Randall J. Method for forming a micromechanical device
US6439693B1 (en) 2000-05-04 2002-08-27 Silverbrook Research Pty Ltd. Thermal bend actuator
US7153717B2 (en) * 2000-05-30 2006-12-26 Ic Mechanics Inc. Encapsulation of MEMS devices using pillar-supported caps
US7008812B1 (en) * 2000-05-30 2006-03-07 Ic Mechanics, Inc. Manufacture of MEMS structures in sealed cavity using dry-release MEMS device encapsulation
WO2002016150A1 (en) 2000-08-23 2002-02-28 Reflectivity, Inc. Transition metal dielectric alloy materials for mems
US6535091B2 (en) 2000-11-07 2003-03-18 Sarnoff Corporation Microelectronic mechanical systems (MEMS) switch and method of fabrication
DE10056716B4 (de) * 2000-11-15 2007-10-18 Robert Bosch Gmbh Mikrostrukturbauelement
DE10104868A1 (de) * 2001-02-03 2002-08-22 Bosch Gmbh Robert Mikromechanisches Bauelement sowie ein Verfahren zur Herstellung eines mikromechanischen Bauelements
US6958123B2 (en) * 2001-06-15 2005-10-25 Reflectivity, Inc Method for removing a sacrificial material with a compressed fluid
WO2003028059A1 (en) 2001-09-21 2003-04-03 Hrl Laboratories, Llc Mems switches and methods of making same
US6635506B2 (en) * 2001-11-07 2003-10-21 International Business Machines Corporation Method of fabricating micro-electromechanical switches on CMOS compatible substrates
ATE412611T1 (de) * 2001-11-09 2008-11-15 Wispry Inc Dreischichtige strahl-mems-einrichtung und diesbezügliche verfahren
US7943412B2 (en) * 2001-12-10 2011-05-17 International Business Machines Corporation Low temperature Bi-CMOS compatible process for MEMS RF resonators and filters
FR2835963B1 (fr) 2002-02-11 2006-03-10 Memscap Micro-composant du type micro-interrupteur et procede de fabrication d'un tel micro-composant
US6635509B1 (en) * 2002-04-12 2003-10-21 Dalsa Semiconductor Inc. Wafer-level MEMS packaging
JP4554357B2 (ja) 2002-05-07 2010-09-29 マイクロファブリカ インク 電気化学的に成型加工され、気密的に封止された微細構造および上記微細構造を製造するための方法および装置
DE10230252B4 (de) * 2002-07-04 2013-10-17 Robert Bosch Gmbh Verfahren zur Herstellung integrierter Mikrosysteme
US7064637B2 (en) * 2002-07-18 2006-06-20 Wispry, Inc. Recessed electrode for electrostatically actuated structures
WO2004037711A2 (en) * 2002-10-23 2004-05-06 Rutgers, The State University Of New Jersey Processes for hermetically packaging wafer level microscopic structures
EP1433740A1 (en) 2002-12-24 2004-06-30 Interuniversitair Microelektronica Centrum Vzw Method for the closure of openings in a film
US20040157426A1 (en) * 2003-02-07 2004-08-12 Luc Ouellet Fabrication of advanced silicon-based MEMS devices
EP1450406A1 (en) * 2003-02-19 2004-08-25 Cavendish Kinetics Limited Micro fuse
US20040166603A1 (en) * 2003-02-25 2004-08-26 Carley L. Richard Micromachined assembly with a multi-layer cap defining a cavity
NL1023275C2 (nl) 2003-04-25 2004-10-27 Cavendish Kinetics Ltd Werkwijze voor het vervaardigen van een micro-mechanisch element.
US6917459B2 (en) * 2003-06-03 2005-07-12 Hewlett-Packard Development Company, L.P. MEMS device and method of forming MEMS device
US7060624B2 (en) * 2003-08-13 2006-06-13 International Business Machines Corporation Deep filled vias
US6861277B1 (en) * 2003-10-02 2005-03-01 Hewlett-Packard Development Company, L.P. Method of forming MEMS device
JP2005183557A (ja) 2003-12-18 2005-07-07 Canon Inc 半導体集積回路とその動作方法、該回路を備えたicカード
GB0330010D0 (en) 2003-12-24 2004-01-28 Cavendish Kinetics Ltd Method for containing a device and a corresponding device
US7482193B2 (en) * 2004-12-20 2009-01-27 Honeywell International Inc. Injection-molded package for MEMS inertial sensor
US7576426B2 (en) * 2005-04-01 2009-08-18 Skyworks Solutions, Inc. Wafer level package including a device wafer integrated with a passive component
GB0515980D0 (en) 2005-08-03 2005-09-07 Cavendish Kinetics Ltd Memory cell for a circuit and method of operation therefor
GB0516148D0 (en) 2005-08-05 2005-09-14 Cavendish Kinetics Ltd Method of integrating an element
GB0523715D0 (en) 2005-11-22 2005-12-28 Cavendish Kinetics Ltd Method of minimising contact area
GB0523713D0 (en) 2005-11-22 2005-12-28 Cavendish Kinetics Ltd Enclosure method
US20070235501A1 (en) 2006-03-29 2007-10-11 John Heck Self-packaging MEMS device

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198378A (ja) * 1987-02-13 1988-08-17 Nissan Motor Co Ltd 振動センサの製造方法
JPH05297413A (ja) * 1991-12-19 1993-11-12 Sony Corp 液晶表示装置
JPH09148467A (ja) * 1995-11-24 1997-06-06 Murata Mfg Co Ltd 動作素子の真空封止の構造およびその製造方法
JPH09257618A (ja) * 1996-03-26 1997-10-03 Toyota Central Res & Dev Lab Inc 静電容量型圧力センサおよびその製造方法
JPH1070287A (ja) * 1996-08-26 1998-03-10 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JPH10111195A (ja) * 1996-10-09 1998-04-28 Yokogawa Electric Corp 振動式トランスデューサとその製造方法
JPH10281862A (ja) * 1997-04-08 1998-10-23 Yokogawa Electric Corp 振動式赤外線センサとその製造方法
JPH11177067A (ja) * 1997-12-09 1999-07-02 Sony Corp メモリ素子およびメモリアレイ
JP2000186931A (ja) * 1998-12-21 2000-07-04 Murata Mfg Co Ltd 小型電子部品及びその製造方法並びに該小型電子部品に用いるビアホールの成形方法
JP2003506871A (ja) * 1999-08-02 2003-02-18 ハネウエル・インコーポレーテッド デュアルウエハー付設法
JP2003509847A (ja) * 1999-09-08 2003-03-11 アライドシグナル インコーポレイテッド デュアルダマシンプロセスにおける低誘電率エッチストップ層
JP2003531474A (ja) * 1999-10-15 2003-10-21 エーエスエム アメリカ インコーポレイテッド ダマシン・メタライゼーションのための正角ライニング層
JP2001133703A (ja) * 1999-11-04 2001-05-18 Seiko Epson Corp 半導体基板上に構造物を有する装置の製造方法および装置
JP2002009078A (ja) * 2000-05-15 2002-01-11 Asm Microchemistry Oy 交互層蒸着前の保護層
WO2002052642A2 (en) * 2000-12-26 2002-07-04 Honeywell International Inc. Method for eliminating reaction between photoresist and organosilicate glass
JP2002280470A (ja) * 2001-03-22 2002-09-27 Aisin Seiki Co Ltd 半導体装置及びその製造方法
WO2002078082A2 (en) * 2001-03-23 2002-10-03 International Business Machines Corporation Electronic structure
JP2003035874A (ja) * 2001-07-23 2003-02-07 Nikon Corp 薄膜スライド接続機構及びその製造方法並びにこれを用いたミラーデバイス及び光スイッチ
WO2003040436A1 (en) * 2001-11-08 2003-05-15 Advanced Micro Devices, Inc. Method of eliminating voids in w plugs
WO2003085719A2 (en) * 2002-04-02 2003-10-16 Dow Global Technologies Inc. Process for making air gap containing semiconducting devices and resulting semiconducting device
JP2005522049A (ja) * 2002-04-02 2005-07-21 ダウ グローバル テクノロジーズ インコーポレイティド エアギャップ含有半導体デバイスの製造方法及び得られる半導体デバイス

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006263902A (ja) * 2005-02-25 2006-10-05 Hitachi Ltd 集積化マイクロエレクトロメカニカルシステムおよびその製造方法
JP4724488B2 (ja) * 2005-02-25 2011-07-13 日立オートモティブシステムズ株式会社 集積化マイクロエレクトロメカニカルシステム
JP2011512666A (ja) * 2008-02-14 2011-04-21 キャベンディッシュ・キネティックス・リミテッド 3端子の複数回プログラム可能なメモリのビットセル及びアレイ構成
US9019756B2 (en) 2008-02-14 2015-04-28 Cavendish Kinetics, Ltd Architecture for device having cantilever electrode
TWI496159B (zh) * 2008-02-14 2015-08-11 Cavendish Kinetics Ltd 三端多重時間可程式化記憶體位元格及陣列架構
KR101558630B1 (ko) 2008-02-14 2015-10-07 카벤디시 키네틱스, 엘티디. 3-단자 다중-시간 프로그래밍가능한 메모리 비트셀 및 어레이 아키텍처
JP2012096316A (ja) * 2010-11-02 2012-05-24 Seiko Epson Corp 電子装置および電子装置の製造方法

Also Published As

Publication number Publication date
EP1697255A1 (en) 2006-09-06
CN1898150B (zh) 2011-04-27
US20070004096A1 (en) 2007-01-04
CN1898150A (zh) 2007-01-17
US7615395B2 (en) 2009-11-10
CN102161470B (zh) 2017-03-01
JP4658966B2 (ja) 2011-03-23
WO2005061376A1 (en) 2005-07-07
CN102161470A (zh) 2011-08-24
USRE44246E1 (en) 2013-05-28
GB0330010D0 (en) 2004-01-28
EP1697255B1 (en) 2020-01-22

Similar Documents

Publication Publication Date Title
JP4658966B2 (ja) マイクロメカニカル素子の収容方法およびマイクロメカニカル素子の形成方法
US7993950B2 (en) System and method of encapsulation
TWI556331B (zh) 微機電裝置及其形成方法
EP1064674B1 (en) A method of manufacturing an electronic device comprising two layers of organic-containing material
US8183685B2 (en) Semiconductor device
US6913946B2 (en) Method of making an ultimate low dielectric device
US7719079B2 (en) Chip carrier substrate capacitor and method for fabrication thereof
US7807550B2 (en) Method of making MEMS wafers
JP2003197738A (ja) 半導体装置のマスク層および二重ダマシーン相互接続構造
JPH10189733A (ja) 多孔性誘電体の金属被覆法
US9708177B2 (en) MEMS device anchoring
KR100609544B1 (ko) 반도체 퓨즈
TW201727780A (zh) 微機電系統封裝之製造方法
KR20030027817A (ko) 마스크 층 및 집적 회로 장치의 듀얼 대머신 상호 연결구조물 형성 방법과 집적 회로 장치 상에서 상호 연결구조물을 형성하는 방법
US20020195715A1 (en) Backend metallization method and device obtained therefrom
JPH11312704A (ja) ボンドパッドを有するデュアルダマスク
US20100001368A1 (en) Microelectromechanical device packaging with an anchored cap and its manufacture
EP2584598B1 (en) Method of producing a semiconductor device comprising a through-substrate via and a capping layer and corresponding semiconductor device
CN111527043A (zh) 微机电部件及其制造方法
KR100607815B1 (ko) 반도체 소자의 금속 배선 형성방법
EP0996978A2 (en) A method for manufacturing an electronic device comprising an organic-containing material
KR20000027707A (ko) 반도체 소자의 금속 배선층 형성 방법

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101207

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4658966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees