つぎにこの発明を図を参照してより具体的に説明する。図2は、この発明を適用した車両のシステム構成を示すブロック図である。車両の動力源であるエンジン1としては、ガソリンエンジンまたはディーゼルエンジンまたはLPGエンジンまたはガスタービンエンジン等の内燃機関が用いられる。この実施例のエンジン1は、燃料噴射装置および吸排気装置ならびに点火装置等を備えた公知の構造のものである。
また、エンジン1の吸気管には電子スロットルバルブ2が設けられており、電子スロットルバルブ2の開度が電気的に制御されるように構成されている。エンジン1から出力されるトルクの一方の伝達経路には、トルクコンバータ3およびオイルポンプ4ならびに歯車変速機構5が配置されている。具体的には、エンジン1と歯車変速機構5との間にトルクコンバータ3が配置され、トルクコンバータ3と歯車変速機構5との間にオイルポンプ4が配置されている。さらに、エンジン1から出力されるトルクの他方の伝達経路には、駆動装置6を介してモータ・ジェネレータ7が配置されている。
まず、一方のトルク伝達経路の構成について具体的に説明する。このトルクコンバータ3およびオイルポンプ4ならびに歯車変速機構5を内蔵したケーシング8の内部には、作動油としてのオートマチック・トランスミッション・フルード(以下、ATFまたはオイルと略記する)が封入されている。トルクコンバータ3は、ポンプインペラ9およびタービンランナ10ならびにステータ3Aを備えている。このステータ3Aは、ポンプインペラ9からタービンランナ10に伝達されるトルクを増幅するためのものである。そしてエンジン1の動力がポンプインペラ9に伝達され、ポンプインペラ9のトルクがATFによりタービンランナ10に伝達されるように構成されている。なお、トルクコンバータ3は、ポンプインペラ9とタービンランナ10とを機械的に接続するロックアップクラッチ3Bを備えている。
さらに、エンジン1の動力はポンプインペラ9を介してオイルポンプ4に伝達され、オイルポンプ4により、油圧制御装置(後述する)の油路の元圧が生じる。また、歯車変速機構5は、入力軸11と、遊星歯車12と、前進クラッチC1および後進クラッチC2を含む各種の摩擦係合装置と、出力軸13とを備えている。そして、入力軸11がタービンランナ10に接続され、出力軸13が車輪14に接続されている。上記歯車変速機構5は、例えば前進5段、後進1段の変速段(つまり変速比)を設定することが可能に構成されている。また、油圧により動作するピストンにより、前進クラッチC1および後進クラッチC2が係合・解放が制御されるように構成されている。そして、前進段を設定する場合は前進クラッチC1が係合され、後進段を設定する場合は後進クラッチC2が係合される。
また、この実施例では、シフトレバー15のマニュアル操作により、各種のシフトポジションを選択することが可能である。例えば、P(パーキング)ポジション、R(リバース)ポジション、N(ニュートラル)ポジション、D(ドライブ)ポジション、4ポジション、3ポジション、2ポジション、L(ロー)ポジションの各ポジションを選択可能になっている。ここで、Dポジション、4ポジション、3ポジション、2ポジション、Lポジション、Rポジションが走行ポジションである。そして、Dポジション、4ポジション、3ポジション、2ポジションが選択された場合は、複数の変速段同士の間で変速可能である。これに対して、Lポジション、またはRポジションが選択された場合は、単一の変速段に固定される。なお、ケーシング8の内部にはロック機構13Aが設けられており、Pポジションが選択されていた場合は、ロック機構13Aにより出力軸13の回転が防止されるように構成されている。
また、油圧制御装置16により、歯車変速機構5における変速段の設定または切り換え制御、ロックアップクラッチ3Bの係合・解放やスリップ制御、摩擦係合装置を動作させるピストンに油圧を供給する油圧回路のライン圧の制御、摩擦係合装置の係合圧の制御などがおこなわれる。この油圧制御装置16は電気的に制御されるもので、歯車変速機構5の変速を実行するための第1ないし第3のシフトソレノイドバルブS1 ,〜S3 と、エンジンブレーキ状態を制御するための第4ソレノイドバルブS4 とを備えている。さらに、油圧制御装置16は、油圧回路のライン圧を制御するためのリニアソレノイドバルブSLTと、歯車変速機構5の変速過渡時におけるアキュムレータ背圧を制御するためのリニアソレノイドバルブSLNと、ロックアップクラッチ3Bや所定の摩擦係合装置の係合圧を制御するためのリニアソレノイドバルブSLUとを備えている。
図3は、前進クラッチC1に対応する油圧回路の一部を示す模式図である。オイルポンプ4に接続された油路には、プライマリレギュレータバルブ17が設けられている。このプライマリレギュレータバルブ17は、オイルポンプ4により発生した元圧をライン圧PLに調圧するためのものである。このプライマリレギュレータバルブ17は、リニアソレノイドバルブSLTによって制御されている。そして、プライマリレギュレータバルブ17により調圧されたライン圧PLが、マニュアルバルブ18の入力ポートに導かれている。マニュアルバルブ18は、シフトレバー15と機械的に接続されている。そして、シフトレバー15により前進ポジション、例えばDポジションあるいは、2ポジションが選択されたときに、マニュアルバルブ18の入力ポートと出力ポートとが連通し、ライン圧PLが前進クラッチC1に供給される。
また、マニュアルバルブ18と前進クラッチC1との間の油路75には、大オリフィス19および切換弁20が直列に配置されている。切換弁20の開閉はソレノイド21により制御される。この切換弁20は、大オリフィス19を介して供給されるライン圧PLを、前進クラッチC1に対して選択的に供給もしくは遮断するためのものである。なお、ソレノイド21は電子制御装置47により制御されている。
さらに、切換弁20をバイパスし、かつ、その一端が前進クラッチC1と切換弁20との間に接続され、他端が大オリフィス19と切換弁20との間に接続された油路76が設けられている。この油路76には、チェックボール22と小オリフィス23とが相互に並列に配置されている。小オリフィス23の流通面積は、大オリフィス19の流通面積よりも狭く設定されている。そして、切換弁20が閉じられた場合は、大オリフィス19を通過したオイルが、さらに小オリフィス23を経由して前進クラッチC1に到達する。なお、チェックボール22は、前記前進クラッチC1の係合時に、油路76を介して前進クラッチC1に供給する油量を減少させる機能を有する。また、チェックボール22は、前進クラッチC1の解放時に、オイルの流通面積を拡大して前進クラッチC1に供給されていた油オイルを円滑に排出する機能を備えている。
一方、切換弁20と前進クラッチC1との間の油路75には、オリフィス24を介してアキュムレータ25が配置されている。このアキュムレータ25は、ピストン26およびスプリング27を備えている。このアキュムレータ25およびオリフィス24は、シフトレバー15がNポジションからDポジションに切り換えられて前進クラッチC1を係合する場合に、この前進クラッチC1に供給する油圧を、所定時間の間、スプリング27およびアキュムレータ背圧によって決定される所定の油圧特性(具体的には、緩慢に増大する特性)に維持するためのものである。したがって、シフトレバー15がNポジションからDポジションに切り換えられて前進クラッチC1を係合する時のショックを軽減することができる。なお、前記後進クラッチC2に対応する油圧回路も、図3の油圧回路と同様に構成することができる。
図4は、エンジン1の他方のトルク伝達経路の構成を示す説明図である。駆動装置6は減速装置28を備えており、この減速装置28がエンジン1およびモータ・ジェネレータ7に接続されている。モータ・ジェネレータ7は、例えば交流同期型のものが適用される。モータ・ジェネレータ7は、永久磁石(図示せず)を有する回転子(図示せず)と、コイル(図示せず)が巻き付けられた固定子(図示せず)とを備えている。そして、コイルの3相巻き線に3相交流電流を流すと回転磁界が発生し、この回転磁界を回転子の回転位置および回転速度に合わせて制御することにより、トルクが発生する。モータ・ジェネレータ7により発生するトルクは電流の大きさにほぼ比例し、モータ・ジェネレータ7の回転数は交流電流の周波数により制御される。
減速装置28は、同心状に配置されたリングギヤ29およびサンギヤ30と、このリングギヤ29およびサンギヤ30に噛み合わされた複数のピニオンギヤ31とを備えている。この複数のピニオンギヤ31はキャリヤ32により保持されており、キャリヤ32には回転軸33が連結されている。また、エンジン1のクランクシャフト34と同心状に回転軸35が設けられており、回転軸35とクランクシャフト34とを接続・遮断するクラッチ36が設けられている。そして、回転軸35と回転軸33との間で相互にトルクを伝達するチェーン37が設けられている。なお、回転軸33には、チェーン38を介してエアコンプレッサなどの補機39が接続されている。
また、モータ・ジェネレータ7は出力軸40を備えており、出力軸40に前記サンギヤ30が取り付けられている。また、駆動装置6のハウジング41には、リングギヤ29の回転を止めるブレーキ42が設けられている。さらに、出力軸40の周囲には一方向クラッチ43が配置されており、一方向クラッチ43の内輪が出力軸40に連結され、一方向クラッチ43の外輪がリングギヤ29に連結されている。上記構成の減速装置28により、エンジン1とモータ・ジェネレータ7との間のトルク伝達、または減速がおこなわれる。そして、一方向クラッチ43は、エンジン1から出力されたトルクがモータ・ジェネレータ7に伝達される場合に係合する構成になっている。
上記モータ・ジェネレータ7は、エンジン1を始動させるスタータとしての機能と、エンジン1の動力により発電する発電機(オルタネータ)としての機能と、エンジン1の停止時に補機39を駆動する機能とを兼備している。そして、モータ・ジェネレータ7をスタータとして機能させる場合は、クラッチ36およびブレーキ42が係合され、一方向クラッチ43が解放される。また、モータ・ジェネレータ7をオルタネータとして機能させる場合は、クラッチ36および一方向クラッチ43が係合され、ブレーキ42が解放される。さらに、モータ・ジェネレータ7により補機39を駆動させる場合は、ブレーキ42が係合され、クラッチ36および一方向クラッチ43が解放される。
また、モータ・ジェネレータ7にはインバータ44を介してバッテリ45が接続され、モータ・ジェネレータ7およびインバータ44ならびにバッテリ45には、コントローラ46が接続されている。そして、エンジン1から出力された動力をモータ・ジェネレータ7に入力して発電をおこない、その電気エネルギをインバータ44を介してバッテリ45に充電することが可能である。
また、モータ・ジェネレータ7から出力される動力を、エンジン1または補機39に伝達することが可能である。さらに、モータ・ジェネレータ7を電動機として機能させる場合は、バッテリ45からの直流電圧を交流電圧に変換してモータ・ジェネレータ7に供給する。モータ・ジェネレータ7を発電機として機能させる場合は、回転子の回転により発生した誘導電圧をインバータ44により直流電圧に変換してバッテリ45に充電する。
前記コントローラ46は、バッテリ45からモータ・ジェネレータ7に供給される電流値、またはモータ・ジェネレータ7により発電される電流値を検出または制御する機能を備えている。また、コントローラ46は、モータ・ジェネレータ7の回転数を制御する機能と、バッテリ45の充電状態(SOC:state of charge)を検出および制御する機能とを備えている。
図5は、この発明が適用された車両の制御回路を示すブロック図である。電子制御装置(ECU)47は、中央演算処理装置(CPU)および記憶装置(RAM、ROM)ならびに入力・出力インターフェースを主体とするマイクロコンピュータにより構成されている。この電子制御装置47には、エンジン回転数センサ48の信号、エンジン水温センサ49の信号、イグニッションスイッチ50の信号、コントローラ46の信号、エアコンスイッチ51の信号、入力軸11の回転数を検出する入力軸回転数センサ52の信号、出力軸13の回転数を検出する出力軸回転数センサ(車速センサ)53の信号、ATFの温度を検出する油温センサ54の信号、シフトレバー15の操作位置を検出するシフトポジションセンサ55の信号などが入力されている。
また電子制御装置47には、運転者の停車意図を検出するパーキングブレーキスイッチ56の信号、運転者の減速意図または制動意図を検出するフットブレーキスイッチ57の信号、排気管(図示せず)の途中に設けられた触媒温度センサ58の信号、アクセルペダル59の踏み込み量を示すアクセル開度センサ60の信号、エンジン1の電子スロットルバルブ2の開度を検出するスロットル開度センサ61の信号などが入力されている。
さらに電子制御装置47には、モータ・ジェネレータ7の回転数および回転角度を検出するレゾルバ62の信号、運転席のシートベルトが装着されたか否かを検出するシートベルトスイッチ63の信号、運転席のドアの開閉状態を検出するドアスイッチ64の信号、フューエルリッドの開閉状態を検出するフューエルリッドセンサー64Aの信号、フードの開閉状態を検出するフードセンサー64Bの信号などが入力されている。
この電子制御装置47からは、エンジン1の点火装置65を制御する信号、エンジン1の燃料噴射装置66を制御する信号、コントローラ46を制御する信号、駆動装置6のクラッチ36およびブレーキ42を制御する信号、油圧制御装置16を制御する信号、エンジン1の自動停止・自動復帰状態をランプまたはブザーなどにより出力するインジケータ67への制御信号、電子スロットルバルブ2の開度を制御するアクチュエータ68の制御信号などが出力されている。
また、この実施形態の車両は、図2に示すように、アンチロックブレーキシステム(以下、ABSと略記する)69を備えている。このABS69は、車両の制動時に各車輪のホイールシリンダに作用する制動油圧を制御し、適度のコーナリングフォースを確保して操舵性を確保するとともに、制動停止距離が最短になるように、摩擦係数の最も大きい値が得られるスリップ率が得られるように制御するための機構である。このABS69は、各車輪14の回転速度を検出する回転速度センサ70と、マスタシリンダ71とホイールシリンダ72との間の配管途中に配置され、かつ、各ホイールシリンダ72へのブレーキ油圧を制御するABSアクチュエータ73と、車輪速度センサ70からの信号によって車体速度を推測するとともに、各車輪14の回転状況を監視し、路面の状況に応じた最適の制動力が得られるようにブレーキ油圧の増減指令を、ABSアクチュエータ73に対して出力する電子制御装置74とを備えている。そして、電子制御装置74と電子制御装置47とが相互にデータ通信可能に接続されている。
上記車両の制御内容を簡単に説明する。イグニッションスイッチ50がスタート位置に操作されると、モータ・ジェネレータ7のトルクが駆動装置6を介してエンジン1に伝達され、エンジン1が始動される。なお、イグニッションスイッチ50は自動的にオン位置に復帰している。車両の走行中は、電子制御装置47に記憶されている変速線図(変速マップ)に基づいて、歯車変速機構5および油圧制御装置16を有する自動変速機A1が制御され、自動変速機A1の変速比が制御される。また、電子制御装置47に記憶されているロックアップクラッチ制御マップに基づいて、ロックアップクラッチ3Bが制御される。
一方、バッテリ45は、充電量が所定の範囲になるように制御されており、充電量が少なくなった場合は、エンジン出力を増大させ、その一部をモータ・ジェネレータ7に伝達して発電させ発生した電気エネルギをバッテリ45に充電する制御がおこなわれる。そして、電子制御装置47に入力される各種の信号に基づいて、エンジン1を運転状態から停止状態へ自動的に切り換える自動停止制御と、エンジン1を自動停止状態から運転状態へ自動的に復帰させる復帰制御がおこなわれる。
ここで、自動停止制御および自動復帰制御は、車速センサ53の信号、フットブレーキスイッチ57の信号、シフトポジションセンサ55の信号、アクセル開度センサ60の信号、バッテリ45の充電量を示す信号などに基づいておこなわれる。このエンジン1の自動停止制御・復帰制御は、シフトレバー15が、NポジションまたはDポジションに操作されている場合におこなわれる。具体的には、エンジン1を自動停止させるための停止条件は、車速が零であり、かつ、フットブレーキスイッチ57がオンされ、かつ、アクセルペダル15がオフされ、かつ、バッテリ45の充電状態が所定値以上になった場合に成立する。
また、エンジン1の自動停止状態において、上記各条件のうちの少なくとも一つが欠如した場合は、復帰条件が成立する。さらに、この実施例においては、前記復帰条件が成立していない場合でも、エンジン1の自動停止条件が成立し、かつ、乗員(具体的には運転者)が運転席から離れる動作がおこなわれたものと判断された場合は、エンジン1の状態として運転状態を選択する制御がおこなわれる。また、乗員の離席判断の成立中に、停止条件が成立した場合もエンジン1が運転状態に維持される。ここで、乗員の離席判断の成立条件としては、運転席側のシートベルトの非装着、または運転席側のドアの開放、の少なくとも一方が例示される。上記の停止条件および復帰条件ならびに離席判断の条件は、予め電子制御装置47に設定されている。
つぎに、上記ハード構成を有する車両の制御内容を、図1のフローチャートに基づいて説明する。まず、各種の検出信号が電子制御装置47に入力され、電子制御装置47により入力信号の処理がおこなわれる(ステップ1)。そして、エンジン1の自動停止制御中であるか否かが判断され(ステップ2)、ステップ2で否定判断された場合はそのままリターンされる。
ここで、エンジン1の自動停止判断の成立にともなうシステムの状態を、図6のタイムチャートを参照して説明する。自動停止判断が成立すると、時刻t1において、ABS69に対する制御信号が出力される。具体的には、各ホイールシリンダ72に作用するブレーキ油圧の増大が開始され、時刻t4以降はブレーキ油圧が一定値に制御される。このような、ABS69における一連の制御が、いわゆるヒルホールド制御である。
一方、時刻t2においてエンジンの停止指令が出力されると、若干の遅れをもって時刻t3からエンジン回転数NEが徐々に低下する特性を示す。一方、エンジン回転数NEの低下に並行してオイルポンプ4の回転数も低下し、時刻t3よりも遅れた時刻t4から前進クラッチC1に作用する油圧が急激に低下する特性を示す。その結果、車輪14にトルクが伝達されなくなる。このため、所定値以上の道路勾配がある場合には、車両の自重により車輪14が回転する可能性がある。しかし、上記ヒルホールド制御により、車輪14の回転が防止されている。
ところで、ステップ2で肯定判断された場合は、運転者の離席判断条件が成立しているか否かが判断される(ステップ3)。すなわち、現在、エンジンの自動停止中であるものの、運転者が運転席を離れる可能性があるか否かにより、エンジン1の自動停止制御を継続するか、または運転状態に復帰させるかを決定するために、ステップ3が設定されている。ステップ3で否定判断された場合は、前記自動停止制御を継続し(ステップ4)、かつ、ヒルホールド制御を継続する(ステップ5)。そして、エンジン1の自動停止制御を実施中であることをインジケータ67により出力して乗員に認識させ(ステップ6)、リターンされる。
一方、ステップ3で肯定判断された場合は、乗員、つまり、運転者が車両を一旦離れる可能性がある。このため、運転者が車両を離れる時点において、エンジン1が運転中であることを運転者に対して認識させるために、エンジン1を自動停止状態から運転状態に復帰させる制御がおこなわれる。この制御をおこなうにあたり、運転者が車両に再度乗車したか否かにより、前記ヒルホールド制御を継続するか否かを判断する必要性がある。
そこで、ステップ7においては、アクセルペダル59の状態により、運転者の再乗車判断と、車両に対する走行要求の有無判断とをおこなっている。ステップ7でアクセルペダル59が踏み込まれていないと判断された場合は、エンジン1を自動停止状態から運転状態に自動復帰させる制御がおこなわれる(ステップ8)。また、アクセルペダル59が踏み込まれておらず、走行要求が無いのであるから、ヒルホールド制御を継続して車輪14の回転防止状態が維持される(ステップ9)。さらに、エンジン1の自動停止制御が実施されていないことをインジケータ67により出力し(ステップ10)、リターンする。
ステップ7でアクセルペダル59のオンが検出された場合は、運転者が再乗車したことになるため、エンジン1を自動復帰させる制御がおこなわれる(ステップ11)。このステップ11の制御はステップ8の制御と同様である。また、アクセルペダル59がオンされて走行要求が発生したのであるから、ヒルホールド制御を中止し(ステップ12)、ステップ10に進む。ここで、エンジン1の復帰制御に伴うシステムの状態を具体的に説明する。この実施形態においては、エンジン1を運転状態に復帰する場合は、前進クラッチC1に作用する油圧を急速増圧することにより、速やかに、かつ、小さな係合ショックで係合させるために、ファーストアプライ制御がおこなわれる。
つまり、エンジン1の運転中にシフトレバー15がNポジションに設定されている場合は、マニュアルバルブ18の入力ポートにまでライン圧PLが作用しているのに対して、エンジン1の自動停止制御がおこなわれている場合は、オイルポンプ4が停止しているため、エンジン1の自動復帰の際において、前進クラッチC1に油圧が到達するまでの時間は、マニュアルシフトの場合に比べて長時間を必要とする。そこで、車両の発進性を向上させるために、ファーストアプライ制御または昇圧制御の少なくとも一方がおこなわれる。
ここでは、ファーストアプライ制御を中心として説明をおこない、昇圧制御については後述する。前述したように、エンジン1の自動復帰指令が出力されると、エンジン1が再始動され、かつ、オイルポンプ4の回転が開始される。そして、プライマリレギュレータバルブ17で調圧されたライン圧PLは、マニュアルバルブ18を介して前進クラッチC1に供給される。ここで、電子制御装置47からファーストアプライ制御の信号が出力されて、切換弁20が開放されている場合は、マニュアルバルブ18を通過したライン圧PLが、大オリフィス19を介してそのまま前進クラッチC1に供給される。
そして、前進クラッチC1の係合が開始される直前で電子制御装置47の制御信号により切換弁20が閉じられると、大オリフィス19を通過したライン圧PLは、小オリフィス23を介して緩慢に前進クラッチC1に供給される。また、この段階で、前進クラッチC1に供給される油圧が高まり、前進クラッチC1に接続されている油路75の油圧により、ピストン26がスプリング27に抗して図3の上方に移動する。その結果、このピストン26が移動している間、前進クラッチC1に供給される油圧が緩慢に上昇する特性に制御されるため、前進クラッチC1は非常に円滑に係合を完了できる。
図7は、エンジン1の復帰制御にともなうシステムの状態を示すタイムチャートである。前進クラッチC1の油圧を示す特性のうち、実線がファーストアプライ制御をおこなった場合を示し、破線がファーストアプライ制御をおこなわない場合を示している。ファーストアプライ制御をおこなわない場合とは、前進クラッチC1の係合油圧を、常時、小オリフィス23を経由して供給する場合を意味している。また、時間TFASTは、ファーストアプライ制御の実行時間を示している。この時間TFASTは、定性的には前進クラッチC1を作動させるピストン(図示せず)が、いわゆるクラッチパックを詰める時間に対応している。また、エンジン回転数NEが所定のアイドル回転数に至る若干前までの時間に対応している。なお、Tc、Tc′は前進クラッチC1のクラッチパックが詰められる時間、Tac、Tac′はアキュムレータ25が機能している時間に相当している。
ここで、ファーストアプライ制御がおこなわれていない場合は、マニュアルバルブ18を経由した油圧が、小オリフィス23を通過して前進クラッチC1に供給される。このため、前進クラッチC1のピストンのクラッチパックが詰められるまでの間に長い時間Tc′が経過し、破線で示す特性を経て時刻t3頃に前進クラッチC1係合が完了する。これに対して、この実施形態においてはエンジン1の復帰指令が出力された後に、時間TFASTの間、ファーストアプライ制御がおこなわれるため、時間Tc′よりも短い時間Tcでクラッチパックを詰めることができる。このため、前進クラッチC1の係合を、時刻t3よりも早い時刻t2頃に完了させることができる。
ところで、ファーストアプライ制御の開始タイミングTsは、エンジン回転速度(言い換えれば、オイルポンプ4の回転速度)NEが所定値NE1より大きくなった時点に設定されている。このように、ファーストアプライ制御をエンジンの再始動指令Tcomと同時に開始させないようにした理由は、エンジン1の回転速度が零の状態から若干立ち上がった状態になるまでの時間T1が、そのエンジン停止状態によりばらつく可能性があるためである。
すなわち、ファーストアプライ制御を、エンジン1の再始動指令Tcomと同時に開始させた場合、前記時間T1のばらつきの影響を受けて、前進クラッチC1が、ときにファーストアプライ制御が実行されている間に係合を開始してしまい、ショックが発生する可能性がある。そこで、時間T1のばらつきが大きくなるエンジン1の再始動直後を避け、エンジン回転速度NEが若干上昇し始めた時点Tsを、ファーストアプライ制御の開始タイミングにすることにより、エンジン1の停止状態の変化に関わりなく、時間T1のばらつきが小さい状態で前進クラッチC1の係合油圧を供給することができる。また、このファーストアプライ制御の開始タイミングは、他の条件により設定することも可能である。すなわち、エンジン1の自動停止指令が出力された直後に、再びエンジン1の復帰指令が出力された場合は、前進クラッチC1に作用している油圧が充分にドレンされる前にファーストアプライ制御が開始されて急激に前進クラッチC1の油圧が増大して係合ショックが発生する可能性がある。
そこで、図6に示すように、エンジン停止指令が出力された時点から、前進クラッチC1の油圧が零になる時点までの推定時間Toffをタイマーで設定しておき、この時間Toffが経過するまではファーストアプライ制御をおこなわないようにすることが可能である。なお、時間Toffの代わりに、エンジン回転数NEが所定値まで低下したことに基づいて前進クラッチC1の油圧低下を推定し、この推定結果に基づいてファーストアプライ制御を開始するタイミングを設定することも可能である。
つぎに、ファーストアプライ制御の継続時間TFASTについて説明する。自動変速機A1の作動油であるATFは、その温度に依存して粘度が変化する特性を備えている。そして、低温時(例えば20℃以下)には、オイルの粘度が高いため、ファーストアプライ制御を同じ時間おこなったとしても、常温時(例えば20℃〜80℃)ほどには前進クラッチC1にオイルが供給されない。そこで、低温時にはファーストアプライ制御を常温時よりも長時間に亘っておこなう必要がある。
一方、高温時(例えば100℃以上)の場合には常温時に比べてオイルの粘度が低下しすぎて、油圧制御装置16のバルブボディーの各シール部からの漏れ量が多くなり、やはり同じ時間だけファーストアプライ制御をおこなったとしても、前進クラッチC1に供給されるオイルの量が低下気味となる。そこで、図8に示すように、ATFの温度と時間TFASTとを対応させたマップを用意し、このマップを予め電子制御装置47に記憶しておき、このマップに基づいて時間TFASTを設定することが可能である。このようにして、時間TFASTを設定することにより、ATF油温の相違により粘度のばらつきが生じた場合においても、この粘度のばらつきがファーストアプライ制御に与える影響を抑制することができ、前進クラッチC1の係合ショックを回避することができる。
なお、エンジン1の自動復帰制御にあたり、前進クラッチC1の係合を早期に達成して車両の発進性を向上させるための制御としては、ファーストアプライ制御の他に昇圧制御が例示される。この昇圧制御とは、リニアソレノイドバルブSLTの機能によりプライマリレギュレータバルブ17の調圧値を上昇させ、ライン圧PLを昇圧させるものである。この昇圧制御の開始タイミングおよび継続時間は、前記ファーストアプライ制御と同一でもよいし、異なっていてもよい。そして、エンジン1の自動復帰に際しては、前述したファーストアプライ制御または昇圧制御のうちの少なくとも一方を採用することが可能である。
つぎに、エンジン1の復帰制御がおこなわれた場合における、ABS69の状態を説明する。まず、前記ステップ8を経由してステップ9に進んだ場合は、実線で示すようにヒルホールド制御が継続される。また、ステップ11を経由してステップ12に進んだ場合は、破線で示すように、時間TFASTの終了時刻である時刻t1から、ホイールシリンダ72に供給するブレーキ油圧を低下させる制御がおこなわれ、時刻t2に到達する前にヒルホールド制御が解除される。つまり、トルクコンバータ3によるクリープ力の発生により、ABS69による制動力を解除している。
ここで、図1のフローチャートに示された機能的手段と、この発明の構成との対応関係を説明する。すなわち、ステップ2がこの発明の停止判断手段に相当し、ステップ3がこの発明の離席判断手段に相当する。また、ステップ2,3,7,8,11がこの発明のエンジン制御手段に相当し、ステップ8,11がこの発明の告知手段に相当する。なお、ステップ8,11は、自動停止中のエンジン1を運転状態に復帰するのであるから、復帰制御手段あるいは自動停止禁止手段と言い換えることも可能である。
以上のように、この実施形態によれば、乗員(具体的には運転者)が運転席から離れた(例えば降車した)場合は、エンジン1の状態として運転状態が選択される。このため、乗員が運転席を離れる場合においても、エンジン1が運転状態であることを認識しやすい。したがって、乗員が再度運転席に戻る場合は、エンジン1の状態が、乗員が運転席を離れる時と同じ状態に制御されているために、乗員が違和感を持つことを回避することができる。また、エンジン1の停止制御中に離席判断が成立したことが、エンジン1の自動復帰により運転者に告知されている。このため、エンジンの自動停止中に乗員が運転席から離れようとしていることを、乗員が認識しやすい。したがって、乗員が再度運転席に戻る場合の違和感を回避することができる。さらに、上記告知の内容がエンジン1の自動復帰であるため、イグニッションスイッチの状態を容易に理解することができる。
なお、上記実施形態において、エンジン1の運転中において、エンジン1の自動停止条件と乗員の離席判断とが同時に成立した場合に、エンジン1を運転状態に維持する制御をおこなうことも可能である。また、エンジン1の運転中において、離席判断が成立している状態で、自動停止条件が成立した場合に、エンジン1を運転状態に維持する制御をおこなうことも可能である。
また、上記実施形態においては、エンジン1の自動停止制御をおこなう場合に、ABS69を制御して車輪14の回転を防止する手段が採用されているが、これ以外の手段により車輪14の回転を防止することも可能である。例えば、自動停止判断が成立した場合に、自動変速機A1のロック機構13Aを電気的に制御して、出力軸13の回転を機械的に防止することも可能である。また、上記実施形態において、車両の発進性を向上させるために、後進段を設定する際に係合される摩擦係合装置の油圧制御をおこなうことも可能である。さらに、告知手段の内容としては、エンジン1を停止状態から運転状態に復帰させる制御の他に、照明装置を点滅させる制御、音声出力などの制御が例示される。
図9は上記システム構成の車両の他の制御例を示すフローチャートである。まず、図9のステップ11,12の内容は、図1のステップ1,2の内容と同じである。そして、ステップ12で否定判断された場合はリターンされる。ステップ12で肯定判断された場合は、電子制御装置47により、車両が発進待機状態にあるか否かが判断される(ステップ13)。ステップ13の判断基準としては、ドアが閉じているか否か、またはフードが閉じているか否か、またはフューエルリッドが閉じているか否かが例示される。
ステップ13で否定判断された場合は、車両の発進に適さないため、ステップ14,15,16を経由してリターンされる。ステップ14,15,16の内容は、図1のステップ4,5,6の内容と同じである。また、ステップ13で肯定判断された場合は、車両が発進可能な状態であるため、イグニッションスイッチがスタート位置に操作されたか否かが判断される(ステップ17)。ステップ17で否定判断された場合は、車両の走行要求が生じていないことになるため、ステップ18,19を経由してステップ16に進む。ステップ18,19の内容は、ステップ14,15の内容と同じである。
一方、ステップ17で肯定判断された場合は、車両の走行要求があることになるため、ステップ20,21,22を経由してリターンされる。このステップ20,21,22の内容は、図1のステップ11,12,10の内容と同じである。このように、図9の制御例においては、エンジン1の自動停止中において、車両の待機状態が成立しない状態ではエンジンの自動復帰制御が禁止される。そして、車両の待機状態が成立し、かつ、走行要求が成立した場合にのみ、エンジン1を運転状態に復帰させる制御がおこなわれる。したがって、車両の状態および運転者の意図に即してエンジン1を運転状態に復帰させることが可能になる。
なお、この発明は、エンジンと、シフト装置の操作により変速比を変更することの可能な手動変速機との間のトルク伝達経路に、自動クラッチが設けられている形式の車両にも適用可能である。この車両の場合には、エンジンの自動停止制御によりオイルポンプの回転数が低下すると、自動クラッチの係合油圧が低下して解放される。また、エンジンの自動復帰制御が開始された場合は、オイルポンプが再度回転を開始して自動クラッチの係合油圧が上昇することになる。
ここで、上記実施形態に記載されたこの発明の特徴的な構成を示せば以下のとおりである。すなわち、車両のエンジンの状態を、所定の条件に基づいて、自動的に運転状態と停止状態とで相互に切り換える車両のエンジン制御装置において、前記所定の停止条件が成立したか否かを判断する停止判断手段と、乗員が運転席から離れる動作をおこなうか否かを判断する第1の離席判断手段と、前記所定の停止条件が成立し、かつ、前記乗員の離席判断が成立した場合に、前記エンジンの状態として運転状態を選択するエンジン制御手段と、前記車両に対する走行要求の有無を判断する走行要求判断手段と、前記エンジンの運転状態が選択された場合に、前記走行要求の有無に基づいて、前記制動装置の制動力を制御する制動装置制御手段とを備えていることを特徴とする車両のエンジン制御装置。上記の構成においては、実施形態に示されたABSが制動装置に相当する。また、実施形態に示されたステップ7が走行要求判断手段に相当する。