JP2005109239A - 磁気抵抗効果素子及び磁気ヘッド - Google Patents

磁気抵抗効果素子及び磁気ヘッド Download PDF

Info

Publication number
JP2005109239A
JP2005109239A JP2003342453A JP2003342453A JP2005109239A JP 2005109239 A JP2005109239 A JP 2005109239A JP 2003342453 A JP2003342453 A JP 2003342453A JP 2003342453 A JP2003342453 A JP 2003342453A JP 2005109239 A JP2005109239 A JP 2005109239A
Authority
JP
Japan
Prior art keywords
layer
ferromagnetic
ferromagnetic layers
magnetoresistive effect
effect element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003342453A
Other languages
English (en)
Other versions
JP2005109239A5 (ja
Inventor
Toshitake Sato
勇武 佐藤
Rachid Sbiaa
ラシド シビア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2003342453A priority Critical patent/JP2005109239A/ja
Priority to US10/882,364 priority patent/US7167347B2/en
Publication of JP2005109239A publication Critical patent/JP2005109239A/ja
Publication of JP2005109239A5 publication Critical patent/JP2005109239A5/ja
Priority to US11/657,504 priority patent/US7280323B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3912Arrangements in which the active read-out elements are transducing in association with active magnetic shields, e.g. magnetically coupled shields
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Hall/Mr Elements (AREA)
  • Magnetic Heads (AREA)

Abstract

【課題】 BMR効果を用いた磁気ヘッド用の磁気抵抗効果素子において、自由層やナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子、及びそうした磁気抵抗効果素子を用いた磁気ヘッドを提供する。
【解決手段】 2つの強磁性層1,2を含む自由層11と、2つの強磁性層5,6を含む固定層12と、1つの強磁性層3からなり前記自由層11と前記固定層12との間に設けられる1又2以上のナノ接合部13とを有する磁気抵抗効果素子10であって、前記ナノ接合部13で連結される自由層11と固定層12との間隔d1を、フェルミ長以下とすることにより、上記課題を解決する。
【選択図】 図1

Description

本発明は、磁気抵抗効果素子及び磁気ヘッドに関し、更に詳しくは、BMR(Ballistic Magneto Resistance)効果を有する磁気抵抗効果素子及び磁気ヘッドに関するものである。
巨大磁気抵抗効果(GMRという。Giant Magnetoresistance effect)は、強磁性層/非磁性層/強磁性層からなる積層構造の面内に電流を流した場合に発現する大きな磁気抵抗変化を示す現象である。このGMRを持つ磁気抵抗効果素子については、さらに大きな磁気抵抗変化率の発現を求めて活発に研究がなされてきた。現在まで、強磁性トンネル接合や電流を積層構造に対して垂直方向に流すCPP(Current Perpendicular to Plane)型MR素子が開発され、磁気センサーや磁気記録の再生素子として有望視されている。
磁気記録技術の分野においては、記録密度の向上により必然的に記録ビットの縮小化が進められ、その結果として十分な信号強度を得ることが難しくなりつつある。このため、より感度の高い磁気抵抗効果を示す材料が求められ、大きな磁気抵抗変化率を示す素子の開発が要請されている。
最近、100%以上の磁気抵抗効果を示すものとして、2つの針状のニッケル(Ni)を付き合わせた「磁気微小接点」が報告されている(例えば、非特許文献1を参照)。その磁気微小接点は、針状に加工した2つの強磁性体又は三角形状に加工した2つの強磁性体を角付き合わせて作製されている。さらにごく最近、2本の細いNiワイヤをT字に配置し、電着法を用いて接触部に微小コラムを成長させた磁気微小接点が開示されている(例えば、非特許文献2を参照)。こうした素子が発現する極めて高いMR比は、磁化の向きが反並行である2つの強磁性層間に形成された磁気微小接点に存在する磁区のスピントランスポートに起因するものと考えられている。こうした特性を有する磁気微小接点を利用した磁気抵抗効果素子は、その磁気微小接点で電子が不純物などの散乱を受けずに(ballistic に)通過していると考えられることから、Ballistic Magneto Resistance素子(BMR素子)と呼ばれている。
さらに、最近、こうした磁気微小接点を有する磁気抵抗効果素子についても報告されている。例えば、下記特許文献1には、第1の強磁性層/絶縁層/第2の強磁性層とからなり、絶縁層の所定位置に第1の強磁性層と第2の強磁性層とが接続される最大幅が20nm以下の開口を有する孔が設けられた磁気抵抗効果素子が報告されている。また、下記特許文献2には、狭窄部を介して相互に連結された2つの磁性層を有し、その狭窄部の幅が100nm程度の磁気抵抗効果素子が報告されている。
N. Garcia, M. Munoz, and Y. -W. Zhao, Physical Review Letters,vol.82, p2923 (1999) N.Garcia, G.G.Qian, and I.G.Sveliev, Appl.Phys.Lett.,vol.80,p1785(2002) 特開2003−204095号公報 特表平11−510911号公報
しかしながら、BMR素子の磁気ヘッドへの応用を考慮すると、媒体表面から漏洩する磁界に感応するフリー層(以下においては、自由層という。)の寸法は、数十ナノメータ程度に微細化される。例えば、記録密度1Tbits/inの場合、その寸法は40〜50nmである。極めて高いMR比を実現可能なBMR素子においては、磁気微小接点(以下、ナノ接合部という。)の磁区構造がBMR効果の鍵であり、より微細化が進むと微細な自由層の端面から強い減磁界が発生すると共に、耐熱的安定性も著しく低下するという問題がある。したがって、BMR素子においては、磁区構造制御と磁気的安定性を確保することが実用上は極めて重要な課題となる。
本発明は、上記のような種々の問題及び課題を解決するためになされたものであって、その第1の目的は、BMR効果を有する磁気ヘッド用の磁気抵抗効果素子において、自由層やナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子を提供することにある。本発明の第2の目的は、そうした磁気抵抗効果素子を用いた磁気ヘッドを提供することにある。
上記第1の目的を達成する本発明の磁気抵抗効果素子は、2つの強磁性層を含む自由層と、2つの強磁性層を含む固定層と、1つの強磁性層からなり前記自由層と前記固定層との間に設けられる1又は2以上のナノ接合部とを有し、前記ナノ接合部で連結される自由層と固定層との間隔が、フェルミ長以下であることを特徴とする。
この発明によれば、1又は2以上のナノ接合部で連結される自由層と固定層との間隔がフェルミ長以下であり、さらに自由層と固定層とがそれぞれ少なくとも2層の強磁性層で形成されているので、BMR効果により高感度の信号検出を行うことができると共に、その構成に由来する静磁エネルギーの低減作用と、端面に発現する静磁荷の発生を抑圧する作用とにより、磁区構造制御と磁気的安定性を確保することができる。
本発明の磁気抵抗効果素子においては、前記自由層に含まれる2つの強磁性層の間に非磁性層を含み、当該2つの強磁性層は、当該非磁性層を介して反並行に結合していることが好ましい。
この発明によれば、自由層に含まれる2つの強磁性層の間に非磁性層を含むと共にその2つの強磁性層が非磁性層を介して反並行に結合しているので、自由層に含まれる2つの強磁性層の磁化が安定する。その結果、層の側端面から磁界が漏洩しないので、素子全体の安定性を向上させることができる。
本発明の磁気抵抗効果素子においては、前記固定層に含まれる2つの強磁性層を、同一又は異なる強磁性材料で形成することができる。
本発明の磁気抵抗効果素子においては、前記ナノ接合部で結合される2つの強磁性層が、分極率0.5以上の強磁性材料で形成されることが好ましい。
本発明の磁気抵抗効果素子においては、前記固定層に含まれる2つの強磁性層上に、反強磁性層が形成されていることが好ましい。
この発明によれば、固定層に含まれる2つの強磁性層上に反強磁性層が形成されているので、強い交換結合が誘起され、固定層として作用する強磁性層の磁化の容易軸を固定することができる。その結果、固定層の磁化が強く固定されるので、素子全体の安定性を向上させることができる。
本発明の磁気抵抗効果素子においては、前記自由層に含まれる2つの強磁性層が強磁性結合又は反強磁性結合を呈することが好ましい。
この発明によれば、自由層に含まれる2つの強磁性層が強磁性結合又は反強磁性結合を呈する。前者の場合は、分極率の高い層と軟磁性の高い層とを積層することにより、高感度化と広い線形動作を確保することができるという効果がある。後者の場合は、静磁エネルギーを低減させることができるので、外乱に強く、安定動作を確保できるという効果がある。
本発明の磁気抵抗効果素子においては、前記固定層と自由層の間に設けられたナノ接合部以外の部位が非磁性層で形成され、当該非磁性層が酸化物又は窒化物等の絶縁材料で構成されていることが好ましい。
なお、本発明の磁気抵抗効果素子においては、自由層をなす強磁性層の磁化の向きと固定層をなす強磁性層の磁化の向きとのなす角度が90°又は180°に構成されていることが好ましい。これにより、感度が向上し、線形動作が容易となる。
上記第2の目的を達成する本発明の磁気ヘッドは、上述した本発明の磁気抵抗効果素子を有することに特徴を有する。
この発明によれば、自由層やナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子が用いられるので、磁気ヘッドの安定性も向上する。
以上説明したように、本発明の磁気抵抗効果素子によれば、磁区構造制御と磁気的安定性を確保することができるので、自由層やナノ接合部の磁区の安定性や感度の高い磁気抵抗効果素子を提供することができる。
また、本発明の磁気ヘッドによれば、安定性や感度の高い磁気抵抗効果素子が用いられるので、安定性に優れた高性能な磁気ヘッドを提供できる。
以下、本発明の磁気抵抗効果素子及びその磁気抵抗効果素子を備えた磁気ヘッドについて、図面を参照しつつ説明する。なお、以下に説明する実施形態により本発明の範囲は制限されない。
(磁気抵抗効果素子)
図1は、本発明の磁気抵抗効果素子の一例を示す積層方向の断面図である。
本発明の磁気抵抗効果素子10は、図1に示すように、2つの強磁性層1,2を含む自由層11と、2つの強磁性層5,6を含む固定層12と、1つの強磁性層3からなり前記自由層11と前記固定層12との間に設けられる1又は2以上のナノ接合部13とを有している。すなわち、本発明の磁気抵抗効果素子10は、1又は2以上のナノ接合部13を挟むようにそれぞれ2つの強磁性層2,5が配置され、更に言い換えれば、それぞれ2つの強磁性層2,5の間に1又は2以上のナノ接合部13が設けられている。
(ナノ接合部)
ナノ接合部13は、スピン分極率が0.5以上の強磁性材料で形成されている。そうした強磁性材料としては、各種の強磁性材料を用いることが可能であるが、Co(スピン分極率:0.8)、Fe(スピン分極率:0.5)、Ni(スピン分極率:0.8)、CoFe(スピン分極率:0.6〜0.8)、NiFe(スピン分極率:0.6〜0.8)、CoFeNi(スピン分極率:0.6〜0.8)等の強磁性金属群、CrO(スピン分極率:0.9〜1)等の強磁性半金属群、及びFe(スピン分極率:0.9〜1)等の強磁性酸化物群から選択される材料が好ましく用いられる。なお、特に好ましい強磁性材料としては、CoFe及びNiFeを挙げることができる。
図2は、図1の磁気抵抗効果素子を構成するナノ接合部13の拡大図である。本発明において、ナノ接合部13の幅方向(積層方向に直交する方向)の長さd1は、フェルミ長以下の長さになっている。
このナノ接合部13は、図1に示す磁気抵抗効果素子10を平面視した場合の面内方向(面を構成する2次元方向)に現れる形状として、円形、楕円形、角形(三角形、四角形、等々)又はそれらに近似する形状で形成される。そのため、上記の幅方向の長さd1とは、言い換えれば、図1に示す磁気抵抗効果素子10を平面視した場合における「ナノ接合部13の面内方向の最大長さd1」と規定できる。従って、本発明においては、その最大長さd1がフェルミ長以下の長さになっている。
ナノ接合部13の幅方向の長さd1であるフェルミ長は、材料固有の値であり、ナノ接合部13を形成する強磁性材料により異なるが、多くの強磁性材料は60nm〜100nm程度であるので、「フェルミ長以下」とは、「100nm以下」、乃至「60nm以下」と規定することができる。フェルミ長の具体例としては、例えばNiは約60nmであり、Coは約100nmである。
ナノ接合部13の幅方向の長さd1は、平均自由工程以下であることが更に好ましい。平均自由工程も材料固有の値であり、ナノ接合部13を形成する強磁性材料により異なるが、多くの強磁性材料は5nm〜15nm程度であるので、「平均自由工程以下」とは、「15nm以下」、乃至「5nm以下」と規定することができる。平均自由工程の具体例としては、例えばNiFeは約5nmであり、Coは約12nmである。
一方、ナノ接合部13で連結される自由層11と固定層12との間隔(すなわち、ナノ接合部13の積層方向(高さ方向)の長さd2のことであり、図1及び図2を正面視した場合においては上下方向の長さのことである。)も、上記の幅方向の長さd1と同様に、フェルミ長以下であることが好ましい。具体的には上記と同様に「100nm以下」、乃至「60nm以下」と規定することが好ましい。また、その長さd2が平均自由工程以下であることが更に好ましく、具体的には上記と同様に「15nm以下」、乃至「5nm以下」とすることができる。
ナノ接合部13の幅方向の長さd1及び積層方向の長さd2がフェルミ長を超えた寸法である場合は、磁化が反並行の場合にナノ接合部13の磁壁は非常に厚くなり、そのナノ接合部13を通過する電子はスピン情報を保つことが難しくなる。その結果として、磁化の方向の変化に起因した磁気抵抗効果が得られ難くなることがある。従って、本発明においては、その寸法がフェルミ長以下、特にスピン情報をよく保つことができる点で効果のある平均自由工程以下であることが望ましい。
ナノ接合部13の幅方向の長さd1及び積層方向の長さd2がフェルミ長以下になると、そのナノ接合部13が極薄磁壁の発生部となり、そのナノ接合部13を挟む態様で設けられている自由層11と固定層12との間の相対的な磁化の配置関係を変化させることができる。これにより自由層11と固定層12との間の電気抵抗が変化する。本発明の磁気抵抗効果素子の場合、基本的に、磁場印加方向を変えても電気抵抗が磁場により減少する磁場領域が存在することから、ここで発生する磁気抵抗効果は、ナノ接合部13の部分で形成された磁壁により発生する磁気抵抗効果であるといえる。ここで、ナノ接合部13の磁壁は、磁化方向を異にする2つの部分(ナノ接合部13を挟む2つの強磁性層2,5)の遷移領域として作用する。そして、本発明においては、磁化方向及び印加磁場の大きさに応じて50%以上の大きな磁気抵抗効果が発生する。
すなわち、本発明の磁気抵抗効果素子10においては、自由層11と固定層12との間に設けられるナノ接合部13の幅方向の長さd1及び積層方向の長さd2がフェルミ長以下であり、さらに自由層11と固定層12とがそれぞれ少なくとも2層の強磁性層で形成されているので、BMR効果により高感度の信号検出を行うことができると共に、その構成に由来する静磁エネルギーの低減作用と、端面に発現する静磁荷の発生を抑圧する作用とにより、磁区構造制御と磁気的安定性を確保することができる。
こうしたナノ接合部13は、ナノリソグラフィマイクロファブリケーション等の微細加工手段により精度よく形成される。このナノ接合部13を備えた本発明の磁気抵抗効果素子は、大きな磁気抵抗変化率を示すので、そのナノ接合部13において、電子は不純物などの散乱を受けずに(ballistic に)通過していると考えられる。なお、磁気抵抗変化率とは、MR比(△R/R)のことであり、磁界強度が充分強いときの電気抵抗Rと、印加磁場を変化させたときの電気抵抗変化ΔRとの比で定義されている。
ナノ接合部13の周囲、すなわち、それぞれ2つの強磁性層2,5の間に設けられた1又は2以上のナノ接合部13以外の部位は、非磁性層4で形成されている。その非磁性層4は、例えば酸化アルミニウムや酸化ケイ素などの酸化物や、窒化ケイ素などの窒化物等の絶縁材料で形成される。その非磁性層の積層方向の長さは、上述したナノ接合部13の積層方向の長さd2と同じ長さで形成される。
次に、ナノ接合部13で結合される2つの強磁性層2,5の材料について説明する。
1又は2以上のナノ接合部13で結合される2つの強磁性層2,5とは、自由層11のナノ接合部側に配置される強磁性層2と、固定層12のナノ接合部側に配置される強磁性層5のことである。本発明においては、これらの強磁性層2,5がスピン分極率が0.5以上の強磁性材料で形成されている。そうした強磁性材料としては、各種の強磁性材料を用いることが可能であるが、上記のナノ接合部13と同様の材料が好ましく用いられ、例えば、Co(スピン分極率:0.8)、Fe(スピン分極率:0.5)、Ni(スピン分極率:0.8)、CoFe(スピン分極率:0.6〜0.8)、NiFe(スピン分極率:0.6〜0.8)、CoFeNi(スピン分極率:0.6〜0.8)等の強磁性金属群、CrO(スピン分極率:0.9〜1)等の強磁性半金属群、及びFe(スピン分極率:0.9〜1)等の強磁性酸化物群から選択される材料が好ましく用いられる。なお、特に好ましい強磁性材料としては、CoFe及びNiFeを挙げることができる。
ナノ接合部13を形成する材料と、そのナノ接合部13に隣接する強磁性層2,5を形成する材料とが同じ場合には、単一材料で成膜とエッチングを行うことや、グラニュラー構造の成膜技術を用いることができるので、作製が比較的容易になる。
(自由層)
自由層(フリー層とも呼ばれる。)11は、媒体の磁化転移領域から発生する磁界に感応して磁化が回転又は反転する作用を有する層であり、その容易軸の方向を媒体と平行に規制しておくことが好ましい。この自由層11は、2つの強磁性層1,2で形成される層であり、それらの強磁性層1,2同士は、強磁性結合状態又は反強磁性結合状態で設けられている。
図3は、本発明の磁気抵抗効果素子を構成する2つの強磁性層からなる自由層の結合状態の説明図である。図3(a)は、2つの強磁性層1a,2aが強磁性結合を呈する態様であり、図3(b)は、2つの強磁性層1b,2bが反強磁性結合を呈する態様である。
図3(a)に示すように、2つの強磁性層1a,2aが強磁性結合を呈する場合は、ナノ接合部13から離れた位置に配置される強磁性層1aは分極率の高い材料で形成され、ナノ接合部13に隣接して設けられ強磁性層2aは磁歪の小さい軟磁性材料で形成される。こうした組合せで形成することにより、高感度と広い線形動作を確保することができるという効果がある。分極率の高い材料としては、前記したスピン分極率が0.5以上の各種の強磁性材料を用いることが可能であるが、CoFe、Co等の材料が特に好ましく、通常0.5〜5nm程度の厚さで形成される。また、磁歪の小さい軟磁性材料としては、Ni,NiFeが特に好ましく、通常0.5〜5nm程度の厚さで形成される。
一方、図3(b)に示すように、2つの強磁性層1b,2bが反強磁性結合を呈する場合は、2つの強磁性層1b,2bの間に非磁性層9が設けられる。こうした構造により、2つの強磁性層1b,2bは、非磁性層9を介して反並行に結合する。そのため、自由層11に含まれる2つの強磁性層1b,2bの磁化が安定するので、層の側端面から磁界が漏洩せず、素子全体の安定性を向上させることができる。すなわち、静磁エネルギーを低減させることができるので、外乱に強く、安定動作を確保できるという効果がある。この場合の非磁性層9は、2つの強磁性層1b,2bの交換結合の度合いを調整する層であり、例えば、Ru,Rh,Ir,Cu,Ag,Au及びそれらの合金からなる群から選択される材料で形成されている。こうした非磁性層9の形成材料は、後述する固定層12に形成されている非磁性層8と同じ材料とすることができるので、成膜時においては便利である。
反強磁性結合を呈する場合の強磁性層1b,2bとしては、CoFe,NiFe等を挙げることができ、通常0.5〜5nm程度の厚さで形成される。これらの強磁性層1,2や非磁性層9は、スパッタリングや蒸着等の方法で成膜される。
(固定層)
固定層(ピン層ともいう。)12は、2つの強磁性層5,6で形成される層であり、それらの強磁性層5,6同士は、非磁性層8を介して形成される。
固定層12を構成する強磁性層5,6としては、前記したスピン分極率が0.5以上の各種の強磁性材料を用いることが可能であるが、CoFe、Co等の材料が特に好ましく用いられる。この場合において、2つの強磁性層5,6は、同一の材料で形成しても、異なる材料で形成してもよい。また、その厚さも、同じであっても異なっていてもよいが、通常2〜10nm程度の厚さで形成される。これらの材料が同じであるか異なるものであるかについては、成膜プロセスについて若干影響するが、特に問題にはならない。
強磁性層同士の間に挟まれる非磁性層8は、Ru,Rh,Ir,Cu,Ag,Au及びそれらの合金からなる群から選択される材料で形成され、通常0.5〜3nm程度の厚さで形成される。
非磁性層8により仕切られる2つの強磁性層5,6は、磁化の容易軸が反並行に結合している。こうした非磁性層8の作用により、2つの強磁性層5,6の磁化が安定する。その結果、層の側端面から磁界が漏洩しないので、素子全体の安定性を向上させることができる。これらの強磁性層5,6や非磁性層8は、スパッタリングや蒸着等の方法で成膜される。
次に、反強磁性層7について説明する。
本発明においては、2つの強磁性層5,6からなる固定層12上であって、その強磁性層6に接して反強磁性層7を設けることが好ましい。反強磁性層7の形成材料としては、PtMn,IrMn,PtPdMn及びFeMnの群から選択されるいずれか1の材料が好ましく、通常2〜10nm程度の厚さで形成される。こうした反強磁性層を設けたことにより、強い交換結合が誘起され、固定層12として作用する強磁性層の磁化の容易軸を固定することができる。その結果、固定層12の磁化が強く固定されるので、素子全体の安定性を向上させることができる。
以上、磁気抵抗効果素子について図1及び図2に基づいて説明したが、本発明の磁気抵抗効果素子(10a;10b)は、図4の(a)(b)に示すように、自由層(11a;11b)をなす強磁性層(1a,2a;1b,2b)と、固定層(12a;12b)をなす強磁性層(5,6)とが上下反対に構成されていてもよい。このように構成することにより、得られた磁気抵抗効果素子の感度が向上し、磁区制御が容易となる。
本発明の磁気抵抗効果素子においては、自由層をなす強磁性層及び固定層をなす強磁性層は、それら自身が電極として作用し、あるいはそれらに接続された電極が別途設けられる。これら電極間に電流を通電した場合に得られる自由層及び固定層の間の電気抵抗は、それらの相対的な磁化配置により変化する。
さらに、本発明の磁気抵抗効果素子において、ナノ接合部13を挟む2つの強磁性層2,5は、磁区制御が容易なように層状の平面を有するので、磁化分布状態を揃えることができ、従って、微小なナノ接合部13を介して接続されている相対する強磁性層2,5との間の磁壁幅を急峻に保つことが可能となり、大きな磁気抵抗変化率が得られる。ただし、2つの強磁性層2,5は、必ずしも厳密に平坦な層である必要はなく、多少の凹凸面又は湾曲面を有していてもよい。またさらに、本発明においては、1又は2以上のナノ接合部13、すなわち単一の又は複数のナノ接合部13が形成されているような態様としてもよい。2以上のナノ接合部13を自由層及び固定層の間に設けた場合には、MR値が若干減少するという難点があるものの、単一のナノ接合部13を有する場合と比較して素子ごとのMR値のバラツキを低減でき、安定したMR特性を再現することが容易となる。
なお、本発明の磁気抵抗効果素子においては、自由層をなす強磁性層の磁化の向きと固定層をなす強磁性層の磁化の向きとのなす角度が90°又は180°に構成されていることが好ましい。これにより、感度が向上し、線形動作が容易となる。
(磁気ヘッド)
本発明の磁気ヘッドは、上述した磁気抵抗効果素子を用いることで50%以上の磁気抵抗変化率を発生することができるため、大きな再生感度をもっている。
図5は、本発明の磁気抵抗効果素子を磁気再生素子として用いる磁気ヘッドの一例を示す模式図である。図5に示す磁気ヘッド50は、磁気抵抗効果素子10の膜面を記録媒体56に対して垂直に配置している。ここで、ナノ接合部13は、磁気抵抗効果素子10の中心から記録媒体56に近づく方向に配置されている。記録媒体56からの信号磁界は、記録媒体56からの距離が短くなるほど大きくなるため、そうした位置にナノ接合部13を配置するように構成された磁気ヘッド50は、磁化を感受する自由層11の磁界検出効率が大きくなるという効果がある。
図5では、本発明の磁気抵抗効果素子10のうち、自由層11、固定層12及びその間に設けられるナノ接合部13を主な構成として便宜的に表している。この図5において、符号51と符号52は、磁気抵抗効果素子10に設けられた電極を示し、符号53と符号54はシールド部材を表し、符号55はセンス電流を表している。また、図5においては、記録媒体として水平磁化膜を例示したが、垂直磁化膜であってもよい。
図6は、図5に表した磁気ヘッド50の構造を記録媒体56の側から表した断面構造の一例を示す模式図である。図6に示すように、磁気ヘッド50は、自由層11と、固定層12と、両層に挟まれたナノ接合部13とを少なくとも有する磁気抵抗効果素子10が設けられている。ここで、固定層12に隣接するように反強磁性層7が設けられ、磁気抵抗効果素子10の両側には電極51,52が設けられている。また、図6を正面視した場合の左右には、一対の永久磁石層57を設けてもよい。
例えば、図6は、記録媒体の側から表した磁気抵抗効果素子10の構造であり、図6の下方のシールド部材53から上方のシールド部材54に向かって、電極51、自由層11、ナノ接合部13と非磁性層4、固定層12、反強磁性層7、及び電極52、の順で配置されている。一対の永久磁石層57としては、CoPtが配置されている。なお、符号58は、絶縁層である。
この図6に示す磁気抵抗効果素子10において、その幅は、20〜100nmの範囲であり、各層の膜厚は、使用する記録密度や要求感度に応じて、0.5〜20nmの範囲で最適化され、又、個数が1又は2以上のナノ接合部5は、2〜20nmの寸法で形成される。
以上のように、磁気ヘッドに装着された本発明の磁気抵抗効果素子は、例えば水平磁化膜からなる記録媒体に対しては、その記録媒体に対向配置された自由層の容易軸の方向がその記録媒体の磁化方向と平行となり、その容易軸の磁化は記録媒体の磁化転移領域から発生する磁界に敏感に感応して回転する。その結果、ナノ接合部を流れるセンス電流が変化し、記録媒体の漏れ磁場を極めて感度よく読みとることができる。本発明の磁気抵抗効果素子は、50%以上の磁気抵抗効果を示し、センス電流を感度よく検出することができるので、感度のロスが少ないと共に、安定性に優れた磁気ヘッドとすることができる。
本発明の磁気抵抗効果素子の一例を示す断面図である。 図1のナノ接合部の拡大断面図である。 本発明の磁気抵抗効果素子を構成する自由層の一例を示す断面図である。 本発明の磁気抵抗効果素子の他の一例を示す断面図である。 本発明の磁気抵抗効果素子を磁気再生素子として用いる磁気ヘッドの一例を示す模式図である。 本発明の磁気ヘッドの他の一例を示す構成図である。
符号の説明
1,2,3,5,6 強磁性層
4、8,9 非磁性層
7 反強磁性層
10 磁気抵抗効果素子
11 自由層
12 固定層
13 ナノ接合部
50 磁気ヘッド
51,52 電極
53,54 シールド部材
55 センス電流
56 記録媒体
57 永久磁石層
58 絶縁層

Claims (8)

  1. 2つの強磁性層を含む自由層と、2つの強磁性層を含む固定層と、1つの強磁性層からなり前記自由層と前記固定層との間に設けられる1又は2以上のナノ接合部とを有し、前記ナノ接合部で連結される自由層と固定層との間隔がフェルミ長以下であることを特徴とする磁気抵抗効果素子。
  2. 前記自由層に含まれる2つの強磁性層の間に非磁性層を含み、当該2つの強磁性層が当該非磁性層を介して反並行に結合していることを特徴とする請求項1に記載の磁気抵抗効果素子。
  3. 前記固定層に含まれる2つの強磁性層が、同一又は異なる強磁性材料で形成されていることを特徴とする請求項1又は2に記載の磁気抵抗効果素子。
  4. 前記ナノ接合部で結合される2つの強磁性層が、分極率0.5以上の強磁性材料で形成されていることを特徴とする請求項1〜3のいずれか1項に記載の磁気抵抗効果素子。
  5. 前記固定層に含まれる2つの強磁性層上に、反強磁性層が形成されていることを特徴とする請求項1〜4のいずれか1項に記載の磁気抵抗効果素子。
  6. 前記自由層に含まれる2つの強磁性層が強磁性結合又は反強磁性結合を呈することを特徴とする請求項1〜5のいずれか1項に記載の磁気抵抗効果素子。
  7. 前記固定層と自由層の間に設けられたナノ接合部以外の部位が非磁性層で形成され、当該非磁性層が酸化物又は窒化物等の絶縁材料で構成されていることを特徴とする請求項1〜6のいずれか1項に記載の磁気抵抗効果素子。
  8. 請求項1〜7のいずれか1項に記載の磁気抵抗効果素子を有することを特徴とする磁気ヘッド。
JP2003342453A 2003-09-30 2003-09-30 磁気抵抗効果素子及び磁気ヘッド Pending JP2005109239A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003342453A JP2005109239A (ja) 2003-09-30 2003-09-30 磁気抵抗効果素子及び磁気ヘッド
US10/882,364 US7167347B2 (en) 2003-09-30 2004-07-02 Magnetoresistance effect element and magnetic head with nano-contact portion not more than a fermi length placed between dual layers
US11/657,504 US7280323B2 (en) 2003-09-30 2007-01-23 Magnetoresistance effect element and magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003342453A JP2005109239A (ja) 2003-09-30 2003-09-30 磁気抵抗効果素子及び磁気ヘッド

Publications (2)

Publication Number Publication Date
JP2005109239A true JP2005109239A (ja) 2005-04-21
JP2005109239A5 JP2005109239A5 (ja) 2006-11-16

Family

ID=34373497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003342453A Pending JP2005109239A (ja) 2003-09-30 2003-09-30 磁気抵抗効果素子及び磁気ヘッド

Country Status (2)

Country Link
US (2) US7167347B2 (ja)
JP (1) JP2005109239A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514209B2 (ja) * 2009-07-31 2014-06-04 株式会社東芝 磁気抵抗効果素子

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005109243A (ja) * 2003-09-30 2005-04-21 Tdk Corp 磁気抵抗効果素子及び磁気ヘッド
KR100648143B1 (ko) * 2004-11-03 2006-11-24 한국과학기술연구원 전류 인가 자기 저항 소자
US7333304B2 (en) * 2004-11-04 2008-02-19 Hitachi Global Storage Technologies Netherlands B.V. CPP sensor having hard bias stabilization placed at back edge of the stripe
US7583482B2 (en) * 2004-11-30 2009-09-01 Tdk Corporation Magnetoresistive element and magnetoresistive device having a free layer stabilized by an in-stack bias
JP2007220850A (ja) * 2006-02-16 2007-08-30 Fujitsu Ltd 積層磁性膜および磁気ヘッド
JP2007299880A (ja) 2006-04-28 2007-11-15 Toshiba Corp 磁気抵抗効果素子,および磁気抵抗効果素子の製造方法
JP4388093B2 (ja) * 2007-03-27 2009-12-24 株式会社東芝 磁気抵抗効果素子、磁気ヘッド、磁気記録再生装置
US7978442B2 (en) * 2007-10-03 2011-07-12 Tdk Corporation CPP device with a plurality of metal oxide templates in a confining current path (CCP) spacer
EP2209143A4 (en) * 2007-10-15 2011-08-17 Fuji Electric Holdings SPIN VALVE ELEMENT
JP5039006B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
JP5039007B2 (ja) 2008-09-26 2012-10-03 株式会社東芝 磁気抵抗効果素子の製造方法、磁気抵抗効果素子、磁気ヘッドアセンブリ及び磁気記録再生装置
CN105161614A (zh) * 2015-09-07 2015-12-16 华中科技大学 一种磁隧道结纳米单元结构及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225179B1 (ko) * 1992-11-30 1999-10-15 니시무로 타이죠 박막 자기 헤드 및 자기 저항 효과형 헤드
JP3293437B2 (ja) * 1995-12-19 2002-06-17 松下電器産業株式会社 磁気抵抗効果素子、磁気抵抗効果型ヘッド及びメモリー素子
US6590750B2 (en) * 1996-03-18 2003-07-08 International Business Machines Corporation Limiting magnetoresistive electrical interaction to a preferred portion of a magnetic region in magnetic devices
JP3834700B2 (ja) * 1996-05-28 2006-10-18 株式会社島津製作所 磁気抵抗効果素子、磁気抵抗効果型ヘッド、メモリー素子およびその作製法
JPH11510911A (ja) 1996-06-12 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 磁気抵抗式磁界センサ
US6052262A (en) * 1997-03-14 2000-04-18 Kabushiki Kaisha Toshiba Magneto-resistance effect element and magnetic head
JP2002092829A (ja) * 2000-09-21 2002-03-29 Fujitsu Ltd 磁気抵抗センサ及び磁気抵抗ヘッド
US6937446B2 (en) * 2000-10-20 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head and magnetic recording and/or reproducing system
JP2002314168A (ja) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp構造電磁変換素子およびその製造方法
US6954342B2 (en) * 2001-04-30 2005-10-11 Hitachi Global Storage Technologies Netherlands B.V. Underlayer for high amplitude spin valve sensors
US6937447B2 (en) 2001-09-19 2005-08-30 Kabushiki Kaisha Toshiba Magnetoresistance effect element, its manufacturing method, magnetic reproducing element and magnetic memory
JP3967237B2 (ja) 2001-09-19 2007-08-29 株式会社東芝 磁気抵抗効果素子及びその製造方法、磁気再生素子並びに磁気メモリ
JP2003218425A (ja) * 2002-01-18 2003-07-31 Hitachi Ltd 有限電圧下で高磁気抵抗率を示す強磁性トンネル接合素子、および、それを用いた強磁気抵抗効果型ヘッド、磁気ヘッドスライダ、ならびに磁気ディスク装置
US6865062B2 (en) * 2002-03-21 2005-03-08 International Business Machines Corporation Spin valve sensor with exchange biased free layer and antiparallel (AP) pinned layer pinned without a pinning layer
US6751072B2 (en) * 2002-03-21 2004-06-15 Hitachi Global Storage Technologies Netherlands B.V. High magnetoresistance spin valve sensor with self-pinned antiparallel (AP) pinned layer structure
JP3749873B2 (ja) * 2002-03-28 2006-03-01 株式会社東芝 磁気抵抗効果素子、磁気ヘッド及び磁気再生装置
US7218484B2 (en) * 2002-09-11 2007-05-15 Kabushiki Kaisha Toshiba Magnetoresistance effect element, magnetic head, and magnetic reproducing apparatus
US6933042B2 (en) * 2003-07-30 2005-08-23 Hitachi Global Storage Technologies Netherlands B.V. Ballistic GMR structure using nanoconstruction in self pinned layers
US6943040B2 (en) * 2003-08-28 2005-09-13 Headway Technologes, Inc. Magnetic random access memory designs with controlled magnetic switching mechanism by magnetostatic coupling
JP2005109263A (ja) * 2003-09-30 2005-04-21 Toshiba Corp 磁性体素子及磁気メモリ
US7180714B2 (en) * 2003-09-30 2007-02-20 Hitachi Global Storage Technolgies Netherlands B.V. Apparatus for providing a ballistic magnetoresistive sensor in a current perpendicular-to-plane mode
JP2005109243A (ja) * 2003-09-30 2005-04-21 Tdk Corp 磁気抵抗効果素子及び磁気ヘッド
JP2005109240A (ja) * 2003-09-30 2005-04-21 Tdk Corp 磁気抵抗効果素子及び磁気ヘッド
US20050136600A1 (en) * 2003-12-22 2005-06-23 Yiming Huai Magnetic elements with ballistic magnetoresistance utilizing spin-transfer and an MRAM device using such magnetic elements
JP2005191101A (ja) * 2003-12-24 2005-07-14 Tdk Corp 磁気抵抗効果素子及び磁気ヘッド
US7110287B2 (en) * 2004-02-13 2006-09-19 Grandis, Inc. Method and system for providing heat assisted switching of a magnetic element utilizing spin transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5514209B2 (ja) * 2009-07-31 2014-06-04 株式会社東芝 磁気抵抗効果素子

Also Published As

Publication number Publication date
US7280323B2 (en) 2007-10-09
US7167347B2 (en) 2007-01-23
US20050068690A1 (en) 2005-03-31
US20070121253A1 (en) 2007-05-31

Similar Documents

Publication Publication Date Title
JP5068939B2 (ja) 磁気トンネル接合型磁気ランダムアクセスメモリセルおよびその製造方法、ならびに磁気トンネル接合型磁気ランダムアクセスメモリセルアレイおよびその製造方法
JP3575683B2 (ja) 多素子型磁気抵抗素子
US7280323B2 (en) Magnetoresistance effect element and magnetic head
JP3849460B2 (ja) 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、および磁気抵抗効果型磁気ヘッド
JP2002359412A (ja) 磁気抵抗効果素子、磁気抵抗効果型磁気センサ、磁気抵抗効果型磁気ヘッド、および磁気メモリ
US20070188943A1 (en) Magnetoresistance Effect Element, Method of Manufacturing Same and Magnetic Head Utilizing Same
JP2004185676A (ja) トンネル磁気抵抗効果ヘッドおよび磁気ディスク装置
JP2007531180A (ja) 低磁歪を有する磁気抵抗ヘッドを安定化させる積層フリー層
JP2001331913A (ja) 磁気トンネル接合型読み取りヘッド、その製造方法および磁場検出装置
JP2005339784A (ja) Cpp−gmr再生ヘッドおよびその製造方法、ならびにcpp−gmr素子
JP2007172824A (ja) 磁気再生ヘッドおよびその製造方法
JP2007531182A (ja) 膜面垂直通電モード磁気抵抗ヘッド用安定化器とその製造方法
JP2005109241A (ja) 磁気抵抗効果素子及びその製造方法並びに磁気ヘッド
US20070035888A1 (en) Stabilizer for magnetoresistive head and method of manufacture
JP2007531179A (ja) 安定化スピンバルブヘッドとその製造方法
JP2004289100A (ja) Cpp型巨大磁気抵抗素子及びそれを用いた磁気部品並びに磁気装置
JP2005191101A (ja) 磁気抵抗効果素子及び磁気ヘッド
JP2005109240A (ja) 磁気抵抗効果素子及び磁気ヘッド
US20080247097A1 (en) Magnetoresistance effect element and magnetic head
JP4469570B2 (ja) 磁気抵抗効果素子、磁気ヘッドおよび磁気記録再生装置
JP2001134910A (ja) 磁気抵抗センサ及び薄膜磁気ヘッド
US9070389B2 (en) Magnetic recording and reproducing apparatus
JP2003077107A (ja) 磁気抵抗効果型磁気ヘッド
JP2005108416A (ja) 磁気ヘッド
JP3673250B2 (ja) 磁気抵抗効果素子および再生ヘッド

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060927

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090512