JP2005003669A - 光電式エンコーダ - Google Patents

光電式エンコーダ Download PDF

Info

Publication number
JP2005003669A
JP2005003669A JP2004126994A JP2004126994A JP2005003669A JP 2005003669 A JP2005003669 A JP 2005003669A JP 2004126994 A JP2004126994 A JP 2004126994A JP 2004126994 A JP2004126994 A JP 2004126994A JP 2005003669 A JP2005003669 A JP 2005003669A
Authority
JP
Japan
Prior art keywords
light receiving
light
array
measurement axis
photoelectric encoder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004126994A
Other languages
English (en)
Other versions
JP4476682B2 (ja
Inventor
Kenji Kojima
健司 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Priority to JP2004126994A priority Critical patent/JP4476682B2/ja
Priority to US10/844,439 priority patent/US7098446B2/en
Priority to CNB2004100432980A priority patent/CN100351613C/zh
Priority to DE602004015361T priority patent/DE602004015361D1/de
Priority to EP04011693A priority patent/EP1477776B1/en
Publication of JP2005003669A publication Critical patent/JP2005003669A/ja
Application granted granted Critical
Publication of JP4476682B2 publication Critical patent/JP4476682B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation
    • G01D5/34715Scale reading or illumination devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/34707Scales; Discs, e.g. fixation, fabrication, compensation

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Transform (AREA)

Abstract

【課題】 平均化効果を高めること、受光チップを構成する複数のフォトダイオードの接合容量の合計を小さくすること、の両立が可能な光電式エンコーダを提供する。
【解決手段】 光電式エンコーダの受光チップ15には、複数のフォトダイオード23が測定軸Xに沿ってアレイ状に配置されている。アレイの端部31に配置されているPD23のピッチPおよび受光面25の幅Wは、それぞれ、アレイの中央部29に配置されているそれのピッチPおよびそれの幅Wよりも小さくされている。
【選択図】 図3

Description

本発明は、精密測定に使用される光電式エンコーダに関する。
従来から直線変位や角度変位などの精密な測定には、光電式エンコーダ(以下、「エンコーダ」という場合もある。)が利用されている。エンコーダは、三次元測定機や画像測定機などに搭載される。エンコーダは、光源と、光学格子を含むスケールと、光源と一緒にスケールに対して相対移動可能に配置された受光部と、により構成される。受光部は、例えば、四つの受光素子(例えばフォトダイオード)と、各受光素子の受光面に対応して配置された互いに位相の異なる四つのインデックス格子と、を含む。
エンコーダの動作を簡単に説明する。光源を受光部と一緒にスケールに対して相対移動させながら、光源からの光を、スケールの光学格子を含む光学系を介して受光部の四つのインデックス格子に照射する。つまり、受光部のインデックス格子をスケールの光学格子に対して相対移動させながら、光源からの光をスケールの光学格子に照射して生成された干渉縞(明暗パターン)を、受光部のインデックス格子に照射するのである。これにより、光の強弱が正弦波状に変化する四つの光信号が生成される。これらの光信号は互いに位相が異なっている。これらの光信号は各位相に対応する受光素子で受光され、光電変換されて発生した電気信号を利用して直線などの変位量が測定される。
位相の異なる四つの光信号とは、A相(0度)の光信号、A相より90度だけ位相がずれたB相(90度)の光信号、A相より180度だけ位相がずれたAA相(180度)の光信号およびA相より270度だけ位相がずれたBB相(270度)の光信号のことである。A相およびB相を利用するのは、先に検出されるのがA相かB相かによって、受光部の相対移動の方向を判断するためである。また、A相やB相の光信号以外にこれらを反転させた、AA相やBB相の光信号を利用するのは、(1)A相やB相の光信号に含まれる直流成分の除去、(2)光信号の信頼性の確保及び(3)高速追従性の確保のためである。
位相の異なる複数の光信号に対応した数の受光素子があれば、原理的に測定が可能である。したがって、位相の異なる四つの光信号の場合、受光素子が四つあればよい。この第1のタイプのエンコーダは、例えば、特許文献1に開示されている。
ところで、光源の光強度分布やスケール面の汚れ等が原因で、光量にバラツキが生じることがある。上記タイプによれば、各位相の光信号はそれぞれ一箇所で検出されるので、光量のバラツキの影響を受けやすい。例えば、A相用の受光素子の配置場所が他の受光素子の配置場所に比べて照射される光の強度が弱い場合、A相の出力が弱くなるため、測定精度が低下する。
そこで、受光素子を細かく分割してアレイ状に並べることにより、インデックス格子の機能を兼用させ、更にA相用の受光素子、B相用の受光素子、AA相用の受光素子、BB相用の受光素子を一つのセットとし、エンコーダの測定軸方向に沿って、複数のセットをアレイ状に配列させた第2のタイプのエンコーダがある(例えば特許文献2)。これによれば、各位相の光信号が検出される場所が広い範囲に分散されるため、光量のバラツキの影響を小さくできる(以下、これを「平均化効果」という。)。
第2のタイプのエンコーダに備えられる受光素子は、測定軸方向に等ピッチで配置されている。これに対して、第3のタイプのエンコーダに備えられる受光素子は、測定軸方向及びこれと直交する方向に、それぞれ等ピッチで配置されている(例えば特許文献3)。
国際公開第01/31292号のパンフレット(明細書第5頁第19行〜第6頁第7行、Fig.5) 特開平7−151565号公報(段落[0014]、図4) 特表2004−501356号公報(Fig.4)
平均化効果を高めることは、測定精度を向上させるために重要である。しかし、単に平均化効果を高めると、エンコーダの応答速度が低下する問題が生じる。これについて、詳しく説明する。
フォトダイオードのような受光素子は、n型半導体層とp型半導体層とを接合した構成を有する。この接合の容量が大きくなるとエンコーダの応答速度が下がる。したがって、接合容量の増加はエンコーダの性能に悪影響を与える。受光素子の接合容量は、受光面の面積や受光面の周囲(エッジ)の長さと相関関係にある。つまり、面積や周囲の長さが大きくなると接合容量が増加し、面積や周囲の長さが小さくなると接合容量が減少するのである。
上記第2のタイプや第3のタイプでは、受光面の面積の合計が第1のタイプのそれと同じでも、第1のタイプよりも受光素子の数が多くなるので、受光面の周囲の長さの合計が大きくなる。したがって、第2のタイプや第3のタイプは、第1のタイプよりも接合容量が大きくなるため、エンコーダの応答速度が下がる。以上のように、従来の技術では、平均化効果を高めようとすると、受光部を構成する複数の受光素子の接合容量の合計が増え、逆にこの合計を低下させようとすると平均化効果が小さくなるのである。
より精密な測定のためにスケールの光学格子が狭ピッチ化すると、これに対応して受光素子も狭ピッチ化しなければならない。したがって、受光面の幅を小さくした受光素子を多数配置しなければならない。光電変換により測定に必要な強さの電気信号を得るためには、受光面の面積の合計が所定量必要となる。したがって、受光素子が狭ピッチ化すると受光素子の数が増加するので、受光面の周囲の長さの合計も大きくなり、これに伴って複数の受光素子の接合容量の合計が増大する。よって、スケールの光学格子が狭ピッチ化すると、エンコーダの応答速度の低下の問題を無視できなくなる。
本発明は、かかる問題点に鑑みてなされたもので、平均化効果を高めること、複数の受光素子の接合容量の合計を小さくすること、の両立が可能な光電式エンコーダを提供することを目的とする。
本発明に係る光電式エンコーダは、光源と、前記光源からの光が照射される光学格子を含むスケールと、前記スケールに対して測定軸方向に相対移動可能に配置され、前記光学格子に照射された光を基にして生成された光信号が入射する受光面をそれぞれ有すると共に位相の異なる複数の光信号を検出する複数の受光素子と、を備え、前記複数の受光素子はアレイ状に配置され、アレイの端部に配置された受光素子のサイズは、前記アレイの中央部に配置された受光素子のサイズに比べて小さくされている、ことを特徴とする。
本発明に係る光電式エンコーダによれば、アレイの端部において受光素子のサイズを比較的小さくすることにより、光源の光強度分布が原因となる光強度の変化に対する平均化効果をアレイの端部側において高めることができる。一方、アレイの中央部において受光素子のサイズを比較的大きくしているので、受光素子の数の増加を抑制でき、これにより、複数の受光素子の接合容量の合計が増大するのを防ぐことができる。
本発明に係る光電式エンコーダにおいて、前記複数の受光素子は、前記測定軸に沿って配置されており、前記受光面の前記測定軸方向のサイズは、前記アレイの端部に配置された受光素子のほうが前記アレイの中央部に配置された受光素子よりも小さくされている、ようにすることができる。
これによれば、測定軸に沿って配置された複数の受光素子において、アレイの端部に配置された受光素子の測定軸方向のサイズを比較的小さくできる。よって、測定軸方向におけるアレイの端部側で、受光素子のサイズをより小さくできるので、光源の光強度分布が原因となる光強度の変化に対する平均化効果を、端部側でさらに高めることができる。また、アレイの中央部に配置された受光素子の測定軸方向のサイズを比較的大きくできる。したがって、受光面の面積の合計値を必要な量だけ確保するために受光素子の数を増やす必要がなくなるので、複数の受光素子の接合容量の合計の増加を抑制できる。
本発明に係る光電式エンコーダにおいて、前記複数の受光素子を含む受光チップを備え、このチップは、さらに、前記受光面を部分的に覆う遮光部を有するインデックス格子を含むようにすることができる。
これによれば、アレイの中央部と端部において受光面のサイズが異なっていても、各受光素子は、位相の異なる複数の光信号の中で割り当てられた位相の光信号を受光することができる。
本発明に係る光電式エンコーダにおいて、受光チップが、導電性の前記遮光部の下でこの遮光部に接続されると共に前記受光面とコンタクトしているコンタクト部と、前記遮光部と接続された配線と、を含むようにすることができる。
これによれば、インデックス格子の遮光部が受光素子に接続される配線を兼ねることにより、受光面の有効受光面積の減少を防止できる。
本発明に係る光電式エンコーダにおいて、前記複数の受光素子は、前記測定軸と直交する方向に沿って配置されており、前記受光面の前記測定軸と直交する方向のサイズは、前記アレイの端部に配置された受光素子のほうが前記アレイの中央部に配置された受光素子よりも小さくされている、ようにすることができる。
これによれば、測定軸方向と直交する方向に沿って配置された複数の受光素子について、上記測定軸方向に沿って配置された複数の受光素子の場合と同様の理由により、アレイの端部側での光強度の変化に対する平均化効果をさらに高めることができると共に複数の受光素子の接合容量の合計の増加を抑制できる。
本発明に係る光電式エンコーダにおいて、前記複数の受光素子により、セット毎に受光素子のサイズが異なる複数のセットが構成されており、各セットを構成する受光素子は、同じピッチで連続して配置されていると共に位相の異なる複数の光信号を検出する受光素子を含むようにすることができる。
これによれば、セット内での受光素子のサイズを一定としてセット内でのバランスをとりつつアレイの端部が中央部に比べてピッチが小さくなるように受光素子を配置できる。
本発明に係る光電式エンコーダにおいて、前記複数のセットのうち、前記アレイの端部に配置されたセットと、前記アレイの中央部に配置されたセットと、の間にあるアレイの中間部に配置されたセットにおいて、受光素子のサイズは、前記アレイの端部のセットのそれよりも大きく、かつ前記アレイの中央部のセットのそれよりも小さい、ようにすることができる。
これによれば、光源の光強度分布が原因となる光強度の変化量に合わせて、受光素子のサイズを変えることができる。よって、受光素子の数を増やすことなく、端部のセット、中央部のセット、中間部のセットのそれぞれにおいて、光強度の変化に対する十分な平均化効果を得ることができる。
本発明に係る光電式エンコーダにおいて、前記アレイの面上における光強度分布が原因となる光強度の変化量が各セット上で一定になるように前記複数のセットのサイズをそれぞれ設定する、ようにすることができる。
これによれば、アレイの面上における光強度分布が原因となる光強度の変化量に対する平均化効果を各セットにおいて同じにすることができる。
以上は本発明に係る光電式エンコーダの一態様であるが、この他に次の態様がある。すなわち、本発明に係る光電式エンコーダの他の態様は、光源と、前記光源からの光が照射される光学格子を含むスケールと、前記光源からの光が前記光学格子を介して照射されると共に、前記スケールに対して測定軸方向に相対移動可能な受光チップと、前記受光チップ上の測定軸方向及び測定軸方向に垂直な方向に沿ってアレイ状に配置された複数の受光素子と、前記複数の受光素子のそれぞれの前面に配置された複数のインデックス格子と、を備え、前記複数のインデックス格子は、前記相対移動することにより前記複数の受光素子から位相の異なる複数の光信号が出力されるように、互いに測定軸方向に沿って所定オフセット配置されている、ことを特徴とする。
本発明に係る光電式エンコーダの他の態様によれば、複数の受光素子が測定軸方向及び測定軸方向に垂直な方向に沿ってアレイ状に配置されているので、平均化効果を高めることができる。また、インデックス格子を各受光素子の前面に配置することにより、複数の受光素子の接合容量の合計の増大を防止している。
以上述べたように、本発明に係る光電式エンコーダによれば、光源の光強度分布が原因となる光強度の変化に対する平均化効果を高めることができると共に複数の受光素子の接合容量の合計が増大するのを防ぐことができる。よって、高精度でかつ高速な応答の光電式エンコーダを実現できる。
以下、図面を参照して、本発明に係る光電式エンコーダの第1〜第5実施形態を説明する。なお、第2〜第5実施形態を説明する図において、既に説明した実施形態の符号で示すものと同一のものについては、同一符号を付すことにより説明を省略する。
[第1実施形態]
図1は、第1実施形態に係る光電式エンコーダ1の概略構成を示す図である。この実施形態は、受光部に含まれる受光チップの構造を主な特徴としているが、この理解の前提として光電式エンコーダ1について説明する。まず、エンコーダ1の構成を説明する。エンコーダ1は、発光ダイオード(LED)3と、これに近い順に沿って配置されたスケール5と、受光部7とにより構成される。
発光ダイオード3は、光源の一例であり、ダイオード3からの光Lがスケール5に照射される。スケール5は、ガラスなどの透明材料から構成される長尺状の透明基板9を含む。図1には、その一部が表れている。光学格子11は、透明基板9の発光ダイオード3側に向く面と反対側の面上に形成されている。光学格子11は、所定のピッチを設けてリニヤ状に配置された複数の遮光部13を含む。各遮光部13は、図面の奥行き方向に延びている。遮光部13は、金属(例えばクロム)などから構成される。
受光部7は、スケール5とギャップを設けて配置されている。受光部7は、スケール5側に位置する受光チップ15及びこれが搭載される回路基板17を含む。受光チップ15内には、図示しない複数のフォトダイオード(以下、「フォトダイオード」を「PD」と記載する場合がある。)が形成されている。これらのPDの各受光面が、光学格子11側を向いている。PDは受光素子の一例である。受光素子として、PDの替わりにフォトトランジスタを用いることもできる。回路基板17には、演算用のICチップ19が搭載されている。ICチップ19は、受光チップ15の複数のPDで検出された光信号を基にして変位量の演算を実行する。
受光部7は、発光ダイオード3と共にホルダ21に取り付けられている。ホルダ21は、図中のXで示すスケール5の長手方向に移動可能にされている。つまり、光電式エンコーダ1は、固定されたスケール5に対して、ホルダ21を移動させることにより、変位量を測定する。よって、X方向が測定軸となる(以下、X方向を「測定軸X」とする。)。なお、発光ダイオード3と受光部7を固定し、スケール5を移動させて変位量を測定するタイプにも、本発明を適用することができる。したがって、受光チップ15を含む受光部7は、発光ダイオード3と一緒に、スケール5に対して測定軸X方向に相対移動可能に配置されている。
次に、光電式エンコーダ1の測定動作について、簡単に説明する。発光ダイオード3から光Lがスケール5の光学格子11に照射されると、光学格子11により明暗パターンL1が受光チップ15上に生じる。この明暗パターンL1が受光チップ15に照射される。この状態で、ホルダ21を測定軸Xに沿って移動させることにより生じる明暗パターンL1の変化(正弦波状の光信号)を、受光チップ15に形成された各フォトダイオード(PD)で検出する。つまり、A相(0度)の光信号、A相より90度だけ位相がずれたB相(90度)の光信号、A相より180度だけ位相がずれたAA相(180度)の光信号およびA相より270度だけ位相がずれたBB相(270度)の光信号が、それぞれに対応するPDで検出される。このように、各PDは、位相の異なる複数の光信号の中で割り当てられた位相の光信号を受光する。
各光信号により発生した電気信号は、ICチップ19に送られる。ICチップ19では、A相およびB相に所定の処理(直流成分の除去等)をした後に、処理されたA相およびB相を基にして変位量が演算される。この結果を図示しない表示部に出力する。以上が光電式エンコーダ1の動作である。
さて、第1実施形態の主な特徴は、受光チップ15であり、これについて詳細に説明する。図2は、光学格子側から見た受光チップ15の全体を模式的に表した平面図である。図3は、図2のうちフォトダイオード23のみを模式的に表した図である。図4は、図2に示す受光チップ15をIV(a)-IV(b)断面から見た模式図である。
図4に示すように、受光チップ15は、n型の半導体基板37を備える。この基板37の一方の面には、p型の拡散領域39が間隔を設けて形成されている。半導体基板37と拡散領域39との接合部が、PD23となる。複数のPD23が、半導体基板37中にアレイ状に形成されている。
半導体基板37の一方の面のうち、p型の拡散領域39が形成されている領域が、受光面25となる。なお、p型の拡散領域39どうしの分離(つまり、各フォトダイオード23の素子分離)を確実にするために、拡散領域39どうしの間の半導体基板37に、n型の拡散領域を形成してもよい。半導体基板37の一方の面は、拡散領域39を覆うようにシリコン酸化膜のような絶縁膜41で覆われている。
複数のPD23を平面的に見ると、図2及び図3に示すように、複数のPD23が、光学格子と向かい合うxy面上に、測定軸Xに沿ってアレイ状に配置されている。なお、x軸は、図1で説明した測定軸Xと向きが一致している。
A相の光信号を受光するPD23、B相の光信号を受光するPD23、AA相の光信号を受光するPD23、BB相の光信号を受光するPD23を一つのセット27としている。測定軸X方向に沿って、アレイの中央部29には、複数のセット27が配置されている。アレイの中央部29の両側であるアレイの端部31には、それぞれ一つのセット27が配置されている。アレイの端部31に配置されたセット27を構成するPD23のピッチPは、アレイの中央部29に配置されたセット27を構成するPD23のピッチPよりも小さい。一方、各セット27内では、PD23が同じピッチで連続して配置されている。これにより、各セット27内でのPD23のバランスをとっている。
各受光面25には、光学格子に照射された光を基にして生成された対応する光信号(A相、B相、AA相、BB相の光信号)が入射する。言い換えれば、図1に示す明暗パターンL1が受光チップ15に照射された状態で、ホルダ21が移動することにより生成される位相の異なる複数の光信号の中で割り当てられた位相の光信号が、各受光面25に入射する。受光面25の形状は、y方向が長手方向の矩形である。受光面25の測定軸X方向のサイズ(つまり、受光面25の幅)は、中央部29と端部31とで異なる。すなわち、アレイの端部31に配置されたPD23の受光面25の幅Wは、アレイの中央部29のそれの幅Wより小さくされている。
次に、図2及び図4により、インデックス格子33について説明する。受光チップ15は、各受光面25を覆うように、絶縁膜41上に形成されたインデックス格子33を有する。インデックス格子33は、各受光面25上に間隔を設けて配置されたy方向に延びる複数の遮光部35を有する。遮光部35は、光を透過しない性質を有すればよい。したがって、その材料は、金属(例えば、クロム、アルミニウム)や樹脂が挙げられる。
受光面25上の隣り合う遮光部35の間が透光部40となる。よって、インデックス格子33は、受光面25を部分的に覆う遮光部35を有する、と言うことができる。遮光部35を少なくとも二つ以上組み合わせて、これらを一つの受光面25上に配置することにより、一つのインデックス格子33が構成される。
各受光面25において、割り当てられた位相の光信号と対応する箇所に透光部40が位置し、それ以外の箇所に遮光部35が位置している。具体的に説明すると、例えば、BB相の光信号を受光するPD23BBにおいて、BB相の光信号と対応する箇所に透光部40が位置している。これにより、PD23BBは、A相、B相及びAA相の光信号を受光しないことになる。PD23の幅が中央部29と端部31とで異なるが、遮光部35のピッチを等しくすることにより、光信号の位相のずれを防いでいる。
図4に示すように、インデックス格子33を覆うように、シリコン酸化膜やシリコン窒化膜のような保護膜43が形成されている。半導体基板37の他方の面の全面には各PD23の共通電極(例えばAu電極)45が形成されている。
インデックス格子33の変形例を図5で説明する。図5は、受光チップ15の断面の模式図であり、図4と対応する。隣り合う受光面25の間は、遮光部35で覆われている。隣り合う受光面25の間から半導体基板37に入射した光は、ノイズの原因になることがある。この変形例によれば、隣り合う受光面25の間から半導体基板37に光が入射するのを防止できる。
第1実施形態に係る光電式エンコーダ1は、次の主な効果を有する。
(1)第1実施形態によれば、受光チップ15を構成する複数のPD23の接合容量の合計の増大を防ぎつつ、光源の光強度分布が原因となる光強度の変化に対する平均化効果をアレイの端部31側において高めることができる。以下、詳細に説明する。図6は、受光チップに形成されたPDアレイの各位置における光強度の強さを示すグラフである。発光ダイオード3のような光源は、光源のサイズなどの制約から図6に示すような光強度分布を持っている。この分布を見れば分かるように、アレイの中央部に比べてアレイの端部のほうが光の強度が小さく、かつ光の強度の変化量(曲線の傾き)が大きい。このため、PDのピッチが比較的大きいと、アレイの端部では、各PDで発生する光電流の直流成分の差が大きくなる。つまり、A相の光信号、B相の光信号、AA相の光信号、BB相の光信号の直流成分の値が、互いに異なりかつその差が大きくなる。これが、光電式エンコーダの高精度測定の障害となる。
PDのピッチを比較的小さくした受光チップにすれば、上記問題を解消できる。しかし、所定の大きさの領域に複数のPDをアレイ状に配置して受光チップを作製する場合、PDのピッチを比較的小さくすると、その分だけPDの数が増え、受光チップを構成する複数のPDの接合容量の合計が増大する。
本発明者は、光源の光強度分布が原因となる光の強度の変化量(曲線の傾き)がアレイの中央部に比べてアレイの端部が大きい点に着目したのである。つまり、図3に示すように、第1実施形態において、アレイの端部31に配置されたPD23のピッチを比較的小さくすることにより、光強度の変化に対する平均化効果をアレイの端部31側において高めている。一方、アレイの中央部29に配置されたPD23のピッチを比較的大きくすることにより、PDの数の増加を抑制し、これにより、受光チップ15を構成する複数のPD23の接合容量の合計の増大を防いでいる。
(2)第1実施形態によれば、図3に示すように、アレイの端部31に配置されたPD23の受光面25の幅Wを、中央部29に配置されたPD23のそれの幅Wより小さくしている。よって、端部31側のPD23のピッチPをより小さくできるので、端部31側での光強度の変化に対する平均化効果をさらに高めることができる。一方、幅Wを幅Wより小さくした分だけ、中央部29に配置されたPD23の受光面の幅Wが比較的大きくなる。したがって、受光面25の面積の合計値を必要な量だけ確保するためにPD23の数を増やす必要がなくなるので、複数のPD23の接合容量の合計の増加を抑制できる。
(3)第1実施形態では、(2)で説明したように、アレイの中央部29と端部31において、受光面25の幅が異なっている。図2に示すインデックス格子33を受光面25上に配置することにより、各PD23は、位相の異なる複数の光信号の中で割り当てられた位相の光信号を受光することができる。
[第2実施形態]
第2実施形態については、第1実施形態との相違を中心に説明する。図7は、第2実施形態に係る光電式エンコーダの受光チップ15に形成されたPDアレイの中央部29におけて、一つの受光面25とインデックス格子33との配置関係を模式的に示す平面図である。図8は、図7に示す構造をVIII(a)-VIII(b)断面から見た模式図である。
第2実施形態において、インデックス格子33の遮光部35は、フォトダイオード23に接続する配線の一部となる。以下、詳細に説明する。遮光部35は、アルミニウムのような導電性の金属である。受光面25上に配置された四つの遮光部35と配線47とは、同じ層に位置する。これらは同時にパターンニングして形成される。遮光部35のうち、中央の二つの遮光部35-1は、配線47と接続されるようにパターンニングされている。
遮光部35-1と受光面25との間の絶縁膜41には、コンタクトホール49が形成されている。コンタクトホール49には、導電プラグ(例えばアルミニウム)からなるコンタクト部51が形成されている。コンタクト部51は、遮光部35-1の下でこれに接続されると共に受光面25とコンタクトしている。したがって、配線47は、遮光部35-1およびコンタクト部51により、フォトダイオード23に接続されている。なお、この実施形態では、導電プラグをコンタクト部51としているが、遮光部35-1となる膜を絶縁層41上に形成する際に、コンタクトホール49にこの膜を埋め込んで、これをコンタクト部にしてもよい。
第2実施形態は、第1実施形態と同様の効果の他に次の効果を有する。配線47とフォトダイオード23との接続に遮光部35-1を利用しない構造であると、この接続のために、遮光部35と同じ層の受光面25上に新たな導電膜を形成しなければならない。この導電膜により、受光面25の有効受光面積が減少する。これに対して、第2実施形態では、配線47とフォトダイオード23との接続に導電性の遮光部35-1を利用している。したがって、受光面25の有効受光面積の減少を防止できる。
また、上記遮光部35-1を利用しない構造であると、図8の断面にコンタクト部51が存在していないことになる。したがって、遮光部35-1とp型の拡散領域39とで絶縁膜41が挟まれた構造を有する寄生容量が形成される。これは、エンコーダの応答速度を下げる原因となる。これに対して、第2実施形態では、遮光部35-1とp型の拡散領域39とがコンタクト部51で接続されているので、上記のような寄生容量は発生しない。
[第3実施形態]
第3実施形態については、第1実施形態との相違を中心に説明する。図9は、光学格子側から見た第3実施形態の受光チップ15のフォトダイオードアレイを模式的に表した平面図である。この図では、インデックス格子の図示を省略している。図10は、第3実施形態に係る受光チップ15の一部の平面図である。この図では、受光面25とインデックス格子の透光部40との位置関係が示されている。受光素子の前面に配置される格子をインデックス格子と言う。
図9に示すように、複数のPD23の受光面25が、光学格子と向かい合うxy面に二次元的に配置されている。言い換えれば、複数のPD23が行列状に配置されている。複数のPD23が、受光チップ15上のx方向(つまり測定軸方向)及びy方向(つまり測定軸方向に垂直な方向)に沿ってアレイ状に配置されている、と言うこともできる。A相、B相、AA相、BB相の光信号が入射する受光面25には、それぞれ「A」、「B」、「AA」、「BB」と記載されている。これはどの受光面にどの位相の光信号が入射するかを示すためであり、実際の受光面25にはこのような記載はない。A相用、B相用、AA相用、BB相用の受光面25がx方向およびy方向に周期的に配置されている。
図10に示すように、異なる位相用の受光面25がy方向に並んでいる。透光部40の位相をずらすことにより、各PD23が対応する位相の光信号を受光できるようにしている。このように、各受光面25において、割り当てられた位相の光信号と対応する箇所に透光部40が位置し、それ以外の箇所にインデックス格子の遮光部が位置するようにしている。すなわち、各PD23の前面には、インデックス格子が配置されている。これらのインデックス格子は、ホルダ21を測定軸Xに沿って移動させることにより、複数のPD23から位相の異なる複数の光信号が出力されるように、互いに測定軸X方向に沿って所定オフセット配置されている。各受光面25上に配置された透光部40の数は一つであるが、複数であってもよい。
図9に示すように、測定軸Xと直交する方向であるy方向において、アレイの端部53に配置されたPD23のピッチPが、中央部55に配置されたPD23のピッチPに比べて小さくされている。これにより、(1)y方向のアレイの端部53おいて、光強度の変化に対する平均化効果を高めることができ、(2)アレイの中央部55において、PD23のピッチが比較的大きいので、PD23の数の増加を抑制し、複数のPD23の接合容量の合計の増大を防いでいる。
アレイの端部53に配置されたPD23の受光面25の測定軸Xと直交する方向(つまり測定軸X方向に垂直な方向であるy方向)のサイズSは、中央部55に配置されたPD23のそれのサイズSよりも小さくされている。したがって、第1実施形態で説明した測定軸X方向に沿って配置された複数のPD23の場合と同様の理由により、y方向に沿って配置された複数のPD23について、端部53側での光強度の変化に対する平均化効果をさらに高めることができると共に複数のPD23の接合容量の合計の増加を抑制できる。
また、A相用、B相用、AA相用、BB相用の受光面25がそれぞれ測定軸Xに対して斜めに配置されている。そして、A相用、B相用、AA相用、BB相用の受光面25が測定軸Xの斜め方向に周期的に配置されている。このように、同じ位相の光信号を受光するPD23が測定軸Xに対して斜めに配置されていると共に異なる位相の光信号を受光するPD23が測定軸Xの斜め方向に周期的に配置されている。よって、各位相用のPD23の配置を均等にできるので、平均化効果を高めることができる。各位相用のPD23の配置を均等にすることは、各位相用のPD23の配置を不規則にすることによっても実現できる。しかしながら、このような配置に比べて第3実施形態によれば、PD23の配置の均等化を簡単に実現できる。
[第4実施形態]
第4実施形態については、第1実施形態との相違を中心に説明する。図11は、第4実施形態の受光チップ15のフォトダイオードアレイを模式的に表した平面図であり、図3と対応している。
アレイの中央部29と端部31との間に位置するアレイの中間部57のセット27において、PD23のピッチPは、ピッチPよりも大きくされており、ピッチPよりも小さくされている。同様に、PD23の幅Wは、幅Wよりも大きくされており、幅Wよりも小さくされている。
第4実施形態の主な効果を説明する。
(1)図11の受光チップ15の下のグラフは、受光チップ15のアレイの各位置における光強度を示しており、図6と対応している。アレイの中間部57は、光強度の変化量(曲線の傾き)が、アレイの端部31に比べて小さい。このため、中間部57は端部31よりもPD23のピッチを密にしなくても十分な平均化効果を得ることができる。一方、アレイの中間部57における光強度の変化量は、アレイの中央部29のそれと比べて大きい。よって、中間部57のPD23のピッチを中央部29のそれに合わせると十分な平均化効果を得ることができない。
そこで、第4実施形態では、光強度の変化量に合わせて、PD23のピッチを変えている。これにより、PD23の数を増やすことなく、中央部29のセット27、中間部57のセット27、端部31のセット27、のそれぞれにおいて、アレイ29,31,57の面上における光強度分布が原因となる光強度の変化に対する十分な平均化効果を得ることができる。なお、この光強度分布は例えば光源が原因で生じる。
なお、図11のグラフ(光強度分布)は、実際に測定した値で作成してよいし、ガウス分布などのモデル値で作成してもよい。
(2)第4実施形態では、アレイの中間部57のセット27上における光強度の変化量ΔEと、端部31のそれの変化量ΔEと、が同じになるように、中間部57のセット27の測定軸X方向のサイズX、端部31のセット27の測定軸X方向のサイズXを、それぞれ設定している。したがって、光強度の変化量に対する平均化効果を、端部31のセット27と中間部57のセット27とで同じにすることができる。これにより、測定精度を向上させることができる。
なお、第4実施形態では、アレイの中央部29のセット27上での光強度の変化量が中間部57や端部31のそれらと比べてかなり小さい。したがって、中央部29の光強度の変化量が中間部57や端部31のそれらと同じになるように、中央部29のセット27の測定軸X方向のサイズを設定するのは困難である。このため、第4実施形態では、セット27の測定軸X方向におけるサイズの設定に、中央部29のセット27を考慮していない。但し、中央部29のセット27上での光強度の変化量が比較的大きければ、中央部29のセット27も考慮するのが好ましい。
[第5実施形態]
図12は、第5実施形態の比較となる受光チップの一部の平面図である。図13は、第5実施形態の受光チップの一部の平面図である。第1〜第4実施形態において、PD23のピッチPは、光強度の変化量を基に決められる。一方、インデックス格子33の透光部40の位置は、光信号の位相を基に決められる。したがって、図12に示す受光面25-1のように、透光部40-1が受光面25-1上に位置しない場合が発生する可能性がある。
そこで、図13に示す第5実施形態において、透光部40-1については、同じ位相の光信号が入射する前後の位置に透光部40-1をずらして、透光部40-1を受光面25-1上に位置させている。
第5実施形態を具体的に説明する。図14は、第5実施形態に係るインデックス格子33の一例の平面図である。光学格子33はx方向に沿って配置されている。この光学格子33は、図3の受光チップ15に配置することができる。一方、図15は、第5実施形態に係るインデックス格子33の他の例の平面図である。光学格子33はx方向及びy方向に沿って配置、つまり行列状に配置されている。この光学格子33は、図9の受光チップ15に配置することができる。なお、図15において、y方向に沿って配置されたインデックス格子33の透光部40の位置は、各位相において同じに表されている。これは、図面が複雑になるのを回避するためであり、実際には位相差がある。
透光部40の位置は、次ぎに説明する計算により決められる。まず、受光チップ15上に、x方向の基準位置RPを任意に決める。一般的に、基準位置RPとしては、(1)受光チップ15の平面上に引かれた受光チップ15の仮想の中心線(機械的中心線)や(2)受光チップ15の端面が選択される。
基準位置RPから各位相用の透光部40までの距離を、Xa(k)、Xb(k)、Xaa(k)、Xbb(k)とする。kは、透光部40の順番を示す番号である。例えば、Xa(1)は、A相用の透光部40の中で一番目に配置される透光部40と基準位置RPとの距離である。Xa(k)、Xb(k)、Xaa(k)、Xbb(k)は、以下の式を満足する値に設定される。これにより、透光部40を受光面25上に配置することができる。
MOD(Xa(k),Pf)=(0/4)×Pf+φ
MOD(Xb(k),Pf)=(1/4)×Pf+φ
MOD(Xaa(k),Pf)=(2/4)×Pf+φ
MOD(Xbb(k),Pf)=(3/4)×Pf+φ
ここで、MOD(A,B)演算は、AをBで割った余りを求める演算である。また、φは基準位置RPによって決まる値である。φは各位相に共通な値であり、位相差に関係しない。Pfは、図1に示すように、光源3からの光Lを光学格子11に照射した際に生成される明暗パターンL1の波長である。インデックス格子33の透光部40の位置を上記のようにして決めることにより、対応する位相の光信号をPD23に受光させることができる。
なお、図6で説明したように、PDアレイの位置により光強度が相違している。このため、上記式を用いて透光部40の位置を決めると、A相用のPD23の総受光量、B相用のPD23の総受光量、AA相用のPD23の総受光量、BB相用のPD23の総受光量が同じにならず、不均一になる可能性もある。このような場合、透光部40の個数やサイズを変えることにより、各位相用のPD23の総受光量を均一にすることができる。例えば、A相用のPD23の総受光量が他のPD23の総受光量より小さい場合、A相用のPD23の前面に配置されるインデックス格子の透光部40の個数や幅を調整する。
なお、第1〜第5実施形態では、四つの位相の異なる光信号(A相、B相、AA相、BB相の光信号)を用いて変位量を測定しているが、本発明に係る光電式エンコーダはこれに限定されない。例えば、三つの位相の異なる光信号(0度の位相の光信号、0度より120度だけ位相がずれた光信号、0度より240度だけ位相がずれた光信号)についても、本発明に係る光電式エンコーダに適用できる。
また、図1に示すように、第1〜第5実施形態に係る光電式エンコーダ1は、スケール5の光学格子11を透過した発光ダイオード3からの光Lを用いて変位量の測定をする、いわゆる透過型のタイプである。しかしながら、反射型のタイプ、つまり、スケール5の光学格子11で反射された発光ダイオード3からの光Lを用いて変位量を測定する場合にも、本発明を適用することができる。
第1〜第5実施形態に係る光電式エンコーダ1は、スケール5に設けられた光学格子11と、PD23の前面に配置されたインデックス格子33と、を備える二枚格子構成のタイプである。しかしながら、これらの格子に加えて、光源である発光ダイオード3とスケール5との間に配置された光学格子をさらに備える三枚格子構成タイプにも、本発明を適用することができる。
第1実施形態に係る光電式エンコーダの概略構成を示す図である。 図1の光学格子側から見た受光チップの全体を模式的に表した平面図である。 図2のうちフォトダイオードのみを模式的に表した図である。 図2に示す受光チップをIV(a)-IV(b)断面から見た模式図である。 第1実施形態に係るインデックス格子の変形例を示す図である。 受光チップに形成されたPDアレイの各位置における光強度の強さを示すグラフである。 第2実施形態に係る光電式エンコーダの受光チップに形成されたPDアレイの中央部において、一つの受光面とインデックス格子との配置関係を模式的に示す平面図である。 図7に示す構造をVIII(a)-VIII(b)断面から見た模式図である。 光学格子側から見た第3実施形態の受光チップのフォトダイオードアレイを模式的に表した平面図である。 第3実施形態の受光チップの一部の平面図である。 第4実施形態の受光チップのフォトダイオードアレイを模式的に表した平面図である。 第5実施形態の比較となる受光チップの一部の平面図である。 第5実施形態の受光チップの一部の平面図である。 第5実施形態に係るインデックス格子の一例の平面図である。 第5実施形態に係るインデックス格子の他の例の平面図である。
符号の説明
1・・・光電式エンコーダ、3・・・発光ダイオード、5・・・スケール、7・・・受光部、9・・・透明基板、11・・・光学格子、13・・・遮光部、15・・・受光チップ、17・・・回路基板、19・・・ICチップ、21・・・ホルダ、23,23BB・・・フォトダイオード(PD)、25,25-1・・・受光面、27・・・セット、29・・・アレイの中央部、31・・・アレイの端部、33・・・インデックス格子、35・・・遮光部、37・・・n型半導体基板、39・・・p型拡散領域、40,40-1・・・透光部、41・・・絶縁膜、43・・・保護膜、45・・・共通電極、47・・・配線、49・・・コンタクトホール、51・・・コンタクト部、53・・・アレイの端部、55・・・アレイの中央部、57・・・アレイの中間部、L・・・光、L1・・・明暗パターン、RP・・・基準位置、P,P,P,P・・・フォトダイオードのピッチ、W,W,W・・・受光面の幅(サイズの一例)、S,S・・・サイズ

Claims (13)

  1. 光源と、
    前記光源からの光が照射される光学格子を含むスケールと、
    前記スケールに対して測定軸方向に相対移動可能に配置され、前記光学格子に照射された光を基にして生成された光信号が入射する受光面をそれぞれ有すると共に位相の異なる複数の光信号を検出する複数の受光素子と、
    を備え、
    前記複数の受光素子はアレイ状に配置され、
    アレイの端部に配置された受光素子のサイズは、前記アレイの中央部に配置された受光素子のサイズに比べて小さくされている、
    ことを特徴とする光電式エンコーダ。
  2. 前記複数の受光素子は、前記測定軸に沿って配置されており、
    前記受光面の前記測定軸方向のサイズは、前記アレイの端部に配置された受光素子のほうが前記アレイの中央部に配置された受光素子よりも小さくされている、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  3. 前記複数の受光素子を含む受光チップを備え、
    前記受光チップは、さらに、
    前記受光面を部分的に覆う遮光部を有するインデックス格子を含む、
    ことを特徴とする請求項2に記載の光電式エンコーダ。
  4. 前記受光チップは、
    導電性の前記遮光部の下でこの遮光部に接続されると共に前記受光面とコンタクトしているコンタクト部と、
    前記遮光部と接続された配線と、
    を含むことを特徴とする請求項3に記載の光電式エンコーダ。
  5. 前記複数の受光素子は、前記測定軸と直交する方向に沿って配置されており、
    前記受光面の前記測定軸と直交する方向のサイズは、前記アレイの端部に配置された受光素子のほうが前記アレイの中央部に配置された受光素子よりも小さくされている、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  6. 前記複数の受光素子により、セット毎に受光素子のサイズが異なる複数のセットが構成されており、
    各セットを構成する受光素子は、同じピッチで連続して配置されていると共に位相の異なる複数の光信号を検出する受光素子を含む、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  7. 各セットにおいて、前記受光面の前記測定軸方向のサイズが同じにされており、
    前記アレイの端部に配置されたセットは、前記アレイの中央部に配置されたセットに比べて、前記受光面の前記測定軸方向のサイズが小さくされている、
    ことを特徴とする請求項6に記載の光電式エンコーダ。
  8. 前記複数のセットのうち、前記アレイの端部に配置されたセットと、前記アレイの中央部に配置されたセットと、の間にある前記アレイの中間部に配置されたセットにおいて、受光素子のサイズは、前記アレイの端部のセットのそれよりも大きく、かつ前記アレイの中央部のセットのそれよりも小さい、
    ことを特徴とする請求項6に記載の光電式エンコーダ。
  9. 各セットにおいて、前記受光面の前記測定軸方向のサイズが同じにされており、
    前記アレイの中間部に配置されたセットにおいて、前記受光面の前記測定軸方向のサイズは、前記アレイの端部のセットのそれよりも大きく、かつ前記アレイの中央部のセットのそれよりも小さい、
    ことを特徴とする請求項8に記載の光電式エンコーダ。
  10. 前記アレイの面上における光強度分布が原因となる光強度の変化量が各セット上で一定になるように前記複数のセットのサイズをそれぞれ設定する、
    ことを特徴とする請求項6に記載の光電式エンコーダ。
  11. 光源と、
    前記光源からの光が照射される光学格子を含むスケールと、
    前記光源からの光が前記光学格子を介して照射されると共に、前記スケールに対して測定軸方向に相対移動可能な受光チップと、
    前記受光チップ上の測定軸方向及び測定軸方向に垂直な方向に沿ってアレイ状に配置された複数の受光素子と、
    前記複数の受光素子のそれぞれの前面に配置された複数のインデックス格子と、
    を備え、
    前記複数のインデックス格子は、前記相対移動することにより前記複数の受光素子から位相の異なる複数の光信号が出力されるように、互いに測定軸方向に沿って所定オフセット配置されている、
    ことを特徴とする光電式エンコーダ。
  12. 同じ位相の光信号を受光する前記受光素子が前記測定軸に対して斜めに配置されていると共に異なる位相の光信号を受光する前記受光素子が前記測定軸の斜め方向に周期的に配置されている、
    ことを特徴とする請求項11に記載の光電式エンコーダ。
  13. 測定軸方向に垂直な方向のサイズは、前記アレイの端部に配置された受光素子のほうが前記アレイの中央部に配置された受光素子よりも小さくされている、
    ことを特徴とする請求項11に記載の光電式エンコーダ。
JP2004126994A 2003-05-16 2004-04-22 光電式エンコーダ Expired - Fee Related JP4476682B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004126994A JP4476682B2 (ja) 2003-05-16 2004-04-22 光電式エンコーダ
US10/844,439 US7098446B2 (en) 2003-05-16 2004-05-13 Photoelectric encoder
CNB2004100432980A CN100351613C (zh) 2003-05-16 2004-05-17 光电式编码器
DE602004015361T DE602004015361D1 (de) 2003-05-16 2004-05-17 Fotoelektrische Kodiereinrichtung
EP04011693A EP1477776B1 (en) 2003-05-16 2004-05-17 Photoelectric encoder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2003139062 2003-05-16
JP2004126994A JP4476682B2 (ja) 2003-05-16 2004-04-22 光電式エンコーダ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009275237A Division JP4834141B2 (ja) 2003-05-16 2009-12-03 光電式エンコーダ

Publications (2)

Publication Number Publication Date
JP2005003669A true JP2005003669A (ja) 2005-01-06
JP4476682B2 JP4476682B2 (ja) 2010-06-09

Family

ID=33032402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004126994A Expired - Fee Related JP4476682B2 (ja) 2003-05-16 2004-04-22 光電式エンコーダ

Country Status (5)

Country Link
US (1) US7098446B2 (ja)
EP (1) EP1477776B1 (ja)
JP (1) JP4476682B2 (ja)
CN (1) CN100351613C (ja)
DE (1) DE602004015361D1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308358A (ja) * 2005-04-27 2006-11-09 Okuma Corp 光学式エンコーダ
JP2015090299A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090304A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090306A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090301A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007170826A (ja) * 2005-12-19 2007-07-05 Orion Denki Kk 光エンコーダ
JP4953653B2 (ja) * 2006-02-15 2012-06-13 株式会社ミツトヨ 光電式エンコーダ
US7466002B2 (en) * 2006-06-19 2008-12-16 Mitutoyo Corporation Incident light angle detector for light sensitive integrated circuit
US7612326B2 (en) * 2007-08-27 2009-11-03 Delta Electronics Inc. Angle-calculation apparatus and angle-calculation method for three-phase optical encoder
US7645993B2 (en) * 2007-12-28 2010-01-12 Spansion, Llc Arrayed neutron detector with multi shielding allowing for discrimination between radiation types
ES2758525T3 (es) * 2008-12-17 2020-05-05 Fagor Automation S Coop Encoder de posición absoluta
JP2012521864A (ja) * 2009-03-31 2012-09-20 インスパイア・メディカル・システムズ・インコーポレイテッド 睡眠に関連する異常呼吸を処置するシステムにおける経皮的アクセス方法
US8309906B2 (en) * 2010-06-10 2012-11-13 Mitutoyo Corporation Absolute optical encoder with long range intensity modulation on scale
US20130056641A1 (en) * 2011-09-01 2013-03-07 Massachusetts Institute Of Technology Solid-state neutron detector with gadolinium converter
JP6087722B2 (ja) * 2013-05-16 2017-03-01 株式会社ミツトヨ 原点信号発生装置及び原点信号発生システム
JP6138664B2 (ja) * 2013-10-30 2017-05-31 オークマ株式会社 光学式エンコーダ
JP6369042B2 (ja) 2013-11-05 2018-08-08 日本精工株式会社 光学式エンコーダユニット及び光学式エンコーダ
JP6373457B1 (ja) 2017-06-20 2018-08-15 キヤノンプレシジョン株式会社 エンコーダおよびこれを用いた撮像装置
JP7025189B2 (ja) * 2017-12-05 2022-02-24 株式会社ミツトヨ スケールおよびその製造方法
US11237024B2 (en) * 2018-10-08 2022-02-01 Pixart Imaging Inc. Optical encoder with covered photo diode
CN111397641B (zh) * 2020-04-03 2021-05-04 新昌县鸿吉电子科技有限公司 一种具有电子转动盘的光电编码器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1160210B (it) 1983-09-30 1987-03-04 Olivetti & Co Spa Trasduttore ottico per rilevare la posizione di un organo mobile rispetto ad una struttura fissa
DE3417176C2 (de) 1984-05-09 1986-07-31 Dr. Johannes Heidenhain Gmbh, 8225 Traunreut Photoelektrische Meßeinrichtung
JPS60239610A (ja) 1984-05-14 1985-11-28 Kawasaki Steel Corp 加熱炉等の炉前鋼片停止位置の測定装置
JPS6191513A (ja) 1984-10-12 1986-05-09 Matsushita Electric Works Ltd 測距装置
CN1017658B (zh) * 1988-01-22 1992-07-29 株式会社三丰 光学编码器
US4943716A (en) * 1988-01-22 1990-07-24 Mitutoyo Corporation Diffraction-type optical encoder with improved detection signal insensitivity to optical grating gap variations
JP2690680B2 (ja) 1993-11-26 1997-12-10 株式会社ミツトヨ 光電式エンコーダ
JPH11201777A (ja) 1998-01-08 1999-07-30 Nemikon Kk リニアエンコーダ
US6635863B1 (en) * 1999-08-06 2003-10-21 Mitutoyo Corporation Optical encoder
JP5345269B2 (ja) 1999-10-26 2013-11-20 シチズンホールディングス株式会社 光学式変位測定装置
US6512222B2 (en) * 2000-02-03 2003-01-28 Mitutoyo Corporation Displacement measuring apparatus
DE10020575A1 (de) * 2000-04-28 2001-10-31 Heidenhain Gmbh Dr Johannes Abtasteinheit für eine optische Positionsmesseinrichtung

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006308358A (ja) * 2005-04-27 2006-11-09 Okuma Corp 光学式エンコーダ
JP4629486B2 (ja) * 2005-04-27 2011-02-09 オークマ株式会社 光学式エンコーダ
JP2015090299A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090304A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090306A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
JP2015090301A (ja) * 2013-11-05 2015-05-11 株式会社安川電機 エンコーダ、エンコーダ付きモータ、サーボシステム
US9436166B2 (en) 2013-11-05 2016-09-06 Kabushiki Kaisha Yaskawa Denki Encoder, motor with encoder, and servo system
US9562794B2 (en) 2013-11-05 2017-02-07 Kabushiki Kaisha Yaskawa Denki Encoder, motor with encoder, and servo system having a plurality of light receiving array to receive light reflected by slit tracks comprising incremental patterns and absolute pattern

Also Published As

Publication number Publication date
US20050017158A1 (en) 2005-01-27
EP1477776A2 (en) 2004-11-17
EP1477776B1 (en) 2008-07-30
CN100351613C (zh) 2007-11-28
DE602004015361D1 (de) 2008-09-11
JP4476682B2 (ja) 2010-06-09
EP1477776A3 (en) 2006-02-08
US7098446B2 (en) 2006-08-29
CN1550761A (zh) 2004-12-01

Similar Documents

Publication Publication Date Title
JP4476682B2 (ja) 光電式エンコーダ
JP5198434B2 (ja) 光学式エンコーダ
JP5974329B2 (ja) 光電式エンコーダ
JP4834141B2 (ja) 光電式エンコーダ
JP4350417B2 (ja) 光電式エンコーダ
JP4546485B2 (ja) 光学位置測定システム用の走査ヘッド
JP4350419B2 (ja) 光電式エンコーダ
JP4265928B2 (ja) 光電式エンコーダ
JP2007071634A (ja) 光電式エンコーダ
JP4372566B2 (ja) 光電式エンコーダ
JP2009236854A (ja) 光学式エンコーダ
JP4444715B2 (ja) 光学式変位測定装置
JP4754230B2 (ja) 光電式エンコーダ
JP4401852B2 (ja) 光学式変位測定装置
JP4667653B2 (ja) 光学式エンコーダ
JP4291168B2 (ja) 光学式エンコーダ用光検出器
JP2010223629A (ja) 光学式エンコーダ
JP2690681B2 (ja) フォトダイオードアレイ及びこれを用いた光電式エンコーダ
JP2006138816A (ja) 光学式変位測定装置
JP2007071733A (ja) 光学式絶対値エンコーダ
JP2002350188A (ja) 光学式エンコーダ
JP2006093513A (ja) 光学式変位測長器における受光装置
JP2002236034A (ja) 光学式エンコーダ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100309

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100310

R150 Certificate of patent or registration of utility model

Ref document number: 4476682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160319

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees