JP4372566B2 - 光電式エンコーダ - Google Patents

光電式エンコーダ Download PDF

Info

Publication number
JP4372566B2
JP4372566B2 JP2004017568A JP2004017568A JP4372566B2 JP 4372566 B2 JP4372566 B2 JP 4372566B2 JP 2004017568 A JP2004017568 A JP 2004017568A JP 2004017568 A JP2004017568 A JP 2004017568A JP 4372566 B2 JP4372566 B2 JP 4372566B2
Authority
JP
Japan
Prior art keywords
light
light receiving
semiconductor region
optical grating
measurement axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004017568A
Other languages
English (en)
Other versions
JP2005208015A (ja
Inventor
健司 小島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Original Assignee
Mitutoyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp filed Critical Mitutoyo Corp
Priority to JP2004017568A priority Critical patent/JP4372566B2/ja
Publication of JP2005208015A publication Critical patent/JP2005208015A/ja
Application granted granted Critical
Publication of JP4372566B2 publication Critical patent/JP4372566B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、精密測定に使用される光電式エンコーダに関する。
従来から直線変位や角度変位などの精密な測定に光電式エンコーダ(以下、「エンコーダ」という場合もある。)が利用されている。エンコーダは三次元測定機や画像測定機などに搭載される。エンコーダは、光源と、光学格子を含むスケールと、複数の受光素子を含むと共に光源と一緒にスケールに対して相対移動可能に配置され各受光素子が互いに位相の異なるインデックス格子を受光面に有する受光部と、を備えている。
光電式エンコーダの動作を簡単に説明する。スケールを光源および受光部に対して相対移動させながら光源からの光をスケールの光学格子を介してインデックス格子に照射する。これにより位相の異なる複数(例えば四つ)の正弦波状の光の明暗パターンが生成される。この正弦波状の光の明暗パターンが光信号となる。これらの位相の異なる光の明暗パターンを、各位相に対応する受光素子で受光し、光電変換されて発生した電気信号を利用して直線などの変位量が測定される。
位相の異なる四つの光の明暗パターンとは、A相(0度)の明暗パターン、A相より90度だけ位相がずれたB相(90度)の明暗パターン、A相より180度だけ位相がずれたAA相(180度)の明暗パターンおよびA相より270度だけ位相がずれたBB相(270度)の明暗パターンのことである。A相およびB相の明暗パターンを利用するのは、先に検出されるのがA相かB相かによって、受光部の相対移動の方向を判断するためである。また、A相やB相以外にこれらを反転させた、AA相やBB相を利用するのは、A相やB相の明暗パターン(光信号)に含まれる直流成分の除去、並びに、光信号の信頼性及び高速追従性の確保のためである。
位相の異なる複数の明暗パターンに対応した数の受光素子があれば、原理的に測定が可能である。したがって、位相の異なる四つの明暗パターンの場合、受光素子が四つあればよい。この第1のタイプのエンコーダは、例えば特許文献1に開示されている。
ところで、光源の光強度分布やスケール面の汚れ等が原因で、光量にバラツキが生じることがある。上記タイプによれば、各位相の明暗パターンはそれぞれ一箇所で検出されるので、光量のバラツキの影響を受けやすい。例えば、A相用の受光素子の配置場所が他の受光素子の配置場所に比べて照射される光の強度が弱い場合、A相の出力が弱くなるため、測定精度が低下する。
そこで、各位相用の受光素子を複数に分けて、同じ位相用の受光素子が周期的に配列されるように、受光素子をエンコーダの測定軸方向に沿ってアレイ状に並べた受光部を備える第2のタイプのエンコーダがある(例えば特許文献2)。このタイプでは、受光素子がA相用、B相用、AA相用、BB相用、A相用、B相用・・・に並べられている。各受光素子にインデックス格子の機能を兼用させている。このタイプによれば、各位相の明暗パターンが検出される場所が広い範囲に分散されるため、光量のバラツキの影響を小さくでき、(以下、これを「平均化効果」という。)したがって、測定精度が向上する。
測定精度の向上には、平均化効果を高めることが重要である。しかし、単に平均化効果を高めようとすると、エンコーダの応答速度が低下する。これについて、詳しく説明する。
受光素子はn型半導体領域とp型半導体領域を接合したものである。この接合の容量が大きくなるとエンコーダが高速応答できなくなる。したがって、接合容量の増加はエンコーダの性能に悪影響を与える。受光素子の接合容量は、受光面の面積や受光面の周囲(エッジ)の長さと相関関係にある。つまり、面積や周囲の長さが大きくなると接合容量が増加し、面積や周囲の長さが小さくなると接合容量が減少するのである。
上記第2のタイプでは、受光面の面積の合計が第1のタイプのそれと同じでも、第1のタイプよりも受光素子の数が多くなるので、受光面の周囲の長さの合計が大きくなる。したがって、第2のタイプは第1のタイプよりも受光部の接合容量が大きくなるため、エンコーダの応答速度が下がる。
以上のように、従来の技術では、平均化効果を高めようとすると、受光部の接合容量が増え、逆に接合容量を低下させようとすると平均化効果が小さくなるのである。
国際公開第01/31292号のパンフレット(明細書第5頁第19行〜第6頁第7行、Fig.5) 特開平7−151565号公報(段落[0014]、図4)
さて、第2のタイプの場合、より精密な測定のためにスケールの光学格子が狭ピッチ化すると、これに対応して受光素子も狭ピッチ化しなければならない。このため受光素子の数が増えるため、従来と同じ受光面積を得ようとした場合には、受光面の周囲の長さが増加し、受光部の接合容量が増大する。よって、スケールの光学格子が狭ピッチ化すると、エンコーダの応答速度の低下の問題が生じる。
本発明は、かかる問題点に鑑みてなされたもので、スケールの光学格子が狭ピッチ化しても、低接合容量の受光部を実現できる光電式エンコーダを提供することを目的とする。
本発明に係る光電式エンコーダは、光源と、前記光源から照射された光により測定軸に沿った光の明暗パターンを生成する第1光学格子を含むスケールと、第1導電型の第1半導体領域及びこの領域の表面に形成された第2導電型の第2半導体領域により構成される受光素子を複数含み、前記第1光学格子による同じ位相の明暗パターンを検出する前記受光素子が周期的に位置するように異なる位相の明暗パターンを検出する前記受光素子を前記測定軸方向に沿って配列して構成されると共に前記光源と一緒に前記スケールに対して相対移動可能な受光部と、両端が透光部となるように前記透光部と遮光部を前記第1光学格子による明暗パターンの周期に対応させて前記測定軸に沿って交互に並べて構成されると共に前記測定軸方向の寸法が前記第2半導体領域の前記測定軸方向の寸法よりも大きくなるように前記受光素子毎に設けられた第2光学格子と、を備えることを特徴とする。
本発明に係る光電式エンコーダによれば、受光素子毎に第2光学格子を設けており、第2光学格子の測定軸方向の寸法を、受光素子の構成要素である第2半導体領域の測定軸方向の寸法よりも大きくしている。つまり、第2半導体領域の測定軸方向の寸法を第2光学格子の測定軸方向の寸法より小さくしているため、各受光素子の受光面の面積を小さくできる。
本発明に係る光電式エンコーダにおいて、一つの前記受光素子の前記第2半導体領域は非分割である、ようにすることができる。これによれば、各受光素子の受光面の周囲の長さを短くできるので、受光部の低接合容量化を実現できる。
本発明に係る光電式エンコーダにおいて、一つの前記受光素子の前記第2半導体領域は二分割されており、これらが前記第2光学格子の両端の前記透光部と対向するように形成されている、ようにすることができる。これによれば、隣り合う受光素子におけるクロストークを抑制できる。
本発明に係る光電式エンコーダは以下のようにすることもできる。(1)一つの前記受光素子の前記第2半導体領域は複数に分割されており、これらが前記測定軸の方向に沿って間隔を設けて形成されている。(2)一つの前記受光素子の前記第2半導体領域は複数に分割されており、前記測定軸と直交する方向に沿って間隔を設けて形成されている。
本発明に係る光電式エンコーダにおいて、隣り合う前記受光素子の前記第2半導体領域の間に位置するように前記第1半導体領域に形成されると共に前記第1半導体領域よりも不純物濃度が高い第1導電型の第3半導体領域を備える、ようにすることができる。これによれば、隣り合う受光素子におけるクロストークを抑制できる。
本発明に係る光電式エンコーダによれば、各受光素子の受光面の面積を小さくできるため、スケールの光学格子が狭ピッチ化しても、低接合容量の受光部を実現できる。
以下、図面を参照して、本発明に係る光電式エンコーダの第1〜第5実施形態を説明する。なお、第2〜第5実施形態を説明する図において、既に説明した実施形態の符号で示すものと同一のものについては、同一符号を付すことにより説明を省略する。
[第1実施形態]
図1は、第1実施形態に係る光電式エンコーダ1の概略構成を示す図である。この実施形態は受光部の構造を主な特徴としているが、この理解の前提として光電式エンコーダ1について説明する。まず、エンコーダ1の構成から説明する。エンコーダ1は、発光ダイオード(LED)3と、ダイオード3からの光を変調するスケール5と、スケール5で変調された光を受光する受光部7とにより構成される。
発光ダイオード3は光源の一例であり、ダイオード3からの光Lがスケール5に照射される。スケール5はガラスなどの透明材料から構成される長尺状の透明基板9を含み、図1にはその一部が表れている。透明基板9の発光ダイオード3側に向く面と反対側の面上に第1光学格子11が形成されている。第1光学格子11は複数の遮光部13が所定のピッチを設けてリニヤ状に、かつ各遮光部13が図面の奥行き方向に延びるように、配置されたものである。遮光部13は金属(例えばクロム)などから構成される。
受光部7は、スケール5とギャップを設けて配置されている。受光部7は半導体チップであり、回路基板15に搭載されている。受光部7には、図示しない複数のフォトダイオード(以下、「フォトダイオード」をPDという場合がある。)が形成されている。これらのPDの受光面が第1光学格子11側を向いている。PDは受光素子の一例である。受光素子として、PDの替わりにフォトトランジスタを用いることもできる。回路基板15には、演算用のICチップ17が搭載されており、受光部7の複数のPDで検出された正弦波状の光の明暗パターン(光信号)を基にして、ICチップ17で変位量の演算が実行される。
受光部7等を搭載した回路基板15は、発光ダイオード3と共にホルダ19に取り付けられており、ホルダ19は、スケール5の長手方向である測定軸X方向に移動可能にされている。つまり、光電式エンコーダ1は、固定されたスケール5に対して、ホルダ19を移動させることにより、変位量を測定する。なお、発光ダイオード3と受光部7を固定し、スケール5を移動させて変位量を測定するタイプにも、本発明を適用することができる。したがって、本発明のスケールは、受光部および光源に対して、相対移動可能に配置されている。
次に、光電式エンコーダ1の測定動作について、簡単に説明する。発光ダイオード3から光Lをスケール5の第1光学格子11に照射すると、第1光学格子11により測定軸Xに沿った光の明暗パターンが生じる。そして、ホルダ19を測定軸Xに沿って移動させることにより生じる明暗パターンの変化(正弦波状の光信号)を、受光部7に形成された各フォトダイオード(PD)で検出する。詳細には、A相(0度)の明暗パターン、A相より90度だけ位相がずれたB相(90度)の明暗パターン、A相より180度だけ位相がずれたAA相(180度)の明暗パターンおよびA相より270度だけ位相がずれたBB相(270度)の明暗パターンが、それぞれに対応するPDで検出する。
各位相の明暗パターンにより発生した電気信号がICチップ17に送られる。ICチップ17では、A相およびB相に所定の処理(直流成分の除去等)をした後に、処理されたA相およびB相を基にして変位量が演算される。この結果を図示しない表示部に出力する。以上が光電式エンコーダ1の動作である。
さて、第1実施形態の主な特徴は受光部7であり、これについて詳細に説明する。まず、受光部7の構造について図2及び図3を用いて説明する。図2は受光部7の一部分の断面図であり、図3は受光部7の一部分の平面図である。受光部7は、p型の半導体基板21(第1導電型の第1半導体領域の一例)を備える。半導体基板21としてはシリコン基板が例示される。半導体基板21の表面23に所定のピッチでn型の半導体領域25(第2導電型の第2半導体領域の一例)が形成されている。半導体領域25は不純物領域ということもできる。半導体領域25は、測定軸Xと直交する方向が長手方向となる。
型の半導体基板21とn型の半導体領域25との接合部がフォトダイオード(PD)27となる。一つのPD27の半導体領域25は非分割である。半導体基板21の表面23のうち、半導体領域25が形成されている領域がPD27の受光面(明暗パターンの入射面)28となる。
A相の明暗パターンを検出するPD27、B相の明暗パターンを検出するPD27、AA相の明暗パターンを検出するPD27、BB相の明暗パターンを検出するPD27を一つのセットとしている。複数のセットが測定軸X方向に沿って配列されている。したがって、同じ位相の明暗パターンを検出するPD27が周期的に配置される。
半導体基板21の表面23は、半導体領域25を覆うようにシリコン酸化膜のような絶縁膜29で覆われている。絶縁膜29上には、複数の遮光部31が間隔を設けて形成されている。遮光部31は光を透過しない性質を有すればよく、したがって、その材料は金属(例えば、クロム、アルミニウム)や樹脂が挙げられる。
隣り合う遮光部31の間が透光部33となる。第2光学格子(インデックス格子)35は、両端(両側)が透光部33となるように透光部33と遮光部31を測定軸Xに沿って交互に並べて構成される。第2光学格子35の透光部33のピッチは、第1光学格子11(図1)の透光部14のピッチと等しくされている。これにより、第2光学格子35が第1光学格子11による明暗パターンの周期に対応するようにしている。第2光学格子35は、PD27毎に設けられている。第2光学格子35の測定軸X方向の寸法x1は、半導体領域25の測定軸X方向の寸法x2よりも大きくされている。
第2光学格子35を覆うように、シリコン酸化膜やシリコン窒化膜のような保護膜(図示せず)が半導体基板21上に形成されている。半導体基板21の裏面37の全面には各PD27の共通電極(例えばAu電極)39が形成されている。エンコーダ1の使用時、共通電極39には負電圧が印加されかつn型の半導体領域25には正電圧が印加される。
ここで、第1実施形態が第2光学格子35を設けている理由を説明する。「発明が解決しようとする課題」の欄で説明したように、より精密な測定のために第1光学格子11を狭ピッチ化すると、これに対応してPD27も狭ピッチ化する必要があるため、受光部7の接合容量が増大する。
そこで、PD27の測定軸X方向の寸法x2を大きくしてPD27の数を減らすことにより、接合容量の増大を抑制している。PD27の寸法x2が大きくなるため、第2光学格子35を配置している。このように第1実施形態では、アレイ状に配列されたPD27と第2光学格子35との併用により、第1光学格子11の狭ピッチ化に対応すると共に受光部7の低接合容量化を図っている。
第1実施形態に係る光電式エンコーダ1の主な効果を比較例と比較して説明する。図4は比較例に係る受光部7の一部分の断面図であり、図2と対応する。図4が図2と異なるのは、半導体領域25の寸法x2である。比較例では、第2光学格子35を通過した光の明暗パターンを確実に受光できるようにするために、半導体領域25の寸法x2を第2光学格子35の寸法x1よりも大きくしている。
しかし、受光面28の近傍に入射した光により発生する電子は、高い確率で半導体領域25に流れる。図5は、この様子を示す第1実施形態の受光部7の一部分を拡大した断面図である。光Lが透光部33を通り、受光面28の近傍から半導体基板21に入射することにより、電子と正孔の対が半導体基板21中に発生している。電子は半導体基板21中を減衰しながら拡散してn型の半導体領域25に流れている。実験によれば、半導体領域25から400μmだけ離れた箇所で発生した電子も半導体領域25に流れ込むことが確認されている。
一方、第2光学格子35の遮光部31のピッチは例えば8〜10μmである。したがって、図2に示すように半導体領域25の寸法x2が第2光学格子35の寸法x1より小さくても、第2光学格子35の透光部33を通って半導体基板21に入射した光により発生する電子は、この第2光学格子35に対応するPD27の半導体領域25に流すことが可能となる。つまり、半導体領域25の寸法x2を第2光学格子35の寸法x1より小さくしても、PD27として十分に機能させることができる。
以上説明したように、第1実施形態によれば、n型の半導体領域25の寸法x2を第2光学格子35の寸法x1より小さくしている(逆に言うと寸法x1を寸法x2より大きくしている)ため、半導体領域25の測定軸X方向の寸法を小さくできる。これにより、各PD27の受光面28の面積を小さくできるので、スケール5の第1光学格子11が狭ピッチ化しても、受光部7の接合容量を小さくできる。
また、第1実施形態では、各PD27のn型の半導体領域25は非分割にされている。このため、各PD27の受光面28の周囲の長さを短くできるので、この点からも受光部7の接合容量を小さくできる。
[第2実施形態]
第2実施形態については、第1実施形態との相違を中心に説明する。図6は、第2実施形態に係る光電式エンコーダに備えられる受光部7の一部分の断面図であり、図2と対応する。第2実施形態の受光部7は、p型の半導体基板21よりもp型の不純物濃度が高いp型の半導体領域(第1導電型の第3半導体領域の一例)41を備える。この領域41は不純物領域ともいい、隣り合うPD27のn型の半導体領域25の間に位置するように半導体基板21に形成されている。p型の半導体領域41は共通電極39と同じ電位にされている。
半導体領域41による効果について図7を用いて説明する。図7は、図6の一部分を拡大した断面図であり、図5と対応する。第1実施形態で説明したように、PD27-1の受光面28の近傍に入射した光により発生する電子は、高い確率でPD27-1の半導体領域25に流れる。しかし、PD27-2の半導体領域25に流れる場合もある。この場合はクロストークとなり、測定精度の低下の原因となる。
第2実施形態では、隣り合うPD27-1,27-2のn型の半導体領域25の間にp型の半導体領域41が配置されているので、クロストークの原因となる電子を領域41に流れこむようにすることができる。したがって、クロストークを抑制することができる。
[第3実施形態]
図8は、第3実施形態に係る光電式エンコーダに備えられる受光部7の一部分の断面図であり、図2と対応する。第3実施形態は、第1実施形態と異なり、一つのPD27のn型の半導体領域25を分割領域25a,25bに二分割している。分割領域25a,25bは、第2光学格子35の両端の透光部33と対向するように、半導体基板21に形成されている。
図9は、図8の一部分を拡大した断面図であり、図5と対応する。第2光学格子35の中央部の透光部33を通り、半導体基板21に入射することにより、電子と正孔の対が発生している。電子の発生場所の両側に半導体領域25があるので、電子が隣のPD27の半導体領域25に流れるのを防止することが可能となる。したがって、第3実施形態によれば、クロストークを抑制できる。
前述の通り、接合容量はフォトダイオードの面積とそのパターンエッジ長が大きいと増加する。従って、分割領域25aによる接合容量と分割領域25bによる接合容量とを合計した値が、測定軸X方向の寸法が第2光学格子35の寸法x1と等しいフォトダイオードの接合容量より小さくなるように、寸法x2a,x2bを設定すれば、受光部7の低接合容量化を図ることができる。ここで、寸法x2aは分割領域25aの測定軸X方向の寸法であり、寸法x2bは分割領域25bの測定軸X方向の寸法である。
[第4実施形態]
第4実施形態に係る光電式エンコーダについては、第1実施形態の相違を中心に説明する。図10は、第4実施形態に係る光電式エンコーダに備えられる受光部7の一部分の平面図であり、第1実施形態の図3と対応する。第4実施形態では、一つのPDのn型の半導体領域25は、分割領域25a,25bに二分割されており、分割領域25a,25bが測定軸Xと直交する方向に沿って間隔を設けて形成されている。
第4実施形態によれば、第1実施形態で説明したように、各PDの受光面の面積を小さくできるため、受光部7の低接合容量化を図ることできる。
また、分割領域25aと分割領域25bの間隔Gは、測定軸X方向の寸法x2よりも大きいので、各PDの受光面の周囲の長さを小さくできる。この点からも受光部7の接合容量を小さくできる。
[第5実施形態]
図11は、第5実施形態に係る光電式エンコーダの受光部に形成された一つのPDの断面図である。これまでの実施形態では、n型の半導体領域25が非分割又は二分割の場合であったが、半導体領域25が三分割以上であってもよい。第5実施形態は、半導体領域25が分割領域25a,25b,25cに三分割された場合である。このような構造であっても第1実施形態と同様の効果を得ることができる。
第1実施形態に係る光電式エンコーダの概略構成を示す図である。 図1の受光部の一部分の断面図である。 図1の受光部の一部分の平面図である。 比較例に係る受光部の一部分の断面図である。 図2の受光部の一部分を拡大した断面図である。 第2実施形態に係る光電式エンコーダに備えられる受光部の一部分の断面図である。 図6の一部分を拡大した断面図である。 第3実施形態に係る光電式エンコーダに備えられる受光部の一部分の断面図である。 図8の一部分を拡大した断面図である。 第4実施形態に係る光電式エンコーダに備えられる受光部の一部分の平面図である。 第5実施形態に係る光電式エンコーダの一つのPDの断面図である。
符号の説明
1・・・光電式エンコーダ、3・・・発光ダイオード、5・・・スケール、7・・・受光部、9・・・透明基板、11・・・第1光学格子、13・・・遮光部、14・・・透光部、15・・・回路基板、17・・・ICチップ、19・・・ホルダ、21・・・p型の半導体基板(第1半導体領域の一例)、23・・・半導体基板の表面、25・・・n型の半導体領域(第2半導体領域の一例)、25a,25b,25c・・・分割領域、27,27−1,27−2・・・フォトダイオード(PD)、28・・・受光面、29・・・絶縁膜、31・・・遮光部、33・・・透光部、35・・・第2光学格子、37・・・半導体基板の裏面、39・・・共通電極、41・・・p型の半導体領域(第3半導体領域の一例)、x1・・・第2光学格子35の測定軸X方向の寸法、x2・・・半導体領域25の測定軸X方向の寸法、x2a・・・分割領域25aの測定軸X方向の寸法、x2b・・・分割領域25bの測定軸X方向の寸法、G・・・分割領域25aと分割領域25bの間隔

Claims (6)

  1. 光源と、
    前記光源から照射された光により測定軸に沿った光の明暗パターンを生成する第1光学格子を含むスケールと、
    第1導電型の第1半導体領域及びこの領域の表面に形成された第2導電型の第2半導体領域により構成される受光素子を複数含み、前記第1光学格子による同じ位相の明暗パターンを検出する前記受光素子が周期的に位置するように異なる位相の明暗パターンを検出する前記受光素子を前記測定軸方向に沿って配列して構成されると共に前記光源と一緒に前記スケールに対して相対移動可能な受光部と、
    両端が透光部となるように前記透光部と遮光部を前記第1光学格子による明暗パターンの周期に対応させて前記測定軸に沿って交互に並べて構成されると共に前記測定軸方向の寸法が前記第2半導体領域の前記測定軸方向の寸法よりも大きくなるように前記受光素子毎に設けられた第2光学格子と、を備える
    ことを特徴とする光電式エンコーダ。
  2. 一つの前記受光素子の前記第2半導体領域は非分割である、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  3. 一つの前記受光素子の前記第2半導体領域は二分割されており、これらが前記第2光学格子の両端の前記透光部と対向するように形成されている、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  4. 一つの前記受光素子の前記第2半導体領域は複数に分割されており、これらが前記測定軸の方向に沿って間隔を設けて形成されている、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  5. 一つの前記受光素子の前記第2半導体領域は複数に分割されており、前記測定軸と直交する方向に沿って間隔を設けて形成されている、
    ことを特徴とする請求項1に記載の光電式エンコーダ。
  6. 隣り合う前記受光素子の前記第2半導体領域の間に位置するように前記第1半導体領域に形成されると共に前記第1半導体領域よりも不純物濃度が高い第1導電型の第3半導体領域を備える、
    ことを特徴とする請求項1〜5のいずれか1項に記載の光電式エンコーダ。
JP2004017568A 2004-01-26 2004-01-26 光電式エンコーダ Expired - Lifetime JP4372566B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004017568A JP4372566B2 (ja) 2004-01-26 2004-01-26 光電式エンコーダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004017568A JP4372566B2 (ja) 2004-01-26 2004-01-26 光電式エンコーダ

Publications (2)

Publication Number Publication Date
JP2005208015A JP2005208015A (ja) 2005-08-04
JP4372566B2 true JP4372566B2 (ja) 2009-11-25

Family

ID=34902349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004017568A Expired - Lifetime JP4372566B2 (ja) 2004-01-26 2004-01-26 光電式エンコーダ

Country Status (1)

Country Link
JP (1) JP4372566B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5974329B2 (ja) 2012-02-15 2016-08-23 株式会社ミツトヨ 光電式エンコーダ

Also Published As

Publication number Publication date
JP2005208015A (ja) 2005-08-04

Similar Documents

Publication Publication Date Title
JP4476682B2 (ja) 光電式エンコーダ
JP5974329B2 (ja) 光電式エンコーダ
JP2010256080A (ja) 光電式エンコーダ及びその動作制御方法
US6906311B2 (en) Photoelectric encoder
JP4834141B2 (ja) 光電式エンコーダ
JP4372566B2 (ja) 光電式エンコーダ
JP2006138775A (ja) 光学式エンコーダ用受光素子及び光学式エンコーダ
JP4546485B2 (ja) 光学位置測定システム用の走査ヘッド
JP4350419B2 (ja) 光電式エンコーダ
JP6684087B2 (ja) 光エンコーダ
JP2007071634A (ja) 光電式エンコーダ
JP4265928B2 (ja) 光電式エンコーダ
JP2004309387A (ja) 光学式エンコーダ
JP4667653B2 (ja) 光学式エンコーダ
JP2004163302A (ja) 光学式エンコーダ
JP2004219380A (ja) 光電式エンコーダ
JP2005207822A (ja) 光学式エンコーダ用光検出器
JP2007127532A (ja) 光学式エンコーダ
JPH0854258A (ja) 光学式エンコーダ
JP2002350188A (ja) 光学式エンコーダ
JP2006138816A (ja) 光学式変位測定装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061130

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090702

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090902

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4372566

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150911

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250