JP2004048005A - 金属薄膜基板上に形成された薄膜トランジスタ - Google Patents

金属薄膜基板上に形成された薄膜トランジスタ Download PDF

Info

Publication number
JP2004048005A
JP2004048005A JP2003191696A JP2003191696A JP2004048005A JP 2004048005 A JP2004048005 A JP 2004048005A JP 2003191696 A JP2003191696 A JP 2003191696A JP 2003191696 A JP2003191696 A JP 2003191696A JP 2004048005 A JP2004048005 A JP 2004048005A
Authority
JP
Japan
Prior art keywords
thin film
less
metal thin
thickness
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003191696A
Other languages
English (en)
Inventor
Masahiro Adachi
足立 昌浩
Apostolos T Voutsas
アポストロス ティ.ヴートサス
John W Hartzell
ジョン ダブリュ ハーチェル
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Publication of JP2004048005A publication Critical patent/JP2004048005A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1262Multistep manufacturing methods with a particular formation, treatment or coating of the substrate
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0007Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising metal oxide memory material, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/6675Amorphous silicon or polysilicon transistors
    • H01L29/66757Lateral single gate single channel transistors with non-inverted structure, i.e. the channel layer is formed before the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78603Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the insulating substrate or support
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2213/00Indexing scheme relating to G11C13/00 for features not covered by this group
    • G11C2213/30Resistive cell, memory material aspects
    • G11C2213/31Material having complex metal oxide, e.g. perovskite structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures
    • H10K2102/3023Direction of light emission
    • H10K2102/3026Top emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

【課題】固相結晶法を利用したフレキシブル基板TFTの製造において、レーザアニール法を利用して製造されたTFTと同等の高性能TFTを得る。
【解決手段】工程302において、平坦面を備えた金属薄膜基板が供給される。工程304において、上記基板の表面に平坦化処理が施される。工程306において、上記平坦化された金属薄膜基板の表面に絶縁層が積層される。工程308において、上記絶縁層上に非晶質シリコン層が積層される。工程310において、上記非晶質シリコン層を固相結晶化法でアニール処理して多結晶シリコンを生成させる。工程312において、上記多結晶シリコン層上にゲート絶縁膜を熱成長させる。工程314において、トランジスタのゲート領域、ソース領域及びドレイン領域を形成する。
【選択図】 図2

Description

【0001】
【発明の属する技術分野】
本発明は、集積回路(IC)や液晶ディスプレイ(LCD)の製法に関し、特に、金属薄膜基板上に形成された薄膜トランジスタ(TFTs)及びその製造方法に関する。
【0002】
【従来の技術】
高品位多結晶シリコン素材は、集積回路と液晶ディスプレイのような微細電子素子とに用いられる高性能薄膜トランジスタ(Thin Film Transistor:以下、「TFT」ともいう。)の構成要素となる。多結晶シリコン素材の品位が高くなればなるほど、すなわち、その品位が単結晶シリコン素材の品位に近づけば近づくほど、結果として得られる素子の性能は良くなる。そのため、表示装置や他の電子素子に使用される高品位多結晶シリコン素材を得る方法を開発することが望まれている。
【0003】
上記素子の性能は、活性層に使用される結晶の品位のみならず、その活性層を被覆するゲート絶縁膜の品位によっても影響を受ける。上記ゲート絶縁体と多結晶シリコン層との間に形成される界面の性質と同様、ゲート絶縁体の物質単体(bulk)としての性質も、上記電子素子を駆動するためには、非常に重要である。単結晶シリコン素子や多結晶シリコン素子にとって、最良のゲート絶縁膜はSiO2 であり、物質単体として、あるいは界面状態においても優れた性質を備えた高品位SiO2 薄膜を得る最良の方法は、熱酸化法である。
【0004】
シリコン製基板は、約1200℃に達する熱処理に耐えうる十分に高い融点を持つ。従って、900〜1150℃における熱酸化処理は、シリコンウェハーに適用可能である。しかし、一般的にLCD、あるいは柔軟性や適合性を要する微細構造などのように、基板がプラスチックやガラスで形成されている場合、加熱しうる最大の処理温度範囲は、かなり低温域に限られてしまう。
【0005】
プラスチック等に代わる基板素材の使用は、他の方法では作り得ない新しい製品の実現を可能とすることから関心が寄せられている。特に関心を集めている技術分野に基板の柔軟性が挙げられる。ここでいう柔軟性とは、微細な素子構造(microsystems)が屈曲、追随することができる能力、すなわち、外部から「応力(ストレス)」が加わっても素子の機能を完全に保つことができる能力である。この特性を持つ基板素材は、様々な単一機能製品の製造や、様々な外界の環境下においてもその機能を維持しうる丈夫な製品の製造を可能にすることができる。従って、外界からの応力にほとんど影響を受けないほど丈夫であり、且つ、高性能であり、且つ、低コストで製造することができるTFT微細電子素子を組み込んでいる電子機器、センサ、あるいは他の製品を備えたディスプレイのような微細構造を開発することが望まれている。
【0006】
超高性能トランジスタは、レーザアニール法によって、様々な基板上での形成が可能である。しかし、この技術は、一般的に、固相結晶法(Solid−Phase−Crystallization :以下、「SPC」ともいう。)に比べてかなりコストが高くつくという問題がある。しかし、固相結晶法の場合、アニール処理温度は、ガラス製基板を用いる場合の温度に制限されてしまうため、レーザーアニール法によって得られる性能を得ることはできない。
【0007】
【非特許文献1】
“High−Mobility Poly−Si TFT ’s Fabricated on Flexible Stainless−Steel Substrates ” by T. Serikawa and F. Omata published in IEEE Electron Dev.Lett., 20, 574(1999)
【非特許文献2】
“P−channel Polycrystalline Silicon Thin Film Transistors on Steel FoilSubstrates” by M. Wo and S. Wagner published in Mat. Res. Soc. Symp. Proc., 2001
【0008】
【発明が解決しようとする課題】
それ故、本発明は、上記固相結晶法を利用したフレキシブル基板TFTの製造において、レーザアニール法を利用して製造されたTFTと同等の高性能TFTを得ることを課題とする。また、本発明は、柔軟な素子構造に使用される柔軟な基板上に製造可能な上記高性能TFTを得ることを課題とする。
【0009】
【課題を解決するための手段】
本発明は、一般的に普及しており低コストである多結晶シリコン製TFT製造プロセスを用いて、フレキシブルな微細素子構造を有する製品への応用が可能な高性能素子の製造を可能とする技術を提供する。
【0010】
本発明は、固相結晶化された多結晶シリコン素材に、高温酸化の手法を組み合わせたものと考えることができる。上記高温酸化法は、通常のフレキシブル基板には適用できない900〜1150℃の温度範囲を必要とする。本発明において、初期基板として柔軟な薄い金属薄を使用することにより、上記問題を解決する。初期段階の金属薄膜基板に適当な処理を行えば、上記金属薄膜基板は1000℃より高い温度に耐えることができる。
【0011】
このように、フレキシブル基板上に薄膜トランジスタ(TFT)を形成する方法が開示されている。その方法は、以下の工程を含む。
【0012】
即ち、厚さ10μm以上、500μm以下のチタニウム、インコネル合金、ステンレス鋼、あるいはコバール合金等からなる金属薄膜基板を供給する工程、基板上に非晶質シリコン膜を積層する工程、上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程、熱成長させ上記多結晶シリコン膜上にゲート絶縁膜を形成する工程を含む。
【0013】
上記非晶質シリコン層をアニール処理する工程では、固相結晶化アニール処理(solid−phase crystallization (SPC) annealing process )を用いて、700℃でまたは700℃を越える温度で処理することができる。熱成長させて上記ゲート絶縁膜を形成する工程は、厚さ10nm以上、100nm以下の多結晶シリコン層である第1の薄膜を形成するステップと、上記第1の薄膜を900〜1150℃の温度で、2〜60分間、熱酸化処理する工程とを含む。
【0014】
そのほか、熱成長させ上記ゲート絶縁膜を形成する工程は、上記第1の薄膜上へ酸化物からなる第2の薄膜をプラズマ積層する工程を含んでいても良い。この場合、上記第1の薄膜の厚さは10〜50nmとし、上記酸化物からなる第2の薄膜の厚さは40〜100nmとしても良い。
【0015】
具体的に請求項1の発明は、フレキシブル基板上に薄膜トランジスタを形成する方法であって、平坦面を有する金属薄膜基板を供給する工程と、上記金属薄膜基板上に、非晶質シリコン膜を積層する工程と、上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程と、上記多結晶シリコン膜上にゲート絶縁膜を熱成長させる工程とを有する、金属薄膜基板上への薄膜トランジスタの形成方法である。
【0016】
請求項2の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程が、700℃でまたは700℃より高い温度でアニール処理する工程を含む。
【0017】
請求項3の発明は、請求項2に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程が、固相結晶化アニール処理を用いる工程を含む。
【0018】
請求項4の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程が、レーザ照射水平成長アニール処理を用いる工程を含む。
【0019】
請求項5の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面を平坦化する工程と、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程とをさらに有し、上記非晶質シリコン膜を積層する工程が、上記絶縁層上に非晶質膜を積層する工程を含む。
【0020】
請求項6の発明は、請求項5に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程をさらに有し、上記ゲート絶縁膜を熱成長させる工程が、上記シリコンの島状領域上にゲート絶縁膜を熱成長させる工程を含む。
【0021】
請求項7の発明は、請求項6に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、トランジスタのゲート領域と、ソース領域と、ドレイン領域とを形成する工程をさらに含む。
【0022】
請求項8の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦面を有する金属薄膜基板を供給する工程が、チタニウム、インコネル合金、ステンレス鋼及びコバール合金を含む群から選択される少なくとも1種の金属薄膜材料を供給する工程を含む。
【0023】
請求項9の発明は、請求項8に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦面を有する金属薄膜基板を供給する工程が、10μm以上、500μm以下の厚さを有する金属薄膜を供給する工程を含む。
【0024】
請求項10の発明は、請求項9に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦面を有する金属薄膜基板を供給する工程が、50μm以上、250μm以下の厚さを有する金属薄膜を供給する工程を含む。
【0025】
請求項11の発明は、請求項10に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦面を有する金属薄膜基板を供給する工程が、100μm以上、200μm以下の厚さを有する金属薄膜を供給する工程を含む。
【0026】
請求項12の発明は、請求項5に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面を平坦化する工程が、上記金属薄膜基板表面を化学的機械研磨する工程を含む。
【0027】
請求項13の発明は、請求項12に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面を化学的機械研磨する工程は、約200nmまたは約200nm未満の平均表面粗さまで研磨する工程を含む。
【0028】
請求項14の発明は、請求項5に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面を平坦化する工程は、上記金属薄膜基板表面上に誘電材料をスピンコートする工程を含む。
【0029】
請求項15の発明は、請求項14に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面上に誘電材料をスピンコートする工程が、200nm以上、500nm以下の厚さを有する誘電体層を形成する工程を含む。
【0030】
請求項16の発明は、請求項14に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記金属薄膜基板表面上に誘電材料をスピンコートする工程が、スピンオングラス用材料から誘電体層を形成する工程を含む。
【0031】
請求項17の発明は、請求項5に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程が、SiO2 、SiNx 及びSiONを含む群から選択される少なくとも1種の材料を用いて電気絶縁層を積層する工程を含む。
【0032】
請求項18の発明は、請求項17に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程が、0.5μm以上、2μm以下の厚さを有する絶縁層を積層する工程を含む。
【0033】
請求項19の発明は、請求項18に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、0.5μm以上、1.5μm以下の厚さを有する絶縁層を積層する工程を含む。
【0034】
請求項20の発明は、請求項19に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、0.5μm以上、1μm以下の厚さを有する絶縁層を積層する工程を含む。
【0035】
請求項21の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜を積層した後、しきい電圧を調節するために上記非晶質シリコンへP型ドーピングを行う工程をさらに有する。
【0036】
請求項22の発明は、請求項3に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記固相結晶化アニール処理を用いる工程が、加熱炉及び急速昇温アニール処理を含む群から選択される少なくとも1種の処理を用いる工程を含む。
【0037】
請求項23の発明は、請求項22に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、700℃または700℃よりも高い温度で行われる上記非晶質シリコン膜をアニール処理する工程が、700℃以上、1000℃以下、2秒以上、30分以下でアニール処理する工程を含む。
【0038】
請求項24の発明は、請求項23に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記700℃または700℃よりも高い温度で行われる非晶質シリコン膜をアニール処理する工程が、750℃以上、950℃以下、2秒以上、30分以下でアニール処理する工程を含む。
【0039】
請求項25の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記ゲート絶縁膜を熱成長させる工程が、第1の薄膜多結晶シリコン層を形成する工程と、上記第1の膜層を熱酸化する工程とを含む。
【0040】
請求項26の発明は、請求項25に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜層を熱酸化する工程が、900℃以上、1150℃以下、2分以上、60分以下でアニール処理する工程を含む。
【0041】
請求項27の発明は、請求項26に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の薄膜多結晶シリコン層を形成する工程が、10nm以上、100nm以下の厚さを有する第1の膜層を形成する工程を含む。
【0042】
請求項28の発明は、請求項25に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記ゲート絶縁膜を熱成長させる工程が、上記第1の膜上に酸化物の第2の層をプラズマ積層する工程をさらに含む。
【0043】
請求項29の発明は、請求項28に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜層を形成する工程が、10nm以上、50nm以下の厚さを有する第1の膜層を積層する工程を含む。
【0044】
請求項30の発明は、請求項29に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜層を積層する工程が、20nm以上、30nm以下の厚さを有する層を積層する工程を含む。
【0045】
請求項31の発明は、請求項28または29に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜上に酸化物の第2の層をプラズマ積層する工程が、40nm以上、100nm以下の厚さを有する層を積層する工程を含む。
【0046】
請求項32の発明は、請求項31に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜上に酸化物の第2の層をプラズマ積層する工程が、50nm以上、70nm以下の厚さを有する層を積層する工程を含む。
【0047】
請求項33の発明は、請求項28に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記第1の膜上に酸化物の第2の層をプラズマ積層する工程が、TEOS(テトラエトキシシラン)−SiO2 材料を積層する工程を含む。
【0048】
請求項34の発明は、請求項6に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程が、上記非晶質シリコン膜のアニール処理後に、多結晶島状領域にパターニングする工程を含む。
【0049】
請求項35の発明は、請求項6に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程が、上記非晶質シリコン膜のアニール処理前に、非晶質シリコンの島状領域にパターニングする工程を含む。
【0050】
請求項36の発明は、請求項1に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜を積層する工程が、25nm以上、150nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む。
【0051】
請求項37の発明は、請求項36に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜を積層する工程が、25nm以上、100nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む。
【0052】
請求項38の発明は、請求項37に記載の金属薄膜基板上への薄膜トランジスタの形成方法であって、上記非晶質シリコン膜を積層する工程が、35nm以上、60nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む。
【0053】
請求項39の発明は、フレキシブル基板上に薄膜トランジスタを形成する方法であって、平坦面を有する金属薄膜基板を供給する工程と、上記金属薄膜基板の表面を平坦化する工程と、上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程と、上記電気絶縁層上に非晶質シリコン膜を積層する工程と、上記非晶質シリコン膜を700℃または700℃よりも高い温度でアニール処理して多結晶シリコン膜を形成する工程と、ゲート絶縁膜を熱成長させる工程とを含む、金属薄膜基板上への薄膜トランジスタの形成方法である。
【0054】
請求項40の発明は、フレキシブル基板上に形成された薄膜トランジスタであって、平坦面を有する金属薄膜基板と、上記金属薄膜基板表面上に積層された電気絶縁層と、上記電気絶縁層上の多結晶シリコン膜から形成されたドレイン領域、ソース領域及びチャネル領域と、上記多結晶シリコン膜上に積層され、1.4以上、1.6以下の屈折率を有するゲート絶縁酸化膜と、上記ゲート絶縁酸化膜上に積層されたゲート電極とを有する薄膜トランジスタである。
【0055】
請求項41の発明は、請求項40に記載の薄膜トランジスタであって、上記金属薄膜基板が、10μm以上、500μm以下の厚さを有する。
【0056】
請求項42の発明は、請求項41に記載の薄膜トランジスタであって、上記金属薄膜基板が、50μm以上、250μm以下の厚さを有する。
【0057】
請求項43の発明は、請求項42に記載の薄膜トランジスタであって、上記金属薄膜基板が、100μm以上、200μm以下の厚さを有する。
【0058】
請求項44の発明は、請求項40に記載の薄膜トランジスタであって、上記金属薄膜基板の表面が、約200nmまたは約200nm未満の平均表面粗さを有する。
【0059】
請求項45の発明は、請求項40に記載の薄膜トランジスタであって、上記金属薄膜基板上に積層され、200nm以上、500nm以下の厚さを有するスピンコート誘電材料をさらに有する。
【0060】
請求項46の発明は、請求項45に記載の薄膜トランジスタであって、上記スピンコート誘電材料が、スピンオングラス用材料である。
【0061】
請求項47の発明は、請求項40に記載の薄膜トランジスタであって、上記電気絶縁層が、SiO2 、SiNx 及びSiONを含む群から選択される少なくとも1種の材料から形成されている。
【0062】
請求項48の発明は、請求項47に記載の薄膜トランジスタであって、上記電気絶縁層が、0.5μm以上、2μm以下の厚さを有する。
【0063】
請求項49の発明は、請求項48に記載の薄膜トランジスタであって、上記電気絶縁層が、0.5μm以上、1.5μm以下の厚さを有する。
【0064】
請求項50の発明は、請求項49に記載の薄膜トランジスタであって、上記電気絶縁層が、0.5μm以上、1μm以下の厚さを有する。
【0065】
請求項51の発明は、請求項40に記載の薄膜トランジスタであって、上記多結晶シリコン膜が、25nm以上、150nm以下の厚さを有する。
【0066】
請求項52の発明は、請求項51に記載の薄膜トランジスタであって、上記多結晶シリコン膜が、25nm以上、100nm以下の厚さを有する。
【0067】
請求項53の発明は、請求項52に記載の薄膜トランジスタであって、上記多結晶シリコン膜が、35nm以上、60nm以下の厚さを有する。
【0068】
請求項54の発明は、請求項40に記載の薄膜トランジスタであって、上記ゲート絶縁酸化膜が、10nm以上、100nm以下の厚さを有する。
【0069】
請求項55の発明は、請求項40または54に記載の薄膜トランジスタであって、上記ゲート絶縁酸化膜が、1.4以上、1.6以下の屈折率を有する第1の酸化膜層と、上記第1の酸化膜層上に積層され、1.4以上、2以下の屈折率を有する第2の酸化膜層とを含む。
【0070】
請求項56の発明は、請求項55に記載の薄膜トランジスタであって、上記第1の酸化膜層が、20nm以上、30nm以下の厚さを有する。
【0071】
請求項57の発明は、請求項55に記載の薄膜トランジスタであって、上記第2の酸化膜層が、40nm以上、100nm以下の厚さを有する。
【0072】
請求項58の発明は、請求項57に記載の薄膜トランジスタであって、上記第2の酸化膜層が、50nm以上、70nm以下の厚さを有する。
【0073】
請求項59の発明は、請求項55に記載の薄膜トランジスタであって、上記第2の酸化膜層が、SiO2 材料から形成されている。
【0074】
請求項60の発明は、請求項55に記載の薄膜トランジスタであって、上記第1の酸化膜層が、SiO2 材料から形成されている。
【0075】
請求項61の発明は、請求項40に記載の薄膜トランジスタであって、上記金属薄膜基板が、チタニウム、インコネル合金、ステンレス鋼及びコバール合金を含む群から選択される少なくとも1種の材料から形成されている。
【0076】
上記各方法の詳細及びフレキシブル基板上の薄膜トランジスタに関しては後に説明する。
【0077】
【発明の実施の形態】
本発明の実施の形態について、図面を参照しながら詳細に説明する。
【0078】
図1は、本発明のフレキシブル基板上に形成された薄膜トランジスタ(TFT)の部分断面図である。
【0079】
上記TFT100は、基板表面104を備えた金属薄膜基板102を有する。上記金属薄膜基板102は、チタニウム、インコネル合金、ステンレス鋼(304SS鋼)、あるいはコバール合金等の素材で形成されている。絶縁層106は、上記金属薄膜基板102の基板表面に積層されている。ドレイン電極108、ソース電極110及びチャネル領域112は、絶縁層106上に積層された多結晶シリコン113から形成されている。上記TFTの製造工程は、活性層の多結晶シリコンの島状領域が絶縁層上に形成されるシリコン・オン・インシュレータ法(silicon on insulator (SOI) process)である。屈折率が1.4以上、1.6以下のゲート絶縁酸化膜114は、多結晶シリコン上に積層されている。ゲート電極116は、上記ゲート絶縁酸化膜114上に積層されている。熱酸化処理がなされたゲート絶縁酸化膜114により、TFTの性能は向上する。即ち、熱酸化処理は、キャリア伝導を妨げ得る結晶構造上の欠陥を消滅させることができる。更に、熱酸化した、あるいは熱成長して形成されたゲート絶縁物質により、上記TFTのしきい電圧は、より厳密に制御される。
【0080】
しかし、熱酸化成長により得られた酸化物と他の酸化方式、例えば、プラズマ照射によるTEOS酸化法などにより得られた酸化物とを明確に区別することは困難である。そこで、それらを区別する1つの指標になるのが、屈折率である。完全な熱酸化物の屈折率は、1.46となるはずである。しかし、プロセスの変動(process variations)により、常に完全な熱酸化物が生成されるとはいえない。従って、1.4から1.6程度の屈折率を有する熱酸化物は、本発明の多くの局面において十分であると認められる。
【0081】
上記金属薄膜基板102は、10μm以上、500μm以下の厚み118を有する。また、上記金属薄膜基板102は、50μm以上、250μm以下の厚み118を有することが好ましい。さらに、上記金属薄膜基板102は、100μm以上、200μm以下の厚み118を有することが最も好ましい。より薄い金属薄膜基板が好ましい。
【0082】
一般に、金属薄膜基板は、厚さ200μmまたは200μm未満であれば、確実に順応性を発揮する。しかし、非常に柔軟性を要求される基板においては、厚さ150μm以下であることが要求される。また、軽量化の面でも、より薄い基板は有利である。
【0083】
上記金属薄膜基板表面104は、約200nmまたは200μm未満の平均表面粗さ(不図示)を有する。このレベルの表面粗さは、以下の2つの方法のうち、いずれか1つの方法により達成される。第1の方法においては、200nm以上、500nm以下の厚さ122をもつスピンコート用誘電材料120が上記絶縁層106を被覆するように積層される。
【0084】
ある局面においては、スピンコート用誘電材料として、スピンオングラス(Spin−On−Glass :以下、「SOG」ともいう。)材料を使用する。あるいは、表面粗さの調整は、化学的機械研磨法(Chemical−Mechanical Polishing :以下、「CMP」ともいう。)を用いても達成することができる。上記CMP法を採用した場合、上記スピンコート用誘電材料120を使用する必要はない。
【0085】
上記電気絶縁層106は、SiO2 、SiNx あるいはSiON等の材料からなり、その厚さ124は、0.5μm以上、2μm以下である。また、上記絶縁層の厚さ124は、0.5μm以上、1.5μm以下であることが好ましい。更に、上記絶縁層の厚さ124は、0.5μm以上、1μm以下であることが最も好ましい。このように、絶縁層をより薄くすると、処理量(スループット)は増加するとともに、基板に生じる応力は減少する。
【0086】
一般的に、基板にかかる応力は、上記基板の両面に積層することによって均衡が保たれる。それゆえ、上記絶縁層の厚さを薄くすることは、上記スループットと応力の両方の面から好ましい。しかし、絶縁層が薄すぎると、十分な絶縁性が得られず、基板とTFT表面113との間の寄生カプリング(寄生容量)が増大する。
【0087】
また、上記絶縁層は、上記金属薄膜基板からの不純物の拡散を防止する作用を、ある程度、有する。即ち、上記絶縁層は、拡散防止層としても機能していると言える。従って、スループットの増加及び金属薄膜基板に生じる応力の減少という利用面と拡散防止層としての利用面という両方の利用面から、上記絶縁層の厚さを最適化する必要がある。
【0088】
上記多結晶シリコン113は、25nm以上、150nm以下の厚さ126を有する。また、上記多結晶シリコン113は、25nm以上、100nm以下の厚さ126を有することが好ましい。更に、上記多結晶シリコン113は、35nm以上、60nm以下の厚さ126を有することが最も好ましい。
【0089】
上記多結晶シリコン層の厚さは、TFTの性能を左右する。シリコン膜が分厚くなると、高い電荷移動度と大きなON電流量とを供給することができるより良好な微細構造(例えば、結晶粒が大きい)を形成することができる。しかし、厚いシリコン膜のTFTは、OFF電流(リーク電流)が大きい傾向を示す。
【0090】
従って、OFF電流を低く押さえる必要のある場合には、薄いシリコン膜を使用することが好ましい。一般的に、画素に使用されるTFTには、低いOFF電流が要求される。
【0091】
熱成長して形成された誘電体を用いたTFTは、厚いシリコン膜と薄いシリコン膜の両方の利点を兼ね備えることができる。熱成長して形成されたSiO2 膜は、その成長中に上記多結晶シリコンの一部を消費する。従って、より厚い多結晶シリコン膜を用いて熱成長させると、微細構造がもつ長所をえることができ、誘電体の成長中に、多結晶シリコン膜の厚さが薄くなり、リーク電流を低くすることができる。
【0092】
通常、SiO2 膜は、誘電体層の厚さの約54%に相当する厚さの多結晶シリコン膜を消費する。言い換えれば、熱によりSiO2 膜を500Åに成長させようとすると、約250Åの多結晶シリコン膜が消費されることになる。従って、このとき、500Åの多結晶シリコン膜を残そうとすると、熱酸化処理前において750Å以上の多結晶シリコン層が必要となる。熱によりSiO2 膜を約1000Åに成長させようとすると、最終的に500Åの多結晶シリコン膜を残すためには、初期状態の多結晶シリコン層の厚さは、一層厚くする(約1000Å)必要がある。
【0093】
全般的に、ゲート絶縁酸化膜114の厚さ128は、10nm以上、100nm以下である。本実施形態では、上記ゲート絶縁膜114は、もっぱら熱成長して形成されたSiO2 のみによって形成されている。しかし、ゲート絶縁膜114は、製造時間を短縮するために積層して形成することも可能である。
【0094】
ゲート絶縁酸化膜114は、屈折率が1.4以上、1.6以下である第1の酸化膜層を有する。上記第1の酸化膜層は、熱成長により形成されている。上記ゲート絶縁酸化膜114は、上記第1の酸化膜層上に積層形成された第2の酸化膜層を備える。そして、上記第2の酸化膜層の屈折率は、1.4以上、2.0以下である。上記第2の酸化膜層は、プラズマ積層法によって形成することも可能である。
【0095】
上記第1の酸化膜層は、20nm以上、30nm以下の厚さを有する。一方、上記第2の酸化膜層は、40nm以上、100nm以下の厚さを有する。また、上記第2の酸化膜層は、50nm以上、70nm以下の厚さを有することが好ましい。典型的には、上記第1の酸化膜と第2の酸化膜は、ともにSiO2 材料で形成されている。
【0096】
次に本実施形態の作用について説明する。
【0097】
本発明のTFTは、固相結晶化法で生成された多結晶シリコン材料に対して、高温熱酸化法を組み合わせたものである。上記熱酸化法は、従来のフレキシブル基板では適用し得ない900〜1150℃の温度を要する。しかし、本発明において、この熱の問題は、柔軟な金属薄膜を使用することにより解決されている。
【0098】
上記熱酸化法と固相結晶化法との組合せは、以下の2つの利点を備えている。
【0099】
1)まず、優れた素材品位と優れた界面の品位とを備えたゲート絶縁膜の形成を可能とし、2)また、多結晶シリコン粒中の欠陥を効果的にアニール処理することで、上記多結晶シリコン膜自体の品質を向上させる。
【0100】
これらの利点により、本発明に係る製造方法で形成された素子は、非常に高い電荷移動性と、低いしきい電圧及びしきい電圧下における非常に急峻な(ON電流の)立ち上がり(very steep subthreshold swing )といった特徴を兼ね備えている。
【0101】
上記金属薄膜自体が200μmまたは200μm未満の十分に薄い場合、容易に曲げたり巻いたりすることができる。このような金属薄膜上に形成された素子構造は丈夫であり、その上、上述の通り「柔軟性」を有する。
【0102】
このように、上記柔軟性を有する微細装置は、表示装置のみ、駆動用電子素子を備えた表示装置、駆動用電子装置と感知用電子装置とを備えた表示装置、独立した単体で動作可能であるセンサ基板やフレキシブルメモリ装置のような表示装置を備えていないシステム、または、入出力操作のために他の装置に取り付け可能であるが表示装置を備えていないシステムを構成してもよい。
【0103】
また、本発明は、304SS鋼、コバール合金、インコネル合金、チタン、あるいはこれらと同等の金属からなる金属薄膜基板に、600℃以上、900℃以下の温度範囲におけるSi膜の固相結晶化を組み合わせたものであり、このときSi膜の厚さは、500Å以上、1500Å以下である。
【0104】
更に、本発明に係る上記基板の製造工程は、金属層を積層する前に金属薄膜基板の表面を平坦化する工程を含む。金属膜の表面が非常に粗いとTFTの性能が低下するなどの良くない事柄が引き起こされるのであれば、この金属薄膜基板の表面を平坦化する工程は重要である。
【0105】
上記熱酸化処理は、100Å以上、1000Å以下の厚さのSiO2 ゲート絶縁膜を熱成長させるために、950℃以上、1200℃以下の温度で進行させる。
【0106】
この工程の変形例として、200Å以上、300Å以下といった薄いゲート絶縁層を熱成長させた後、例えば、プラズマ強化化学蒸着法(PECVD)のように異なった手法を用いて、SiO2 ゲート絶縁体を積層することにより、最終的に、層の厚さが約1000Åとなるようにしてもよい。この変形例は、様々な状況において、工程のスループットを向上させる。
【0107】
図2は、フレキシブル基板上に薄膜トランジスタ(TFT)を形成するための本発明に係る方法を示すフローチャート図である。図に示された方法は、明確に付番された順序に従って描かれてはいるが、きちんとした説明がなければ、付番された番号から、順序を推量することはできない。いくつかの工程は、省略されているかもしれないし、または並行して行われているかもしれないし、あるいは、厳密に順序にとらわれることなく行われているかもしれない。
【0108】
上記方法は、工程300から始まる。工程302において、平坦面を備えた金属薄膜基板が供給される。工程304において、上記基板の表面に平坦化処理が施される。工程306において、上記平坦化された金属薄膜基板の表面に絶縁層が積層される。工程308において、上記絶縁層上に非晶質シリコン層が積層される。工程310において、上記非晶質シリコン層をアニール処理して多結晶シリコンを生成させる。工程312において、上記多結晶シリコン層に熱成長して形成されたゲート絶縁膜を積層する。工程314において、トランジスタのゲート領域、ソース領域及びドレイン領域を形成する。
【0109】
上記方法において、工程310の非晶質シリコンをアニール処理して多結晶シリコンを生成させる過程は、700℃でまたは700℃より高い温度で行われるようにしてもよい。また、工程310のアニール処理には、固相結晶化(SPC)アニール処理も含まれる。工程310のアニール処理における上記SPCによるアニール処理には、加熱炉、あるいは急速昇温アニール処理(RTA)などの使用も含まれる。
【0110】
その際、工程310は、700℃以上、1000℃以下の温度領域で、2秒以上、30分以下の加熱時間によるアニール処理を含む。また、工程310は、750℃以上、950℃以下の加熱温度で、2秒以上、30分以下の加熱時間によりアニール処理されることが好ましい。
【0111】
その他、工程310における非晶質シリコンをアニール処理して多結晶シリコンを生成させる過程には、レーザ照射水平成長(LILaC)アニール処理を使用してもよい。何れのアニール処理を使用することも可能であるが、上記工程を迅速に行うためには上記SPC法がより好適である。
【0112】
上記LILaC法では、Si結晶粒を水平方向に成長させるために、レーザビームをビーム形成用マスクに通すことで作成された極細レーザビームを用い、そして、アニール処理の行われている膜に、上記マスクの像を照射する。即ち、本発明において、上記初期状態の非晶質シリコン膜に、典型的には数μm(例えば、3〜5μm程度)の幅を有するレーザビームが照射される。
【0113】
このような極細レーザビームは、光源が発生するレーザビームを、所定の空間領域、あるいは開口部を備えた遮蔽マスクに通すことで生成される。このようにして生成された微細レーザビームは、アニール処理されるSi膜の表面に照射される。
【0114】
この操作を多段的に繰り返して行う。即ち、上記形成されたレーザビームが薄膜上に照射され、次に、そのレーザビームを、上記ビーム形成用マスクに形成されたスリット幅の半分以下の距離だけ、横方向に移動させる。このようにゆっくりとレーザビームを移動させることにより、結晶粒は、前の照射によって生成された多結晶シリコンの結晶種から水平方向に成長してゆくこととなる。
【0115】
この方法は、帯溶融再結晶化法(ZMR)や他の同様の方法と同じように、結晶を水平方向に「引っ張る」ものとみることができる。これにより、上記結晶は、「引っ張られる」方向、即ち、レーザービームが移動する方向に沿って、非常に高い品質を達成できるようになる。
【0116】
この工程は、マスクに複数形成されたそれぞれのスリット毎に、同時に進行させ、そして、上記基板上で上記形成用マスクを通してレーザビームの照射される領域を短時間で結晶化することを可能にする。一旦、この領域が結晶化されると、上記基板は、まだアニール処理されていない新たな領域に移動し、上記工程が繰り返される。
【0117】
上記工程において、上記工程310のアニール処理の後、工程311でシリコンをパターニングしてシリコンの島状領域を形成してもよい。工程312におけるゲート絶縁膜の熱成長工程は、多結晶シリコンの島状領域の上に熱成長させゲート絶縁層を形成するようにしてもよい。あるいは、工程310における非晶質シリコンのアニール処理を行う前に、工程311でシリコンをパターニングしてシリコンの島状領域を形成するようにしてもよい。
【0118】
上記工程302における平坦面を備えた金属薄膜基板を供給する工程は、チタン、インコネル合金、ステンレス鋼、あるいはコバール合金等の金属薄膜材料の供給工程を含む。工程302は、10μm以上、500μm以下の厚さを有する金属薄膜材料の供給工程を含む。工程302で供給される金属薄膜の厚さは、50μm以上、250μm以下であることが好ましい。更に、上記金属薄膜材料の厚さは、100μm以上、200μm以下であることが最も望ましい。
【0119】
工程304における金属薄膜基板の表面を平坦化する工程は、該金属薄膜基板の表面への化学的機械研磨法(CMP)によって行われてもよい。その際、金属薄膜基板の平均表面粗さは、約200nmまたは約200nm未満となるよう研磨される。
【0120】
あるいは、工程304における金属薄膜基板表面の平坦化処理は、上記金属薄膜基板上へ誘電材料をスピンコートすることにより行うこともできる。この際、上記金属薄膜基板表面へスピンコートにより積層される誘電材料の厚さは、200nm以上、500nm以下である。また、上記金属薄膜基板表面へ誘電材料をスピンコーティングする工程は、スピンオングラス(SOG)用材料を用いて誘電体層を形成する工程を有していてもよい。
【0121】
上記方法において、工程306における平坦化された金属薄膜基板表面へ絶縁層を積層する工程は、SiO2 、SiNx 、あるいはSiONといった材料を用いて絶縁層を積層する工程を有していてもよい。上記絶縁層は、0.5μm以上、2μm以下の厚さで積層される。また、絶縁層の厚さは、0.5μm以上、1.5μm以下であることが好ましい。さらに、上記絶縁層の厚さは、0.5μm以上、1μm以下であることが最も好ましい。
【0122】
工程308における非晶質シリコンを積層する工程は、非晶質シリコンを25nm以上、150nm以下の厚さで積層する工程を有していてもよい。工程308で積層される非晶質シリコンの厚さは、25nm以上、100nm以下であることが好ましい。更に、工程308で積層される非晶質シリコンの厚さは、35nm以上、60nm以下であることが最も好ましい。
【0123】
工程308の非晶質シリコンを積層した後に続く工程309において、しきい電圧を調節するために、上記非結晶シリコンをP型ドーピングしてもよい。
【0124】
上記工程312におけるゲート絶縁膜の熱成長工程は、いくつかの副工程を含む。まず、工程312aにおいて、第1の多結晶シリコン層が形成される。次に、工程312bにおいて、第1の多結晶シリコン層を熱酸化処理する。工程312bにおける上記第1のシリコン層を熱酸化処理する工程は、900℃以上、1150℃以下の温度範囲で、2分以上、60分以下の加熱時間で行われるアニール処理を含んでいても良い。また、工程312aの第1の多結晶シリコン層を形成する工程は、上記第1の多結晶シリコン層を10nm以上、100nm以下の厚さで形成する工程を有していてもよい。
【0125】
あるいは、上記工程312におけるゲート絶縁層を熱成長法により形成する工程は、付加的な副工程312cを含む。工程312cでは、上記第1のシリコン層の上に第2の酸化物層がプラズマ積層法で形成される。工程312aで形成される第1の層は、10nm以上、50nm以下の厚さで積層されていても良い。上記第1の層は、20nm以上、30nm以下の厚さで積層されることが好ましい。
【0126】
工程312cにおいて上記第1の層上にプラズマ積層法で形成される第2の酸化物層は、40nm以上、100nm以下の厚さで積層されていても良い。上記第2の酸化物層は、50nm以上、70nm以下の厚さで積層されることが好ましい。
【0127】
上記工程312cにおいて上記第1の層上にプラズマ積層法で形成される第2の酸化物層は、TEOS−SiO2 材料を積層して形成することとしてもよい。
【0128】
上述の通り、本発明によれば、上記SPC法を用いて形成された多結晶シリコン層や、熱酸化法によって形成されたゲート絶縁層を備え、上記金属薄膜基板に形成されたTFTが提供される。また、上記TFTの製造工程も提供される。更に、材料の厚さ、加熱温度なども例示されているが、本発明はこれらの例示に限定されるものではない。本技術分野の習熟者により、本技術の他の変形例や実施例は見いだされるであろう。
【0129】
【発明の効果】
本発明によれば、フレキシブル基板TFTの製造において、金属薄膜基板に対して固相結晶化法を適用することで、レーザアニール法を用いて製造されたTFTと同等に高性能なTFTを得ることができる。
【図面の簡単な説明】
【図1】本発明のフレキシブル基板上に形成された薄膜トランジスタの部分断面図である。
【図2】本発明のフレキシブル基板上に薄膜トランジスタを形成する方法を示したフローチャート図である。
【符号の説明】
100 TFT
102 金属薄膜基板
106 絶縁層
108 ドレイン領域
110 ソース領域
112 チャネル領域
113 多結晶シリコン
114 ゲート絶縁酸化膜
116 ゲート電極
120 スピンコート用誘電材料

Claims (61)

  1. フレキシブル基板上に薄膜トランジスタを形成する方法であって、
    平坦面を有する金属薄膜基板を供給する工程と、
    上記金属薄膜基板上に、非晶質シリコン膜を積層する工程と、
    上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程と、
    上記多結晶シリコン膜上にゲート絶縁膜を熱成長させる工程とを有する方法。
  2. 上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程は、700℃以上の温度でアニール処理する工程を含む、請求項1に記載の方法。
  3. 上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程は、固相結晶化アニール処理を用いる工程を含む、請求項2に記載の方法。
  4. 上記非晶質シリコン膜をアニール処理して多結晶シリコン膜を形成する工程は、レーザ照射水平成長アニール処理を用いる工程を含む、請求項1に記載の方法。
  5. 上記金属薄膜基板表面を平坦化する工程と、
    上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程とをさらに有し、
    上記非晶質シリコン膜を積層する工程は、上記絶縁層上に非晶質膜を積層する工程を含む、請求項1に記載の方法。
  6. 上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程をさらに有し、
    上記ゲート絶縁膜を熱成長させる工程は、上記シリコンの島状領域上にゲート絶縁膜を熱成長させる工程を含む、請求項5に記載の方法。
  7. トランジスタのゲート領域と、ソース領域と、ドレイン領域とを形成する工程をさらに含む、請求項6に記載の方法。
  8. 上記平坦面を有する金属薄膜基板を供給する工程は、チタニウム、インコネル合金、ステンレス鋼及びコバール合金を含む群から選択される少なくとも1種の金属薄膜材料を供給する工程を含む、請求項1に記載の方法。
  9. 上記平坦面を有する金属薄膜基板を供給する工程は、10μm以上、500μm以下の厚さを有する金属薄膜を供給する工程を含む、請求項8に記載の方法。
  10. 上記平坦面を有する金属薄膜基板を供給する工程は、50μm以上、250μm以下の厚さを有する金属薄膜を供給する工程を含む、請求項9に記載の方法。
  11. 上記平坦面を有する金属薄膜基板を供給する工程は、100μm以上、200μm以下の厚さを有する金属薄膜を供給する工程を含む、請求項10に記載の方法。
  12. 上記金属薄膜基板表面を平坦化する工程は、上記金属薄膜基板表面を化学的機械研磨する工程を含む、請求項5に記載の方法。
  13. 上記金属薄膜基板表面を化学的機械研磨する工程は、約200nm以下の平均表面粗さまで研磨する工程を含む、請求項12に記載の方法。
  14. 上記金属薄膜基板表面を平坦化する工程は、上記金属薄膜基板表面上に誘電材料をスピンコートする工程を含む、請求項5に記載の方法。
  15. 上記金属薄膜基板表面上に誘電材料をスピンコートする工程は、200nm以上、500nm以下の厚さを有する誘電体層を形成する工程を含む、請求項14に記載の方法。
  16. 上記金属薄膜基板表面上に誘電材料をスピンコートする工程は、スピンオングラス用材料から誘電体層を形成する工程を含む、請求項14に記載の方法。
  17. 上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、SiO2 、SiNx 及びSiONを含む群から選択される少なくとも1種の材料を用いて電気絶縁層を積層する工程を含む、請求項5に記載の方法。
  18. 上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、0.5μm以上、2μm以下の厚さを有する絶縁層を積層する工程を含む、請求項17に記載の方法。
  19. 上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、0.5μm以上、1.5μm以下の厚さを有する絶縁層を積層する工程を含む、請求項18に記載の方法。
  20. 上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程は、0.5μm以上、1μm以下の厚さを有する絶縁層を積層する工程を含む、請求項19に記載の方法。
  21. 上記非晶質シリコン膜を積層した後、しきい電圧を調節するために上記非晶質シリコンへP型ドーピングを行う工程をさらに有する、請求項1に記載の方法。
  22. 上記固相結晶化アニール処理を用いる工程は、加熱炉及び急速昇温アニール処理を含む群から選択される少なくとも1種の処理を用いる工程を含む、請求項3に記載の方法。
  23. 700℃以上で行われる上記非晶質シリコン膜をアニール処理する工程は、700℃以上、1000℃以下、2秒以上、30分以下でアニール処理する工程を含む、請求項22に記載の方法。
  24. 上記700℃以上で行われる非晶質シリコン膜をアニール処理する工程は、750℃以上、950℃以下、2秒以上、30分以下でアニール処理する工程を含む、請求項23に記載の方法。
  25. 上記ゲート絶縁膜を熱成長させる工程は、第1の薄膜多結晶シリコン層を形成する工程と、
    上記第1の膜層を熱酸化する工程とを含む、請求項1に記載の方法。
  26. 上記第1の膜層を熱酸化する工程は、900℃以上、1150℃以下、2分以上、60分以下でアニール処理する工程を含む、請求項25に記載の方法。
  27. 上記第1の薄膜多結晶シリコン層を形成する工程は、10nm以上、100nm以下の厚さを有する第1の膜層を形成する工程を含む、請求項26に記載の方法。
  28. 上記ゲート絶縁膜を熱成長させる工程は、上記第1の膜上に酸化物の第2の層をプラズマ積層する工程をさらに含む、請求項25に記載の方法。
  29. 上記第1の膜層を形成する工程は、10nm以上、50nm以下の厚さを有する第1の膜層を積層する工程を含む、請求項28に記載の方法。
  30. 上記第1の膜層を積層する工程は、20nm以上、30nm以下の厚さを有する層を積層する工程を含む、請求項29に記載の方法。
  31. 上記第1の膜上に酸化物の第2の層をプラズマ積層する工程は、40nm以上、100nm以下の厚さを有する層を積層する工程を含む、請求項28または29に記載の方法。
  32. 上記第1の膜上に酸化物の第2の層をプラズマ積層する工程は、50nm以上、70nm以下の厚さを有する層を積層する工程を含む、請求項31に記載の方法。
  33. 上記第1の膜上に酸化物の第2の層をプラズマ積層する工程は、TEOS−SiO2 材料を積層する工程を含む、請求項28に記載の方法。
  34. 上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程は、上記非晶質シリコン膜のアニール処理後に、多結晶島状領域にパターニングする工程を含む、請求項6に記載の方法。
  35. 上記シリコン膜をパターニングして、シリコンの島状領域を形成する工程は、上記非晶質シリコン膜のアニール処理前に、非晶質シリコンの島状領域にパターニングする工程を含む、請求項6に記載の方法。
  36. 上記非晶質シリコン膜を積層する工程は、25nm以上、150nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む、請求項1に記載の方法。
  37. 上記非晶質シリコン膜を積層する工程は、25nm以上、100nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む、請求項36に記載の方法。
  38. 上記非晶質シリコン膜を積層する工程は、35nm以上、60nm以下の厚さを有する非晶質シリコン膜を積層する工程を含む、請求項37に記載の方法。
  39. フレキシブル基板上に薄膜トランジスタを形成する方法であって、
    平坦面を有する金属薄膜基板を供給する工程と、
    上記金属薄膜基板の表面を平坦化する工程と、
    上記平坦化された金属薄膜基板表面上に電気絶縁層を積層する工程と、
    上記電気絶縁層上に非晶質シリコン膜を積層する工程と、
    上記非晶質シリコン膜を700℃以上の温度でアニール処理して多結晶シリコン膜を形成する工程と、
    ゲート絶縁膜を熱成長させる工程とを含む方法。
  40. フレキシブル基板上に形成された薄膜トランジスタであって、
    平坦面を有する金属薄膜基板と、
    上記金属薄膜基板表面上に積層された電気絶縁層と、
    上記電気絶縁層上の多結晶シリコン膜から形成されたドレイン領域、ソース領域及びチャネル領域と、
    上記多結晶シリコン膜上に積層され、1.4以上、1.6以下の屈折率を有するゲート絶縁酸化膜と、
    上記ゲート絶縁酸化膜上に積層されたゲート電極とを有する薄膜トランジスタ。
  41. 上記金属薄膜基板は、10μm以上、500μm以下の厚さを有する、請求項40に記載の薄膜トランジスタ。
  42. 上記金属薄膜基板は、50μm以上、250μm以下の厚さを有する、請求項41に記載の薄膜トランジスタ。
  43. 上記金属薄膜基板は、100μm以上、200μm以下の厚さを有する、請求項42に記載の薄膜トランジスタ。
  44. 上記金属薄膜基板の表面は、約200nm以下の平均表面粗さを有する、請求項40に記載の薄膜トランジスタ。
  45. 上記金属薄膜基板上に積層され、200nm以上、500nm以下の厚さを有するスピンコート誘電材料をさらに有する、請求項40に記載の薄膜トランジスタ。
  46. 上記スピンコート誘電材料は、スピンオングラス用材料である、請求項45に記載の薄膜トランジスタ。
  47. 上記電気絶縁層は、SiO2 、SiNx 及びSiONを含む群から選択される少なくとも1種の材料から形成されている、請求項40に記載の薄膜トランジスタ。
  48. 上記電気絶縁層は、0.5μm以上、2μm以下の厚さを有する、請求項47に記載の薄膜トランジスタ。
  49. 上記電気絶縁層は、0.5μm以上、1.5μm以下の厚さを有する、請求項48に記載の薄膜トランジスタ。
  50. 上記電気絶縁層は、0.5μm以上、1μm以下の厚さを有する、請求項49に記載の薄膜トランジスタ。
  51. 上記多結晶シリコン膜は、25nm以上、150nm以下の厚さを有する、請求項40に記載の薄膜トランジスタ。
  52. 上記多結晶シリコン膜は、25nm以上、100nm以下の厚さを有する、請求項51に記載の薄膜トランジスタ。
  53. 上記多結晶シリコン膜は、35nm以上、60nm以下の厚さを有する、請求項52に記載の薄膜トランジスタ。
  54. 上記ゲート絶縁酸化膜は、10nm以上、100nm以下の厚さを有する、請求項40に記載の薄膜トランジスタ。
  55. 上記ゲート絶縁酸化膜は、
    1.4以上、1.6以下の屈折率を有する第1の酸化膜層と、
    上記第1の酸化膜層上に積層され、1.4以上、2以下の屈折率を有する第2の酸化膜層とを含む、請求項40または54に記載の薄膜トランジスタ。
  56. 上記第1の酸化膜層は、20nm以上、30nm以下の厚さを有する、請求項55に記載の薄膜トランジスタ。
  57. 上記第2の酸化膜層は、40nm以上、100nm以下の厚さを有する、請求項55に記載の薄膜トランジスタ。
  58. 上記第2の酸化膜層は、50nm以上、70nm以下の厚さを有する、請求項57に記載の薄膜トランジスタ。
  59. 上記第2の酸化膜層は、SiO2 材料から形成されている、請求項55に記載の薄膜トランジスタ。
  60. 上記第1の酸化膜層は、SiO2 材料から形成されている、請求項55に記載の薄膜トランジスタ。
  61. 上記金属薄膜基板は、チタニウム、インコネル合金、ステンレス鋼及びコバール合金を含む群から選択される少なくとも1種の材料から形成されている、請求項40に記載の薄膜トランジスタ。
JP2003191696A 2002-07-11 2003-07-04 金属薄膜基板上に形成された薄膜トランジスタ Pending JP2004048005A (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/194,895 US6642092B1 (en) 2002-07-11 2002-07-11 Thin-film transistors formed on a metal foil substrate

Publications (1)

Publication Number Publication Date
JP2004048005A true JP2004048005A (ja) 2004-02-12

Family

ID=29270119

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003191696A Pending JP2004048005A (ja) 2002-07-11 2003-07-04 金属薄膜基板上に形成された薄膜トランジスタ

Country Status (2)

Country Link
US (6) US6642092B1 (ja)
JP (1) JP2004048005A (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007025620A (ja) * 2005-07-20 2007-02-01 Samsung Sdi Co Ltd 有機電界発光表示装置
KR100713985B1 (ko) 2005-05-16 2007-05-04 삼성에스디아이 주식회사 박막트랜지스터 및 박막트랜지스터 제조방법
JP2009212483A (ja) * 2008-02-29 2009-09-17 Samsung Mobile Display Co Ltd フレキシブル基板、その製造方法及びそれを用いた薄膜トランジスタ
KR20110010536A (ko) * 2009-07-24 2011-02-01 엘지디스플레이 주식회사 어레이 기판 및 이의 제조방법
KR20120030996A (ko) * 2009-05-28 2012-03-29 코비오 인코포레이티드 확산 방지 코팅된 기판상에 형성된 반도체 장치 및 그 제조방법
US9183973B2 (en) 2009-05-28 2015-11-10 Thin Film Electronics Asa Diffusion barrier coated substrates and methods of making the same

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6642092B1 (en) * 2002-07-11 2003-11-04 Sharp Laboratories Of America, Inc. Thin-film transistors formed on a metal foil substrate
US7015640B2 (en) 2002-09-11 2006-03-21 General Electric Company Diffusion barrier coatings having graded compositions and devices incorporating the same
US7449246B2 (en) * 2004-06-30 2008-11-11 General Electric Company Barrier coatings
US6709910B1 (en) * 2002-10-18 2004-03-23 Sharp Laboratories Of America, Inc. Method for reducing surface protrusions in the fabrication of lilac films
TW577176B (en) * 2003-03-31 2004-02-21 Ind Tech Res Inst Structure of thin-film transistor, and the manufacturing method thereof
KR100618614B1 (ko) * 2003-09-02 2006-09-08 진 장 플렉서블 금속 기판 상의 실리콘 박막 형성 방법
US20050110114A1 (en) * 2003-11-25 2005-05-26 Texas Instruments, Incorporated Capacitor formed on a recrystallized polysilicon layer and a method of manufacture therefor
FR2870989B1 (fr) * 2004-05-27 2006-08-04 Commissariat Energie Atomique Substrat pour application electronique, comprenant un support flexible et son procede de fabrication
US20050269943A1 (en) * 2004-06-04 2005-12-08 Michael Hack Protected organic electronic devices and methods for making the same
US20050285253A1 (en) * 2004-06-24 2005-12-29 Kumamoto Takashi Forming buried via hole substrates
US20090110892A1 (en) * 2004-06-30 2009-04-30 General Electric Company System and method for making a graded barrier coating
US8034419B2 (en) * 2004-06-30 2011-10-11 General Electric Company Method for making a graded barrier coating
JP2008509565A (ja) 2004-08-13 2008-03-27 ノヴァレッド・アクチエンゲゼルシャフト 発光成分用積層体
US7259106B2 (en) * 2004-09-10 2007-08-21 Versatilis Llc Method of making a microelectronic and/or optoelectronic circuitry sheet
US9953259B2 (en) 2004-10-08 2018-04-24 Thin Film Electronics, Asa RF and/or RF identification tag/device having an integrated interposer, and methods for making and using the same
US20060088962A1 (en) * 2004-10-22 2006-04-27 Herman Gregory S Method of forming a solution processed transistor having a multilayer dielectric
KR100592302B1 (ko) * 2004-11-03 2006-06-22 삼성에스디아이 주식회사 박막 트랜지스터를 구비한 기판의 제조방법, 이에 따라제조된 박막 트랜지스터를 구비한 기판, 평판 표시장치의제조방법, 및 이에 따라 제조된 평판 표시장치
KR20060042425A (ko) * 2004-11-09 2006-05-15 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
KR100696479B1 (ko) * 2004-11-18 2007-03-19 삼성에스디아이 주식회사 평판표시장치 및 그의 제조방법
US7268491B2 (en) * 2004-12-14 2007-09-11 International Business Machines Corporation Expandable display having rollable material
JP4837295B2 (ja) * 2005-03-02 2011-12-14 株式会社沖データ 半導体装置、led装置、ledヘッド、及び画像形成装置
EP1705727B1 (de) * 2005-03-15 2007-12-26 Novaled AG Lichtemittierendes Bauelement
ATE381117T1 (de) 2005-04-13 2007-12-15 Novaled Ag Anordnung für eine organische leuchtdiode vom pin-typ und verfahren zum herstellen
CN100372137C (zh) * 2005-05-27 2008-02-27 晶能光电(江西)有限公司 具有上下电极结构的铟镓铝氮发光器件及其制造方法
JP2006337819A (ja) * 2005-06-03 2006-12-14 Canon Inc 表示装置およびその駆動方法
JP4316558B2 (ja) * 2005-06-28 2009-08-19 三星モバイルディスプレイ株式會社 有機発光表示装置
JP4350106B2 (ja) * 2005-06-29 2009-10-21 三星モバイルディスプレイ株式會社 平板表示装置及びその駆動方法
EP1739765A1 (de) * 2005-07-01 2007-01-03 Novaled AG Organische Leuchtdiode und Anordnung mit mehreren organischen Leuchtdioden
KR100719554B1 (ko) * 2005-07-06 2007-05-17 삼성에스디아이 주식회사 평판 디스플레이 장치 및 그 제조방법
US20070007533A1 (en) * 2005-07-08 2007-01-11 Yi-Tyng Wu Pixel array strcuture
US20070026647A1 (en) * 2005-07-29 2007-02-01 Industrial Technology Research Institute Method for forming polycrystalline silicon thin film
TWI286637B (en) * 2005-08-19 2007-09-11 Ind Tech Res Inst A pixel structure utilized for flexible displays
CN1920903B (zh) * 2005-08-24 2010-06-16 财团法人工业技术研究院 应用于软性显示器的像素布局结构
US7414262B2 (en) * 2005-09-30 2008-08-19 Lexmark International, Inc. Electronic devices and methods for forming the same
KR100719567B1 (ko) 2005-10-22 2007-05-17 삼성에스디아이 주식회사 평판 표시장치 및 그 제조방법
US7491559B2 (en) * 2005-11-08 2009-02-17 Au Optronics Corporation Low-temperature polysilicon display and method for fabricating same
JP4680850B2 (ja) * 2005-11-16 2011-05-11 三星モバイルディスプレイ株式會社 薄膜トランジスタ及びその製造方法
EP1806795B1 (de) * 2005-12-21 2008-07-09 Novaled AG Organisches Bauelement
EP1804308B1 (en) * 2005-12-23 2012-04-04 Novaled AG An organic light emitting device with a plurality of organic electroluminescent units stacked upon each other
DE602006001930D1 (de) * 2005-12-23 2008-09-04 Novaled Ag tur von organischen Schichten
EP1808909A1 (de) 2006-01-11 2007-07-18 Novaled AG Elekrolumineszente Lichtemissionseinrichtung
US20070176538A1 (en) * 2006-02-02 2007-08-02 Eastman Kodak Company Continuous conductor for OLED electrical drive circuitry
US7514714B2 (en) * 2006-02-16 2009-04-07 Stmicroelectronics, Inc. Thin film power MOS transistor, apparatus, and method
JP4930704B2 (ja) * 2006-03-14 2012-05-16 セイコーエプソン株式会社 有機エレクトロルミネッセンス装置及び電子機器
EP1848049B1 (de) * 2006-04-19 2009-12-09 Novaled AG Lichtemittierendes Bauelement
US7679586B2 (en) * 2006-06-16 2010-03-16 Roger Green Stewart Pixel circuits and methods for driving pixels
US20080062090A1 (en) * 2006-06-16 2008-03-13 Roger Stewart Pixel circuits and methods for driving pixels
US8446394B2 (en) * 2006-06-16 2013-05-21 Visam Development L.L.C. Pixel circuits and methods for driving pixels
US20100059753A1 (en) * 2006-06-16 2010-03-11 Silk Displays Matrix electronic devices using opaque substrates and fabrication method therefor
JP5117016B2 (ja) * 2006-08-21 2013-01-09 富士フイルム株式会社 表示装置
US8637980B1 (en) 2007-12-18 2014-01-28 Rockwell Collins, Inc. Adhesive applications using alkali silicate glass for electronics
US7915527B1 (en) 2006-08-23 2011-03-29 Rockwell Collins, Inc. Hermetic seal and hermetic connector reinforcement and repair with low temperature glass coatings
US8076185B1 (en) 2006-08-23 2011-12-13 Rockwell Collins, Inc. Integrated circuit protection and ruggedization coatings and methods
US8084855B2 (en) 2006-08-23 2011-12-27 Rockwell Collins, Inc. Integrated circuit tampering protection and reverse engineering prevention coatings and methods
US8617913B2 (en) 2006-08-23 2013-12-31 Rockwell Collins, Inc. Alkali silicate glass based coating and method for applying
US8581108B1 (en) 2006-08-23 2013-11-12 Rockwell Collins, Inc. Method for providing near-hermetically coated integrated circuit assemblies
US7635179B2 (en) * 2006-10-05 2009-12-22 Eastman Kodak Company Array printhead with three terminal switching elements
US7913381B2 (en) * 2006-10-26 2011-03-29 Carestream Health, Inc. Metal substrate having electronic devices formed thereon
US20080122896A1 (en) * 2006-11-03 2008-05-29 Stephenson Iii Stanley W Inkjet printhead with backside power return conductor
CN102177487A (zh) * 2006-12-11 2011-09-07 理海大学 有源矩阵显示器和方法
KR101462695B1 (ko) * 2006-12-11 2014-11-18 리하이 유니버시티 액티브 매트릭스 디스플레이 및 방법
DE102006059509B4 (de) * 2006-12-14 2012-05-03 Novaled Ag Organisches Leuchtbauelement
DE102007019260B4 (de) * 2007-04-17 2020-01-16 Novaled Gmbh Nichtflüchtiges organisches Speicherelement
KR100891384B1 (ko) * 2007-06-14 2009-04-02 삼성모바일디스플레이주식회사 플렉서블 기판 접합 및 탈착장치
KR100889625B1 (ko) 2007-07-19 2009-03-20 삼성모바일디스플레이주식회사 접합방법 및 그를 이용한 유기전계발광표시장치의 제조방법
US7768080B2 (en) * 2007-07-30 2010-08-03 Hewlett-Packard Development Company, L.P. Multilayer dielectric
TWI359460B (en) * 2007-11-26 2012-03-01 Tatung Co A method of fabricating a polycrystalline semicond
US8363189B2 (en) * 2007-12-18 2013-01-29 Rockwell Collins, Inc. Alkali silicate glass for displays
US7901057B2 (en) * 2008-04-10 2011-03-08 Eastman Kodak Company Thermal inkjet printhead on a metallic substrate
US7977868B2 (en) * 2008-07-23 2011-07-12 Cbrite Inc. Active matrix organic light emitting device with MO TFT backplane
US8742658B2 (en) * 2008-07-23 2014-06-03 Cbrite Inc. Full-color active matrix organic light emitting display with hybrid
DE102008036063B4 (de) * 2008-08-04 2017-08-31 Novaled Gmbh Organischer Feldeffekt-Transistor
DE102008036062B4 (de) 2008-08-04 2015-11-12 Novaled Ag Organischer Feldeffekt-Transistor
US8119040B2 (en) 2008-09-29 2012-02-21 Rockwell Collins, Inc. Glass thick film embedded passive material
JP2011003522A (ja) 2008-10-16 2011-01-06 Semiconductor Energy Lab Co Ltd フレキシブル発光装置、電子機器及びフレキシブル発光装置の作製方法
JP5382911B2 (ja) * 2008-11-12 2014-01-08 東洋鋼鈑株式会社 酸化物超電導線材用金属積層基板の製造方法及び該基板を用いた酸化物超電導線材
KR101596537B1 (ko) 2008-11-25 2016-02-22 씬 필름 일렉트로닉스 에이에스에이 인쇄형 안테나, 안테나 인쇄 방법, 및 인쇄형 안테나를 포함하는 디바이스
KR101363022B1 (ko) * 2008-12-23 2014-02-14 삼성디스플레이 주식회사 유기 발광 표시 장치
US8013525B2 (en) * 2009-04-09 2011-09-06 Global Oled Technology Llc Flexible OLED display with chiplets
KR101084230B1 (ko) * 2009-11-16 2011-11-16 삼성모바일디스플레이주식회사 유기 발광 표시 장치 및 유기 발광 표시 장치의 제조 방법
JP5815665B2 (ja) * 2010-03-31 2015-11-17 ダンマークス・テクニスケ・ユニヴェルシテット 動的表示キーボードおよび動的表示キーボードで使用するキー
US8618731B2 (en) * 2010-05-18 2013-12-31 General Electric Company Large-area flexible OLED light source
WO2011135195A1 (fr) 2010-11-16 2011-11-03 Arcelormittal Investigación Y Desarrollo Sl Support d'alimentation pour dispositifs électroniques
JP2013012477A (ja) 2011-06-28 2013-01-17 Cbrite Inc ハイブリッドのフルカラー・アクティブ・マトリクス有機発光ディスプレイ
CN104094431B (zh) 2012-02-03 2018-03-27 皇家飞利浦有限公司 Oled设备及其制造
US9435915B1 (en) 2012-09-28 2016-09-06 Rockwell Collins, Inc. Antiglare treatment for glass
US9178123B2 (en) 2012-12-10 2015-11-03 LuxVue Technology Corporation Light emitting device reflective bank structure
US9029880B2 (en) 2012-12-10 2015-05-12 LuxVue Technology Corporation Active matrix display panel with ground tie lines
US9159700B2 (en) 2012-12-10 2015-10-13 LuxVue Technology Corporation Active matrix emissive micro LED display
US8791474B1 (en) 2013-03-15 2014-07-29 LuxVue Technology Corporation Light emitting diode display with redundancy scheme
US9252375B2 (en) 2013-03-15 2016-02-02 LuxVue Technology Corporation Method of fabricating a light emitting diode display with integrated defect detection test
ES2952036T3 (es) 2013-06-12 2023-10-26 Rohinni Inc Teclado de retroiluminación con fuentes generadoras de luz depositadas
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US9117780B2 (en) * 2013-08-29 2015-08-25 Shenzhen China Star Optoelectronics Technology Co., Ltd Anode connection structure of organic light-emitting diode and manufacturing method thereof
US9299725B2 (en) 2014-01-31 2016-03-29 Sharp Laboratories Of America, Inc. Fabrication process using circuit-on-wire
US9425221B2 (en) 2014-01-31 2016-08-23 Sharp Laboratories Of America, Inc. Circuit-on-wire
KR102255198B1 (ko) * 2014-08-12 2021-05-25 삼성디스플레이 주식회사 스트레처블 기판 및 이를 구비한 유기 발광 표시 장치
USRE49869E1 (en) * 2015-02-10 2024-03-12 iBeam Materials, Inc. Group-III nitride devices and systems on IBAD-textured substrates
CN104966718B (zh) * 2015-05-04 2017-12-29 深圳市华星光电技术有限公司 Amoled背板的制作方法及其结构
TWI716511B (zh) 2015-12-19 2021-01-21 美商應用材料股份有限公司 用於鎢原子層沉積製程作為成核層之正形非晶矽
US10480066B2 (en) 2015-12-19 2019-11-19 Applied Materials, Inc. Metal deposition methods
WO2017124109A1 (en) 2016-01-15 2017-07-20 Rohinni, LLC Apparatus and method of backlighting through a cover on the apparatus
KR102312824B1 (ko) 2016-03-17 2021-10-13 어플라이드 머티어리얼스, 인코포레이티드 고 종횡비 구조들에서의 갭충전을 위한 방법들
US10600928B1 (en) * 2016-09-20 2020-03-24 Apple Inc. Systems with photovoltaic cells
US11148398B2 (en) 2017-09-15 2021-10-19 Apple Inc. Multilayer composite including metallic glass and polymer with reduced fatigue
CN107910457B (zh) * 2017-11-09 2020-03-31 武汉华星光电半导体显示技术有限公司 一种柔性显示面板的缺陷修复方法
WO2020086532A1 (en) 2018-10-22 2020-04-30 Thin Film Electronics Asa Barrier stacks for printed and/or thin film electronics methods of manufacturing the same, and method of controlling a threshold voltage of a thin film transistor
CN112640150A (zh) * 2018-12-13 2021-04-09 深圳市柔宇科技股份有限公司 柔性显示面板及柔性显示装置
US11133178B2 (en) 2019-09-20 2021-09-28 Applied Materials, Inc. Seamless gapfill with dielectric ALD films
CN114388559A (zh) * 2020-10-20 2022-04-22 华为技术有限公司 显示面板、显示面板的制作方法及电子设备

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3657613A (en) * 1970-05-04 1972-04-18 Westinghouse Electric Corp Thin film electronic components on flexible metal substrates
GB9401770D0 (en) * 1994-01-31 1994-03-23 Philips Electronics Uk Ltd Manufacture of electronic devices comprising thin-film circuits
US6548956B2 (en) 1994-12-13 2003-04-15 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
EP0801427A3 (en) * 1996-04-11 1999-05-06 Matsushita Electric Industrial Co., Ltd. Field effect transistor, semiconductor storage device, method of manufacturing the same and method of driving semiconductor storage device
RU2190901C2 (ru) * 1996-09-26 2002-10-10 Акцо Нобель Н.В. Способ производства фотоэлектрической фольги и фольга, полученная этим способом
JPH10214925A (ja) * 1996-11-28 1998-08-11 Nitto Denko Corp 半導体素子封止用封止ラベル
US5739545A (en) 1997-02-04 1998-04-14 International Business Machines Corporation Organic light emitting diodes having transparent cathode structures
US6433841B1 (en) * 1997-12-19 2002-08-13 Seiko Epson Corporation Electro-optical apparatus having faces holding electro-optical material in between flattened by using concave recess, manufacturing method thereof, and electronic device using same
US6783849B2 (en) 1998-03-27 2004-08-31 Yissum Research Development Company Of The Hebrew University Of Jerusalem Molecular layer epitaxy method and compositions
TW410478B (en) * 1998-05-29 2000-11-01 Lucent Technologies Inc Thin-film transistor monolithically integrated with an organic light-emitting diode
EP0966050A3 (de) 1998-06-18 2004-11-17 Osram Opto Semiconductors GmbH & Co. OHG Organische Leuchtdiode
WO2000016361A1 (en) 1998-09-11 2000-03-23 Fed Corporation Top emitting oled with refractory metal compounds as bottom cathode
TW512543B (en) * 1999-06-28 2002-12-01 Semiconductor Energy Lab Method of manufacturing an electro-optical device
WO2001015244A1 (en) 1999-08-20 2001-03-01 Emagin Corporation Organic light emitting diode device with high work function metal-oxide anode layer and method of fabrication of same
US6541908B1 (en) 1999-09-30 2003-04-01 Rockwell Science Center, Llc Electronic light emissive displays incorporating transparent and conductive zinc oxide thin film
US6392617B1 (en) 1999-10-27 2002-05-21 Agilent Technologies, Inc. Active matrix light emitting diode display
US6384427B1 (en) 1999-10-29 2002-05-07 Semiconductor Energy Laboratory Co., Ltd. Electronic device
US20020036297A1 (en) 2000-02-04 2002-03-28 Karl Pichler Low absorption sputter protection layer for OLED structure
US6639357B1 (en) 2000-02-28 2003-10-28 The Trustees Of Princeton University High efficiency transparent organic light emitting devices
TW484238B (en) 2000-03-27 2002-04-21 Semiconductor Energy Lab Light emitting device and a method of manufacturing the same
US7525165B2 (en) 2000-04-17 2009-04-28 Semiconductor Energy Laboratory Co., Ltd. Light emitting device and manufacturing method thereof
US7579203B2 (en) 2000-04-25 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US6515310B2 (en) 2000-05-06 2003-02-04 Semiconductor Energy Laboratory Co., Ltd. Light-emitting device and electric apparatus
US6329226B1 (en) * 2000-06-01 2001-12-11 Agere Systems Guardian Corp. Method for fabricating a thin-film transistor
US7030551B2 (en) 2000-08-10 2006-04-18 Semiconductor Energy Laboratory Co., Ltd. Area sensor and display apparatus provided with an area sensor
US6825820B2 (en) 2000-08-10 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Display device and electronic device
US6579629B1 (en) 2000-08-11 2003-06-17 Eastman Kodak Company Cathode layer in organic light-emitting diode devices
US6433358B1 (en) 2000-09-11 2002-08-13 International Business Machines Corporation Method for producing an organic light emitting device (OLED) and OLED produced thereby
JP4678933B2 (ja) 2000-11-07 2011-04-27 株式会社半導体エネルギー研究所 半導体装置の作製方法
US6606110B2 (en) * 2000-12-27 2003-08-12 Polaroid Corporation Integral organic light emitting diode printhead
EP1227528A2 (en) 2001-01-26 2002-07-31 Eastman Kodak Company Organic light emitting devices having a modified electron-transport layer
US6822391B2 (en) 2001-02-21 2004-11-23 Semiconductor Energy Laboratory Co., Ltd. Light emitting device, electronic equipment, and method of manufacturing thereof
TW574753B (en) * 2001-04-13 2004-02-01 Sony Corp Manufacturing method of thin film apparatus and semiconductor device
US6437422B1 (en) * 2001-05-09 2002-08-20 International Business Machines Corporation Active devices using threads
US6590346B1 (en) * 2001-07-16 2003-07-08 Alien Technology Corporation Double-metal background driven displays
SG114589A1 (en) * 2001-12-12 2005-09-28 Semiconductor Energy Lab Film formation apparatus and film formation method and cleaning method
JP3811644B2 (ja) * 2001-12-12 2006-08-23 株式会社日立製作所 液晶表示装置
US6943066B2 (en) * 2002-06-05 2005-09-13 Advantech Global, Ltd Active matrix backplane for controlling controlled elements and method of manufacture thereof
US6642092B1 (en) * 2002-07-11 2003-11-04 Sharp Laboratories Of America, Inc. Thin-film transistors formed on a metal foil substrate
US7608335B2 (en) * 2004-11-30 2009-10-27 Los Alamos National Security, Llc Near single-crystalline, high-carrier-mobility silicon thin film on a polycrystalline/amorphous substrate
KR100719554B1 (ko) * 2005-07-06 2007-05-17 삼성에스디아이 주식회사 평판 디스플레이 장치 및 그 제조방법

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100713985B1 (ko) 2005-05-16 2007-05-04 삼성에스디아이 주식회사 박막트랜지스터 및 박막트랜지스터 제조방법
US7655951B2 (en) 2005-05-16 2010-02-02 Samsung Mobile Display Co., Ltd. Thin film transistor and the manufacturing method thereof
JP2007025620A (ja) * 2005-07-20 2007-02-01 Samsung Sdi Co Ltd 有機電界発光表示装置
JP2009212483A (ja) * 2008-02-29 2009-09-17 Samsung Mobile Display Co Ltd フレキシブル基板、その製造方法及びそれを用いた薄膜トランジスタ
US8221889B2 (en) 2008-02-29 2012-07-17 Samsung Mobile Display Co., Ltd. Flexible substrate, method of fabricating the same, and thin film transistor using the same
KR20120030996A (ko) * 2009-05-28 2012-03-29 코비오 인코포레이티드 확산 방지 코팅된 기판상에 형성된 반도체 장치 및 그 제조방법
JP2012528488A (ja) * 2009-05-28 2012-11-12 コヴィオ インコーポレイテッド 拡散バリアで被覆された基板上の半導体デバイス及びその形成方法
US9183973B2 (en) 2009-05-28 2015-11-10 Thin Film Electronics Asa Diffusion barrier coated substrates and methods of making the same
US9299845B2 (en) 2009-05-28 2016-03-29 Thin Film Electronics Asa Diffusion barrier coated substrates and methods of making the same
KR101716655B1 (ko) * 2009-05-28 2017-03-15 씬 필름 일렉트로닉스 에이에스에이 확산 방지 코팅된 기판상에 형성된 반도체 장치 및 그 제조방법
KR20110010536A (ko) * 2009-07-24 2011-02-01 엘지디스플레이 주식회사 어레이 기판 및 이의 제조방법
KR101588447B1 (ko) 2009-07-24 2016-01-27 엘지디스플레이 주식회사 어레이 기판 및 이의 제조방법

Also Published As

Publication number Publication date
US20040087066A1 (en) 2004-05-06
US20040029326A1 (en) 2004-02-12
US6642092B1 (en) 2003-11-04
US20080136751A1 (en) 2008-06-12
US20050116237A1 (en) 2005-06-02
US20040180481A1 (en) 2004-09-16
US6765249B2 (en) 2004-07-20
US6911666B2 (en) 2005-06-28

Similar Documents

Publication Publication Date Title
JP2004048005A (ja) 金属薄膜基板上に形成された薄膜トランジスタ
JP4651924B2 (ja) 薄膜半導体装置および薄膜半導体装置の製造方法
TW517260B (en) Semiconductor device and method for its fabrication
KR100532557B1 (ko) 반도체 장치 및 그의 제조 방법, soi기판 및 그것을사용하는 표시 장치 및 soi기판의 제조 방법
US5275851A (en) Low temperature crystallization and patterning of amorphous silicon films on electrically insulating substrates
JP4386978B2 (ja) 半導体装置の作製方法
KR101491567B1 (ko) 픽셀 및 구동영역에서 상이한 전기적 특성들을 갖는 박막트랜지스터 장치를 가지는 디스플레이 및 이를 제조하는방법
JP4602476B2 (ja) 半導体装置及びその作製方法
JP2004134675A (ja) Soi基板、表示装置およびsoi基板の製造方法
TW200935594A (en) Semiconductor device and electronic appliance
JP4406540B2 (ja) 薄膜トランジスタ基板およびその製造方法
US20040171236A1 (en) Method for reducing surface roughness of polysilicon films for liquid crystal displays
WO2009084312A1 (ja) 半導体装置、単結晶半導体薄膜付き基板及びそれらの製造方法
JP2005328016A (ja) 半導体装置及びその製造方法、集積回路、電気光学装置、電子機器
KR101257846B1 (ko) 단결정 실리콘 제조방법 및 이를 이용한 tft의 제조방법
JP3970814B2 (ja) 半導体装置の製造方法
JP2000183351A (ja) 薄膜半導体装置の製造方法
JP3923141B2 (ja) 半導体装置およびその作製方法
JPH09139499A (ja) 薄膜トランジスタの製造方法
JP4801520B2 (ja) 半導体装置およびその作製方法
JP2004119636A (ja) 半導体装置およびその製造方法
JP2734359B2 (ja) 薄膜トランジスタ及びその製造方法
JP2005285830A (ja) ゲート絶縁膜の形成方法及び薄膜トランジスタの製造方法並びに薄膜トランジスタ
JP4401667B2 (ja) アニール用薄膜半導体構造体、薄膜半導体用アニール方法、薄膜半導体装置、薄膜半導体装置製造方法、および表示装置。
JP2001298169A (ja) 半導体装置とその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050810

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020