DE102008036062B4 - Organischer Feldeffekt-Transistor - Google Patents

Organischer Feldeffekt-Transistor Download PDF

Info

Publication number
DE102008036062B4
DE102008036062B4 DE102008036062.7A DE102008036062A DE102008036062B4 DE 102008036062 B4 DE102008036062 B4 DE 102008036062B4 DE 102008036062 A DE102008036062 A DE 102008036062A DE 102008036062 B4 DE102008036062 B4 DE 102008036062B4
Authority
DE
Germany
Prior art keywords
layer
effect transistor
active layer
field
doping material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
DE102008036062.7A
Other languages
English (en)
Other versions
DE102008036062A1 (de
Inventor
Ulrich Denker
Dr. Canzler Tobias
Qiang Huang
Dr. Werner Ansgar
Kentaro Harada
Prof. Dr. Leo Karl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NovaLED GmbH
Original Assignee
NovaLED GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NovaLED GmbH filed Critical NovaLED GmbH
Priority to DE102008036062.7A priority Critical patent/DE102008036062B4/de
Priority to US12/534,402 priority patent/US8071976B2/en
Publication of DE102008036062A1 publication Critical patent/DE102008036062A1/de
Application granted granted Critical
Publication of DE102008036062B4 publication Critical patent/DE102008036062B4/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/486Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising two or more active layers, e.g. forming pn heterojunctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/30Doping active layers, e.g. electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K19/00Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
    • H10K19/10Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00 comprising field-effect transistors

Abstract

Organischer Feldeffekt-Transistor, insbesondere organischer Dünnschicht-Feldeffekt-Transistor, mit: – einer Gate-Elektrode (6), einer Drain-Elektrode (4) und einer Source-Elektrode (3), – einer dielektrischen Schicht (5), die in Kontakt mit der Gate-Elektrode (6) gebildet ist, – einer aktiven Schicht (2) aus organischem Material, die in Kontakt mit der Drain-Elektrode (4) sowie der Source-Elektrode (3) ist und die elektrisch undotiert ausgeführt ist, – einer Dotierungsmaterial-Schicht (1; 11), die ein Dotierungsmaterial enthält, welches für das organische Material der aktiven Schicht (2) ein elektrischer Dotand ist, und – einem Grenzflächenbereich, in welchem ein flächiger Kontakt zwischen der aktiven Schicht (2) und der Dotierungsmaterial-Schicht (1; 11) gebildet ist, wobei eine Mobilität für gleichartige elektrische Ladungsträger, nämlich Elektronen oder Löcher, in der Dotierungsmaterial-Schicht (1; 11) höchstens halb so groß wie in der aktiven Schicht (2) ist.

Description

  • Die Erfindung betrifft einen organischen Feldeffekt-Transistor, insbesondere einen organischen Dünnschicht-Feldeffekt-Transistor.
  • Hintergrund der Erfindung
  • Organische Halbleiter haben in den letzten Jahren große Aufmerksamkeit erhalten aufgrund ihrer geringen Kosten, der Möglichkeit sie auf großen Flächen und flexiblen Substraten abzuscheiden und der riesigen Auswahl entsprechender Moleküle. Organische Halbleiter können in schaltbaren Bauelementen wie Transistoren als auch in optoelektronischen Bauelementen wie organischen Leuchtdioden (OLEDs) und photovoltaischen Zellen eingesetzt werden.
  • Organische Transistoren, insbesondere organische Feldeffekt-Transistoren (OTFT) werden schon seit vielen Jahren untersucht und entwickelt. Es wird erwartet, dass OTFTs im großen Maße zum Beispiel in preiswerten integrierten Schaltungen für berührungslose Erkennungsmarken (RFID), aber auch für die Bildschirmansteuerung (Backplane) Anwendung finden kann. Um preiswerte Anwendungen zu ermöglichen, werden im Allgemeinen zur Herstellung der Transistoren Dünnschichtprozesse benötigt. In den letzten Jahren sind Leistungsmerkmale soweit verbessert worden, dass die Kommerzialisierung von organischen Transistoren absehbar ist. Es wurden zum Beispiel in OTFTs hohe Feldeffektmobilitäten con bis zu 6 cm2/Vs für Elektronen auf Basis von Fulleren-C60 und bis zu 5,5 cm2/Vs für Löcher auf Basis von Pentacene berichtet.
  • Ladungsträgertransport in dünnen organischen Schichten wird im Allgemeinen durch temperaturaktivierendes Ladungsträger-Hopping beschrieben, was zu relativ niedrigen Mobilitäten und einem starken Einfluss von Unordnung führt. Deshalb hängt die Feldeffekt-Mobilität in OTFTs im Allgemeinen von der Ladungsträgerdichte. Deshalb ist gewöhnliche eine relativ hohe Gate-Spannung notwendig, um die lokalisierten Zustände zu füllen und eine hohe Ladungsträgermobilität in der organischen Schicht zu erreichen.
  • Eine Möglichkeit die Ladungsträgerdichte und hierdurch auch die Ladungsträgermobilität in organischen Halbleitern zu erhöhen, ist die elektrische Dotierung mittels Donatoren oder Akzeptoren. Hierbei werden mittels Erzeugen von Ladungsträgern in einem Matrixmaterial eine Veränderung im Fermi-Niveau des Halbleiters sowie, je nach Art des verwendeten Donaten, eine Erhöhung der zunächst recht niedrigen Leitfähigkeit erreicht. In dem Dokument US 5,093,698 sind generelle Anforderungen an Kombinationen organischer Materialien für elektrische Dotierung.
  • In den letzten Jahren sind die elektrische Dotierung organischer Halbleiter mittels molekularer Dotanden im Detail untersucht worden. Diese Untersuchungen haben gezeigt, dass die Mobilität von Mischschichten in Abhängigkeit von der Dotierkonzentration ansteigt. Dieses Phänomen wird dadurch erklärt, dass zusätzliche Ladungsträger graduell Zustande des Matrixmaterials vom unteren Ende der Zustandsdichteverteilung, also Zustände mit niedriger Mobilität, auffüllen. Hierbei wird gleichermaßen das Fermi-Niveau des Halbleiters je nach Art des verwendeten Dotanden graduell verändert, für n-Dotierung erhöht, für p-Dotierung verringert, und damit auch eine Erhöhung der zunächst recht niedrigen Leitfähigkeit erreicht.
  • In OTFTs mit elektrische dotierter aktiver Schicht wird mit der erhöhten Mobilität auch die Einsatzspannung verringert und damit auch ganz allgemein die Betriebsspannung. Für die meisten Einsatzgebiete von OTFTs ist es wünschenswert, sehr niedrige Aus-Ströme zu erreichen. Eine hohe Dotierkonzentration führt hierbei zu einer hohen Hintergrund-Ladungsdichte, was wiederum zu einem unerwünschten Ohmschen Ladungsträgertransport führt, der durch den Feldeffekt nicht effektiv gesteuert werden kann.
  • Unter dem Aus-Zustand eines Transistors wird hier eine angelegte Gate-Spannung kleiner der Einsatz-Spannung des Bauelementes für n-Leitertyp und größer der Einsatz-Spannung für p-Leitertyp verstanden. Bei dem im Allgemeinen diskutierten OTFT im Anreicherungstyp liegt bei der Gate-Spannung Vg = 0 V für p- und n-Typ der Aus-Zustand vor.
  • Es wurde jedoch auch gezeigt, dass in Halbleiterschichten mit exzellenter Mobilität die Beimischung von Dotanden zu erhöhter Störstellenstreuung führt und damit auch maximale Mobilität in OTFT einschränkt. (Harada et al., Appl. Phys. Lett. 91 092118 (2007)). Deshalb ist eine alternative Anordnung wünschenswert, bei der die Hintergrund-Ladungsträgerkonzentration erhöht wird, ohne dass Dotanden in die Halbleiterschicht eingemischt werden. Eine solche Anordnung ermöglicht es prinzipiell, die Ladungsträgermobilität über das gewohnte Maß hinaus zu erhöhen.
  • Verfahren zum Bestimmen der Ladungsträgermobilität in einem Feldeffekt-Transistor sind als solche in verschiedenen Ausführungen bekannt. Ein Beispiel ist in dem Dokument US 2004/191952 A beschrieben. Aus dem Sättigungsbereich einer Strom-Spannungs-Kennlinie zwischen Source- und Drain-Elektrode wird dort die Mobilität für eine bestimmte Gate-Spannung ausgerechnet.
  • Die Eigenschaften der verschiedenen an einem elektrischen Dotierprozess beteiligten Materialien können auch durch die Energielagen des niedrigsten unbesetzten Molekülorbitals (HOMO, Synonym: Ionisationspotential) und des höheren besetzten Molekülorbitals (LUMO, Synonym: Elektronenaffinität) beschrieben werden.
  • Eine Methode zur Bestimmung der Ionisationspotentiale (IP) ist Ultraviolett-Photoelektronenspektroskopie (UPS). In der Regel werden Ionisationspotentiale für den Festkörper bestimmt, jedoch ist es auch möglich, die Ionisationspotentiale in der Gasphase zu messen. Beide Größen unterscheiden sich durch Festkörpereffekte, wie zum Beispiel die Polarisationsenergie der Löcher, die im Photoionisationsprozess entstehen. Ein typischer Wert für die Polarisationsenergie ist etwa 1 eV, aber es können auch größere Abweichungen davon auftreten. Das Ionisationspotential bezieht sich dabei auf den Beginn des Photoemissionsspektrums im Bereich der hohen kinetischen Energien der Photoelektronen, das heißt die Energie der am schwächsten gebundenen Photoelektronen. Eine hiermit verbundene Methode, die invertierte Photoelektronenspektroskopie (IPES) kann zur Bestimmung von Elektronenaffinitäten (EA) herangezogen werden. Diese Methode ist jedoch wenig verbreitet. Alternativ können Festkörperenergieniveaus durch elektrochemische Messung von Oxidationspotentialen Eox bzw. Reduktionspotentialen Ered in Lösung bestimmet werden. Eine geeignete Methode ist beispielsweise Zyklovoltammetrie. Empirische Methoden zur Ableitung des Festkörperionisationspotentials aus einem elektrochemischen Oxidationspotential sind in der Literatur bekannt.
  • Für die Umrechnung von Reduktionspotentialen in Elektronenaffinitäten sind keine empirischen Formeln bekannt. Diese liegt in der Schwierigkeit der Bestimmung von Elektronenaffinitäten. Deshalb wird häufig eine einfache Regel angewandt: IP = 4,8 eV + e·Eox (s. Ferrocen/Ferrocenium) beziehungsweise EA = 4,8 eV + e·Ered (vs. Ferrocen/Ferrocenium). Für den Fall, dass andere Referenzelektroden oder Redoxpaare zur Referenzierung der elektrochemischen Potentiale benutzt werden, sind Verfahren zur Umrechnung bekannt.
  • Es ist üblich, die Begriffe „Energie des HOMOs” E(HOMO) beziehungsweise „Energie des LUMOs) E(LUMO) synonym mit den Begriffen Ionisationsenergie beziehungsweise Elektronenaffinität zu gebrauchen (Koopmans Theorem). Dabei ist zu beachten, dass die Ionisationspotentiale und Elektronenaffinitäten so gegeben sind, dass ein höherer Wert eine stärkere Bindung eines heraus gelösten beziehungsweise angelagerten Elektrons bedeutet. Deshalb gilt in globaler Näherung: IP = –E(HOMO) und FA = –D(LUMO).
  • Es wurden OTFTs mit Anordnungen von zusätzlichen Schichten auf der aktiven Halbleiterschicht, die auch als Kapselungs- oder Deckschichten bezeichnet werden, beschrieben. Zum Beispiel wurden Doppelschichten aus Pentacene von dem Fulleren C60 verwendet, um ambipolare Bauelement-Funktionalität zu erreichen (Wang et al., Org. Electron. 7, 457 (2006)). In diesem speziellen Fall kann aus den Energieniveaus abgeleitet werden, dass es nicht zu einer technisch relevanten Veränderung der Ladungsträgerdichte in der aktiven Schicht kommt. Auch im Dokument US 2007/034860 A1 wird eine solche Struktur beschrieben und sogar eine höhere Mobilität für die aktive Schicht im Vergleich zur Kapselschicht gefordert.
  • Das Dokument US 5 500 537 A beschreibt unter anderem eine OTFT-Struktur, bei der auf die aktive Schicht eine weitere Schicht, ähnlich der Kapselungsschicht, aufgebracht ist. Die Forderung an die aktive Schicht ist, dass sie eine Polymerschicht ist. Die Forderung an die weitere Schicht ist, dass sie eine Leitfähigkeit der aktiven Schicht kontrolliert. Diese Forderung ist eigentlich zu allgemein gehalten für ein schaltbares Bauelement. Die vorgeschlagene Anordnung kann nur in Geometrien funktionieren, bei denen die Source/Drain-Kontakte nicht in direktem Kontakt mit zu der weiteren Schicht mit der höheren Leitfähigkeit angeordnet sind, da sonst hohe Aus-Ströme unvermeidlich sind.
  • Das Dokument US 2006/0202196 A1 beschreibt Strukturen mit einer Kapselungsschicht, die als eine elektrisch homogen dotierte Schicht ausgeführt ist, wobei das Matrixmaterial der Kapselungsschicht gleich oder ähnlich den Material der aktiven Schicht ist. Das heiß, dass die Mobilitäten für aktive Schicht und Kapselschicht gleich oder zumindest ähnlich sind, und dass die elektrische Leitfähigkeit der Kapselschicht aufgrund der elektrischen Dotierung sogar größer als oder zumindest gleich der elektrischen Leitfähigkeit der aktiven Schicht im Aus-Zustand ist.
  • Das Dokument US 2005/0110005 A1 beschreibt eine bipolare organische Vorrichtung. Die Vorrichtung ist mit einer ersten Elektrode und einer zweiten Elektrode gebildet, zwischen denen eine erste organische Schicht und eine zweite organische Schicht angeordnet sind. Die beiden organischen Schichten sind dotiert.
  • Zusammenfassung der Erfindung
  • Aufgabe der Erfindung ist es, einen verbesserten organischen Feldeffekt-Transistor zu schaffen, bei dem eine hohe Mobilität der Ladunsträger zur Verfügung gestellt ist.
  • Diese Aufgabe wird erfindungsgemäß durch einen organischen Feldeffekt-Transistor nach dem unabhängigen Anspruch 1 gelöst. Vorteilhafte Ausgestaltungen der Einfindung sind Gegenstand von abhängigen Unteransprüchen.
  • Die Erfindung umfasst den Gedanken eines organischen Feldeffekt-Transistors, insbesondere eines organischen Dünnschicht-Feldeffekt-Transistors, mit einer Gate-Elektrode, einer Drain-Elektrode und einer Source-Elektrode, einer dielektrischen Schicht, die in Kontakt mit der Gate-Elektrode gebildet ist, einer aktiven Schicht aus organischem Material, die in Kontakt mit der Drain-Elektrode sowie der Source-Elektrode ist und die elektrisch undotiert ausgeführt ist, einer Dotierungsmaterial-Schicht, die ein Dotierungsmaterial enthält, welches für das organische Material der aktiven Schicht ein elektrischer Dotand ist, und einem Grenzflächenbereich, in welchem ein flächiger Kontakt zwischen der aktiven Schicht und der Dotierungsmaterialschicht gebildet ist, wobei eine Mobilität für gleichartige elektrische Ladungsträger in der Dotierungsmaterial-Schicht höchstens halb so groß wie in der aktiven Schicht ist.
  • Als Dotierungsmaterial kann ein organisches oder ein nichtorganisches Material zum Einsatz kommen. Das organische Material der aktiven Schicht und das Dotierungsmaterial in der Dotierungsmaterial-Schicht bilden eine Kombination von Materialien, bei denen, wenn sie in einer Schicht durchmischt angeordnet sind, eine elektrische Dotierung des organischen Materials stattfindet, welche auf einem teilweisen Ladungstransfer zwischen den beiden Materialien beruht. Bei dem hier vorgeschlagenen organischen Feldeffekt-Transistor befindet sich das organische Material jedoch in der aktiven Schicht, wohingegen des Dotierungsmaterial von der Dotierungsmaterial-Schicht umfasst ist. In der Dotierungsmaterial-Schicht selbst bewirkt das Dotierungsmaterial keine elektrische Dotierung in diesem Sinne.
  • Das Dotierungsmaterial kann für das organische Material der aktiven Schicht ein elektrischer Dotand in Form eines Akzeptors oder eines Donators sein. Im Fall der Ausbildung des elektrischen Dotanten als Donator ist ein organischer Feldeffekt-Transistor vom n-Typ gebildet.
  • Ein organischer Feldeffekt-Transistor vom p-Typ ist gebildet, wenn der elektrische Dotand ein Akzeptor für das organische Material der aktiven Schicht ist.
  • Üblicherweise sind die Elektroden und die mehreren Schichten des organischen Feldeffekt-Transistors auf einem Substrat gebildet, beispielsweise als Dünnschichten. Es kann vorgesehen sein, dass mit dem Substrat selbst bereits eine oder mehrere der Elektroden zur Verfügung gestellt sind, beispielsweise mittels Nutzen eines Silizium-Substrates. Auf oder in dem Substrat können die Drain- und die Source-Kontakt oder alternativ die Gate-Elektrode gebildet sein.
  • Das Vorsehen des Dotierungsmaterials in der Dotierungsmaterial-Schicht, welche in direktem Kontakt mit der aktiven Schicht ist, hat zur Folge, dass das Fermi-Niveau der aktiven Schicht modifiziert wird, das heißt Ladungsträger werden in diese elektrisch undotierte Schicht induziert, was auch als eine Quasi-Dotierung bezeichnet werden kann. Die induzierten Ladungsträger füllen hierbei bevorzugt tiefliegende Niveaus der Zustandsdichteverteilung der aktiven Schicht und stehen nicht oder nur teilweise als freie Ladungsträger in der aktiven Schicht zur Verfügung. Dieses hat gegenüber den im Stand der Technik vorgesehenen elektrisch dotierten aktiven Schichten den Vorteil, dass keine oder nur vernachlässigbar wenig freibewegliche Ladungsträger in den Leitungskanal gelangen, welcher sich in Betrieb zwischen Source- und Drain-Elektrode bildet. Die Feldeffekt-Mobilität des Transistors wird mittels Auffüllen von Störstellen erhöht, ohne dass zusätzliche Störstellen geschaffen werden. Dieses hier vermiedene Schaffen zusätzlicher Störstellen findet demgegenüber bei den im Stand der Technik vorgesehenen elektrisch dotierten Schichten statt, die als Mischschichten vom Dotierungsmaterial und Matrixmaterial gebildet sind.
  • Des weiteren werden mittels der vorgeschlagenen Ausgestaltung die Einsatzspannung und die Arbeitsspannung des organischen Feldeffekt-Transistors verringert.
  • Die Dotierungsmaterial-Schicht kann als eine nicht geschlossene oder eine geschlossenen Schicht gebildet sein. Die geschlossenen oder nicht geschlossene Schicht, welche zum Beispiel von mehreren getrennten Teilbereichen gebildet sein kann, können auf einen Teilabschnitt der Ausdehnung des Schichtstapels des Transistors beschränkt sein.
  • Eine bevorzugte Weiterbildung der Erfindung sieht vor, dass die Dotierungsmaterial-Schicht aus einem Dotierungsmaterial besteht.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung kann vorgesehen sein, dass in der Dotierungsmaterial-Schicht das Dotierungsmaterial in ein Matrixmaterial eingelagert ist, für welches das organische Dotierungsmaterial kein elektrischer Dotand ist.
  • Eine Weiterbildung der Erfindung kann vorsehen, dass eine Differenz zwischen dem Reduktionspotential/Oxidationspotential des Dotierungsmaterials und dem Oxidationspotential/Reduktionspotential) des organischen Materials der aktiven Schicht kleiner als etwa –0.5 V/größer als etwa 0.5 V ist.
  • Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass die Dotierungsmaterial-Schicht mehrschichtig gebildet ist, wobei eine Teilschicht aus dem Dotierungsmaterial besteht und eine weitere Teilschicht, die zwischen der Teilschicht und aktiven Schicht und in Kontakt mit der Teilschicht sowie der aktiven Schicht angeordnet ist, aus dem Ladungsträger transportierenden Matrixmaterial besteht. Die weitere Teilschicht verhindert einen direkten Kontakt des Dotierungsmaterials zu der aktiven Schicht, so dass eine Diffusion von Molekülen des Dotierungsmaterials in die aktive Schicht und hierdurch hervorgerufene Veränderungen der Eigenschaften des Transistors unterbunden sind. Diese Weiterbildung ist besonders bevorzugt in dem Fall, wenn ein thermisch nicht stabiles und somit flüchtiges Dotierungsmaterial zum Einsatz kommt.
  • Bevorzugt sieht eine Fortbildung der Erfindung vor, dass das Ladungsträger transportierende Matrixmaterial ein bevorzugt Elektronen transportierendes Material ist.
  • Bei einer vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass das Ladungsträger transportierende Matrixmaterial ein bevorzugt Löcher transportierendes Material ist.
  • Eine Weiterbildung der Erfindung kann vorsehen, dass die Dotierungsmaterial-Schicht in direktem Kontakt mit der Drain-Elektrode und der Source-Elektrode gebildet ist.
  • Bei einer zweckmäßigen Ausgestaltung der Erfindung kann vorgesehen sein, dass in einem eingeschalteten Zustand, welchem der Leitungskanal in der aktiven Schicht ausgebildet ist, eine elektrische Leitfähigkeit in der aktiven. Schicht um wenigstens einen Faktor von zwei größer als in der Dotierungsmaterial-Schicht ist. Bevorzugt ist bei einer Weiterbildung vorgesehen, dass sich die elektrische Leitfähigkeit in der aktiven Schicht und in der Dotierungsmaterial-Schicht um mehrere Größenordnungen unterscheiden.
  • Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass das Dotierungsmaterial ein molekulares Dotierungsmaterial ist, welches wenigstens zwei verschiedene Atomen enthält.
  • Bevorzugt sieht eine Fortbildung der Erfindung vor, dass das molekulare Dotierungsmaterial eine molare Masse zwischen etwa 100 g/mol und etwa 2000 g/mol, bevorzugt zwischen etwa 200 g/mol und etwa 1000 g/mol aufweist.
  • Bei einer vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass eine energetische Differenz zwischen dem höchsten besetzten Orbital der Moleküle (HOMO) des organischen Materials der aktiven Schicht und dem niedrigsten unbesetzten Orbital der Moleküle (LUMO) des Dotierungsmaterials größer als etwa –0.5 eV ist, wenn das Dotierungsmaterial für das organische Material der aktiven Schicht ein Akzeptor ist. Es handelt sich dann um eine p-Dotierung.
  • Eine Weiterbildung der Erfindung kann vorsehen, dass eine energetische Differenz zwischen dem niedrigsten unbesetzten Orbital der Moleküle (LUMO) des organischen Materials der aktiven Schicht und dem höchsten besetzten Orbital der Moleküle (HOMO) des Dotierungsmaterials kleiner als etwa 0.5 eV ist, wenn das Dotierungsmaterial für das organische Material der aktiven Schicht ein Donator ist. Es handelt sich dann um eine n-Dotierung.
  • Eine vorteilhafte Ausführungsform der Erfindung sieht vor, dass die Dotierungsmaterial-Schicht als eine Kapselungsschicht gebildet ist.
  • Bevorzugt sieht eine Fortbildung der Erfindung vor, dass die Kapselungsschicht frei von einem direkten Kontakt mit der Drain-Elektrode und der Source-Elektrode gebildet ist. Die aktive Schicht kann in dieser Ausgestaltung die Drain- und Source-Eletroden bedeckend ausgeführt sein.
  • Bei einer vorteilhaften Ausgestaltung der Erfindung kann vorgesehen sein, dass die Dotierungsmaterial-Schicht als eine Ladungsträger-Injektionsschicht in direktem Kontakt mit der Drain-Elektrode und der Source-Elektrode gebildet ist.
  • Bei einer Fortbildung der Erfindung ist vorgesehen, dass das Dotierungsmaterial ein p-Dotant mit Reduktionspotential von gleich oder größer etwa 0 V vs. Fc/Fc+ gegenüber dem organischen Material der aktiven Schicht ist.
  • In einer Ausführungsform der Erfindung kann vorgesehen sein, dass das Dotierungsmaterial ein n-Dotant mit einem Oxidationspotential von höchstens etwa –1.5 V vs. Fc/Fc+ gegenüber dem organischen Material der aktiven Schicht ist.
  • Bevorzugt sieht eine Fortbildung der Erfindung vor, dass das molekulare Dotierungsmaterial mehr als sechs Atome, bevorzugt mehr als zwanzig Atome enthält.
  • Es kann in einer Ausgestaltung vorgesehen sein, dass das Dotierungsmaterialien eine Glassübergangstemperatur (Tg) von größer als 75°C, bevorzugt von größer als 100°C und weiter bevorzugt von größer als 200°C aufweist. Auf diese Weise werden stabilere elektrische Eigenschaften ausgebildet. Mittels einer Tg wird die Diffusion von dem Dotierungsmaterial minimiert, und die Schichten behalten ihre ursprünglichen Eigenschaften und Funktionen bei.
  • Vorteilhaft ist, wenn die Dotierungsmaterial-Schicht thermisch stabil ist, was die thermische Stabilität des der organische Feldeffekt-Transistor unterstützt. Eine gute thermische Stabilität ist insbesondere gegeben, wenn das Molekül eine hohe molare Masse hat, eine größere Zahl von Atomen enthält und eine höhere Tg aufweist. Dies kann gemessen werden, indem die Umgebungstemperatur für den Transistor langsam erhöht wird, zum Beispiel von Raumtemperatur auf etwa 300°C, beispielsweise in Schritten von 1°C, und hierbei der Strom auf eine gegebene Source-Drain-Spannung und eine gegebene Gate-Spannung gemessen werden. Eine größere Abweichung oder bruchartige Abweichung des Stroms weist dann auf die maximale Temperatur hin, bei der der Transistor noch stabil ist.
  • Die Schichten werden typischerweise mittels Vakuumverdampfung hergestellt, beispielsweise VTE („vacuum thermal evaporation”) oder OVPD („organic vapour phase deposition”). Des weiteren können Vakuum-Spray-Verfahren zum Einsatz kommen. Eine weitere Abscheidungsart umfasst den thermisch oder den optisch induzierten Übertrag des Materials von einem Trägersubstrat auf das eigentliche Substrat, zum Beispiel mittels LITI („laser induced thermal imaging”). Dotierte Schichten werden im Vakuum typischerweise mittels Mischverdampfung aus zwei unabhängig geregelten Quellen für Matrixmaterial und Dotand hergestellt. Sie können alternativ auch mittels Interdiffusion aus einer Dotandenschicht in die darunter liegende Matrixmaterialschicht entstehen, wobei die beiden Materialien nacheinander im Vakuum aufgedampft werden. Die Interdiffusion kann thermisch gesteuert sein. Unter Umständen muss der Dotand noch während des Herstellungsprozesses oder in der Schicht durch geeignete physikalische und/oder chemische Maßnahmen noch aktiviert werden, beispielsweise mittels Lichteinwirkung, Einwirkung von magnetischen und/oder elektrischen Feldern.
  • Alternative Herstellungsmethoden für dotierte Schichten sind:
    • – Dotierung einer Matrixschicht durch eine Lösung von Dotanden mit anschließendem Verdampfen des Lösungsmittels, insbesondere durch thermische Behandlung.
    • – Oberflächendotierung einer Matrixmaterialschicht durch eine oberflächlich aufgebrachte Schicht von Dotanden.
    • – Herstellung einer Lösung von Matrixmolekülen und Dotanden und anschließende Herstellung einer Schicht aus dieser Lösung mittels konventioneller Methoden wie beispielsweise Verdampfen des Lösungsmittels oder Aufschleudern.
  • Die Dotierung kann gegebenenfalls auch derart erfolgen, dass der Dotand aus einer Precursor-Verbindung heraus verdampft wird, die beim Erhitzen und/oder Bestrahlen die erfindungsgemäße Verbindung freisetzt. Es versteht sich, dass die Freisetzung des erfindungsgemäßen Dotanden auch in der Matrix erfolgen kann.
  • Beschreibung bevorzugter Ausführungsbeispiele der Erfindung
  • Die Erfindung wird im Folgenden anhand von Ausführungsbeispielen unter Bezugnahme auf Figuren einer Zeichnung näher beschrieben. Hierbei zeigen:
  • 1 eine schematische Darstellung des Aufbaus eines organischen Feldeffekt-Transistors mit einer als eine Kapselungsschicht ausgeführten Dotierungsmaterial-Schicht,
  • 2 eine schematische Darstellung des Aufbaus eines weiteren organischen Feldeffekt-Transistors, bei dem die Kapselungsschicht in Kontakt mit einer Source- und einer Drain-Elektrode ist,
  • 3 eine schematische Darstellung des Aufbaus eines anderen organischen Feldeffekt-Transistors mit einer als eine Ladungsträger-Injektionsschicht ausgeführten Dotierungsmaterial-Schicht,
  • 4a bis 4c schematische Darstellungen für Ausführungsformen der Dotierungsmaterial-Schicht,
  • 5 eine grafische Darstellung der Feldeffekt-Mobilität in Abhängigkeit von der Gate-Spannung,
  • 6 eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4a,
  • 7 eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4b und
  • 8 eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4c.
  • 1 zeigt eine schematische Darstellung eines organischen Feldeffekt-Transistors mit einer bei dieser Ausführungsform als Kapselungsschicht 1 ausgeführten Dotierungsmaterial-Schicht, einer hierunter gebildeten aktiven Schicht 2 aus organischem Material, einer Source-Elektrode 3, einer Drain-Elektrode 4, einer dielektrischen Schicht 5 sowie einer Gate-Elektrode 6 und ein optionales Substrat 12. Für die schematische Darstellung eines weiteren organischen Feldeffekt-Transistors in 2 wurden die gleichen Bezugszeichen wie in 1 verwendet.
  • Während die Dotierungsmaterial-Schicht 1 bei dem organischen Feldeffekt-Transistor in 1 ausschließlich in direktem Kontakt mit der aktiven Schicht 2 ist, besteht bei der Ausführungsform nach 2 darüber hinaus ein direkter Kontakt mit der Source-Elektrode 3 und der Drain-Elektrode 4.
  • 3 zeigt eine schematische Darstellung eines anderen organischen Feldeffekt-Transistors mit der bei dieser Ausführungsform als eine Ladungsträger-Injektionsschicht 11 ausgeführten Dotierungsmaterial-Schicht. Für die schematische Darstellung in 3 wurden für gleiche Merkmale die gleichen Bezugszeichen wie in den 1 und 2 verwendet. Zusätzlich ist in
  • 3 ein Substrat 12 des organischen Feldeffekt-Transistors gezeigt. Des weiteren ist in Ladungsträger-Injektionsschicht 11 eine Teilschicht 13 eingelagert, die aus einem Matrixmaterial besteht.
  • Bei den dargestellten Ausführungsbeispielen ist die Gate-Elektrode 6 auf dem Substrat 12 gebildet. Es kann auch vorgesehen sein, dass mit dem Substrat selbst bereits die Gate-Elektrode zur Verfügung gestellt ist, beispielsweise mittels nutzen eines Silizium-Substrates. Auch kann alternativ vorgesehen sein (nicht dargestellt), den Drain- und den Source-Kontakt auf dem Substrat zu bilden.
  • Die Dotierungsmaterial-Schicht umfasst bei den verschiedenen Ausführungsformen von organischen Feldeffekt-Transistoren jeweils ein Dotierungsmaterial, dessen Moleküle für das organsiche Material der jeweiligen aktiven Schicht 2 elektrische Dotanden bilden, sei es in Form von Akzeptoren oder in Form von Donatoren, ohne dass das Dotierungsmaterial in der Dotierungsmaterial-Schicht selbst elektrisch dotierend wirkt.
  • 4a bis 4c zeigen schematisch unterschiedliche Ausführungsformen für Dotierungsmaterial-Schicht, insbesondere die Kapselungsschicht 1, bei den organischen Feldeffekt-Transistoren nach den 1 bis 3.
  • 4a zeigt eine Ausführungsform, bei der die Dotierungsmaterial-Schicht als eine Schicht aus einem Dotierungsmaterial bestehend gebildet. Die Moleküle des Dotierungsmaterials, aus welchem die Dotierungsmaterial-Schicht bei der Ausgestaltung nach 4a besteht, bilden elektrische Dotanden für das organische Material der aktiven Schicht 2. Die Dotanden können als Akzeptoren oder Donatoren wirken. Das Dotierungsmaterial ist jedoch getrennt von der aktiven Schicht 2 in einer eigenen Schicht angeordnet, nämlich der Dotierungsmaterial-Schicht, bei es sich um die Kapselungsschicht 1 oder die Ladungsträger-Injektionsschicht 11 handeln kann.
  • Die Dotierungsmaterial-Schicht die aus dem Dotierungsmaterial besteht, wie auch eine Teilschicht bei der Ausführung nach 4c unten, führen eine dickere Schichtausbildung oder eine höhere Konzentration der Moleküle des Dotierungsmaterials zu einer höheren Hintergrund-Ladungsdichte in der aktiven Schicht 2.
  • Die Dotierungsmaterial-Schicht, insbesondere der Kapselungsschicht 1, besteht in der Ausführung nach 4a aus einem starken Donator/Akzeptor. Es werden hierdurch Elektronen/Löcher von dem Donator/Akzeptor in das LUMO-Niveau/HOMO-Niveau der aktiven Schicht 2 transferiert, welche zu einer Hintergrund-Ladungsdichte in der aktiven Schicht 2 führen. Die Schichtdicke der Dotierungsmaterial-Schicht kann eingestellt werden, um die Elektronen-/Löchermobilität zu erhöhen, ohne dass Aus-Ströme des organischen Feldeffekt-Transistors signifikant erhöht werden. Die Aus-Ströme steigen stark an, wenn die Hintergrund-Ladungsdichte in der aktiven Schicht 2 zu groß wird.
  • Tabelle 1 zeigt ein bevorzugtes Ein-/Aus-Strom-Verhältnis für eine Schichtdicke der Kapselungsschicht 1 von einem nm. Bei einer Schichtdicke von 2 nm wurde ein starker Anstieg des Aus-Stroms festgestellt. Je nach Anwendung können erhöhte Aus-Ströme in Kauf genommen werden. Dann sind die höhere Mobilität, welche für die Schichtdicke von 2 nm festgestellt wurde, und die niedrigere Schwellspannung VtH vorteilhaft.
    Schichtdicke Kapselungsschicht Mobilität (cm2/Vs) VtH (V) Aus-Strom (A) Strom bei 30 V (A) Ein-/Aus-Verhältnis
    0 nm 0,042 –14 -3,30E–10 –8,06E–07 2,44E+03
    1 nm 0,057 –13 –2,60E–10 –1,8E–06 6,92E+03
    2 nm 0,10 –12 –9,70E–09 –4,02E–06 4014E+02
  • 4b zeigt eine Ausführungsform, bei der die Dotierungsmaterial-Schicht als eine Mischschicht aus dem Dotierungsmaterial und einem weiteren Material gebildet ist, in welches die Moleküle des Dotierungsmaterials eingelagert sind. Das weitere Material dient als eine Art Aufnahme oder Trägermaterial für die Dotanden, ohne dass es zu einer elektrischen Dotierung in der Dotierungsmaterial-Schicht selbst kommt. Das Trägermaterial kann vorwiegend Ladungsträger in Form von Löchern oder vorwiegend Ladungsträger in Form von Elektronen transportierend ausgeführt sein.
  • Bei diesen Ausgestaltungen wird die Hintergrund-Ladungsdichte in der aktiven Schicht 2 auch erhöht, wenn das höchste besetzte Molekülorbital (HOMO) (oder das niedrigste unbesetzte Molekülorbital (LUMO)) der Moleküle des Dotierungsmaterials energetisch höher (niedriger) liegt als das LUMO-Niveau (HOMO-Niveau) der Moleküle des Matrixmaterials, was auch für die unten beschriebene Ausführung nach 4c gilt.
  • Die Hintergrund-Ladungsdichte in der aktiven Schicht 2 wird bei dieser Ausgestaltung auch erhöht, wenn das LUMO-Niveau (HOMO-Niveau) der Moleküle des aktiven Schicht energetisch niedriger (höher) liegt als das LUMO-Niveau (HOMO-Niveau) der Moleküle des Matrixmaterials, was wiederum auch für die unten beschriebene Ausführung nach 4c gilt.
  • Bei diesen Ausgestaltungen wird weiterhin die Hintergrund-Ladungsdichte in der aktiven Schicht 2 auch erhöht, wenn das HOMO-Niveau (LUMO-Niveau) der Moleküle des Dotierungsmaterials energetisch höher (niedriger) liegt als das LUMO-Niveau (HOMO-Niveau) der Moleküle des organischen Materials der aktiven Schicht 2, was auch für die unten beschriebene Ausführung nach 4c gilt.
  • Die Dotierungsmaterial-Schicht, insbesondere Kapselungsschicht 1, ist in der Ausführung nach 4b als eine Mischschicht aus zwei Komponenten gebildet, wobei für einen organischen Feldeffekt-Transistor vom n-Typ/p-Typ, die eine Komponente ein Donator/Akzeptor für das organische Material der aktiven Schicht 2 darstellt. Die zweite Komponente der Kapselungsschicht 1 ist ein Matrixmaterial. Ladungsträger werden bei dieser Ausgestaltung direkt vom Donator/Akzeptor der Kapselungsschicht 1 in das LUMO-/HOMO-Niveau der aktiven Schicht 2 transferiert.
  • 4c zeigt schließlich eine Ausführungsform, bei der die Dotierungsmaterial-Schicht, insbesondere die Kapselungsschicht 1, mehrschichtig ausgeführt ist. In der dargestellten Ausgestaltung sind eine untere Schicht 7 sowie eine obere Schicht 9 vorgesehen. Die obere Schicht 9 besteht, vergleichbar der Kapselungsschicht 1 in der Ausführung nach 3a, aus einem Dotierungsmaterial. Die untere Schicht 7 besteht aus einem bevorzugt Löcher oder bevorzugt Elektronen transportierenden Material, vergleichbar dem weiteren Material in der Kapselungsschicht 1 nach der Ausführungsform in 4b.
  • 5 zeigt eine grafische Darstellung der Feldeffekt-Mobilität in Abhängigkeit von der Gate-Spannung. Es sind Kurvenverläufe für einen organischen Feldeffekt-Transistor vom n-Typ auf Basis von Fulleren C60 in der Ausgestaltung nach den 2 und 4c (vgl. Kurve 10) sowie einen bekannten organischen Feldeffekt-Transistor vom n-Typ auf Basis von Fulleren C60 (vgl. Kurve 11) gezeigt.
  • 6 zeigt eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4a. Es sind die ungestörten Energieniveaus der einzelnen Schichten vor einem Ladungstransfer gezeigt. Dargestellt sind das höchste besetzte Molekülorbital (HOMO) eines Donators 12 in der Kapselungsschicht 1, ein Elektronentransfer 13 in die aktive Schicht 2, ein niedrigstes unbesetztes Molekülorbital (LUMO) 14 der aktiven Schicht 2 sowie das Fermi-Niveau 15 der aktiven Schicht 2.
  • 7 zeigt eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4b. Es sind die ungestörten Energieniveaus der einzelnen Schichten dargestellt. Gezeigt sind das LUMO-Niveau 16 des weiteren Materials in der Kapselungsschicht 1 nach der Ausführung in 4b und ein wegen einer hohen Barriere eher unwahrscheinlicher Elektronentransfer 17 vom HOMO-Niveau 17 des Dotierungsmaterials auf das LUMO-Niveaus 16 des weiteren Materials, welches hier bevorzugt Elektronen transportierend ausgeführt ist.
  • 8 eine schematische Darstellung für Energieniveaus und einen Ladungstransfer in Verbindung mit der Ausführung in 4c. Es sind die ungestörten Energieniveaus der einzelnen Schichten vor dem mittels Pfeil angedeuteten Ladungstransfer dargestellt. Gezeigt sind das LUMO-Niveau 18 des weiteren Materials in der unteren Schicht 7 nach 4c, welches hier bevorzugt Elektronen transportierend ausgeführt ist, sowie ein Elektronentransfer 19 in die aktive Schicht 2 mittels eines Tunnelprozesses durch die untere Schicht 7 hindurch. Der Tunnelprozess hängt von der Dicke der unteren Schicht 7 ab. Eine Verringerung der Schichtdicke für die untere Schicht 7 führt zu einer Erhöhung der Hintergrund-Ladungsdichte in der aktiven Schicht 2.
  • Das (Matrix-)Material der unteren Schicht 7 wird vom Dotierungsmaterial in der oberen Schicht 8 elektrisch dotiert, was aber nicht notwendigerweise der Fall sein muss. Das Dotierungsmaterial für die Quasi-Dotierung der aktiven Schicht 2 ist nicht in direktem Kontakt mit der aktiven Schicht 2 selbst. Ein Teil der Ladungsträger wird vom Dotierungsmaterial aus der oberen Schicht 8 spontan mittels Tunneln in das LUMO-/HOMO-Niveau der aktiven Schicht 2 transferiert, was zu der gewünschten Hintergrund-Ladungsdichte führt. In dem Fall, dass die untere Schicht 7 von dem Dotierungsmaterial elektrisch dotiert ist, können auch Ladungsträger in das LUMO-/HOMO-(Matrix-)Materials der unteren Schicht 7, welches bevorzugt Elektronen oder bevorzugt Löcher transportierend ausgeführt ist, transferiert werden. In einem weiteren Schritt werden diese Ladungsträger teilweise in das LUMO-/HOMO der aktiven Schicht 2 transferiert.
  • Nachfolgend werden Ausführungsbeispiele weiter erläutert.
  • Beispiele für organische Materialien, die für die Schicht 2 eingesetzt werden können, sind folgende Materialien: Fulleren C60 und C70 und Derivate; Pentacene und Derivate; Rubrene; Oligothiophenes und Derivate; Phthalocyanine und Metallophthalocyanine, und Derivate; PTCDI, Perylenetetracarboxylic Diimide, und Derivate; PPV, Poly(p-phenylenevinylene), und Derivate; PTV Poly(2,5-thienylenevinylene), und Derivate; P3HT poly(3-hexythiophene), und Derivate; PFO, Poly(9,9-dioctyliluoreiie), und Derivate; PCMB, [6,6]-phenyl C61-butyric acid methyl ester, und Derivate.
  • Beispiele für Matrixmaterialien der als Mischschicht ausgeführten Kapselschicht 1 bei der Ausführung nach 3b sind folgende Materialien: Alq3, tris-(8-hydroxyquinoline)aluminium, und Derivate; Bphen, 4,7-diphenyl-1,10-phenanthroline, und Derivate; octaethylporphyrin und Metallooctaethylporphyrins, und Derivate; NTCDA, 1,4,5,8-naphthalenetetracarboxylic dianhydride, und Derivate; TPD, 4,4'-bis(3-methylphenylphenylamino)biphenyl, und Derivate; NPD, N, N'-diphenyl-N, N'-bis(1-naplithyl)-1, 1'-biphenyl-4,4-diamine, und Derivate; Tetraphenylporphyrin und Metallotetraphenylporphyrins, und Derivate; Spiro-TAD, 2,2',7,7'-tetrakis(N,N-diphenylalnino)-9,9'-spirobifluoreile; TCTA, 4,4',4''-tris(N-carbazolyl)triphenylamine; CBC, 4,4-Bis(carbazol-9-yl)biphenyl; und UGH2, 1,4-Bis(triphenylsilyl)benzene.
  • Beispiele für Donatoren, die in der Lage sind, mit den Molekülen der aktiven Schicht 2 einen Ladungstransfer unter Normalbedingungen zu vollziehen, sind folgende Materialien:Ru(terpy)2, bis(2,2':6',2''-terpyridin)ruthenium und Tetrakis(1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidiato)ditungsten.
  • Beispiele für Akzeptoren, die in der Lage sind, mit den Molekülen der aktiven Schicht 2 einen Ladungstransfer unter Normalbedingungen zu vollziehen, sind folgende Materialien: F4 – TCNQ, 2,3,5,6-tetrafluoro-7,7,8,8,-tetracyanoquinodimethane, und N,N'-dicyano-2,3,5,6,7,8-hexaluoro-1,4-naphthoquinonediimine.
  • Es können Ausgestaltungen der beschriebenen Aspekte der Erfindung vorgesehen sein, um die Effizienz des Ladungstransfers aus der Dotierungsmaterial-Schicht in die aktive Schicht 2 zu kontrollieren. Die hierbei in die elektrisch undotierte aktive Schicht 2 induzierte Hintergrund-Ladungsdichte bestimmt die Erhöhung der Mobilität in der aktiven Schicht 2 und die Abhängigkeit der Feldeffekt-Mobilität von der Gate-Spannung in dem organischen Feldeffekt-Transistor.
  • Die in der vorstehenden Beschreibung, den Ansprüchen und der Zeichnung offenbarten Merkmale der Erfindung können sowohl einzeln als auch in beliebiger Kombination für die Verwirklichung der Erfindung in ihren verschiedenen Ausführungsformen von Bedeutung sein.

Claims (18)

  1. Organischer Feldeffekt-Transistor, insbesondere organischer Dünnschicht-Feldeffekt-Transistor, mit: – einer Gate-Elektrode (6), einer Drain-Elektrode (4) und einer Source-Elektrode (3), – einer dielektrischen Schicht (5), die in Kontakt mit der Gate-Elektrode (6) gebildet ist, – einer aktiven Schicht (2) aus organischem Material, die in Kontakt mit der Drain-Elektrode (4) sowie der Source-Elektrode (3) ist und die elektrisch undotiert ausgeführt ist, – einer Dotierungsmaterial-Schicht (1; 11), die ein Dotierungsmaterial enthält, welches für das organische Material der aktiven Schicht (2) ein elektrischer Dotand ist, und – einem Grenzflächenbereich, in welchem ein flächiger Kontakt zwischen der aktiven Schicht (2) und der Dotierungsmaterial-Schicht (1; 11) gebildet ist, wobei eine Mobilität für gleichartige elektrische Ladungsträger, nämlich Elektronen oder Löcher, in der Dotierungsmaterial-Schicht (1; 11) höchstens halb so groß wie in der aktiven Schicht (2) ist.
  2. Feldeffekt-Transistor nach Anspruch 1, dadurch gekennzeichnet, dass die Dotierungsmaterial-Schicht (1; 11) vollständig aus dem Dotierungsmaterial besteht.
  3. Feldeffekt-Transistor nach Anspruch 1, dadurch gekennzeichnet, dass in der Dotierungsmaterial-Schicht (1; 11) das Dotierungsmaterial in ein Matrixmaterial eingelagert ist, für welches das organische Dotierungsmaterial kein elektrischer Dotand ist.
  4. Feldeffekt-Transistor nach Anspruch 3, dadurch gekennzeichnet, dass eine Differenz zwischen dem Reduktionspotential/Oxidationspotential des Dotierungsmaterials und dem Oxidationspotential/Reduktionspotential des Matrixmaterials kleiner als etwa –0.5 V/größer als etwa 0.5 V ist.
  5. Feldeffekt-Transistor nach Anspruch 1, dadurch gekennzeichnet, dass die Dotierungsmaterial-Schicht (1; 11) mehrschichtig gebildet ist, wobei eine Teilschicht (8) aus dem Dotierungsmaterial besteht und eine weitere Teilschicht (7), die zwischen der Teilschicht (8) und aktiven Schicht (2) und in Kontakt mit der Teilschicht (8) sowie der aktiven Schicht (2) angeordnet ist, aus dem Ladungsträger transportierenden Matrixmaterial besteht.
  6. Feldeffekt-Transistor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Ladungsträger transportierende Matrixmaterial ein bevorzugt Elektronen transportierendes Material ist.
  7. Feldeffekt-Transistor nach Anspruch 4 oder 5, dadurch gekennzeichnet, dass das Ladungsträger transportierende Matrixmaterial ein bevorzugt Löcher transportierendes Material ist.
  8. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierungsmaterial-Schicht (1; 11) in direktem Kontakt mit der Drain-Elektrode (4) und der Source-Elektrode (3) gebildet ist.
  9. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass in einem eingeschalteten Zustand, welchem der Leitungskanal in der aktiven Schicht (2) ausgebildet ist, eine elektrische Leitfähigkeit in der aktiven Schicht (2) um wenigstens einen Faktor von zwei größer als in der Dotierungsmaterial-Schicht (1; 11) ist.
  10. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Dotierungsmaterial ein molekulares Dotierungsmaterial ist, welches wenigstens zwei verschiedene Atomen enthält.
  11. Feldeffekt-Transistor nach Anspruch 10, dadurch gekennzeichnet, dass das molekulares Dotierungsmaterial eine molare Masse zwischen etwa 100 g/mol und etwa 2000 g/mol, bevorzugt zwischen etwa 200 g/mol und etwa 1000 g/mol aufweist.
  12. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine energetische Differenz zwischen dem höchsten besetzten Orbital der Moleküle (HOMO) des organischen Materials der aktiven Schicht (2) und dem niedrigsten unbesetzten Orbital der Moleküle (LUMO) des Dotierungsmaterials größer als etwa –0.5 eV ist, wenn das Dotierungsmaterial für das organische Material der aktiven Schicht (2) ein Akzeptor ist.
  13. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass eine energetische Differenz zwischen dem niedrigsten unbesetzten Orbital der Moleküle (LUMO) des organischen Materials der aktiven Schicht (2) und dem höchsten besetzten Orbital der Moleküle (HOMO) des Dotierungsmaterials kleiner als etwa 0.5 eV ist, wenn das Dotierungsmaterial für das organische Material der aktiven Schicht (2) ein Donator ist.
  14. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Dotierungsmaterial-Schicht als eine die darunter angeordneten Schichten vollständig bedeckende Kapselungsschicht (1) gebildet ist.
  15. Feldeffekt-Transistor nach Anspruch 14, soweit nicht auf Anspruch 8 rückbezogen, dadurch gekennzeichnet, dass die Kapselungsschicht (1) frei von einem direkten Kontakt mit der Drain-Elektrode (4) und der Source-Elektrode (3) gebildet ist.
  16. Feldeffekt-Transistor nach mindestens einem der Ansprüche 1 bis 13, soweit auf Anspruch 7 rückbezogen, dadurch gekennzeichnet, dass die Dotierungsmaterial-Schicht als eine Ladungsträger-Injektionsschicht (11) in direktem Kontakt mit der Drain-Elektrode (4) und der Source-Elektrode (3) gebildet ist.
  17. Feldeffekt-Transistor nach mindestens einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Dotierungsmaterial ein p-Dotant mit Reduktionspotential von gleich oder größer etwa 0 V vs. Fc/Fc+ gegenüber dem organischen Material der aktiven Schicht (2) ist.
  18. Feldeffekt-Transistor nach mindestens einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass das Dotierungsmaterial ein n-Dotant mit einem Oxidationspotential von höchstens etwa –1.5 V vs. Fc/Fc+ gegenüber dem organischen Material der aktiven Schicht (2) ist.
DE102008036062.7A 2008-08-04 2008-08-04 Organischer Feldeffekt-Transistor Active DE102008036062B4 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE102008036062.7A DE102008036062B4 (de) 2008-08-04 2008-08-04 Organischer Feldeffekt-Transistor
US12/534,402 US8071976B2 (en) 2008-08-04 2009-08-03 Organic field-effect transistor and circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102008036062.7A DE102008036062B4 (de) 2008-08-04 2008-08-04 Organischer Feldeffekt-Transistor

Publications (2)

Publication Number Publication Date
DE102008036062A1 DE102008036062A1 (de) 2010-04-22
DE102008036062B4 true DE102008036062B4 (de) 2015-11-12

Family

ID=42006407

Family Applications (1)

Application Number Title Priority Date Filing Date
DE102008036062.7A Active DE102008036062B4 (de) 2008-08-04 2008-08-04 Organischer Feldeffekt-Transistor

Country Status (2)

Country Link
US (1) US8071976B2 (de)
DE (1) DE102008036062B4 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9040400B2 (en) * 2010-04-05 2015-05-26 The Board Of Trustees Of The Leland Stanford Junior University Air-stable n-channel organic electronic devices
WO2011134959A1 (en) * 2010-04-27 2011-11-03 University Of Princeton Remote n-doping of organic thin film transistors
EP2586074B1 (de) 2010-06-24 2016-12-28 Basf Se Organischer feldeffekttransistor mit verbessertem on-/off-stromverhältnis und steuerbarer schwellenverschiebung
DE102010031979B4 (de) * 2010-07-22 2014-10-30 Novaled Ag Halbleiterbauelement, Verfahren zu dessen Herstellung, Verwendung des Halbleiterbauelementes und Inverter mit zwei Halbleiterbauelementen
US8519753B2 (en) 2010-12-13 2013-08-27 Texas Instruments Incorporated Frequency doubler/inverter
WO2012163464A1 (en) * 2011-06-01 2012-12-06 Merck Patent Gmbh Hybrid ambipolar tfts
WO2012175535A1 (de) 2011-06-22 2012-12-27 Novaled Ag Organisches elektronisches bauelement
DE102012100642B4 (de) 2012-01-26 2015-09-10 Novaled Ag Anordnung mit mehreren organischen Halbleiterbauelementen und Verfahren zum Herstellen sowie Verwendung der Anordnung
WO2013149678A1 (en) * 2012-04-05 2013-10-10 Novaled Ag Organic field effect transistor and method for producing the same
CN107768520B (zh) * 2017-09-29 2020-12-01 国家纳米科学中心 倍频器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US20050110005A1 (en) * 2003-11-26 2005-05-26 Forrest Stephen R. Bipolar organic devices
US20070034860A1 (en) * 2003-07-14 2007-02-15 Canon Kabushiki Kaisha Field effect organic transistor
WO2009000683A1 (en) * 2007-06-22 2008-12-31 Cambridge Display Technology Ltd Organic thin film transistors, organic light-emissive devices and organic light-emissive displays
WO2009068869A1 (en) * 2007-11-27 2009-06-04 Cambridge Display Technology Limited Organic thin film transistors and methods of making the same

Family Cites Families (129)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356429A (en) 1980-07-17 1982-10-26 Eastman Kodak Company Organic electroluminescent cell
US4769292A (en) 1987-03-02 1988-09-06 Eastman Kodak Company Electroluminescent device with modified thin film luminescent zone
US7494638B1 (en) 1990-08-30 2009-02-24 Mitsubishi Corporation Form of carbon
US5093698A (en) 1991-02-12 1992-03-03 Kabushiki Kaisha Toshiba Organic electroluminescent device
EP0676461B1 (de) 1994-04-07 2002-08-14 Covion Organic Semiconductors GmbH Spiroverbindungen und ihre Verwendung als Elektrolumineszenzmaterialien
US5703436A (en) 1994-12-13 1997-12-30 The Trustees Of Princeton University Transparent contacts for organic devices
US5707745A (en) 1994-12-13 1998-01-13 The Trustees Of Princeton University Multicolor organic light emitting devices
JP3586939B2 (ja) 1994-12-22 2004-11-10 株式会社デンソー El素子およびその製造方法
JP3327558B2 (ja) 1995-11-28 2002-09-24 インターナショナル・ビジネス・マシーンズ・コーポレーション 有機エレクトロルミネセント・デバイスを改良するために使用される有機/無機合金
JPH10125469A (ja) 1996-10-24 1998-05-15 Tdk Corp 有機el発光素子
US5811833A (en) 1996-12-23 1998-09-22 University Of So. Ca Electron transporting and light emitting layers based on organic free radicals
US5917280A (en) 1997-02-03 1999-06-29 The Trustees Of Princeton University Stacked organic light emitting devices
US6337492B1 (en) 1997-07-11 2002-01-08 Emagin Corporation Serially-connected organic light emitting diode stack having conductors sandwiching each light emitting layer
JP3736071B2 (ja) 1997-09-30 2006-01-18 コニカミノルタホールディングス株式会社 有機エレクトロルミネセンス素子
US6303238B1 (en) 1997-12-01 2001-10-16 The Trustees Of Princeton University OLEDs doped with phosphorescent compounds
GB9805476D0 (en) 1998-03-13 1998-05-13 Cambridge Display Tech Ltd Electroluminescent devices
WO1999052992A1 (fr) 1998-04-09 1999-10-21 Idemitsu Kosan Co., Ltd. Dispositif electroluminescent organique
JP3884564B2 (ja) 1998-05-20 2007-02-21 出光興産株式会社 有機el発光素子およびそれを用いた発光装置
CN100432788C (zh) 1998-07-24 2008-11-12 精工爱普生株式会社 显示装置
JP2000075836A (ja) 1998-09-02 2000-03-14 Sharp Corp 有機el発光装置とその駆動方法
US6274980B1 (en) 1998-11-16 2001-08-14 The Trustees Of Princeton University Single-color stacked organic light emitting device
JP2000196140A (ja) 1998-12-28 2000-07-14 Sharp Corp 有機エレクトロルミネッセンス素子とその製造法
JP2000231992A (ja) 1999-02-09 2000-08-22 Stanley Electric Co Ltd 面光源装置
GB2347013A (en) * 1999-02-16 2000-08-23 Sharp Kk Charge-transport structures
US7001536B2 (en) 1999-03-23 2006-02-21 The Trustees Of Princeton University Organometallic complexes as phosphorescent emitters in organic LEDs
DE19916745A1 (de) 1999-04-13 2000-10-19 Mannesmann Vdo Ag Lichtemittierende Diode mit organischen lichtemittierenden Stoffen zur Erzeugung von Licht mit Mischfarben
WO2000076008A1 (en) 1999-06-09 2000-12-14 Cambridge Display Technology Limited Method of producing organic light-emissive devices
EP1115268A1 (de) 1999-07-07 2001-07-11 Sony Corporation Verfahren und vorrichtung zur herstellung flexibler, organischer elektrolumineszenter anzeigen
US6310360B1 (en) 1999-07-21 2001-10-30 The Trustees Of Princeton University Intersystem crossing agents for efficient utilization of excitons in organic light emitting devices
BE1012802A3 (fr) 1999-07-28 2001-03-06 Cockerill Rech & Dev Dispositif electroluminescent et son procede de fabrication.
TW474114B (en) 1999-09-29 2002-01-21 Junji Kido Organic electroluminescent device, organic electroluminescent device assembly and method of controlling the emission spectrum in the device
US7560175B2 (en) 1999-12-31 2009-07-14 Lg Chem, Ltd. Electroluminescent devices with low work function anode
KR100377321B1 (ko) 1999-12-31 2003-03-26 주식회사 엘지화학 피-형 반도체 성질을 갖는 유기 화합물을 포함하는 전기소자
US6660410B2 (en) 2000-03-27 2003-12-09 Idemitsu Kosan Co., Ltd. Organic electroluminescence element
JP4094203B2 (ja) 2000-03-30 2008-06-04 出光興産株式会社 有機エレクトロルミネッセンス素子及び有機発光媒体
GB2361356B (en) 2000-04-14 2005-01-05 Seiko Epson Corp Light emitting device
US6645645B1 (en) 2000-05-30 2003-11-11 The Trustees Of Princeton University Phosphorescent organic light emitting devices
US6956324B2 (en) 2000-08-04 2005-10-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method therefor
JP2002082627A (ja) 2000-09-07 2002-03-22 Sony Corp 表示装置
WO2002035890A1 (fr) 2000-10-25 2002-05-02 Matsushita Electric Industrial Co., Ltd. Element lumineux, dispositif d'affichage et dispositif d'eclairage mettant cet element en application
DE10058578C2 (de) 2000-11-20 2002-11-28 Univ Dresden Tech Lichtemittierendes Bauelement mit organischen Schichten
US6573651B2 (en) 2000-12-18 2003-06-03 The Trustees Of Princeton University Highly efficient OLEDs using doped ambipolar conductive molecular organic thin films
JP4220669B2 (ja) 2000-12-26 2009-02-04 出光興産株式会社 有機エレクトロルミネッセンス素子
TW519770B (en) 2001-01-18 2003-02-01 Semiconductor Energy Lab Light emitting device and manufacturing method thereof
SG107573A1 (en) 2001-01-29 2004-12-29 Semiconductor Energy Lab Light emitting device
KR100898304B1 (ko) 2001-03-02 2009-05-19 더 트러스티즈 오브 프린스턴 유니버시티 이중 도우프층, 인광 유기 발광 디바이스
US20040119400A1 (en) 2001-03-29 2004-06-24 Kenji Takahashi Electroluminescence device
US6580027B2 (en) 2001-06-11 2003-06-17 Trustees Of Princeton University Solar cells using fullerenes
US6784016B2 (en) 2001-06-21 2004-08-31 The Trustees Of Princeton University Organic light-emitting devices with blocking and transport layers
JP4152665B2 (ja) 2001-07-11 2008-09-17 株式会社半導体エネルギー研究所 発光装置及びその作製方法
DE10135513B4 (de) 2001-07-20 2005-02-24 Novaled Gmbh Lichtemittierendes Bauelement mit organischen Schichten
JP2003043998A (ja) 2001-07-30 2003-02-14 Pioneer Electronic Corp ディスプレイ装置
KR100439648B1 (ko) 2001-08-29 2004-07-12 엘지.필립스 엘시디 주식회사 유기전계발광소자
US6734038B2 (en) 2001-09-04 2004-05-11 The Trustees Of Princeton University Method of manufacturing high-mobility organic thin films using organic vapor phase deposition
CN100372142C (zh) 2001-09-05 2008-02-27 夏普株式会社 高分子结构体及具有它的功能元件、和晶体管及显示装置
DE10145492B4 (de) 2001-09-14 2004-11-11 Novaled Gmbh Elektrolumineszente Lichtemissionseinrichtung, insbesondere als Weißlichtquelle
US6680578B2 (en) 2001-09-19 2004-01-20 Osram Opto Semiconductors, Gmbh Organic light emitting diode light source
KR100961251B1 (ko) * 2001-10-01 2010-06-03 코닌클리케 필립스 일렉트로닉스 엔.브이. 조성물, 전자 디바이스 및 전자 디바이스의 제조 방법
JP2003203769A (ja) 2001-10-29 2003-07-18 Sony Corp 線状パターン及びパターン形成方法、画像表示装置及びその製造方法
DE10153563A1 (de) * 2001-10-30 2003-05-15 Infineon Technologies Ag Verringerung des Kontaktwiderstandes in organischen Feldeffekttransistoren durch Einbettung von Nanopartikeln zur Erzeugung von Feldüberhöhungen
DE10153656A1 (de) * 2001-10-31 2003-05-22 Infineon Technologies Ag Verfahren zur Verringerung des Kontaktwiderstandes in organischen Feldeffekttransistoren durch Aufbringen einer reaktiven, die organische Halbleiterschicht im Kontaktbereich regio-selektiv dotierenden Zwischenschicht
US7163831B2 (en) 2001-11-22 2007-01-16 Canon Kabushiki Kaisha Light-emitting element, production method thereof, and light-emitting apparatus
DE10157945C2 (de) 2001-11-27 2003-09-18 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines organischen, elektrolumineszierenden Displays sowie ein organisches, elektrolumineszierendes Display
US6734457B2 (en) 2001-11-27 2004-05-11 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
JP3852916B2 (ja) 2001-11-27 2006-12-06 パイオニア株式会社 ディスプレイ装置
US7012363B2 (en) 2002-01-10 2006-03-14 Universal Display Corporation OLEDs having increased external electroluminescence quantum efficiencies
US6872472B2 (en) 2002-02-15 2005-03-29 Eastman Kodak Company Providing an organic electroluminescent device having stacked electroluminescent units
DE10207859A1 (de) 2002-02-20 2003-09-04 Univ Dresden Tech Dotiertes organisches Halbleitermaterial sowie Verfahren zu dessen Herstellung
DE10209789A1 (de) 2002-02-28 2003-09-25 Univ Dresden Tech Photoaktives Bauelement mit organischen Schichten
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
DE10215210B4 (de) 2002-03-28 2006-07-13 Novaled Gmbh Transparentes, thermisch stabiles lichtemittierendes Bauelement mit organischen Schichten
JP2003297561A (ja) 2002-03-29 2003-10-17 Fuji Photo Film Co Ltd 有機薄膜素子の製造方法及び有機薄膜素子
GB0208506D0 (en) 2002-04-12 2002-05-22 Dupont Teijin Films Us Ltd Film coating
GB2388236A (en) 2002-05-01 2003-11-05 Cambridge Display Tech Ltd Display and driver circuits
DE10224021B4 (de) 2002-05-24 2006-06-01 Novaled Gmbh Phosphoreszentes lichtemittierendes Bauelement mit organischen Schichten
US20030230980A1 (en) 2002-06-18 2003-12-18 Forrest Stephen R Very low voltage, high efficiency phosphorescent oled in a p-i-n structure
US6670772B1 (en) 2002-06-27 2003-12-30 Eastman Kodak Company Organic light emitting diode display with surface plasmon outcoupling
DE10229231B9 (de) 2002-06-28 2006-05-11 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines Strahlung emittierenden und/oder empfangenden Halbleiterchips mit einer Strahlungsein- und/oder -auskoppel-Mikrostruktur
GB0215309D0 (en) 2002-07-03 2002-08-14 Cambridge Display Tech Ltd Combined information display and information input device
US6642092B1 (en) 2002-07-11 2003-11-04 Sharp Laboratories Of America, Inc. Thin-film transistors formed on a metal foil substrate
DE10232238A1 (de) 2002-07-17 2004-02-05 Philips Intellectual Property & Standards Gmbh Elektrolumineszierende Vorrichtung aus zweidimensionalem Array
JP2005534145A (ja) 2002-07-23 2005-11-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ エレクトロルミネセントディスプレイ及びこのようなディスプレイを有する電子デバイス
GB2392023A (en) 2002-08-05 2004-02-18 Gen Electric Series connected oled structure and fabrication method
US7034470B2 (en) 2002-08-07 2006-04-25 Eastman Kodak Company Serially connecting OLED devices for area illumination
TW556446B (en) 2002-09-11 2003-10-01 Opto Tech Corp Organic light-emitting device and the manufacturing method thereof
US20040067324A1 (en) 2002-09-13 2004-04-08 Lazarev Pavel I Organic photosensitive optoelectronic device
JP4288918B2 (ja) 2002-09-26 2009-07-01 セイコーエプソン株式会社 有機elパネルおよびその製造方法、それを用いた電気光学パネル並びに電子機器
US6965197B2 (en) 2002-10-01 2005-11-15 Eastman Kodak Company Organic light-emitting device having enhanced light extraction efficiency
JP2004214120A (ja) 2003-01-08 2004-07-29 Sony Corp 有機電界発光素子の製造装置及び製造方法
JP2004234942A (ja) 2003-01-29 2004-08-19 Yodogawa Steel Works Ltd 無機el素子の作製方法
KR100560785B1 (ko) 2003-02-03 2006-03-13 삼성에스디아이 주식회사 저전압에서 구동되는 유기 전계 발광 소자
US6870196B2 (en) 2003-03-19 2005-03-22 Eastman Kodak Company Series/parallel OLED light source
WO2004097954A1 (en) 2003-04-28 2004-11-11 Zheng-Hong Lu Light-emitting devices with fullerene layer
US6936961B2 (en) 2003-05-13 2005-08-30 Eastman Kodak Company Cascaded organic electroluminescent device having connecting units with N-type and P-type organic layers
EP1477892B1 (de) 2003-05-16 2015-12-23 Sap Se System, Verfahren, Computerprogrammprodukt und Herstellungsartikel zur Dateneingabe in ein Computersystem
KR101102282B1 (ko) 2003-07-10 2012-01-03 가부시키가이샤 이디알 스타 발광소자 및 발광장치
DE10335727A1 (de) 2003-08-05 2005-02-24 H.C. Starck Gmbh Transparente Elektrode für elektro-optische Aufbauten
EP1656700A1 (de) 2003-08-12 2006-05-17 Philips Intellectual Property & Standards GmbH Schaltungsanordnung zur wechselstrom-ansteuerung organischer dioden
JP2005063840A (ja) 2003-08-13 2005-03-10 Toshiba Matsushita Display Technology Co Ltd 自発光表示装置及び有機el表示装置
DE10338406A1 (de) 2003-08-18 2005-03-24 Novaled Gmbh Dotierte organische Halbleitermaterialien sowie Verfahren zu deren Herstellung
US7180089B2 (en) 2003-08-19 2007-02-20 National Taiwan University Reconfigurable organic light-emitting device and display apparatus employing the same
DE10339772B4 (de) 2003-08-27 2006-07-13 Novaled Gmbh Licht emittierendes Bauelement und Verfahren zu seiner Herstellung
US7655961B2 (en) * 2003-10-02 2010-02-02 Maxdem Incorporated Organic diodes and materials
JP2005116193A (ja) 2003-10-02 2005-04-28 Toyota Industries Corp 有機電界発光素子及び当該素子を備えた有機電界発光デバイス
DE10347856B8 (de) 2003-10-10 2006-10-19 Colorado State University Research Foundation, Fort Collins Halbleiterdotierung
US7432124B2 (en) 2003-11-04 2008-10-07 3M Innovative Properties Company Method of making an organic light emitting device
JP2005156925A (ja) 2003-11-26 2005-06-16 Hitachi Displays Ltd 表示装置
DE10357044A1 (de) 2003-12-04 2005-07-14 Novaled Gmbh Verfahren zur Dotierung von organischen Halbleitern mit Chinondiiminderivaten
DE102004002587B4 (de) * 2004-01-16 2006-06-01 Novaled Gmbh Bildelement für eine Aktiv-Matrix-Anzeige
US7030554B2 (en) 2004-02-06 2006-04-18 Eastman Kodak Company Full-color organic display having improved blue emission
JP4276109B2 (ja) 2004-03-01 2009-06-10 ローム株式会社 有機エレクトロルミネッセント素子
DE102004010954A1 (de) 2004-03-03 2005-10-06 Novaled Gmbh Verwendung eines Metallkomplexes als n-Dotand für ein organisches halbleitendes Matrixmaterial, organisches Halbleitermaterial und elektronisches Bauteil
TWI265753B (en) 2004-05-11 2006-11-01 Lg Chemical Ltd Organic electronic device
US20050269943A1 (en) 2004-06-04 2005-12-08 Michael Hack Protected organic electronic devices and methods for making the same
US20060014044A1 (en) 2004-07-14 2006-01-19 Au Optronics Corporation Organic light-emitting display with multiple light-emitting modules
WO2006015567A1 (de) 2004-08-13 2006-02-16 Novaled Ag Schichtanordnung für ein lichtemittierendes bauelement
CN1738069A (zh) 2004-08-17 2006-02-22 国际商业机器公司 其电极具有增强注入特性的电子器件制造方法和电子器件
DE102004041371B4 (de) 2004-08-25 2007-08-02 Novaled Ag Bauelement auf Basis einer organischen Leuchtdiodeneinrichtung und Verfahren zur Herstellung
KR20060026776A (ko) 2004-09-21 2006-03-24 삼성에스디아이 주식회사 유기 전계 발광 소자 및 그의 제조 방법
US8026510B2 (en) * 2004-10-20 2011-09-27 Dai Nippon Printing Co., Ltd. Organic electronic device and method for producing the same
EP1847544B1 (de) * 2005-01-19 2011-10-19 National University of Corporation Hiroshima University Neue kondensierte polycyclische aromatische verbindung und anwendung davon
EP1684365A3 (de) 2005-01-20 2008-08-13 Fuji Electric Holdings Co., Ltd. Transistor
EP2284923B1 (de) 2005-04-13 2016-12-28 Novaled GmbH Anordnung für eine organische Leuchtdiode vom pin-Typ und Verfahren zum Herstellen
EP1729346A1 (de) 2005-06-01 2006-12-06 Novaled AG Lichtemittierendes Bauteil mit einer Elektrodenanordnung
EP1739765A1 (de) 2005-07-01 2007-01-03 Novaled AG Organische Leuchtdiode und Anordnung mit mehreren organischen Leuchtdioden
DE502005004675D1 (de) 2005-12-21 2008-08-21 Novaled Ag Organisches Bauelement
EP1804308B1 (de) 2005-12-23 2012-04-04 Novaled AG Organische lichtemittierende Vorrichtung mit mehreren aufeinander gestapelten organischen elektrolumineszenten Einheiten
DE102006059509B4 (de) 2006-12-14 2012-05-03 Novaled Ag Organisches Leuchtbauelement
US8431448B2 (en) * 2006-12-28 2013-04-30 Dai Nippon Printing Co., Ltd. Organic transistor element, and method of manufacturing the same by concurrently doping an organic semiconductor layer and wet etching an electrode provided on the organic semiconductor layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5500537A (en) * 1989-08-17 1996-03-19 Mitsubishi Denki Kabushiki Kaisha Field-effect transistor with at least two different semiconductive organic channel compounds
US20070034860A1 (en) * 2003-07-14 2007-02-15 Canon Kabushiki Kaisha Field effect organic transistor
US20050110005A1 (en) * 2003-11-26 2005-05-26 Forrest Stephen R. Bipolar organic devices
WO2009000683A1 (en) * 2007-06-22 2008-12-31 Cambridge Display Technology Ltd Organic thin film transistors, organic light-emissive devices and organic light-emissive displays
WO2009068869A1 (en) * 2007-11-27 2009-06-04 Cambridge Display Technology Limited Organic thin film transistors and methods of making the same

Also Published As

Publication number Publication date
DE102008036062A1 (de) 2010-04-22
US20100065833A1 (en) 2010-03-18
US8071976B2 (en) 2011-12-06

Similar Documents

Publication Publication Date Title
DE102008036062B4 (de) Organischer Feldeffekt-Transistor
Xu et al. Doping: a key enabler for organic transistors
EP2284923B1 (de) Anordnung für eine organische Leuchtdiode vom pin-Typ und Verfahren zum Herstellen
EP2398056B1 (de) Organische Solarzelle mit mehreren Transportschichtsystemen
EP1808910B1 (de) Elektronisches Bauelement mit mindestens einer organischen Schichtanordnung
EP1806795B1 (de) Organisches Bauelement
KR101509843B1 (ko) 유기 박막 트랜지스터 및 그 제조 방법
DE112009001881T5 (de) Verfahren zur Herstellung von organischen Dünnschichttransistoren unter Verwendung eines laserinduzierten thermischen Transferdruckprozesses
US9899616B2 (en) Organic field effect transistor and method for producing the same
WO2014023478A1 (de) Optoelektronisches bauelement und verfahren zum herstellen eines optoelektronischen bauelementes
EP2153478B1 (de) Organische dünnschichttransistoren, organische lichtemittierende vorrichtungen und organische lichtemittierende anzeigen
WO2008077615A1 (de) Elektronisches bauelement mit mindestens einer organischen schichtanordnung
DE102010004453A1 (de) Organisches lichtemittierendes Bauelement
DE102008036063B4 (de) Organischer Feldeffekt-Transistor
DE102007019260B4 (de) Nichtflüchtiges organisches Speicherelement
WO2010105615A1 (de) Organische zenerdiode, elektronische schaltung und verfahren zum betreiben einer organischen zenerdiode
WO2010057471A1 (de) Chinoxalinverbindungen und halbleitermaterialien
EP2489085A2 (de) Elektrooptisches, organisches halbleiterbauelement und verfahren zum herstellen desselben
WO2017194213A1 (de) Organische elektronenleitende schicht mit n-dotierstoff
Gao Interface electronic structure and organic photovoltaic devices
US20140306202A1 (en) Organic Field Effect Transistor and Method for Production
DE102010061978A1 (de) Organischer Transistor und Verfahren zur Herstellung desselben, organische Transistoranordnung und Verfahren zur Herstellung derselben
DE102008058230B4 (de) Chinoxalinverbindung, organische Leuchtdiode, organischer Dünnfilmtransistor und Solarzelle

Legal Events

Date Code Title Description
OP8 Request for examination as to paragraph 44 patent law
8181 Inventor (new situation)

Inventor name: WERNER, ANSGAR, DR., 01277 DRESDEN, DE

Inventor name: LEO, KARL, PROF. DR., 01219 DRESDEN, DE

Inventor name: CANZLER, TOBIAS, DR., 01099 DRESDEN, DE

Inventor name: HARADA, KENTARO, NAKANO-KU, TOKYO, JP

Inventor name: DENKER, ULRICH, 01307 DRESDEN, DE

Inventor name: HUANG, QIANG, 01307 DRESDEN, DE

R016 Response to examination communication
R016 Response to examination communication
R018 Grant decision by examination section/examining division
R020 Patent grant now final
R081 Change of applicant/patentee

Owner name: NOVALED GMBH, DE

Free format text: FORMER OWNER: NOVALED AG, 01307 DRESDEN, DE

R082 Change of representative

Representative=s name: BOEHMERT & BOEHMERT ANWALTSPARTNERSCHAFT MBB -, DE

R079 Amendment of ipc main class

Free format text: PREVIOUS MAIN CLASS: H01L0051300000

Ipc: H10K0085000000