JP2004047937A - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
JP2004047937A
JP2004047937A JP2003039885A JP2003039885A JP2004047937A JP 2004047937 A JP2004047937 A JP 2004047937A JP 2003039885 A JP2003039885 A JP 2003039885A JP 2003039885 A JP2003039885 A JP 2003039885A JP 2004047937 A JP2004047937 A JP 2004047937A
Authority
JP
Japan
Prior art keywords
layer
voltage
region
mos transistor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003039885A
Other languages
English (en)
Other versions
JP4397602B2 (ja
JP2004047937A5 (ja
Inventor
Mitsutaka Uno
羽野 光隆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2003039885A priority Critical patent/JP4397602B2/ja
Priority to US10/425,620 priority patent/US6825700B2/en
Priority to DE10322742A priority patent/DE10322742B4/de
Publication of JP2004047937A publication Critical patent/JP2004047937A/ja
Publication of JP2004047937A5 publication Critical patent/JP2004047937A5/ja
Application granted granted Critical
Publication of JP4397602B2 publication Critical patent/JP4397602B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/06Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration
    • H01L27/0611Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region
    • H01L27/0617Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type
    • H01L27/0629Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a non-repetitive configuration integrated circuits having a two-dimensional layout of components without a common active region comprising components of the field-effect type in combination with diodes, or resistors, or capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/06Modifications for ensuring a fully conducting state
    • H03K17/063Modifications for ensuring a fully conducting state in field-effect transistor switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

【課題】寄生トランジスタのオン動作を防止し、回路消費電流を低減するブートストラップ方式の半導体装置を提供する。
【解決手段】パワーデバイスの低圧側(112)の電力素子を駆動して高圧側駆動部(111)の電源を供給するブートストラップ回路は、少なくとも充電可能な半導体素子部(D3,6)と高圧島ドリフト部(Rn,8)を備え、充電可能な半導体素子部と高圧島ドリフト部は接合分離され、高圧島ドリフト部は高圧島のn−半導体内の高圧側と開口部にそれぞれn+層(11,12)を設けている。
【選択図】    図2

Description

【0001】
【発明の属する技術分野】
本発明はパワーデバイスを駆動する半導体装置に関し、特に、ブートストラップ回路方式を用い、インバータ等のパワーデバイスを駆動する高耐圧集積回路MOS構造の寄生トランジスタのオン動作を防止する半導体装置に関するものである。
【0002】
【従来の技術】
一般に、ブートストラップダイオード方式では、ブートストラップダイオードは高耐圧ICチップの外部側に設けられていたが、1チップ化を目的としてブートストラップダイオードを高耐圧ICチップ内に搭載したブートストラップダイオード方式が開発されている。このようなブートストラップ回路方式の高耐圧ICチップについて、図27及び図28を用いて以下に説明する。図27は従来のブートストラップダイオードの断面構造を示し、図28は従来のパワーデバイス(電力変換器)と図27に示すブートストラップダイオードを搭載した高耐圧ICとを連結した概略回路構成を示す。
【0003】
図27に示すブートストラップ方式は、高耐圧ICチップに搭載したブートストラップダイオード部101と、高圧側駆動用CMOS領域102とを備える。p−基板105上に形成されたn−半導体層106内にp−ウェル103と層間絶縁膜のp+型拡散層104とを離間させて設けられている。これにより、p−ウェル103とp+型拡散層104間に電源電圧Vccを印加でき、高圧ダイオードはブートストラップダイオード(D101)として使用可能としている。ここで、高耐圧ICチップのp−基板105は通常は接地(GND)電位に接続されている。
【0004】
図28において、C1は外部ブートストラップコンデンサ(以後、「外部コンデンサ」と略称する)であり、上側(高圧側)パワートランジスタT1と下側(低圧側)パワートランジスタT2は、高電圧端子HVと接地GND間に直列に接続され、これらのトランジスタT1とT2はそれぞれ固有の基板ダイオードD1とD2を有する。図示のように、高耐圧ICは、高圧側駆動回路111と低圧側駆動回路112とレベルシフト回路113と遅延回路114と高耐圧のブートストラップダイオードD101を備え、トランジスタT1とT2等より成るパワーデバイスを駆動するように接続されている。
【0005】
外部コンデンサC1の一端はICチップ上のブートストラップダイオードD101を介して電源電圧Vccに接続され、下側トランジスタT2が導通(オン)状態にあるときに出力端子OUTがほぼ接地電位に維持された場合に、充電電流を外部コンデンサC1に流し、外部コンデンサC1は電源電圧Vccよりも電圧降下分だけ僅かに小さい充電電圧V1を保持する。これにより、低圧側駆動回路112は比較的低い電源電圧Vccにより駆動され、高圧側駆動回路111は外部コンデンサC1に充電された電圧V1により駆動される。
【0006】
このように、図27及び図28に示す高耐圧ICでは、ブートストラップダイオードD101のアノード107を制限抵抗R1を介して電源電圧Vccに接続し、カソード108を高圧側浮遊供給絶対電圧VB端子に接続し、この高圧側浮遊供給絶対電圧VB端子と高圧側浮遊供給オフセット電圧VS端子(出力端子OUT)との間に外部コンデンサC1を接続している。このような構成において、電力変換器の出力素子の低圧側トランジスタT2がオンするときに、高圧であるブートストラップダイオードD101を通じて外部コンデンサC1を充電し、この外部コンデンサC1に充電された電圧V1により高圧側駆動回路111を駆動することにより、高圧側浮遊電源を別途設けることを必要としない方式を提供している。
【0007】
他の従来構成としては、過渡期間中における集積LDMOS構造の寄生トランジスタのON防止用のデバイスを有し、集積デバイスの破壊防止を保証する集積LDMOSトランジスタを使用し、LDMOSと下側電力素子のタイミングを同期させたブートストラップ・キャパシタンスの充電回路が開示されている(例えば、特許文献1参照)。
【0008】
【特許文献1】
特開平9−65571号公報(段落0009〜0014、図3〜5)
【0009】
【発明が解決しようとする課題】
しかし、図27及び図28に示すようなブートストラップダイオードD101を高耐圧ICに搭載したブートストラップ回路方式は、ダイオードD101のアノード107がp−基板105よりも電源電圧分だけ電位的に高く、高圧を保持するためにRESURF構造となっている。この場合、電源電圧Vccを印可すると寄生のPNPトランジスタ109がオン動作し、ベース濃度が低いため、寄生のPNPトランジスタの電流増幅率HFEが大きくなり、アノード107からp−ウェル103及びn−半導体層106を介してp−基板105方向に非常に大きな電流が流れてしまうといった問題があった。
【0010】
本発明は、上記課題を解決するためになされたもので、寄生のトランジスタのオン動作を防止し、回路の消費電流を低減することができるブートストラップ方式による高耐圧ICチップの半導体装置を提供することを目的とする。即ち、高圧保持と充電の役割を接合分離で別々の素子に行うことで、寄生のPNPトランジスタの動作を極力無くすことを主な目的とする。これは、高圧保持部はRESURF構造ではあるが、n−ドリフト層となっているため寄生のPNPトランジスタは発生しないことによる。また、充電するための半導体素子としては、ダイオード型とpch−MOSトランジスタ型の大きく2通りのものを搭載しているが、どちらの型式においても寄生のPNPトランジスタの動作を極力無くすため、埋込みn+層を追加してベース濃度を濃くし、寄生のPNPトランジスタの電流増幅率HFEを低くしている。
【0011】
【課題を解決するための手段】
上記目的を達成するために、本発明による半導体装置は、パワーデバイスを駆動する半導体装置であって、前記パワーデバイスの低圧側の電力素子を駆動して高圧側浮遊供給絶対電圧と高圧側浮遊供給オフセット電圧間に接続されたブートストラップコンデンサに高圧側駆動部の電源を供給するブートストラップ回路を有する。ブートストラップ回路は、少なくとも充電可能な半導体素子部と高圧保持部を備え、充電可能な半導体素子部と高圧保持部は接合分離されている。充電可能な半導体素子部は埋込みn+層をn−半導体層とp−基板間に介在させている。高圧保持部は高圧島のn−半導体内の高圧側と開口部にそれぞれn+層を設けたn−ドリフト層であり、さらに高圧島開口部のn+層の両側にp−基板と同電位である1対のp+層を設けたことを特徴とする。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態について、図1乃至図26を用いて、充電可能な半導体素子部と高圧保持用n−ドリフト層を接合分離でモノシリック高耐圧IC(1チップ構成の高耐圧IC)チップに搭載したブートストラップ方式を例示して説明する。ただし、本発明はこれに限定されるものではなく、他のMOSトランジスタ等を備える半導体装置にも適用可能である。なお、各図において共通する要素には同一の符号を付し、重複する説明については省略している。
【0013】
(実施の形態1)
本発明の実施の形態1について図1及び図2を用いて説明する。図1は本発明の実施の形態1に係る半導体装置とパワーデバイスとを連結した概略回路構成、図2は本実施の形態1に係るブートストラップ回路要部の断面構造を示す。図示の構成では、ダイオードD3領域6と高圧島を利用したn−ドリフト層Rn領域8をモノシリック高耐圧ICチップに搭載したブートストラップ方式を示す。この方式では、n−ドリフト層Rnは高電圧を保持するために設けられ、ダイオードD3のカソード端子22と高圧側駆動回路111の高圧側浮遊供給絶対電圧VB端子11との間に接続されている。
【0014】
上側(高圧側)及び下側(低圧側)パワートランジスタT1とT2は所定の高周波の繰返しサイクルに対して切換えモードで動作し、1サイクル中の異なる2つの位相期間に各トランジスタが導通駆動(ターンオン)される。上側トランジスタT1のダイオードD1は、下側トランジスタT2がターンオフしたときに出力端子OUTに生じる正の過渡電圧を制限し、下側トランジスタT2のダイオードD2は、上側トランジスタT1がターンオフしたときに出力端子OUTに生じる負の過渡電圧を制限する。
【0015】
高圧側駆動回路111は、高圧側入力端子HINからレベルシフト回路113を介して入力される所定の上側トランジスタ駆動命令信号に応答して、高圧側出力端子HOを介して、規定の位相期間だけ上側トランジスタT1をターンオンさせるように駆動制御される。同様に、低圧側駆動回路112は、低圧側入力端子LINから遅延回路114を介して入力される所定の下側トランジスタ駆動命令信号に応答して、低圧側出力端子LOを介して、規定の位相期間だけ下側トランジスタT2をターンオンさせるように駆動制御される。上記構成において、低圧側駆動回路112とレベルシフト回路113と遅延回路114の各一端子は接地電位(GND)に接続されている。
【0016】
一方、VB端子とVS端子間に接続された外部コンデンサC1の一端は、モノシリックICチップ上のn−ドリフト層RnとダイオードD3領域6を介して、例えば電源電圧15VのVccに接続され、下側トランジスタT2が導通(ON)状態にあるときに出力端子OUTがほぼ接地電位に維持された場合に、充電電流を外部コンデンサC1に流し、外部コンデンサC1は電源電圧Vccよりも電圧降下(VF)分だけ僅かに小さい充電電圧V1を保持する。これにより、低圧側駆動回路112は比較的低い電源電圧Vccにより駆動され、高圧側駆動回路111は外部コンデンサC1に充電された電圧V1により駆動される。
【0017】
このように、図1及び図2に示すモノシリック高耐圧ICでは、ダイオードD3領域6のアノードp+層21を電源電圧Vccに接続し、カソードn+層22をn−ドリフト層Rnを介して、外部コンデンサC1に電流が流れ、外部コンデンサC1の充電が行われる。この外部コンデンサC1に充電されたV1を高圧側駆動回路111の電源電圧として使用することにより、高圧側浮遊電源を別途設けることを必要としない方式を提供している。
【0018】
ここで、図2に示すブートストラップ回路の断面構造では、ダイオードD3の領域6と、高圧島n−ドリフト層領域8と高圧側駆動用CMOSトランジスタ領域9とを有し、ダイオードD3領域6において埋込n+層10をn−半導体層106とp−基板105との間に介在させている。また、高圧島n−ドリフト層領域8において、p−基板105と同電位のp+層13,14は、空乏層を広げ、n+領域12の電界集中を緩和させるために設けられている。また、ダイオードD3領域6と高圧島n−ドリフト層領域8とを接合分離するp+拡散領域18が層間絶縁膜として、n−半導体層106内にp−基板105に達する深さにまで形成されている。
【0019】
このように構成されたブートストラップ回路の断面構造から明らかなように、ダイオードD3領域6はダイオードD3領域6のn−半導体層106内にアノードp+層21とカソードn+層22を設け、埋込n+層10をダイオードD3領域6のn−半導体層106とp−基板105間に介在させたことにより、ベース濃度を濃くして寄生のPNPトランジスタ従来構成における図27に示した寄生PNPトランジスタ109のHFEを下げ、寄生のPNPトランジスタのON動作を従来構成より遥かに抑制することができ、アノードp+層21からダイオードD3領域6のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0020】
一方、高圧島n−ドリフト層領域8は、多重浮遊フィールドプレートMFFP(Multiple Floating Field Plate)の2重埋め込み構造を採用している。即ち、高圧島n−ドリフト層Rn領域8は、高圧島のn−半導体層106内の高電位側のn+層11と開口部のn+層12の両側に設けられ、p−基板と同電位(接地電位GND)に固定された一対のp+層13,14で囲むことにより、空乏層を広げ、開口部のn+層12の電界集中を緩和させ、高圧側の電力素子がONし低圧側の電力素子がOFFすると、開口部のn+層12はフロティング電位となるが、その電位を低電位(約40V以下)に抑制することができ、高電圧、即ち600V以上の高電圧を保持することができる。
【0021】
このように、本実施の形態1に係るブートストラップ方式では、ダイオードD3領域6と高圧島n−ドリフト層領域8を高耐圧ICチップに搭載した構成により、回路消費電流を効果的に低減することが可能となる。また、図2において、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8を接合分離した構成により、モノシリック高耐圧ICチップに搭載可能となる。
【0022】
(実施の形態2)
本発明の実施の形態2について図3を用いて説明する。図3は本実施の形態2に係るブートストラップ回路の要部断面構造を示し、その基本構成は図1乃至図2に示す実施の形態1と同様である。実施の形態1との相違点は、実施の形態1の構成では、図2に示すように高圧島n−ドリフト層Rn領域8において、空乏層を広げ、高圧島開口部のn+層12の電界集中を緩和させるために、p−基板と同電位に固定された一対のp+層13,14を設けているが、図3に示す本実施の形態2の構成では、一方のp+層13を省略し、p+層14のみを設けたことである。
【0023】
このような一方のp+層13を取り除いた構成においても、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8とを接合分離するp+拡散領域18がp+層13の機能を兼ね、上記と同様の役割、即ち、n+層12の電界集中を緩和させる役割を果たしている。従って、p+層13を取り除いた分だけ、ICチップの高圧島n−ドリフト層領域8の面積を縮小することができる。
【0024】
(実施の形態3)
本発明の実施の形態3について図4及び図5を用いて説明する。図4及び図5は本実施の形態3に係るブートストラップ回路及びその変形例の要部断面構造を示し、その基本構成は図1乃至図2に示す実施の形態1と同様である。実施の形態1との相違点は、図4に示すように本実施の形態3の構成では、高圧島n−ドリフト層Rn領域8において、新たな埋込p+層19を高圧島のn−半導体層106とp−基板105との間に介在させたことでり、図5に示す変形例では、高圧島n−ドリフト層Rn領域8において、埋込p+層19を高圧島のn−半導体層106内に埋め込んだことである。
【0025】
即ち、例えば図2に示す実施の形態1の構成では、高圧側の電力素子がONし、低圧側の電力素子がOFFすると、高圧島n−ドリフト層Rn領域8の開口部n+層12の電位はフローティング電位となり、ダイオードD3の耐圧を超える恐れがある。そこで、図4及び図5に示すように、本実施の形態3では、埋込p+層19を高圧島のn−半導体層106とp−基板105との間に介在させるか、またはp+層19を高圧島のn−半導体層106内に埋め込むことにより、n+層12直下の実効的な空乏層を低減することができ、n+領域12が高電位となることを回避することができる。
【0026】
(実施の形態4)
本発明の実施の形態4について図6及び図7を用いて説明する。図6及び図7は本実施の形態4に係るブートストラップ回路及びその変形例の要部断面構造を示し、その基本構成は図4及び図5に示す実施の形態3と同様である。実施の形態3との相違点は、本実施の形態4では、実施の形態2で説明した特徴を実施の形態3と組合せて適用したことである。
【0027】
即ち、図4及び図5に示す実施の形態3の構成例では、高圧島n−ドリフト層Rn領域8において、p−基板と同電位に固定された一対のp+層13,14を設けているが、図6または図7に示す本実施の形態4の構成例では、一方のp+層13を省略し、p+層14のみを設けた構成とし、高圧島n−ドリフト層Rn領域8において、埋込p+層19を高圧島のn−半導体層106とp−基板105との間に介在(図6)、または、埋込p+層19を高圧島のn−半導体層106内に埋め込んだ(図7)ことを特徴としている。
【0028】
このような一方のp+層13を取り除いた構成においても、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8とを接合分離するp+拡散領域18がp+層13の機能を兼ね、上記と同様の役割、即ち、n+層12の電界集中を緩和させる役割を果たしている。従って、p+層13を取り除いた分だけ、ICチップの高圧島n−ドリフト層領域8の面積を縮小することができる。
【0029】
なお、図4及び図5に示す実施の形態3と図6及び図7に示す実施の形態4において、好ましい実施例では、高圧島n−ドリフト層領域8内に埋込p+層19を生成する方法として、高エネルギーイオン注入法により、埋込p+層19をn−半導体層106内に注入形成する方法を用いている。
【0030】
他の好ましい実施例では、高圧島n−ドリフト層領域8内に埋込p+層19を生成する方法として、高圧島n−ドリフト層領域8となるエピタキシャル層を2回に渡って成長させる方法を用いてもよい。具体的には、1回目のエピタキシャル層を成長させた後、P型不純物を注入し、埋込p+層19を高圧島のn−半導体層106内に形成した後、2回目のエピタキシャル層を成長させる方法である。これにより、n+層12直下の実効的な空乏層を低減することができ、n+領域12が高電位となることを回避することが可能となる。
【0031】
(実施の形態5)
本発明の実施の形態5について図8を用いて説明する。図8は本実施の形態5に係るブートストラップ回路の要部断面構造を示し、その基本構成は例えば図2に示す実施の形態1と同様である。本実施の形態5では、n+層12が高電位となることを回避する別の好ましい構成例を示すものであり、実施の形態1との相違点は、図8に示す高圧島n−ドリフト層Rn領域8において、n+層12の電界集中を緩和させるために、p−基板と同電位に固定された一対のp+層13,14の埋め込み下部及び側面部を囲むようにp−ウェル層23,24を埋設したことである。
【0032】
これにより、n+層12近傍の実効的な空乏層を低減することができ、n+層12が高電位となることを回避できる。なお、p−ウェル層23,24のうちいずれか一方のみを埋設することによっても、同様の効果が得られる。
【0033】
(実施の形態6)
本発明の実施の形態6について図9を用いて説明する。図9は本実施の形態6に係るブートストラップ回路の要部断面構造を示し、その基本構成は図8に示す実施の形態5と同様である。実施の形態5との相違点は、図8に示す実施の形態5の構成では、高圧島n−ドリフト層Rn領域8において、p−基板と同電位に固定された一対のp+層13,14の埋め込み下部及び側面部を囲むようにp−基板と同電位に固定されたp−ウェル層23,24を設けているが、図9に示す本実施の形態6では、一方のp+層13とその下部のp−ウェル層23の対を取り除き、p+層14とその下部のp−ウェル層24の対のみを形成した構成としている。
【0034】
このような一方のp+層13とその下部のPウェル層23の対を取り除いた構成においても、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8とを接合分離するp+拡散領域18がp+層13の機能を兼ね、上記と同様の役割、即ち、n+層12の電界集中を緩和させる役割を果たしている。従って、p+層13及びその下部のPウェル層23を取り除いた分だけ、ICチップの高圧島n−ドリフト層領域8の面積を縮小することができる。
【0035】
(実施の形態7)
本発明の実施の形態7について図10及び図11を用いて説明する。図10及び図11は本実施の形態7に係るブートストラップ回路及びその変形例の要部断面構造を示し、その基本構成は図8に示す実施の形態5と同様である。実施の形態5との相違点は、図10及び図11に示す本実施の形態7の構成では、上述の図4または図5に示す実施の形態3の特徴と図8に示す実施の形態5の特徴を組合せた構成である。
【0036】
即ち、本実施の形態7では、p−基板と同電位に固定された一対のp+層13,14の埋め込み下部及び側面全体を囲むようにp−ウェル層23,24を埋設するとともに、埋込p+層19を高圧島のn−半導体層106とp−基板105の間に介在(図10)、または、埋込p+層19を高圧島のn−半導体層106内に埋め込んだ(図11)ことを特徴としている。
【0037】
これにより、n+層12直下及びn+層12近傍の実効的な空乏層を低減することができ、n+層12が高電位となることを回避できる。なお、p−ウェル23,24のうちのいずれか一方のみを埋設することによっても、同様の効果が得られる。
【0038】
(実施の形態8)
本発明の実施の形態8について図12及び図13を用いて説明する。図12及び図13は本実施の形態8に係るブートストラップ回路及びその変形例の要部断面構造を示し、その基本構成は図10及び図11に示す実施の形態7と同様である。実施の形態7との相違点は、図10及び図11に示す本実施の形態7の構成では、p−基板と同電位に固定された一対のp+層13,14の埋め込み下部及び側面全体を囲むようにp−ウェル層23,24を設けているが、図12及び図13に示す本実施の形態8では、一方のp+層13とその下部のp−ウェル層23の対を取り除き、p+層14とその下部のp−ウェル層24の対のみを形成した構成としている。
【0039】
このような一方のp+層13とその下部のPウェル層23の対を取り除いた構成においても、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8とを接合分離するp+拡散領域18がp+層13の機能を兼ね、上記と同様の役割、即ち、n+層12の電界集中を緩和させる役割を果たしている。従って、p+層13及びその下部のPウェル層23を取り除いた分だけ、ICチップの高圧島n−ドリフト層領域8の面積を縮小することができる。
【0040】
また、実施の形態7と同様に、埋込p+層19を高圧島のn−半導体層106とp−基板105の間に介在(図12)、または、埋込p+層19を高圧島のn−半導体層106内に埋め込んだ(図13)ことを特徴としている。
【0041】
これにより、n+層12直下及びn+層12近傍の実効的な空乏層を低減することができ、n+層12が高電位となることを回避できる。
【0042】
(実施の形態9)
本発明の実施の形態9について図14を用いて説明する。図14は本実施の形態9に係るブートストラップ回路の要部断面構造を示し、その基本構成は例えば図1乃至図2に示す実施の形態1と同様である。実施の形態1との相違点は、実施の形態1の構成では、図2に示すようにダイオードD3領域6において、ダイオードD3領域6のn−半導体層106内にアノードp+層21とカソードn+層22を設け、埋込n+層10をダイオードD3領域6のn−半導体層106とp−基板105間に介在させているが、図14に示す本実施の形態9の構成では、ダイオードD3領域6のn−半導体層106内に設けられているn+層22が、n−半導体層106内の埋込n+層10と部分的に接する深さにまで埋設されていることである。
【0043】
これにより、ベース濃度をより濃くして、寄生のPNPトランジスタ(109)のHFEを下げ、寄生のPNPトランジスタのON動作を抑制することができ、アノードp+層21からダイオードD3領域6のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0044】
また、自明であるが、本実施の形態9は、ダイオードD3領域6の構造のみが実施の形態1と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態9は適用できる。
【0045】
(実施の形態10)
本発明の実施の形態10について図15を用いて説明する。図15は本実施の形態10に係るブートストラップ回路の要部断面構造を示し、その基本構成は例えば図1乃至図2に示す実施の形態1と同様である。実施の形態1との相違点は、図2に示すように実施の形態1の構成では、ダイオードD3領域6において、ダイオードD3領域6のn−半導体層106内にアノードp+層21とカソードn+層22を設け、埋込n+層10をダイオードD3領域6のn−半導体層106とp−基板105間に介在させているが、図15に示す本実施の形態10の構成では、ダイオードD3領域6のn−半導体層106内にp−ウェル25を設け、p−ウェル25内にアノードp+層21とカソードn+層22を設け、埋込n+層10をn−半導体層106とp−基板105間に介在させたことである。
【0046】
これにより、実施の形態1と同等に寄生のPNPトランジスタのON動作を抑制することができ、アノードp+層21からダイオードD3領域6のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0047】
また、自明であるが、本実施の形態10は、ダイオードD3領域6の構造のみが実施の形態1と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態10を適用することができる。
【0048】
(実施の形態11)
本発明の実施の形態11について図16を用いて説明する。図16は本実施の形態11に係るブートストラップ回路の要部断面構造を示し、その基本構成は図15に示す実施の形態10と同様である。実施の形態10との相違点は、図15に示すように実施の形態10の構成では、ダイオードD3領域6において、ダイオードD3領域6のn−半導体層106内にp−ウェル25を設け、p−ウェル25内にアノードp+層21とカソードn+層22を設け、埋込n+層10をn−半導体層106とp−基板105間に介在させているが、本実施の形態11では、図16に示すように、ダイオードD3領域6のn−半導体層106内にさらにn+層26を設け、ダイオードD3領域6のn−半導体層106内のp−ウェル25内のアノードp+層21と接続したことである。
【0049】
これにより、寄生のPNPトランジスタ(109)の電流増幅率HFEを遥かに下げ、寄生のPNPトランジスタのON動作を防止することができ、アノードp+層21からダイオードD3領域6のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0050】
また、自明であるが、本実施の形態11は、ダイオードD3領域6の構造のみが実施の形態10と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態11は適用できる。
【0051】
(実施の形態12)
本発明の実施の形態12について図17を用いて説明する。図17は本実施の形態12に係るブートストラップ回路の要部断面構造を示し、その基本構成は図16に示す実施の形態11と同様である。実施の形態11との相違点は、本実施の形態12では、実施の形態9の特徴と実施の形態11の特徴とを組合せて適用したことである。
【0052】
即ち、図16に示す実施の形態11の構成では、ダイオードD3領域6において、ダイオードD3領域6のn−半導体層106内にp−ウェル25を設け、p−ウェル25内にアノードp+層21とカソードn+層22を設け、埋込n+層10をn−半導体層106とp−基板105間に介在させ、ダイオードD3領域6のn−半導体層106内にさらにn+層26を設け、ダイオードD3領域6のn−半導体層106内のp−ウェル25内のアノードp+層21と接続しているが、図17に示す本実施の形態12の構成では、ダイオードD3領域6のn−半導体層106内に設けられているn+層26を、ダイオードD3領域6のn−半導体層106内の埋込n+層10と部分的に接する深さにまで埋設したことである。
【0053】
これにより、ベース濃度をより濃くして寄生のPNPトランジスタ(109)の電流増幅率HFEを遥かに下げ、寄生のPNPトランジスタのON動作を防止することができ、アノードp+層21からダイオードD3領域6のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0054】
また、自明であるが、本実施の形態12は、ダイオードD3領域6の構造のみが実施の形態11と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態12は適用できる。
【0055】
(実施の形態13)
本発明の実施の形態13について図18及び図19を用いて説明する。図18は本発明の実施の形態13に係る半導体装置とパワーデバイスとを連結した概略回路構成、図19は本実施の形態13に係るブートストラップ回路要部の断面構造を示し、その基本構成は、例えば図1及び図2に示す実施の形態1と同様である。
【0056】
実施の形態1との相違点は、図1及び図2に示す実施の形態1の構成では、ダイオードD3領域6と高圧島n−ドリフト層Rn領域8をモノシリック高耐圧ICチップに搭載し、ダイオードD3領域6のアノードp+層21を電源電圧Vccに接続し、カソードn+層22をn−ドリフト層Rnを介して、外部コンデンサC1に電流が流れ、外部コンデンサC1の充電が行われるブートストラップ方式であるが、図18及び図19に示す本実施の形態13では、Pch−MOSトランジスタ領域7と高圧島n−ドリフト層Rn領域8をモノシリック高耐圧ICチップに搭載し、Pch−MOSトランジスタ領域7の第1のp+層20を電源電圧Vccに接続し、第2のp+層17をn−ドリフト層Rnを介して、外部コンデンサC1に電流が流れ、外部コンデンサC1の充電を行うブートストラップ方式である。
【0057】
上記構成において、図18に示すように、遅延回路114の一端子はPch−MOSトランジスタ領域7のゲートに接続され、低圧側駆動回路112とレベルシフト回路113と遅延回路114の各一端子は接地電位(GND)に接続されている。このような構成により、電力変換器(パワーデバイス)の出力素子の低圧側トランジスタT2がON動作するのと同期してPch−MOSトランジスタ領域7がON動作するように駆動制御している。
【0058】
一方、VB端子とVS端子間に接続された外部コンデンサC1の一端は、モノシリックICチップ上のn−ドリフト層RnとPch−MOSトランジスタ領域7を介して、例えば電源電圧15VのVccに接続され、下側トランジスタT2が導通(ON)状態となり出力端子OUTがほぼ接地電位に維持されたときに、充電電流を外部コンデンサC1に流す。外部コンデンサC1は電源電圧Vccを電圧降下させずにそのまま充電電圧として保持する。これにより、低圧側駆動回路112は比較的低い電源電圧Vccにより駆動されるとともに、高圧側駆動回路111は外部コンデンサC1に充電された電圧Vccにより駆動される。
【0059】
このように、電力変換器の出力素子の低圧側トランジスタT2がONするのと同期してPch−MOSトランジスタ領域7がONするように制御することにより、Pch−MOSトランジスタ領域7がONすると、Pch−MOSトランジスタ領域7の第1のp+層20と接続されている電源電圧Vccからn−ドリフト層Rnを介して外部コンデンサC1に電流が流れ、外部コンデンサC1の充電が行われる。この充電された電圧Vccを高圧側駆動回路111の電源電圧として使用することにより、高圧側浮遊電源を別途設けることを必要としないブートストラップ方式を提供できる。
【0060】
ここで、図19に示すブートストラップ回路の断面構造では、Pch−MOSトランジスタ領域7と高圧島n−ドリフト層領域8と高圧側駆動用CMOSトランジスタ領域9とを有し、Pch−MOSトランジスタ領域7において、埋込n+層10をn−半導体層106とp−基板105との間に介在させている。また、高圧島n−ドリフト層領域8において、p−基板105と同電位のp+層13,14は、空乏層を広げ、n+領域12の電界集中を緩和させるために設けられている。また、Pch−MOSトランジスタ領域7と高圧島状n−ドリフト層領域8とを接合分離するp+拡散領域18が層間絶縁膜として、n−半導体層106内にp−基板105に達する深さにまで形成されている。
【0061】
このように構成されたブートストラップ回路の断面構造から明らかなように、Pch−MOSトランジスタ領域7はPch−MOSトランジスタ領域7のn−半導体層106内に第1のp+層20と第2のp+層17とバックゲートn+層16を設け、Pch−MOSトランジスタ領域7の埋込n+層10をPch−MOSトランジスタ領域7のn−半導体層106とp−基板105間に介在させたことにより、ベース濃度を濃くして寄生のPNPトランジスタ(109)の高電界HFEを下げ、寄生のPNPトランジスタのON動作を従来構成より遥かに抑制することができ、第1のp+層20からPch−MOSトランジスタ領域7のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0062】
また、自明であるが、本実施の形態13は、充電可能な半導体素子部の構造のみが実施の形態1と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても、図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態13は適用できる。
【0063】
(実施の形態14)
本発明の実施の形態14について図20を用いて説明する。図20は本実施の形態14に係るブートストラップ回路要部の断面構造を示し、その基本構成は図18及び図19に示す実施の形態13と同様である。実施の形態13との相違点は、図18及び図19に示す実施の形態13の構成では、Pch−MOSトランジスタ領域7において、Pch−MOSトランジスタ領域7のn−半導体層106内に第1のp+層20と第2のp+層17とバックゲートn+層16を設け、埋込n+層10をPch−MOSトランジスタ領域7のn−半導体層106とp−基板105間に介在させているが、図20に示す本実施の形態14では、Pch−MOSトランジスタ領域7のn−半導体層106内に設けられているバックゲートn+層16を、n−半導体層106内の埋込n+層10と部分的に接する深さまで埋設したことである。
【0064】
これにより、ベース濃度をより濃くして寄生のPNPトランジスタ(109)の高電界HFEを下げ、寄生のPNPトランジスタのON動作を防止することができ、第1のp+層20からPch−MOSトランジスタ領域7のn−半導体層106を介してp−基板105方向に電流が流れることを防止している。
【0065】
また、自明であるが、本実施の形態14は、充電可能な半導体素子部の構造のみが実施の形態13と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても、図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態14は適用できる。
【0066】
(実施の形態15)
本発明の実施の形態15について図21及び図22を用いて説明する。図21は本発明の実施の形態15に係る半導体装置とパワーデバイスとを連結した概略回路構成、図22は本実施の形態15に係るブートストラップ回路要部の断面構造を示し、その基本構成は図18及び図19に示す実施の形態13と同様である。実施の形態13との相違点は、図21及び図22に示す本実施の形態15の構成では、Pch−MOSトランジスタ領域7の第2のp+層17とバックゲートn+層16間に、Pch−MOSトランジスタ領域7のOFFに切り替え時にボディ・ドレインダイオードD4を介して流れる逆回復電流とは逆方向にダイオードD5領域5を追加搭載したことである。
【0067】
上記構成において、図21及び図22に示すように、ダイオードD5領域5は、Pch−MOSトランジスタ領域7がONからOFFに切り替わる際に、Pch−MOSトランジスタ領域7のボディ・ドレインダイオードD4を介して流れる逆回復電流を防止するために設けられ、Pch−MOSトランジスタ領域7の第1のp+層20とダイオードD5領域5のアノードp+層27が電源電圧Vccに接続され、Pch−MOSトランジスタ領域7のバックゲートn+層16とダイオードD5領域5のカソードn+層28が接続されている。その他の構成は図18及び図19に示す実施の形態13と同じである。
【0068】
ここで、図22に示すブートストラップ回路の断面構造では、ダイオードD5領域5とPch−MOSトランジスタ領域7と高圧島n−ドリフト層領域8と高圧側駆動用CMOSトランジスタ領域9とを有し、ダイオードD5領域5とPch−MOSトランジスタ領域7において、それぞれ埋込n+層10をn−半導体層106とp−基板105との間に介在させている。また、高圧島n−ドリフト層領域8において、p−基板105と同電位のp+層13,14は、空乏層を広げ、n+領域12の電界集中を緩和させるために設けられている。また、Pch−MOSトランジスタ領域7と高圧島状n−ドリフト層領域8とを接合分離するp+拡散領域18が層間絶縁膜として、n−半導体層106内にp−基板105に達する深さまで形成されている。
【0069】
このように構成されたブートストラップ回路の断面構造から明らかなように、Pch−MOSトランジスタ領域7がON状態の時に、端子VBと端子VS間にに介在するコンデンサC1に電源電圧Vccを充電することが可能となり、寄生トランジスタのON動作を従来より遥かに抑制するとともに、ブートストラップ回路をモノシリックICチップに搭載可能となる。さらに、Pch−MOSトランジスタ領域7がOFF状態のときに、ボディ・ドレインダイオードD4を通じて、充電電荷が流出することを防止できる。
【0070】
また、自明であるが、本実施の形態15は、充電可能な半導体素子部の構造のみが実施の形態13と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても、図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態15は適用できる。
【0071】
また、ダイオードD5領域5において、図22に示す構造の他に、実施の形態9乃至12で述べたダイオードD3の構造においても、図示は省略するが、本実施の形態15のダイオードD5領域5は適用できる。さらに、Pch−MOSトランジスタ領域7において、図22に示す構造の他に、実施の形態14で述べたPch−MOSトランジスタ領域7の構造においても、図示は省略するが、本実施の形態15のPch−MOSトランジスタ領域7は適用できる。
【0072】
また、図22に示す構成では、Pch−MOSトランジスタ領域7とダイオードD5領域5は接合分離されているが、それに限定されるものではなく、同じn−半導体層106内に存在した場合も同様の効果が得られる。
【0073】
(実施の形態16)
本発明の実施の形態16について図23及び図24を用いて説明する。図23は本発明の実施の形態16に係る半導体装置とパワーデバイスとを連結した概略回路構成、図24は本実施の形態16に係るブートストラップ回路要部の断面構造を示し、その基本構成は例えば図21及び図22に示す実施の形態15と同様である。実施の形態15との相違点は、図23及び図24に示す本実施の形態16の構成では、さらに制限抵抗R2領域15とNch−MOSトランジスタ領域41をモノシリック高耐圧ICチップに追加搭載したことである。
【0074】
上記構成において、図23及び図24に示すように、Nch−MOSトランジスタ領域41はPch−MOSトランジスタ領域7を駆動する駆動回路である。制限抵抗R2領域15はPch−MOSトランジスタ領域7のゲートとPch−MOSトランジスタ領域7の第2のp+層17間に接続され、Pch−MOSトランジスタ領域7のゲートはNch−MOSトランジスタ領域41を介して接地電位(GND)に接続され、Nch−MOSトランジスタ領域41のバックゲートp+層29とソースn+層30も接地電位(GND)に接続されている。また、Nch−MOSトランジスタ領域41のゲートは遅延回路114の一端子に接続されている。その他の構成は、図21及び図22に示す実施の形態15と同じである。
【0075】
ここで、図24に示すブートストラップ回路の断面構造では、Nch−MOSトランジスタ領域41と制限抵抗R2領域15とダイオードD5領域5とPch−MOSトランジスタ領域7と高圧島n−ドリフト層領域8と高圧側駆動用CMOSトランジスタ領域9とを有し、Nch−MOSトランジスタ領域41と制限抵抗R2領域15とダイオードD5領域5とPch−MOSトランジスタ領域7において、それぞれ埋込n+層10をn−半導体層106とp−基板105との間に介在させている。また、高圧島n−ドリフト層領域8において、p−基板105と同電位のp+層13,14は、空乏層を広げ、n+領域12の電界集中を緩和させるために設けられている。また、Pch−MOSトランジスタ領域7と高圧島状n−ドリフト層領域8とを接合分離するp+拡散領域18が層間絶縁膜として、n−半導体層106内にp−基板105に達する深さまで形成されている。
【0076】
このように構成されたブートストラップ回路の断面構造から明らかなように、Pch−MOSトランジスタ領域7がON状態の時に、端子VBと端子VS間に電源電圧Vccを充電することが可能となり、寄生トランジスタのON動作を従来より遥かに抑制するとともに、ブートストラップ回路をモノシリックICチップに搭載可能となる。また、Pch−MOSトランジスタ領域7がOFF状態のときに、ボディ・ドレインダイオードD4を通じて、充電電荷が流出することを防止できる。さらに、電力変換器の高圧側の出力素子がON状態の時に、充電とは逆方向にPch−MOSトランジスタ領域7がONするのを防止できる。
【0077】
また、自明であるが、本実施の形態16は、充電可能な半導体素子部の構造のみが実施の形態15と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても、図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態16は適用できる。
【0078】
また、ダイオードD5領域5において、図24に示す構造の他に、実施の形態9乃至12で述べたダイオードD3の構造においても、図示は省略するが、本実施の形態16のダイオードD5領域5は適用できる。さらに、Pch−MOSトランジスタ領域7において、図24に示す構造の他に、実施の形態14で述べたPch−MOSトランジスタ領域7の構造においても、図示は省略するが、本実施の形態16のPch−MOSトランジスタ領域7は適用できる。
【0079】
また、図24に示す構成では、Nch−MOSトランジスタ領域41と制限抵抗R2領域15とダイオードD5領域5とPch−MOSトランジスタ領域7は接合分離されているが、それに限定されるものではなく、同じn−半導体層106内に存在した場合も同様の効果が得られる。さらに、Nch−MOSトランジスタ領域41と制限抵抗R2領域15の構造においても、図24の構造に限定されるものではなく、例えば、制限抵抗として、ベース抵抗、ゲート抵抗、ポリ抵抗、p+iso抵抗等がある。
【0080】
(実施の形態17)
本発明の実施の形態17について図25及び図26を用いて説明する。図25は本発明の実施の形態17に係る半導体装置とパワーデバイスとを連結した概略回路構成、図26は本実施の形態17に係るブートストラップ回路要部の断面構造を示し、その基本構成は例えば図23及び図24に示す実施の形態16と同様である。実施の形態16との相違点は、図25及び図26に示す本実施の形態17の構成では、制限抵抗R2領域15がPch−MOSトランジスタ領域7のゲートとPch−MOSトランジスタ領域7の第2のp+層17間に接続され、Pch−MOSトランジスタ領域7のゲートは制限抵抗R2領域15の一端のみと接続されていることである。
【0081】
図25及び図26において、制限抵抗R2領域15を高耐圧ICチップに搭載したブートストラップ方式では、制限抵抗R2を介してPch−MOSトランジスタ領域7の第2のp+層17と接続されている。一方、VB端子とVS端子間に接続された外部コンデンサC1の一端は、高耐圧ICチップ上のn−ドリフト層RnとPch−MOSトランジスタ領域7を介して、例えば電源電圧15VのVccに接続され、下側トランジスタT2が導通(ON)状態にある時に出力端子OUTが接地電位に維持されると、それによってVB端子の電位が決まる。VB端子の電位がVcc以下の場合には、Pch−MOSトランジスタ領域7はON状態となり、充電電流を外部コンデンサC1に流し、外部コンデンサC1は電源電圧VccよりもPch−MOSトランジスタ領域7の閾値分だけ小さい充電電圧V2を保持する。これにより、低圧側駆動回路112は比較的低い電源電圧Vccにより駆動され、高圧側駆動回路111は外部コンデンサC1に充電された電圧V2により駆動される。
【0082】
これにより、Pch−MOSトランジスタ領域7がON状態の時に、端子VBと端子VS間に電源電圧VccよりもPch−MOSトランジスタ領域7の閾値分だけ小さい充電電圧V2を保持することができ、寄生トランジスタのON動作を従来より遥かに抑制するとともに、ブートストラップ回路をモノシリックICチップに搭載可能となる。また、Pch−MOSトランジスタ領域7がOFF状態のときに、ボディ・ドレインダイオードD4を通じて、充電電荷が流出することを防止できる。また、電力変換器の高圧側の出力素子がON状態の時に、充電とは逆方向にPch−MOSトランジスタ領域7がONするのを防止できる。
【0083】
さらに、Pch−MOSトランジスタ領域7と電力変換器(パワーデバイス)の出力素子の低圧側トランジスダT2がONするタイミングを同期させる必要がないため、Pch−MOSトランジスタ領域7を駆動するNch−MOSトランジスタ領域41等の駆動回路やPch−MOSトランジスタ領域7を電力変換器の出力素子の低圧側トランジスタT2がONするタイミングを同期させるために必要な遅延回路を必要としない分、大幅に回路面積を縮小することができる。
また、自明であるが、本実施の形態17は、充電可能な半導体素子部の構造のみが実施の形態16と異なっているだけである。従って、高圧島n−ドリフト層Rn領域8の構造が異なっている実施の形態2乃至8においても、図示は省略するが、高圧島n−ドリフト層Rn領域8の構造において本実施の形態17は適用できる。
【0084】
また、ダイオードD5領域5において、図26に示す構造の他に、実施の形態9乃至12で述べたダイオードD3の構造においても、図示は省略するが、本実施の形態17のダイオードD5領域5は適用できる。さらに、Pch−MOSトランジスタ領域7において、図26に示す構造の他に、実施の形態14で述べたPch−MOSトランジスタ領域7の構造においても、図示は省略するが、本実施の形態17のPch−MOSトランジスタ領域7は適用できる。
【0085】
また、図26に示す構成では、制限抵抗R2領域15とPch−MOSトランジスタ領域7とダイオードD5領域5は接合分離されているが、それに限定されるものではなく、同じn−半導体層106内に存在した場合も同様の効果が得られる。さらに、制限抵抗R2領域15の構造においても、図26の構造に限定されるものではなく、例えば、制限抵抗として、ベース抵抗、ゲート抵抗、ポリ抵抗、p+iso抵抗等がある。
【0086】
【発明の効果】
以上のように、本発明によれば、埋込みn+層を追加してベース濃度を濃くし、高圧保持と充電の役割を接合分離で別々の素子に行うことで、寄生のPNPトランジスタの動作を極力無くすことができ、寄生のトランジスタのオン動作を防止し、回路の消費電流を低減できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1に係る半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【図2】本発明の実施の形態1に係る半導体装置のブートストラップ回路要部の断面図。
【図3】本発明の実施の形態2に係る半導体装置のブートストラップ回路要部の断面図。
【図4】本発明の実施の形態3に係る半導体装置のブートストラップ回路要部の断面図。
【図5】本発明の実施の形態3の変形例の半導体装置のブートストラップ回路要部の断面図。
【図6】本発明の実施の形態4に係る半導体装置のブートストラップ回路要部の断面図。
【図7】本発明の実施の形態4の変形例の半導体装置のブートストラップ回路要部の断面図。
【図8】本発明の実施の形態5に係る半導体装置のブートストラップ回路要部の断面図。
【図9】本発明の実施の形態6に係る半導体装置のブートストラップ回路要部の断面図。
【図10】本発明の実施の形態7に係る半導体装置のブートストラップ回路要部の断面図。
【図11】本発明の実施の形態7の変形例の半導体装置のブートストラップ回路要部の断面図。
【図12】本発明の実施の形態8に係る半導体装置のブートストラップ回路要部の断面図。
【図13】本発明の実施の形態8の変形例の半導体装置のブートストラップ回路要部の断面図。
【図14】本発明の実施の形態9に係る半導体装置のブートストラップ回路要部の断面図。
【図15】本発明の実施の形態10に係る半導体装置のブートストラップ回路要部の断面図。
【図16】本発明の実施の形態11に係る半導体装置のブートストラップ回路要部の断面図。
【図17】本発明の実施の形態12に係る半導体装置のブートストラップ回路要部の断面図。
【図18】本発明の実施の形態13に係る半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【図19】本発明の実施の形態13に係る半導体装置のブートストラップ回路要部の断面図。
【図20】本発明の実施の形態14に係る半導体装置のブートストラップ回路要部の断面図。
【図21】本発明の実施の形態15に係る半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【図22】本発明の実施の形態15に係る半導体装置のブートストラップ回路要部の断面図。
【図23】本発明の実施の形態16に係る半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【図24】本発明の実施の形態16に係る半導体装置のブートストラップ回路要部の断面図。
【図25】本発明の実施の形態17に係る半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【図26】本発明の実施の形態17に係る半導体装置のブートストラップ回路要部の断面図。
【図27】従来の半導体装置のブートストラップ回路要部の断面図。
【図28】従来の半導体装置とパワーデバイスとを連結した概略回路構成を示す図。
【符号の説明】
6 ダイオード領域、  7 Pch−MOSトランジスタ領域、  8 高圧島n−ドリフト層、  9 高圧側駆動用CMOS領域、  10,11,12,22 n領域、  13,14、17,19,20,21 p領域、18 p型拡散層、  23,24,25  p−ウェル、  105 p−基板、  106 n半導体層、  111 高圧側駆動部、  112低圧側駆動部、  113 レベルシフト回路、  114 遅延回路、  Rn ドリフト抵抗、  R1,R2 制限抵抗、  D1,D2,D3,D4ダイオード、  T1,T2 電力素子、  C1 外部コンデンサ

Claims (17)

  1. パワーデバイスを駆動する半導体装置であって、前記パワーデバイスの低圧側の電力素子を駆動して高圧側浮遊供給絶対電圧と高圧側浮遊供給オフセット電圧間に接続されたブートストラップコンデンサに高圧側駆動部の電源を供給するブートストラップ回路を有し、
    前記ブートストラップ回路は、少なくとも充電可能な半導体素子部と高圧保持部を備え、
    前記充電可能な半導体素子部と前記高圧保持部は接合分離され、前記高圧保持部は高圧島のn−半導体内の高圧側と開口部にそれぞれn+層を設けたn−ドリフト層であることを特徴とする半導体装置。
  2. 前記ブートストラップ回路の充電可能な半導体素子部において、埋込n+層をn−半導体層とp−基板間に介在させたことを特徴とする請求項1に記載の半導体装置。
  3. 前記n−ドリフト層において、前記高圧島開口部のn+層の両側にp−基板と同電位である1対のp+層を設けたことを特徴とする請求項1〜2のいずれか1項に記載の半導体装置。
  4. 前記n−ドリフト層において、前記高圧島開口部のn+層の両側に設けられたp+層の一方が、前記充電可能な半導体素子部と前記高圧保持部を接合分離するp+拡散層であり、前記p+拡散層はp−基板と部分的に接していることを特徴とする請求項3に記載の半導体装置。
  5. 前記n−ドリフト層において、前記接合分離するp+拡散層でない前記高圧島開口部のn+層の両側に設けられたp+層の少なくとも一方をp−ウェルで覆うことを特徴とする請求項3〜4のいずれか1項に記載の半導体装置。
  6. 前記n−ドリフト層において、前記高圧島開口部のn+層の直下にp−基板と同電位のp+層を前記n−半導体層と前記p−基板間に介在させたことを特徴とする請求項1〜5のいずれか1項に記載の半導体装置。
  7. 前記ブートストラップ回路は、モノシリック高耐圧ICに設けられていることを特徴とする請求項1〜6のいずれか1項に記載の半導体装置。
  8. 前記ブートストラップ回路の充電可能な半導体素子部は少なくともダイオード領域を備え、前記ダイオード領域のアノード側が電源電圧に接続され、前記ダイオード領域のカソードが前記n−ドリフト層を介して高圧側浮遊供給絶対電圧端子に接続されていることを特徴とする請求項1〜7のいずれか1項に記載の半導体装置。
  9. 前記ダイオード領域は、前記n−半導体層内にp+層とn+層を設け、前記n−半導体層と前記p−基板間に埋込n+層を介在し、前記ダイオードのp+層が電源電圧に接続され、前記ダイオードのn+層が前記高圧島開口部のn+層に接続されていることを特徴とする請求項8に記載の半導体装置。
  10. 前記ダイオード領域は、前記n−半導体層内にp−ウェルを設け、前記p−ウェル内にp+層とn+層を設け、前記n−半導体層と前記p−基板間に埋込n+層を介在し、前記ダイオードのp+層が電源電圧に接続され、前記ダイオードのn+層が前記高圧島開口部のn+層に接続されていることを特徴とする請求項8に記載の半導体装置。
  11. 前記ダイオード領域は、前記n−半導体層内に、さらにn+層を備え、前記n−半導体層内のn+層と前記p−ウェル内のp+層とが接続されたことを特徴とする請求項10に記載の半導体装置。
  12. 前記ブートストラップ回路の充電可能な半導体素子部は少なくともpch−MOSトランジスタを備え、前記pch−MOSトランジスタの第1のp+層が電源電圧に接続され、第2のp+層が前記n−ドリフト層を介して高圧側浮遊供給絶対電圧端子に接続されていることを特徴とする請求項1〜7のいずれか1項に記載の半導体装置。
  13. 前記pch−MOSトランジスタの第1のp+層と前記pch−MOSトランジスタのバックゲート間に、前記pch−MOSトランジスタのオフに切り替え時にボディ・ドレインダイオードを介して流れる逆回復電流とは逆方向に、低圧ダイオードを設けたことを特徴とする請求項12に記載の半導体装置。
  14. 前記pch−MOSトランジスタ部の駆動タイミングと前記低圧側の電力素子を駆動するタイミングが同期することを特徴とする請求項12〜13のいずれか1項に記載の半導体装置。
  15. 前記n−ドリフト層の前記高圧島開口部のn+層は前記pch−MOSトランジスタ部の第2のp+層と接続され、前記第2のp+層はさらに制限抵抗を介して前記pch−MOSトランジスタ部のゲートに接続され、前記pch−MOSトランジスタ部のゲートはさらにnch−MOSトランジスタのドレインに接続され、前記nch−MOSトランジスタの駆動タイミングと前記低圧側の電力素子を駆動するタイミングが同期することを特徴とする請求項12〜13のいずれか1項に記載の半導体装置。
  16. 前記n−ドリフト層の前記高圧島開口部のn+層は前記pch−MOSトランジスタ部の第2のp+層と接続され、前記第2のp+層はさらに制限抵抗を介して前記pch−MOSトランジスタ部のゲートに接続され、前記pch−MOSトランジスタ部のゲートは前記制限抵抗以外のいずれにも接続されていないことを特徴とする請求項12〜13のいずれか1項に記載の半導体装置。
  17. 前記ブートストラップ回路の充電可能な半導体素子部において、前記n−半導体層内に設けられているn+層がさらに埋込n+層と部分的に接していることを特徴とする請求項9、11〜16のいずれか1項に記載の半導体装置。
JP2003039885A 2002-05-24 2003-02-18 半導体装置 Expired - Lifetime JP4397602B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2003039885A JP4397602B2 (ja) 2002-05-24 2003-02-18 半導体装置
US10/425,620 US6825700B2 (en) 2002-05-24 2003-04-30 Semiconductor device
DE10322742A DE10322742B4 (de) 2002-05-24 2003-05-20 Halbleitervorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002151106 2002-05-24
JP2003039885A JP4397602B2 (ja) 2002-05-24 2003-02-18 半導体装置

Publications (3)

Publication Number Publication Date
JP2004047937A true JP2004047937A (ja) 2004-02-12
JP2004047937A5 JP2004047937A5 (ja) 2005-11-04
JP4397602B2 JP4397602B2 (ja) 2010-01-13

Family

ID=29552364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003039885A Expired - Lifetime JP4397602B2 (ja) 2002-05-24 2003-02-18 半導体装置

Country Status (3)

Country Link
US (1) US6825700B2 (ja)
JP (1) JP4397602B2 (ja)
DE (1) DE10322742B4 (ja)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005235892A (ja) * 2004-02-18 2005-09-02 Mitsubishi Electric Corp 半導体装置
JP2006005182A (ja) * 2004-06-18 2006-01-05 Mitsubishi Electric Corp 半導体装置
JP2006093382A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd 半導体装置
JP2006165026A (ja) * 2004-12-02 2006-06-22 Mitsubishi Electric Corp 半導体装置
DE102007046418A1 (de) 2007-03-13 2008-09-18 Mitsubishi Electric Corp. Halbleitervorrichtung, die einem zu ladenden Element einen Ladestrom zuführt
JP2010283369A (ja) * 2010-07-26 2010-12-16 Mitsubishi Electric Corp 半導体装置
JP2011018929A (ja) * 2010-09-08 2011-01-27 Mitsubishi Electric Corp 半導体装置
JP2011018928A (ja) * 2010-09-08 2011-01-27 Mitsubishi Electric Corp 半導体装置
JP2011023734A (ja) * 2010-09-08 2011-02-03 Mitsubishi Electric Corp 半導体装置
JP2012009694A (ja) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp 電力用半導体装置
JP2013115954A (ja) * 2011-11-30 2013-06-10 Hitachi Ltd ブートストラップ回路、並びにそれを備えたインバータ装置
US8471541B2 (en) 2004-01-28 2013-06-25 Renesas Electronics Corporation Switching power supply device and a semiconductor integrated circuit
JP2014120534A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置
WO2014199608A1 (ja) * 2013-06-14 2014-12-18 富士電機株式会社 半導体装置
DE102014209933A1 (de) 2013-07-26 2015-01-29 Mitsubishi Electric Corporation Ansteuerschaltung für Halbleitervorrichtung
JP2015088597A (ja) * 2013-10-30 2015-05-07 ルネサスエレクトロニクス株式会社 半導体装置
JP2016039440A (ja) * 2014-08-06 2016-03-22 ルネサスエレクトロニクス株式会社 半導体装置
JP2016042558A (ja) * 2014-08-19 2016-03-31 富士電機株式会社 半導体装置
US9893065B2 (en) 2015-02-18 2018-02-13 Fuji Electric Co., Ltd. Semiconductor integrated circuit
US10217765B2 (en) 2015-02-18 2019-02-26 Fuji Electric Co., Ltd. Semiconductor integrated circuit
JP2020526022A (ja) * 2017-06-28 2020-08-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ハイサイドゲートドライバ
US10825812B2 (en) 2016-08-12 2020-11-03 Fuji Electric Co., Ltd. Semiconductor integrated circuit
JP2021150532A (ja) * 2020-03-19 2021-09-27 株式会社東芝 半導体装置

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4387119B2 (ja) 2003-03-27 2009-12-16 三菱電機株式会社 半導体装置
US7106105B2 (en) * 2004-07-21 2006-09-12 Fairchild Semiconductor Corporation High voltage integrated circuit driver with a high voltage PMOS bootstrap diode emulator
US7126388B2 (en) * 2004-12-16 2006-10-24 Semiconductor Components Industries, L.L.C. Power MOSFET driver and method therefor
US8076725B2 (en) * 2007-05-18 2011-12-13 Renesas Electronics Corporation Semiconductor device and method for manufacturing the same
KR101578782B1 (ko) * 2009-04-23 2015-12-21 페어차일드코리아반도체 주식회사 전력 반도체 소자
JP5359918B2 (ja) * 2010-02-16 2013-12-04 三菱電機株式会社 半導体装置
US8487664B2 (en) * 2010-11-30 2013-07-16 Infineon Technologies Ag System and method for driving a switch
US8310281B2 (en) 2010-11-30 2012-11-13 Infineon Technologies Ag System and method for driving a cascode switch
US8558584B2 (en) 2010-11-30 2013-10-15 Infineon Technologies Ag System and method for bootstrapping a switch driver
JP5757145B2 (ja) 2011-04-19 2015-07-29 富士電機株式会社 半導体装置
US20160087529A1 (en) * 2014-09-19 2016-03-24 Sanken Electric Co., Ltd. Bootstrap Circuit
TWI570916B (zh) * 2014-11-17 2017-02-11 旺宏電子股份有限公司 半導體結構
US9331143B1 (en) * 2014-11-20 2016-05-03 Macronix International Co., Ltd. Semiconductor structure having field plates over resurf regions in semiconductor substrate
CN105679812B (zh) * 2014-11-21 2018-12-25 旺宏电子股份有限公司 半导体结构
KR101975630B1 (ko) 2015-04-03 2019-08-29 매그나칩 반도체 유한회사 접합 트랜지스터와 고전압 트랜지스터 구조를 포함한 반도체 소자 및 그 제조 방법
US10784372B2 (en) 2015-04-03 2020-09-22 Magnachip Semiconductor, Ltd. Semiconductor device with high voltage field effect transistor and junction field effect transistor
TWI571040B (zh) * 2015-08-20 2017-02-11 世界先進積體電路股份有限公司 上橋電路
CN109427771B (zh) * 2017-09-01 2020-10-30 无锡华润上华科技有限公司 一种集成电路芯片及其制作方法、栅驱动电路
CN107910326B (zh) * 2017-10-27 2020-03-31 东南大学 集成在高低压隔离结构上的自举结构及自举电路
JP7139673B2 (ja) 2018-04-26 2022-09-21 富士電機株式会社 半導体装置
JP7300968B2 (ja) * 2019-11-14 2023-06-30 三菱電機株式会社 半導体装置
KR102374129B1 (ko) 2020-07-29 2022-03-11 주식회사 키파운드리 부트스트랩 다이오드를 포함하는 고전압 반도체 소자
EP3993249A1 (en) * 2020-10-28 2022-05-04 NXP USA, Inc. Advanced power supply to insure safe behavior of an inverter application
CN113257808B (zh) * 2021-05-17 2023-04-07 成都挚信电子技术有限责任公司 一种芯片衬底外延片
CN117476645B (zh) * 2023-12-26 2024-03-22 杰华特微电子股份有限公司 半导体器件及其制造方法、集成电路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US653345A (en) * 1899-12-02 1900-07-10 Theodore J Mayer Diamagnetic separation.
US5502632A (en) 1993-05-07 1996-03-26 Philips Electronics North America Corporation High voltage integrated circuit driver for half-bridge circuit employing a bootstrap diode emulator
US5373435A (en) 1993-05-07 1994-12-13 Philips Electronics North America Corporation High voltage integrated circuit driver for half-bridge circuit employing a bootstrap diode emulator
EP0743752B1 (en) 1995-05-17 2004-07-28 STMicroelectronics S.r.l. Charging of a bootstrap capacitance through an LDMOS transistor
US6353345B1 (en) * 2000-04-04 2002-03-05 Philips Electronics North America Corporation Low cost half bridge driver integrated circuit with capability of using high threshold voltage DMOS
JP4610786B2 (ja) 2001-02-20 2011-01-12 三菱電機株式会社 半導体装置

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9369045B2 (en) 2004-01-28 2016-06-14 Renesas Electronics Corporation Switching power supply device and a semiconductor integrated circuit
US8604764B2 (en) 2004-01-28 2013-12-10 Renesas Electronics Corporation Switching power supply device and a semiconductor integrated circuit
US8471541B2 (en) 2004-01-28 2013-06-25 Renesas Electronics Corporation Switching power supply device and a semiconductor integrated circuit
JP2005235892A (ja) * 2004-02-18 2005-09-02 Mitsubishi Electric Corp 半導体装置
JP4593126B2 (ja) * 2004-02-18 2010-12-08 三菱電機株式会社 半導体装置
JP2006005182A (ja) * 2004-06-18 2006-01-05 Mitsubishi Electric Corp 半導体装置
JP4610941B2 (ja) * 2004-06-18 2011-01-12 三菱電機株式会社 半導体装置
JP4727964B2 (ja) * 2004-09-24 2011-07-20 株式会社日立製作所 半導体装置
JP2006093382A (ja) * 2004-09-24 2006-04-06 Hitachi Ltd 半導体装置
JP2006165026A (ja) * 2004-12-02 2006-06-22 Mitsubishi Electric Corp 半導体装置
US7812402B2 (en) 2004-12-02 2010-10-12 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
JP4620437B2 (ja) * 2004-12-02 2011-01-26 三菱電機株式会社 半導体装置
DE102007046418B4 (de) * 2007-03-13 2016-12-01 Mitsubishi Electric Corp. Halbleitervorrichtung, die einem zu ladenden Element einen Ladestrom zuführt
US8395231B2 (en) 2007-03-13 2013-03-12 Mitsubishi Electric Corporation Semiconductor device supplying charging current to element to be charged
US8674471B2 (en) 2007-03-13 2014-03-18 Mitsubishi Electric Corporation Semiconductor device supplying charging current to element to be charged
DE102007046418A1 (de) 2007-03-13 2008-09-18 Mitsubishi Electric Corp. Halbleitervorrichtung, die einem zu ladenden Element einen Ladestrom zuführt
JP2012009694A (ja) * 2010-06-25 2012-01-12 Mitsubishi Electric Corp 電力用半導体装置
US8362830B2 (en) 2010-06-25 2013-01-29 Mitsubishi Electric Corporation Power semiconductor device
JP2010283369A (ja) * 2010-07-26 2010-12-16 Mitsubishi Electric Corp 半導体装置
JP2011018928A (ja) * 2010-09-08 2011-01-27 Mitsubishi Electric Corp 半導体装置
JP2011018929A (ja) * 2010-09-08 2011-01-27 Mitsubishi Electric Corp 半導体装置
JP2011023734A (ja) * 2010-09-08 2011-02-03 Mitsubishi Electric Corp 半導体装置
JP2013115954A (ja) * 2011-11-30 2013-06-10 Hitachi Ltd ブートストラップ回路、並びにそれを備えたインバータ装置
JP2014120534A (ja) * 2012-12-13 2014-06-30 Renesas Electronics Corp 半導体装置
US10002961B2 (en) 2013-06-14 2018-06-19 Fuji Electric Co., Ltd. Semiconductor device suppressing current leakage in a bootstrap diode
JP5994939B2 (ja) * 2013-06-14 2016-09-21 富士電機株式会社 半導体装置
JPWO2014199608A1 (ja) * 2013-06-14 2017-02-23 富士電機株式会社 半導体装置
WO2014199608A1 (ja) * 2013-06-14 2014-12-18 富士電機株式会社 半導体装置
DE102014209933B4 (de) 2013-07-26 2022-06-23 Mitsubishi Electric Corporation Ansteuerschaltung für Halbleitervorrichtung
DE102014209933A1 (de) 2013-07-26 2015-01-29 Mitsubishi Electric Corporation Ansteuerschaltung für Halbleitervorrichtung
US9130546B2 (en) 2013-07-26 2015-09-08 Mitsubishi Electric Corporation Drive circuit for semiconductor device
JP2015088597A (ja) * 2013-10-30 2015-05-07 ルネサスエレクトロニクス株式会社 半導体装置
US10008919B2 (en) 2013-10-30 2018-06-26 Renesas Electronics Corporation Semiconductor device
JP2016039440A (ja) * 2014-08-06 2016-03-22 ルネサスエレクトロニクス株式会社 半導体装置
JP2016042558A (ja) * 2014-08-19 2016-03-31 富士電機株式会社 半導体装置
US9608072B2 (en) 2014-08-19 2017-03-28 Fuji Electric Co., Ltd. Semiconductor device
US9893065B2 (en) 2015-02-18 2018-02-13 Fuji Electric Co., Ltd. Semiconductor integrated circuit
US10217765B2 (en) 2015-02-18 2019-02-26 Fuji Electric Co., Ltd. Semiconductor integrated circuit
US10825812B2 (en) 2016-08-12 2020-11-03 Fuji Electric Co., Ltd. Semiconductor integrated circuit
US11233052B2 (en) 2016-08-12 2022-01-25 Fuji Electric Co., Ltd. Method of manufacturing semiconductor integrated circuit
JP2020526022A (ja) * 2017-06-28 2020-08-27 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh ハイサイドゲートドライバ
JP2021150532A (ja) * 2020-03-19 2021-09-27 株式会社東芝 半導体装置
JP7232208B2 (ja) 2020-03-19 2023-03-02 株式会社東芝 半導体装置

Also Published As

Publication number Publication date
DE10322742A1 (de) 2004-02-12
JP4397602B2 (ja) 2010-01-13
DE10322742B4 (de) 2008-03-20
US6825700B2 (en) 2004-11-30
US20030218186A1 (en) 2003-11-27

Similar Documents

Publication Publication Date Title
JP4397602B2 (ja) 半導体装置
JP2535173B2 (ja) パワダウン特性とrs−232送信機/受信機とを含む集積二重電荷ポンプ電源回路
US9564844B2 (en) Semiconductor device and driving system
US5323044A (en) Bi-directional MOSFET switch
JP2004047937A5 (ja)
US20060011960A1 (en) Semiconductor device capable of avoiding latchup breakdown resulting from negative variation of floating offset voltage
US9412732B2 (en) Semiconductor device
JPH07236229A (ja) オフラインブートストラップ型スタートアップ回路
CN110556371A (zh) 整流器器件
JP2009290070A (ja) 半導体装置
JP4610941B2 (ja) 半導体装置
JP2009206284A (ja) 半導体装置
US11923839B2 (en) Gate driver device
JPH09129762A (ja) 半導体装置
US6972475B2 (en) Semiconductor device
US7071516B2 (en) Semiconductor device and driving circuit for semiconductor device
CN106663658B (zh) 半导体集成电路
JP2003209185A (ja) 半導体装置
US20020093052A1 (en) Semiconductor device
JP4531276B2 (ja) 半導体装置
JP4023276B2 (ja) 駆動回路
JP5055740B2 (ja) 半導体装置
JP2004173292A (ja) 半導体装置
US7960785B2 (en) Semiconductor integrated circuit devices
Udrea et al. Reverse conducting double gate lateral insulated gate bipolar transistor in SOI based technology

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050823

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090623

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091021

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121030

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4397602

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131030

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term