ES2889752T3 - Dispositivos y métodos para controlar temblores - Google Patents
Dispositivos y métodos para controlar temblores Download PDFInfo
- Publication number
- ES2889752T3 ES2889752T3 ES19150254T ES19150254T ES2889752T3 ES 2889752 T3 ES2889752 T3 ES 2889752T3 ES 19150254 T ES19150254 T ES 19150254T ES 19150254 T ES19150254 T ES 19150254T ES 2889752 T3 ES2889752 T3 ES 2889752T3
- Authority
- ES
- Spain
- Prior art keywords
- tremor
- stimulation
- nerve
- patient
- effector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 206010044565 Tremor Diseases 0.000 title claims abstract description 269
- 238000000034 method Methods 0.000 title description 39
- 230000000638 stimulation Effects 0.000 claims abstract description 197
- 210000005036 nerve Anatomy 0.000 claims abstract description 116
- 239000012636 effector Substances 0.000 claims abstract description 80
- 230000033001 locomotion Effects 0.000 claims abstract description 63
- 210000000578 peripheral nerve Anatomy 0.000 claims abstract description 56
- 238000004458 analytical method Methods 0.000 claims abstract description 23
- 230000015654 memory Effects 0.000 claims abstract description 22
- 230000006870 function Effects 0.000 claims abstract description 19
- 230000007433 nerve pathway Effects 0.000 claims abstract 4
- 210000001617 median nerve Anatomy 0.000 claims description 14
- 210000000658 ulnar nerve Anatomy 0.000 claims description 8
- 210000002979 radial nerve Anatomy 0.000 claims description 7
- 230000003595 spectral effect Effects 0.000 claims description 4
- 230000000694 effects Effects 0.000 description 41
- 201000006517 essential tremor Diseases 0.000 description 38
- 238000011282 treatment Methods 0.000 description 31
- 210000000707 wrist Anatomy 0.000 description 30
- 210000004556 brain Anatomy 0.000 description 29
- 238000004422 calculation algorithm Methods 0.000 description 29
- 239000007943 implant Substances 0.000 description 28
- 210000003205 muscle Anatomy 0.000 description 27
- 238000004891 communication Methods 0.000 description 24
- 210000003414 extremity Anatomy 0.000 description 24
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 22
- 230000001953 sensory effect Effects 0.000 description 20
- 239000000126 substance Substances 0.000 description 19
- 230000002159 abnormal effect Effects 0.000 description 18
- 230000000272 proprioceptive effect Effects 0.000 description 18
- 230000001537 neural effect Effects 0.000 description 16
- 230000009467 reduction Effects 0.000 description 16
- 238000001816 cooling Methods 0.000 description 14
- 238000012545 processing Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 12
- 238000002646 transcutaneous electrical nerve stimulation Methods 0.000 description 12
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 11
- 206010073211 Postural tremor Diseases 0.000 description 11
- 229960001948 caffeine Drugs 0.000 description 11
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 210000002569 neuron Anatomy 0.000 description 11
- 230000004044 response Effects 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 230000005284 excitation Effects 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 230000002829 reductive effect Effects 0.000 description 10
- 230000001225 therapeutic effect Effects 0.000 description 10
- 230000004913 activation Effects 0.000 description 9
- 230000007383 nerve stimulation Effects 0.000 description 9
- 238000005457 optimization Methods 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 239000003814 drug Substances 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 108091008706 proprioceptors Proteins 0.000 description 8
- 230000036982 action potential Effects 0.000 description 7
- 230000006399 behavior Effects 0.000 description 7
- 230000002500 effect on skin Effects 0.000 description 7
- 210000000245 forearm Anatomy 0.000 description 7
- 239000000203 mixture Substances 0.000 description 7
- 238000012544 monitoring process Methods 0.000 description 7
- 230000002093 peripheral effect Effects 0.000 description 7
- 230000000699 topical effect Effects 0.000 description 7
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- NNJVILVZKWQKPM-UHFFFAOYSA-N Lidocaine Chemical compound CCN(CC)CC(=O)NC1=C(C)C=CC=C1C NNJVILVZKWQKPM-UHFFFAOYSA-N 0.000 description 6
- 230000008901 benefit Effects 0.000 description 6
- 238000013500 data storage Methods 0.000 description 6
- 229960004194 lidocaine Drugs 0.000 description 6
- 230000004118 muscle contraction Effects 0.000 description 6
- 230000036407 pain Effects 0.000 description 6
- 230000004936 stimulating effect Effects 0.000 description 6
- 239000003623 enhancer Substances 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 210000000412 mechanoreceptor Anatomy 0.000 description 5
- 101800001718 Amyloid-beta protein Proteins 0.000 description 4
- 208000019901 Anxiety disease Diseases 0.000 description 4
- 208000016285 Movement disease Diseases 0.000 description 4
- 208000018737 Parkinson disease Diseases 0.000 description 4
- 238000013528 artificial neural network Methods 0.000 description 4
- 210000003461 brachial plexus Anatomy 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 230000003111 delayed effect Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- 210000003607 pacinian corpuscle Anatomy 0.000 description 4
- 230000001144 postural effect Effects 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000004088 simulation Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 230000001629 suppression Effects 0.000 description 4
- 210000000225 synapse Anatomy 0.000 description 4
- 239000003826 tablet Substances 0.000 description 4
- 238000002560 therapeutic procedure Methods 0.000 description 4
- 210000001364 upper extremity Anatomy 0.000 description 4
- 230000002792 vascular Effects 0.000 description 4
- 108091006146 Channels Proteins 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 3
- 230000004075 alteration Effects 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 230000036506 anxiety Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 210000003050 axon Anatomy 0.000 description 3
- 230000003542 behavioural effect Effects 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 210000004204 blood vessel Anatomy 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000000739 chaotic effect Effects 0.000 description 3
- -1 cyprocaine Chemical compound 0.000 description 3
- 230000001934 delay Effects 0.000 description 3
- 230000035622 drinking Effects 0.000 description 3
- 238000002567 electromyography Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000000835 fiber Substances 0.000 description 3
- 238000010304 firing Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- LHFKHAVGGJJQFF-UHFFFAOYSA-N hydroxyl-alpha-sanshool Natural products CC=CC=CC=CCCC=CC(=O)NCC(C)(C)O LHFKHAVGGJJQFF-UHFFFAOYSA-N 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000001939 inductive effect Effects 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 238000002483 medication Methods 0.000 description 3
- 108091008709 muscle spindles Proteins 0.000 description 3
- 230000004007 neuromodulation Effects 0.000 description 3
- 239000002858 neurotransmitter agent Substances 0.000 description 3
- HLXZNVUGXRDIFK-UHFFFAOYSA-N nickel titanium Chemical compound [Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ti].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni].[Ni] HLXZNVUGXRDIFK-UHFFFAOYSA-N 0.000 description 3
- 229910001000 nickel titanium Inorganic materials 0.000 description 3
- 230000037361 pathway Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229960001807 prilocaine Drugs 0.000 description 3
- MVFGUOIZUNYYSO-UHFFFAOYSA-N prilocaine Chemical compound CCCNC(C)C(=O)NC1=CC=CC=C1C MVFGUOIZUNYYSO-UHFFFAOYSA-N 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000002435 tendon Anatomy 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 2
- 235000002566 Capsicum Nutrition 0.000 description 2
- 208000030453 Drug-Related Side Effects and Adverse reaction Diseases 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 2
- 206010052904 Musculoskeletal stiffness Diseases 0.000 description 2
- 239000006002 Pepper Substances 0.000 description 2
- 241000722363 Piper Species 0.000 description 2
- 235000016761 Piper aduncum Nutrition 0.000 description 2
- 235000017804 Piper guineense Nutrition 0.000 description 2
- 235000008184 Piper nigrum Nutrition 0.000 description 2
- 208000003028 Stuttering Diseases 0.000 description 2
- 230000001154 acute effect Effects 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000003444 anaesthetic effect Effects 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 229940035674 anesthetics Drugs 0.000 description 2
- 230000001410 anti-tremor Effects 0.000 description 2
- BLFLLBZGZJTVJG-UHFFFAOYSA-N benzocaine Chemical compound CCOC(=O)C1=CC=C(N)C=C1 BLFLLBZGZJTVJG-UHFFFAOYSA-N 0.000 description 2
- 230000036760 body temperature Effects 0.000 description 2
- YKPUWZUDDOIDPM-SOFGYWHQSA-N capsaicin Chemical compound COC1=CC(CNC(=O)CCCC\C=C\C(C)C)=CC=C1O YKPUWZUDDOIDPM-SOFGYWHQSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 210000003169 central nervous system Anatomy 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000013043 chemical agent Substances 0.000 description 2
- 230000001447 compensatory effect Effects 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 239000006071 cream Substances 0.000 description 2
- 238000002716 delivery method Methods 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000012377 drug delivery Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 229920001746 electroactive polymer Polymers 0.000 description 2
- 230000002996 emotional effect Effects 0.000 description 2
- 230000002964 excitative effect Effects 0.000 description 2
- 238000009472 formulation Methods 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 239000003193 general anesthetic agent Substances 0.000 description 2
- 229920002674 hyaluronan Polymers 0.000 description 2
- 229960003160 hyaluronic acid Drugs 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 210000003041 ligament Anatomy 0.000 description 2
- 230000000670 limiting effect Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003589 local anesthetic agent Substances 0.000 description 2
- 238000000520 microinjection Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 210000004699 muscle spindle Anatomy 0.000 description 2
- 230000003227 neuromodulating effect Effects 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000000149 penetrating effect Effects 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 description 2
- 230000009023 proprioceptive sensation Effects 0.000 description 2
- 108020003175 receptors Proteins 0.000 description 2
- 230000001020 rhythmical effect Effects 0.000 description 2
- 230000035807 sensation Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 239000012781 shape memory material Substances 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 238000012549 training Methods 0.000 description 2
- 238000002604 ultrasonography Methods 0.000 description 2
- 210000003857 wrist joint Anatomy 0.000 description 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 description 1
- ZKMNUMMKYBVTFN-HNNXBMFYSA-N (S)-ropivacaine Chemical compound CCCN1CCCC[C@H]1C(=O)NC1=C(C)C=CC=C1C ZKMNUMMKYBVTFN-HNNXBMFYSA-N 0.000 description 1
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 description 1
- FPPCQURAUSZVBZ-UHFFFAOYSA-N 2-piperidin-1-ium-1-ylethyl n-(2-heptoxyphenyl)carbamate;chloride Chemical compound [Cl-].CCCCCCCOC1=CC=CC=C1NC(=O)OCC[NH+]1CCCCC1 FPPCQURAUSZVBZ-UHFFFAOYSA-N 0.000 description 1
- HQFWVSGBVLEQGA-UHFFFAOYSA-N 4-aminobenzoic acid 3-(dibutylamino)propyl ester Chemical compound CCCCN(CCCC)CCCOC(=O)C1=CC=C(N)C=C1 HQFWVSGBVLEQGA-UHFFFAOYSA-N 0.000 description 1
- 208000007848 Alcoholism Diseases 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 208000003174 Brain Neoplasms Diseases 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 1
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 1
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 description 1
- 206010013887 Dysarthria Diseases 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- VTUSIVBDOCDNHS-UHFFFAOYSA-N Etidocaine Chemical compound CCCN(CC)C(CC)C(=O)NC1=C(C)C=CC=C1C VTUSIVBDOCDNHS-UHFFFAOYSA-N 0.000 description 1
- 208000001914 Fragile X syndrome Diseases 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 208000035895 Guillain-Barré syndrome Diseases 0.000 description 1
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 1
- 206010020850 Hyperthyroidism Diseases 0.000 description 1
- 208000000038 Hypoparathyroidism Diseases 0.000 description 1
- 208000015592 Involuntary movements Diseases 0.000 description 1
- 108090000862 Ion Channels Proteins 0.000 description 1
- 102000004310 Ion Channels Human genes 0.000 description 1
- 206010049567 Miller Fisher syndrome Diseases 0.000 description 1
- 206010049816 Muscle tightness Diseases 0.000 description 1
- 208000012902 Nervous system disease Diseases 0.000 description 1
- 208000025966 Neurological disease Diseases 0.000 description 1
- 206010069917 Orthostatic tremor Diseases 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 108010052164 Sodium Channels Proteins 0.000 description 1
- 102000018674 Sodium Channels Human genes 0.000 description 1
- 208000009205 Tinnitus Diseases 0.000 description 1
- 208000030886 Traumatic Brain injury Diseases 0.000 description 1
- 208000018839 Wilson disease Diseases 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 201000007930 alcohol dependence Diseases 0.000 description 1
- 229940035676 analgesics Drugs 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 239000000730 antalgic agent Substances 0.000 description 1
- 230000003459 anti-dromic effect Effects 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 210000004191 axillary artery Anatomy 0.000 description 1
- 210000004227 basal ganglia Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229960005274 benzocaine Drugs 0.000 description 1
- 239000000560 biocompatible material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 210000002302 brachial artery Anatomy 0.000 description 1
- 229960003150 bupivacaine Drugs 0.000 description 1
- 229960003369 butacaine Drugs 0.000 description 1
- OJIJEKBXJYRIBZ-UHFFFAOYSA-N cadmium nickel Chemical compound [Ni].[Cd] OJIJEKBXJYRIBZ-UHFFFAOYSA-N 0.000 description 1
- 229960002504 capsaicin Drugs 0.000 description 1
- 235000017663 capsaicin Nutrition 0.000 description 1
- 229910021393 carbon nanotube Inorganic materials 0.000 description 1
- 239000002041 carbon nanotube Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229960002023 chloroprocaine Drugs 0.000 description 1
- VDANGULDQQJODZ-UHFFFAOYSA-N chloroprocaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1Cl VDANGULDQQJODZ-UHFFFAOYSA-N 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- 229960001747 cinchocaine Drugs 0.000 description 1
- PUFQVTATUTYEAL-UHFFFAOYSA-N cinchocaine Chemical compound C1=CC=CC2=NC(OCCCC)=CC(C(=O)NCCN(CC)CC)=C21 PUFQVTATUTYEAL-UHFFFAOYSA-N 0.000 description 1
- 230000001149 cognitive effect Effects 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000001054 cortical effect Effects 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000007405 data analysis Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007933 dermal patch Substances 0.000 description 1
- JBWMXRJDMMPGCX-UHFFFAOYSA-N diethyl-[2-[(2-heptoxyphenyl)carbamoyloxy]propyl]azanium;chloride Chemical compound [Cl-].CCCCCCCOC1=CC=CC=C1NC(=O)OC(C)C[NH+](CC)CC JBWMXRJDMMPGCX-UHFFFAOYSA-N 0.000 description 1
- KOOGJYYOMPUGCW-UHFFFAOYSA-N diethyl-[2-oxo-2-(2,4,6-trimethylanilino)ethyl]azanium;chloride Chemical compound [Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=C(C)C=C1C KOOGJYYOMPUGCW-UHFFFAOYSA-N 0.000 description 1
- 210000003027 ear inner Anatomy 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 238000000537 electroencephalography Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 229960003976 etidocaine Drugs 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 210000002683 foot Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 210000004247 hand Anatomy 0.000 description 1
- 210000003128 head Anatomy 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 206010022498 insulinoma Diseases 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000012977 invasive surgical procedure Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000003155 kinesthetic effect Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 210000003801 laryngeal nerve Anatomy 0.000 description 1
- 210000000867 larynx Anatomy 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 229960004288 levobupivacaine Drugs 0.000 description 1
- LEBVLXFERQHONN-INIZCTEOSA-N levobupivacaine Chemical compound CCCCN1CCCC[C@H]1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-INIZCTEOSA-N 0.000 description 1
- 229960004393 lidocaine hydrochloride Drugs 0.000 description 1
- YECIFGHRMFEPJK-UHFFFAOYSA-N lidocaine hydrochloride monohydrate Chemical compound O.[Cl-].CC[NH+](CC)CC(=O)NC1=C(C)C=CC=C1C YECIFGHRMFEPJK-UHFFFAOYSA-N 0.000 description 1
- 238000002690 local anesthesia Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000001699 lower leg Anatomy 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 235000012054 meals Nutrition 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 230000028161 membrane depolarization Effects 0.000 description 1
- 229940041616 menthol Drugs 0.000 description 1
- 229960002409 mepivacaine Drugs 0.000 description 1
- INWLQCZOYSRPNW-UHFFFAOYSA-N mepivacaine Chemical compound CN1CCCCC1C(=O)NC1=C(C)C=CC=C1C INWLQCZOYSRPNW-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000002044 microwave spectrum Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 210000002161 motor neuron Anatomy 0.000 description 1
- 210000000214 mouth Anatomy 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 230000017311 musculoskeletal movement, spinal reflex action Effects 0.000 description 1
- 239000007783 nanoporous material Substances 0.000 description 1
- 210000001640 nerve ending Anatomy 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 230000002232 neuromuscular Effects 0.000 description 1
- 230000008062 neuronal firing Effects 0.000 description 1
- 230000003957 neurotransmitter release Effects 0.000 description 1
- 230000019818 neurotransmitter uptake Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 210000000929 nociceptor Anatomy 0.000 description 1
- 231100000862 numbness Toxicity 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 208000021255 pancreatic insulinoma Diseases 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 208000033808 peripheral neuropathy Diseases 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000010363 phase shift Effects 0.000 description 1
- 230000037081 physical activity Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920000052 poly(p-xylylene) Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 238000011240 pooled analysis Methods 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- DQMZLTXERSFNPB-UHFFFAOYSA-N primidone Chemical compound C=1C=CC=CC=1C1(CC)C(=O)NCNC1=O DQMZLTXERSFNPB-UHFFFAOYSA-N 0.000 description 1
- 229960002393 primidone Drugs 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960003712 propranolol Drugs 0.000 description 1
- 230000007115 recruitment Effects 0.000 description 1
- 210000002416 recurrent laryngeal nerve Anatomy 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229960001549 ropivacaine Drugs 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 210000003491 skin Anatomy 0.000 description 1
- 231100000245 skin permeability Toxicity 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 230000003238 somatosensory effect Effects 0.000 description 1
- 230000002602 somatotopic effect Effects 0.000 description 1
- 230000006886 spatial memory Effects 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 210000003270 subclavian artery Anatomy 0.000 description 1
- 210000001321 subclavian vein Anatomy 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000007598 synaptic excitation Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 229960002372 tetracaine Drugs 0.000 description 1
- GKCBAIGFKIBETG-UHFFFAOYSA-N tetracaine Chemical compound CCCCNC1=CC=C(C(=O)OCCN(C)C)C=C1 GKCBAIGFKIBETG-UHFFFAOYSA-N 0.000 description 1
- 231100000886 tinnitus Toxicity 0.000 description 1
- 230000009529 traumatic brain injury Effects 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000001186 vagus nerve Anatomy 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 210000001260 vocal cord Anatomy 0.000 description 1
- 230000021542 voluntary musculoskeletal movement Effects 0.000 description 1
- 230000003442 weekly effect Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0408—Use-related aspects
- A61N1/0456—Specially adapted for transcutaneous electrical nerve stimulation [TENS]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Measuring devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor or mobility of a limb
- A61B5/1101—Detecting tremor
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/025—Digital circuitry features of electrotherapy devices, e.g. memory, clocks, processors
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0476—Array electrodes (including any electrode arrangement with more than one electrode for at least one of the polarities)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/02—Details
- A61N1/04—Electrodes
- A61N1/0404—Electrodes for external use
- A61N1/0472—Structure-related aspects
- A61N1/0492—Patch electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36031—Control systems using physiological parameters for adjustment
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/36014—External stimulators, e.g. with patch electrodes
- A61N1/3603—Control systems
- A61N1/36034—Control systems specified by the stimulation parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/3606—Implantable neurostimulators for stimulating central or peripheral nerve system adapted for a particular treatment
- A61N1/36067—Movement disorders, e.g. tremor or Parkinson disease
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36146—Control systems specified by the stimulation parameters
- A61N1/36167—Timing, e.g. stimulation onset
- A61N1/36178—Burst or pulse train parameters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61N—ELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
- A61N1/00—Electrotherapy; Circuits therefor
- A61N1/18—Applying electric currents by contact electrodes
- A61N1/32—Applying electric currents by contact electrodes alternating or intermittent currents
- A61N1/36—Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
- A61N1/3605—Implantable neurostimulators for stimulating central or peripheral nerve system
- A61N1/36128—Control systems
- A61N1/36189—Control systems using modulation techniques
- A61N1/36196—Frequency modulation
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Neurology (AREA)
- Neurosurgery (AREA)
- Biophysics (AREA)
- Heart & Thoracic Surgery (AREA)
- Physiology (AREA)
- Hospice & Palliative Care (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Physics & Mathematics (AREA)
- Dentistry (AREA)
- Pathology (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Surgery (AREA)
- Electrotherapy Devices (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Un dispositivo transcutáneo (100, 700) para tratar temblores en un paciente, comprendiendo el dispositivo: una unidad de control (740); un primer efector de nervio periférico (730), que comprende al menos un electrodo de estimulación (102) configurado para colocarse para modular una primera trayectoria de nervio aferente (104); un segundo efector de nervio periférico (730), que comprende al menos un electrodo de simulación (102) y configurado para colocarse para modular una segunda trayectoria de nervio aferente (104); y al menos un sensor (780) configurado para medir el movimiento de la extremidad del paciente para caracterizar una o más características del temblor, las una o más características del temblor seleccionadas del grupo que consiste en frecuencia del temblor y periodo del temblor; en donde la unidad de control comprende un procesador (797) y una memoria (770) para almacenar instrucciones que, cuando se ejecutan por el procesador, hacen que el dispositivo: mida el movimiento de la extremidad del paciente para generar datos de movimiento; determine una o más de una frecuencia y periodo del temblor en función de un análisis de los datos de movimiento; ajuste uno o más parámetros de un primer estímulo eléctrico en función de uno o más de la frecuencia y periodo del temblor; suministre el primer estímulo eléctrico a un primer nervio aferente mediante el primer efector de nervio periférico para reducir el temblor en la extremidad del paciente; y suministre un segundo estímulo eléctrico desplazado en el tiempo del primer estímulo eléctrico a un segundo nervio aferente mediante el segundo efector de nervio periférico mediante una fracción predeterminada del periodo del temblor seleccionado del grupo que consiste en: una mitad del periodo del temblor, un cuarto del periodo del temblor y tres cuartos del periodo del temblor.
Description
DESCRIPCIÓN
Dispositivos y métodos para controlar temblores
Campo
Las realizaciones de la presente descripción se refieren en general a sistemas, dispositivos y métodos para tratar temblores, y más específicamente se refieren a sistemas, dispositivos y métodos para tratar temblores por estimulación de un nervio periférico. La invención se expone en las reivindicaciones adjuntas.
Antecedentes
El temblor esencial (ET) es el desorden de movimiento más común, afectando a una estimación de 10 millones de pacientes en los Estados Unidos, con números crecientes debido a la población envejecida. La prevalencia del ET aumenta con la edad, aumentando desde 6,3 % de la población por encima de 65, a por encima de 20 % en la población por encima de 95. El ET se caracteriza por un movimiento oscilatorio involuntario, normalmente entre 4-12 Hz. Esto puede producir oscilaciones en la voz y movimientos no deseados de la cabeza y extremidades. El temblor en las manos y el antebrazo es especialmente prevalente y problemático porque hace difícil escribir, escribir a máquina, comer y beber. A diferencia del temblor de Parkinson, que existe en reposo, el temblor esencial es postural y cinético, lo que significa que el temblor se induce manteniendo una extremidad contra la gravedad o durante el movimiento, respectivamente.
La incapacidad con ET es variable, y varía por vergüenza por la incapacidad de vivir independientemente cuando no son posibles tareas como escribir y alimentarse uno mismo debido a movimientos incontrolados de la mano y el brazo. A pesar de la alta prevalencia y gran incapacidad de muchos pacientes con ET, existen opciones de tratamiento insuficientes para abordar el temblor.
Los fármacos usados para tratar temblores (por ejemplo, Propanolol y Primidone) han demostrado ser efectivos al reducir la amplitud del temblor solo un 50 % en solo 60 % de los pacientes. Estos fármacos tienen efectos secundarios que pueden ser severos y no se toleran por muchos pacientes con ET. Un tratamiento alternativo es la implantación quirúrgica de un estimulador dentro del cerebro usando estimulación cerebral profunda (DBS), que puede ser eficaz al reducir la amplitud del temblor un 90 %, pero es un procedimiento quirúrgico altamente invasivo que conlleva riesgos significativos y no puede tolerarse por muchos pacientes de ET. De este modo, existe una gran necesidad de tratamientos alternativos para pacientes de ET que reducen los temblores sin los efectos secundarios de los fármacos y sin los riesgos de cirugía cerebral.
El temblor es también un problema significativo para pacientes con temblor ortostático, esclerosis múltiple y Enfermedad de Parkinson. Una variedad de desórdenes neurológicos incluye temblor como derrames, alcoholismo, abstinencia, neuropatía periférica, enfermedad de Wilson, enfermedad de Creutzfeldt-Jacob, síndrome de Guillain-Barre y síndrome frágil X, así como tumores cerebrales, azúcar en sangre baja, hipertiroidismo, hipoparatiroidismo, insulinoma, envejecimiento normal y lesión cerebral traumática. El tartamudeo o tartajeo también pueden ser una forma de temblor. La etiología subyacente de temblor en estas condiciones puede diferir del ET; sin embargo, las opciones de tratamiento para algunas de estas condiciones también son limitadas y son necesarios tratamientos alternativos.
Se piensa que el ET se provoca por anormalidades en la dinámica de circuitos asociada con la producción y control de movimiento. Los trabajos anteriores han mostrado que estas dinámicas de circuitos pueden alterarse temporalmente por enfriamiento, analgésicos tópicos y vibración. Los trabajos anteriores informaron de que la estimulación eléctrica usando estimulación nerviosa eléctrica transcutánea (TENS) no mejoró el temblor (Munhoz 2003). Fue por tanto sorprendente descubrir en el estudio clínico que las dinámicas de circuitos asociadas con el ET pueden alterarse por estimulación nerviosa periférica resultando en una reducción sustancial en el temblor de los sujetos con ET.
La presente invención pertenece a un nuevo dispositivo de estimulación periférica para enviar señales a lo largo de los nervios sensoriales al sistema nervioso central para modificar las dinámicas de red anormales. A lo largo del tiempo, esta estimulación normaliza la activación neuronal en la red anormal y reduce el temblor. Aunque la DBS estimula el cerebro directamente, nuestra estimulación periférica influencia las dinámicas de circuitos cerebrales anormales enviando señales a lo largo de los nervios sensoriales que conectan la periferia al cerebro. Este enfoque no es invasivo y se espera que evite los riesgos quirúrgicos de la DBS y problemas asociados con perturbaciones cognitivas, declarativas y disartria de memoria espacial, ataxia o andares. La estimulación nerviosa periférica puede tratar eficazmente temblores por desfase, anulación u oscurecimiento de las dinámicas de circuitos cerebrales anormales. La anulación, oscurecimiento o entrenamiento del cerebro para ignorar las dinámicas de circuitos cerebrales anormales sigue hipótesis para los mecanismos de DBS tradicional.
Quizás la tecnología más estrechamente relacionada con este enfoque es la estimulación nerviosa eléctrica transcutánea (TENS). La TENS de alta frecuencia (50 a 250 Hz) se usa normalmente para tratar dolores, con la hipótesis de que la excitación de grandes fibras, propioceptivas periféricas mielinadas (A-beta), bloquea las señales
de dolor entrantes. Aunque los resultados clínicos inconsistentes logrados usando TENS para control de dolor han conducido a muchos a cuestionar su uso para tratar dolores, está bien documentado que la estimulación eléctrica superficial excita las neuronas A-beta. Las neuronas A-beta comunican información sensorial propioceptiva a los mismos circuitos cerebrales que son anormales en enfermedades incluyendo ET y enfermedad de Parkinson. Sin limitarse por ningún mecanismo propuesto de acción, esto ha conducido a proponer que podría usarse neuroestimulación para excitar los nervios A-beta y por tanto mejorar el temblor. Esta propuesta es particularmente sorprendente porque un estudio previo de Munhoz et al falló en encontrar alguna mejora significativa en alguno de los parámetros de temblor ensayado tras la aplicación de TENS. Véase Munhoz et al., Acute Effect of Transcutaneous Electrical Nerve Stimulation on Tremor, Movement Disorders, 18(2), 191-194 (2003).
El documento US 2007/123951 A1 divulga un sistema y aparato para permitir la auto aplicación de un medio antitemblores por un paciente discapacitado, sin necesitar accesorios de aplicación. El medio antitemblores comprende una única unidad, estimulación autoadhesiva y un electrodo de registro con un suministro integrado de energía y una unidad de control. El sistema y método para reducción de temblores es mediante estimulación eléctrica y funcional de bucle cerrado, incluyendo un sensor para detectar movimientos musculares y un aparato de Estimulación Eléctrica Funcional (FES) para proporcionar FES a un músculo.
El documento W02008062395A1 divulga un aparato para reducción de temblores que incluye un sensor para detectar movimientos musculares, una unidad de electrodo de estimulación/registro para proporcionar Estimulación Eléctrica Funcional (FES) a un músculo, incluyendo la unidad de electrodo de estimulación/registro un filtro para filtrar alrededor de una frecuencia de temblor para ignorar movimientos lentos y el ruido de frecuencia alta asociado con los movimientos musculares que se detectaron, y un procesador para generar un conjunto de relaciones de respuesta muscular al FES, llamadas relaciones de respuesta muscular FES, y para seleccionar una nueva FES para su aplicación al músculo de acuerdo con conocimiento adquirido de las relaciones de respuesta muscular FES.
El documento US 2002/161415 A1 divulga un aparato para accionar un músculo esquelético de un paciente. El aparato incluye una pluralidad de electrodos, que se adaptan para colocarse en una proximidad de un nervio motor que inerva el músculo esquelético. Una unidad de control se adapta para accionar una corriente entre dos o más de la pluralidad de electrodos, y para configurar la corriente de modo que se excite un primer subconjunto de axones en el nervio mediante la corriente y de modo que no se excite un segundo subconjunto de axones en el nervio por la corriente.
Sumario de la divulgación
De acuerdo con la presente invención, se proporciona el dispositivo transcutáneo de la reivindicación 1. Los aspectos adicionales de la invención se exponen en las reivindicaciones dependientes.
A menos que se indique explícitamente como “de acuerdo con la presente invención”, cualquier realización como se describe en la presente sección “Sumario de la solicitud” se proporciona solo con fines ilustrativos y no forma parte de la presente invención. Específicamente, cualquier método como se describe a continuación se excluye explícitamente del alcance de la presente invención.
La presente divulgación se refiere en general a sistemas, dispositivos y métodos para tratar temblores, y más específicamente se refiere a sistemas, dispositivos y métodos para tratar temblores por estimulación de un nervio periférico.
En algunas realizaciones que no forman parte de la presente invención, se proporciona un método para reducir temblores en un paciente. El método incluye colocar un primer efector de nervio periférico en una primera ubicación relativa a un primer nervio periférico; suministrar un primer estímulo al primer nervio periférico a través del primer efector de nervio periférico; y reducir la amplitud del temblor modificando las dinámicas de red neuronal del paciente.
En algunas realizaciones, la etapa de colocación comprende colocar el primer efector de nervio periférico en la piel del paciente y el primer estímulo es un estímulo eléctrico aplicado a la superficie de la piel.
En algunas realizaciones, el primer estímulo tiene una amplitud desde aproximadamente 0,1 mA a 10 mA y una frecuencia desde aproximadamente 10 a 5000 HZ. En algunas realizaciones, el primer estímulo tiene una amplitud que es menor de aproximadamente 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, o 1 mA.
En algunas realizaciones, la etapa de colocación comprende implantar el primer efector de nervio periférico en el paciente y el primer estímulo es un estímulo eléctrico.
En algunas realizaciones, la etapa de implantación comprende inyectar el primer efector de nervio periférico en el paciente. En algunas realizaciones, el primer estímulo tiene una amplitud menor de aproximadamente 3 mA y una frecuencia desde aproximadamente 10 a 5000 Hz. En algunas realizaciones, el primer estímulo tiene una amplitud que es menor que aproximadamente 5, 4, 3, 2 o 1 mA.
En algunas realizaciones, el efector de nervio periférico incluye una fuente de potencia.
En algunas realizaciones, el método incluye además alimentar el primer efector de nervio periférico de forma inalámbrica mediante una fuente de potencia ubicada externamente.
En algunas realizaciones, el primer estímulo es vibrotáctil.
En algunas realizaciones, el primer estímulo es químico.
En algunas realizaciones, el método incluye además detectar el movimiento de la extremidad del paciente usando una unidad de medición para generar datos de movimiento; y determinar información de temblor desde los datos de movimiento.
En algunas realizaciones, la etapa de suministro comprende suministrar el primer estímulo en función de la información de temblor.
En algunas realizaciones, la información de temblor comprende una desviación máxima desde una posición de reposo para la extremidad del paciente.
En algunas realizaciones, la información de temblor comprende una posición de reposo para la extremidad del paciente.
En algunas realizaciones, la información de temblor comprende frecuencia, fase y amplitud de temblor.
En algunas realizaciones, la etapa de suministrar el primer estímulo comprende suministrar una pluralidad de explosiones de estimulación con un retraso temporal variable entre las explosiones de estimulación.
En algunas realizaciones, el método incluye además colocar un segundo efector de nervio periférico en una segunda ubicación relativa a un segundo nervio periférico; y suministrar un segundo estímulo al segundo nervio periférico mediante el segundo efector de nervio periférico.
En algunas realizaciones, el método incluye además determinar un periodo de temblor del paciente, en donde la etapa de suministro del segundo estímulo comprende desplazar el suministro del segundo estímulo desde el suministro del primer estímulo por una fracción predeterminada o múltiplo de un periodo del temblor.
En algunas realizaciones, el método incluye además desfasar la sincronicidad de una red neuronal en el cerebro del paciente.
En algunas realizaciones, la primera ubicación y la segunda ubicación se ubican en dedos adyacentes.
En algunas realizaciones, el primer nervio periférico y el segundo nervio periférico son nervios adyacentes.
En algunas realizaciones, el primer nervio periférico es el nervio mediano y el segundo nervio periférico es el nervio ulnar o radial.
En algunas realizaciones, el primer nervio periférico y el segundo nervio periférico son adyacentes de forma somatotópica.
En algunas realizaciones, el primer estímulo tiene una amplitud que está por debajo de un umbral sensorial.
En algunas realizaciones, el primer estímulo es mayor que 15 Hz.
En algunas realizaciones, el primer nervio periférico lleva información propioceptiva desde la extremidad del paciente. En algunas realizaciones, el método incluye además determinar una duración de eficacia del primer estímulo al reducir la amplitud del temblor; y suministrar un segundo estímulo antes de la expiración de la duración de la eficacia.
En algunas realizaciones, la etapa de determinar la duración del efecto comprende analizar múltiples aplicaciones de estímulos aplicados sobre un periodo predeterminado de tiempo.
En algunas realizaciones, la etapa de determinar la duración de la eficacia comprende además determinar un perfil de actividad para el paciente.
En algunas realizaciones, la etapa de determinar la duración de la eficacia comprende además determinar un perfil del temblor.
En algunas realizaciones, el perfil de actividad incluye datos referentes al consumo de cafeína y alcohol.
En algunas realizaciones, el método incluye además colocar un reforzador de trayectoria de conducción sobre el primer nervio periférico.
En algunas realizaciones, el reforzador de trayectoria de conducción es un tatuaje conductor.
En algunas realizaciones, el reforzador de trayectoria de conducción comprende una o más tiras conductoras.
En algunas realizaciones, la primera ubicación se selecciona del grupo que consiste en una muñeca, un antebrazo, un túnel carpiano, un dedo y un brazo superior.
En algunas realizaciones, se proporciona un sistema para tratar temblores en un paciente. El dispositivo puede incluir una unidad de decisión; y una unidad de interfaz adaptada para suministrar estímulos eléctricos a un nervio periférico, comprendiendo la unidad de interfaz un primer efector de nervio periférico en comunicación con la unidad de decisión, comprendiendo el primer efector de nervio periférico al menos un electrodo; en donde la unidad de decisión comprende un procesador y una memoria que almacena instrucciones que, cuando son ejecutadas por el procesador, hacen la que unidad de decisión: suministre un primer estímulo eléctrico a un primer nervio periférico mediante el primer efector de nervio periférico, configurado el estímulo eléctrico por el controlador para reducir temblores en la extremidad del paciente modificando las dinámicas de red neuronal del paciente.
En algunas realizaciones, el primer estímulo eléctrico tiene una amplitud menor que aproximadamente 10 mA y una frecuencia desde aproximadamente 10 a 5000 Hz. En algunas realizaciones, la amplitud es menor de aproximadamente 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, o 1 mA.
En algunas realizaciones, la unidad de interfaz comprende además un segundo efector de nervio periférico en comunicación con la unidad de decisión, comprendiendo el segundo efector de nervio periférico al menos un electrodo, en donde la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión suministre un segundo estímulo eléctrico a un segundo nervio periférico en la extremidad del paciente mediante el segundo efector de nervio periférico.
En algunas realizaciones, las instrucciones, cuando son ejecutadas por el procesador, hacen que la unidad de decisión suministre el segundo estímulo eléctrico desplazado en el tiempo desde el primer estímulo eléctrico por una fracción predeterminada o múltiplo de un periodo del temblor. De acuerdo con la invención, la fracción predeterminada del periodo del temblor se selecciona del grupo que consiste en: una mitad del periodo del temblor, un cuarto del periodo del temblor y tres cuartos del periodo del temblor.
En algunas realizaciones, el primer efector de nervio periférico se adapta para colocarse en un primer dedo y el segundo efector de nervio periférico se adapta para colocarse en un segundo dedo.
En algunas realizaciones, el primer efector de nervio periférico comprende una pluralidad de electrodos dispuestos en una agrupación lineal. En algunas realizaciones, la pluralidad de electrodos está separada aproximadamente de 1 a 100 mm.
En algunas realizaciones, el primer efector de nervio periférico comprende una pluralidad de electrodos dispuestos en una agrupación en dos dimensiones.
En algunas realizaciones, la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión seleccione un subconjunto de la pluralidad de electrodos en función de una posición del primer efector de nervio periférico en la extremidad del paciente, en donde la selección del subconjunto de la pluralidad de electrodos ocurre cada vez que el primer efector de nervio periférico se coloca o recoloca en la extremidad.
En algunas realizaciones, la pluralidad de electrodos está separada aproximadamente de 1 a 100 mm a lo largo de un primer eje y aproximadamente de 1 a 100 mm a lo largo de un segundo eje perpendicular al primer eje.
En algunas realizaciones, algunos de los electrodos son adyacentes entre sí para formar una tira. En algunas realizaciones, la separación puede ser menor de aproximadamente 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 5, 4, 3, 2, o 1 mm.
En algunas realizaciones, el sistema además incluye una unidad de medición, en donde la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión: mida el movimiento de la extremidad del paciente usando la unidad de medición para generar datos de movimiento; y determine una frecuencia y magnitud de temblor en función de un análisis de los datos de movimiento.
En algunas realizaciones, el análisis de los datos de movimiento comprende un análisis de frecuencia de la potencia espectral de los datos de movimiento.
En algunas realizaciones, el análisis de frecuencia se limita a entre 4 a 12 Hz. En algunas realizaciones, el análisis de frecuencia se limita a aproximadamente el intervalo de frecuencia esperado del temblor o temblores de preocupación. En algunas realizaciones, el análisis de los datos de movimiento se realiza en una longitud predeterminada de tiempo de los datos de movimiento.
En algunas realizaciones, la unidad de decisión se adapta además para determinar información de fase de temblor en función de los datos de movimiento y para suministrar el primer estímulo eléctrico en función de la información de fase de temblor.
En algunas realizaciones, la información de fase de temblor comprende desviación de temblor máxima, adaptándose además la unidad de decisión para suministrar el primer estímulo eléctrico en un momento correspondiente a la desviación de temblor máxima.
En algunas realizaciones, la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan que la unidad de decisión suministre el primer estímulo eléctrico como una pluralidad de explosiones de estimulación eléctrica con un retraso temporal variable entre las explosiones de estimulación eléctrica.
En algunas realizaciones, la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión ajuste parámetros del primer estímulo eléctrico en función de la frecuencia de temblor determinada.
En algunas realizaciones, la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión ajuste parámetros del primer estímulo eléctrico en función de la magnitud de temblor determinada.
En algunas realizaciones, la memoria almacena instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de decisión compare la magnitud de temblor determinada con un umbral predeterminado; y en donde el primer estímulo eléctrico se suministra cuando la magnitud de temblor determinada supera un umbral predeterminado.
En algunas realizaciones, el electrodo se adapta para suministrar el primer estímulo eléctrico a través de la piel del paciente.
En algunas realizaciones, el electrodo se adapta para implantarse y suministrar la electricidad. En algunas realizaciones, la unidad de decisión comprende una interfaz de usuario adaptada para aceptar entradas desde un usuario para ajustar un parámetro del primer estímulo eléctrico.
En algunas realizaciones, la memoria almacena además una biblioteca de uno o más protocolos de estimulación predeterminados.
En algunas realizaciones, la unidad de interfaz se integra con la unidad de decisión.
En algunas realizaciones, la unidad de interfaz y la unidad de decisión están separadas entre sí y tienen alojamientos separados.
En algunas realizaciones, la unidad de decisión se configura para proporcionar potencia de forma inalámbrica, o comunicarse con, la unidad de interfaz.
En algunas realizaciones, el sistema además incluye una unidad de medición ubicada en la unidad de decisión. En algunas realizaciones, el sistema además incluye una unidad de medición ubicada en la unidad de interfaz. En algunas realizaciones, la unidad de decisión es un dispositivo de computación seleccionado del grupo que consiste en un smartphone, tableta y portátil.
En algunas realizaciones, el sistema incluye además un servidor en comunicación con el dispositivo de computación, configurado el servidor para recibir datos de movimiento desde el dispositivo de computación junto con un historial de los estímulos eléctricos suministrados al paciente.
En algunas realizaciones, el servidor se programa para: añadir los datos de movimiento recibidos y el historial de los estímulos eléctricos suministrados al paciente a una base de datos que almacena datos desde una pluralidad de pacientes.
En algunas realizaciones, el servidor se programa para: comparar los datos de movimientos recibidos y el historial de
los estímulos eléctricos suministrados al paciente con los datos almacenados en la base de datos; determinar un protocolo de estímulo eléctrico modificado en función de la comparación de los datos de movimiento recibidos y el historial de los estímulos eléctricos suministrados al paciente con los datos almacenados en la base de datos; y transmitir el protocolo de estímulo eléctrico modificado al dispositivo de computación.
En algunas realizaciones, los componentes electrónicos son flexibles y se disponen en un sustrato flexible, que puede ser un manguito, almohadilla, banda u otro alojamiento.
En algunas realizaciones, se proporciona un sistema para supervisar temblores en la extremidad de un paciente. El sistema puede incluir una unidad de interfaz con una unidad de movimiento de inercia para capturas datos de movimiento, una fuente de potencia y un transmisor y receptor inalámbricos, la unidad de interfaz adaptada para llevarse puesta en la extremidad del paciente; y una unidad de procesamiento en comunicación con la unidad de interfaz, la unidad de procesamiento configurada para recibir los datos de movimiento desde la unidad de interfaz, en donde la unidad de procesamiento está programada para: determinar una firma y perfil de temblor sobre un periodo de tiempo predeterminado en función de un análisis de los datos de movimiento.
En algunas realizaciones, la unidad de procesamiento es un teléfono móvil.
En algunas realizaciones, el sistema incluye además un servidor en comunicación con el teléfono móvil, configurado el servidor para recibir datos de movimiento desde el teléfono móvil.
En algunas realizaciones, la unidad de procesamiento se programa además para comparar la magnitud de temblor con un umbral predeterminado.
En algunas realizaciones, la unidad de procesamiento se programa además para generar una alerta cuando la magnitud de temblor supera el umbral predeterminado.
En algunas realizaciones, el umbral predeterminado es ajustable por el paciente.
En algunas realizaciones, la unidad de procesamiento se programa para provocar que el paciente introduzca datos de actividad, incluyendo los datos de actividad una descripción de la actividad y un tiempo en que ocurrió la actividad.
En algunas realizaciones, la unidad de procesamiento se programa para correlacionar los datos de actividad con la frecuencia y magnitud de temblor determinadas.
En algunas realizaciones, los datos de actividad comprenden el consumo de cafeína o alcohol.
En algunas realizaciones, los datos de actividad comprenden el consumo de un fármaco.
Las realizaciones descritas en el presente documento se refieren en general a que se ha inventado un dispositivo y método de estimulación de nervio periférico que reduce eficazmente temblores sin los efectos secundarios de fármacos y sin los riesgos de cirugía cerebral. Este enfoque es seguro, y en algunas realizaciones no invasivo, y eficaz al reducir temblores. En algunas realizaciones, el dispositivo puede funcionar alterando las dinámicas de circuitos neuronales asociadas con el temblor esencial, el temblor de Parkinson y otros temblores. El dispositivo es simple de usar, cómodo y ajustable para lograr la mejor terapia para cada paciente.
Breve descripción de los dibujos
Las características novedosas de la invención se exponen en las reivindicaciones de después. Se obtendrá un mejor entendimiento de las características y ventajas de la presente invención haciendo referencia a la siguiente descripción detallada y los dibujos de los que:
la figura 1 ilustra una realización de suministrar estimulación al nervio mediano encontrado para reducir el temblor. La figura 2 ilustra el efecto de tratamiento de una realización de estimulación de nervio periférico en un paciente de ET (A) medio, (B) moderado y (C) severo. Esto presenta resultados de un estudio clínico en el que un paciente con temblor esencial redujo la amplitud de temblor por la configuración de estimulación a 150 Hz de frecuencia, 300 us y durante 40 minutos de estimulación a tiempo. La reducción de temblor, mostrada comparando la capacidad del paciente de ET para dibujar una espiral, se observó inmediatamente tras desactivar la estimulación. Las figuras 3A-3C ilustran la flexión-extensión de muñeca calculada desde datos de giroscopio en el sujeto B desde la figura 2. La figura 3A muestra el temblor antes del tratamiento; la figura 3B muestra la reducción del temblor inmediatamente tras el tratamiento; la figura 3C muestra que la reducción de temblor se mantiene veinte minutos tras el tratamiento.
La figura 4 ilustra un ejemplo de tratamiento ineficaz en un paciente de ET moderado.
La figura 5 ilustra diversas posiciones en un paciente donde puede ubicarse el sistema de alteración de temblor. La figura 6 ilustra los nervios principales que inervan la mano y sus ramas distales.
Las figuras 7A-7D son diagramas de bloque que ilustran diversas realizaciones de un sistema de alteración de
temblor.
La figura 8A ilustra una realización de un par de electrodos usados para excitar nervios en diferentes dedos, en los que ambos electrodos se colocan en el dedo. La figura 8B ilustra un medio alternativo de excitar nervios en diferentes dedos, en los que se coloca el segundo electrodo en la muñeca. La figura 8C ilustra una realización de la colocación de electrodos en la muñeca para dirigirse a diferentes nervios subyacentes. La figura 8D ilustra diversos sitios de estimulación.
La figura 9A es un diagrama que muestra una realización de acuerdo con la invención de un esquema de excitación para desfasar las regiones cerebrales que reciben entrada sensorial desde dos dedos. La figura 9B es un diagrama de acuerdo con la invención que muestra una realización de un esquema de excitación para desfasar las regiones cerebrales que reciben entrada sensorial desde cuatro dedos.
Las figuras 10A-10C ilustran una realización donde la posición de la mano puede determinar el coeficiente de utilización de estimulación y temporización óptimos.
La figura 11 ilustra una realización de estimulación variable que cambia la frecuencia con el paso del tiempo. La figura 12 es un dibujo que muestra una realización donde el estimulador es químico y dos químicos neuromoduladores pueden mezclarse para proporcionar estimulación química personalizada.
La figura 13 ilustra diversas formas de controles de usuario.
Las figuras 14A-14L ilustran diversas realizaciones no invasivas o invasivas del sistema de alteración de temblor. La figura 14E es un dibujo que muestra una realización en la que el estimulador es mecánico. La figura 14H ilustra una realización de un dispositivo con un factor de forma de un reloj de pulsera. La figura 14I ilustra la parte trasera del dispositivo mostrado en la figura 14H, que muestra los electrodos que son la interfaz con el usuario. La figura 14J ilustra una realización de una interfaz de electrodo desechable que encaja a presión en el lugar del factor de forma del reloj de pulsera del alojamiento del dispositivo. La figura 14K ilustra una realización de una característica de encaje de auto alineación que permite que la interfaz de electrodo desechable encaje en el alojamiento de dispositivo en un factor de forma de reloj de pulsera.
La figura 15L es un dibujo que muestra la colocación potencial de electrodos a lo largo de la columna en una realización del dispositivo donde el efector es eléctrico.
Las figuras 15A-15C ilustran diversas realizaciones de una agrupación de electrodos.
Las figuras 16A-16D ilustran diversas realizaciones de tatuajes de tinta conductora.
La figura 17 es un diagrama que muestra una realización de la colocación de un acelerómetro en la mano o muñeca para medir la actividad y temblor del paciente.
La figura 18 ilustra un ejemplo de análisis espectral de datos de movimiento giroscópico para un paciente con un temblor centrado a 6,5 Hz.
La figura 19 ilustra la correlación de temblor postural con temblor cinético.
La figura 20 ilustra una realización de un dispositivo de estimulación que puede registrar y transmitir datos, tal como las características de temblor e historial de estimulación, a un dispositivo de portal de datos, tal como un smartphone, que transmite los datos a un servidor basado en la nube.
La figura 21 es un diagrama de flujo que muestra la supervisión, integración, análisis y representación de datos usados para informar a los usuarios o mejorar la estimulación.
La figura 22 es un diagrama de flujo que muestra la lógica de realimentación.
La figura 23 es un dibujo que muestra una realización donde el estimulador es un electrodo implantado al menos parcialmente de forma subdérmica.
Las figuras 24A-24D ilustran diversas realizaciones de dispositivos implantables y dispositivos de superficie de piel que permiten potencia inalámbrica y control.
Las figuras 25A-25F ilustran diversas geometrías de electrodos para estimulación eléctrica implantada.
Las figuras 26A-26B ilustran dos realizaciones preferentes del módulo de control que se usa para interactuar con el dispositivo. Un sistema de control para el dispositivo de temblor utiliza realimentación para modificar la estimulación. Un bucle cerrado en el que se ajusta la estimulación se basa en la medición de la actividad y temblor.
Descripción detallada
DEFINICIÓN DE TÉRMINOS
Como se usan en el presente documento, los términos "estimulación" y "estimulador" se refieren en general al suministro de una señal, estímulo o impulso al tejido neuronal de la región objetivo. El efecto de tal estimulación en la actividad neuronal se denomina "modulación"; sin embargo, por simplicidad, los términos "estimulación" y "modulación", y variantes de los mismos, se usan a veces de forma intercambiable en el presente. El efecto del suministro de la señal al tejido neuronal puede ser excitatorio o inhibitorio y puede potenciar cambios agudos y/o a largo plazo en la actividad neuronal. Por ejemplo, el efecto de "estimulación" o "modulación" de un tejido neuronal puede comprender uno o más de los siguientes efectos: (a) despolarizar las neuronas de manera que las neuronas activan potenciales de acción, (b) hiperpolarizar las neuronas para inhibir potenciales de acción, (c) agotar almacenes de iones de neuronas para inhibir la activación de potenciales de acción (d) alterar con entrada propioceptiva, (e) influenciar contracciones musculares, (f) afectar a cambios en liberación o admisión de neurotransmisores, o (g) inhibir la activación. "Propiocepción" se refiere a la sensación de uno de la posición relativa de las partes corporales de su propio cuerpo o el esfuerzo empleado para mover sus propias partes corporales. Propiocepción puede denominarse de lo contrario como una sensación somatosensorial, cinestésica o háptica. Un "propioceptor" es un receptor que proporciona información propioceptiva al sistema nervioso e incluye receptores de estiramiento en músculos,
articulaciones, ligamentos y tendones, así como receptores para presión, temperatura, luz y sonido. Un "efector" es el mecanismo por el que el dispositivo modula el nervio objetivo. Por ejemplo, El "efector" puede ser estimulación eléctrica del nervio o estimulación mecánica de propioceptores.
"Estimulación eléctrica" se refiere a la aplicación de señales eléctricas en el tejido blando y nervios del área objetivo. "Estimulación vibrotáctil" se refiere a excitación de los propioceptores, como por aplicación de una carga biomecánica en el tejido blando y nervios del área objetivo. Aplicar "estimulación térmica" se refiere a enfriamiento o calentamiento inducido del área objetivo. Aplicar "estimulación química" se refiere al suministro de agentes químicos, farmacológicos o farmacéuticos capaces de estimular actividad neuronal en un nervio o en tejido neuronal expuesto a tal agente. Esto incluye agentes anestésicos locales que afectan a la liberación o admisión de neurotransmisores en neuronas, células eléctricamente excitables que procesan y transmiten información mediante señales eléctricas y químicas. La "nube" se refiere a una red de comunicación con ordenadores que usa protocolos en tiempo real tal como Internet para analizar, representar e interactuar con datos por los dispositivos distribuidos.
ESTUDIO CLÍNICO
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Se evaluó el método de usar estimulación de nervio periférico para alterar las dinámicas de circuitos asociadas con ET en un estudio clínico. Se usó un dispositivo 100 que suministra estimulación de nervio eléctrica transcutánea (TENS) usando electrodos de superficie 102 colocados en el lado palmar de la muñeca para estimular el nervio mediano 104 con ondas cuadradas a una frecuencia de 150 Hz con una anchura de pulso de 300 microsegundos durante 40 minutos, como se ilustra en la figura 1. Se usaron alambres 106 en esta realización para conectar el dispositivo 100 al electrodo 102. Fue sorprendente descubrir que el temblor se redujo porque el trabajo anterior informó de que la estimulación de nervio periférico usando TENS no mejoró el temblor (Munhoz 2003, mencionado antes).
Esta estimulación eléctrica redujo eficazmente el temblor en sujetos con temblores que varían en severidad desde media a severa. Los temblores cinéticos se evaluaron usando una medida ampliamente usada de temblor cinético: la tarea de dibujo de Espiral de Arquímedes del ensayo de Fahn Tolosa Marin. Los temblores posturales se evaluaron midiendo la velocidad angular de giroscopios puestos en el dorso de la mano.
Tres pacientes, representados como sujeto A, B y C en la figura 2, muestran espirales dibujadas por sujetos con ET medio, moderado y severo antes y tras la estimulación. Las reducciones de temblor postural fueron del 70 %, 78 % y 92 %, respectivamente, en los sujetos con temblor medio, moderado y severo. El temblor postural pudo además reducirse con estimulación eléctrica, y este efecto se mantuvo hasta 45 minutos tras el fin del tratamiento. Las figuras 3A-3C muestran el efecto en la flexión-extensión de muñeca como se determinó desde datos de giroscopio en el sujeto B desde la figura 2 como un ejemplo representativo. Quince minutos de tratamiento redujeron la amplitud del temblor desde 0,9 grados (figura 3A) a 0,2 grados (figura 3B). Esta reducción en la amplitud del temblor se mantuvo durante 40 minutos de tratamiento. Una medición tomada 20 minutos tras el tratamiento mostró que la amplitud del temblor continuó reduciéndose y se mantuvo en 0,2 grados (figura 3C). La reducción de temblor fue variable entre sujetos. Algunos sujetos no respondieron a la terapia, como se muestra en la figura 4.
Unos resultados terapéuticos excelentes se lograron reduciendo el temblor en sujetos con ET mediante la aplicación de estimulación eléctrica. La estimulación fue capaz de reducir el temblor durante el tratamiento, inmediatamente tras el tratamiento y hasta veinte minutos tras el tratamiento. Para permitir el uso crónico y permitir que los pacientes con ET integren el tratamiento en sus vidas, es importante hacer que el sistema sea conveniente de usar y eficaz sobre una larga duración. Las siguientes innovaciones y dispositivos logran este objetivo.
UBICACIÓN DEL DISPOSITIVO
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El dispositivo estimula los nervios sensoriales para modificar las dinámicas de red anormales. A lo largo del tiempo, esta estimulación normaliza la activación neuronal en la red anormal y reduce el temblor. Preferentemente, el nervio estimulado es un nervio que lleva información propioceptiva sensorial desde la extremidad afectada por el temblor. El nervio puede modularse directamente, tal como por estimulación eléctrica en cualquier lugar a lo largo o adyacente a un nervio que lleva información propioceptiva. Como alternativa, el nervio objetivo puede modularse indirectamente, tal como por excitación de los propioceptores que estimulan el nervio objetivo. La figura 5 muestra puntos de acceso a nervios que llevan información propioceptiva desde una extremidad o cuerdas vocales o laringe. Estos puntos de acceso pueden incluir, pero sin limitarse a, los dedos (510), la mano (520), la muñeca (530), el brazo inferior (540), el codo (550), el brazo superior (560), el hombro (570), la columna (580) o el cuello (590), pie, tobillo, pierna inferior, rodilla, o pierna superior. Los nervios que afectan a la propiocepción pueden incluir, por ejemplo, el mediano, ulnar, radial u otros nervios en la mano, brazo y área de columna, o a lo largo de músculos o dentro de articulaciones. Estas regiones dirigidas a los nervios pueden incluir el plexo braquial, nervios medianos, nervios radiales y nervios ulnares,
dérmicos o de espacio articular. Estas regiones pueden además dirigirse a la musculatura incluyendo músculos del hombro, músculos del brazo y músculos del antebrazo, mano o dedos. Los músculos del hombro pueden incluir, como ejemplo no limitativo, el deltoides, redondo mayor y supraespinoso. Los músculos del brazo pueden incluir el coracobraquial y tríceps braquial. Los músculos del antebrazo pueden incluir el extensor radial largo del carpo, abductor largo del pulgar, extensor cubital del carpo y flexor cubital del carpo.
En una ubicación preferente, el dispositivo se conecta con la superficie dérmica de las extremidades superiores temblorosas del usuario y aplica señales neuromodulatorias a los paquetes de nervios seleccionados del grupo que consiste en el plexo braquial, nervios medianos, nervios radiales y nervios ulnares o las estructuras excitables en la musculatura de las extremidades superiores en la piel o dentro de una articulación.
Los propioceptores pueden encontrarse por ejemplo en músculos, tendones, articulaciones, piel y el oído interior. Los criterios que definen los nervios candidatos para modulación directa incluyen la ubicación del temblor a reducir y la proximidad del nervio a la superficie de la piel, alta densidad de fibras propioceptivas y distancia desde receptores de dolor excitables o músculos. El nervio mediano dirigido en la muñeca y el nervio ulnar dirigido en el codo tiene un alto rango por estos criterios. Los criterios que definen la ubicación candidata para modulación propioceptiva indirecta incluyen la densidad y tipo de propioceptores. Los corpúsculos de pacini proporcionan información sobre toques; los husos musculares proporcionan información sobre cambios en longitud muscular activando potenciales de acción en el nervio aferente de huso muscular cuando los canales de iones de compuerta mecánica se abren debido a estiramiento muscular; Los órganos de tendón de golgi proporcionan información sobre tensión muscular. Estas estructuras pueden además estimularse para alterar dinámicas de circuitos y reducir temblores.
El dispositivo se dirige a los nervios específicos que hacen la sinapsis en el circuito cerebral anormal. Esta sinapsis puede ser directa o mediante múltiples sinapsis de relé. La figura 6 muestra un conjunto de nervios representativos que transmiten información propioceptiva en la red de olivo-cerebelo, una red que es anormal en ET. Estos nervios incluyen las (610) ramas distales y ramas principales del (620) nervio mediano y (630) nervio ulnar, así como las (640) ramas distales y ramas principales del (650) nervio radial. En las realizaciones preferidas, este dispositivo se dirige a los nervios que introducen información propioceptiva desde la mano, muñeca y antebrazo.
En otra realización, la combinación de cualquier parte aquí descrita puede usarse para afectar a los nervios asociados con temblor de voz, incluyendo, pero sin limitarse a ramas del nervio vago tal como el nervio laringal superior o el nervio laringal recurrente.
COMPONENTES DEL DISPOSITIVO: DIVERSAS REALIZACIONES
Las realizaciones de esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Las figuras 7A-7D son diagramas conceptuales que ilustran algunas realizaciones de un sistema de alteración de temblor 700. El sistema 700 incluye un alojamiento 720, uno o más efectores 730, uno o más controles 740 en comunicación eléctrica con el efector 730 y una o más fuentes de potencia 750. El alojamiento 720 puede, en algunas realizaciones, incluir una interfaz 760. La interfaz facilita el acoplamiento del efector con el paciente. Por ejemplo, la interfaz puede proporcionar una conexión física, eléctrica, química, térmica o magnética entre el dispositivo y el nervio del paciente. El alojamiento 720 puede, además, en algunas realizaciones, incluir un sensor 780 para detectar el temblor, una memoria 770, pantalla 790 y procesador 797. El dispositivo en esta realización puede incluir un procesador 797 acoplado al efector que podría realizar cálculos y control de otros componentes. El dispositivo puede incluir además una biblioteca digital almacenada en el procesador 797 o memoria 770 que podría contener protocolos de modulación precargados. El dispositivo podría incluir un módulo de control 740 que se comunica con el procesador 797 y podría además usarse por el usuario para controlar parámetros de estimulación. Los controles permiten al usuario ajustar la operación del dispositivo. Por ejemplo, los controles pueden configurarse para activar el dispositivo, desactivar el dispositivo, ajustar un parámetro del efector, tal como la intensidad. El dispositivo puede incluir un sensor 780 conectado al procesador 797 que puede detectar información de parámetros predefinidos y transmite dicha información de parámetros al procesador 797. El dispositivo puede incluir una unidad de almacenamiento de datos 770 conectada al sensor 780 y procesador 797; y un suministro de potencia 750 puede conectarse al procesador.
El dispositivo puede además contener una pantalla o indicadores 790 para comunicarse con el usuario e informar sobre el estado del dispositivo. Los indicadores son preferentemente un diodo emisor de luz (LED) o algún indicador visual, pero pueden como alternativa ser un indicador de audio. La información puede incluir la potencia de batería o el estado de estimulación.
El dispositivo puede no tener un Efector 730. Puede ser un dispositivo diagnóstico no terapéutico. En una realización preferida, la Unidad de interfaz 704 se llevaría puesta en la extremidad temblorosa para rastrear el temblor con el paso del tiempo. Proporcionar realimentación al usuario del dispositivo puede hacerlos conscientes de su temblor y permitir la supervisión con el paso del tiempo. Incluso sin estimulación terapéutica esta biorrealimentación puede ayudar a algunos individuos a reducir su temblor. Como alternativa, El dispositivo puede no tener un Sensor 780. Puede ser un dispositivo terapéutico no diagnóstico.
Para hacer que el dispositivo sea pequeño y simple, muchos de estos componentes podrían alojarse en una unidad separada. El procesamiento, control y posiblemente detección pueden realizarse remotamente en una Unidad de decisión 702, haciendo que la Unidad de interfaz 704 que proporciona el contacto terapéutico con el paciente sea compacta, simple y flexible para una variedad de aplicaciones (figuras 7B-7D). Esta Unidad de decisión 702 puede ser un nuevo dispositivo diseñado para esta aplicación, o puede integrarse en una tecnología existente tal como un smartphone. Esto permitiría que el sistema sea un factor de forma portátil y robusto con un coste y tamaño reducidos.
En una realización preferente mostrada en la figura 7B, la Unidad de interfaz 704 es un implante; el Efector 730 proporciona estimulación eléctrica de los nervios; El conjunto de instrucciones y la potencia se transmiten de forma inalámbrica desde un dispositivo externo. Como alternativa, la Unidad de interfaz 704 implantada puede alimentarse con una batería de a bordo. Como alternativa, la Unidad de interfaz 704 implantada puede contener un sensor 780 para detección directa del temblor o actividad neuromuscular detectada por electroneurografía (ENG) o electromiografía (EMG).
En la realización preferente mostrada en la figura 7C, la Unidad de interfaz 704 se lleva puesta en la superficie del cuerpo; el Efector 730 proporciona estimulación eléctrica de los nervios subyacentes o estimulación vibrotáctil de propioceptores cercanos. El sensor 780 podría incluir sensores de movimiento incluyendo acelerómetros, giroscopios y magnetómetros.
En la realización preferente mostrada en la figura 7D, una o más unidades de sensor 780, que detectan movimiento, temperatura, etc., pueden llevarse puestas en diferentes ubicaciones en el cuerpo. El efector 730 y la unidad de decisión 702 son una entidad separada puesta en una ubicación en el cuerpo diferente de los sensores 780. Esto es útil si la estimulación de un nervio ocurre en una ubicación donde el temblor no se mide tan fácil o precisamente. Por ejemplo, un dispositivo de estimulación 700 colocado en la parte baja de la muñeca para reducir el temblor de mano es altamente eficaz. Sin embargo, medir el temblor de la mano desde la muñeca usando acelerómetros o giroscopios podría ser más difícil; Una unidad de sensor colocada por separado en la palma o el dorso de la mano en un guante o puesta como un anillo en uno de los dedos mostraría mejor sensibilidad hacia el temblor de mano ya que se ubica más allá de la articulación de muñeca.
EFECTORES: GENERAL
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El efector puede funcionar para modular el tejido neuronal en la región de extremidad superior a la que se dirige la estimulación. Por ejemplo, el efector puede modificar señales neuronales en los nervios y/o modificar el flujo o contenido de información propioceptiva. Los efectores pueden suministrarse de forma transcutánea o subcutánea. Uno o más efectores pueden usarse para influenciar los nervios. En algunas realizaciones, el efector puede ser excitatorio para el nervio. En otras realizaciones, el efector puede ser inhibitorio para el nervio. En algunas realizaciones, el sistema puede usarse para excitar el nervio durante algunas porciones del tratamiento e inhibir el nervio durante otras porciones del tratamiento.
EFECTOR: ESTIMULACIÓN ELÉCTRICA
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
En algunas realizaciones, el efector puede ser un estimulador eléctrico. Los efectores eléctricos pueden incluir un electrodo, un par de electrodos, una agrupación de electrodos o cualquier dispositivo capaz de suministrar una estimulación eléctrica a una ubicación deseada. La estimulación eléctrica puede ser transcutánea o subcutánea. Por ejemplo, la estimulación eléctrica transcutánea puede lograr con electrodos colocados en la superficie de la piel mientras la estimulación eléctrica subcutánea puede lograrse con un electrodo implantado colocado cerca de un nervio.
Los parámetros de estimulación pueden ajustarse automáticamente, o controlarse por el usuario. Los parámetros de estimulación pueden incluir activación/desactivación, duración de tiempo, intensidad, velocidad de pulsos, anchura de pulsos, forma de ondas y la rampa de pulsos en activación y desactivación. En una realización preferente la velocidad de pulsos puede ser aproximadamente 50 a 5000 Hz, y una frecuencia preferente de aproximadamente 50 Hz a 300 Hz o 150 Hz. Una anchura de pulsos preferente puede variar desde 50 a 500 ps (microsegundos), y una anchura de pulsos preferente puede ser aproximadamente 300 ps. La intensidad de la estimulación eléctrica puede variar desde 0 mA a 500 mA, y una corriente preferente puede ser aproximadamente 1 a 6 mA. Estos ajustes preferentes se derivan del estudio clínico antes descrito que proporcionó una reducción valiosa en temblor sostenida durante un periodo de tiempo. Se aprecia que la estimulación eléctrica puede ajustarse en diferentes pacientes y con diferentes métodos de estimulación eléctrica; por lo tanto, estos ajustes preferentes son ejemplos no limitantes. El incremento de ajuste intensidad puede ser de 0,1 mA a 1,0 mA. En una realización preferente la estimulación puede durar aproximadamente
de 10 minutos a 1 hora.
En una realización preferente, los electrodos pueden estar en contacto con el usuario en la superficie de la piel sobre uno o más nervios que pueden incluir el nervio mediano, radial y ulnar. El electrodo puede estar en la configuración donde existe un par de electrodos, en el que un electrodo es proximal (más cerca del codo) y otro es distal (más cerca de la mano). Los electrodos pueden estar en comunicación con el electrodo opuesto. El par de electrodos puede tener una polaridad de carga positiva o negativa en que pasa la corriente eléctrica.
El efector puede incluir dos electrodos, cada uno con polaridad positiva o negativa, o una agrupación de electrodos puede incluir múltiples pares de electrodos, donde cada par se programa independientemente o se programa dependientemente en relación con los otros pares de electrodos. Como ejemplo, el programa puede permitir estimulación cíclica de diferentes nervios en diferentes momentos, tal como el ulnar, luego mediano, y luego radial o cualquier combinación de los mismos.
La estimulación eléctrica puede diseñarse para suprimir temblores interfiriendo con entradas propioceptivas, induciendo contracciones musculares compensatorias, o por combinación de ambos métodos. Los electrodos pueden sustituirse por cualquier material equivalente capaz de conducir señales eléctricas mediante la interfaz de estimulador con la superficie dérmica de la extremidad superior. Los electrodos pueden unirse a una unidad de control 740 que podría aplicar estimulación eléctrica mediante los electrodos al tejido blando y nervios en la región donde se colocan los electrodos y la región inmediatamente circundante. En otra variante de la realización, pueden colocarse varios electrodos en una combinación de regiones objetivo.
Un generador de función conectado a y controlado por el procesador puede funcionar para modular parámetros de estimulación eléctrica. El generador de función es preferentemente un generador de forma de onda arbitraria que usa técnicas de síntesis digital directa para generar cualquier forma de onda que puede describirse por una tabla de amplitudes. Los parámetros se seleccionan de un grupo que incluye, pero no se limita a frecuencia, intensidad, anchura de pulsos o duración de pulsos, y duración general. Las salidas tienen preferentemente un límite de potencia establecido por la tensión de salida máxima. En una realización preferida, los protocolos almacenados digitalmente hacen ciclos por los diversos parámetros de estimulación para evitar la aclimatación de pacientes. La variación de estimulación eléctrica se logra por el generador de función.
OPTIMIZACIÓN DE ESTIMULACIÓN: DESFASE
A menos que se indique explícitamente como “de acuerdo con la invención”, las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
En una realización preferida, la estimulación se diseña para desfasar sincronicidad en el cerebro. El concepto de desfasar el circuito anormal sigue el trabajo reciente que muestra que el reentrenamiento neuronal reduce la propensión de la red a caer en un ritmo anormal. De forma interesante, los desórdenes de movimiento se asocian a menudo con la activación síncrona periódica anormal en circuitos cerebrales. En la enfermedad de Parkinson, este circuito está en los ganglios basales. En ET, es el circuito olivo-cerebelar. Se piensa que estas oscilaciones anómalas accionan el temblor, como se soporta por numerosos estudios que muestran que el temblor observado en la mano y los músculos del antebrazo se sincroniza con descargas rítmicas patológicas en el cerebro. Los estudios recientes de DBS han mostrado que las explosiones de baja tensión y desplazamiento de fase en pares adyacentes de electrodos (llamadas Reinicio Coordinado) pueden reducir la sincronización en redes cerebrales anormales y que este reduce los temblores de Parkinson. La aplicación de la teoría de Reinicio Coordinado para tratar tinnitus soporta el concepto de usar excitación sináptica para reentrenar redes neuronales.
El dispositivo aquí divulgado ofrece varias ventajas sobre la estimulación TENS de alta frecuencia, Incluyendo usar potencia inferior (conduciendo a una vida de batería extendida, menos incomodidad desde reclutamiento y contracción motora, menos incomodidad desde excitación sensorial), menos supresión de activación en actividad en nervios adyacentes (por agotamiento u otros mecanismos), y mantener efectos de mayor duración de manera que el dispositivo solo necesita usarse de forma intermitente para entrenar o mantener el entrenamiento de las dinámicas de circuitos neuronales. El dispositivo estimula conjuntos de nervios de manera que se dirige a subpoblaciones neuronales para reducir sincronización de la población. Por ejemplo, esto puede lograrse estimulando diferentes dedos en la mano. La figura 8A es un diagrama que muestra una realización preferente del dispositivo, en la que unos pares de electrodos de (810) ánodo y (820) cátodo en los dedos se usan para excitar las ramas de los nervios propioceptivos (los nervios medianos, radiales y ulnares) en cada dedo. Esta disposición de ánodo (distal) y cátodo (proximal) se diseña para inducir un pulso de nervio que viaja hacia el cerebro. El único patrón de estimulación en cada dedo enviará una única señal a una subpoblación específica de neuronas en el cerebro debido a la organización somatotópica del cerebro, en el que las señales desde partes corporales cercanas o adyacentes diferentes hacen sinapsis en ubicaciones cercanas en el cerebro. En una realización alternativa, la posición del ánodo y cátodo puede invertirse para inhibir el paso de impulsos sensoriales hacia el cerebro (colisión antidrómica). La figura 8B muestra una disposición alternativa, en la que solo un (830) único electrodo en el dedo y el (840) segundo electrodo se coloca en la muñeca. Se apreciará por un experto en la materia que los dedos representan solo un conjunto posible de objetivos y diferentes ubicaciones pueden usarse similarmente como subpoblaciones adyacentes objetivo de neuronas. En la
realización alternativa mostrada en la figura 8C, los electrodos se colocan en diferentes ubicaciones en la muñeca para dirigirse a los nervios (850) medianos, (860) ulnares y (870) radiales. Se apreciará por un experto en la materia que la entrada puede además colocarse en otras ubicaciones o ramas de los nervios que entran en el circuito cerebral anormal. La ubicación puede estar en el mismo lado u opuesto de la extremidad con temblores. La ubicación puede estar en la superficie de la piel, cruzando la piel, o implantarse. La figura 8D ilustra diversos sitios de estimulación que pueden someterse a estimulación que se retrasa o desplaza por una fracción predeterminada o múltiplos del periodo de temblor, T, como se muestra, por ejemplo, en la figura 9.
El dispositivo usa esquemas de estimulación diseñados para desfasar, anular u oscurecer la red anormal. La figura 9 divulga realizaciones de acuerdo con la invención. La figura 9A es un diagrama conceptual que muestra un esquema de excitación de muestra para desfasar las regiones cerebrales que reciben entrada sensorial desde dos sitios. Por ejemplo, los dos sitios podrían ser dos de los dedos mostrados en las figuras 8A-8D. La estimulación en el sitio 2 se retrasa tras el sitio 1 por el tiempo T/2, donde T es el periodo del temblor nativo. Por ejemplo, si el temblor está a 8 Hz el periodo es 125 ms y la estimulación del sitio 2 se retrasaría por 62,5 ms. La estimulación se diseña para reiniciar la fase de la neurona, que puede implementarse usando estimulación de alta frecuencia (sobre 100 Hz) o un pulso de CC. La figura 9B es un diagrama conceptual que muestra un esquema de excitación de muestra para desfasar las regiones cerebrales que reciben entrada sensorial desde cuatro sitios, con sitios posteriores retrasados por T/4. En otra realización, la estimulación en diferentes ubicaciones es variable en parámetros distintos de temporización como frecuencia o anchura de pulsos, o una combinación de estos. Estas variaciones se diseñan de modo similar para reentrenar el cerebro por desfase, anulación u oscurecimiento de las dinámicas de red anormales. En aún otra realización, la estimulación puede ocurrir en una única ubicación, pero varía en parámetros con el tiempo. Por ejemplo, puede variar en frecuencia cada pocos segundos o activarse y desactivarse. En aún otra realización, la estimulación es constante y en una única ubicación. En realizaciones preferentes de estos, la ubicación está en el nervio mediano cerca de la muñeca.
OPTIMIZACIÓN DE ESTIMULACIÓN: SUBSENSORIAL
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
La estimulación en intensidades bajo el umbral sensorial evitará la incomodidad (hormigueo, entumecimiento, dolor) que puede asociarse con estimulación de nervio periférico. Ya que la posición, tamaño y contacto superficial exactos del electrodo tienen un gran efecto en el nivel de estimulación y las estructuras anatómicas que reciben la estimulación, el umbral sensorial puede necesitar calibrarse para cada paciente e incluso para cada sesión. Esta calibración puede hacerse por el usuario con el ajuste manual de los parámetros de estimulación o indicando de otro modo su umbral sensorial. Otro mecanismo posible es que el dispositivo barra automáticamente por un intervalo de parámetros de estimulación y el paciente elige el conjunto más cómodo de valores de parámetros. Otro mecanismo posible es que el paciente elija de entre un conjunto de valores de parámetros elegidos anteriormente que proporcionaron una estimulación eficaz y cómoda. En algunas realizaciones, la almohadilla de electrodos puede incluir un analgésico tópico, tal como Lidocaína, para reducir la incomodidad desde la estimulación, aumentando así el umbral sensorial tolerado por el paciente. En algunas realizaciones, el analgésico tópico puede suministrarse usando una formación de liberación controlada para proporcionar alivio de dolor para la duración en que se lleva puesta la almohadilla de electrodos, que puede ser días, semanas o meses. Tal método puede proporcionar más comodidad o mayor efecto terapéutico, debido a mayor intensidad de estimulación y/o efectos sinérgicos con el analgésico tópico, lo que puede reducir el temblor en algunos pacientes.
OPTIMIZACIÓN DE ESTIMULACIÓN: ALTA FRECUENCIA
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Alternativa o adicionalmente, la forma de onda de estimulación puede ser de frecuencia muy alta, normalmente en los kHz y por encima, tal que la estimulación no se siente por el usuario, o se siente muy poco. Se piensa que la estimulación de frecuencia muy alta hace un bloqueo de conducción. Sin embargo, antes del bloqueo existe una respuesta de inicio que incluye una fuerte despolarización del nervio. Para implementar eficazmente la estimulación de frecuencia muy alta sin provocar incomodidad al paciente, sería preferente eliminar esta respuesta de inicio. Esto puede hacerse enfriando el nervio durante la estimulación inicial. Los nervios motores se excitan en general por estimulación a aproximadamente 15 Hz y por debajo, mientras los nervios sensoriales se excitan en general por estimulación a aproximadamente 50 Hz y por encima. En algunas realizaciones, puede ser deseable estimular específicamente por encima del umbral de 15 Hz de estimulación de neuronas motoras para evitar provocar contracción muscular.
OPTIMIZACIÓN DE ESTIMULACIÓN: ACTIVADO
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Alternativa o adicionalmente, la activación de la estimulación en la fase del temblor puede mejorar la eficacia. El objetivo de tal estimulación es romper el arrastre rítmico de las unidades motoras. Un tratamiento más eficaz puede permitir la estimulación a niveles menores para lograr unos beneficios terapéuticos similares con menos incomodidad. El temblor esencial es esencialmente un problema de realimentación en un circuito resonante. La estimulación temporizada fuera de fase desde el temblor puede reducir el temblor alterando las dinámicas de circuitos, por ejemplo desplazando las ganancias en el bucle de realimentación.
Como se muestra en la figura 10B, las explosiones de estimulación de alta frecuencia pueden temporizarse para ocurrir cuando la muñeca está en su máxima flexión o extensión (figura 10A). En el ejemplo (figura 10C), las explosiones se han desplazado a una fase aleatoria. La posición de la mano (figura 10A) puede determinar el coeficiente de utilización y temporización de estimulación óptima, tal como (figura 10B) estimulando fuera de resonancia con la desviación de temblor máxima o (figura 10C) usando explosiones de retrasos temporales variables para evitar resonancia con el temblor.
Alternativa o adicionalmente, la estimulación puede ser caótica o variable. El objetivo de la estimulación caótica, aleatoria o variable es evitar la aclimatación y reducir la resonancia en el circuito. Por ejemplo, esto puede implementarse variando la frecuencia de estimulación con el tiempo y/o superponiendo componentes de frecuencia mayor y menor, como se ilustra en la figura 11.
Alternativa o adicionalmente, la estimulación puede ser corriente alterna de alta frecuencia. Esto ha demostrado bloquear potenciales de acción cuando se transmiten a lo largo de axones y podría ajustar dinámicas de circuitos.
En algunas realizaciones, los parámetros de estimulación como se ha descrito antes pueden hacer ciclos según un orden predeterminado para determinar el parámetro de estimulación óptimo. En algunas realizaciones, la eficacia de los parámetros de estimulación puede supervisarse con el tiempo para determinar si un conjunto particular de parámetros de estimulación está perdiendo eficacia. En algunas realizaciones, cuando la eficacia de un conjunto particular de parámetros de estimulación se ha reducido por una cantidad predeterminada, los parámetros de estimulación pueden alterarse o hacer ciclos según un orden predeterminado. Por ejemplo, si la estimulación se activa en la fase del temblor, la estimulación puede suministrarse con retrasos temporales aleatorios o variables, o si la estimulación usaba una amplitud y/o frecuencia establecidas, la estimulación puede cambiar a una modalidad caótica, aleatoria o variable para evitar o perturbar la aclimatación. En algunas realizaciones, los parámetros de estimulación de tipo aleatorio o variable pueden utilizarse según una rutina predeterminada, tal como diariamente durante un número predeterminado de horas, o semanalmente durante un número predeterminado de días, o en algún otro intervalo predeterminado incluyendo el momento del día.
EFECTOR: ESTIMULACIÓN VIBROTÁCTIL
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El efector puede ser la excitación mecánica de los propioceptores por medios que incluyen sensación vibrotáctil o háptica. La estimulación mecánica puede incluir fuerza, vibración y/o movimiento. El efector induce potenciales de acción en los nervios objetivo excitando los órganos de tendón de Golgi (GTO) o corpúsculos de Pacini. Los efectores mecánicos pueden incluir, por ejemplo, motores pequeños; piezoeléctricos; una o más unidades vibrotáctiles compuestas de una masa y un efector para mover la masa tal que un estímulo de vibración se aplica el cuerpo; una masa excéntrica montada en un árbol tal que se produce un estímulo de vibración cuando rota el árbol; o un motor ultrasónico, pero puede como alternativa ser un efector de fluido magnetorreológico (MRF) o un efector de polímero electroactivo (EAP).
El estímulo de vibración es óptimamente 250 Hz, correspondiente a la sensibilidad óptima de los corpúsculos de Pacini (también conocido como corpúsculos lamelares). Los corpúsculos de Pacini son las terminaciones nerviosas en la piel que detectan el toque y vibración. La deformación del corpúsculo abre canales de iones de sodio sensibles a la presión para provocar potenciales de acción. Como alternativa, la vibración puede estar por debajo de 50 Hz para excitar los corpúsculos de Meissner (también llamados corpúsculos táctiles) en los dedos que son sensibles a un toque ligero.
Este estimulador de tipo mecánico puede funcionar para reducir el temblor mediante varios métodos. Un método puede ser transmitir señales propioceptivas al cerebro que oscurecen o modifican la señal propioceptiva de accionamiento transmitida desde los músculos temblorosos. Otro método puede ser control de impedancia. La impedancia de articulación puede alterar la contracción conjunta de músculos mediante neuroestimulación transcutánea, afectando a la rigidez muscular y por consiguiente a contracciones musculares. Otro método puede ser la generación de contracciones musculares compensatorias, mediante neuroestimulación, que se oponen a las contracciones temblorosas. El estimulador se fija preferentemente de forma firme contra la superficie dérmica, por ejemplo, mediante una banda elástica o de Velcro.
EFECTORES: QUÍMICOS, TÉRMICOS & OTROS
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Los ejemplos en este documento han descrito principalmente la estimulación como eléctrica o vibrotáctil. Sin embargo, la estimulación puede como alternativa lograrse usando otros efectores que pueden ofrecer beneficios significativos en términos de comodidad del paciente, portabilidad, seguridad o costes.
En otra variante de la realización, el efector puede ser un químico de neuromodulación que bien eleva o disminuye los umbrales de activación de neuronas. El químico puede ser un anestésico tópico que incluye, pero no se limita a la familia de la "caína". La familia "caína" de anestésicos puede incluir, pero no se limita a benzocaína, bupivacaína, butacaína, carbisocaína, cloroprocaína, ciprocaína, dibucaína, etidocaína, heptacaína, levobupivacaína, lidocaína, hidrocloruro de lidocaína, mepivacaína, mesocaína, prilocaína, procaína, propanocaína, ropivacaína, y tetracaína. Otras familias químicas pueden incluir aquellas de la familia del mentol, o alfa hidroxi sanshool de pimienta de Szechuan o capsaicina, todos ellos conocidos por influenciar nervios sensoriales periféricos.
La figura 12 muestra un estimulador químico que puede suministrar estímulos químicos de forma transdérmica por un parche o podría suministrarse por microinyección. Los protocolos precargados pueden ser preferentemente composiciones predeterminadas de los uno o más químicos. Los anestésicos tópicos pueden ser conocidos por otras indicaciones y las dosis recomendadas para simulación se han ensayado y aprobado para tratamiento de otras indicaciones. Por ejemplo, la lidocaína anestésica tópica puede administrarse a 2-10 % en peso. Como alternativa, la lidocaína puede administrarse junto con otros anestésicos. Tal como se ve en la figura 12, los dos químicos de neuromodulación se mezclan para proporcionar una composición personalizada. El estimulador químico puede administrarse como una composición que comprende lidocaína en 2,5 % y prilocaína en 2,5 % en peso. Como alternativa, el estimulador químico podría administrarse como una composición que comprende lidocaína en 0,1-5 % y prilocaína en 0,1-5 % en peso.
El estimulador químico puede ser alfa hidroxi sanshool de pimienta de Szechuan. El alfa hidroxi sanshool puede contenerse en un excipiente o portador. El excipiente puede incluir geles, cremas, aceites u otro líquido. Si el método de suministro es un parche transdérmico, la formulación del agente químico puede ser preferentemente una crema o gel. La composición puede seleccionarse por el usuario mediante el módulo de control 740 (de la figura 7). Si el método de suministro es microinyección, la formulación puede ser preferentemente una solución.
En algunas realizaciones, el efector puede ser un efector de temperatura 732 (de la figura 7) que induce enfriamiento o calentamiento. El efector puede modular activación neuronal enfriando directamente el nervio o indirectamente enfriando el músculo adyacente, piel u otro componente del brazo. Un efector de temperatura puede incluir, por ejemplo, piezoeléctricos (por ejemplo, baldosas de enfriamiento de Peltier), fluido circulante, gas expansible comprimido, material sólido enfriado o calentado o material evaporativo. Un ejemplo de un efector de enfriamiento puede ser como se divulga en la patente de Estados Unidos con No. de publicación 2010/0107657. El calentamiento o enfriamiento puede aplicarse como un parche que se adhiere a la superficie dérmica, por unión para fijar el estimulador a la superficie dérmica, tal como un brazalete o por un implante.
En una realización con un estimulador térmico, los protocolos precargados pueden preferentemente ser temperaturas predeterminadas de estimulación y duraciones de estimulación asociadas. Preferentemente, un protocolo precargado puede requerir un enfriamiento térmico para una duración de 15 minutos y temperaturas de enfriamiento en el intervalo de 15-25 ° C. La duración de estimulación puede preprogramarse a (pero no se limita a) aproximadamente 5 minutos a 30 minutos. La longitud máxima de estimulación debería tolerarse bien por el usuario y no provocar ningún daño muscular o neurológico. Los sensores de temperatura pueden funcionar para detectar la temperatura de enfriamiento eficaz en una realización donde el estimulador es un estimulador térmico. La temperatura efectiva de enfriamiento o calentamiento puede ser la temperatura sentida por el usuario, y esta no es necesariamente igual que la temperatura aplicada. Si los sensores de temperatura determinan que la temperatura efectiva alcanza un umbral, que puede variar desde 5 grados C más o menos que la temperatura aplicada para un protocolo particular, el procesador 797 (de la figura 7) puede modificar dicho protocolo para enfriar o calentar más de lo programado originalmente para compensar la discrepancia entre el enfriamiento efectivo y pretendido.
Como alternativa, otros efectores pueden aplicarse incluyendo mecanismos acústicos (usando excitación ultrasónica para excitar nervios sensoriales en las puntas de los dedos), de vibración, táctiles, luminiscentes (por ejemplo, exposición a la luz en nervios modificados de manera optogenética), de modo magnético (por ejemplo, por conmutación rápida de campos de RF) o una combinación de mecanismos.
FACTORES DE FORMA: ESTIMULADOR PONIBLE GENERAL
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
En cuanto a las figuras 14A-E, el sistema 700 de la figura 7 puede ser no invasivo, totalmente implantable, o
parcialmente implantable. Por ejemplo, una realización no invasiva puede incluir un alojamiento no invasivo tal como un manguito 1400 o un parche 1410 o un guante. En tales realizaciones no invasivas, la interfaz del alojamiento está en comunicación con una parte externa del paciente. En algunas realizaciones, uno o más de los componentes del sistema pueden implantarse 1420. Por ejemplo, un efector y/o al menos una porción de la interfaz de alojamiento puede implantarse en el paciente en un punto de contacto mientras la fuente de potencia es externa al paciente.
Un alojamiento de sistema no invasivo puede facilitar el mantenimiento de la interfaz y/o efector en proximidad cercana al paciente. El manguito puede cubrir un tramo largo del brazo o ser una banda estrecha. El manguito puede cubrir al menos una porción de la circunferencia de cualquier parte de una extremidad o el manguito puede cubrir toda la circunferencia de cualquier parte de la extremidad. La función del manguito puede ser mantener la posición del dispositivo externo relativo al implante. El fin de mantener la posición puede incluir lograr una buena transferencia de potencia, comunicación fiable u otro fin.
El alojamiento puede hacerse de cualquier material adecuado para lograr las propiedades deseadas. Por ejemplo, el material de alojamiento puede ser material flexible y/o estirable, polímero o tejido. El alojamiento puede incluir sujeciones tal como Velcro, cordones, botones y/o ataduras para sujetar el dispositivo al paciente. El alojamiento puede incluir múltiples capas y/o bolsillos configurados para contener diversos componentes del sistema como se divulga aquí.
El sistema puede colocarse por el paciente con o sin la ayuda de un cuidador. En algunas realizaciones, el sistema puede tener mecanismos de ayuda para colocarlo en el brazo, tal como encajes de respuesta a la presión y/o imanes de autoalineación. En algunas realizaciones, tal como el manguito 1400, el sistema puede deslizarse (similar a un manguito deportivo) sobre el extremo de una extremidad o enrollarse alrededor del brazo o autoenrollarse alrededor del brazo (similar a una banda de encaje a presión).En algunas realizaciones, el alojamiento puede estar en la forma de un parche 1410. Por ejemplo, un parche de alojamiento 1410 puede sujetarse a la piel del paciente usando un adhesivo removible o degradable. El parche puede llevarse puesto durante una variedad de veces, incluyendo, pero sin limitarse a parches llevados solo durante el periodo de estimulación y parches dejados en su lugar durante varios días, semanas o meses. El parche también puede unirse mecánicamente, químicamente o eléctricamente. Tales realizaciones incluyen, pero no se limitan a grapas, cuerdas o imanes que sujetan el parche en un lugar deseado.
En algunas realizaciones, el sistema no invasivo puede incluir una interfaz, que está en comunicación con el paciente, pero donde el alojamiento no se une al paciente. Por ejemplo, el sistema puede ser un dispositivo externo con el que interactúa el paciente. Por ejemplo, el alojamiento puede ser una estructura abierta o cerrada similar a un tubo en la que el paciente puede colocar una extremidad. Como se ilustra en la figura 14D, otro ejemplo incluye un dispositivo externo que se asemeja a una almohadilla 1430 o estructura de soporte, tal como una almohadilla o soporte de muñeca, sobre la que el paciente puede colocar al menos una porción de una extremidad.
En una realización, el alojamiento 1450 puede tener la configuración de un reloj de muñeca como se muestra en la figura 14H-K puesto en la muñeca o brazo del usuario. El alojamiento 1450 puede contener una interfaz 1452 separada, parcialmente separada, o conectada al alojamiento y que puede interactuar con el usuario. La interfaz 1452 puede conectarse al alojamiento 1450 y desecharse tras el uso durante un periodo de tiempo. Los electrodos 1454 de la interfaz puede disponerse en tiras y puede disponerse en pares de ánodo/cátodo. Otras configuraciones de electrodo como se describe aquí también pueden usarse. El periodo de tiempo puede ser tras un único uso, o tras múltiples usos sobre el periodo de minutos, horas, días, semanas o meses. La propia interfaz puede ser la porción completa que es la pulsera o puede ser una porción de la pulsera o unirse a la pulsera. La propia pulsera puede ser parte de la interfaz o ser parte del alojamiento o ambos. En un ejemplo, la pulsera con o sin la interfaz puede cerrarse alrededor de la muñeca, incluyendo una característica de material elástico que está ligeramente curvada por lo que cuando se mueve, la pulsera se enrolla en una forma circular alrededor de la muñeca. En otro ejemplo, existe un material sensible a la temperatura, como nitinol, que tiene memoria de forma, por lo que cuando el dispositivo entre en contacto con la piel, la pulsera con o sin la interfaz puede cambiar de forma para enrollarse alrededor de la muñeca del paciente. En otro ejemplo, la pulsera con o sin la interfaz tiene uno o más alambres metálicos dentro o fuera de la pulsera que retienen una forma nueva cuando se mueve para permitir al usuario colocar el dispositivo en la muñeca y añadir fuerza para moldear la pulsera sobre la anatomía única del usuario. En otro ejemplo, la pulsera con o sin la interfaz puede cerrarse se enrolla parcial o totalmente alrededor de la muñeca. Esta envoltura puede estar en el mismo eje, o puede ser una envoltura de espiral.
La interfaz desechable o no desechable puede conectarse con el alojamiento en un número de diferentes maneras, incluyendo, pero no limitándose a características de encaje a presión, velcro, ajuste a presión, imanes, temperatura, adhesivo, que pueden o no incluir características de autoalineación. La conexión puede estar en una o más múltiples dimensiones o ejes. Como ejemplo, la figura 14J y la figura 14K muestran una realización potencial donde existe una pieza de autoalineación, que puede ser un imán, que conecta la interfaz al cuerpo en 3 dimensiones. La forma circular de la pieza de alineación puede permitir la alineación en una dimensión en un plano. La porción de forma de barra de la pieza de alineación, que puede estar desplazada de la característica circular de la pieza de alineación, puede alinear la interfaz en el eje apropiado. La forma general de la pieza de alineación puede alinear la interfaz en la dimensión final, que en este ejemplo particular de realización es la profundidad. El alojamiento puede tener una característica de coincidencia de esta forma para la que puede conectarse la conexión. Es posible que la característica de conexión
pueda invertirse y la pieza de alineación colocarse en el alojamiento, y la característica de coincidencia de forma colocarse en la interfaz. Estas conexiones de la pieza de alineación pueden posiblemente tener o no imanes en uno, ambos o ninguno de los componentes de alojamiento o interfaz.
Como alternativa, el dispositivo externo puede ser un objeto que no se lleva puesto en el cuerpo. Por ejemplo, puede tener el factor de forma de un teléfono móvil y el paciente llevaría el dispositivo en su bolsillo, bolsa, mano o de otra forma en que los teléfonos móviles se transportan y soportan, tal como en un tablero. Puede diseñarse para asentarse en una superficie de mobiliario en la ubicación donde los pacientes quieren controlar su temblor, tal como en la mesa del comedor, en la cocina o en su vestidor.
Como se muestra en la figura 14L, otra realización preferente puede comprender un dispositivo de estimulación con uno o más electrodos 1460 aplicados a lo largo de la columna. El dispositivo de estimulación puede funcionar para estimular la liberación de neurotransmisores y reducir el temblor mediante neuromodulación de los nervios ubicados a lo largo de la columna. La estimulación puede afectar a la liberación y admisión de neurotransmisores, afectando así a los nervios que inervan las regiones temblorosas. Los electrodos se colocan preferentemente en la superficie dérmica en las raíces de columna cervical, preferentemente desde C1 a C8, pero más preferentemente entre C5 y C8. Los electrodos son preferentemente electrodos de parche. La unidad operativa puede fijarse preferentemente al usuario y los cables que conectan los electrodos a la unidad operativa se magnetizan preferentemente para una fácil conexión. La unidad operativa puede conectarse a y controlarse por el procesador. Ya que los electrodos se colocan preferentemente a lo largo de la columna (lado trasero del usuario), un módulo de control separado y portátil puede ser más conveniente de operar para un usuario.
En una realización los electrodos pueden colocarse a cada lado de la columna alrededor de la región C2 a C8 del cuello y los hombros. Los electrodos pueden colocarse aproximadamente desde 100 cm hasta 1 cm de la columna, y pueden colocarse desde 200 cm hasta 5 cm entre sí. Los parámetros de estimulación pueden incluir una duración de fase de entre 500 y 30 ^segundos, que puede ser preferentemente 300-60 ^segundos (microsegundos). La velocidad de pulsos puede variar desde 10 Hz a 5000 Hz, y el intervalo preferente puede ser 50 Hz a 200 Hz, o 150 Hz. El tiempo de ciclo puede ser continuo, o puede variar desde 5 segundos a 1 hora. El tiempo de ciclo preferente puede ser aproximadamente 5 segundos a 20 segundos, o 10 segundos. La duración de estimulación eléctrica puede variar desde 5 minutos a 24 horas al día. El intervalo preferente puede incluir 30 minutos a 60 minutos repetido aproximadamente 10 veces al día, o el intervalo preferente puede ser aproximadamente 40 minutos a 1 hora al día y repetirse una vez a la semana a una vez al día. La amplitud (que puede usarse de forma intercambiable con intensidad) puede variar desde 0,1 mA a 200 mA, y un intervalo preferente puede incluir 1 mA a 10 mA. La longitud de tiempo que el usuario puede usar el dispositivo antes de tener un efecto en el temblor del usuario puede ser un día al mes, o puede variar preferentemente desde 2 días a 4 días.
FACTORES DE FORMA: PARA ESTIMULACIÓN ELÉCTRICA
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Los dispositivos TENS convencionales son a menudo difíciles de colocar, voluminosos e incómodos. Las innovaciones a continuación son soluciones para hacer fácil que se aplique rápidamente, ajustar un simulador para controlar ET y permitir a los pacientes usarlo de forma discreta y cómoda.
Con un dispositivo TENS convencional, es difícil dimensionar y colocar adecuadamente los electrodos de pegatina para dirigirse de forma óptima al nervio deseado. Unos electrodos más pequeños aumentan la densidad de corriente en el nervio objetivo, pero con almohadillas más pequeñas es más probable que pierdan el nervio, y una densidad de mayor corriente desde electrodos menores puede provocar incomodidad. Unas almohadillas mayores son más fáciles de colocar, pero necesitan más potencia y es más probable que estimulen involuntariamente tejidos adyacentes. Las siguientes innovaciones solucionan estos desafíos y logran una estimulación consistente, eficaz, cómoda y segura.
En lugar de usar solo un único electrodo como el cátodo y un único electrodo como el ánodo, el dispositivo puede contener una agrupación de electrodos 1500, como se ilustra en la figura 15A-15C. Aunque los electrodos se muestran individualmente en la piel del paciente por claridad, en la práctica la agrupación de electrodos puede integrarse en un manguito, almohadilla flexible o sustrato, u otro factor de forma como se describe aquí. Una combinación apropiada de electrodos se seleccionaría cada vez que el dispositivo se recoloca o se basa en las necesidades de estimulación detectadas. La estimulación puede usar electrodos únicos como el ánodo y el cátodo, o puede usar una combinación de electrodos para moldear el campo de simulación. La selección de electrodos puede ser automática en función de realimentación desde los sensores en el dispositivo (véase a continuación). Como alternativa, la selección de electrodos puede hacerse manualmente por el usuario. Por ejemplo, el usuario puede hacer ciclos por las combinaciones de electrodo hasta que encuentran la combinación que proporciona una reducción óptima de temblores o logra un sustituto para la colocación correcta tal como un hormigueo en el 1er (índice) y 2do dedo como ocurre con estimulación sensorial del nervio mediano. La figura 15A ilustra una agrupación en dos dimensiones de electrodos discretos 1500. Como alternativa, algunos de los electrodos pueden combinarse en filas lineales, de manera que la agrupación bidimensional se forma de una pluralidad de filas de electrodos. La figura 15B ilustra una agrupación de
electrodos 1500 que puede llevarse puesta como bandas, como se muestra, o parches, almohadillas, manguitos y similares. La figura 15C ilustra un alojamiento 1502 que puede usarse para contener la agrupación de electrodos 1500.
Como alternativa, la estimulación eléctrica desde un electrodo mal colocado puede redirigirse al nervio objetivo modificando la trayectoria de conducción entre el electrodo y el nervio objetivo. Por ejemplo, un reforzador de trayectoria de conducción 1600, que puede fabricarse de un material conductor, puede colocarse en la piel del paciente, incrustarse en la piel, implantarse o una combinación de las anteriores, para mejorar la conducción del estímulo eléctrico desde el electrodo 1602 al nervio objetivo 1604, como se ilustra en las figuras 16A-16D. El reforzador de trayectoria de conducción puede colocarse sobre el nervio y/o por el nervio. Por ejemplo, en una realización, un tatuaje de tinta conductora puede dirigir la estimulación fuera del objetivo hacia el nervio mediano. Un tatuaje más conductor que las estructuras adyacentes (es decir, vasos sanguíneos, nervios) proporcionará la trayectoria de menos resistencia y redirigirá la corriente. Para colocar o ubicar el tatuaje conductor, el nervio objetivo se identifica primero positivamente. Después el tatuaje conductor se coloca sobre el nervio objetivo. Como se ilustra en las figuras 16A-16D, el tatuaje conductor puede incluir una pluralidad de franjas conductoras que cruzan el nervio. En algunas realizaciones, las franjas pueden ser paralelas entre sí y cruzan el nervio en transversal. En otras realizaciones, las franjas pueden formarse en un patrón de estrella o sombreado cruzado con un centro ubicado sobre el nervio. En otras realizaciones, también puede aplicarse una franja sobre y en paralelo al nervio (no mostrado).
Para adopción del usuario, un dispositivo ponible debería ser discreto y cómodo. En la realización preferente mostrada en las figuras 14B y 14F, por ejemplo, el efector es eléctrico y el parche de piel tiene un electrodo único o una pluralidad de componentes electrónicos de electrodos impresos sobre un sustrato flexible en un patrón predeterminado para realizar una "segunda piel", similar a una tirita. Por comodidad y adhesión superficial óptima, las características mecánicas tal como la elasticidad y rigidez deberían coincidir con la piel. La circuitería y cableado para estimulación eléctrica superficial puede imprimirse o grabarse en un material flexible tal que el dispositivo se adapta al cuerpo o al tejido dentro del cuerpo. Por ejemplo, puede imprimirse con cobre en un sustrato flexible tal como plástico.
En otra realización tal como se ilustra en la figura 14G, el dispositivo puede colocarse en la superficie del cuerpo, pero contiene elementos de penetración transcutánea 1470 para mejorar la influencia en los nervios. Estos elementos pueden ser microagujas, usadas para mejorar la estimulación y/o suministro de fármacos. En algunas realizaciones, los elementos de penetración transcutáneos pueden formar una agrupación de microelectrodos que se coloca en la superficie de la piel y penetra por la piel. La agrupación de microelectrodos puede funcionar como microagujas, y puede mejorar la transmisión de señal desde el electrodo al nervio y mejorar la permeabilidad de la piel para mejorar el suministro tópico de fármacos.
SENSORES: TIPOS DE SENSORES
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El dispositivo o sistema pueden incluir sensores. Los sensores para supervisar el temblor pueden incluir una combinación de acelerómetros de eje único o múltiple, giroscopios, inclinómetros (para medir y corregir cambios en el campo de gravedad que resulta de cambios lentos en la orientación del dispositivo), magnetómetros; electrogoniómetros de fibra óptica, rastreo óptico o rastreo electromagnético; electromiografía (EMG) para detectar la activación de músculos temblorosos; señales de electroneurograma (ENG); registros corticales por técnicas como electroencefalografía (EEG) o dirigir registros de nervios en un implante en proximidad cercana al nervio. La figura 17 muestra posiciones representativas de sensores de movimiento en la (1710) mano o (1720) muñeca. Otras ubicaciones de rastreo pueden incluir los dedos u otras partes corporales.
Los datos desde estos sensores de temblor se usan para medir la corriente del paciente y las características de temblor históricas tal como la amplitud, frecuencia y fase. Estos sensores también pueden usarse para determinar actividades, como distinguir movimientos involuntarios (por ejemplo, temblor) de movimientos voluntarios (por ejemplo, beber, escribir) o la presencia y ausencia del temblor relativo al momento del día u otras actividades detectadas como ciclos de sueño/despertarse.
El dispositivo puede también incluir sensores para proporcionar datos de rendimiento y de uso, incluyendo cuando el dispositivo se llevaba puesto (por ejemplo, desde sensores de temperatura), la ubicación del dispositivo (por ejemplo, desde GPS), nivel de la batería o grabaciones de vídeo. En otra realización, el sensor es un sensor de temperatura para medir la temperatura de una extremidad enfriada. En otra realización, el sensor incluye grabaciones de vídeo. En otra realización, se usan sensores desde hardware existente tal como un smartphone. Por ejemplo, el temblor puede medirse usando los acelerómetros en un smartphone o acoplarse al paciente en una tarea de escritura de inducción de temblor analizando una línea trazada en la pantalla de un smartphone.
SENSORES: ALGORITMOS PARA EXTRAER TEMBLORES
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Se usarán algoritmos para extraer información sobre temblores desde la corriente de datos proporcionada por los sensores. El temblor puede identificarse basado en su señal de tiempo-dominio, señal de frecuencia-dominio, amplitud, o patrón de activación (por ejemplo, explosiones, puntas). Por ejemplo, en la figura 18, el análisis de frecuencia de la potencia espectral de los datos de movimiento giroscópico indica que el temblor se centra en aproximadamente 6,5 Hz (véase la potencia máxima en el gráfico inferior).
Los datos de movimiento pueden adoptarse como cada canal de sensor en bruto o por fusión de las señales en bruto de múltiples sensores. Como ejemplo, los datos de acelerómetro de múltiple eje pueden combinarse en un único valor numérico para análisis. El algoritmo extraerá datos de movimiento en el intervalo de 4 a 12 Hz para retirar movimientos que no son atribuibles al temblor. Esto puede hacerse usando cualquier combinación de filtros de muesca, filtro de paso bajo, combinadores lineales de Fourier de frecuencia ponderada, o filtros de ondículas. Ya que cada paciente tiene una frecuencia de temblor dominante, este intervalo puede estrecharse en función del conocimiento específico del temblor o historial de temblor del paciente. Por ejemplo, para un paciente con un temblor de 6 Hz un algoritmo de análisis puede extraer solo datos de movimiento en el intervalo de 5 a 7 Hz. Como alternativa, si se conoce que un paciente tiene un temblor que flexiona y extiende la muñeca por un máximo de 5 grados, entonces un algoritmo de análisis determinaría que un movimiento medido de flexión de muñeca de 45 grados es probable debido a un movimiento total intencional en lugar de temblor. Como alternativa, el algoritmo muestreará los datos de movimiento identificando periodos de tiempo que es probable que se correspondan con agarres posturales o tareas motoras cinéticas finas.
Una vez que se extraen los datos de movimiento apropiados, el algoritmo analizará características clave del temblor incluyendo la amplitud, frecuencia central, extensión de frecuencia, amplitud, fase y potencia espectral.
Unas técnicas de fusión de sensor también pueden usarse para analizar diferentes aspectos del temblor. Por ejemplo, un acelerómetro y giroscopio de múltiple eje unidos al lado trasero de la mano podrían combinarse para reducir el ruido y la deriva y determinar una orientación precisa de la mano en el espacio. Si un segundo par de acelerómetro y giroscopio de múltiple eje también se usaron en la muñeca, podría determinarse el ángulo y posición de la articulación de la muñeca durante el temblor. Esto podría aislar qué excitaciones de qué nervios están provocando amortiguación de los diferentes grupos musculares que controlan el temblor.
Los pacientes de ET tienen dos componentes de su temblor. Los temblores cinéticos están presentes durante el movimiento intencional y tienen un impacto mayor en la calidad de vida porque impactan en la capacidad de una persona para lograr las tareas diarias como beber, comer, escribir y vestirse. Los temblores posturales están presentes durante posiciones estáticas mantenidas contra la gravedad. Estos pueden ser embarazosos, aunque tienen menos impacto en la calidad de vida. Los temblores posturales están presentes normalmente con anterioridad en el curso de la enfermedad y se cree que accionan temblores cinéticos. Ambos componentes están normalmente en el intervalo de 4 a 12 Hz, y los pacientes más mayores experimentan temblores de menor frecuencia.
La detección de temblores posturales y cinéticos es más desafiante que la detección de temblores de reposo. Los temblores de reposo están presentes en otros desórdenes de movimiento incluyendo la enfermedad de Parkinson y pueden identificarse fácilmente analizando temblores presentes solo mientras la extremidad está en reposo. Extraer temblores cinéticos desde datos de movimiento es desafiante porque es necesario separar el movimiento debido al temblor del movimiento debido a la tarea.
Identificar temblores posturales puede ser más fácil que con los temblores cinéticos ya que los datos de acelerómetro/giroscopio durante tareas cinéticas se corrompen por el movimiento implicado en la tarea. Se cree que los temblores posturales pueden accionar los temblores cinéticos porque la gente a menudo tiene temblores posturales antes en su vida que temblores cinéticos y estos tienen casi la misma frecuencia. La correlación de temblores posturales y cinéticos que se descubrió en el estudio clínico, como se ilustra en la FIG. 19, soporta esta teoría de usar datos de temblores posturales para analizar o tratar temblores cinéticos.
SENSORES: ALMACENAMIENTO DE DATOS & USO
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Tal y como se muestra en la figura 20, el dispositivo de estimulación 2000 puede contener hardware, software y firmware para registrar y transmitir datos como las características de temblor, historial de estimulación, rendimiento, uso y/o control del dispositivo a un dispositivo de portal de datos 2002, tal como un smartphone, teléfono móvil, ordenador de tableta, un ordenador portátil, ordenador de sobremesa u otro dispositivo electrónico usando un protocolo de comunicación inalámbrico, tal como Bluetooth.
Los datos registrados usando el dispositivo usado por los pacientes de ET pueden almacenarse en un smartphone que los transmite a una base de datos/servidor basado en la nube 2004, o el dispositivo usado por los pacientes de E t puede transmitir directamente datos a una base de datos/servidor basado en la nube 2004, permitiendo muchas
actividades incluyendo rastrear temblores, optimizar estimulación, compartir con cuidadores y médicos, y construir una comunidad. Los datos pueden proporcionar información al controlador, realimentación en tiempo real al paciente, cuidadores y/o médicos, o se pueden almacenar los datos para proporcionar datos de historial al paciente, cuidadores y médicos. Los datos almacenados en la nube 2004 pueden verse en múltiples plataformas 2006 por múltiples usuarios 2008. Además, los datos en la nube 2004 pueden reunirse y analizarse por un dispositivo de cálculo 2010.
Los pacientes se supervisan en general en busca de temblor cada varios meses, o quizás anualmente, cuando visitan a su médico. Esta supervisión es normalmente altamente subjetiva. Así mismo, la severidad del temblor puede verse afectada dramáticamente por muchos factores, incluyendo patrones de sueño, estado emocional, actividad física previa, ingesta de cafeína, alimentos, medicamentos etc.
Tal supervisión infrecuente e imprecisa limita la capacidad de los pacientes, sus cuidadores y médicos para entender la severidad y progresión del ET de un paciente y los efectos de diversos tratamientos y comportamientos. Estos factores pueden interactuar con los efectos de la estimulación proporcionada por el dispositivo, y puede ser difícil detectar estas interacciones. Estas interacciones podrían identificarse para optimizar la terapia y ayudar a los pacientes a entender mejor cómo afecta su comportamiento a su temblor.
En una realización que se muestra en la Figura 21A, el temblor se 2100 supervisa usando sensores que pueden ser IM-U, electrodos, o cualquiera de los otros sensores anteriormente analizados. La supervisión puede ser continua o durante periodos de tiempo discretos. Los datos desde estos sensores se 2110 analizan para identificar cambios en las características de temblor (amplitud, frecuencia etc.) con el paso del tiempo. Los resultados se registran y 2120 se muestran al usuario. El 2110 análisis y/o 2120 la representación pueden hacerse en el propio dispositivo de estimulación o comunicando los datos en bruto o analizados a un dispositivo secundario como un smartphone u ordenador.
En otra realización, 2101 los datos de comportamiento también pueden recogerse tal que el análisis puede examinar la relación entre el historial de temblor y los comportamientos del usuario. Los datos de comportamiento pueden incluir el consumo de cafeína, alcohol, medicamentos y niveles de ansiedad. El sistema puede alertar entonces al paciente de las interacciones entre los comportamientos y el temblor.
En otra realización en la que el dispositivo es terapéutico (es decir, si tiene un efector), el 2102 historial de estimulación puede recogerse tal que el análisis puede examinar la relación entre el historial de estimulación y las características de temblor.
La realización mostrada en la figura 21B añade una 2140 subida a la nube. El orden de 2140 subida y 2110 análisis pueden intercambiarse de modo que el análisis se realiza a bordo antes de la subida (no mostrado). El uso de la nube permite que los resultados se 2120 muestren al usuario en una variedad de dispositivos de red incluyendo smartphones, tabletas, portátiles y ordenadores de sobremesa; a otros usuarios como 2150 médicos o cuidadores; o para 2160 un análisis conjunto por múltiples pacientes.
La figura 21C muestra algunos de los usos potenciales de los datos reunidos, incluyendo 2170 conectar pacientes a pacientes similares en función de características tal como sus características de temblor, geografía, edad y sexo o 2180 mejorando los algoritmos de estimulación.
La figura 21D muestra cómo la supervisión y análisis de datos mostrado en las figuras 21A-C pueden usarse en un bucle cerrado para ajustar los parámetros de estimulación. De esta manera, los algoritmos detectan interacciones entre las variables para optimizar la terapia.
El dispositivo puede contener control de bucle cerrado de la estimulación para responder de forma adaptativa a temblores detectados o niveles de actividad. El dispositivo permite la detección del temblor mediante un sensor de actividad, registro de datos y ajuste sistemático de los parámetros de estimulación para lograr una reducción de temblor óptima. La figura 26A es un diagrama de control que muestra los componentes básicos de este sistema de detección y respuesta. El (2650) objetivo define el perfil pretendido. Por ejemplo, en el paciente de ET este perfil puede ser ausencia de temblor y en un paciente de PD este perfil puede ser la ausencia de temblor o rigidez. El (2670) error entre el (2650) objetivo y (2660) la detección se suministra al (2680) controlador, que modifica la (2690) salida. El (2680) controlador puede incluir un procesador y memoria. Además del error y medidas, los (2680) algoritmos de controlador también pueden introducir el historial de medidas, estimulación y actividad en sus algoritmos. La salida (2690) modifica la estimulación. Si el efector es eléctrico, esto puede incluir modificar la forma de onda, frecuencia, fase, ubicación y/o amplitud de la estimulación. En la realización preferente (figura 15), el dispositivo contiene una agrupación de pequeños electrodos y la salida modifica la selección de qué electrodos usar como el ánodo y el cátodo. El efecto de las modificaciones se (2660) detecta entonces por el dispositivo de medición y el proceso se repite. La (2660) detección y/o la (2690) modificación de salida pueden ocurrir continuamente en tiempo real, con retrasos periódicos entre tiempos predefinidos (por ejemplo, por horas o días), o en respuesta a una señal generada por el usuario tal como una secuencia predefinida de movimientos o una pulsación de botón. Como alternativa, el controlador puede alertar al paciente para modificar manualmente los parámetros de estimulación. Este bucle cerrado puede usarse para una autocalibración automática.
La figura 26B ilustra un diagrama de control que muestra los componentes básicos de este sistema de detección y respuesta, que es similar a la descripción mostrada en la figura 26A, pero ahora con componentes ubicados de forma interna y externa.
El control podría además tener en cuenta otros patrones de comportamiento, más como un controlador de alimentación delantera 2640. Por ejemplo, los patrones típicos en tiempos de comida podrían provocar que el efector se encienda más activamente en momentos particulares para reducir el temblor para esas actividades. Además, la persona podría indicar en un horario, en función de sus actividades para el día si les gustaría un tratamiento incrementado en ciertos periodos de tiempo, por ejemplo, si tienen un discurso u otro evento que provoque ansiedad. Este tipo de información podría además obtenerse y aprenderse con el tiempo por la unidad de control. Otros datos tal como sueño, ingesta de comida, en particular consumo de alcohol y cafeína, historial de ejercicio, estado emocional, en particular niveles de ansiedad, y uso de medicación recogido por otras tecnologías móviles y aplicaciones, como Azumio, Jawbone, Fitbit, etc., pueden integrarse en la base de datos de pacientes basada en la nube, tal como se ilustra en las figuras 20 y 21. El usuario puede ser incitado a introducir tales datos, tal como hacer una foto de una comida para determinar ingesta de comida usando una aplicación de procesamiento de formación de imágenes. La base de datos combinará eventos discretos (por ejemplo, tiempo y cantidad de ingesta de cafeína) con datos de serie de tiempo (por ejemplo, medidas de temblor). Los algoritmos examinarán la relación entre comportamientos del paciente, estimulación y temblor. Estos optimizarán la estimulación y alertarán al paciente de los comportamientos que influencian el temblor. Esto permitirá un tratamiento optimizado individualmente para el temblor y alimentación delantera en el sistema.
En algunas realizaciones, el usuario puede ser incitado en momentos predeterminados por el dispositivo o teléfono móvil para realizar una tarea específica, que puede estar personalizada para el tipo de temblor que aflige al paciente, tal como estirar el brazo en una postura específica para ET, o colocar el brazo en una posición de reposo para Parkinson. Durante este tiempo, los sensores pueden registrar los temblores. En algunas realizaciones, el paciente puede adicionalmente o como alternativa ser instruido para consumir cafeína o para registrar el periodo de tiempo que ha pasado desde que consumió cafeína por última vez. Estos datos pueden usarse para determinar cómo afecta la cafeína al temblor, la eficacia del protocolo de tratamiento y parámetros de estimulación, la duración de le eficacia, y similares. En algunas realizaciones, el paciente puede ser incitado en una cantidad predeterminada de tiempo tras la estimulación, tal como 10, 20, 30 y/o 60 minutos tras la estimulación. El tiempo puede ajustarse dependiendo de la duración medida de la reducción del temblor tras la estimulación.
El dispositivo tendrá un registro de datos de a bordo y puede transmitir esta información a un dispositivo de portal de datos externo, como un smartphone o una estación de carga y sincronización con Intemet habilitado. Esta transmisión puede ser inalámbrica o directa. El dispositivo externo tendrá una mayor capacidad de almacenamiento y permitirá la transmisión a una base de datos en la nube. El dispositivo externo puede analizar estos datos de a bordo y presentar información en una pantalla o usando indicadores como luces LED, o los datos pueden mostrarse en el propio dispositivo de estimulación.
Los datos en la nube serán visibles en múltiples plataformas incluyendo smartphones, tabletas y ordenadores. Los datos serán visibles por múltiples personas incluyendo el usuario, su médico, cuidador o miembros familiares. Esto proporcionará una imagen mucho más amplia del temblor de un paciente y permitirá optimizar el tratamiento. En algunas realizaciones, los usuarios que ven los datos también pueden añadir comentarios y notas a los datos, que pueden etiquetarse con la identidad del usuario que hace el comentario o nota, y la hora en que se hizo el comentario o nota. En algunas realizaciones, la capacidad para realizar anotaciones puede limitarse a los proveedores de asistencia sanitaria, tal como el médico del paciente y el paciente.
En algunas realizaciones, el acceso a los datos se limita a los proveedores de asistencia sanitaria y el paciente. El acceso puede limitarse requiriendo a los usuarios que establezcan un nombre de usuario y contraseña seguros para acceder a los datos. En algunas realizaciones, el paciente puede además proporcionar a otros, como familia y amigos, el acceso a los datos.
ALGORITMOS PARA OPTIMIZACIÓN:
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Estos datos indican que la estimulación usando un dispositivo TENS es altamente eficaz en algunos pacientes, algo eficaz en otros pacientes e ineficaz en otros. Sin embargo, la optimización de los parámetros de simulación (intensidad de simulación, frecuencia, forma de onda, coeficiente de utilización, fase etc.) permite que el dispositivo logre la mayor reducción de temblor con la mayor comodidad en cada paciente y permite que el dispositivo se ajuste con el tiempo en respuesta a cambios en las dinámicas de circuitos, colocación del dispositivo, estado del paciente, etc. La figura 22 muestra un algoritmo de decisión/controlador para el dispositivo.
En una realización, el algoritmo de optimización comienza iniciando uno o más parámetros 2200, que pueden incluir amplitud de estímulos, frecuencia esperada, duración de encendido, duración de apagado, y tiempo de retraso de
efecto de estimulación esperado. A continuación, un sensor detecta 2202 y registra características de temblor, incluyendo amplitud del temblor, frecuencia, fase y otras características aquí descritas. Las características de temblor detectadas 2202 se comparan con las características de temblor objetivo deseadas 2204, que pueden ser ningún temblor o un temblor reducido. La etapa de comparación 2206 puede determinar el error o diferencia entre las características de temblor detectadas y las características de temblor objetivo, y determinar si está presente el temblor o temblor reducido 2208, o, en otras palabras, si el temblor detectado cumple o supera las condiciones objetivo. Si no se detecta temblor, o más en general, si no se supera una condición de temblor objetivo predeterminada, entonces al algoritmo vuelva a la etapa de detección 2202. Si se detecta un temblor, o más en general, si se supera una condición de temblor objetivo predeterminada, entonces la estimulación puede pasar a 2210. Una vez la estimulación ha superado la duración de encendido establecida 2212, entonces la estimulación se desactiva 2214 y el algoritmo vuelve a la etapa de detección 2202. Mientras la estimulación está activa, el dispositivo pude subir los datos registrados 2218 a la nube u otro dispositivo para procesamiento adicional. Una vez la estimulación se ha desactivado 2214, el algoritmo puede supervisar la duración de apagado 2216, y puede continuar subiendo datos 2218 una vez que ha transcurrido la duración de apagado. Como alternativa, los datos pueden subirse incluso antes de que haya transcurrido el tiempo de apagado. Los eventos reportados por el usuario 2220, que pueden incluir cafeína o ingesta de alcohol, sensación de ansiedad y otros eventos que pueden afectar al temblor, también pueden introducirse en el sistema y enviarse a la nube. Los datos pueden procesarse por un controlador 2222 que puede optimizar los parámetros de estimulación usando diversos algoritmos, incluyendo algoritmos de aprendizaje a máquina. Una vez los parámetros se optimizan, se establecen los nuevos parámetros de estimulación 2224. Un informe 2226 también puede enviarse al paciente que puede resaltar o correlacionar diversos comportamientos identificados en los eventos reportados por el usuario con temblores medidos.
En una realización, el algoritmo de estimulación se diseña para optimizar el tiempo de "encendido" terapéutico. El algoritmo de optimización puede encontrar la mejor solución para salidas incluyendo, pero sin limitarse a controlar el temblor durante tareas específicas, en momentos específicos del día, en una ubicación específica o simplemente para optimizar la minimización diaria general del temblor. El algoritmo puede ser de autocalibración para ajustar los parámetros de estimulación incluyendo, pero sin limitarse a la frecuencia, amplitud, anchura de pulsos, selección de electrodos para cátodo y ánodo y/o temporización de activación y desactivación de la estimulación. El algoritmo puede responder a la entrada de usuario o puede estar preprogramado por completo. El algoritmo puede ser un algoritmo de aprendizaje para adaptar la estimulación con el tiempo pasa ajustarse en tiempo real al temblor de un paciente o necesidades definidas por el paciente. La estimulación puede activarse o desactivarse en respuesta a entradas incluyendo, pero sin limitarse a entrada de usuario (por ejemplo, activar y/o desactivar el dispositivo), tiempo desde el uso anterior, momento del día, detección del temblor (por ejemplo, por acelerómetros), registros eléctricos o algoritmos basados en las entradas previamente descritas u otras. Como ejemplo, el usuario puede usar activación por voz para desactivar el dispositivo para utilizar la ventana terapéutica (es decir, el tiempo de reducción de temblor tras desactivar la estimulación) para proporcionar un intervalo de tiempo de firmeza necesaria para movimientos intencionales. En otro ejemplo, el usuario muerde o usa el músculo de la lengua detectado por un dispositivo externo colocado dentro o fuera de la cavidad oral, que hará una señal para desactivar la estimulación y permitir al usuario tener firmeza en el brazo para permitir la ejecución de acciones intencionadas con firmeza. En algunas realizaciones, el sistema y algoritmo pueden detectar el tipo de temblor, tal como diferenciar entre un temblor postural y temblor cinético, en función de un análisis de los parámetros de temblor y la actividad medida del paciente. En algunas realizaciones, los parámetros de estimulación pueden determinarse en parte en función del tipo de temblor detectado.
En algunas realizaciones, el sistema puede controlarse por un activador de eventos. Los activadores de eventos pueden incluir movimientos definidos, temperatura, activación por voz, ubicación GPS, o basarse en datos recibidos por un sensor o cualquier combinación de los mismos. Por ejemplo, el dispositivo puede activarse o desactivarse durante un movimiento intencionado, tal como, antes de que un temblor se inicie o termine respectivamente. En otro ejemplo, el dispositivo se activa o desactiva cuando se alcanza una temperatura especificada. El sistema puede actuar para lograr un perfil de supresión de temblor deseado. Por ejemplo, el control puede activar el dispositivo durante un periodo de supresión de temblor deseado; antes de un periodo de supresión de temblor deseado, con efectos que duran más allá del uso del dispositivo; y/o en respuesta a la detección del temblor.
OPTIMIZACIÓN BASADA EN DATOS DE LA COMUNIDAD
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
En la actualidad, el curso temporal de los temblores no está muy bien entendido. Aunque crear una base de datos para un único paciente mejorará la capacidad de reducir el temblor en ese paciente, combinar datos de pacientes individuales en una base de datos que incluye registros de muchos pacientes permite aplicar métodos estadísticos más potentes para identificar parámetros de estimulación óptimos. En algunas realizaciones, pueden combinarse los datos de los pacientes que sufren el mismo tipo de temblor. En algunas realizaciones, los datos de temblor desde cada paciente pueden incluir metadatos que pueden buscarse y clasificarse y permiten que la recogida de datos en la base de datos se clasifique, busque y/o reorganice bajo demanda. Los metadatos pueden incluir tipo de temblor (amplitud del temblor, frecuencia del temblor, presencia temporal del temblor etc.), nombre, edad, raza, sexo, ubicación, tiempo, consumo de comida y bebida (en particular para cafeína y alcohol), historial de actividad (ejercicio, sueño etc.),
medicamentos, tratamientos pasados y tratamientos actuales.
Los sistemas antes descritos con respecto a las figuras 20 y 21 pueden adaptarse a datos de muchos pacientes que van a una base de datos, y los algoritmos pueden operar en el conjunto masivo de datos.
CONSTRUCCIÓN DE COMUNIDAD
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
Los sujetos con ET se sienten aislados por la incapacidad asociada con su temblor. Como resultado, estos están muy motivados a conocer a otras personas con ET. Existe un conjunto activo y creciente de grupos de apoyo que organizan reuniones y permiten a los pacientes con ET hablar sobre sus problemas y discutir posibles soluciones. Asistir a estas reuniones puede ser desafiante porque algunos pacientes con ET tienen dificultad para conducir. Además, los individuos dentro de una ubicación física particular que asisten a un grupo de apoyo pueden tener síntomas que son diferentes entre sí, y no tienen la capacidad de identificar a otros pacientes que se parecen más entre sí.
Los algoritmos pueden ayudar a los individuos a encontrar miembros de la comunidad ET que tienen perfiles similares. Por ejemplo, los algoritmos pueden caracterizar a los pacientes en función de su edad, severidad del temblor, características del temblor, éxito con el tratamiento, tipo de tratamiento, tipo de medicación, ubicación (basada en dirección o GPS) y otras características. Esto les ayudará a comunicarse entre sí y a compartir información desde el sitio web de la comunidad central que se personaliza para un individuo particular con ET o un cuidador. Por ejemplo, el sistema puede identificar a pacientes dentro de una ubicación geográfica o identificar a otros pacientes dentro de una distancia predeterminada desde un paciente particular. Los pacientes pueden tener la opción de unirse a una comunidad ET en línea y hacer que se pueda buscar su ubicación en el sistema. El sistema puede identificar para un paciente los grupos de apoyo de comunidad ET existentes dentro de una distancia predeterminada.
OTRO PROCESADOR, BIBLIOTECA, ALMACENAMIENTO DE DATOS:
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El procesador 797, tal como se ilustra en las figuras 7A-7D, por ejemplo, puede funcionar para operar en datos, realizar cálculos y controlar otros componentes del dispositivo de reducción de temblor. Este puede ser preferentemente un microprocesador con periféricos o un microcontrolador. Por ejemplo, el procesador podría recibir entradas desde el usuario mediante el módulo de control 740 y podría controlar la ejecución de estimulación como se seleccione por el usuario. En otra realización, el procesador 797 podría ejecutar protocolos de estimulación predefinidos seleccionados por el usuario. Estos protocolos de estimulación podrían encontrarse en la biblioteca digital de protocolos de estimulación 798, que puede cargarse en el procesador 797 o almacenarse en memoria externa, como una EEPROM, tarjeta SD, etc. El procesador 797 puede recibir también información desde los sensores 780 y procesar esa información a bordo y ajustar la estimulación por consiguiente. La selección del procesador se determina por el grado de procesamiento de señal que necesita realizar y el número y tipo de periféricos que necesita controlar. La comunicación con los periféricos puede ejecutarse por cualquiera de las normas bien conocidas tal como USB, UART, SPI, I2C/TWI, por ejemplo. El procesador también puede comunicarse de forma inalámbrica con otros componentes del dispositivo usando Bluetooth, Wifi, etc. El procesador puede estar a bordo del dispositivo, o los datos de temblor pueden transmitirse mediante un enlace inalámbrico entre la unidad de procesamiento y la unidad de estimulación.
En una realización con un estimulador eléctrico 730, los protocolos precargados 798 pueden ser una estimulación eléctrica o una secuencia de estimulaciones eléctricas. La estimulación eléctrica o señal eléctrica se refiere a un pulso eléctrico o patrón de pulsos eléctricos. La estimulación eléctrica puede incluir parámetros tal como frecuencia de pulsos, amplitud, fase, anchura de pulsos, o duración de tiempo de estimulación eléctrica. Estos parámetros pueden predefinirse o controlarse por el usuario.
La unidad de almacenamiento de datos 770 puede funcionar para almacenar estadísticas operativas sobre el dispositivo y estadísticas de uso sobre el dispositivo, preferentemente en memoria flash NAND. La memoria flash NAND es un dispositivo de almacenamiento de datos que es no volátil, que no requiere potencia para retener la información almacenada, y puede borrarse y reescribirse eléctricamente. En algunos casos, puede ser beneficioso que esta memoria sea extraíble en la forma de una tarjeta micro SD.
POTENCIA:
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
El efector puede acoplarse eléctricamente a una o más fuentes de potencia, tal como se ilustra en las figuras 7A-7D por ejemplo. La fuente de potencia 750 funciona para alimentar el dispositivo. La fuente de potencia 750 puede
conectarse al procesador 797 y proporcionar energía para que funcione el procesador. La fuente de potencia puede ser preferentemente recargable y separable ya que esto permite que el dispositivo vuelva a usarse. La fuente de potencia puede ser preferentemente una batería. Normalmente se usan varias combinaciones diferentes de químicos, incluyendo plomo-ácido, níquel cadmio (NiCd), níquel metal hidruro (NiMH), ion de litio (ion Li) y polímero de ion de litio (polímero de ion Li). Los métodos de recarga de la batería son preferentemente unirse a un bolsillo de pared y otro dispositivo alimentado, potencia solar, radiofrecuencia y electroquímica. Una fuente de potencia alternativa son ultracondensadores. Los ultracondensadores pueden dividirse en tres familias diferentes; condensadores de doble capa, seudocondensadores y condensadores híbridos. Los ultracondensadores pueden hacerse preferentemente con material nanoporoso incluyendo carbón activado, grafeno, nanotubos de carbono, carbonos derivados de carburo, aerogel de carbono, carbono activado sólido, carbono nanoporoso sintonizable y carbono con base mineral. Los ultracondensadores proporcionan la ventaja de carga más rápida que las baterías, así como tolerancia de más ciclos de carga y descarga. Las baterías y ultracondensadores podrían como alternativa usarse en conjunto ya que la tolerancia de los ultracondensadores a un gran número de ciclos de carga-descarga hace que se adapten bien a conexiones paralelas con baterías y puede mejorar el rendimiento de la batería en términos de densidad de potencia. Como alternativa, la fuente de potencia puede aprovechar energía desde el cuerpo. En algunas realizaciones la potencia puede aprovecharse por movimiento cinético, por energía térmica y/o por sonido. La fuente de potencia puede incluir como alternativa una conexión a una fuente externa, tal como un electrodoméstico general.
En una realización, podría usarse una estación de carga especial o adaptador para recargar el dispositivo. El beneficio de la estación de carga especial es que también podría facilitar la subida de datos desde el dispositivo a la web mediante Wifi u otro protocolo de comunicación.
IMPLANTES:
Las realizaciones de acuerdo con esta sección y figuras asociadas se proporcionan solo con fines ilustrativos y no forman parte de la presente invención.
En algunas realizaciones, al menos una porción del sistema es implantable. Un estimulador implantado puede ofrecer un mayor control y comodidad que la estimulación superficial porque se ubica más cerca del nervio y evita excitar aferentes cutáneos.
El método de estimular nervios periféricos para controlar temblores de mano introduce requisitos específicos para un estimulador implantado apropiado. En primer lugar, el implante debería ser pequeño para minimizar la invasividad del procedimiento usado para colocar el implante y hacerlo apropiado para la implantación. En segundo lugar, ya que la estimulación puede responder al temblor detectado o entrada de usuario, el implante debería ser capaz de recibir comunicación desde un dispositivo externo. En tercer lugar, el dispositivo debería tolerar variabilidad en la colocación del dispositivo externo.
Cualquier número de los componentes del sistema aquí divulgados puede implantarse. En algunas realizaciones, el alojamiento, interfaz, efector y fuente de potencia se implantan y el controlador es externo al paciente. En dichas realizaciones, el controlador, puede, por ejemplo, estar en comunicación inalámbrica con el efector. En otras realizaciones, la fuente de potencia es externa al paciente.
El dispositivo puede implantarse de forma subcutánea, implantarse parcialmente o puede ser transcutáneo (pasando por la piel), puede estar en la superficie de la piel o puede no estar en contacto con el cuerpo. Puede ser un ensamblaje de estos dispositivos, tal como un componente de superficie que se comunica con o alimenta un componente implantado. Si se implanta, el dispositivo puede implantarse en o alrededor de nervios, músculos, huesos, ligamentos u otros tejidos.
En una realización, el implante se coloca en o cerca del túnel carpiano para influenciar a los nervios que pasan por el túnel carpiano. En otra realización, el implante se coloca en o cerca del nervio mediano en el brazo superior entre los bíceps. En otra realización, el implante se coloca en o cerca del nervio mediano, radial o ulnar en el antebrazo o muñeca. En otra realización, el implante se coloca en o cerca del plexo braquial para influenciar a los nervios propioceptivos que pasan desde el brazo hacia el sistema nervioso central.
Las porciones implantadas pueden colocarse o suministrarse de forma intravascular para afectar a nervios en el área dentro del rango de efecto del implante. En un ejemplo, se coloca un dispositivo en o a través de la arteria o vena subclavia para afectar a los nervios del plexo braquial.
Tal y como se muestra en la figura 23, una realización preferente de un dispositivo controlable para que un usuario reduzca el temblor esencial comprende electrodos 2310 hechos de materiales biocompatibles implantados al menos parcialmente de forma subdérmica para estimular los nervios objetivo; una unidad de operación externa 2320, que contiene una interfaz de control de usuario, conectada por cables al electrodo implantado 2310. El dispositivo puede contener otros elementos que pueden incluir un procesador 797 que realiza cálculos y controla otros componentes; un generador de función controlado por un procesador; una biblioteca digital 799 almacenada en el procesador o memoria que contiene protocolos de modulación precargados; un sensor 780 conectado a o en comunicación con el
procesador 797 que detecta parámetros definidos y transmite esa información de parámetros al procesador; una unidad de almacenamiento de datos 770 conectada al sensor y procesador; y un suministro de potencia 750.
En esta realización, los electrodos implantados 2310 pueden funcionar para proporcionar estimulación eléctrica directa a los nervios objetivo. Ya que los electrodos se implantan al menos parcialmente en el cuerpo y permanecerán durante un periodo de tiempo extendido (preferentemente varios años), los electrodos pueden hacerse de material que tenga propiedades eléctricas adecuadas y sea biocompatible. El material del electrodo 2310 se selecciona preferentemente de un grupo que incluye siliconas, PTFE, parileno, poliimida, poliesterimida, platino, cerámica y oro, o de materiales naturales como colágeno o ácido hialurónico. Los electrodos 2310 pueden ser de forma y tamaño variable, pero de forma importante contactan con los nervios de interés. Las formas de los electrodos incluyen patas planas, microalambres uniformes simples y sondas que se ahúsan hasta una punta fina desde una base más ancha. El electrodo puede tener un extremo proximal y un extremo distal. El extremo distal, puede contactar con los nervios, y adaptarse para suministrar pulsos de estimulación neuronal a los nervios seleccionados. El extremo proximal del cable puede adaptarse para conectarse a la unidad operativa externa ejecutada por un procesador 797.
En una variante de la realización, puede haber múltiples cables conectados a diferentes grupos de nervios. En otra variante, puede haber una comunicación inalámbrica con el implante como se muestra en las figuras 24A-24D. El implante 2400, que puede ser un microelectrodo o microestimulador, puede insertarse próximo al nervio usando inserción de agujas. La aguja 2402 puede insertarse en el paciente junto a o cerca del nervio objetivo 2404 y luego el implante puede eyectarse desde la aguja. El implante 2400 puede estar en comunicación con, transferir y recibir datos con, y alimentarse por un dispositivo ubicado externamente 2406, tal como una unidad de decisión aquí descrita.
En una realización, la interfaz puede ser un brazalete de nervio implantado. El brazalete puede rodear total o parcialmente el nervio. El brazalete puede unirse al nervio mediante electrodos de brazo de mariposa de cierre. En otra realización, la interfaz puede ser un empalme de nervio. El empalme puede estar en proximidad cercana al nervio o puede descansar a lo largo del nervio. La función del brazalete puede ser proporcionar un buen contacto o proximidad cercana entre el dispositivo y el nervio. En otra realización, la interfaz puede anclarse en el nervio o funda alrededor del nervio. Por ejemplo, el dispositivo puede enrollarse alrededor, unirse a, fijarse a, sujetarse con pequeñas púas a o fusionarse químicamente al nervio o funda del nervio. La función del brazalete, bobina, empalme o ancla es proporcionar un buen contacto o proximidad cercana entre el dispositivo y el nervio. Algunas de estas realizaciones se representan en las figuras 25A-25F.
Por ejemplo, las figuras 25A-25F ilustran una realización de una interfaz de electrodo de bobina, que puede ser un electrodo de múltiples bobinas, como se muestra, o un electrodo de bobina única. En algunas realizaciones, el electrodo de bobina 2500 puede hacerse de un material de memoria de forma, tal como nitinol, y puede tener una configuración relajada, recta, antes de la inserción e implantación, y una configuración bobinada tras la exposición a temperatura corporal. Las figuras 25D y 25E ilustran realizaciones de electrodos 2510 de tipo brazalete de mariposa, que pueden al menos rodear parcialmente el nervio. Como en otras realizaciones, la interfaz puede incluir electrodos múltiples o únicos, y puede fabricarse de un material de memoria de forma para tener una configuración abierta durante el suministro y una configuración cerrada enrollada alrededor del nervio tras la implantación. La figura 25F ilustra una realización de una interfaz con una agrupación lineal de electrodos 2520 que pueden contactar contra y descansar a lo largo del nervio.
El método de insertar el implante puede implicar anestesia local o general. El implante puede suministrarse a través de una o más perforaciones en la piel, tal como una aguja o sutura, o puede ser una incisión abierta hecha en la piel para acceder al área objetivo o podría incluir ambos métodos. En una realización, el dispositivo puede implantarse roscando todo o parte del dispositivo alrededor del nervio y/o tejido circundante, tal como vasos sanguíneos o tendones.
En una realización, el implante puede incluir dos electrodos colocados a lo largo de una trayectoria vascular. La trayectoria puede ser a lo largo del arco palmar y los electrodos pueden colocarse en las arterias braquial y axilar. La columna de fluido entre los electrodos puede llevar electricidad y estimular nervios adyacentes. Los electrodos pueden ser internos a la trayectoria vascular, como un estent, o externos a la trayectoria vascular similar a una envoltura vascular. En una realización, el dispositivo puede ser un implante capaz de tener una comunicación de dos vías con un dispositivo externo. La realización puede contener memoria. El dispositivo "oyente" externo puede también ser una fuente de potencia. El implante podría comunicar información tal como sus reservas de potencia o historial de uso al "oyente". En otra realización, el dispositivo es un implante capaz de detectar actividad en el nervio o nervios adyacentes e informar de esta información al oyente.
En otra realización, el dispositivo o dispositivos usados para colocar el dispositivo pueden usar ultrasonidos por motivos de guía. Los ultrasonidos pueden usarse para medir proximidad a vasos sanguíneos, nervios u otros tejidos, o para caracterizar el tipo y ubicación de tejidos adyacentes.
En otra realización, los electrodos para estimulación pueden inyectarse como un líquido. En otra realización, los electrodos pueden ser flexibles y suministrarse en un medio viscoso como ácido hialurónico. En otra realización, los electrodos pueden hacerse de nitinol que adopta su forma a 37 grados Celsius. Esto permitiría inyectar o insertar los
electrodos en una configuración, tal como una configuración alargada para encajar en una aguja, y luego adoptaría su forma cuando se caliente a temperatura corporal. Algunos de estos ejemplos se representan en la figura 25.
El implante puede contener los componentes necesarios para la comunicación unidireccional o bidireccional entre el implante, una transmisión de potencia externa, un sistema de comunicación y/o componentes electrónicos para almacenar parámetros de estimulación programables. El dispositivo puede contener un micromódulo inalámbrico que recibe señales de comando y potencia por acoplamiento inductivo de radiofrecuencia desde una antena externa. Si el efector es eléctrico, el canal de comunicación entrante puede incluir información que incluye la frecuencia de estimulación, retraso, ancho de pulsos e intervalos de activación/desactivación.
La carga o alimentación transcutánea reduce el tamaño del implante eliminando la necesidad de una fuente de potencia grande (por ejemplo, una batería) y elimina la necesidad de sustituir la fuente de potencia con cirugías repetidas. Un componente externo puede usarse para alimentar de forma inalámbrica el componente interno, tal como por transferencia de potencia por radiofrecuencia (RF). Por ejemplo, el dispositivo externo puede emitir potencia de RF que recibe el componente interno con una bobina resonante. La potencia puede transmitirse a una variedad de longitudes de onda, incluyendo, pero sin limitarse a los espectros de radiofrecuencia y microondas, que varían desde 3 kHz a 300 GHz. Como alternativa, el dispositivo interno puede contener una batería. El dispositivo externo puede llevarse puesto o soportarse en el cuerpo, o puede estar en los alrededores cercanos tal como en una mesa o pared cercana. Puede ser portátil o estar fijo. El dispositivo puede contener un electrodo de módulo de almacenamiento de energía capacitiva que estimula cuando se descarga. Los componentes electrónicos pueden simplificarse de forma significativa si la propia alimentación acciona el perfil de estimulación. Los bloques de condensador dirigen corriente mientras permiten que pase la corriente alterna. Cuando el condensador alcanza su ruptura dieléctrica, se descarga y libera un pulso de estimulación.
El implante puede además detectar el temblor directamente, tal como usando señales de electroneurografía (ENG) o electromiografía (EMG) o un acelerómetro o una combinación de lo anterior. En este caso, el implante puede incluir múltiples electrodos ya que los microelectrodos y macroelectrodos son preferibles para detectar y estimular, respectivamente. El dispositivo puede además incluir un canal de comunicación saliente para comunicar los eventos detectados.
Diversas realizaciones de un dispositivo y métodos de alteración de temblores para su uso se han divulgado antes. Estas diversas realizaciones pueden usarse solas o en combinación, y diversos cambios en las características individuales de las realizaciones pueden alterarse, sin apartarse del alcance de la invención. Por ejemplo, el orden de las diversas etapas del método puede cambiarse en algunos casos y/o una o más características opcionales pueden añadirse o eliminarse de un dispositivo descrito.
Algunas características que se describen en esta memoria descriptiva en el contexto de realizaciones separadas también pueden implementarse en combinación en una única realización. Al contrario, diversas características que se describen en el contexto de una única realización también pueden implementarse en múltiples realizaciones por separado o en cualquier subcombinación adecuada. Además, aunque pueden describirse realizaciones anteriormente como actuando en algunas combinaciones e incluso inicialmente reivindicarse como tal, una o más características de una combinación reivindicada pueden eliminarse en algunos casos de la combinación, y la combinación reivindicada puede dirigirse a una subcombinación o variación de una subcombinación. Sin embargo, la invención se expone en las reivindicaciones que siguen. Cualquier realización de acuerdo con la presente divulgación que no caiga dentro del alcance de la reivindicación 1 se excluye de la presente invención y se proporciona solo con fines ilustrativos.
Claims (14)
1. Un dispositivo transcutáneo (100, 700) para tratar temblores en un paciente, comprendiendo el dispositivo: una unidad de control (740);
un primer efector de nervio periférico (730), que comprende al menos un electrodo de estimulación (102) configurado para colocarse para modular una primera trayectoria de nervio aferente (104);
un segundo efector de nervio periférico (730), que comprende al menos un electrodo de simulación (102) y configurado para colocarse para modular una segunda trayectoria de nervio aferente (104); y
al menos un sensor (780) configurado para medir el movimiento de la extremidad del paciente para caracterizar una o más características del temblor, las una o más características del temblor seleccionadas del grupo que consiste en frecuencia del temblor y periodo del temblor;
en donde la unidad de control comprende un procesador (797) y una memoria (770) para almacenar instrucciones que, cuando se ejecutan por el procesador, hacen que el dispositivo:
mida el movimiento de la extremidad del paciente para generar datos de movimiento;
determine una o más de una frecuencia y periodo del temblor en función de un análisis de los datos de movimiento;
ajuste uno o más parámetros de un primer estímulo eléctrico en función de uno o más de la frecuencia y periodo del temblor;
suministre el primer estímulo eléctrico a un primer nervio aferente mediante el primer efector de nervio periférico para reducir el temblor en la extremidad del paciente; y
suministre un segundo estímulo eléctrico desplazado en el tiempo del primer estímulo eléctrico a un segundo nervio aferente mediante el segundo efector de nervio periférico mediante una fracción predeterminada del periodo del temblor seleccionado del grupo que consiste en: una mitad del periodo del temblor, un cuarto del periodo del temblor y tres cuartos del periodo del temblor.
2. El dispositivo de la reivindicación 1, en donde la memoria para almacenar instrucciones que, cuando son ejecutadas por el procesador, provocan además que la unidad de control suministre el primer estímulo eléctrico como una pluralidad de explosiones de estimulación eléctrica con un retraso temporal variable entre las explosiones de estimulación eléctrica.
3. El dispositivo de la reivindicación 1 o la reivindicación 2, en donde la fracción predeterminada es una mitad del periodo del temblor.
4. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde la fracción predeterminada es un cuarto del periodo del temblor.
5. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el primer estímulo eléctrico comprende una frecuencia de entre aproximadamente 50 Hz a aproximadamente 300 Hz.
6. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el primer estímulo eléctrico comprende una frecuencia de aproximadamente 150 Hz.
7. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el análisis de los datos de movimiento comprende un análisis de frecuencia de la potencia espectral de los datos de movimiento.
8. El dispositivo de la reivindicación 7, en donde el análisis de frecuencia se restringe a entre aproximadamente 4 Hz y aproximadamente 12 Hz.
9. El dispositivo de una cualquiera de las reivindicaciones 1 y 3 a 8, en donde el primer estímulo eléctrico comprende un estímulo de explosión.
10. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el primer nervio aferente es uno del nervio radial, nervio mediano y nervio ulnar.
11. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el segundo efector de nervio periférico comprende una fuente de potencia.
12. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el primer efector de nervio periférico comprende una pluralidad de electrodos dispuestos en agrupación lineal.
13. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el primer estímulo eléctrico tiene una amplitud menor de aproximadamente 10 mA.
14. El dispositivo de una cualquiera de las reivindicaciones anteriores, en donde el dispositivo es ponible.
Applications Claiming Priority (5)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| US201361754945P | 2013-01-21 | 2013-01-21 | |
| US201361786549P | 2013-03-15 | 2013-03-15 | |
| US201361815919P | 2013-04-25 | 2013-04-25 | |
| US201361822215P | 2013-05-10 | 2013-05-10 | |
| US201361857248P | 2013-07-23 | 2013-07-23 |
Publications (1)
| Publication Number | Publication Date |
|---|---|
| ES2889752T3 true ES2889752T3 (es) | 2022-01-13 |
Family
ID=51210143
Family Applications (2)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES19150254T Active ES2889752T3 (es) | 2013-01-21 | 2014-01-21 | Dispositivos y métodos para controlar temblores |
| ES14740684T Active ES2720802T3 (es) | 2013-01-21 | 2014-01-21 | Dispositivos para controlar temblores |
Family Applications After (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| ES14740684T Active ES2720802T3 (es) | 2013-01-21 | 2014-01-21 | Dispositivos para controlar temblores |
Country Status (9)
| Country | Link |
|---|---|
| US (9) | US9452287B2 (es) |
| EP (3) | EP3912674A1 (es) |
| JP (5) | JP6507099B2 (es) |
| CN (4) | CN108355242B (es) |
| AU (3) | AU2014207265B2 (es) |
| BR (1) | BR112015017042B1 (es) |
| CA (1) | CA2896800A1 (es) |
| ES (2) | ES2889752T3 (es) |
| WO (1) | WO2014113813A1 (es) |
Families Citing this family (255)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US12263009B1 (en) * | 2005-03-17 | 2025-04-01 | Great Lakes Neurotechnologies Inc. | Movement disorder continuous monitoring and therapy system |
| US8972017B2 (en) | 2005-11-16 | 2015-03-03 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
| US7899556B2 (en) | 2005-11-16 | 2011-03-01 | Bioness Neuromodulation Ltd. | Orthosis for a gait modulation system |
| CA2956427C (en) | 2006-05-01 | 2021-08-17 | Bioness Neuromodulation Ltd. | Improved functional electrical stimulation systems |
| EP3431137A1 (en) | 2009-02-10 | 2019-01-23 | Nevro Corporation | Systems for delivering neural therapy correlated with patient status |
| US8498710B2 (en) | 2009-07-28 | 2013-07-30 | Nevro Corporation | Linked area parameter adjustment for spinal cord stimulation and associated systems and methods |
| US10368669B2 (en) | 2011-09-30 | 2019-08-06 | Verily Life Sciences Llc | System and method for stabilizing unintentional muscle movements |
| US9925034B2 (en) | 2011-09-30 | 2018-03-27 | Verily Life Sciences Llc | Stabilizing unintentional muscle movements |
| US9814884B2 (en) | 2011-11-04 | 2017-11-14 | Nevro Corp. | Systems and methods for detecting faults and/or adjusting electrical therapy based on impedance changes |
| JP6130851B2 (ja) | 2011-11-15 | 2017-05-17 | ニューロメトリックス・インコーポレーテッド | 経皮的電気神経刺激を使用して痛みを軽減するための装置、および電極配列 |
| US9675801B2 (en) * | 2011-11-15 | 2017-06-13 | Neurometrix, Inc. | Measuring the “on-skin” time of a transcutaneous electrical nerve stimulator (TENS) device in order to minimize skin irritation due to excessive uninterrupted wearing of the same |
| US9731126B2 (en) | 2011-11-15 | 2017-08-15 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with automatic detection of leg orientation and leg motion for enhanced sleep analysis, including enhanced transcutaneous electrical nerve stimulation (TENS) using the same |
| US10279179B2 (en) | 2013-04-15 | 2019-05-07 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with automatic detection of user sleep-wake state |
| US10112040B2 (en) | 2011-11-15 | 2018-10-30 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation using novel unbalanced biphasic waveform and novel electrode arrangement |
| US11247040B2 (en) | 2011-11-15 | 2022-02-15 | Neurometrix, Inc. | Dynamic control of transcutaneous electrical nerve stimulation therapy using continuous sleep detection |
| US11259744B2 (en) | 2011-11-15 | 2022-03-01 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with automatic detection of leg orientation and leg motion for enhanced sleep analysis, including enhanced transcutaneous electrical nerve stimulation (TENS) using the same |
| US10335595B2 (en) | 2011-11-15 | 2019-07-02 | Neurometrix, Inc. | Dynamic control of transcutaneous electrical nerve stimulation therapy using continuous sleep detection |
| US9827420B2 (en) | 2013-03-29 | 2017-11-28 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with user gesture detector and electrode-skin contact detector, with transient motion detector for increasing the accuracy of the same |
| EP3912674A1 (en) | 2013-01-21 | 2021-11-24 | Cala Health, Inc. | Devices for controlling tremor |
| US12453853B2 (en) | 2013-01-21 | 2025-10-28 | Cala Health, Inc. | Multi-modal stimulation for treating tremor |
| US9295840B1 (en) | 2013-01-22 | 2016-03-29 | Nevro Corporation | Systems and methods for automatically programming patient therapy devices |
| US9895538B1 (en) | 2013-01-22 | 2018-02-20 | Nevro Corp. | Systems and methods for deploying patient therapy devices |
| US9731133B1 (en) | 2013-01-22 | 2017-08-15 | Nevro Corp. | Systems and methods for systematically testing a plurality of therapy programs in patient therapy devices |
| EP2762834B1 (en) * | 2013-02-01 | 2017-03-22 | Intel Corporation | An integrated global navigation satellite system and inertial navigation system |
| EP2978488B1 (en) | 2013-03-29 | 2021-04-14 | GSK Consumer Healthcare S.A. | Detecting cutaneous electrode peeling using electrode-skin impedance |
| US10940311B2 (en) | 2013-03-29 | 2021-03-09 | Neurometrix, Inc. | Apparatus and method for button-free control of a wearable transcutaneous electrical nerve stimulator using interactive gestures and other means |
| JP2016515463A (ja) | 2013-04-15 | 2016-05-30 | ニューロメトリックス・インコーポレーテッド | ユーザの睡眠覚醒状態を自動的に検出する、経皮的電気神経刺激装置 |
| EP3003473B1 (en) | 2013-05-30 | 2018-08-22 | Graham H. Creasey | Topical neurological stimulation |
| US11229789B2 (en) | 2013-05-30 | 2022-01-25 | Neurostim Oab, Inc. | Neuro activator with controller |
| US9936899B2 (en) * | 2013-10-07 | 2018-04-10 | Joseph Goldman | Tremor reduction system and device |
| US9867985B2 (en) | 2014-03-24 | 2018-01-16 | Bioness Inc. | Systems and apparatus for gait modulation and methods of use |
| US10600596B2 (en) | 2014-04-21 | 2020-03-24 | Verily Life Sciences Llc | Adapter to attach implements to an actively controlled human tremor cancellation platform |
| AU2015264561B2 (en) | 2014-05-20 | 2020-02-20 | Nevro Corporation | Implanted pulse generators with reduced power consumption via signal strength/duration characteristics, and associated systems and methods |
| JP2015219887A (ja) * | 2014-05-21 | 2015-12-07 | 日本メクトロン株式会社 | 電気触覚提示装置 |
| JP6606105B2 (ja) * | 2014-06-02 | 2019-11-13 | カラ ヘルス,インコーポレイテッド | 振戦を治療するための抹消神経刺激用のシステム及び方法 |
| US10083233B2 (en) | 2014-09-09 | 2018-09-25 | Microsoft Technology Licensing, Llc | Video processing for motor task analysis |
| US20160096027A1 (en) * | 2014-10-01 | 2016-04-07 | Yaakov ASSEO | Wireless delivery of transcutaneaous electrical nerve stimulation (tens) treatments |
| KR101552445B1 (ko) * | 2014-11-28 | 2015-09-18 | 성균관대학교산학협력단 | 섬유형 마찰전기 발전 소자, 마찰전기를 이용한 전기자극기 및 이를 이용한 마찰전기 발전 의류 |
| JP6769967B2 (ja) * | 2015-01-08 | 2020-10-14 | ジーエスケイ コンシューマー ヘルスケア エス.エイ. | 拡張された睡眠解析のための脚方向および運動の自動検知を伴う拡張された経皮的電気神経刺激器 |
| WO2016130835A1 (en) * | 2015-02-12 | 2016-08-18 | Creasey Graham H | Non-invasive selective human and mammalian nerve stimulation apparatus, system and method |
| US10271770B2 (en) | 2015-02-20 | 2019-04-30 | Verily Life Sciences Llc | Measurement and collection of human tremors through a handheld tool |
| US11077301B2 (en) | 2015-02-21 | 2021-08-03 | NeurostimOAB, Inc. | Topical nerve stimulator and sensor for bladder control |
| US20160250470A1 (en) * | 2015-02-26 | 2016-09-01 | Stryker Corporation | Rehabilitation Monitor And Pain Treatment Assembly |
| US9517344B1 (en) | 2015-03-13 | 2016-12-13 | Nevro Corporation | Systems and methods for selecting low-power, effective signal delivery parameters for an implanted pulse generator |
| US9943430B2 (en) | 2015-03-25 | 2018-04-17 | Verily Life Sciences Llc | Handheld tool for leveling uncoordinated motion |
| US11364380B2 (en) | 2015-03-27 | 2022-06-21 | Elwha Llc | Nerve stimulation system, subsystem, headset, and earpiece |
| US10052486B2 (en) | 2015-04-06 | 2018-08-21 | Medtronic, Inc. | Timed delivery of electrical stimulation therapy |
| US10751532B2 (en) * | 2015-04-09 | 2020-08-25 | The Regents Of The University Of California | Nerve stimulation device for treating or reducing paralysis |
| CA2982238C (en) | 2015-04-14 | 2022-01-04 | INESC TEC - Instituto de Engenharia de Sistemas e Computadores, Tecnologia e Ciencia | Wrist rigidity assessment device for use in deep brain stimulation surgery |
| US10765856B2 (en) * | 2015-06-10 | 2020-09-08 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units |
| US9818310B2 (en) | 2015-06-22 | 2017-11-14 | Verily Life Sciences Llc | Assessment of nutrition intake using a handheld tool |
| US10159432B1 (en) | 2015-06-22 | 2018-12-25 | Verily Life Sciences Llc | Detection and evaluation of task performance with a handheld tool |
| CN104984475B (zh) * | 2015-07-24 | 2018-03-06 | 上海交通大学 | 基于皮肤反射原理的抑制帕金森静息性震颤的康复设备 |
| WO2017033189A1 (en) * | 2015-08-24 | 2017-03-02 | Innoventions Ltd. | Method and apparatus for distal nerve electrostimulation for the treatment of medical conditions |
| EP3341073B1 (en) | 2015-08-26 | 2023-07-26 | Boston Scientific Neuromodulation Corporation | Machine learning to optimize spinal cord stimulation |
| US10603482B2 (en) | 2015-09-23 | 2020-03-31 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors |
| JP6951750B2 (ja) * | 2015-10-14 | 2021-10-20 | 国立大学法人東京工業大学 | 自動診断装置 |
| US10945618B2 (en) * | 2015-10-23 | 2021-03-16 | Valencell, Inc. | Physiological monitoring devices and methods for noise reduction in physiological signals based on subject activity type |
| US20170131775A1 (en) * | 2015-11-10 | 2017-05-11 | Castar, Inc. | System and method of haptic feedback by referral of sensation |
| US10300277B1 (en) * | 2015-12-14 | 2019-05-28 | Nevro Corp. | Variable amplitude signals for neurological therapy, and associated systems and methods |
| AU2017206723B2 (en) * | 2016-01-11 | 2021-11-25 | Bioness Medical, Inc. | Systems and apparatus for gait modulation and methods of use |
| CN105701806B (zh) * | 2016-01-11 | 2018-08-03 | 上海交通大学 | 基于深度图像的帕金森震颤运动特征检测方法及系统 |
| EP3405251A4 (en) | 2016-01-21 | 2019-08-28 | Cala Health, Inc. | SYSTEMS, METHODS AND DEVICES FOR PERIPHERAL NEUROMODULATION FOR THE TREATMENT OF DISEASES RELATED TO BUBBLE HYPERACTIVITY |
| EP3416719B1 (en) | 2016-02-19 | 2024-08-14 | Nalu Medical, Inc. | Apparatus with enhanced stimulation waveforms |
| JP6334588B2 (ja) | 2016-03-10 | 2018-05-30 | H2L株式会社 | 電気刺激システム |
| US10449672B2 (en) * | 2016-03-14 | 2019-10-22 | California Institute Of Technology | Wearable electromyography sensor array using conductive cloth electrodes for human-robot interactions |
| WO2017165410A1 (en) | 2016-03-21 | 2017-09-28 | Nalu Medical, Inc. | Devices and methods for positioning external devices in relation to implanted devices |
| CN109069830B (zh) * | 2016-03-22 | 2023-03-10 | 席拉博迪股份有限公司 | 紧凑型肌肉刺激器 |
| US10363413B2 (en) * | 2016-03-25 | 2019-07-30 | Universidad Adolfo Ibañez | Methods and systems for tremor reduction |
| US10118696B1 (en) | 2016-03-31 | 2018-11-06 | Steven M. Hoffberg | Steerable rotating projectile |
| US10252053B2 (en) | 2016-03-31 | 2019-04-09 | University Of Utah Research Foundation | Electronic nerve stimulation |
| WO2017167930A1 (en) | 2016-03-31 | 2017-10-05 | Koninklijke Philips N.V. | Device and system for detecting muscle seizure of a subject |
| US11406558B2 (en) | 2016-04-25 | 2022-08-09 | Preactive Technologies Inc. | Reducing brain injury by limiting brain motion during sudden deceleration or acceleration of the head |
| US12041997B2 (en) * | 2016-04-25 | 2024-07-23 | Preactive Technologies Inc. | Reducing brain injury by limiting brain motion during sudden deceleration or acceleration of the head |
| US20220211319A1 (en) * | 2016-05-11 | 2022-07-07 | The Regents Of The University Of California | Non-invasive proprioceptive stimulation for treating epilepsy |
| CN109661251A (zh) * | 2016-05-31 | 2019-04-19 | 斯高弗盖斯特实验室公司 | 神经刺激装置和方法 |
| JP6100985B1 (ja) * | 2016-06-23 | 2017-03-22 | 正悦 袴田 | 家庭用電気治療器 |
| CN105997009A (zh) * | 2016-07-01 | 2016-10-12 | 张民 | 一种可穿戴口吃矫正装置及一种口吃矫正衣 |
| JP7077297B2 (ja) | 2016-07-08 | 2022-05-30 | カラ ヘルス,インコーポレイテッド | 厳密にn個の電極および改善された乾式電極を用いてn個の神経を刺激するためのシステムおよび方法 |
| JP2019527096A (ja) * | 2016-07-13 | 2019-09-26 | ジーエスケイ コンシューマー ヘルスケア エス.エイ. | 概日リズム等の時間的変動に対する経皮的電気神経刺激の自動的補償のための装置および方法 |
| EP3484577B1 (en) | 2016-07-18 | 2025-06-18 | Nalu Medical, Inc. | Systems for treating pelvic disorders and pain conditions |
| CN206434707U (zh) * | 2016-08-06 | 2017-08-25 | 深圳市前海安测信息技术有限公司 | 用于减轻帕金森病患者手部震颤的智能手环 |
| CN206424425U (zh) * | 2016-08-06 | 2017-08-22 | 深圳市前海安测信息技术有限公司 | 用于辅助帕金森病患者康复的可穿戴设备 |
| US12233265B2 (en) * | 2016-08-25 | 2025-02-25 | Cala Health, Inc. | Systems and methods for treating cardiac dysfunction through peripheral nerve stimulation |
| US10851867B2 (en) * | 2016-08-29 | 2020-12-01 | Verily Life Sciences Llc | Method and system for a feedback controller for a handheld tool |
| US20180064344A1 (en) * | 2016-09-02 | 2018-03-08 | California State University Fresno Foundation | Tremor Reduction Device |
| KR20180036634A (ko) * | 2016-09-30 | 2018-04-09 | (주)와이브레인 | 원격 의료 서비스 시스템 |
| US11896824B2 (en) | 2016-10-05 | 2024-02-13 | Stimvia S.R.O. | Method for neuromodulation treatment of low urinary tract dysfunction |
| PL3503960T3 (pl) | 2016-10-05 | 2020-09-21 | Tesla Medical, S.R.O. | Urządzenie do leczenia neuromodulacją |
| US11638814B2 (en) | 2016-10-05 | 2023-05-02 | Tesla Medical S.R.O. | Method for neuromodulation treatment of neurodegenerative disease |
| US11839762B2 (en) | 2016-10-05 | 2023-12-12 | Stimvia S.R.O. | Neuromodulation medical treatment device |
| CN106362287A (zh) * | 2016-10-24 | 2017-02-01 | 天津大学 | 一种新型mi‑sssep混合脑‑机接口方法及系统 |
| WO2018093765A1 (en) * | 2016-11-15 | 2018-05-24 | Regents Of The University Of California | Methods and apparatuses for improving peripheral nerve function |
| CN110381826A (zh) | 2016-11-25 | 2019-10-25 | 约翰·丹尼尔斯 | 人机触觉界面和可穿戴电子产品方法及装置 |
| JP6140911B1 (ja) * | 2016-11-29 | 2017-06-07 | 正悦 袴田 | 家庭用電気治療器 |
| CN109804331B (zh) * | 2016-12-02 | 2021-06-22 | 皮松科技股份有限公司 | 检测和使用身体组织电信号 |
| EP3558446B1 (en) | 2016-12-23 | 2022-08-03 | NeuroMetrix, Inc. | Smart electrode assembly for transcutaneous electrical nerve stimulation (tens) |
| US11103691B2 (en) | 2019-10-03 | 2021-08-31 | Noctrix Health, Inc. | Peripheral nerve stimulation for restless legs syndrome |
| WO2018129351A1 (en) | 2017-01-05 | 2018-07-12 | Shriram Raghunathan | Restless leg syndrome or overactive nerve treatment |
| US10195097B1 (en) * | 2017-01-13 | 2019-02-05 | Gaetano Cimo | Neuromuscular plasticity apparatus and method using same |
| US10507155B1 (en) * | 2017-01-13 | 2019-12-17 | Gaetano Cimo | Tremor suppression apparatus and method using same |
| IT201700005161A1 (it) | 2017-01-18 | 2018-07-18 | Viktor S R L | Metodo ed apparecchiatura di elettrostimolazione |
| AU2018216658B2 (en) | 2017-02-01 | 2023-07-13 | Avent, Inc. | EMG guidance for probe placement, nearby tissue preservation, and lesion confirmation |
| US9827430B1 (en) * | 2017-02-02 | 2017-11-28 | Qualcomm Incorporated | Injected conductive tattoos for powering implants |
| EP3585475B1 (en) | 2017-02-24 | 2024-04-03 | Nalu Medical, Inc. | Apparatus with sequentially implanted stimulators |
| US10898710B1 (en) | 2017-03-20 | 2021-01-26 | Bergen Sanderford | Involuntary response stimulator and therapy |
| WO2018187241A1 (en) | 2017-04-03 | 2018-10-11 | Cala Health, Inc. | Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder |
| US10420663B2 (en) | 2017-05-01 | 2019-09-24 | Verily Life Sciences Llc | Handheld articulated user-assistive device with behavior control modes |
| EP3621689B1 (en) | 2017-05-09 | 2025-04-16 | Nalu Medical, Inc. | Stimulation apparatus |
| US11051737B2 (en) * | 2017-05-19 | 2021-07-06 | Ricoh Company, Ltd. | Biomagnetic measurement method, biomagnetic measuring device, and biomagnetic measuring system |
| US11185256B2 (en) | 2017-05-26 | 2021-11-30 | Indian Institute Of Technology, Gutahati | Point-of-care hand tremor detection system |
| US11058877B2 (en) | 2017-05-30 | 2021-07-13 | Neurometrix, Inc. | Apparatus and method for the automated control of transcutaneous electrical nerve stimulation based on current and forecasted weather conditions |
| WO2019008571A1 (en) | 2017-07-02 | 2019-01-10 | Oberon Sciences Ilan Ltd. | SYSTEM AND METHOD SPECIFIC TO A SUBJECT FOR PREVENTING BODY ADAPTATION TO CHRONIC DISEASE TREATMENT |
| USD837394S1 (en) | 2017-07-11 | 2019-01-01 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation (TENS) device |
| KR101978803B1 (ko) * | 2017-07-13 | 2019-05-15 | 주식회사 디플즈 | 전기 자극을 통한 손 떨림 개선훈련용 웨어러블 장치 및 이를 이용한 손 떨림 개선훈련 시스템 |
| JP7496045B2 (ja) * | 2017-07-25 | 2024-06-06 | 伊藤超短波株式会社 | 電流刺激装置 |
| CN107510890A (zh) * | 2017-08-21 | 2017-12-26 | 中国科学院苏州生物医学工程技术研究所 | 功能性脑深部电刺激控制系统及方法 |
| US20210330547A1 (en) * | 2017-09-01 | 2021-10-28 | Adventus Ventures, Llc | Systems and methods for controlling the effects of tremors |
| WO2019060298A1 (en) | 2017-09-19 | 2019-03-28 | Neuroenhancement Lab, LLC | METHOD AND APPARATUS FOR NEURO-ACTIVATION |
| USD857910S1 (en) | 2017-09-21 | 2019-08-27 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation device |
| USD865986S1 (en) | 2017-09-21 | 2019-11-05 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation device strap |
| EP3731922B1 (en) | 2017-10-23 | 2024-02-21 | DataFeel Inc. | Communication devices, methods, and systems |
| US12403306B2 (en) * | 2017-10-23 | 2025-09-02 | Cardiac Pacemakers, Inc. | Electric field shaping leads for treatment of cancer |
| US11247045B2 (en) | 2017-10-25 | 2022-02-15 | Epineuron Technologies Inc. | Systems and methods for delivering neuroregenerative therapy |
| US10589089B2 (en) | 2017-10-25 | 2020-03-17 | Epineuron Technologies Inc. | Systems and methods for delivering neuroregenerative therapy |
| EP3703812A4 (en) * | 2017-11-05 | 2020-12-02 | Oberon Sciences Ilan Ltd. | INDIVIDUALLY TAILORED PROCESS FOR IMPROVING ORGAN FUNCTION ON THE BASIS OF CONTINUOUSLY DEVELOPED RANDOMIZATION |
| CN111601636A (zh) | 2017-11-07 | 2020-08-28 | Oab神经电疗科技公司 | 具有自适应电路的非侵入性神经激活器 |
| KR102050319B1 (ko) * | 2017-11-30 | 2019-12-02 | 주식회사 싸이버메딕 | 실시간 뇌 활성도 변화에 따른 모니터링과 중추 및 말초 신경 복합자극을 통한 뇌신경 조절장치 |
| KR102100696B1 (ko) * | 2017-11-30 | 2020-04-16 | 주식회사 싸이버메딕 | 중추신경 및 말초 신경에 대한 복합자극을 이용한 뇌신경 조절장치 |
| CN107875512B (zh) * | 2017-12-01 | 2021-04-13 | 中国人民解放军第三〇七医院 | 一种神经元电子脉冲发生系统及方法 |
| US11717686B2 (en) | 2017-12-04 | 2023-08-08 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to facilitate learning and performance |
| US20190167982A1 (en) * | 2017-12-06 | 2019-06-06 | Y-Brain Inc. | Stimulation health care module |
| US11672972B2 (en) | 2017-12-21 | 2023-06-13 | Galvani Bioelectronics Limited | Nerve stimulation device for unidirectional stimulation and current steering |
| US11745010B2 (en) | 2017-12-21 | 2023-09-05 | Galvani Bioelectronics Limited | Nerve stimulation device for current steering |
| US11478603B2 (en) | 2017-12-31 | 2022-10-25 | Neuroenhancement Lab, LLC | Method and apparatus for neuroenhancement to enhance emotional response |
| US12280219B2 (en) | 2017-12-31 | 2025-04-22 | NeuroLight, Inc. | Method and apparatus for neuroenhancement to enhance emotional response |
| WO2019136176A1 (en) * | 2018-01-03 | 2019-07-11 | Nse Products, Inc. | Fingertip mounted microcurrent device for skin |
| EP3735173B1 (en) * | 2018-01-05 | 2023-07-05 | Myant Inc. | Multi-functional tubular worn garment |
| WO2019143790A1 (en) | 2018-01-17 | 2019-07-25 | Cala Health, Inc. | Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation |
| CR20200357A (es) | 2018-01-30 | 2021-03-29 | Nevro Corp | Uso eficiente de una batería de generador de pulsos implantable, y sistemas y métodos asociados |
| US11357981B2 (en) * | 2018-03-01 | 2022-06-14 | Adventus Ventures, Llc | Systems and methods for controlling blood pressure |
| US11712637B1 (en) | 2018-03-23 | 2023-08-01 | Steven M. Hoffberg | Steerable disk or ball |
| US11364361B2 (en) | 2018-04-20 | 2022-06-21 | Neuroenhancement Lab, LLC | System and method for inducing sleep by transplanting mental states |
| CN108629304B (zh) * | 2018-04-26 | 2020-12-08 | 深圳市臻络科技有限公司 | 一种冻结步态在线检测方法 |
| US20210244940A1 (en) | 2018-05-03 | 2021-08-12 | Cala Health, Inc. | Wearable, ergonomic neurostimulation system |
| USD861903S1 (en) | 2018-05-15 | 2019-10-01 | Neurometrix, Inc. | Apparatus for transcutaneous electrical nerve stimulation |
| CN108635668A (zh) * | 2018-05-18 | 2018-10-12 | 西安交通大学医学院第二附属医院 | 一种基于高频电刺激的智能阻断系统 |
| US20190038222A1 (en) * | 2018-05-23 | 2019-02-07 | Yuri Krimon | Mitigating effects of neuro-muscular ailments |
| CN108742612B (zh) * | 2018-05-24 | 2023-12-12 | 王开亮 | 基于肌电标志物的dbs有效性检测设备 |
| EP3586915A1 (de) * | 2018-06-25 | 2020-01-01 | BIOTRONIK SE & Co. KG | Vorrichtung zur aktivierung von zellstrukturen mittels elektromagnetischer energie |
| WO2020006048A1 (en) * | 2018-06-27 | 2020-01-02 | Cala Health, Inc. | Multi-modal stimulation for treating tremor |
| WO2020018990A1 (en) * | 2018-07-20 | 2020-01-23 | Jones Stacy | Bilateral stimulation devices |
| KR102095645B1 (ko) * | 2018-08-16 | 2020-04-23 | 한국과학기술원 | 사용자의 움직임에 기반한 고유 수용성 감각 자극 장치 |
| US20210339024A1 (en) * | 2018-09-06 | 2021-11-04 | Alpha Omega Neuro Technologies Ltd. | Therapeutic space assessment |
| US11701293B2 (en) * | 2018-09-11 | 2023-07-18 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| US11839583B1 (en) | 2018-09-11 | 2023-12-12 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| US12318341B2 (en) | 2018-09-11 | 2025-06-03 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| CN113382683A (zh) | 2018-09-14 | 2021-09-10 | 纽罗因恒思蒙特实验有限责任公司 | 改善睡眠的系统和方法 |
| US11058875B1 (en) | 2018-09-19 | 2021-07-13 | Nevro Corp. | Motor function in spinal cord injury patients via electrical stimulation, and associated systems and methods |
| CN113711623A (zh) | 2018-09-24 | 2021-11-26 | Nesos公司 | 用于治疗患者疾病的耳部的神经刺激,以及相关的系统和方法 |
| CN120586279A (zh) | 2018-09-26 | 2025-09-05 | 卡拉健康公司 | 预测性的疗法神经刺激系统 |
| WO2020072513A1 (en) * | 2018-10-02 | 2020-04-09 | Tufts Medical Center, Inc. | Systems and methods for sensing and correcting electrical activity of nerve tissue |
| US10278880B1 (en) | 2018-10-10 | 2019-05-07 | Joseph Goldman | Head tremor reduction system and method |
| EP3878505B1 (en) | 2018-10-15 | 2023-05-24 | Novocure GmbH | Generating tumor treating fields (ttfields) with high uniformity throughout the brain |
| CA3117462A1 (en) * | 2018-10-24 | 2020-04-30 | Cala Health, Inc. | Nerve stimulation for treating migraine and other headache conditions |
| WO2020106435A1 (en) | 2018-11-20 | 2020-05-28 | Nuenerchi, Inc. | Electrical stimulation device for applying frequency and peak voltage having inverse relationship |
| WO2020115326A2 (en) | 2018-12-07 | 2020-06-11 | GSK Consumer Healthcare S.A. | Intelligent determination of therapeutic stimulation intensity for transcutaneous electrical nerve stimulation |
| US20220015500A1 (en) * | 2018-12-12 | 2022-01-20 | University Of Delaware | Vibrational device and methods for mitigating symptoms of freezing of gait |
| US12112124B1 (en) * | 2018-12-21 | 2024-10-08 | Altera Digital Health Inc. | Computing system for generating customized health form based on clinical data |
| KR102517959B1 (ko) | 2019-01-11 | 2023-04-05 | 주식회사 뉴냅스 | 자극 제공 장치, 지각 훈련 방법 및 컴퓨터 프로그램 |
| WO2020145719A1 (ko) * | 2019-01-11 | 2020-07-16 | 주식회사 뉴냅스 | 자극 제공 장치, 지각 훈련 방법 및 컴퓨터 프로그램 |
| US12035206B2 (en) | 2019-01-13 | 2024-07-09 | Kinaptic, LLC | Fabric, connections and functional structures for wearable electronic garments and applications for the same |
| US11590352B2 (en) | 2019-01-29 | 2023-02-28 | Nevro Corp. | Ramped therapeutic signals for modulating inhibitory interneurons, and associated systems and methods |
| WO2020197519A1 (en) * | 2019-03-25 | 2020-10-01 | Odtü Geli̇şti̇rme Vakfi Eği̇ti̇m Hi̇zmetleri̇ Anoni̇m Şi̇rketi̇ | Glove type tens device with a temperature tracking system |
| TWI757593B (zh) | 2019-03-29 | 2022-03-11 | 愛能科技股份有限公司 | 手持抗震裝置及其手持工具 |
| US11446490B2 (en) | 2019-04-05 | 2022-09-20 | Tesla Medical S.R.O. | Method for a neuromodulation treatment |
| KR102247761B1 (ko) * | 2019-05-17 | 2021-05-04 | 영남대학교 산학협력단 | 심층 학습을 이용한 심뇌 자극 시스템 및 방법, 그 방법을 이용한 기록 매체 |
| GB201909176D0 (en) * | 2019-06-26 | 2019-08-07 | Royal College Of Art | Wearable device |
| JP2022538419A (ja) | 2019-06-26 | 2022-09-02 | ニューロスティム テクノロジーズ エルエルシー | 適応回路を備えた非侵襲性神経活性化装置 |
| IL291105B2 (en) * | 2019-06-28 | 2024-09-01 | Battelle Memorial Institute | Neurosleeve for closed loop emg-fes based control of pathological tremors |
| WO2020264280A1 (en) * | 2019-06-28 | 2020-12-30 | Battelle Memorial Institute | Neurosleeve for closed loop emg-fes based control of pathological tremors |
| US11766191B2 (en) | 2019-06-28 | 2023-09-26 | Battelle Memorial Institute | Neurosleeve for closed loop EMG-FES based control of pathological tremors |
| CN110236562A (zh) * | 2019-07-01 | 2019-09-17 | 温州医科大学附属第二医院、温州医科大学附属育英儿童医院 | 一种用于检测帕金森病病人手部震颤的指套 |
| EP3996804A1 (en) | 2019-07-11 | 2022-05-18 | The University of Nottingham | Non-invasive brain stimulation |
| WO2021021977A1 (en) * | 2019-07-31 | 2021-02-04 | Med-El Elektromedizinische Geraete Gmbh | Printed tattoo electrode respiration sensor for laryngeal pacemakers |
| US11583678B2 (en) | 2019-08-02 | 2023-02-21 | Boston Scientific Neuromodulation Corporation | Neurostimulation system with neurodegenerative disease detection |
| US12251560B1 (en) | 2019-08-13 | 2025-03-18 | Cala Health, Inc. | Connection quality determination for wearable neurostimulation systems |
| EP4013485A4 (en) * | 2019-08-18 | 2023-08-30 | Neurolief Ltd. | METHODS AND DEVICES FOR TRANSDERMAL NEUROSTIMULATION TREATMENT |
| US11247043B2 (en) | 2019-10-01 | 2022-02-15 | Epineuron Technologies Inc. | Electrode interface devices for delivery of neuroregenerative therapy |
| US11890468B1 (en) | 2019-10-03 | 2024-02-06 | Cala Health, Inc. | Neurostimulation systems with event pattern detection and classification |
| JP2022551604A (ja) | 2019-10-03 | 2022-12-12 | ノクトリックス ヘルス インコーポレイテッド | むずむず脚症候群のための末梢神経刺激 |
| US12128214B2 (en) | 2019-10-04 | 2024-10-29 | Arnold Chase | Intelligent drug delivery system |
| US12059553B2 (en) * | 2019-10-04 | 2024-08-13 | Arnold Chase | Intelligent drug delivery system |
| NL1043406B1 (nl) * | 2019-10-07 | 2021-06-01 | Pharmahope Holding Bv | Invasief neurodegeneratieve filtersysteem om ongewenste signalen die van en naar de hersenen, zenuwbanen en spieren worden gezonden, te filteren en te blokkeren. |
| WO2021075368A1 (ja) * | 2019-10-16 | 2021-04-22 | 国立大学法人東京工業大学 | 診断装置 |
| WO2021117693A1 (ja) * | 2019-12-12 | 2021-06-17 | 株式会社村田製作所 | 生体活動観測装置 |
| EP4017580A4 (en) | 2019-12-16 | 2023-09-06 | Neurostim Technologies LLC | NON-INVASIVE NERVE ACTIVATOR WITH AMPLIFIED CHARGE DISTRIBUTION |
| GB2590506B (en) * | 2019-12-20 | 2022-09-07 | Gyrogear Ltd | Apparatus for hand tremor stabilisation |
| GB2590507B (en) * | 2019-12-20 | 2022-08-31 | Gyrogear Ltd | Tremor stabilisation apparatus |
| BR112021010298A2 (pt) * | 2020-01-13 | 2022-07-26 | Angelo Eustaquio Zandona Freitas | Processo e sistema de ativação e monitorização neuromuscular artificial baseado em inteligência artificial |
| WO2021174215A1 (en) | 2020-02-28 | 2021-09-02 | The Regents Of The University Of California | Integrated energy harvesting transceivers and transmitters with dual-antenna architecture for miniaturized implants and electrochemical sensors |
| WO2021178914A1 (en) * | 2020-03-06 | 2021-09-10 | Northwell Health, Inc. | System and method for determining user intention from limb or body motion or trajectory to control neuromuscular stimuation or prosthetic device operation |
| CN111265373B (zh) * | 2020-04-01 | 2021-04-30 | 孔慧 | 一种婴幼儿助消化护理床 |
| US12369816B2 (en) | 2020-04-19 | 2025-07-29 | John J. Daniels | Mask-based diagnostic system using exhaled breath condensate |
| US12442726B2 (en) | 2020-04-19 | 2025-10-14 | John J. Daniels | Mask-based testing system for detecting biomarkers in exhaled breath condensate, aerosols and gases |
| US12031982B2 (en) | 2020-04-19 | 2024-07-09 | John J. Daniels | Using exhaled breath condensate for testing for a biomarker of COVID-19 |
| WO2021225994A1 (en) * | 2020-05-02 | 2021-11-11 | Datafeel Inc. | Communication devices, methods, and systems |
| TWI889816B (zh) | 2020-05-06 | 2025-07-11 | 瑞士商諾沃庫勒有限責任公司 | 用於產生腫瘤治療電場之導電襯墊以及生產和使用其之方法 |
| MX2022013888A (es) * | 2020-05-08 | 2022-11-30 | Univ Maine System | Metodos y dispositivos para tratamiento de neuropatia. |
| EP3912677A1 (en) | 2020-05-18 | 2021-11-24 | Consejo Superior de Investigaciones Científicas (CSIC) | Control method for a neuroprosthetic device for the reduction of pathological tremors |
| EP4149614A4 (en) * | 2020-05-20 | 2024-06-26 | Cala Health, Inc. | PARAMETER VARIATION IN NERVE STIMULATION |
| US11635279B2 (en) | 2020-06-06 | 2023-04-25 | Battelle Memorial Institute | High-definition electrical stimulation for enhanced spatial awareness and target alignment in weapon aiming applications |
| WO2021248004A1 (en) * | 2020-06-06 | 2021-12-09 | Battelle Memorial Institute | High-definition electrical stimulation garment for evoking realistic somatosensation |
| WO2021260473A1 (en) * | 2020-06-24 | 2021-12-30 | Jorge Serafim Sobrado Marinho | Sensory unit for dental implants |
| CA3145320A1 (en) * | 2020-06-26 | 2021-12-30 | Battelle Memorial Institute | Neurosleeve for closed loop emg-fes based control of pathological tremors |
| EP4188216A1 (en) * | 2020-08-03 | 2023-06-07 | GyroGear Limited | Systems and methods for tremor management |
| WO2022076405A1 (en) * | 2020-10-05 | 2022-04-14 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| US11934583B2 (en) | 2020-10-30 | 2024-03-19 | Datafeel Inc. | Wearable data communication apparatus, kits, methods, and systems |
| CN112690935B (zh) * | 2020-12-04 | 2022-06-07 | 中国矿业大学 | 一种基于磁流变液的指关节震颤抑制装置 |
| US11660222B2 (en) | 2020-12-07 | 2023-05-30 | Robert Lee Bullock | Methods and systems for treating hand tremors |
| GB2602044A (en) * | 2020-12-16 | 2022-06-22 | Imperial College Innovations Ltd | A muscle stimulation and monitoring apparatus |
| CN112774036A (zh) * | 2021-02-05 | 2021-05-11 | 杭州诺为医疗技术有限公司 | 植入式闭环系统多通道的电信号处理方法和装置 |
| WO2022173871A1 (en) | 2021-02-09 | 2022-08-18 | The Regents Of The University Of California | Methods and apparatuses for treating stroke using low-frequency stimulation |
| US20240139514A1 (en) * | 2021-02-22 | 2024-05-02 | The Trustees Of The University Of Pennsylvania | Implantable sensory system |
| US12011287B2 (en) * | 2021-02-24 | 2024-06-18 | Medtronic, Inc. | Medical device using spectral activity processing |
| US20240173551A1 (en) * | 2021-03-10 | 2024-05-30 | The Regents Of The University Of California | Closed-Loop Wireless Stimulation Systems with Wirelessly Powered Stimulators and Recorders |
| CN113208596A (zh) * | 2021-03-12 | 2021-08-06 | 江西燕优科技有限公司 | 一种基于阿基米德螺线的手部协调性量化方法 |
| US20220322970A1 (en) * | 2021-04-07 | 2022-10-13 | Jagdish Singh | Innovative kit that includes a wearable for detecting, characterizing, and monitoring involuntary movement and attachable non-intrusive interventions to relieve tremors in human limbs |
| EP4329871A1 (en) * | 2021-04-30 | 2024-03-06 | Hyperice IP SubCo, LLC | Wearable therapeutic device with replaceable pads, and related systems and methods |
| US20220355107A1 (en) * | 2021-05-06 | 2022-11-10 | Neurometrix, Inc. | Apparatus and method for automated control of a transcutaneous electrical nerve stimulation (tens) device based on tens user's activity type, level and duration |
| WO2023015159A2 (en) * | 2021-08-03 | 2023-02-09 | Cala Health, Inc. | Parameter variations in neural stimulation |
| WO2023014787A1 (en) * | 2021-08-04 | 2023-02-09 | Chase Arnold | Intelligent drug delivery system |
| CN113577559B (zh) * | 2021-09-03 | 2022-07-26 | 复旦大学 | 基于多信号的闭环深部脑刺激装置、系统及设备 |
| CN113713255B (zh) * | 2021-09-03 | 2022-07-19 | 复旦大学 | 一种基于多信号的闭环深部脑刺激系统 |
| CN113546317B (zh) * | 2021-09-09 | 2024-06-14 | 杭州范斯凯科技有限公司 | 一种腕戴神经刺激仪以及其使用方法 |
| KR102438195B1 (ko) * | 2021-11-18 | 2022-08-31 | 주식회사 뉴로젠 | 인지 장애에 대한 정보를 획득하는 방법 및 이를 수행하는 인지 장애 정보 획득 장치 |
| WO2023129866A1 (en) * | 2021-12-30 | 2023-07-06 | Teleflex Medical Incorporated | Compounded active pharmaceutical agents in thermoplastic polymer compositions and methods of manufacture |
| US11809629B1 (en) * | 2022-06-10 | 2023-11-07 | Afference Inc. | Wearable electronic device for inducing transient sensory events as user feedback |
| US12182328B2 (en) | 2022-06-10 | 2024-12-31 | Afference Inc. | Wearable electronic device for inducing transient sensory events as user feedback |
| EP4498901A4 (en) * | 2022-06-17 | 2025-05-07 | Samsung Electronics Co., Ltd. | System and method for enhancing user experience of an electronic device during abnormal sensation |
| USD1099341S1 (en) | 2022-08-01 | 2025-10-21 | Cala Health, Inc. | Neuromodulator and band set |
| US12340627B2 (en) | 2022-09-26 | 2025-06-24 | Pison Technology, Inc. | System and methods for gesture inference using computer vision |
| US12366923B2 (en) | 2022-09-26 | 2025-07-22 | Pison Technology, Inc. | Systems and methods for gesture inference using ML model selection |
| US12366920B2 (en) | 2022-09-26 | 2025-07-22 | Pison Technology, Inc. | Systems and methods for gesture inference using transformations |
| CN115721869A (zh) * | 2022-11-24 | 2023-03-03 | 中国科学院深圳先进技术研究院 | 用于外周神经刺激的光遗传系统 |
| CN116236159B (zh) * | 2023-02-17 | 2025-02-11 | 浙江环玛信息科技有限公司 | 帕金森症的自适应反馈系统及方法 |
| WO2024178016A2 (en) * | 2023-02-20 | 2024-08-29 | The Cleveland Clinic Foundation | Device for measurement collection and treatment |
| JP2024137560A (ja) * | 2023-03-25 | 2024-10-07 | 深▲せん▼市港基電技術有限公司 | 低周波治療器 |
| NL1044585B1 (nl) * | 2023-04-12 | 2024-10-24 | Omidvar Mehrdad | PZF systeem voor een gepersonaliseerde behandeling via het perifere zenuwstelsel |
| WO2025038457A1 (en) | 2023-08-11 | 2025-02-20 | Encora, Inc. | Apparatus and method for reduction of neurological movement disorder symptoms using wearable device |
| WO2025160357A1 (en) * | 2024-01-25 | 2025-07-31 | Case Western Reserve University | Locating a superficial neural structure using non-invasive electrical mapping |
| DE102024109309A1 (de) * | 2024-04-03 | 2025-10-09 | curetec GmbH | Milde koordinierte Reset-Neuromodulation durch Entrainment |
| CN118177791A (zh) * | 2024-05-15 | 2024-06-14 | 内蒙古自治区精神卫生中心(内蒙古自治区第三医院、内蒙古自治区脑科医院) | 用于上肢震颤抖动评估和失眠评估与治疗的智能穿戴设备 |
| CN118454106B (zh) * | 2024-05-16 | 2025-10-03 | 苏州市立医院 | 用于减轻上肢震颤智能可穿戴设备的处理方法及系统 |
| CN119971308B (zh) * | 2024-12-31 | 2025-12-09 | 江苏脑意科技有限公司 | 基于经颅时域干涉电刺激的康复训练方法和系统 |
Family Cites Families (774)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3204637A (en) | 1963-02-07 | 1965-09-07 | Erich J Frank | Stimulating apparatus |
| GB1434524A (en) | 1972-04-27 | 1976-05-05 | Nat Res Dev | Urinary control apparatus |
| DE2861010D1 (en) | 1977-08-03 | 1981-11-26 | Siemens Ag | Electrode |
| US4103808A (en) | 1977-08-12 | 1978-08-01 | Hallman Edward L | Watchband |
| JPS5838562B2 (ja) | 1977-09-06 | 1983-08-24 | 積水樹脂株式会社 | 組立道路の施工方法及び施工測定器具 |
| US4461075A (en) | 1979-01-31 | 1984-07-24 | Stimtech, Inc. | Method of making a stimulating electrode |
| US4300575A (en) | 1979-06-25 | 1981-11-17 | Staodynamics, Inc. | Air-permeable disposable electrode |
| US4458696A (en) | 1979-08-07 | 1984-07-10 | Minnesota Mining And Manufacturing Company | T.E.N.S. Electrode |
| US4539996A (en) | 1980-01-23 | 1985-09-10 | Minnesota Mining And Manufacturing Company | Conductive adhesive and biomedical electrode |
| US4729377A (en) | 1983-06-01 | 1988-03-08 | Bio-Stimu Trend Corporation | Garment apparatus for delivering or receiving electric impulses |
| US4582049A (en) | 1983-09-12 | 1986-04-15 | Ylvisaker Carl J | Patient initiated response method |
| US4739764A (en) | 1984-05-18 | 1988-04-26 | The Regents Of The University Of California | Method for stimulating pelvic floor muscles for regulating pelvic viscera |
| US4771779A (en) | 1984-05-18 | 1988-09-20 | The Regents Of The University Of California | System for controlling bladder evacuation |
| EP0167471B1 (en) | 1984-05-30 | 1992-01-22 | The University Of Melbourne | Electrotactile vocoder |
| US4569351A (en) | 1984-12-20 | 1986-02-11 | University Of Health Sciences/The Chicago Medical School | Apparatus and method for stimulating micturition and certain muscles in paraplegic mammals |
| US4669479A (en) | 1985-08-21 | 1987-06-02 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
| US4763659A (en) | 1985-08-21 | 1988-08-16 | Spring Creek Institute, Inc. | Dry electrode system for detection of biopotentials |
| US5003978A (en) | 1985-08-21 | 1991-04-02 | Technology 21, Inc. | Non-polarizable dry biomedical electrode |
| CA1319174C (en) | 1988-04-21 | 1993-06-15 | Lawrence E. Bertolucci | Electrical nerve stimulation device for nausea control |
| US5070862A (en) | 1988-06-21 | 1991-12-10 | Berlant Stephen R | Glove for electro-massage therapy |
| US4996987A (en) | 1989-05-10 | 1991-03-05 | Therapeutic Technologies Inc. | Power muscle stimulator |
| US5052391A (en) | 1990-10-22 | 1991-10-01 | R.F.P., Inc. | High frequency high intensity transcutaneous electrical nerve stimulator and method of treatment |
| US5137507A (en) | 1991-01-24 | 1992-08-11 | Park Chang Wan | Magnetic ring for stimulating fingers or toes |
| IL97701A (en) | 1991-03-28 | 1995-06-29 | Univ Ben Gurion | Device for desecrating the hand |
| GB9211085D0 (en) | 1992-05-23 | 1992-07-08 | Tippey Keith E | Electrical stimulation |
| WO1994000187A1 (en) * | 1992-06-22 | 1994-01-06 | Eitan Sobel | An implantable conducting system for the heart |
| DE4221931C1 (es) | 1992-07-03 | 1993-07-08 | Harald Dr. 8521 Moehrendorf De Mang | |
| JPH06205843A (ja) * | 1992-11-27 | 1994-07-26 | Daidan Kk | レート応答型ペースメーカ |
| GB9302335D0 (en) | 1993-02-05 | 1993-03-24 | Macdonald Alexander J R | Electrotherapeutic apparatus |
| US5397338A (en) | 1993-03-29 | 1995-03-14 | Maven Labs, Inc. | Electrotherapy device |
| US6081744A (en) | 1993-05-28 | 2000-06-27 | Loos; Hendricus G. | Electric fringe field generator for manipulating nervous systems |
| US5782874A (en) | 1993-05-28 | 1998-07-21 | Loos; Hendricus G. | Method and apparatus for manipulating nervous systems |
| GB9321086D0 (en) | 1993-10-13 | 1993-12-01 | Univ Alberta | Hand stimulator |
| US5575294A (en) | 1994-03-21 | 1996-11-19 | Perry; Robert E. | Method and device for managing freezing gait disorders |
| US5573011A (en) * | 1994-04-08 | 1996-11-12 | Felsing; Gary W. | System for quantifying neurological function |
| US5540235A (en) | 1994-06-30 | 1996-07-30 | Wilson; John R. | Adaptor for neurophysiological monitoring with a personal computer |
| IL111396A (en) | 1994-10-25 | 1997-07-13 | Ness Neuromuscular Electrical Stimulation Systems Ltd | Electrode system |
| US5514175A (en) | 1994-11-09 | 1996-05-07 | Cerebral Stimulation, Inc. | Auricular electrical stimulator |
| US5725471A (en) | 1994-11-28 | 1998-03-10 | Neotonus, Inc. | Magnetic nerve stimulator for exciting peripheral nerves |
| US5667484A (en) | 1995-04-21 | 1997-09-16 | Brossard; Andre | Method for controlling the reflex response of the muscles of a living body joint |
| US5775331A (en) | 1995-06-07 | 1998-07-07 | Uromed Corporation | Apparatus and method for locating a nerve |
| US5643173A (en) | 1995-09-01 | 1997-07-01 | Welles; William F. | Method and apparatus for stress relief |
| CA2171067A1 (en) | 1996-03-05 | 1997-09-06 | Brian J. Andrews | Neural prosthesis |
| US5716377A (en) | 1996-04-25 | 1998-02-10 | Medtronic, Inc. | Method of treating movement disorders by brain stimulation |
| AU6942198A (en) | 1997-03-27 | 1998-10-22 | Advanced Bionics, Inc. | System of implantable devices for monitoring and/or affecting body para meters |
| CA2217920A1 (en) | 1997-10-08 | 1999-04-08 | Neuromotion Inc. | Garment having controller that is activated by mechanical impact |
| US6016449A (en) | 1997-10-27 | 2000-01-18 | Neuropace, Inc. | System for treatment of neurological disorders |
| US6666874B2 (en) | 1998-04-10 | 2003-12-23 | Endicor Medical, Inc. | Rotational atherectomy system with serrated cutting tip |
| US6579270B2 (en) | 1998-06-04 | 2003-06-17 | Alcon Manufacturing, Ltd. | Liquefracture handpiece tip |
| WO2000000252A1 (en) | 1998-06-30 | 2000-01-06 | Origin Medsystems, Inc. | Apparatus and method for inducing vibrations in a living body |
| US6941171B2 (en) | 1998-07-06 | 2005-09-06 | Advanced Bionics Corporation | Implantable stimulator methods for treatment of incontinence and pain |
| US6735474B1 (en) | 1998-07-06 | 2004-05-11 | Advanced Bionics Corporation | Implantable stimulator system and method for treatment of incontinence and pain |
| US7231254B2 (en) | 1998-08-05 | 2007-06-12 | Bioneuronics Corporation | Closed-loop feedback-driven neuromodulation |
| US7747325B2 (en) * | 1998-08-05 | 2010-06-29 | Neurovista Corporation | Systems and methods for monitoring a patient's neurological disease state |
| US7324851B1 (en) | 1998-08-05 | 2008-01-29 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
| US7209787B2 (en) * | 1998-08-05 | 2007-04-24 | Bioneuronics Corporation | Apparatus and method for closed-loop intracranial stimulation for optimal control of neurological disease |
| US9375573B2 (en) | 1998-08-05 | 2016-06-28 | Cyberonics, Inc. | Systems and methods for monitoring a patient's neurological disease state |
| US7403820B2 (en) * | 1998-08-05 | 2008-07-22 | Neurovista Corporation | Closed-loop feedback-driven neuromodulation |
| US7599736B2 (en) | 2001-07-23 | 2009-10-06 | Dilorenzo Biomedical, Llc | Method and apparatus for neuromodulation and physiologic modulation for the treatment of metabolic and neuropsychiatric disease |
| US7277758B2 (en) | 1998-08-05 | 2007-10-02 | Neurovista Corporation | Methods and systems for predicting future symptomatology in a patient suffering from a neurological or psychiatric disorder |
| US7974696B1 (en) | 1998-08-05 | 2011-07-05 | Dilorenzo Biomedical, Llc | Closed-loop autonomic neuromodulation for optimal control of neurological and metabolic disease |
| US6366813B1 (en) | 1998-08-05 | 2002-04-02 | Dilorenzo Daniel J. | Apparatus and method for closed-loop intracranical stimulation for optimal control of neurological disease |
| US9415222B2 (en) | 1998-08-05 | 2016-08-16 | Cyberonics, Inc. | Monitoring an epilepsy disease state with a supervisory module |
| US9042988B2 (en) | 1998-08-05 | 2015-05-26 | Cyberonics, Inc. | Closed-loop vagus nerve stimulation |
| US6076018A (en) | 1998-09-04 | 2000-06-13 | Woodside Biomedical, Inc | Method and apparatus for low power regulated output in battery powered electrotherapy devices |
| AU758611B2 (en) | 1998-09-16 | 2003-03-27 | Axon Engineering, Inc. | Combined stimulation of ventral and dorsal sacral roots for control of bladder function |
| ATE328548T1 (de) | 1998-10-06 | 2006-06-15 | Bio Control Medical Ltd | Kontrolle von drängender inkontinenz |
| US6366814B1 (en) | 1998-10-26 | 2002-04-02 | Birinder R. Boveja | External stimulator for adjunct (add-on) treatment for neurological, neuropsychiatric, and urological disorders |
| US6505074B2 (en) | 1998-10-26 | 2003-01-07 | Birinder R. Boveja | Method and apparatus for electrical stimulation adjunct (add-on) treatment of urinary incontinence and urological disorders using an external stimulator |
| AU6465399A (en) | 1998-10-30 | 2000-05-22 | Aalborg Universitet | A method to control an overactive bladder |
| FR2785544B1 (fr) | 1998-11-09 | 2001-01-05 | Lhd Lab Hygiene Dietetique | Electrode de transfert d'un courant electrique traversant la peau d'un patient |
| US6161044A (en) * | 1998-11-23 | 2000-12-12 | Synaptic Corporation | Method and apparatus for treating chronic pain syndromes, tremor, dementia and related disorders and for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation |
| US6351674B2 (en) | 1998-11-23 | 2002-02-26 | Synaptic Corporation | Method for inducing electroanesthesia using high frequency, high intensity transcutaneous electrical nerve stimulation |
| US6178352B1 (en) | 1999-05-07 | 2001-01-23 | Woodside Biomedical, Inc. | Method of blood pressure moderation |
| JP4205337B2 (ja) | 1999-06-11 | 2009-01-07 | コックレア リミティド | 電気的組織刺激装置用の刺激出力の監視装置および制御回路 |
| US6272383B1 (en) | 1999-06-28 | 2001-08-07 | Woodside Biomedical, Inc. | Electro-acupuncture method using an electrical stimulator |
| US6445955B1 (en) | 1999-07-08 | 2002-09-03 | Stephen A. Michelson | Miniature wireless transcutaneous electrical neuro or muscular-stimulation unit |
| US8442615B2 (en) | 1999-07-21 | 2013-05-14 | Commwell Research and Development, Ltd. | Physiological measuring system comprising a garment in the form of a sleeve or glove and sensing apparatus incorporated in the garment |
| WO2001022897A1 (en) | 1999-09-28 | 2001-04-05 | Novasys Medical, Inc. | Treatment of tissue by application of energy and drugs |
| US20030195583A1 (en) | 1999-11-18 | 2003-10-16 | Woodside Biomedical, Inc. | Method of relieving anxiety or promoting relaxation |
| US6885888B2 (en) | 2000-01-20 | 2005-04-26 | The Cleveland Clinic Foundation | Electrical stimulation of the sympathetic nerve chain |
| US6546290B1 (en) | 2000-04-12 | 2003-04-08 | Roamitron Holding S.A. | Method and apparatus for electromedical therapy |
| US6393328B1 (en) | 2000-05-08 | 2002-05-21 | International Rehabilitative Sciences, Inc. | Multi-functional portable electro-medical device |
| US6704603B1 (en) | 2000-05-16 | 2004-03-09 | Lockheed Martin Corporation | Adaptive stimulator for relief of symptoms of neurological disorders |
| US6453204B1 (en) | 2000-08-11 | 2002-09-17 | Donald A. Rhodes | Magnetic electrode for delivering energy to the body |
| US7054689B1 (en) | 2000-08-18 | 2006-05-30 | Advanced Bionics Corporation | Fully implantable neurostimulator for autonomic nerve fiber stimulation as a therapy for urinary and bowel dysfunction |
| US6432037B1 (en) | 2000-08-31 | 2002-08-13 | Flexiprobe Ltd. | Intravaginal device for electrically stimulating and/or for sensing electrical activity of muscles and/or nerves defining and surrounding the intravaginal cavity |
| AUPR061600A0 (en) * | 2000-10-10 | 2000-11-02 | D & E Consulting Pty Ltd | Method and apparatus for controlling repetitive nervous system malfunction |
| AU2001295926A1 (en) | 2000-10-13 | 2002-04-22 | Daicel Chemical Industries, Ltd. | Process for producign optically active ethyl |
| US6678548B1 (en) | 2000-10-20 | 2004-01-13 | The Trustees Of The University Of Pennsylvania | Unified probabilistic framework for predicting and detecting seizure onsets in the brain and multitherapeutic device |
| EP1330287B1 (en) | 2000-10-26 | 2009-07-29 | Medtronic, Inc. | Apparatus to minimize the effects of a cardiac insult |
| US6567695B1 (en) | 2000-11-24 | 2003-05-20 | Woodside Biomedical, Inc. | Electro-acupuncture device with stimulation electrode assembly |
| US6564103B2 (en) | 2000-12-01 | 2003-05-13 | Visionquest Industries, Inc. | Electrical stimulator and method of use |
| BR0116749A (pt) | 2000-12-22 | 2006-11-28 | Genentech Inc | usos de artemina ou seu agonista e artigo manufaturado |
| JP2002200178A (ja) | 2000-12-28 | 2002-07-16 | Japan Science & Technology Corp | 骨盤部表面刺激電極装置及びその電極装置装着用下着 |
| US20020138116A1 (en) | 2001-03-21 | 2002-09-26 | Bertolucci Lawrence E. | Method of relieving migraines or headaches |
| JP2004526510A (ja) | 2001-03-30 | 2004-09-02 | ケース ウエスタン リザーブ ユニバーシティ | 選択的生理学的応答を達成するための、陰部神経または陰部神経枝の中、その上またはその付近の成分を選択的に刺激するためのシステムおよび方法 |
| US6839594B2 (en) | 2001-04-26 | 2005-01-04 | Biocontrol Medical Ltd | Actuation and control of limbs through motor nerve stimulation |
| US6892098B2 (en) * | 2001-04-26 | 2005-05-10 | Biocontrol Medical Ltd. | Nerve stimulation for treating spasticity, tremor, muscle weakness, and other motor disorders |
| JP2004533297A (ja) | 2001-05-29 | 2004-11-04 | メドトロニック・インコーポレーテッド | 心臓病の予防及び処置のための閉ループ神経調節システム |
| US8343026B2 (en) | 2001-06-26 | 2013-01-01 | Allan Gardiner | Therapeutic methods using electromagnetic radiation |
| US6735480B2 (en) | 2001-06-29 | 2004-05-11 | Abbott Laboratories | Electro-acupuncture device with D-shaped stimulation electrodes |
| WO2003005887A2 (en) | 2001-07-11 | 2003-01-23 | Nuvasive, Inc. | System and methods for determining nerve proximity, direction, and pathology during surgery |
| US20050055063A1 (en) | 2001-07-20 | 2005-03-10 | Loeb Gerald E. | Method and apparatus for the treatment of urinary tract dysfunction |
| US7263402B2 (en) | 2001-08-13 | 2007-08-28 | Advanced Bionics Corporation | System and method of rapid, comfortable parameter switching in spinal cord stimulation |
| US20030045922A1 (en) | 2001-08-29 | 2003-03-06 | Nancy Northrop | Skin treatment method and apparatus |
| US6449512B1 (en) | 2001-08-29 | 2002-09-10 | Birinder R. Boveja | Apparatus and method for treatment of urological disorders using programmerless implantable pulse generator system |
| US6959216B2 (en) | 2001-09-27 | 2005-10-25 | University Of Connecticut | Electronic muscle pump |
| IL145718A0 (en) | 2001-09-30 | 2002-07-25 | Ness Neuromuscular Electrical Stimulation Systems Ltd | Device for muscular stimulation |
| CA2408656C (en) | 2001-10-17 | 2016-06-21 | Rehabilicare, Inc. | Electrical nerve stimulation stimulator |
| CA2463936C (en) | 2001-10-18 | 2013-04-02 | Cystomedix, Inc. | Electro-nerve stimulator system and methods |
| US6788976B2 (en) * | 2001-11-02 | 2004-09-07 | Lockheed Martin Corporation | Movement timing simulator |
| US6862480B2 (en) | 2001-11-29 | 2005-03-01 | Biocontrol Medical Ltd. | Pelvic disorder treatment device |
| US6829510B2 (en) | 2001-12-18 | 2004-12-07 | Ness Neuromuscular Electrical Stimulation Systems Ltd. | Surface neuroprosthetic device having an internal cushion interface system |
| US7110820B2 (en) * | 2002-02-05 | 2006-09-19 | Tcheng Thomas K | Responsive electrical stimulation for movement disorders |
| US6701185B2 (en) | 2002-02-19 | 2004-03-02 | Daniel Burnett | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
| US7236822B2 (en) | 2002-03-22 | 2007-06-26 | Leptos Biomedical, Inc. | Wireless electric modulation of sympathetic nervous system |
| US7162303B2 (en) | 2002-04-08 | 2007-01-09 | Ardian, Inc. | Renal nerve stimulation method and apparatus for treatment of patients |
| US8145316B2 (en) | 2002-04-08 | 2012-03-27 | Ardian, Inc. | Methods and apparatus for renal neuromodulation |
| US20080077192A1 (en) | 2002-05-03 | 2008-03-27 | Afferent Corporation | System and method for neuro-stimulation |
| AU2003245258A1 (en) | 2002-05-03 | 2003-11-17 | Afferent Corporation | A method and apparatus for enhancing neurophysiologic performance |
| JP3892754B2 (ja) | 2002-05-20 | 2007-03-14 | 株式会社エヌ・ティ・ティ・ドコモ | 測定装置 |
| US20050065553A1 (en) | 2003-06-13 | 2005-03-24 | Omry Ben Ezra | Applications of vagal stimulation |
| US20040073197A1 (en) | 2002-07-09 | 2004-04-15 | Kim Philip S. | Selective peripheral nerve plexus implantable infusion device and method |
| IL166237A0 (en) | 2002-07-11 | 2006-01-15 | Andante Medical Devices Ltd | A force sensor system for use in monitoring weightbearing |
| US6937905B2 (en) | 2002-08-02 | 2005-08-30 | International Rehabilitative Coion Sciences, Inc. | Osteogenesis stimulator with digital signal processing |
| US7089061B2 (en) | 2002-08-27 | 2006-08-08 | Abbott Laboratories | Device and method for nausea suppression |
| US7328068B2 (en) | 2003-03-31 | 2008-02-05 | Medtronic, Inc. | Method, system and device for treating disorders of the pelvic floor by means of electrical stimulation of the pudendal and associated nerves, and the optional delivery of drugs in association therewith |
| US7162305B2 (en) | 2002-10-23 | 2007-01-09 | The Hong Kong Polytechnic University | Functional electrical stimulation system |
| EP1558333B1 (en) | 2002-10-24 | 2007-05-23 | Lockheed Martin Corporation | System for treating movement disorders |
| US7236830B2 (en) | 2002-12-10 | 2007-06-26 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or optimizing neural stimulation therapy for treating symptoms of Parkinson's disease and/or other movement disorders |
| US20040102819A1 (en) | 2002-11-20 | 2004-05-27 | Shazhou Zou | Portable therapeutic device and method for pain relief |
| WO2004047911A2 (en) * | 2002-11-22 | 2004-06-10 | International Rehabilitative Sciences, Inc. | Surface stimulation for tremor control |
| US7725175B2 (en) | 2002-12-04 | 2010-05-25 | Kinetic Muscles, Inc. | System and method for neuromuscular reeducation |
| US6990376B2 (en) | 2002-12-06 | 2006-01-24 | The Regents Of The University Of California | Methods and systems for selective control of bladder function |
| US6959215B2 (en) * | 2002-12-09 | 2005-10-25 | Northstar Neuroscience, Inc. | Methods for treating essential tremor |
| AU2003297730A1 (en) | 2002-12-11 | 2004-06-30 | Mcw Research Foundation, Inc. | Transcutaneous electrical nerve locator |
| AU2002953278A0 (en) | 2002-12-12 | 2003-01-02 | Skop Australia Pty Ltd | Electro stimulation treatment apparatus and method |
| IL154801A0 (en) | 2003-03-06 | 2003-10-31 | Karotix Internat Ltd | Multi-channel and multi-dimensional system and method |
| EP1608303B1 (en) | 2003-03-06 | 2018-05-23 | Trustees of Boston University | Apparatus for improving human balance and gait and preventing foot injury |
| US8160689B2 (en) | 2003-04-01 | 2012-04-17 | Medotech A/S | Method of and apparatus for monitoring of muscle activity |
| AU2004226596C1 (en) | 2003-04-02 | 2010-09-16 | Neurostream Technologies General Partnership | Implantable nerve signal sensing and stimulation device for treating foot drop and other neurological disorders |
| WO2004092744A2 (en) | 2003-04-03 | 2004-10-28 | University Of Virginia Patent Foundation | Method and system for the derivation of human gait characteristics and detecting falls passively from floor vibrations |
| DE10318071A1 (de) | 2003-04-17 | 2004-11-25 | Forschungszentrum Jülich GmbH | Vorrichtung zur Desynchronisation von neuronaler Hirnaktivität |
| US7221979B2 (en) | 2003-04-30 | 2007-05-22 | Medtronic, Inc. | Methods and apparatus for the regulation of hormone release |
| US20060074450A1 (en) * | 2003-05-11 | 2006-04-06 | Boveja Birinder R | System for providing electrical pulses to nerve and/or muscle using an implanted stimulator |
| US7177703B2 (en) | 2003-05-11 | 2007-02-13 | Boveja Birinder R | Method and system for providing pulsed electrical stimulation to sacral plexus of a patient to provide therapy for urinary incontinence and urological disorders |
| US20040254624A1 (en) | 2003-06-06 | 2004-12-16 | Prizm Medical, Inc. | Electrical stimulator and garment electrode connection system |
| US7738952B2 (en) | 2003-06-09 | 2010-06-15 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system |
| US7149574B2 (en) | 2003-06-09 | 2006-12-12 | Palo Alto Investors | Treatment of conditions through electrical modulation of the autonomic nervous system |
| US7480530B2 (en) | 2003-06-30 | 2009-01-20 | Johnson & Johnson Consumer Companies, Inc. | Device for treatment of barrier membranes |
| JP2005038831A (ja) * | 2003-07-03 | 2005-02-10 | Olympus Corp | 光学装置、照明装置、及びカラー照明装置 |
| US20080097564A1 (en) | 2003-07-18 | 2008-04-24 | Peter Lathrop | Electrotherapeutic Device |
| WO2005007029A2 (en) | 2003-07-18 | 2005-01-27 | Bioelectric Medical Solutions, Inc. | Electrotherapeutic device |
| ES2222819B1 (es) | 2003-07-25 | 2006-03-16 | Consejo Sup. De Invest. Cientificas | Metodo y dispositivo biomecanico de cancelacion de temblor patologico. |
| US7239926B2 (en) | 2003-09-15 | 2007-07-03 | Medtronic, Inc. | Selection of neurostimulator parameter configurations using genetic algorithms |
| US8190248B2 (en) | 2003-10-16 | 2012-05-29 | Louisiana Tech University Foundation, Inc. | Medical devices for the detection, prevention and/or treatment of neurological disorders, and methods related thereto |
| US20080208288A1 (en) * | 2003-10-24 | 2008-08-28 | Lockheed Martin Corporation | Systems and methods for treating movement disorders |
| US20080009772A1 (en) | 2003-11-26 | 2008-01-10 | Wicab, Inc. | Systems and methods for altering brain and body functions and for treating conditions and diseases of the same |
| US20060161218A1 (en) | 2003-11-26 | 2006-07-20 | Wicab, Inc. | Systems and methods for treating traumatic brain injury |
| DE10355652A1 (de) | 2003-11-28 | 2005-06-30 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zur Desynchronisation neuronaler Hirnaktivität |
| US7769461B2 (en) * | 2003-12-19 | 2010-08-03 | Boston Scientific Neuromodulation Corporation | Skull-mounted electrical stimulation system and method for treating patients |
| US20050234309A1 (en) | 2004-01-07 | 2005-10-20 | David Klapper | Method and apparatus for classification of movement states in Parkinson's disease |
| AU2005205853B2 (en) | 2004-01-22 | 2011-01-27 | 2249020 Alberta Ltd. | Method of routing electrical current to bodily tissues via implanted passive conductors |
| DE602005014215D1 (de) | 2004-02-05 | 2009-06-10 | Motorika Ltd | Neuromuskuläre stimulation |
| GB0402569D0 (en) | 2004-02-05 | 2004-03-10 | Neurodan As | Nerve and/or muscle stimulation electrodes |
| MXPA06008920A (es) | 2004-02-05 | 2007-07-04 | Motorika Inc | Metodos y aparatos para rehabilitacion y entrenamiento. |
| US7647112B2 (en) | 2004-02-11 | 2010-01-12 | Ethicon, Inc. | System and method for selectively stimulating different body parts |
| US8086318B2 (en) | 2004-02-12 | 2011-12-27 | Ndi Medical, Llc | Portable assemblies, systems, and methods for providing functional or therapeutic neurostimulation |
| US20050181341A1 (en) | 2004-02-12 | 2005-08-18 | Ewing Donald P. | Self-contained electronic musculoskeletal stimulation apparatus and method of use |
| US20070249952A1 (en) | 2004-02-27 | 2007-10-25 | Benjamin Rubin | Systems and methods for sleep monitoring |
| WO2005084389A2 (en) | 2004-03-02 | 2005-09-15 | Cvrx, Inc. | External baroreflex activation |
| US7899527B2 (en) | 2004-05-13 | 2011-03-01 | Palo Alto Investors | Treatment of conditions through modulation of the autonomic nervous system during at least one predetermined menstrual cycle phase |
| DE102004025945A1 (de) | 2004-05-27 | 2005-12-29 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zur Entkopplung und/oder Desynchronisation neuronaler Hirnaktivität |
| EP1627600A1 (en) | 2004-06-09 | 2006-02-22 | Université Libre De Bruxelles | Portable medical device for automatic electrical coherence analysis inside a patient |
| ES2253077B1 (es) | 2004-06-11 | 2007-07-16 | Consejo Superior De Investigaciones Cientificas | Metodo y dispositivo electronico e informatico de supresion y valoracion de temblor y movimiento espastico en perifericos de entrada y de mando. |
| US7727719B2 (en) * | 2004-06-25 | 2010-06-01 | The Regents Of The University Of Michigan | Methods for diagnosing episodic movement disorders and related conditions |
| CA2573763A1 (en) | 2004-07-15 | 2006-02-23 | Northstar Neuroscience, Inc. | Systems and methods for enhancing or affecting neural stimulation efficiency and/or efficacy |
| US7711432B2 (en) | 2004-07-26 | 2010-05-04 | Advanced Neuromodulation Systems, Inc. | Stimulation system and method for treating a neurological disorder |
| GB0418907D0 (en) | 2004-08-24 | 2004-09-29 | Univ London | Biofeedback |
| US20060047326A1 (en) | 2004-08-27 | 2006-03-02 | James Wheeler | Application of specific neuromodulation waveforms to reduce symptoms of neurological disorders |
| US20060052726A1 (en) | 2004-09-08 | 2006-03-09 | Weisz Donald J | Key device to measure pronation and supination of the forearm |
| US20090099623A1 (en) | 2004-09-13 | 2009-04-16 | Neuronix Ltd. | Systems and methods for treatment of medical conditions related to the central nervous system and for enhancing cognitive functions |
| WO2006033039A1 (en) * | 2004-09-20 | 2006-03-30 | Philips Intellectual Property & Standards Gmbh | Deep brain stimulation system |
| EP1804900A2 (en) * | 2004-10-05 | 2007-07-11 | Trustees of Dartmouth College | Deep brain stimulator |
| US7603174B2 (en) | 2004-10-21 | 2009-10-13 | Advanced Neuromodulation Systems, Inc. | Stimulation of the amygdalohippocampal complex to treat neurological conditions |
| US7565200B2 (en) | 2004-11-12 | 2009-07-21 | Advanced Neuromodulation Systems, Inc. | Systems and methods for selecting stimulation sites and applying treatment, including treatment of symptoms of Parkinson's disease, other movement disorders, and/or drug side effects |
| GB0425632D0 (en) | 2004-11-22 | 2004-12-22 | Bioaccelerate Ltd | Device |
| US9089691B2 (en) | 2004-12-07 | 2015-07-28 | Cardiac Pacemakers, Inc. | Stimulator for auricular branch of vagus nerve |
| ES2272137B1 (es) | 2004-12-14 | 2008-06-16 | Consejo Superior Investig. Cientificas. | Dispositivo ortesico dinamico para la monitorizacion, diagnostico y supresion de temblor patologico. |
| DE102004060514A1 (de) * | 2004-12-16 | 2006-06-29 | Forschungszentrum Jülich GmbH | Verfahren und Vorrichtung zur Desynchronisation neuronaler Hirnaktivität, Steuerung, sowie Verfahren zur Behandlung neuronaler und/oder psychiatrischer Erkrankungen |
| US8825166B2 (en) * | 2005-01-21 | 2014-09-02 | John Sasha John | Multiple-symptom medical treatment with roving-based neurostimulation |
| US7894903B2 (en) | 2005-03-24 | 2011-02-22 | Michael Sasha John | Systems and methods for treating disorders of the central nervous system by modulation of brain networks |
| US7580752B2 (en) | 2005-02-23 | 2009-08-25 | Medtronic, Inc. | Implantable medical device providing adaptive neurostimulation therapy for incontinence |
| US8768452B2 (en) | 2005-02-23 | 2014-07-01 | Medtronic, Inc. | Implantable neurostimulator supporting trial and chronic modes |
| JP2008531138A (ja) | 2005-03-02 | 2008-08-14 | コンティネンス コントロール システムズ インターナショナル プロプライエタリー リミテッド | 失禁を治療するための改良された方法および装置 |
| US8702629B2 (en) | 2005-03-17 | 2014-04-22 | Great Lakes Neuro Technologies Inc. | Movement disorder recovery system and method for continuous monitoring |
| US8187209B1 (en) | 2005-03-17 | 2012-05-29 | Great Lakes Neurotechnologies Inc | Movement disorder monitoring system and method |
| EP1707121A1 (fr) * | 2005-03-30 | 2006-10-04 | Universite Libre De Bruxelles | Dispositif de mesure de l'activité rythmique de fibres musculaires |
| US7519431B2 (en) * | 2005-04-11 | 2009-04-14 | Medtronic, Inc. | Shifting between electrode combinations in electrical stimulation device |
| TW200636549A (en) | 2005-04-12 | 2006-10-16 | Benext Inno Product Dev Ltd | Combined computer mouse and transcutaneous electro nerve stimulator device |
| US9339650B2 (en) | 2005-04-13 | 2016-05-17 | The Cleveland Clinic Foundation | Systems and methods for neuromodulation using pre-recorded waveforms |
| US20060253167A1 (en) | 2005-04-20 | 2006-11-09 | Kurtz Ronald L | Device, method and stimulus unit for testing neuromuscular function |
| US7657317B2 (en) | 2005-04-26 | 2010-02-02 | Boston Scientific Neuromodulation Corporation | Evaluating stimulation therapies and patient satisfaction |
| US7561923B2 (en) | 2005-05-09 | 2009-07-14 | Cardiac Pacemakers, Inc. | Method and apparatus for controlling autonomic balance using neural stimulation |
| US7551967B1 (en) | 2005-05-19 | 2009-06-23 | Pacesetter, Inc. | Implantable medical leads and devices having carbon nanotube-based anti-electrostatic coatings and methods for making such leads and devices |
| US7643882B2 (en) * | 2005-05-24 | 2010-01-05 | Leon Boston | Tremor reduction systems suitable for self-application and use in disabled patients |
| US7558610B1 (en) | 2005-06-01 | 2009-07-07 | Odderson Ib R | Electric diagnostic tape measure and method |
| CN101365373A (zh) * | 2005-06-21 | 2009-02-11 | 早期感知有限公司 | 用于预测和监测临床发作的技术 |
| US20070021803A1 (en) | 2005-07-22 | 2007-01-25 | The Foundry Inc. | Systems and methods for neuromodulation for treatment of pain and other disorders associated with nerve conduction |
| US20070025608A1 (en) | 2005-07-29 | 2007-02-01 | Cyberonics, Inc. | Enhancing intrinsic neural activity using a medical device to treat a patient |
| US7769460B2 (en) | 2005-07-29 | 2010-08-03 | Medtronic, Inc. | Transmembrane sensing device for sensing bladder condition |
| US8190249B1 (en) | 2005-08-01 | 2012-05-29 | Infinite Biomedical Technologies, Llc | Multi-parametric quantitative analysis of bioelectrical signals |
| US7256742B2 (en) * | 2005-08-09 | 2007-08-14 | Inpaq Technology Co., Ltd. | Flexible antenna apparatus and a manufacturing method thereof |
| US20070173903A1 (en) | 2005-08-30 | 2007-07-26 | Bioq, Inc. | Medical device for restoration of neurological function impaired by peripheral neuropathy |
| US9089713B2 (en) | 2005-08-31 | 2015-07-28 | Michael Sasha John | Methods and systems for semi-automatic adjustment of medical monitoring and treatment |
| US9913985B2 (en) | 2006-04-28 | 2018-03-13 | Second Sight Medical Products, Inc. | Method and apparatus to provide safety checks for neural stimulation |
| US20070073361A1 (en) | 2005-09-23 | 2007-03-29 | Bioq, Inc. | Medical device for restoration of autonomic and immune functions impaired by neuropathy |
| US8165685B1 (en) | 2005-09-29 | 2012-04-24 | Case Western Reserve University | System and method for therapeutic neuromuscular electrical stimulation |
| US7856264B2 (en) * | 2005-10-19 | 2010-12-21 | Advanced Neuromodulation Systems, Inc. | Systems and methods for patient interactive neural stimulation and/or chemical substance delivery |
| US8676330B2 (en) | 2009-03-20 | 2014-03-18 | ElectroCore, LLC | Electrical and magnetic stimulators used to treat migraine/sinus headache and comorbid disorders |
| US8874227B2 (en) | 2009-03-20 | 2014-10-28 | ElectroCore, LLC | Devices and methods for non-invasive capacitive electrical stimulation and their use for vagus nerve stimulation on the neck of a patient |
| US8868177B2 (en) | 2009-03-20 | 2014-10-21 | ElectroCore, LLC | Non-invasive treatment of neurodegenerative diseases |
| US8041428B2 (en) | 2006-02-10 | 2011-10-18 | Electrocore Llc | Electrical stimulation treatment of hypotension |
| EP1951365B1 (en) | 2005-11-16 | 2017-10-04 | Bioness Neuromodulation Ltd | Gait modulation system |
| US7632239B2 (en) | 2005-11-16 | 2009-12-15 | Bioness Neuromodulation Ltd. | Sensor device for gait enhancement |
| US7899556B2 (en) | 2005-11-16 | 2011-03-01 | Bioness Neuromodulation Ltd. | Orthosis for a gait modulation system |
| US8972017B2 (en) | 2005-11-16 | 2015-03-03 | Bioness Neuromodulation Ltd. | Gait modulation system and method |
| US20070156200A1 (en) | 2005-12-29 | 2007-07-05 | Lilian Kornet | System and method for regulating blood pressure and electrolyte balance |
| US7660636B2 (en) | 2006-01-04 | 2010-02-09 | Accelerated Care Plus Corp. | Electrical stimulation device and method for the treatment of dysphagia |
| US20070156183A1 (en) | 2006-01-05 | 2007-07-05 | Rhodes Donald A | Treatment of various ailments |
| US20070167990A1 (en) | 2006-01-17 | 2007-07-19 | Theranova, Llc | Method and apparatus for low frequency induction therapy for the treatment of urinary incontinence and overactive bladder |
| US20100168501A1 (en) | 2006-10-02 | 2010-07-01 | Daniel Rogers Burnett | Method and apparatus for magnetic induction therapy |
| US9610459B2 (en) | 2009-07-24 | 2017-04-04 | Emkinetics, Inc. | Cooling systems and methods for conductive coils |
| WO2012040243A1 (en) | 2010-09-20 | 2012-03-29 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
| US9339641B2 (en) | 2006-01-17 | 2016-05-17 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
| US20080051852A1 (en) | 2006-01-21 | 2008-02-28 | Cerbomed Gmbh | Device and method for the transdermal stimulation of a nerve of the human body |
| CA2637851C (en) | 2006-01-23 | 2016-01-05 | Rehabtronics Inc. | Method of routing electrical current to bodily tissues via implanted passive conductors |
| WO2007086057A1 (en) | 2006-01-26 | 2007-08-02 | Power Paper Ltd | Power source electrode treatment device |
| WO2007092290A2 (en) | 2006-02-02 | 2007-08-16 | H.B. Fuller Licensing & Financing, Inc. | Conductive articles including hot melt superabsorbent polymer composition and method of making and method of using the same |
| US20070203534A1 (en) * | 2006-02-13 | 2007-08-30 | Robert Tapper | Stimulating galvanic or slow AC current for therapeutic physiological effects |
| KR20090004876A (ko) | 2006-02-17 | 2009-01-12 | 나단 디. 제슬러 | 신경성 진전 조절용 국소 마취제의 신규한 용도 |
| US8489191B2 (en) | 2006-02-17 | 2013-07-16 | Marc Possover | Laparoscopic implantation of neurostimulators |
| GB2435834A (en) | 2006-03-06 | 2007-09-12 | Michael Craggs | Neuromodulation device for pelvic dysfunction |
| EP1998849B1 (en) | 2006-03-24 | 2014-12-24 | Medtronic, Inc. | Collecting gait information for evaluation and control of therapy |
| ES2566730T3 (es) * | 2006-03-29 | 2016-04-15 | Dignity Health | Sincronización de estimulación del nervio vago con el ciclo cardíaco de un paciente |
| US20090157138A1 (en) | 2006-04-18 | 2009-06-18 | Electrocore, Inc. | Methods And Apparatus For Treating Ileus Condition Using Electrical Signals |
| US8401650B2 (en) | 2008-04-10 | 2013-03-19 | Electrocore Llc | Methods and apparatus for electrical treatment using balloon and electrode |
| US7761166B2 (en) | 2006-04-28 | 2010-07-20 | Medtronic, Inc. | Electrical stimulation of iliohypogastric nerve to alleviate chronic pelvic pain |
| US8306624B2 (en) * | 2006-04-28 | 2012-11-06 | Medtronic, Inc. | Patient-individualized efficacy rating |
| CA2956427C (en) | 2006-05-01 | 2021-08-17 | Bioness Neuromodulation Ltd. | Improved functional electrical stimulation systems |
| US10022545B1 (en) | 2006-05-11 | 2018-07-17 | Great Lakes Neurotechnologies Inc | Movement disorder recovery system and method |
| US9314190B1 (en) | 2006-05-11 | 2016-04-19 | Great Lakes Neurotechnologies Inc. | Movement disorder recovery system and method |
| US7991476B2 (en) | 2006-05-22 | 2011-08-02 | Empire Bio-Medical Devices, Inc. | Method and device for enhanced blood flow |
| US10537732B2 (en) | 2006-05-22 | 2020-01-21 | Flowaid Medical Technologies Corp. | Method and device for enhanced blood flow |
| US8886281B2 (en) | 2006-06-08 | 2014-11-11 | Suunto Oy | Snap and electrode assembly for a heart rate monitor belt |
| US8892200B2 (en) | 2006-06-19 | 2014-11-18 | Highland Instruments, Inc. | Systems and methods for stimulating tissue using focused energy |
| US9623241B2 (en) | 2006-06-19 | 2017-04-18 | Highland Instruments | Treatment methods |
| JP2008018235A (ja) | 2006-06-22 | 2008-01-31 | Thermarx Inc | 自律神経系の非侵襲的調節 |
| US8634930B2 (en) | 2006-06-30 | 2014-01-21 | Cardiac Pacemakers, Inc. | System for providing diabetic therapy |
| KR100755079B1 (ko) | 2006-06-30 | 2007-09-06 | 삼성전자주식회사 | 생체 신호 측정 장치 |
| US8626472B2 (en) | 2006-07-21 | 2014-01-07 | James C. Solinsky | System and method for measuring balance and track motion in mammals |
| US8290600B2 (en) | 2006-07-21 | 2012-10-16 | Boston Scientific Scimed, Inc. | Electrical stimulation of body tissue using interconnected electrode assemblies |
| US7996088B2 (en) * | 2006-07-26 | 2011-08-09 | Cyberonics, Inc. | Vagus nerve stimulation by electrical signals for controlling cerebellar tremor |
| US20080030170A1 (en) | 2006-08-03 | 2008-02-07 | Bruno Dacquay | Safety charging system for surgical hand piece |
| US7917201B2 (en) | 2006-08-23 | 2011-03-29 | Neurometrix, Inc. | Method and apparatus for determining optimal neuromuscular detection sites, novel diagnostic biosensor array formed in accordance with the same, and novel method for testing a patient using the novel diagnostic biosensor array |
| US8103341B2 (en) | 2006-08-25 | 2012-01-24 | Cardiac Pacemakers, Inc. | System for abating neural stimulation side effects |
| US7818058B2 (en) | 2006-08-25 | 2010-10-19 | Ivy Biomedical Systems, Inc. | Automated ECG lead impedance measurement integrated into ECG gating circuitry |
| US8457734B2 (en) | 2006-08-29 | 2013-06-04 | Cardiac Pacemakers, Inc. | System and method for neural stimulation |
| DE102006042156B4 (de) | 2006-09-06 | 2013-01-17 | Martin Tegenthoff | Vorrichtung zur Beeinflussung von Gehirnfunktionen eines Menschen |
| US9005102B2 (en) | 2006-10-02 | 2015-04-14 | Emkinetics, Inc. | Method and apparatus for electrical stimulation therapy |
| US10786669B2 (en) | 2006-10-02 | 2020-09-29 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
| WO2008042902A2 (en) | 2006-10-02 | 2008-04-10 | Emkinetics, Inc. | Method and apparatus for magnetic induction therapy |
| US11224742B2 (en) | 2006-10-02 | 2022-01-18 | Emkinetics, Inc. | Methods and devices for performing electrical stimulation to treat various conditions |
| US7797041B2 (en) | 2006-10-11 | 2010-09-14 | Cardiac Pacemakers, Inc. | Transcutaneous neurostimulator for modulating cardiovascular function |
| WO2008051463A2 (en) | 2006-10-19 | 2008-05-02 | The Regents Of The University Of California | Neurological stimulation and analysis |
| US8295934B2 (en) | 2006-11-14 | 2012-10-23 | Neurovista Corporation | Systems and methods of reducing artifact in neurological stimulation systems |
| WO2008062395A1 (en) * | 2006-11-26 | 2008-05-29 | Leon Boston | Tremor reduction systems suitable for self-application and use in disabled patients |
| JP5108895B2 (ja) * | 2006-12-15 | 2012-12-26 | ナソフレックス ビー.ブイ. | 蘇生装置及び蘇生のための方法 |
| US8175718B2 (en) | 2006-12-19 | 2012-05-08 | Ethicon, Inc. | Electrode patch and method for neurostimulation |
| JP2010512926A (ja) * | 2006-12-21 | 2010-04-30 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 生体神経刺激装置 |
| US8909341B2 (en) | 2007-01-22 | 2014-12-09 | Respicardia, Inc. | Device and method for the treatment of breathing disorders and cardiac disorders |
| US20080177398A1 (en) | 2007-01-24 | 2008-07-24 | Yossi Gross | Treatment of bladder dysfunction |
| US8075499B2 (en) | 2007-05-18 | 2011-12-13 | Vaidhi Nathan | Abnormal motion detector and monitor |
| US8417351B2 (en) | 2007-02-09 | 2013-04-09 | Mayo Foundation For Medical Education And Research | Peripheral oxistimulator apparatus and methods |
| US20080195007A1 (en) | 2007-02-12 | 2008-08-14 | Yury Podrazhansky | Method and device for using vibroacoustic stimulaton to enhance the production of adult stem cells in living organisms |
| US8620438B1 (en) | 2007-02-13 | 2013-12-31 | Encore Medical Asset Corporation | Method and apparatus for applying neuromuscular electrical stimulation |
| US8825165B2 (en) | 2007-02-20 | 2014-09-02 | Marc Possover | Laparoscopic transpelveo-abdominal implantation of multiple channel electrodes to the endopelvic portions of the pudendus and sciatic nerves |
| US20080216593A1 (en) | 2007-02-22 | 2008-09-11 | Jacobsen Stephen C | Device for promoting toe-off during gait |
| KR20100014958A (ko) | 2007-02-23 | 2010-02-11 | 드하마 어패럴 이노베이션즈 프라이베이트 리미티드 | 가열 및 냉각 능력을 갖는 의류 |
| US7949403B2 (en) * | 2007-02-27 | 2011-05-24 | Accelerated Care Plus Corp. | Electrical stimulation device and method for the treatment of neurological disorders |
| US20080243204A1 (en) | 2007-03-28 | 2008-10-02 | University Of Florida Research Foundation, Inc. | Variational parameter neurostimulation paradigm for treatment of neurologic disease |
| US7769464B2 (en) | 2007-04-30 | 2010-08-03 | Medtronic, Inc. | Therapy adjustment |
| US8755892B2 (en) | 2007-05-16 | 2014-06-17 | Cardiac Pacemakers, Inc. | Systems for stimulating neural targets |
| GB0709834D0 (en) * | 2007-05-22 | 2007-07-04 | Gillbe Ivor S | Array stimulator |
| US8204597B2 (en) | 2007-05-30 | 2012-06-19 | Medtronic, Inc. | Evaluating patient incontinence |
| US7996056B2 (en) | 2007-06-15 | 2011-08-09 | The General Electric Company | Method and apparatus for acquiring physiological data |
| US8463374B2 (en) | 2007-06-28 | 2013-06-11 | University Of Virginia Patent Foundation | Method, system and computer program product for controlling complex rhythmic systems |
| EP2180920A1 (en) | 2007-07-20 | 2010-05-05 | Össur HF | Prosthetic or orthopedic device having feedback |
| US20100292527A1 (en) | 2007-07-31 | 2010-11-18 | Schneider M Bret | Device and method for hypertension treatment by non-invasive stimulation to vascular baroreceptors |
| JP2009034328A (ja) | 2007-08-01 | 2009-02-19 | Hirose Electric Co Ltd | 電気刺激装置 |
| US8738137B2 (en) | 2007-08-23 | 2014-05-27 | Bioness Inc. | System for transmitting electrical current to a bodily tissue |
| WO2009029614A1 (en) | 2007-08-27 | 2009-03-05 | The Feinstein Institute For Medical Research | Devices and methods for inhibiting granulocyte activation by neural stimulation |
| US8792977B2 (en) | 2007-08-31 | 2014-07-29 | Tokyo Metropolitan Institute Of Medical Science | Quantitative motor function evaluation system |
| US8010198B2 (en) | 2007-09-13 | 2011-08-30 | Cardiac Pacemakers, Inc. | Systems and methods for avoiding neural stimulation habituation |
| US20090076565A1 (en) | 2007-09-19 | 2009-03-19 | State Of Incorporation | Methods for treating urinary and fecal incontinence |
| US10076655B2 (en) | 2007-09-21 | 2018-09-18 | Koninklijke Philips N.V. | Vestibular stimulation system |
| WO2009042170A1 (en) | 2007-09-26 | 2009-04-02 | Medtronic, Inc. | Therapy program selection |
| US8380314B2 (en) | 2007-09-26 | 2013-02-19 | Medtronic, Inc. | Patient directed therapy control |
| EP2195084A4 (en) | 2007-09-26 | 2010-10-20 | Univ Duke | METHOD FOR TREATING PARKINSON DISEASE AND OTHER MOTION FLUCTUATIONS |
| US20110202107A1 (en) | 2007-10-15 | 2011-08-18 | Kyushu University, National University Corporation | Blood pressure stabilization system using transdermal stimulation |
| WO2014153201A1 (en) | 2013-03-14 | 2014-09-25 | Alterg, Inc. | Method of gait evaluation and training with differential pressure system |
| EP2211986B1 (en) * | 2007-10-16 | 2013-11-20 | Medtronic, Inc. | Therapy control based on a patient movement state |
| US10035027B2 (en) | 2007-10-31 | 2018-07-31 | The Board Of Trustees Of The Leland Stanford Junior University | Device and method for ultrasonic neuromodulation via stereotactic frame based technique |
| US8260439B2 (en) | 2007-11-16 | 2012-09-04 | Ethicon, Inc. | Nerve stimulation patches and methods for stimulating selected nerves |
| US20110288615A1 (en) | 2007-11-26 | 2011-11-24 | The Board Of Regents, The University Of Texas System | Implantable Therapeutic Systems Including Neurostimulation Circuits, Devices, Systems and Methods |
| US8165668B2 (en) | 2007-12-05 | 2012-04-24 | The Invention Science Fund I, Llc | Method for magnetic modulation of neural conduction |
| US8170658B2 (en) | 2007-12-05 | 2012-05-01 | The Invention Science Fund I, Llc | System for electrical modulation of neural conduction |
| US8195287B2 (en) | 2007-12-05 | 2012-06-05 | The Invention Science Fund I, Llc | Method for electrical modulation of neural conduction |
| US20090187121A1 (en) | 2008-01-22 | 2009-07-23 | Camntech Limited | Diary and method for medical monitoring |
| EP2265237A2 (en) | 2008-02-29 | 2010-12-29 | Sensory Medical, Inc. | Devices for treating restless leg syndrome |
| US20090254144A1 (en) | 2008-04-02 | 2009-10-08 | Case Western Reserve University | System and Method of Bladder and Sphincter Control |
| US20100249637A1 (en) | 2008-05-08 | 2010-09-30 | Lotus Magnus, Llc | Systems, devices, and methods for treating restless leg syndrome and periodic limb movement disorder |
| US8391986B2 (en) * | 2008-05-13 | 2013-03-05 | The Board Of Trustees Of The University Of Illinois | Apparatus for managing a neurological disorder |
| SE0801267A0 (sv) | 2008-05-29 | 2009-03-12 | Cunctus Ab | Metod för en användarenhet, en användarenhet och ett system innefattande nämnda användarenhet |
| ITMI20081064A1 (it) | 2008-06-12 | 2009-12-13 | Sara Renata Marceglia | Sistema e metodo per il controllo del processo di prescrizione e somministrazione di trattamenti neuromodulatori sull'uomo mediante stimolazione elettrica a correnti dirette |
| CA2727555C (en) | 2008-06-12 | 2016-10-04 | Global Kinetics Corporation Pty Ltd | Detection of hypokinetic and/or hyperkinetic states |
| CA2765891A1 (en) | 2008-06-18 | 2009-12-23 | Accelerated Care Plus Corp. | Electrical stimulation method for reduction of joint compression |
| CN102065757B (zh) | 2008-06-19 | 2013-09-11 | 皇家飞利浦电子股份有限公司 | 用于身体的防篡改电刺激的可穿戴设备和系统 |
| US20090318986A1 (en) | 2008-06-20 | 2009-12-24 | Alo Kenneth M | Systems, Methods and Apparatus for Treating Cardiac Dysfunction with Neurostimulation |
| US20090326602A1 (en) | 2008-06-27 | 2009-12-31 | Arkady Glukhovsky | Treatment of indications using electrical stimulation |
| US20090326595A1 (en) | 2008-06-30 | 2009-12-31 | Transoma Medical, Inc. | Prediction and Prevention of Cardiovascular Insult |
| US8660651B2 (en) | 2008-06-30 | 2014-02-25 | Accelerated Care Plus Corp. | Electrical stimulation method for treatment of peripheral neuropathy |
| AU2009266861B2 (en) | 2008-07-02 | 2014-06-26 | Sage Products, Llc | Systems and methods for automated muscle stimulation |
| US8644945B2 (en) * | 2008-07-11 | 2014-02-04 | Medtronic, Inc. | Patient interaction with posture-responsive therapy |
| US8688225B2 (en) | 2008-07-11 | 2014-04-01 | Medtronic, Inc. | Posture state detection using selectable system control parameters |
| US8326420B2 (en) * | 2008-07-11 | 2012-12-04 | Medtronic, Inc. | Associating therapy adjustments with posture states using stability timers |
| US8708934B2 (en) * | 2008-07-11 | 2014-04-29 | Medtronic, Inc. | Reorientation of patient posture states for posture-responsive therapy |
| US9301712B2 (en) | 2008-07-29 | 2016-04-05 | Portland State University | Method and apparatus for continuous measurement of motor symptoms in parkinson's disease and essential tremor with wearable sensors |
| AU2009277037B2 (en) | 2008-08-01 | 2016-02-25 | Spr Therapeutics, Inc. | Systems and methods to place one or more leads in muscle for providing electrical stimulation to treat pain |
| WO2010027874A2 (en) | 2008-08-26 | 2010-03-11 | Niveus Medical, Inc. | Device, system, and method to improve powered muscle stimulation performance in the presence of tissue edema |
| US8419982B2 (en) | 2008-09-11 | 2013-04-16 | Covidien Lp | Conductive compositions and method |
| US20110250297A1 (en) | 2008-09-25 | 2011-10-13 | Oronsky Bryan T | Treatment of Hyperproliferative Disorders Using Cardiac Glycosides |
| DE102008042373A1 (de) | 2008-09-25 | 2010-04-01 | Biotronik Crm Patent Ag | Gerät zur Überwachung motorischer Parameter in Lebewesen |
| WO2010039674A2 (en) | 2008-10-01 | 2010-04-08 | University Of Maryland, Baltimore | Step trainer for enhanced performance using rhythmic cues |
| WO2010039274A1 (en) * | 2008-10-03 | 2010-04-08 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
| US9802046B2 (en) | 2008-10-03 | 2017-10-31 | Duke University | Non-regular electrical stimulation patterns for improved efficiency in treating Parkinson's Disease |
| DE102008052078B4 (de) * | 2008-10-17 | 2011-06-01 | Forschungszentrum Jülich GmbH | Vorrichtung zur konditionierten desynchronisierenden Stimulation |
| US9162059B1 (en) | 2008-10-21 | 2015-10-20 | Med-El Elektromedizinische Geraete Gmbh | Method for facial nerve stimulation of aging or dysfunctional muscles |
| US8792989B2 (en) | 2008-10-21 | 2014-07-29 | Med-El Elektromedizinische Geraete Gmbh | System and method for facial nerve stimulation |
| KR101551881B1 (ko) | 2008-10-30 | 2015-09-21 | 삼성전자주식회사 | 통합적인 생체신호 처리장치 및 방법 |
| KR20100054358A (ko) | 2008-11-14 | 2010-05-25 | 김재은 | 스틱 연고 |
| JP5321002B2 (ja) | 2008-11-18 | 2013-10-23 | オムロンヘルスケア株式会社 | 体動バランス検出装置、体動バランス検出プログラム、体動バランス検出方法 |
| ES2452484T3 (es) | 2008-11-18 | 2014-04-01 | Setpoint Medical Corporation | Dispositivos para optimizar la colocación de electrodos para la estimulación antiinflamatoria |
| US8920345B2 (en) | 2008-12-07 | 2014-12-30 | Apdm, Inc. | System and apparatus for continuous monitoring of movement disorders |
| US8923970B2 (en) | 2008-12-09 | 2014-12-30 | Nephera Ltd. | Stimulation of the urinary system |
| WO2010068797A1 (en) | 2008-12-10 | 2010-06-17 | Waverx, Inc. | Devices, systems and methods for preventing and treating sensation loss |
| GB0823213D0 (en) | 2008-12-19 | 2009-01-28 | Sky Medical Technology Ltd | Treatment |
| BRPI0805365A2 (pt) | 2008-12-19 | 2011-10-18 | Timpel S.A. | sistema de eletrodos para condução transdérmica de sinais elétricos, e, método de utilização |
| US8849390B2 (en) | 2008-12-29 | 2014-09-30 | Cyberonics, Inc. | Processing for multi-channel signals |
| DE102009004011A1 (de) * | 2009-01-07 | 2010-07-08 | Kromat, Oliver, Dr. | Verfahren und Vorrichtung zur Stimulierung der Extremitäten zum Bewegungs- und Muskeltraining |
| TWI475978B (zh) | 2009-01-17 | 2015-03-11 | Ind Tech Res Inst | 乾式電極及其製造方法 |
| AU2010216210B2 (en) | 2009-02-18 | 2013-01-31 | Boston Scientific Scimed, Inc. | Treatment of a pelvic condition through indirect electrical stimulation |
| US8313443B2 (en) | 2009-03-09 | 2012-11-20 | Tom Michael D | Tensiometer utilizing elastic conductors |
| US9333347B2 (en) | 2010-08-19 | 2016-05-10 | ElectroCore, LLC | Devices and methods for non-invasive electrical stimulation and their use for vagal nerve stimulation on the neck of a patient |
| US9174045B2 (en) | 2009-03-20 | 2015-11-03 | ElectroCore, LLC | Non-invasive electrical and magnetic nerve stimulators used to treat overactive bladder and urinary incontinence |
| US9248286B2 (en) | 2009-03-20 | 2016-02-02 | ElectroCore, LLC | Medical self-treatment using non-invasive vagus nerve stimulation |
| US8918178B2 (en) | 2009-03-20 | 2014-12-23 | ElectroCore, LLC | Non-invasive vagal nerve stimulation to treat disorders |
| US10220207B2 (en) | 2009-03-20 | 2019-03-05 | Electrocore, Inc. | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US9254383B2 (en) | 2009-03-20 | 2016-02-09 | ElectroCore, LLC | Devices and methods for monitoring non-invasive vagus nerve stimulation |
| US10252074B2 (en) | 2009-03-20 | 2019-04-09 | ElectroCore, LLC | Nerve stimulation methods for averting imminent onset or episode of a disease |
| US10286212B2 (en) | 2009-03-20 | 2019-05-14 | Electrocore, Inc. | Nerve stimulation methods for averting imminent onset or episode of a disease |
| WO2010111321A2 (en) | 2009-03-27 | 2010-09-30 | Medtronic, Inc. | Conditional electrical stimulation in response to physiological information for pelvic health |
| US8428719B2 (en) | 2009-04-03 | 2013-04-23 | The General Hospital Corporation | Systems and methods for respiratory-gated auricular vagal afferent nerve stimulation |
| JP5439921B2 (ja) * | 2009-04-16 | 2014-03-12 | コニカミノルタ株式会社 | 震え抑制器具 |
| WO2010124013A1 (en) | 2009-04-22 | 2010-10-28 | Rush University Medical Center | Method and device to manage freezing of gait in patients suffering from a movement disorder |
| WO2010123704A2 (en) | 2009-04-24 | 2010-10-28 | Medtronic, Inc. | Incontinence therapy |
| US8483832B2 (en) * | 2009-05-20 | 2013-07-09 | ElectroCore, LLC | Systems and methods for selectively applying electrical energy to tissue |
| US9408683B2 (en) | 2009-05-27 | 2016-08-09 | Parapatch, Inc. | Method and device for treating female pelvic nerve dysfunction |
| US8046077B2 (en) | 2009-06-05 | 2011-10-25 | Intelect Medical, Inc. | Selective neuromodulation using energy-efficient waveforms |
| US20110021899A1 (en) | 2009-07-23 | 2011-01-27 | Surmodics, Inc. | Conductive polymer coatings |
| US8374701B2 (en) | 2009-07-28 | 2013-02-12 | The Invention Science Fund I, Llc | Stimulating a nervous system component of a mammal in response to contactlessly acquired information |
| CN101612043B (zh) * | 2009-08-04 | 2011-03-02 | 中国科学院合肥物质科学研究院 | 穿戴型人体手臂震颤检测与抑制机器人及其震颤抑制方法 |
| DE102009038131A1 (de) | 2009-08-12 | 2011-02-17 | ATMOS Medizin Technik GmbH & Co. KG | Am Körper eines Benutzers tragbare Vorrichtung zur Bereitstellung von Unterdruck für medizinische Anwendungen |
| KR101274114B1 (ko) | 2009-09-01 | 2013-06-13 | 한국전자통신연구원 | 보정된 발 압력 값을 이용한 자세분석 시스템 및 방법 |
| WO2011026257A1 (zh) | 2009-09-03 | 2011-03-10 | Yang Changming | 利用织品感测器的步态分析系统及方法 |
| US9586038B1 (en) | 2009-09-14 | 2017-03-07 | Tomasz Andrzej Kosierkiewicz | System and method for a dry elastomer electrode |
| US20110071590A1 (en) | 2009-09-18 | 2011-03-24 | La Corporation De L'ecole Polytechnique De Montreal | Sacral neurostimulation to induce micturition in paraplegics |
| US8148103B2 (en) | 2009-09-29 | 2012-04-03 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
| US20110218756A1 (en) | 2009-10-01 | 2011-09-08 | Mc10, Inc. | Methods and apparatus for conformal sensing of force and/or acceleration at a person's head |
| WO2011041526A2 (en) | 2009-10-01 | 2011-04-07 | University Of Pittsburgh-Of The Commonwealth System Of Higher Education | Non-invasive method to treat urological and gastrointestinal disorders |
| AU2010303583B2 (en) | 2009-10-05 | 2015-08-06 | The Regents Of The University Of California | Systems, devices and methods for the treatment of neurological disorders and conditions |
| DE102009048950B4 (de) | 2009-10-10 | 2012-07-05 | Erhard Schöndorf | Vorrichtung zur Reizstrombehandlung des menschlichen Körpers |
| US8660656B2 (en) | 2009-10-16 | 2014-02-25 | Hanger, Inc. | Cuff assembly |
| US9008781B2 (en) | 2009-10-22 | 2015-04-14 | The Research Foundation Of The City University Of New York | Method and system for treatment of mobility dysfunction |
| CA2778963A1 (en) | 2009-10-26 | 2011-05-05 | Emkinetics, Inc. | Method and apparatus for electromagnetic stimulation of nerve, muscle, and body tissues |
| WO2011057028A1 (en) | 2009-11-04 | 2011-05-12 | Arizona Board Of Regents For And On Behalf Of Arizona State University | Devices and methods for modulating brain activity |
| CN102711906B (zh) | 2009-11-06 | 2015-04-29 | 财团法人日本健康科学振兴财团 | 电刺激装置 |
| US20130281890A1 (en) | 2009-11-11 | 2013-10-24 | David J. Mishelevich | Neuromodulation devices and methods |
| US20160001096A1 (en) | 2009-11-11 | 2016-01-07 | David J. Mishelevich | Devices and methods for optimized neuromodulation and their application |
| EP2498869B1 (en) | 2009-11-11 | 2020-05-13 | Sage Products, LLC | Synergistic muscle activation device |
| US20170246481A1 (en) | 2009-11-11 | 2017-08-31 | David J Mishelevich | Devices and methods for optimized neuromodulation and their application |
| US20120220812A1 (en) | 2011-02-27 | 2012-08-30 | Mishelevich David J | Ultrasound neuromodulation for stroke mitigation and rehabilitation |
| US20110224571A1 (en) | 2009-11-16 | 2011-09-15 | Alvaro Pascual-Leone | Non-invasive methods for evaluating cortical plasticity impairments |
| US8983610B2 (en) | 2009-11-18 | 2015-03-17 | Case Western Reserve University | Hybrid method for modulating upper airway function in a subject |
| US9653002B2 (en) * | 2009-11-19 | 2017-05-16 | The Cleveland Clinic Foundation | System and method for motor and cognitive analysis |
| US20110137375A1 (en) | 2009-12-03 | 2011-06-09 | Mcbride Keith | System and method for detection of inversion and eversion of the foot using a multi-chamber insole |
| SE534365C2 (sv) | 2010-04-27 | 2011-07-26 | Inerventions Ab | System och klädesplagg för avslappning av en spastisk muskel |
| US9248297B2 (en) | 2009-12-15 | 2016-02-02 | Neurodan A/S | System for electrical stimulation of nerves |
| EP2519312B1 (en) | 2009-12-30 | 2014-05-14 | Fundacion Tecnalia Research & Innovation | Apparatus for external activation of paralyzed body parts by stimulation of peripheral nerves |
| US10213593B2 (en) | 2010-01-15 | 2019-02-26 | Stimmed Llc | Method and apparatus for noninvasive inhibition of deep vein thrombosis |
| US8886323B2 (en) | 2010-02-05 | 2014-11-11 | Medtronic, Inc. | Electrical brain stimulation in gamma band |
| US20110213278A1 (en) | 2010-02-26 | 2011-09-01 | Apdm, Inc. | Movement monitoring system and apparatus for objective assessment of movement disorders |
| MX350386B (es) | 2010-03-22 | 2017-09-05 | Univ City New York Res Found | Sistema de estimulacion electrica neural mejorado de carga. |
| WO2011119224A2 (en) * | 2010-03-24 | 2011-09-29 | Steven John Schiff | Model based control of parkinson's disease |
| DE102010016404A1 (de) | 2010-04-12 | 2012-12-27 | Forschungszentrum Jülich GmbH | Vorrichtung und Verfahren zur konditionierten desynchronisierenden nicht-invasiven Stimulation |
| WO2011130202A2 (en) | 2010-04-16 | 2011-10-20 | The Johns Hopkins University | Device to monitor and treat hemiplegia and hemispatial neglect |
| US9814885B2 (en) * | 2010-04-27 | 2017-11-14 | Medtronic, Inc. | Stimulation electrode selection |
| EP2383014A1 (en) | 2010-04-29 | 2011-11-02 | Koninklijke Philips Electronics N.V. | Transcutaneous electro-stimulation device with a matrix of electrodes |
| US8702584B2 (en) | 2010-05-12 | 2014-04-22 | Cefaly Technology Sprl | Neurostimulation method to induce relaxation or sleep |
| GB201008089D0 (en) | 2010-05-14 | 2010-06-30 | Manus Neurodynamica Ltd | Apparatus for use in diagnosing neurological disorder |
| WO2011144883A1 (en) | 2010-05-19 | 2011-11-24 | Salisbury Nhs Foundation Trust | Accelerometer assembly and the use thereof |
| US9562119B2 (en) | 2010-05-25 | 2017-02-07 | W. R. Grace & Co.-Conn. | Ethylene polymerization catalysts |
| US8588884B2 (en) | 2010-05-28 | 2013-11-19 | Emkinetics, Inc. | Microneedle electrode |
| US9757266B2 (en) | 2010-06-01 | 2017-09-12 | Saebo, Inc. | Orthotic device |
| US8989861B2 (en) | 2010-06-07 | 2015-03-24 | Medtronic, Inc. | Stimulation therapy for bladder dysfunction |
| US8788045B2 (en) | 2010-06-08 | 2014-07-22 | Bluewind Medical Ltd. | Tibial nerve stimulation |
| GB201009977D0 (en) | 2010-06-15 | 2010-07-21 | Sky Medical Technology Ltd | Incontinence treatment |
| JP5549979B2 (ja) | 2010-06-23 | 2014-07-16 | 国立大学法人大阪大学 | 空間透明型触覚提示装置および道具操作支援システム |
| US9272139B2 (en) | 2010-07-01 | 2016-03-01 | Marilyn J. Hamilton | Universal closed-loop electrical stimulation system |
| US8260427B2 (en) | 2010-07-07 | 2012-09-04 | ProNerve, LLC | Garment to facilitate needle electrode placement for intraoperative monitoring |
| US8626305B2 (en) | 2010-07-09 | 2014-01-07 | Neurodan A/S | System for stimulation of nerves |
| WO2012009368A2 (en) | 2010-07-12 | 2012-01-19 | Oregon Health & Science University | Method and device for reducing symptomatic relapse of spasticity |
| US8326432B2 (en) | 2010-07-19 | 2012-12-04 | Kalisek Rod S | Foot drop device storage pole |
| JP5724237B2 (ja) | 2010-07-27 | 2015-05-27 | オムロンヘルスケア株式会社 | 歩行変化判定装置 |
| US8718780B2 (en) | 2010-08-13 | 2014-05-06 | Boston Scientific Neuromodulation Corporation | System for selectively performing local and radial peripheral stimulation |
| WO2012024286A2 (en) | 2010-08-18 | 2012-02-23 | Medtronic, Inc. | Urgency therapy with neuromodulation and c-afferent nerve desensitization |
| TWI392479B (zh) | 2010-08-20 | 2013-04-11 | 國立交通大學 | 用於生理訊號量測感測器之乾式電極 |
| AU2011296159B2 (en) | 2010-08-30 | 2016-03-31 | Deridder, Dirk | Use of a new stimulation design to treat neurological disorder |
| US8760453B2 (en) | 2010-09-01 | 2014-06-24 | Microsoft Corporation | Adaptive grid generation for improved caching and image classification |
| JP2012055650A (ja) | 2010-09-03 | 2012-03-22 | Hisaya Oizumi | 磁気パンツ |
| US8452410B2 (en) | 2010-09-07 | 2013-05-28 | Aalborg Universitet | Method and device for reflex-based functional gait training |
| CA2815193C (en) | 2010-10-19 | 2019-02-12 | Research Foundation Of The City University Of New York | Electrode assembly |
| US20120098493A1 (en) | 2010-10-22 | 2012-04-26 | Lothar Budike | Charging station |
| JP6004444B2 (ja) | 2010-10-29 | 2016-10-05 | オーピクス メディカル テクノロジーズ インコーポレイテッドOrpyx Medical Technologies Inc. | 末梢感覚および超感覚代行システム |
| US9011292B2 (en) | 2010-11-01 | 2015-04-21 | Nike, Inc. | Wearable device assembly having athletic functionality |
| US9168374B2 (en) | 2011-01-28 | 2015-10-27 | Medtronic, Inc. | Intra-burst pulse variation for stimulation therapy |
| US20140031605A1 (en) | 2011-02-02 | 2014-01-30 | Universite Laval | Method and Use of Peripheral Theta-Burst Stimulation (PTBS) for Improving Motor Impairment |
| CN103561811A (zh) * | 2011-02-02 | 2014-02-05 | 脊髓调制公司 | 靶向治疗运动障碍的装置、系统和方法 |
| US9095417B2 (en) | 2011-02-07 | 2015-08-04 | Bioness Neuromodulation Ltd. | Adjustable orthosis for electrical stimulation of a limb |
| US8581731B2 (en) | 2011-02-16 | 2013-11-12 | Connor Kent Purks | Circuits, systems, and methods for monitoring and reporting foot impact, foot placement, shoe life, and other running/walking characteristics |
| US9333372B2 (en) | 2011-02-20 | 2016-05-10 | James Otis | Methods and apparatus for intermittent stimuli |
| US10173048B2 (en) | 2011-03-10 | 2019-01-08 | Electrocore, Inc. | Electrical and magnetic stimulators used to treat migraine/sinus headache, rhinitis, sinusitis, rhinosinusitis, and comorbid disorders |
| JP2012217565A (ja) | 2011-04-07 | 2012-11-12 | Panasonic Corp | 排尿障害治療装置 |
| US9452101B2 (en) | 2011-04-11 | 2016-09-27 | Walkjoy, Inc. | Non-invasive, vibrotactile medical device to restore normal gait for patients suffering from peripheral neuropathy |
| US10448889B2 (en) | 2011-04-29 | 2019-10-22 | Medtronic, Inc. | Determining nerve location relative to electrodes |
| US9289591B2 (en) | 2011-05-06 | 2016-03-22 | Articulate Labs, Inc. | Joint rehabilitation apparatus and technique |
| US8504158B2 (en) | 2011-05-09 | 2013-08-06 | Medtronic, Inc. | Phrenic nerve stimulation during cardiac refractory period |
| DE102011101579B4 (de) | 2011-05-12 | 2015-03-05 | Otto Bock Healthcare Gmbh | Verwendung eines leitfähigen Polymermaterials für medizinische und orthopädietechnische Anwendungen |
| US20140094873A1 (en) | 2011-05-17 | 2014-04-03 | Nordic Neurostim Aps | Footwear product for functional electrical stimulation |
| SE535818C2 (sv) | 2011-05-26 | 2013-01-02 | Stanley Wissmar | Ett mobilt armbandsur omfattande flera elektriska- och mikromekaniska komponenter som fungerar som en centralenhet för en mängd olika uppgifter |
| US9144680B2 (en) | 2011-05-31 | 2015-09-29 | Greatbatch Ltd. | System and method of establishing a protocol for providing electrical stimulation with a stimulation system to treat a patient |
| US10251611B2 (en) | 2011-06-10 | 2019-04-09 | Bright Devices Group Pty Ltd | Freezing of gait cue apparatus |
| JP5469642B2 (ja) | 2011-07-11 | 2014-04-16 | インターチェンジジャパン株式会社 | 超音波便秘改善器 |
| US9107614B2 (en) | 2011-07-12 | 2015-08-18 | Xanadu Christina Halkias | Systems, methods, and media for finding and matching tremor signals |
| WO2013016588A1 (en) | 2011-07-26 | 2013-01-31 | Dan Sachs | Apparatus and methods to modulate pelvic nervous tissue |
| GB2493904B (en) | 2011-08-12 | 2014-03-19 | Actegy Ltd | Apparatus for providing electrical stimulation to a subject |
| US8909340B2 (en) | 2011-08-23 | 2014-12-09 | Palo Alto Investors | Methods and devices for treating conditions associated with autonomic dysfunction |
| US9707393B2 (en) | 2011-08-26 | 2017-07-18 | National Yunlin University Of Science And Technology | Feedback-control wearable upper-limb electrical stimulation device |
| WO2013036599A1 (en) | 2011-09-09 | 2013-03-14 | Ams Research Corporation | Tibial nerve stimulation device |
| US9925034B2 (en) | 2011-09-30 | 2018-03-27 | Verily Life Sciences Llc | Stabilizing unintentional muscle movements |
| US8560077B2 (en) | 2011-10-04 | 2013-10-15 | Feinstein Patents Llc | Universal musculoskeletal rehab device (brace, sleeve, or pad) for electrical treatment modalities and biofeedback response monitoring |
| EP3718596B1 (en) | 2011-10-11 | 2023-06-28 | Duke University | Non-regular electrical stimulation patterns for treating neurological disorders |
| HK1201145A1 (en) | 2011-10-19 | 2015-08-28 | 辛帕拉医疗有限公司 | Methods and devices for treating hypertension |
| JP5569885B2 (ja) | 2011-10-28 | 2014-08-13 | 学校法人加計学園 | 足関節駆動による歩行支援機能的電気刺激システム |
| WO2013063200A1 (en) | 2011-10-28 | 2013-05-02 | Embrey David G | Functional electrical stimulation (fes) method and system to improve walking and other locomotion functions |
| AU2012334926B2 (en) | 2011-11-11 | 2017-07-13 | The Regents Of The University Of California | Transcutaneous spinal cord stimulation: noninvasive tool for activation of locomotor circuitry |
| CN106913955B (zh) * | 2011-11-11 | 2019-09-17 | 神经赋能科技公司 | 非侵入神经调节系统 |
| GB2496449A (en) | 2011-11-14 | 2013-05-15 | Louise Mohn | Electrical stimulation apparatus for the body |
| JP6130851B2 (ja) | 2011-11-15 | 2017-05-17 | ニューロメトリックス・インコーポレーテッド | 経皮的電気神経刺激を使用して痛みを軽減するための装置、および電極配列 |
| US10112040B2 (en) | 2011-11-15 | 2018-10-30 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulation using novel unbalanced biphasic waveform and novel electrode arrangement |
| US9731126B2 (en) | 2011-11-15 | 2017-08-15 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with automatic detection of leg orientation and leg motion for enhanced sleep analysis, including enhanced transcutaneous electrical nerve stimulation (TENS) using the same |
| US10335595B2 (en) | 2011-11-15 | 2019-07-02 | Neurometrix, Inc. | Dynamic control of transcutaneous electrical nerve stimulation therapy using continuous sleep detection |
| US9827420B2 (en) | 2013-03-29 | 2017-11-28 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with user gesture detector and electrode-skin contact detector, with transient motion detector for increasing the accuracy of the same |
| US11247040B2 (en) | 2011-11-15 | 2022-02-15 | Neurometrix, Inc. | Dynamic control of transcutaneous electrical nerve stimulation therapy using continuous sleep detection |
| US10279179B2 (en) | 2013-04-15 | 2019-05-07 | Neurometrix, Inc. | Transcutaneous electrical nerve stimulator with automatic detection of user sleep-wake state |
| US9675801B2 (en) | 2011-11-15 | 2017-06-13 | Neurometrix, Inc. | Measuring the “on-skin” time of a transcutaneous electrical nerve stimulator (TENS) device in order to minimize skin irritation due to excessive uninterrupted wearing of the same |
| WO2013082587A1 (en) | 2011-12-02 | 2013-06-06 | Enterx, Inc. | Method for modulating the enteric nervous system to treat a disorder |
| CN104093358B (zh) | 2011-12-12 | 2017-09-08 | 迈德维特科学有限公司 | 用于检测低血糖发作的方法和装置 |
| US8594797B2 (en) | 2011-12-19 | 2013-11-26 | Boston Scientific Neuromodulation Corporation | Computationally efficient technique for determining electrode current distribution from a virtual multipole |
| WO2013096954A1 (en) | 2011-12-23 | 2013-06-27 | The Trustees Of Dartmouth College | Wearable computing device for secure control of physiological sensors and medical devices, with secure storage of medical records, and bioimpedance biometric |
| DE102012002436B4 (de) | 2012-02-08 | 2014-08-21 | Forschungszentrum Jülich GmbH | Vorrichtung zur Eichung einer nicht-invasiven desynchronisierenden Neurostimulation |
| WO2013122870A1 (en) | 2012-02-13 | 2013-08-22 | Copa Animal Health, Llc | Delivery of audio and tactile stimulation therapy for animals and humans |
| US20140058189A1 (en) | 2012-02-20 | 2014-02-27 | William F. Stubbeman | Systems and methods using brain stimulation for treating disorders |
| WO2013130421A1 (en) | 2012-02-29 | 2013-09-06 | The Cleveland Clinic Foundation | System and method for neuromodulation using composite patterns of stimulation or waveforms |
| US9433786B2 (en) | 2012-03-06 | 2016-09-06 | Valencia Technologies Corporation | Implantable electroacupuncture system and method for treating Parkinson's disease and essential tremor |
| US20130236867A1 (en) | 2012-03-09 | 2013-09-12 | Andante Medical Device Inc. | Brain re-training system for ambulatory and/or functional performance therapy |
| US9622671B2 (en) | 2012-03-20 | 2017-04-18 | University of Pittsburgh—of the Commonwealth System of Higher Education | Monitoring and regulating physiological states and functions via sensory neural inputs to the spinal cord |
| FI124278B (fi) | 2012-03-23 | 2014-05-30 | Juno Medical Llc | Mittalaite ja menetelmä rasitustilan indikoimiseksi |
| GB2500635A (en) | 2012-03-27 | 2013-10-02 | Louise Mohn | Moulded stimulation pad |
| KR20150004819A (ko) | 2012-03-30 | 2015-01-13 | 더 보오드 오브 트러스티스 오브 더 유니버시티 오브 일리노이즈 | 표면에 상응하는 부속체 장착가능한 전자 장치 |
| JP2015519096A (ja) | 2012-04-06 | 2015-07-09 | ニューポート ブレイン リサーチ ラボラトリー インコーポレイテッド | 周波数特異的感覚刺激 |
| CN103371816A (zh) | 2012-04-25 | 2013-10-30 | 深圳迈瑞生物医疗电子股份有限公司 | 一种生物电信号检测电路和导联线检测电路及医疗设备 |
| US8977364B2 (en) | 2012-05-03 | 2015-03-10 | Ioannis Mihail Skaribas | External, head-worn electrical stimulator for treating headache conditions |
| US9332918B1 (en) | 2012-05-07 | 2016-05-10 | Jill Buckley | Patient monitoring devices and systems |
| US9724516B2 (en) | 2012-05-17 | 2017-08-08 | The Research Foundation For The State University Of New York | Cardiac defibrillation with vagus nerve stimulation |
| CN202724457U (zh) | 2012-05-23 | 2013-02-13 | 重庆融海超声医学工程研究中心有限公司 | 脉冲电流刺激装置 |
| US9248285B2 (en) | 2012-06-09 | 2016-02-02 | Fempulse, Llc | Devices and methods for stimulating nerves |
| US9468753B2 (en) | 2012-06-14 | 2016-10-18 | Case Western Reserve University | System and method for stimulating motor units |
| CA3184524A1 (en) | 2012-06-14 | 2013-12-19 | Autonomix Medical, Inc. | Devices, systems, and methods for diagnosis and treatment of overactive bladder |
| EP2882489B1 (en) | 2012-06-26 | 2021-08-04 | Myndtec Inc. | Method for functional electrical stimulation therapy |
| GB201212544D0 (en) | 2012-07-13 | 2012-08-29 | Univ York | Device to determine extent of dyskinesia |
| US9161812B2 (en) | 2012-07-19 | 2015-10-20 | Covidien Lp | Finger-mountable ablation device |
| WO2014022215A1 (en) | 2012-07-28 | 2014-02-06 | Thimble Bioelectronics, Inc. | System and method for managing pain |
| US20140067003A1 (en) | 2012-07-31 | 2014-03-06 | Abhi Vase | System and method for autonomic blood pressure regulation |
| US20140039573A1 (en) | 2012-08-03 | 2014-02-06 | International Rehabilitative Sciences, Inc. | Neuromuscular stimulator with battery monitoring, external data adapter, and simplified user interface |
| US9511222B2 (en) | 2012-08-03 | 2016-12-06 | Boston Scientific Neuromodulation Corporation | System and method for post-stroke neural rehabilitation |
| US8886321B2 (en) | 2012-08-08 | 2014-11-11 | Boston Scientific Scimed, Inc. | Apparatus for treating pelvic floor disorders and related methods of use |
| US9549872B2 (en) | 2012-08-15 | 2017-01-24 | The Board Of Regents Of The University Of Texas System | Chronic electroaccupuncture using implanted electrodes |
| US11167154B2 (en) | 2012-08-22 | 2021-11-09 | Medtronic, Inc. | Ultrasound diagnostic and therapy management system and associated method |
| US9259577B2 (en) | 2012-08-31 | 2016-02-16 | Greatbatch Ltd. | Method and system of quick neurostimulation electrode configuration and positioning |
| US9238142B2 (en) | 2012-09-10 | 2016-01-19 | Great Lakes Neurotechnologies Inc. | Movement disorder therapy system and methods of tuning remotely, intelligently and/or automatically |
| US9186095B2 (en) | 2012-09-11 | 2015-11-17 | The Cleveland Clinic Foundaton | Evaluation of movement disorders |
| WO2014043757A1 (en) | 2012-09-20 | 2014-03-27 | National Ict Australia Limited | Stride detection |
| US8868188B2 (en) | 2012-09-20 | 2014-10-21 | Boston Scientific Neuromodulation Corporation | Method for treating hypertension via electrical stimulation of neural structures |
| US9345872B2 (en) | 2012-09-25 | 2016-05-24 | Walter M. Groteke | Conductive electrical garment |
| CN203252647U (zh) | 2012-09-29 | 2013-10-30 | 艾利佛公司 | 用于判定生理特征的可佩带的设备 |
| US8583238B1 (en) | 2012-10-02 | 2013-11-12 | Great Lakes Neuro Technologies Inc. | Wearable, unsupervised transcranial direct current stimulation (tDCS) device for movement disorder therapy, and method of using |
| BR102012025421A2 (pt) | 2012-10-05 | 2014-10-07 | Brunian Ltda Me | Equipamento de vestir nos membros superiores para captação, tratamento e armazenamento de dados quantitativos da tríade clássica da doença de parkinson |
| US20140171834A1 (en) | 2012-10-20 | 2014-06-19 | Elizabethtown College | Electronic-Movement Analysis Tool for Motor Control Rehabilitation and Method of Using the Same |
| SG11201503472PA (en) | 2012-11-05 | 2015-05-28 | Autonomix Medical Inc | Systems, methods, and devices for monitoring and treatment of tissues within and/or through a lumen wall |
| KR20140062895A (ko) | 2012-11-15 | 2014-05-26 | 삼성전자주식회사 | 외부 장치를 제어하기 위한 웨어러블 디바이스 및 그 방법 |
| US8903494B2 (en) | 2012-11-26 | 2014-12-02 | Thync, Inc. | Wearable transdermal electrical stimulation devices and methods of using them |
| US10814131B2 (en) | 2012-11-26 | 2020-10-27 | Thync Global, Inc. | Apparatuses and methods for neuromodulation |
| EP2928545B1 (en) | 2012-12-05 | 2023-04-05 | Battelle Memorial Institute | Neuromuscular stimulation cuff |
| US9884179B2 (en) | 2012-12-05 | 2018-02-06 | Bbattelle Memorial Institute | Neural sleeve for neuromuscular stimulation, sensing and recording |
| WO2014089331A1 (en) | 2012-12-06 | 2014-06-12 | Ossur Hf | Electrical stimulation for orthopedic devices |
| WO2014087337A1 (en) | 2012-12-06 | 2014-06-12 | Bluewind Medical Ltd. | Delivery of implantable neurostimulators |
| EP2928367A4 (en) | 2012-12-07 | 2016-08-03 | Univ Indiana Res & Tech Corp | SYSTEM AND METHOD FOR NON-INVASIVE AUTONOMIC MONITORING OF NERVOUS ACTIVITY |
| WO2014087291A1 (en) | 2012-12-07 | 2014-06-12 | Koninklijke Philips N.V. | Apparatus and method relating to an electrostimulation device |
| CA2905042C (en) | 2012-12-14 | 2025-10-07 | Case Western Reserve University | METHODS FOR TREATING MEDICAL DISORDERS THROUGH CODING BASED ON A POPULATION OF NEURAL INFORMATION |
| US10293160B2 (en) | 2013-01-15 | 2019-05-21 | Electrocore, Inc. | Mobile phone for treating a patient with dementia |
| US12453853B2 (en) | 2013-01-21 | 2025-10-28 | Cala Health, Inc. | Multi-modal stimulation for treating tremor |
| EP3912674A1 (en) | 2013-01-21 | 2021-11-24 | Cala Health, Inc. | Devices for controlling tremor |
| US9254382B2 (en) | 2013-02-08 | 2016-02-09 | ReliefBand Technologies LLC | Apparatus for transcutaneous electrical stimulation of the tibial nerve |
| US9962546B2 (en) | 2013-02-21 | 2018-05-08 | Meagan Medical, Inc. | Cutaneous field stimulation with disposable and rechargeable components |
| KR102059346B1 (ko) | 2013-03-05 | 2020-02-11 | 삼성전자주식회사 | 근전도 센서 시스템 및 근전도 센서 시스템의 동작 방법 |
| US9119964B2 (en) | 2013-03-06 | 2015-09-01 | Boston Scientific Neuromodulation Corporation | System for deep brain stimulation employing a sensor for monitoring patient movement and providing closed loop control |
| US9414776B2 (en) | 2013-03-06 | 2016-08-16 | Navigated Technologies, LLC | Patient permission-based mobile health-linked information collection and exchange systems and methods |
| JP6393283B2 (ja) | 2013-03-07 | 2018-09-19 | リサーチ ファウンデーション オブ ザ シティー ユニバーシティ オブ ニューヨークResearch Foundation Of The City University Of New York | 神経運動機能不全の処置のための方法及びシステム |
| US20150164377A1 (en) | 2013-03-13 | 2015-06-18 | Vaidhi Nathan | System and method of body motion analytics recognition and alerting |
| US20140277220A1 (en) | 2013-03-14 | 2014-09-18 | Birch Tree Medical, Inc. | Heated garment for medical applications |
| WO2014151431A2 (en) | 2013-03-15 | 2014-09-25 | Emkinetics, Inc. | Method and apparatus for transdermal stimulation over the palmar and plantar surfaces |
| CA2906946C (en) | 2013-03-15 | 2023-04-11 | Fast Track Technologies, Inc. | Electro-stimulation device and method of systematically compounded modulation of current intensity with other output parameters for affecting biological tissues |
| US20160030408A1 (en) | 2013-03-15 | 2016-02-04 | Bhl Patent Holdings Llc | Materials and methods for treating neuropathies and related disorders including those involving a keystone nerve |
| US20140276194A1 (en) | 2013-03-15 | 2014-09-18 | Flint Hills Scientific, L.L.C. | Automated means to control responses to repetitive electrical stimulation and improve therapeutic efficacy |
| US9615797B2 (en) | 2013-03-16 | 2017-04-11 | Jaison C. John | Method, apparatus and system for determining a health risk using a wearable housing for sensors |
| EP2978488B1 (en) | 2013-03-29 | 2021-04-14 | GSK Consumer Healthcare S.A. | Detecting cutaneous electrode peeling using electrode-skin impedance |
| US10940311B2 (en) | 2013-03-29 | 2021-03-09 | Neurometrix, Inc. | Apparatus and method for button-free control of a wearable transcutaneous electrical nerve stimulator using interactive gestures and other means |
| WO2014168957A2 (en) | 2013-04-08 | 2014-10-16 | Bradford Siff | Noninvasive or percutaneous nerve stimulation |
| KR101463684B1 (ko) | 2013-04-17 | 2014-11-19 | 고려대학교 산학협력단 | 비정상 보행 여부를 측정하는 방법 |
| GB2513410B (en) | 2013-04-26 | 2020-08-12 | Vivid Laminating Tech Limited | Laminating a book cover |
| US9427581B2 (en) | 2013-04-28 | 2016-08-30 | ElectroCore, LLC | Devices and methods for treating medical disorders with evoked potentials and vagus nerve stimulation |
| EP4108292A1 (en) | 2013-05-08 | 2022-12-28 | Consejo Superior De Investigaciones Científicas (CSIC) | Method and neuroprosthetic device for monitoring and suppression of pathological tremors through neurostimulation of the afferent pathways |
| US20140336003A1 (en) | 2013-05-08 | 2014-11-13 | The Regents Of The University Of Colorado, A Body Corporate | System and methods for measuring propulsive force during ambulation and providing real-time feedback |
| JP6075198B2 (ja) | 2013-05-10 | 2017-02-08 | オムロンヘルスケア株式会社 | 歩行姿勢計およびプログラム |
| JP6131706B2 (ja) | 2013-05-10 | 2017-05-24 | オムロンヘルスケア株式会社 | 歩行姿勢計およびプログラム |
| EP3003473B1 (en) | 2013-05-30 | 2018-08-22 | Graham H. Creasey | Topical neurological stimulation |
| KR20140142463A (ko) | 2013-06-04 | 2014-12-12 | 한국전자통신연구원 | 보행 모니터링 장치 및 방법 |
| WO2014205356A2 (en) | 2013-06-21 | 2014-12-24 | Northeastern University | Sensor system and process for measuring electric activity of the brain, including electric field encephalography |
| US9242085B2 (en) | 2013-06-28 | 2016-01-26 | Boston Scientific Neuromodulation Corporation | Transcutaneous electrical stimulation for treating neurological disorders |
| CN105324150B (zh) | 2013-06-28 | 2018-04-27 | Koc大学 | 电刺激装置 |
| US9539422B2 (en) | 2013-07-02 | 2017-01-10 | Greatbatch Ltd. | Neurostimulator interconnection apparatus, system, and method |
| CN203469232U (zh) | 2013-07-11 | 2014-03-12 | 精能医学股份有限公司 | 神经降敏感的经皮刺激器 |
| US10335594B2 (en) | 2013-07-24 | 2019-07-02 | GiMer Medical Co., Ltd. | Desensitizing device |
| US9370652B2 (en) | 2013-07-24 | 2016-06-21 | Gimer Medical Co. Ltd. | Desensitizing device |
| WO2015035098A2 (en) | 2013-09-04 | 2015-03-12 | Zero360, Inc. | Processing system and method |
| US9924899B2 (en) | 2013-09-09 | 2018-03-27 | Alexis Pracar | Intelligent progression monitoring, tracking, and management of parkinson's disease |
| WO2015042365A1 (en) | 2013-09-20 | 2015-03-26 | Dana-Farber Cancer Institute, Inc. | Electro-stimulation systems, methods, and apparatus for treating pain |
| WO2015039206A1 (en) | 2013-09-20 | 2015-03-26 | Mddt Inc. | Diagnosing and treating movement disorders |
| US10231665B2 (en) | 2013-09-20 | 2019-03-19 | Mddt Inc. | Diagnosing and treating movement disorders |
| CA2866025A1 (en) | 2013-10-03 | 2015-04-03 | Quiang Song | Sensor unit for a functional electrical stimulation (fes) orthotic system |
| CA2866027A1 (en) | 2013-10-03 | 2015-04-03 | Farsad Kiani | Controller unit for a functional electrical stimulation (fes) orthotic system |
| US9936899B2 (en) | 2013-10-07 | 2018-04-10 | Joseph Goldman | Tremor reduction system and device |
| US9311686B2 (en) | 2013-10-14 | 2016-04-12 | Garmin Switzerland Gmbh | Fitness monitor |
| EP3057652B1 (en) | 2013-10-17 | 2023-07-12 | Fempulse, LLC | Devices for stimulating nerves |
| ES2980847T3 (es) | 2013-10-23 | 2024-10-03 | Ecole Polytechnique Fed Lausanne Epfl | Sistema neuroprotésico que restaura la función de la extremidad superior mediante estimulación eléctrica coordinada |
| EP3068301A4 (en) | 2013-11-12 | 2017-07-12 | Highland Instruments, Inc. | Analysis suite |
| JP6019409B2 (ja) | 2013-11-13 | 2016-11-02 | パナソニックIpマネジメント株式会社 | 電子部品実装装置及び電子部品実装方法 |
| US9419417B1 (en) | 2013-11-13 | 2016-08-16 | Thomas M. Taxter | Automatic switching interface box for generator |
| US20160263376A1 (en) | 2013-11-27 | 2016-09-15 | The Governing Council Of The University Of Toronto | Systems and methods for improved treatment of overactive bladder |
| US11633593B2 (en) | 2013-11-27 | 2023-04-25 | Ebt Medical, Inc. | Treatment of pelvic floor disorders using targeted lower limb nerve stimulation |
| US9610442B2 (en) | 2015-05-21 | 2017-04-04 | The Governing Council Of The University Of Toronto | Systems and methods for treatment of urinary dysfunction |
| CA2931799C (en) | 2013-11-27 | 2023-04-18 | The Governing Council Of The University Of Toronto | Systems and methods of enhancing electrical activation of nervous tissue |
| US10556107B2 (en) | 2013-11-27 | 2020-02-11 | Ebt Medical, Inc. | Systems, methods and kits for peripheral nerve stimulation |
| KR101592925B1 (ko) | 2013-11-29 | 2016-02-11 | 문찬곤 | 메쉬 구조를 이용한 생체신호 측정 및 전기자극 장치 |
| US9445769B2 (en) | 2013-12-06 | 2016-09-20 | President And Fellows Of Harvard College | Method and apparatus for detecting disease regression through network-based gait analysis |
| CN103611391B (zh) | 2013-12-12 | 2016-01-20 | 北京博源恒升高科技有限公司 | 乙二醇类复合溶液脱除气体中SOx的方法 |
| US9707390B2 (en) | 2013-12-22 | 2017-07-18 | The Research Foundation Of The City University Of New York | Apparatus for modulation of effector organs |
| US9283391B2 (en) | 2013-12-22 | 2016-03-15 | The Research Foundation Of The City University Of New York | Trans-spinal direct current modulation systems |
| WO2015103512A2 (en) | 2014-01-06 | 2015-07-09 | Ohio State Innovation Foundation | Neuromodulatory systems and methods for treating functional gastrointestinal disorders |
| US20150202444A1 (en) | 2014-01-17 | 2015-07-23 | Cardiac Pacemakers, Inc. | Systems and methods for selective stimulation of nerve fibers in carotid sinus |
| JP6537517B2 (ja) | 2014-01-21 | 2019-07-03 | ラングペーサー メディカル インコーポレイテッドLungpacer Medical Inc. | 多電極神経ペーシングの最適化のためのシステムおよび関連する方法 |
| US10532181B2 (en) | 2014-02-04 | 2020-01-14 | Team Turquoise Ltd. | Wearable apparatus |
| DE102014002910A1 (de) | 2014-02-28 | 2015-09-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Vorrichtung und Verfahren zum Reduzieren von Tremor |
| EP3113684B1 (en) | 2014-03-03 | 2020-07-01 | Global Kinetics Pty Ltd | System for assessing motion symptoms |
| WO2015134397A2 (en) | 2014-03-03 | 2015-09-11 | Physiocue, Inc. | Method for treatment of migraine and other headaches |
| WO2015138981A1 (en) | 2014-03-14 | 2015-09-17 | ElectroCore, LLC | Devices and methods for treating medical disorders with evoked potentials and vagus nerve stimulation |
| US10335596B2 (en) | 2014-03-14 | 2019-07-02 | Nalu Medical, Inc. | Method and apparatus for neuromodulation treatments of pain and other conditions |
| US10444834B2 (en) | 2014-04-01 | 2019-10-15 | Apple Inc. | Devices, methods, and user interfaces for a wearable electronic ring computing device |
| CA2857555A1 (en) | 2014-04-01 | 2015-10-01 | William F. Stubbeman | Method and system for therapeutic brain stimulation using electromagnetic pulses |
| US10993639B2 (en) | 2014-04-25 | 2021-05-04 | Massachusetts Institute Of Technology | Feedback method and wearable device to monitor and modulate knee adduction moment |
| JP6701096B2 (ja) | 2014-05-17 | 2020-05-27 | ハイイン エクイティ インベストメント ファンド エル.ピー. | 経皮神経刺激を使用するアンサンブル波形の印加のための方法および装置 |
| EP3145584B1 (en) | 2014-05-23 | 2022-02-16 | electroCore, Inc. | Systems for vagal nerve stimulation |
| WO2015183620A2 (en) | 2014-05-25 | 2015-12-03 | Thync, Inc. | Wearable transdermal neurostimulators |
| JP6606105B2 (ja) | 2014-06-02 | 2019-11-13 | カラ ヘルス,インコーポレイテッド | 振戦を治療するための抹消神経刺激用のシステム及び方法 |
| US10130809B2 (en) | 2014-06-13 | 2018-11-20 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
| US9782584B2 (en) | 2014-06-13 | 2017-10-10 | Nervana, LLC | Transcutaneous electrostimulator and methods for electric stimulation |
| SG11201610419SA (en) | 2014-06-13 | 2017-01-27 | Fundación Tecnalia Res & Innovation | System and method for functional electrical stimulation |
| WO2016007093A1 (en) | 2014-07-09 | 2016-01-14 | Dexing Pang | Device, system and method for nerve stimulation |
| US20160016014A1 (en) | 2014-07-18 | 2016-01-21 | Highland Instruments, Inc. | Methods for improving balance |
| DE102014010882A1 (de) | 2014-07-27 | 2016-01-28 | Cerbomed Gmbh | Vorrichtung zur Aufbringung eines transkutanen elektrischen Stimulationsreizes |
| WO2016019250A1 (en) | 2014-08-01 | 2016-02-04 | Tricord Holdings, Llc | Modular physiologic monitoring systems, kits, and methods |
| DE102014012920B3 (de) | 2014-09-05 | 2016-01-07 | miha bodytec GmbH | EMS-Trainingsvorrichtung, sowie EMS- Elektrode, EMS-Kleidungsstück, EMS-Reizerzeugungseinheit, EMS-Signalkabel und EMS-Unterbekleidungsstück dafür und Verfahren zum Betrieb eines EMS- Trainingsgeräts. |
| CN106687161B (zh) | 2014-09-10 | 2023-08-11 | 贝克顿·迪金森公司 | 用于身体上医疗装置的激活系统和方法 |
| US20150044656A1 (en) | 2014-09-23 | 2015-02-12 | 7-Sigma, Inc. | Electrically conductive nanotube composite sensor for medical application |
| US9980659B2 (en) | 2014-09-26 | 2018-05-29 | NeuroRex Inc. | Bio-potential sensing materials as dry electrodes and devices |
| US20160106344A1 (en) | 2014-10-14 | 2016-04-21 | Milad Nazari | Methods and systems for detecting movement disorder |
| US10004900B2 (en) | 2014-10-29 | 2018-06-26 | Pacesetter, Inc. | Systems and methods for correlating measurements in neurostimulation systems |
| US9364657B2 (en) | 2014-10-31 | 2016-06-14 | Ensilver Canada | Cuff unit for a functional electrical stimulation system |
| DE102014117663B4 (de) | 2014-12-02 | 2017-02-02 | Fior & Gentz Gesellschaft für Entwicklung und Vertrieb von orthopädietechnischen Systemen mbH | Einrichtung zur elektrischen Muskelstimulation von am physiologischen Gangbild des Menschen beteiligten Muskeln sowie Orthese zum Unterstützen eines anatomischen Gelenkes mit einer solchen Einrichtung |
| WO2016094728A1 (en) | 2014-12-10 | 2016-06-16 | Spr Therapeutics, Llc | Apparatus and method for treating headaches |
| US9974478B1 (en) | 2014-12-19 | 2018-05-22 | Great Lakes Neurotechnologies Inc. | Discreet movement measurement and cueing system for improvement of safety and efficacy of movement |
| JP6807843B2 (ja) | 2014-12-22 | 2021-01-06 | ジャイロギア リミテッド | 振戦安定化装置と方法 |
| WO2016109851A1 (en) | 2015-01-04 | 2016-07-07 | Thync, Inc. | Methods and apparatuses for transdermal stimulation of the outer ear |
| WO2016110804A1 (en) | 2015-01-06 | 2016-07-14 | David Burton | Mobile wearable monitoring systems |
| FI3244965T3 (fi) | 2015-01-13 | 2023-07-04 | Theranica Bio Electronics Ltd | Päänsärkyjen hoito sähköisen stimulaation avulla |
| EP3250285B1 (en) | 2015-01-26 | 2020-02-26 | Cymedica Orthopedics, Inc. | Patient therapy systems |
| US11123556B2 (en) | 2015-01-26 | 2021-09-21 | CyMedica Orthopedics, Inc. | Patient therapy systems and methods |
| DE102015101371A1 (de) | 2015-01-30 | 2016-08-04 | Forschungszentrum Jülich GmbH | Vorrichtung und Verfahren zur nicht-invasiven Neurostimulation mittels Mehrkanal-Bursts |
| US20160220836A1 (en) | 2015-01-30 | 2016-08-04 | Board Of Trustees Of The University Of Arkansas | Device and method of phase-locking brain stimulation to electroencephalographic rhythms |
| EP3256204B1 (en) | 2015-02-15 | 2024-12-11 | Ziv Healthcare Ltd. | System for improving heart-rate variability |
| US11077301B2 (en) | 2015-02-21 | 2021-08-03 | NeurostimOAB, Inc. | Topical nerve stimulator and sensor for bladder control |
| US10463854B2 (en) | 2015-02-24 | 2019-11-05 | Elira, Inc. | Systems and methods for managing symptoms associated with dysmenorrhea using an electro-dermal patch |
| US10143840B2 (en) | 2015-02-24 | 2018-12-04 | Elira, Inc. | Systems and methods for enabling appetite modulation and/or improving dietary compliance using an electro-dermal patch |
| US9956393B2 (en) | 2015-02-24 | 2018-05-01 | Elira, Inc. | Systems for increasing a delay in the gastric emptying time for a patient using a transcutaneous electro-dermal patch |
| US10791955B2 (en) | 2015-03-19 | 2020-10-06 | Aalborg Universitet | Assessment of nerve fiber excitability |
| US10945629B2 (en) | 2015-03-23 | 2021-03-16 | Repono Pty Ltd | Muscle activity monitoring |
| US10039928B2 (en) | 2015-03-27 | 2018-08-07 | Equility Llc | Ear stimulation with neural feedback sensing |
| US20170027812A1 (en) | 2015-03-27 | 2017-02-02 | Elwha Llc | Nerve stimulation system and related controller |
| US10052486B2 (en) | 2015-04-06 | 2018-08-21 | Medtronic, Inc. | Timed delivery of electrical stimulation therapy |
| WO2016166281A1 (en) | 2015-04-17 | 2016-10-20 | National University Of Ireland, Galway | Apparatus for management of a parkinson's disease patient's gait |
| WO2016176668A1 (en) | 2015-04-30 | 2016-11-03 | Somtek, Inc. | Breathing disorder detection and treatment device and methods |
| EP3291875B1 (en) | 2015-05-04 | 2023-01-04 | Phoenix NeuroStim Therapeutics, LLC | Modulation of brainwave activity using non-invasive stimulation of sensory pathways |
| US11589806B2 (en) | 2015-05-07 | 2023-02-28 | The Universiiy Of North Carolina At Chapel Hill | Feedback brain stimulation to enhance sleep spindles, modulate memory and cognitive function, and treat psychiatric and neurological symptoms |
| CN107690307B (zh) | 2015-05-28 | 2021-07-27 | 皇家飞利浦有限公司 | 用于生物电势和皮肤阻抗感测的干电极以及使用方法 |
| HK1246713A1 (zh) | 2015-05-29 | 2018-09-14 | 赛威医疗公司 | 用於经皮电刺激的方法和装置 |
| WO2017209673A1 (en) | 2016-06-03 | 2017-12-07 | Neuronano Ab | Method and system for improving stimulation of excitable tissue |
| US11833354B2 (en) | 2015-06-05 | 2023-12-05 | Neuronano Ab | Method and system for improving stimulation of excitable tissue |
| WO2017010930A1 (en) | 2015-07-10 | 2017-01-19 | Neuronano Ab | Method and system for improving stimulation of excitable tissue |
| US10765856B2 (en) | 2015-06-10 | 2020-09-08 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation to treat tremor with detachable therapy and monitoring units |
| EP3113033B1 (fr) | 2015-06-29 | 2019-01-09 | Sorin CRM SAS | Système de traitement par stimulation, notamment du nerf vague, par mise en oeuvre d'un modèle de transition d'états |
| EP3347694B8 (en) | 2015-07-01 | 2021-04-21 | Horiba Instruments Incorporated | Cuvette assembly for optical microscopy of nanoparticles in liquids |
| US20200093400A1 (en) | 2015-07-31 | 2020-03-26 | Cala Health, Inc. | Systems, devices, and method for the treatment of osteoarthritis |
| CN105030408A (zh) | 2015-08-28 | 2015-11-11 | 京东方科技集团股份有限公司 | 止鼾装置 |
| WO2017040741A1 (en) | 2015-09-04 | 2017-03-09 | Scion Neurostim, Llc | Systems, devices and methods for galvanic vestibular stimulation having an envelope modulation |
| WO2017044904A1 (en) | 2015-09-11 | 2017-03-16 | Nalu Medical, Inc. | Apparatus for peripheral or spinal stimulation |
| JP2018531641A (ja) | 2015-09-16 | 2018-11-01 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 指圧装置 |
| WO2017051408A1 (en) | 2015-09-21 | 2017-03-30 | Ziv Healthcare Ltd. | Monitoring and stimulation module |
| EP3352845B1 (en) | 2015-09-21 | 2022-08-17 | Theranica Bio-Electronics Ltd. | Apparatus for improving sensory nerve sensitivity |
| US10603482B2 (en) | 2015-09-23 | 2020-03-31 | Cala Health, Inc. | Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors |
| WO2017062994A1 (en) | 2015-10-09 | 2017-04-13 | I2Dx, Inc. | System and method for non-invasive and non-contact measurement in early therapeutic intervention |
| KR101727149B1 (ko) | 2015-10-22 | 2017-04-14 | (주)와이브레인 | 생체 신호 감지용 건식 전극 및 이를 제조하는 방법 |
| US10245431B2 (en) | 2015-10-26 | 2019-04-02 | The Trustees Of The University Of Pennsylvania | Real-time seizure prediction informed by hidden markov model event states |
| US9672091B2 (en) | 2015-11-10 | 2017-06-06 | Samsung Electronics Co., Ltd. | Storage device and debugging method thereof |
| NL2015836B1 (nl) | 2015-11-20 | 2017-06-07 | Parkinson Smartwatch B V | Meetsysteem, meetinrichting en horloge. |
| CN105455804B (zh) | 2015-11-26 | 2018-09-28 | 苏州明动新材料科技有限公司 | 一种柔性可穿戴干电极及其制备方法 |
| EP3389767A1 (en) | 2015-12-15 | 2018-10-24 | Regents of the University of Minnesota | Systems and methods for non-invasive treatment of head pain |
| US9581972B1 (en) | 2015-12-18 | 2017-02-28 | Reserve Strap, Inc. | Flexible unitary charging band system |
| EP3184143B1 (en) | 2015-12-22 | 2018-07-11 | Stichting IMEC Nederland | Stimulation system for stimulating a human leg |
| EP3397342B1 (en) | 2015-12-28 | 2021-08-04 | Cogniguard Medical Holdings Limited | A system for treating various neurological disorders using synchronized nerve activation |
| AU2017206723B2 (en) | 2016-01-11 | 2021-11-25 | Bioness Medical, Inc. | Systems and apparatus for gait modulation and methods of use |
| EP3405251A4 (en) | 2016-01-21 | 2019-08-28 | Cala Health, Inc. | SYSTEMS, METHODS AND DEVICES FOR PERIPHERAL NEUROMODULATION FOR THE TREATMENT OF DISEASES RELATED TO BUBBLE HYPERACTIVITY |
| JP6251302B2 (ja) | 2016-01-27 | 2017-12-20 | H2L株式会社 | 電気刺激装置 |
| US10315033B2 (en) | 2016-02-08 | 2019-06-11 | Halo Neuro, Inc. | Method and system for improving provision of electrical stimulation |
| EP3416719B1 (en) | 2016-02-19 | 2024-08-14 | Nalu Medical, Inc. | Apparatus with enhanced stimulation waveforms |
| JP6334588B2 (ja) | 2016-03-10 | 2018-05-30 | H2L株式会社 | 電気刺激システム |
| US10363413B2 (en) | 2016-03-25 | 2019-07-30 | Universidad Adolfo Ibañez | Methods and systems for tremor reduction |
| US10262423B2 (en) | 2016-03-29 | 2019-04-16 | Verily Life Sciences Llc | Disease and fall risk assessment using depth mapping systems |
| US10252053B2 (en) | 2016-03-31 | 2019-04-09 | University Of Utah Research Foundation | Electronic nerve stimulation |
| GB201608691D0 (en) | 2016-05-17 | 2016-06-29 | Univ Southampton | Electrode |
| CN109661251A (zh) | 2016-05-31 | 2019-04-19 | 斯高弗盖斯特实验室公司 | 神经刺激装置和方法 |
| US10695564B2 (en) | 2016-06-02 | 2020-06-30 | Battelle Memorial Institute | Flexible sheet for neuromuscular stimulation |
| US11033206B2 (en) | 2016-06-03 | 2021-06-15 | Circulex, Inc. | System, apparatus, and method for monitoring and promoting patient mobility |
| JP2019522510A (ja) | 2016-06-06 | 2019-08-15 | グローバル キネティクス ピーティーワイ リミテッドGrobal Kinetics Pty Ltd | 進行した運動症状を評価するシステム及び方法 |
| GR1009085B (el) | 2016-06-21 | 2017-08-11 | Αλεξανδρος Τηλεμαχου Τζαλλας | Μεθοδος και συσκευη-γαντι για τον προσδιορισμο και την βελτιωμενη αξιολογηση των κινητικων συμπτωματων μιας νοσου |
| JP7077297B2 (ja) | 2016-07-08 | 2022-05-30 | カラ ヘルス,インコーポレイテッド | 厳密にn個の電極および改善された乾式電極を用いてn個の神経を刺激するためのシステムおよび方法 |
| EP3487578B1 (en) | 2016-07-20 | 2022-12-07 | The Governing Council of the University of Toronto | Neurostimulator for delivering a stimulation in response to a predicted or detected neurophysiological condition |
| US11013938B2 (en) | 2016-07-27 | 2021-05-25 | The Trustees Of Columbia University In The City Of New York | Methods and systems for peripheral nerve modulation using non ablative focused ultrasound with electromyography (EMG) monitoring |
| CN206424425U (zh) | 2016-08-06 | 2017-08-22 | 深圳市前海安测信息技术有限公司 | 用于辅助帕金森病患者康复的可穿戴设备 |
| CN106178261A (zh) | 2016-08-06 | 2016-12-07 | 深圳市前海安测信息技术有限公司 | 帕金森病患者手部震颤消除系统及方法 |
| CN107731238B (zh) | 2016-08-10 | 2021-07-16 | 华为技术有限公司 | 多声道信号的编码方法和编码器 |
| US12233265B2 (en) | 2016-08-25 | 2025-02-25 | Cala Health, Inc. | Systems and methods for treating cardiac dysfunction through peripheral nerve stimulation |
| WO2018038614A1 (en) | 2016-08-26 | 2018-03-01 | Nutreco Nederland B.V. | A method of feeding monogastric animals in order to control the presence of bacteria in these animals |
| US20180064344A1 (en) | 2016-09-02 | 2018-03-08 | California State University Fresno Foundation | Tremor Reduction Device |
| JP2018038597A (ja) | 2016-09-07 | 2018-03-15 | 国立大学法人神戸大学 | 生体情報計測用プローブ、及び、生体情報計測装置 |
| PL3503960T3 (pl) | 2016-10-05 | 2020-09-21 | Tesla Medical, S.R.O. | Urządzenie do leczenia neuromodulacją |
| US11504530B2 (en) | 2016-11-01 | 2022-11-22 | Massachusetts Institute Of Technology | Transdermal optogenetic peripheral nerve stimulation |
| AU2017356223A1 (en) | 2016-11-11 | 2019-05-16 | GSK Consumer Healthcare S.A. | A tens device for activity monitoring, gait analysis, and balance assessment |
| WO2018093765A1 (en) | 2016-11-15 | 2018-05-24 | Regents Of The University Of California | Methods and apparatuses for improving peripheral nerve function |
| EP3551145B1 (en) | 2016-12-06 | 2024-04-24 | Nocira, LLC | Systems and methods for treating neurological disorders |
| US20200086047A1 (en) | 2016-12-14 | 2020-03-19 | Functional Neurosciences Inc. | Patient stimulation system |
| US10736564B2 (en) | 2016-12-16 | 2020-08-11 | Elwha Llc | System and method for enhancing learning of a motor task |
| WO2018119220A1 (en) | 2016-12-21 | 2018-06-28 | Duke University | Method to design temporal patterns of nervous system stimulation |
| JP2020503111A (ja) | 2016-12-27 | 2020-01-30 | アヴェント インコーポレイテッド | 糖尿病性末梢神経障害を処置するための物品及び方法 |
| WO2018129351A1 (en) | 2017-01-05 | 2018-07-12 | Shriram Raghunathan | Restless leg syndrome or overactive nerve treatment |
| US20180214694A1 (en) | 2017-02-01 | 2018-08-02 | Boston Scientific Neuromodulation Corporation | Wearable Implantable Medical Device Controller |
| WO2018187241A1 (en) | 2017-04-03 | 2018-10-11 | Cala Health, Inc. | Systems, methods and devices for peripheral neuromodulation for treating diseases related to overactive bladder |
| US20180333574A1 (en) | 2017-05-22 | 2018-11-22 | Sumon K. PAL | Systems and methods for applying electrical energy to treat psoriasis |
| AU2018290766A1 (en) | 2017-06-26 | 2020-01-02 | Nextsense, Inc. | Peripheral nerve stimulation device for affecting parasympathetic and sympathetic activity to achieve therapeutic effects |
| US11794012B2 (en) | 2017-07-11 | 2023-10-24 | The General Hospital Corporation | Systems and methods for respiratory-gated nerve stimulation |
| US20210085974A1 (en) | 2017-07-31 | 2021-03-25 | The Feinstein Institutes For Medical Research | Auricular stimulation device, system and methods of use |
| US20210330547A1 (en) | 2017-09-01 | 2021-10-28 | Adventus Ventures, Llc | Systems and methods for controlling the effects of tremors |
| US20200338348A1 (en) | 2017-10-08 | 2020-10-29 | Jonathan M. Honeycutt | Multimodal Transcutaneous Auricular Stimulation System Including Methods and Apparatus for Self Treatment, Feedback Collection and Remote Therapist Control |
| KR102720932B1 (ko) | 2017-10-11 | 2024-10-24 | 스팀비아 에스.알.오. | 신경 조절 전극 어셈블리 |
| WO2019082180A1 (en) | 2017-10-23 | 2019-05-02 | Magicalfa Inc. | ELECTRIC STIMULATION DEVICE AND METHODS OF USING THE DEVICE |
| US10661082B2 (en) | 2017-10-31 | 2020-05-26 | Nxp B.V. | Noninvasive inductive biological conditioning device |
| US20190167976A1 (en) | 2017-12-05 | 2019-06-06 | The Ohio Willow Wood Company | Conductive human interface with polymeric electrical contact element |
| JP6935737B2 (ja) | 2017-12-14 | 2021-09-15 | オムロンヘルスケア株式会社 | 電気治療器 |
| WO2019136176A1 (en) | 2018-01-03 | 2019-07-11 | Nse Products, Inc. | Fingertip mounted microcurrent device for skin |
| WO2019143790A1 (en) | 2018-01-17 | 2019-07-25 | Cala Health, Inc. | Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation |
| US20210016079A1 (en) | 2018-02-09 | 2021-01-21 | Vanderbilt University | Electrical stimulation system and methods for limb control |
| US10285646B1 (en) | 2018-02-27 | 2019-05-14 | CeriBell, Inc. | Connection quality assessment for EEG electrode arrays |
| US11357981B2 (en) | 2018-03-01 | 2022-06-14 | Adventus Ventures, Llc | Systems and methods for controlling blood pressure |
| IT201800004525A1 (it) | 2018-04-16 | 2018-07-16 | Sistema programmabile modulare per applicazioni di stimolazione elettrica del sistema neuromuscolare e moduli indossabili per tale sistema | |
| US11278724B2 (en) | 2018-04-24 | 2022-03-22 | Thync Global, Inc. | Streamlined and pre-set neuromodulators |
| US20210244940A1 (en) | 2018-05-03 | 2021-08-12 | Cala Health, Inc. | Wearable, ergonomic neurostimulation system |
| US10456573B1 (en) | 2018-06-18 | 2019-10-29 | Feinstein Patents, Llc | Medical cuff employing electrical stimulation to control blood flow |
| WO2020006048A1 (en) | 2018-06-27 | 2020-01-02 | Cala Health, Inc. | Multi-modal stimulation for treating tremor |
| CN108777578B (zh) | 2018-06-29 | 2021-04-20 | 东莞市李群自动化技术有限公司 | 一种编码器信号采样方法及装置 |
| EP3843831B1 (en) | 2018-08-31 | 2022-10-19 | Avation Medical, Inc. | System, method, and apparatus for applying transcutaneous electrical stimulation |
| CN113711623A (zh) | 2018-09-24 | 2021-11-26 | Nesos公司 | 用于治疗患者疾病的耳部的神经刺激,以及相关的系统和方法 |
| CN120586279A (zh) | 2018-09-26 | 2025-09-05 | 卡拉健康公司 | 预测性的疗法神经刺激系统 |
| US10870002B2 (en) | 2018-10-12 | 2020-12-22 | DePuy Synthes Products, Inc. | Neuromuscular sensing device with multi-sensor array |
| CA3117462A1 (en) | 2018-10-24 | 2020-04-30 | Cala Health, Inc. | Nerve stimulation for treating migraine and other headache conditions |
| US10695568B1 (en) | 2018-12-10 | 2020-06-30 | Spark Biomedical, Inc. | Device and method for the treatment of substance use disorders |
| WO2020131857A1 (en) | 2018-12-20 | 2020-06-25 | Baldoni Neuromodulation Llc | Noninvasive neuromodulation devices |
| US11484710B2 (en) | 2019-01-07 | 2022-11-01 | Evolution Devices, Inc. | Device and system for real-time gait modulation and methods of operation thereof |
| US11420054B2 (en) | 2019-02-22 | 2022-08-23 | Avent, Inc. | Device and method to modulate a nervous system structure to non-invasively and non-destructively inhibit nervous signaling |
| US20200276442A1 (en) | 2019-02-28 | 2020-09-03 | VasoActiv Biomedical Technologies LLC | Wave-form method for accelerating blood flow |
| CA3130147A1 (en) | 2019-03-08 | 2020-09-17 | Cala Health, Inc. | Wearable peripheral nerve stimulation for the treatment of diseases utilizing rhythmic biological processes |
| IL291105B2 (en) | 2019-06-28 | 2024-09-01 | Battelle Memorial Institute | Neurosleeve for closed loop emg-fes based control of pathological tremors |
| US11766191B2 (en) | 2019-06-28 | 2023-09-26 | Battelle Memorial Institute | Neurosleeve for closed loop EMG-FES based control of pathological tremors |
| EP3996804A1 (en) | 2019-07-11 | 2022-05-18 | The University of Nottingham | Non-invasive brain stimulation |
| US12048846B2 (en) | 2019-08-20 | 2024-07-30 | Rune Labs, Inc. | Neuromodulation therapy simulator |
| US11446497B2 (en) | 2019-08-20 | 2022-09-20 | Case Western Reserve University | Fatiguing a muscle to reduce onset response |
| WO2021055716A1 (en) | 2019-09-20 | 2021-03-25 | Avation Medical, Inc. | System, method, and apparatus for applying electrical stimulation |
| CA3155845A1 (en) | 2019-09-27 | 2021-04-01 | Niche Biomedical, Inc. | Method and system for targeted and adaptive transcutaneous spinal cord stimulation |
| US11890468B1 (en) | 2019-10-03 | 2024-02-06 | Cala Health, Inc. | Neurostimulation systems with event pattern detection and classification |
| US20210187296A1 (en) | 2019-12-20 | 2021-06-24 | Nesos Corp. | Auricular nerve stimulation to affect brain function and/or improve wellness, and associated systems and methods |
| WO2021228128A1 (en) | 2020-05-12 | 2021-11-18 | Shanghai Boltkey Technology Co., Ltd. | Wearable device for providing electronic pulses and controlling method thereof |
| EP4149614A4 (en) | 2020-05-20 | 2024-06-26 | Cala Health, Inc. | PARAMETER VARIATION IN NERVE STIMULATION |
| US20230201550A1 (en) | 2020-06-08 | 2023-06-29 | Nova Neura, Llc | Systems and methods for treating persistent pain of neurogenic origin and complex injury |
| CN116234606A (zh) | 2020-07-15 | 2023-06-06 | 伊伯特医疗公司 | 具有准确疗法的可穿戴式神经刺激系统 |
| US20220054820A1 (en) | 2020-07-30 | 2022-02-24 | Carl Turner | Wearable devices |
| US20220031245A1 (en) | 2020-07-30 | 2022-02-03 | Battelle Memorial Institute | Sleeve with configurable electrodes for functional electrical stimulation and/or electromyography |
| JP2023537891A (ja) | 2020-08-13 | 2023-09-06 | アール.ディー.アボット カンパニー,インコーポレイテッド | カーボンナノチューブの組み込みを介した複合マトリックスの作製方法 |
| US11103699B1 (en) | 2020-11-11 | 2021-08-31 | Zida Llc | Nerve stimulation garment |
| US20240189594A1 (en) | 2021-04-16 | 2024-06-13 | Cala Health, Inc. | Auricular device for nerve stimulation and methods of operating same |
| EP4366820A4 (en) | 2021-07-09 | 2024-11-20 | Cala Health, Inc. | NEUROSTIMULATIVE SYSTEMS FOR PERSONALIZED THERAPY |
| US20230009158A1 (en) | 2021-07-09 | 2023-01-12 | Cala Health, Inc. | Band for wearable neurostimulation system |
| US20240325728A1 (en) | 2021-08-03 | 2024-10-03 | Cala Health, Inc. | Electrodes for neuromodulation |
| WO2023015158A1 (en) | 2021-08-03 | 2023-02-09 | Cala Health, Inc. | Wearable neurostimulation system |
| WO2023015159A2 (en) | 2021-08-03 | 2023-02-09 | Cala Health, Inc. | Parameter variations in neural stimulation |
-
2014
- 2014-01-21 EP EP21184482.4A patent/EP3912674A1/en active Pending
- 2014-01-21 WO PCT/US2014/012388 patent/WO2014113813A1/en not_active Ceased
- 2014-01-21 AU AU2014207265A patent/AU2014207265B2/en active Active
- 2014-01-21 BR BR112015017042-0A patent/BR112015017042B1/pt active IP Right Grant
- 2014-01-21 CA CA2896800A patent/CA2896800A1/en active Pending
- 2014-01-21 CN CN201810059741.5A patent/CN108355242B/zh active Active
- 2014-01-21 CN CN201480005343.5A patent/CN105142714B/zh active Active
- 2014-01-21 CN CN201810061000.0A patent/CN108211110B/zh active Active
- 2014-01-21 CN CN202210387134.8A patent/CN114768089A/zh active Pending
- 2014-01-21 ES ES19150254T patent/ES2889752T3/es active Active
- 2014-01-21 EP EP14740684.7A patent/EP2945691B1/en active Active
- 2014-01-21 EP EP19150254.1A patent/EP3498332B1/en active Active
- 2014-01-21 JP JP2015553901A patent/JP6507099B2/ja active Active
- 2014-01-21 ES ES14740684T patent/ES2720802T3/es active Active
-
2015
- 2015-07-21 US US14/805,385 patent/US9452287B2/en active Active
-
2016
- 2016-09-27 US US15/277,946 patent/US10850090B2/en active Active
-
2017
- 2017-07-13 AU AU2017204831A patent/AU2017204831B2/en active Active
-
2018
- 2018-05-17 US US15/983,024 patent/US10625074B2/en active Active
-
2019
- 2019-04-01 JP JP2019069965A patent/JP6842492B2/ja active Active
- 2019-10-17 AU AU2019250222A patent/AU2019250222B2/en active Active
-
2020
- 2020-11-30 US US17/107,435 patent/US12161858B2/en active Active
-
2021
- 2021-02-19 JP JP2021024738A patent/JP7138740B2/ja active Active
-
2022
- 2022-09-06 JP JP2022141436A patent/JP2022168040A/ja active Pending
-
2024
- 2024-08-01 JP JP2024125532A patent/JP7776591B2/ja active Active
-
2025
- 2025-01-17 US US19/029,892 patent/US20250161663A1/en active Pending
- 2025-07-16 US US19/271,273 patent/US20250339672A1/en active Pending
- 2025-07-16 US US19/271,267 patent/US20250339671A1/en active Pending
- 2025-07-16 US US19/271,131 patent/US20250345594A1/en active Pending
- 2025-07-16 US US19/270,963 patent/US20250345593A1/en active Pending
Also Published As
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| US20250161663A1 (en) | Devices and methods for controlling tremor | |
| US12453853B2 (en) | Multi-modal stimulation for treating tremor | |
| WO2020006048A1 (en) | Multi-modal stimulation for treating tremor | |
| ES2893443T3 (es) | Sistemas para mejorar la activación eléctrica del tejido nervioso |