US5540235A - Adaptor for neurophysiological monitoring with a personal computer - Google Patents

Adaptor for neurophysiological monitoring with a personal computer Download PDF

Info

Publication number
US5540235A
US5540235A US08268638 US26863894A US5540235A US 5540235 A US5540235 A US 5540235A US 08268638 US08268638 US 08268638 US 26863894 A US26863894 A US 26863894A US 5540235 A US5540235 A US 5540235A
Authority
US
Grant status
Grant
Patent type
Prior art keywords
module
power
signals
primary
means
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
US08268638
Inventor
John R. Wilson
Original Assignee
Wilson; John R.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network
    • A61B5/0004Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network characterised by the type of physiological signal transmitted
    • A61B5/0006ECG or EEG signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/04Detecting, measuring or recording bioelectric signals of the body or parts thereof
    • A61B5/0488Electromyography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/40Detecting, measuring or recording for evaluating the nervous system
    • A61B5/4029Detecting, measuring or recording for evaluating the nervous system for evaluating the peripheral nervous systems
    • A61B5/4041Evaluating nerves condition
    • A61B5/4047Evaluating nerves condition afferent nerves, i.e. nerves that relay impulses to the central nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes

Abstract

A neurophysiological monitoring system is provided, comprising a primary module, having a first housing with a supply of electrical power from an external power source; a first detection circuit, electrically connected to the power supply, for allowing detection of analog neurophysiological signals at a predetermined site on a patient; a data processing circuit, electrically connected to the first detection circuit, for amplifying the analog signals and converting the amplified analog signals to digital signals; and an output device, electrically connected to the data processing circuit, for sending the digital signals to a personal computer for further processing; a secondary module, comprising a second housing removably connectable to the first housing, the second housing comprising a second detection circuit, electrically connectable to the data processing circuit, for allowing detection of analog neurophysiological signals at a second predetermined site on the patient; and a personal computer connected to the output device, for accepting the digital signals from the output device, for further processing and storing the digital signals, for displaying graphical information corresponding to the analog neurophysiological signals, and for controlling selected operational parameters during the monitoring. Optionally, the invention may also include a stimulation device electrically connected to the power supply, for administering a neurophysiological stimulation to the patient.

Description

BACKGROUND OF THE INVENTION

I. Field of the Invention

The present invention relates generally to devices and methods used to monitor neurophysiological conditions in humans and animals, and more particularly to such devices and methods as applied to electroencepholographic (EEG), electromyographic (EMG), electrocardiographic (ECG), evoked potential (EP), and nerve conduction velocity (NCV) studies.

II. Description of Prior Art

Electromyography (EMG), electroencephalography (EEG), electrocardiography (ECG) and evoked potential (EP) measurement (collectively known as neurophysiology) have undergone rapid development in the last ten to fifteen years, requiring increasingly sophisticated machines with significant computing power and specialized controls and input devices. This has led to large devices which have become very expensive and generally immobile. Those devices which are labelled as portable are still relatively heavy, very expensive, and do not offer the computing power of their larger cousins. Fortunately, the development of personal computers, particularly laptop computers, has outpaced EMG and EEG machines, making the below-described invention possible. The latest generation of portable laptop computers has computing capability equal to or greater than most EMG and EEG machines available today. In addition, with the advent of digital signal processing, many of the specialized controls needed for running the latest machines can now be incorporated into software, so that a keyboard and mouse (or trackball) are often all that is needed to control the processes of the testing equipment. Therefore, this invention provides a solution to the problems with most of the equipment available today for such testing, namely that such equipment is bulky, expensive, complicated and sometimes difficult to obtain.

Prior to describing the preferred embodiments of the present invention, a short explanation of common neurophysiological techniques and testing is provided. Neurophysiological signals are generated by the electrical discharge of neurons in the central or peripheral nervous system or muscle fibers. The signal may occur due to voluntary or involuntary activity, or may be induced by direct stimulation from an external source. To record a neurophysiological signal, an electrode is placed at or near the nerve or muscle generating the signal (the active site), and another electrode is placed distant from the site (the inactive site). A ground electrode is also placed somewhere on the patient's body, and all three electrodes are connected to the detection instruments. The electrical discharges of nerves and muscles can be observed by changes in the voltage of the active electrode relative to the inactive electrode. To measure this effect, the signals from both the active and inactive electrodes are typically amplified and passed to a differential amplifier and/or an analog-to-digital converter, which will produce the signal corresponding to the voltage difference between the two electrodes. This signal is commonly displayed on an oscilloscope and sometimes "played" over a speaker device.

Electromyography (EMG) requires the least amount of hardware to obtain a measurable signal, because only the three electrodes described earlier are used, and no stimulating device are required. A ground electrode (G0) is placed on the skin, while the active electrode (G1) is inserted into the muscle being tested, and the inactive electrode (G2) is placed on the skin near that muscle in a monopolar array. With bipolar needles, G1 is an insulated wire travelling down a barrel which serves as G2, as is known to those of ordinary skill. The leads which connect the electrodes to the EMG machine are standardized, being either 2 mm plugs or a 6-pin DIN plug. More sophisticated EMG techniques, such as single fiber EMG or macro EMG differ in the type of needle used and the software needed to drive them. However, the inputs, preamplifiers, and analog-to-digital (A/D) converters required to process the response signals are the same.

Electroencephalography (EEG) is similar to EMG in that it records a voluntary or involuntary signal without stimulation. An array of electrodes, typically 21 in number, is placed at standardized positions on the scalp. EEG tracings are obtained by comparing the signals from one electrode with another. Most commonly, a tracing is obtained by comparing the signal from one electrode to the signal from the electrode next to it (called a "bipolar montage"). Traces may also be obtained by comparing the signals from several electrodes to a common reference electrode (called a "referential montage"). Generally, 16 traces are recorded at once, but this is limited only by the number of possible comparisons between electrodes.

For nerve conduction velocity (NCV) studies, stimulating electrodes (S1 and S2) are also required in addition to the ground (G0) and the pickup electrodes (G1 and G2). The stimulating electrodes are most commonly present on a hand-held stimulator device. An electric shock is applied over the nerve to be tested, and the signal is picked up along another segment of the nerve or is picked up at a muscle supplied by that nerve. The latency and amplitude of the signal is measured, and the process is repeated using another point of stimulation. With these multiple points of stimulation, conduction velocities can be obtained in each segment of the nerve. Some special nerve conduction tests require a specially modified reflex hammer which delivers a timing (or "triggering") signal to the receiving electronics when the operator applies the stimulus.

Evoked potential (EP) methods also require both stimulation and pickup. The arrangement of pickup electrodes varies depending on the type of EP method employed by the practitioner. However, scalp electrodes are typically placed as in an EEG test procedure. In addition, electrodes can be placed on the neck or at Erb's point (over the brachial plexus in the shoulder). The stimulus required for EP depends on the system to be tested, but can be visual (generally requiring a video display or goggles), auditory (requiring earphones or a similar auditory headset), or electrical (to stimulate sensory nerves as in nerve conduction studies). The stimulus is given repeatedly, and the signals recorded with each stimulus are averaged to reduce random background nerve activity.

The present invention is a device which may be connected to one of the input ports of a standard desktop or laptop computer, such as a serial, parallel or SCSI port. The invention contains the specialized inputs needed to record EMG and other analog neurophysiological signals. These analog signals can be digitized and processed by the laptop computer using preloaded software. The many advantages over currently available systems are readily apparent. First, such a device would dramatically lower the price of neurophysiology testing machines, because standard computer equipment is employed to control and process much of the data. Second, it will also enable manufacturers of current EMG and EEG equipment to devote greater resources to the improvement of controlling software as a complement to ongoing efforts in hardware design. Third, upgrades in hardware used for such testing will be much cheaper and easier for end users, because it would merely require the purchase of commercially available computer equipment. Fourth, the invention is highly portable because of its modular design, which is advantageous for those who wish to perform EMG and other neurophysiological tests at more than one place, or for those who perform many studies in intensive care units.

SUMMARY OF THE INVENTION

It is therefore an object of this invention to provide an adaptor for neurophysiological monitoring which directly interfaces with a personal computer.

It is also an object of this invention to provide an adaptor for neurophysiological monitoring which is lightweight, inexpensive, and easily portable.

It is a further object of this invention to provide an adaptor for neurophysiological monitoring which can be attached to additional modules for monitoring a variety of neurophysiological signals.

Yet another object of this invention is to provide an adaptor for neurophysiological monitoring which allows selective monitoring of evoked potentials, electroencephalograph information, electromyographic information, electrocardiographic information, and nerve conduction velocities.

These and other objects and advantages of the present invention will no doubt become apparent to those skilled in the art after having read the following description of the preferred embodiment which are contained in and illustrated by the various drawing figures.

Therefore, in a preferred embodiment, a neurophysiological monitoring system is provided, comprising a primary module, comprising a first housing having power means for accepting a supply of electrical power from an external power source; first detection means, electrically connected to said power means, for allowing detection of analog neurophysiological signals at a predetermined site on said patient; data processing means, electrically connected to said first detection means, for amplifying said analog signals and converting said amplified analog signals to digital signals; and output means, electrically connected to said data processing means, for sending said digital signals to personal computing means for further processing; a secondary module, comprising a second housing removably connectable to said first housing, said second housing comprising second detection means, electrically connectable to said data processing means, for allowing detection of analog neurophysiological signals at a second predetermined site on said patient; and personal computing means, connected to said output means, for accepting said digital signals from said output means, for further processing and storing said digital signals, for displaying graphical information corresponding to said analog neurophysiological signals, and for controlling selected operational parameters during said monitoring. Optionally, the invention may also include stimulation means, electrically connected to said power means, for administering a neurophysiological stimulation to said patient.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an overall system setup employing the modular components of the present invention.

FIG. 1A is a perspective view of an alternative system setup using a wireless signalling means.

FIG. 1B is a perspective view of a further alternative system setup which employs a modified battery charger and power module for enhancing portability.

FIG. 2 is a schematic diagram of a preferred embodiment of the power module.

FIG. 2A is a schematic diagram of an alternative power module corresponding to the one shown in FIG. 1A.

FIG. 2B is a schematic diagram of a further alternative power module corresponding to the one shown in FIG. 1B.

FIG. 3 is a perspective view of a preferred embodiment of the hand-held stimulator.

FIG. 3A is an underside view of the stimulator of FIG. 3.

FIG. 3B is a schematic view of the stimulator shown in FIG. 3.

FIG. 4 is a front perspective view of a preferred embodiment of the primary module containing most of the signal conditioning electronics of the invention.

FIG. 4A is a rear perspective view of the primary module of FIG. 4.

FIG. 4B is a front perspective view of an alternate embodiment of the primary module.

FIG. 4C is a rear perspective view of the primary module of FIG. 4B.

FIG. 4D is a schematic diagram of the primary module of FIG. 4 showing the electronics of a representative channel.

FIG. 5 is a top perspective view of the secondary module for use with EEG studies.

FIG. 5A is a bottom perspective view of the secondary module of FIG. 5 to show the corresponding contacts for connection to the primary module.

FIG. 5B is a schematic diagram of the secondary module of FIG. 5 showing the electronics of a representative channel.

FIG. 6 is a flowchart depicting how and where neurophysiological input signals are processed and converted to the required digital output signals.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Turning now to FIG. 1, an overall system for monitoring neurophysiological signals is shown to generally comprise a laptop or desktop computer 1, a power module 2, a primary signal conditioning module 3, and a secondary signal conditioning module 4. It will be understood that while virtually all of the electronics contained within power, primary and secondary modules 2, 3, 4 may be placed within a single housing, it is believed that important advantages may be gained from the separation of power, primary and secondary modules 2, 3, 4 as will be explained in more detail below.

Power module 2 is connected via power input socket 6 to an external source of power such as a conventional wall outlet 5. For nerve conduction velocity studies (NCV's) and evoked potential studies (EP's), stimulation means 7 is connected to power module 2 by electrical cable 8. Stimulation means 7 provides the stimulation required to elicit the required nerve or muscle response and will be explained in greater detail below. Primary module 3 is also connected to power module 2 via timing cable 9, to computer 1 via data output cable 10, and to the patient 13 by electrodes 11. Secondary module 4 attaches to primary module 3 through locking grooves 12, or similar mechanical means, which allows electrical contacts 14a (shown best in FIG. 5) of secondary module 4 to make secure contact with corresponding electrical contacts 14b on primary module 4.

With reference to FIG. 1, during NCV's, the stimulus is triggered by the operator at stimulator 7. A timing signal is sent via cable 8 to power module 2, and via cable 9 to primary module 3. This stimulus signal triggers the beginning of signal collection, digital signal conversion by primary module 3, and data output via data cable 10 to computer 1. During EP's, when the electrodes 11 are attached to the head of patient 13, a timing signal is generated by computer 1. This timing signal travels via data cable 10 to primary module 3 where it triggers signal collection. The timing signal also travels via timing cable 9 to power module 2, where the actual stimulus signal is generated. During either NCV's or EP's, power to the primary module 3 may come from either power module 2 via timing cable 9, or from computer 1 through data output cable 10.

An alternate embodiment of the invention shown in FIG. 1A replaces timing cable 9 with wireless signalling means 15, such as a transmitter/receiver combination employing radio waves, infrared waves, high frequency sound waves, or other functionally equivalent electromagnetic radiation. In this embodiment, power for primary module 3 is derived from computer 1 via data cable 10. It will be understood that this arrangement offers significant advantages in small workspaces or where maximum portability is desired.

A further embodiment shown in FIG. 1B, and building upon the wireless embodiment shown in FIG. 1A, replaces power module 2 with modified power module 16 containing an internal rechargeable battery (not shown). Battery charger 17 is removably connectable to module 16 by locking grooves 18, or equivalent mechanical means, which allows secure connection between electrical contacts 19a on battery charger 17 and counterpart electrical contacts 19b on modified power module 16. Preferably, if energy storage technology permits, power module 16 should be incorporated into stimulator 7 so that stimulator can simply be recharged as needed for NCV studies and conveniently carried to the stimulation site unhindered by any power or data cables.

FIG. 2 depicts a schematic diagram of a preferred embodiment of power module 2. Power enters power module 2 via power cable 6, and surge suppression electronics 20 protect the internal components from power surges. Power switch 21 enables the user to turn off power module 2 when not in use. Current rectifier 22 converts alternating current (AC) to direct current (DC) at 120 volts DC. The DC current then flows to transformer 23, which decreases the voltage to 15 volts or some other voltage necessary or desirable to power any other components which may derive their source of power from power module 2. Current is then sent through output socket 24 and timing cable 9 to supply power to primary module 3. The 120-volt current from rectifier 22 also is transformed by transformer 25, which increases the voltage to 400 volts. This 400-volt source is for use with stimulator 7 via the stimulator output jack 31 and stimulator cable 8 through power line 26.

During NCV's and certain reflex studies, the stimulus is initiated by the operator. Thus, a timing signal is sent from stimulator 7 through stimulator jack 31 and timing line 28, through timing cable jack 24, and via timing cable 9 to primary module 3, where it triggers signal acquisition and conditioning. For reflex studies, a modified reflex hammer (not shown) is connectable to reflex hammer jack 29, through which a similar timing signal is sent to primary module 3. During EP's and some special nerve conduction tests, the stimuli must be given repetitively at a constant frequency. In these tests, a timing signal is generated by computer 1 and is sent via cable 10 to primary module 3, where it is passed on to power module 2 through timing cable 9. From the power module 2, this timing signal may be directed to either audio/video jack 30 (to which may be connected a CRT or sound generation device) or to electrical stimulator 7 by timing line 27. If directed to audio/video jack 30, the timing signal triggers a form of video patterns or audible clicks. If directed to stimulator output jack 31, the timing signal triggers a series of repetitive electric shocks through stimulator 7. In either case, the frequency and maximum number of stimuli can be set by the operator through computer 1.

FIG. 2A depicts in more detail the wireless embodiment mentioned in connection with FIG. 1A, where timing cable 9 is replaced with wireless signalling means 15. In this embodiment, primary module 3 and secondary module 4 must derive their power from computer 1 through data output cable 10. Wireless signalling means 15 acts as both a receiver and a transmitter of energy so that timing signals may be passed in both directions between components, depending on the study being performed and the stimulation used.

FIG. 2B depicts in more detail the replacement of the power module 2 with the modified power module 16 and battery charger 17 previously discussed with reference to FIG. 1B. Battery 32 is located within modified power module 16 and includes wireless signalling means 15, as well as the jacks 29, 30, 31 described earlier in FIG. 2A. However, current rectifier 22, surge suppression electronics 20, and transformer 25 are contained within battery charger 17. Electrical connections necessary to establish a charge in battery 32 are accomplished by the engagement of locking grooves 18 having complementary portions on both power module 16 and battery charger 17. When grooves 18 are engaged, electrical contacts 19a, 19b are connected, thus allowing the required flow of current.

In FIG. 3, a preferred embodiment of the electric stimulator 7 is shown in greater detail. Stimulator 7 generally comprises a housing 33 adapted to fit easily in the human hand, a power cable 8 connected to power module 2 or modified power module 16. A pair of rigid stimulation electrodes 38 extend from the front portion of housing 33 for contacting the patient 13 and delivering the electrical stimulus. A pair of standard 2-mm sockets 37 allow the use of specialized stimulating electrodes (not shown), such as ring electrodes for fingers, needle electrodes for deep stimulation, and bar electrodes for tight areas not easily reached by housing 33. Each stimulus is delivered by pressing a trigger switch 34 with the operator's thumb. The stimulus strength is adjusted between a range of 0.0 to 100 milliamperes (mA) using a stimulus strength adjustment wheel 35. Stimulus strength indicator 36 indicates the strength of the stimulus to the operator and may comprise an LCD or LED display indicating values from 0-100 in a preferred embodiment, although any non-electronic means for indicating the stimulus strength may also be suitable.

FIG. 3A depicts the underside of the stimulator 7 of FIG. 3 as including a slidable stimulation duration control switch 39. In one embodiment, the duration control switch 39 is capable of seven positions corresponding to durations of 0.05, 0.1, 0.2, 0.3, 0.5, 0.75, and 1.0 milliseconds (ms), each position being labeled for visual recognition. In addition to the visual labels for these positions, each position is preferably marked by a small bump 40 or discontinuity in the housing material, thus allowing for tactile recognition of the stimulus duration. In addition to these indication methods, or perhaps as an alternative, the current duration setting may also be shown with the stimulus strength in display 36.

A schematic diagram of electrical stimulator 7 is shown in FIG. 3B. As explained elsewhere herein, power for stimulator 7 is provided by power line 26 through cable 8. The required stimulus can be delivered to electrodes 38 or alternate 2-mm jacks 37 by manual activation of switch 34 or possibly by electrical activation of switch 34 by a pre-programmed triggering signal from computer 1 through timing line 27. When a stimulus is delivered to patient 13, a timing signal is sent through timing line 28 to initiate the signal processing electronics of primary module 3. As explained earlier, the strength and duration of the stimulus is adjusted by strength regulator 35 and duration control switch 39, respectively, both of which may be displayed on display 36 for the convenience of the operator.

FIG. 4 shows an external perspective view of a preferred embodiment of the 4-channel primary module 3. Primary module 3 contains virtually all of the signal processing electronics necessary for evaluating neurophysiological responses. Generally, it preferable that primary module 3 have at least two to four channels, meaning that at least two to four pairs of pickup electrodes can be used simultaneously as inputs during testing. The main inputs are four channel sockets 41 for standard DIN-6 plugs which are common in the art. These channel sockets 41 receive the unprocessed neurophysiological signals from the electrodes 11 placed on the patient 13 as shown in FIG. 1. Alternative inputs for these signals are available at contacts 14b, which also serve as contacts for connection with secondary module 4 as explained earlier. Preferably, there are a total of eleven contacts 14b, subdivided as follows: two contacts for each of the four channels of primary module 3, one contact for patient ground, and two contacts for supplying power to secondary module 4 when it is attached to primary module 3. When secondary module 4 is attached to primary module 3 by locking grooves 12, signals received by secondary module 4 are transferred to primary module 3 for further processing. Timing socket 42 for timing cable 9 is also provided, but can be overridden by wireless signalling means 15. These input/output (I/O) devices communicate with the stimulator 7 so that the delivery of the stimulus can be properly synchronized with the data collection and processing. Recall that during NCV's, the signal is generated by the stimulator and a timing signal is sent to the primary module 3, whereas in EP's and other special studies, a timing signal is generated by the computer 1 and sent to the stimulator 7 to deliver the stimulus. After signal processing, and as indicated in FIG. 4A, digitized output signals are sent to computer 1 through standard port 44 and cable 10. Other signals, such as timing signals and power from computer 1 may also be communicated through port 44, which may preferably comprise a common connection interface, such as an IEEE 488 (parallel), RS-232 (serial), or SCSI connection. Although not shown in FIG. 4, power to primary module 3 may alternatively be provided by power module 2 or modified power module 16 through a separate power receptacle (not shown) in manner known to those of ordinary skill.

FIGS. 4B and 4C show an alternate embodiment of a 2-channel primary module 3 designed for use in testing environments which demand lightweight and compact construction. Because this embodiment does not allow connection with a secondary module 4, it lacks the locking grooves 12 and extra contacts 14b seen in the 4-channel version of the primary module 3. As only two channels are generally sufficient for most EMG, NCV and some EP studies, this alternative embodiment should be quite advantageous for many operators.

FIG. 4D is a schematic diagram which depicts the internal electronics of primary module 3 in the preferred embodiment of FIG. 4. Only one representative channel is depicted in the figure for the sake of simplicity, and it will be understood that any number of such channels may be included within primary module 3 when integrated in the manner described herein. All channels share a common coprocessor 53 for assimilating the digitized output and sending it through port 44 to computer 1. If power module 2 or modified power module 16 is not to be used, power is then supplied by computer 1 through port 44 to primary module 3. Although the power supply is common to all channels, each channel includes an independent on/off switch 43 so that unused channels may be selectively turned off for minimum power usage. Power to the coprocessor 53 and to the secondary module 4 through contacts 14b are supplied independently of any of the channel on/off switches 43.

Neurophysiological signals from the patient 13 enter the primary module 3 via the standard DIN-6 channel sockets 41. Signals from the active and reference electrodes enter via Pin 1 45 and Pin 2 46, respectively. Recall at this point that when secondary module 4 is attached, electrical contacts 14b transfer signals through Pins 1 and 2 45, 46, along with contacts for ground and power to secondary module 4. Signals from Pins 1 and 2 45, 46 are then amplified separately by preamplifiers 51. Preamplifiers 51 are capable of multiple gain settings which will allow the proper amplification of sensory nerve signals (0.5-50 microvolts), EMG signals (0.02-10 millivolts), and motor nerve signals (0.5-20 millivolts). These gain settings can all be adjusted through the use of controlling software between computer 1 and coprocessor 53. Once preamplified, each signal is converted by a separate analog-to-digital (A/D) converters 52. The resultant digital signals are passed to coprocessor 53, where the reference signal is subtracted from the active signal in most applications, thus acting as a differential amplifier. Under other applications, such as EEG studies, coprocessor 53 can also compare signals from different channels, rather than simply from the same channel.

With regard to the other pins of the DIN-6 socket 41, Pin 3 47 acts as the ground. All grounds are interconnected so that if one channel is grounded to the patient 13, all other channels are also grounded. Pin 4 48 may serve as the input for a thermistor (not shown), which is used to sense the temperature of the patient's skin. When the thermistor is used, the temperature signal is sent to coprocessor 53 and to computer 1, so that adjustments to final calculations can be made to reflect well-known correlations between nerve conductivity and skin temperature. Pin 4 48 is connected to all other channels, so that if a thermistor is connected, all channels will be served by it. Pins 5 and 6 49, 50 are not presently used, but can be employed in the future for additional features of the invention.

For studies which require electrical or other stimulation, the stimulus delivery and data collection are synchronized as explained previously. This is accomplished by either a hard-wired connection between primary module 3 and stimulator 7 comprising timing socket 42 and timing cable 9, or by a wireless signalling means 15 in the manner described herein. In either case, the communication of timing signals is bidirectional, so that timing signals can be generated either by computer 1 or by stimulator 7.

FIG. 5 is a top perspective view of a preferred embodiment of the secondary module 4, which is generally reserved for use with EEG studies, because it is capable of receiving analog signals from a large number of scalp electrodes. EEG electrodes are placed on the scalp of the patient 13 at standardized locations and plugged into a plurality of standard 2-mm sockets 54. Ground socket 55 is also provided for grounding the patient 13. Locking grooves 12 are matable with corresponding grooves on primary module 3 as explained earlier. When secondary module 4 is attached to primary module 3, contacts 14a on the bottom of secondary module 4 are caused to engage corresponding contacts 14a on the top of primary module 3. The engagement of contacts 14a and contacts 14b establish the needed connections for proper grounding and the transfer of electrical power and data signals between primary module 3 and secondary module 4.

FIG. 5B is an electrical schematic diagram of secondary module 4 of FIG. 5. As in the description of primary module 3, only a representative portion of secondary module 4 is shown for the sake of simplicity, although it will be understood that any number of such channels may be included within secondary module 4 when integrated in the manner described herein. In FIG. 5B, two sets of four scalp electrode input sockets 54 are shown, each set of four sockets 54 being connected to its own multiplexer unit 56a and 56b. Each multiplexer unit 56a, 56b accepts the unprocessed neurophysiological signals from four scalp electrodes and sends the signals through contact interface 14a, 14b between primary module 3 and secondary module 4. The sequential output of multiplexer unit 56a is analogous to signals entering through Pin 1 45 of the DIN-6 socket 41 on primary module 3, while the sequential output of multiplexer unit 56b is analogous to signals entering through Pin 2 46. These signals are successively preamplified and converted by primary module 3 in the manner explained elsewhere herein. Since the frequency of EEG signals is only about 0-25 Hz, each multiplexer unit 56a, 56b (and thus each channel in the primary module 3) can easily process four or input more signals without significant loss of resolution. If the 4-channel primary module 3 is employed, as many as 32 scalp electrode inputs may be used for EEG studies, although it will be understood that this number can be much higher is desired. Ground socket 55 is also connected through contacts 14a to primary module 3.

When secondary module 4 is in use, the digitized signals from the 32 scalp electrodes can be compared as needed by the appropriate data analysis software on computer 1. For example, the software would control whether the output of certain electrodes is to be compared to the output of certain other electrodes, thus enabling the operator to design his own referential or bipolar montage. The advantages gained through such use of the invention in terms of convenience, portability, and flexibility is heretofore unknown in the art of neurophysiological monitoring. It should be noted that secondary module 4 may also be used for electrocardiographic (ECG) studies as well. Instead of markings on the housing around the electrode sockets 54 indicative of the human head, a human chest may be inscribed on the housing of secondary module 4 to correspond to the actual electrode locations on the chest of patient 13. Of course, electronic operation of secondary module 4 would remain unchanged.

Although not particularly shown in the figures, an alternate embodiment of the present invention may comprise a single, unitary module that may be used for EP's, EEG's, and ECG's, as well as for NCV and EMG studies. Such an embodiment would simply involve hard-wiring the electrical connections between primary module 3 and secondary module 4 within a more compact case, thus removing the need for locking grooves 12. It can be seen that virtually all of the advantages of the invention can also be obtained through this embodiment, because personal computer 1 still acts as a replacement for expensive computing equipment and oscilloscopes designed specifically for medical applications. However, those who perform EEG's or ECG's infrequently may not wish to carry the extra weight of a unitary embodiment, and may prefer the 4-channel or the 2-channel primary module 3 as previously described herein.

FIG. 6 is a flowchart which shows the flow of information between the major electronic components of the testing environment, namely the stimulator, computer 1, primary module 3, and secondary module 4. Also depicted is the relationship between the patient 13 and these components, a possible flowchart of processes which would occur within computer 1 during testing procedures, and the visual and auditory display of the results to the operator.

Many advantages are apparent from use of the present invention. It will lower the cost of providing neurophysiological testing by lowering the cost of the hardware required to perform such tests. The development of new hardware used for neurophysiological testing will become cheaper, as it will become standardized with the computer industry as a whole. This invention transforms a laptop computer into an easily portable neurophysiological testing unit, which is currently not available. This modular concept for neurophysiological testing, namely a secondary module 4 which has inputs for EEG feeding into a primary module 3 with preamplifiers and A/D converters, where the primary module 3 can be used separately for EMG's and EP's, is unknown to this industry, and it eliminates the need for duplicate hardware.

The 4-channel model shown in FIG. 4 allows the conversion of a desktop or laptop computer into an electrodiagnostic tool as powerful as any on the market today, because most of the computing power is contained within computer 1. Moreover, the use of computer 1 affords the operator access to highly developed graphical software currently available for such machines, rather than being limited to cryptic readouts and LED signals on other equipment. All of this is accomplished while keeping the invention lightweight enough to be easily portable. It also allows upgrading of the hardware one module at a time, which is far less expensive to the operator over time.

Although the present invention has been described in terms of specific embodiments, it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modifications as fall within the true spirit and scope of the invention.

Claims (7)

I claim:
1. An adaptor for use with a personal computer for monitoring neurophysiological conditions of a patient, comprising:
(a) a first housing having power means for accepting a supply of electrical power from an external power source;
(b) first detection means, electrically connected to said power means, for allowing detection of analog neurophysiological signals at a predetermined site on said patient;
(c) data processing means, electrically connected to said first detection means, for amplifying said analog signals and converting said amplified analog signals to digital signals;
(d) output means, electrically connected to said data processing means, for sending said digital signals to a personal computer for further processing; and
(e) a second housing removably connectable to said first housing, said second housing comprising second detection means, electrically connectable to said data processing means, for allowing detection of analog neurophysiological signals at a second predetermined site on said patient.
2. The adaptor according to claim 1, wherein said second detection means comprises at least eight response electrodes adapted to receive said analog neurophysiological signals at said second predetermined site.
3. The adaptor according to claim 2, wherein said second detection means includes one or more multiplexing means for accepting and processing four or more of said analog neurophysiological signals.
4. A neurophysiological monitoring system, comprising:
(a) a primary module, comprising:
(i) a first housing having power means for accepting a supply of electrical power from an external power source;
(ii) first detection means, electrically connected to said power means, for allowing detection of analog neurophysiological signals at a predetermined site on a patient;
(iii) data processing means, electrically connected to said first detection means, for amplifying said analog signals and converting said amplified analog signals to digital signals; and
(iv) output means, electrically connected to said data processing means, for sending said digital signals to personal computing means for further processing;
(b) a secondary module, comprising:
(i) a second housing removably connectable to said first housing, said second housing comprising second detection means, electrically connectable to said data processing means, for allowing detection of analog neurophysiological signals at a second predetermined site on said patient; and
(c) personal computing means, connected to said output means, for accepting said digital signals from said output means, for further processing and storing said digital signals, for displaying graphical information corresponding to said analog neurophysiological signals, and for controlling selected operational parameters during said monitoring.
5. The neurophysiological monitoring system according to claim 4, wherein said second detection means comprises at least eight response electrodes adapted to receive said analog neurophysiological signals at said second predetermined site.
6. The adaptor according to claim 5, wherein said second detection means includes one or more multiplexing means for accepting and processing four or more of said analog neurophysiological signals.
7. The adaptor according to claim 4, wherein said first detection means comprises at least two response electrodes adapted to receive said analog neurophysiological signals from said patient at said first predetermined site.
US08268638 1994-06-30 1994-06-30 Adaptor for neurophysiological monitoring with a personal computer Expired - Fee Related US5540235A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08268638 US5540235A (en) 1994-06-30 1994-06-30 Adaptor for neurophysiological monitoring with a personal computer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US08268638 US5540235A (en) 1994-06-30 1994-06-30 Adaptor for neurophysiological monitoring with a personal computer

Publications (1)

Publication Number Publication Date
US5540235A true US5540235A (en) 1996-07-30

Family

ID=23023867

Family Applications (1)

Application Number Title Priority Date Filing Date
US08268638 Expired - Fee Related US5540235A (en) 1994-06-30 1994-06-30 Adaptor for neurophysiological monitoring with a personal computer

Country Status (1)

Country Link
US (1) US5540235A (en)

Cited By (134)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5722420A (en) * 1995-11-28 1998-03-03 National Science Council EMG biofeedback traction modality for rehabilitation
US5851191A (en) * 1997-07-01 1998-12-22 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US5957860A (en) * 1995-08-04 1999-09-28 Rodiera Olive; Jose J Method and apparatus for monitoring and/or controlling the neuromuscular blocking, specially the blocking produced by muscular relaxing pharmaceuticals during anaesthesia
US5961448A (en) * 1995-06-05 1999-10-05 Cmed, Inc. Virtual medical instrument for performing medical diagnostic testing on patients
EP1013305A2 (en) * 1998-12-23 2000-06-28 Fabio Paolo Marchesi Electronic stimulation equipment with wireless satellite units
US6097981A (en) * 1997-04-30 2000-08-01 Unique Logic And Technology, Inc. Electroencephalograph based biofeedback system and method
US6129665A (en) * 1996-05-31 2000-10-10 Biotekna S.R.L Electro-medical apparatus
US6155974A (en) * 1997-08-01 2000-12-05 Sony Corporation Wireless multiplexed brain wave monitoring system and method
US6366805B1 (en) * 1999-05-26 2002-04-02 Viasys Healthcare Inc. Time frame synchronization of medical monitoring signals
US6379313B1 (en) 1997-07-01 2002-04-30 Neurometrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
US6402520B1 (en) 1997-04-30 2002-06-11 Unique Logic And Technology, Inc. Electroencephalograph based biofeedback system for improving learning skills
WO2002066103A1 (en) * 2001-02-19 2002-08-29 Akzo Nobel N.V. A method and a system for administering muscle relaxant to a patient
US6463322B1 (en) 2001-04-10 2002-10-08 Viasys Healthcare, Inc. Combination referential and differential amplifier for medical signal monitoring
US6466817B1 (en) * 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
US20020183647A1 (en) * 1997-07-01 2002-12-05 Gozani Shai N. Apparatus and method for performing nerve conduction studies with localization of evoked responses
US6500128B2 (en) 2000-06-08 2002-12-31 Nuvasive, Inc. Nerve movement and status detection system and method
EP1272098A1 (en) * 1999-11-23 2003-01-08 New York University Brain function scan system
US20030093006A1 (en) * 2001-11-06 2003-05-15 Neurometrix, Inc. Method and apparatus for the detection of neuromuscular disease using disease specific evoked neuromuscular response analysis
US20030105503A1 (en) * 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
US20030195405A1 (en) * 1998-12-23 2003-10-16 Nuvasive, Inc. Nerve surveillance cannulae systems
US6654634B1 (en) * 1997-12-16 2003-11-25 Richard L. Prass Method and apparatus for connection of stimulus and recording electrodes of a multi-channel nerve integrity monitoring system
WO2004016165A1 (en) * 2002-07-29 2004-02-26 Forschungszentrum Jülich GmbH Device for modulation of neuronal activity in the brain by means of sensory stimulation and detection of brain activity
FR2845265A1 (en) * 2002-10-08 2004-04-09 Cognis France Sa The apparatus to test skin reactions and/or hypersensitivity uses electrodes at the skin, together with a separate reference electrode, to register the neural electrical activity when under stress or attack
US6743164B2 (en) 1999-06-02 2004-06-01 Music Of The Plants, Llp Electronic device to detect and generate music from biological microvariations in a living organism
US20040111042A1 (en) * 2002-12-09 2004-06-10 Imre Szabo Bioelectric telemetering system and method
US20040111043A1 (en) * 2002-12-09 2004-06-10 Bio-Signal Group Corp. Bioelectric telemetering system and method for digital cable eliminator
US20040158166A1 (en) * 2003-02-10 2004-08-12 Levengood William C. Method and apparatus for detecting, recording and analyzing spontaneously generated transient electric charge pulses in living organisms
US20040199084A1 (en) * 1999-11-24 2004-10-07 Nuvasive, Inc. Electromyography system
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US20040230549A1 (en) * 2003-02-03 2004-11-18 Unique Logic And Technology, Inc. Systems and methods for behavioral modification and behavioral task training integrated with biofeedback and cognitive skills training
US20040254494A1 (en) * 2003-06-11 2004-12-16 Spokoyny Eleonora S. Method and appartaus for use in nerve conduction studies
US20050049519A1 (en) * 2003-08-25 2005-03-03 Ezenwa Bertram N. Apparatus and method for analyzing nerve conduction
US20050075578A1 (en) * 2001-09-25 2005-04-07 James Gharib System and methods for performing surgical procedures and assessments
US20050128187A1 (en) * 2003-12-12 2005-06-16 Yu-Yu Chen Computer cursor pointing device with electric stimulator
WO2005086930A2 (en) * 2004-03-09 2005-09-22 Neurometrix, Inc. Method for automated detection of a-waves
US20050278001A1 (en) * 2004-06-15 2005-12-15 Li Qin Interferential and neuromuscular electrical stimulation system and apparatus
US20060025702A1 (en) * 2004-07-29 2006-02-02 Medtronic Xomed, Inc. Stimulator handpiece for an evoked potential monitoring system
US20060025703A1 (en) * 2003-08-05 2006-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US20060069315A1 (en) * 2003-09-25 2006-03-30 Patrick Miles Surgical access system and related methods
US20060094979A1 (en) * 2000-12-14 2006-05-04 Art Haven 9 Co., Ltd. Body impedance measurement apparatus
WO2006053596A1 (en) * 2004-11-16 2006-05-26 Cardiola Ltd. Apparatus and method for the cardio-synchronized stimulation of skeletal or smooth muscles
US20060149167A1 (en) * 2004-12-28 2006-07-06 Syh-Shiuh Yeh Methods and devices of multi-functional operating system for care-taking machine
US20060173521A1 (en) * 2005-01-31 2006-08-03 Pond John D Jr Electrically insulated surgical needle assembly
US20060173374A1 (en) * 2005-01-31 2006-08-03 Neubardt Seth L Electrically insulated surgical probing tool
US20060178593A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Device and method for operating a tool relative to bone tissue and detecting neural elements
US20060178594A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Apparatus and method for locating defects in bone tissue
US20060200219A1 (en) * 2005-03-01 2006-09-07 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures
US20060217631A1 (en) * 2004-02-17 2006-09-28 Xuan Kong Method for automated analysis of submaximal F-waves
US20060217768A1 (en) * 2005-01-28 2006-09-28 Felix Buhlmann Independent protection system for an electrical muscle stimulation apparatus and method of using same
US20060224078A1 (en) * 2000-05-18 2006-10-05 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
WO2006116480A2 (en) * 2005-04-25 2006-11-02 Guided Therapy Systems, L.L.C. Method and system for enhancing computer peripheral saftey
US20070191915A1 (en) * 2005-03-01 2007-08-16 Ndi Medical, Inc. Systems and methods for intra-operative stimulation
WO2007096452A1 (en) * 2006-02-22 2007-08-30 Brainscope Oy A method and a device for adapting eeg measurement signals
US20070208253A1 (en) * 1997-10-14 2007-09-06 Guided Therapy Systems, Inc. Imaging, therapy and temperature monitoring ultrasonic system
WO2007022524A3 (en) * 2005-08-19 2007-11-22 Neuronetrix Inc Controller for neuromuscular testing
WO2008012398A1 (en) * 2006-07-25 2008-01-31 Mediracer Ltd. Method and equipment for controlling the measurement of nerve response wirelessly
US20080058606A1 (en) * 2002-10-08 2008-03-06 Nuvasive, Inc. Surgical access system and related methods
US20080077039A1 (en) * 2002-12-09 2008-03-27 Bio-Signal Group Corp. Brain signal telemetry and seizure prediction
US20080097164A1 (en) * 2003-01-16 2008-04-24 Nuvasive, Inc. Surgical access system and related methods
US20080193905A1 (en) * 2007-02-13 2008-08-14 The Hong Kong Polytechnic University Automated testing for palpating diabetic foot patient
US20090124860A1 (en) * 2003-02-27 2009-05-14 Nuvasive, Inc. Surgical access system and related methods
US20090131813A1 (en) * 2007-06-29 2009-05-21 Cryan Marc P Method and apparatus for augmenting nerve stimulation and response detection
US20090149131A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US7582058B1 (en) * 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US20090299439A1 (en) * 2008-06-02 2009-12-03 Warsaw Orthopedic, Inc. Method, system and tool for surgical procedures
US20100024630A1 (en) * 2008-07-29 2010-02-04 Teie David Ernest Process of and apparatus for music arrangements adapted from animal noises to form species-specific music
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US20100042180A1 (en) * 2005-04-19 2010-02-18 Compex Technologies, Inc Electrical stimulation device and method for therapeutic treatment and pain management
US20100152604A1 (en) * 2001-07-11 2010-06-17 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US7785253B1 (en) 2005-01-31 2010-08-31 Nuvasive, Inc. Surgical access system and related methods
CN101862189A (en) * 2010-06-13 2010-10-20 天津大学 Myoelectricity functional electric stimulation interference filtering method
US7896815B2 (en) 2005-03-01 2011-03-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20110054346A1 (en) * 2005-03-01 2011-03-03 Checkpoint Surgical, Llc Systems and methods for Intra-operative semi-quantitative threshold neural response testing related applications
US20110060242A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation within a surgical field
US20110060243A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative regional neural stimulation
US20110060238A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative physiological functional stimulation
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US8155012B2 (en) 1998-04-10 2012-04-10 Chrimar Systems, Inc. System and method for adapting a piece of terminal equipment
US8206312B2 (en) 2005-09-22 2012-06-26 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US8255045B2 (en) * 2007-04-03 2012-08-28 Nuvasive, Inc. Neurophysiologic monitoring system
US8282554B2 (en) 2004-10-06 2012-10-09 Guided Therapy Systems, Llc Methods for treatment of sweat glands
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US8366622B2 (en) 2004-10-06 2013-02-05 Guided Therapy Systems, Llc Treatment of sub-dermal regions for cosmetic effects
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US8409097B2 (en) 2000-12-28 2013-04-02 Ardent Sound, Inc Visual imaging system for ultrasonic probe
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US8460193B2 (en) 2004-10-06 2013-06-11 Guided Therapy Systems Llc System and method for ultra-high frequency ultrasound treatment
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
WO2013155280A1 (en) * 2010-11-15 2013-10-17 Heck Sandy L Electrodes adapted for transmitting or measuring voltages through hair
US8568317B1 (en) 2005-09-27 2013-10-29 Nuvasive, Inc. System and methods for nerve monitoring
US8568331B2 (en) 2005-02-02 2013-10-29 Nuvasive, Inc. System and methods for monitoring during anterior surgery
US8620438B1 (en) 2007-02-13 2013-12-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US8708935B2 (en) 2004-09-16 2014-04-29 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US8740783B2 (en) 2005-07-20 2014-06-03 Nuvasive, Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US8764687B2 (en) 2007-05-07 2014-07-01 Guided Therapy Systems, Llc Methods and systems for coupling and focusing acoustic energy using a coupler member
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
EP2801389A1 (en) * 2013-05-08 2014-11-12 Consejo Superior De Investigaciones Cientificas (Csic) Method and neuroprosthetic device for monitoring and suppression of pathological tremors through neurostimulation of the afferent pathways
US8915870B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method and system for treating stretch marks
CN104382580A (en) * 2014-11-10 2015-03-04 黄炳刚 Soft tissue ache detecting and treating device
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US9155503B2 (en) 2010-10-27 2015-10-13 Cadwell Labs Apparatus, system, and method for mapping the location of a nerve
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9295401B2 (en) 2012-11-27 2016-03-29 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
US9327116B2 (en) 2004-11-16 2016-05-03 Cardiola Ltd. Wireless cardioresonance stimulation
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
CN105726119A (en) * 2016-01-26 2016-07-06 清华大学 Liquid metal bath pool type electrode electrotherapy device
US9392953B1 (en) 2010-09-17 2016-07-19 Nuvasive, Inc. Neurophysiologic monitoring
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US9622732B2 (en) 2004-10-08 2017-04-18 Nuvasive, Inc. Surgical access system and related methods
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9757072B1 (en) 2013-02-11 2017-09-12 Nuvasive, Inc. Waveform marker placement algorithm for use in neurophysiologic monitoring
US9802041B2 (en) 2014-06-02 2017-10-31 Cala Health, Inc. Systems for peripheral nerve stimulation to treat tremor
US9827109B2 (en) 1999-03-07 2017-11-28 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880144A (en) * 1973-03-12 1975-04-29 David B Coursin Method for stimulation and recording of neurophysiologic data
US4503863A (en) * 1979-06-29 1985-03-12 Katims Jefferson J Method and apparatus for transcutaneous electrical stimulation
US4697598A (en) * 1985-04-25 1987-10-06 Westinghouse Electric Corp. Evoked potential autorefractometry system
US4739772A (en) * 1983-02-01 1988-04-26 Hokanson D Eugene Brain wave monitoring mechanism and method
US4984578A (en) * 1988-11-14 1991-01-15 William Keppel Method and apparatus for identifying and alleviating semantic memory deficiencies
US5195530A (en) * 1990-12-10 1993-03-23 Larry Shindel Apparatus for analyzing EEG and related waveforms
US5195532A (en) * 1990-05-29 1993-03-23 Phywe Systeme Gmbh Apparatus for producing a stimulation by vibration of a tappet which is put on a human's skin
US5381805A (en) * 1990-01-24 1995-01-17 Topical Testing, Inc. Cutaneous testing device for determining nervous system function
US5405365A (en) * 1989-05-22 1995-04-11 Siemens Aktiengesellschaft Implantable medical device having means for stimulating tissue contractions with adjustable stimulation intensity and a method for the operation of such a device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3880144A (en) * 1973-03-12 1975-04-29 David B Coursin Method for stimulation and recording of neurophysiologic data
US4503863A (en) * 1979-06-29 1985-03-12 Katims Jefferson J Method and apparatus for transcutaneous electrical stimulation
US4739772A (en) * 1983-02-01 1988-04-26 Hokanson D Eugene Brain wave monitoring mechanism and method
US4697598A (en) * 1985-04-25 1987-10-06 Westinghouse Electric Corp. Evoked potential autorefractometry system
US4984578A (en) * 1988-11-14 1991-01-15 William Keppel Method and apparatus for identifying and alleviating semantic memory deficiencies
US5405365A (en) * 1989-05-22 1995-04-11 Siemens Aktiengesellschaft Implantable medical device having means for stimulating tissue contractions with adjustable stimulation intensity and a method for the operation of such a device
US5381805A (en) * 1990-01-24 1995-01-17 Topical Testing, Inc. Cutaneous testing device for determining nervous system function
US5195532A (en) * 1990-05-29 1993-03-23 Phywe Systeme Gmbh Apparatus for producing a stimulation by vibration of a tappet which is put on a human's skin
US5195530A (en) * 1990-12-10 1993-03-23 Larry Shindel Apparatus for analyzing EEG and related waveforms

Cited By (349)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5961448A (en) * 1995-06-05 1999-10-05 Cmed, Inc. Virtual medical instrument for performing medical diagnostic testing on patients
US5957860A (en) * 1995-08-04 1999-09-28 Rodiera Olive; Jose J Method and apparatus for monitoring and/or controlling the neuromuscular blocking, specially the blocking produced by muscular relaxing pharmaceuticals during anaesthesia
US5722420A (en) * 1995-11-28 1998-03-03 National Science Council EMG biofeedback traction modality for rehabilitation
US6129665A (en) * 1996-05-31 2000-10-10 Biotekna S.R.L Electro-medical apparatus
US6097981A (en) * 1997-04-30 2000-08-01 Unique Logic And Technology, Inc. Electroencephalograph based biofeedback system and method
US6626676B2 (en) 1997-04-30 2003-09-30 Unique Logic And Technology, Inc. Electroencephalograph based biofeedback system for improving learning skills
US6402520B1 (en) 1997-04-30 2002-06-11 Unique Logic And Technology, Inc. Electroencephalograph based biofeedback system for improving learning skills
US6692444B2 (en) 1997-07-01 2004-02-17 Neurometrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
US20020183647A1 (en) * 1997-07-01 2002-12-05 Gozani Shai N. Apparatus and method for performing nerve conduction studies with localization of evoked responses
US5976094A (en) * 1997-07-01 1999-11-02 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US5851191A (en) * 1997-07-01 1998-12-22 Neurometrix, Inc. Apparatus and methods for assessment of neuromuscular function
US7628761B2 (en) 1997-07-01 2009-12-08 Neurometrix, Inc. Apparatus and method for performing nerve conduction studies with localization of evoked responses
US6379313B1 (en) 1997-07-01 2002-04-30 Neurometrix, Inc. Methods for the assessment of neuromuscular function by F-wave latency
US6155974A (en) * 1997-08-01 2000-12-05 Sony Corporation Wireless multiplexed brain wave monitoring system and method
US9272162B2 (en) 1997-10-14 2016-03-01 Guided Therapy Systems, Llc Imaging, therapy, and temperature monitoring ultrasonic method
US20070208253A1 (en) * 1997-10-14 2007-09-06 Guided Therapy Systems, Inc. Imaging, therapy and temperature monitoring ultrasonic system
US8480585B2 (en) 1997-10-14 2013-07-09 Guided Therapy Systems, Llc Imaging, therapy and temperature monitoring ultrasonic system and method
US6654634B1 (en) * 1997-12-16 2003-11-25 Richard L. Prass Method and apparatus for connection of stimulus and recording electrodes of a multi-channel nerve integrity monitoring system
US9019838B2 (en) 1998-04-10 2015-04-28 Chrimar Systems, Inc. Central piece of network equipment
US9049019B2 (en) 1998-04-10 2015-06-02 Chrimar Systems, Inc. Network equipment and optional tether
US8155012B2 (en) 1998-04-10 2012-04-10 Chrimar Systems, Inc. System and method for adapting a piece of terminal equipment
US9812825B2 (en) 1998-04-10 2017-11-07 Chrimar Systems, Inc. Ethernet device
US8942107B2 (en) 1998-04-10 2015-01-27 Chrimar Systems, Inc. Piece of ethernet terminal equipment
US8902760B2 (en) 1998-04-10 2014-12-02 Chrimar Systems, Inc. Network system and optional tethers
US7079883B2 (en) 1998-12-23 2006-07-18 Nuvaslve, Inc. Nerve surveillance cannulae systems
US20030195405A1 (en) * 1998-12-23 2003-10-16 Nuvasive, Inc. Nerve surveillance cannulae systems
US6366816B1 (en) 1998-12-23 2002-04-02 Fabio Paolo Marchesi Electronic stimulation equipment with wireless satellite units
EP1013305A2 (en) * 1998-12-23 2000-06-28 Fabio Paolo Marchesi Electronic stimulation equipment with wireless satellite units
US7693562B2 (en) 1998-12-23 2010-04-06 Nuvasive, Inc. Nerve surveillance cannulae systems
US9014776B2 (en) 1998-12-23 2015-04-21 Nuvasive, Inc. Surgical access and nerve surveillance
EP1013305A3 (en) * 1998-12-23 2000-12-27 Fabio Paolo Marchesi Electronic stimulation equipment with wireless satellite units
US8165653B2 (en) 1998-12-23 2012-04-24 Nuvasive, Inc. Surgical access and nerve surveillance
US7962191B2 (en) 1998-12-23 2011-06-14 Nuvasive, Inc. Nerve surveillance cannulae systems
US9827109B2 (en) 1999-03-07 2017-11-28 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US6735711B2 (en) 1999-05-26 2004-05-11 Viasys Healthcare, Inc. Time frame synchronization of medical monitoring signals
US6366805B1 (en) * 1999-05-26 2002-04-02 Viasys Healthcare Inc. Time frame synchronization of medical monitoring signals
US6743164B2 (en) 1999-06-02 2004-06-01 Music Of The Plants, Llp Electronic device to detect and generate music from biological microvariations in a living organism
EP1272098A4 (en) * 1999-11-23 2004-09-22 Univ New York Brain function scan system
EP1272098A1 (en) * 1999-11-23 2003-01-08 New York University Brain function scan system
US20080071191A1 (en) * 1999-11-24 2008-03-20 Nuvasive, Inc. Electromyography system
US20070293782A1 (en) * 1999-11-24 2007-12-20 Nu Vasive, Inc. Electromyography system
US20040199084A1 (en) * 1999-11-24 2004-10-07 Nuvasive, Inc. Electromyography system
US8562539B2 (en) 1999-11-24 2013-10-22 Nuvasive, Inc. Electromyography system
US20080065178A1 (en) * 1999-11-24 2008-03-13 Nuvasive, Inc. Electromyography system
US7963927B2 (en) 1999-11-24 2011-06-21 Nuvasive, Inc. Electromyography system
US7177677B2 (en) 1999-11-24 2007-02-13 Nuvasive, Inc. Nerve proximity and status detection system and method
US7470236B1 (en) 1999-11-24 2008-12-30 Nuvasive, Inc. Electromyography system
US6466817B1 (en) * 1999-11-24 2002-10-15 Nuvasive, Inc. Nerve proximity and status detection system and method
US9743853B2 (en) 1999-11-24 2017-08-29 Nuvasive, Inc. Electromyography system
US20030045808A1 (en) * 1999-11-24 2003-03-06 Nuvasive, Inc. Nerve proximity and status detection system and method
US20060224078A1 (en) * 2000-05-18 2006-10-05 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US8090436B2 (en) 2000-05-18 2012-01-03 Nuvasive, Inc. Tissue discrimination and applications in medical procedures
US20100049081A1 (en) * 2000-05-18 2010-02-25 Nuvasive, Inc. Tissue Discrimination and Applications in Medical Procedures
US6500128B2 (en) 2000-06-08 2002-12-31 Nuvasive, Inc. Nerve movement and status detection system and method
US20060094979A1 (en) * 2000-12-14 2006-05-04 Art Haven 9 Co., Ltd. Body impedance measurement apparatus
US9907535B2 (en) 2000-12-28 2018-03-06 Ardent Sound, Inc. Visual imaging system for ultrasonic probe
US8409097B2 (en) 2000-12-28 2013-04-02 Ardent Sound, Inc Visual imaging system for ultrasonic probe
WO2002066103A1 (en) * 2001-02-19 2002-08-29 Akzo Nobel N.V. A method and a system for administering muscle relaxant to a patient
US7169125B2 (en) 2001-02-19 2007-01-30 Akzo Nobel, N.V. Method and a system for administering muscle relaxant to a patient
US6463322B1 (en) 2001-04-10 2002-10-08 Viasys Healthcare, Inc. Combination referential and differential amplifier for medical signal monitoring
WO2002082992A1 (en) * 2001-04-10 2002-10-24 Viasys Healthcare, Inc. Combination referential and differential amplifier for medical signal monitoring
US20030105503A1 (en) * 2001-06-08 2003-06-05 Nuvasive, Inc. Relative nerve movement and status detection system and method
US8050769B2 (en) 2001-07-11 2011-11-01 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US8068912B2 (en) 2001-07-11 2011-11-29 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US9037250B2 (en) 2001-07-11 2015-05-19 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US7920922B2 (en) 2001-07-11 2011-04-05 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US20100152604A1 (en) * 2001-07-11 2010-06-17 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US8634904B2 (en) 2001-07-11 2014-01-21 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US8812116B2 (en) 2001-07-11 2014-08-19 Nuvasive, Inc. System and methods for determining nerve proximity, direction, and pathology during surgery
US9931077B2 (en) 2001-07-11 2018-04-03 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US9456783B2 (en) 2001-07-11 2016-10-04 Nuvasive, Inc. System and methods for determining nerve proximity, direction and pathology during surgery
US8548579B2 (en) 2001-09-25 2013-10-01 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8027716B2 (en) 2001-09-25 2011-09-27 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US20050075578A1 (en) * 2001-09-25 2005-04-07 James Gharib System and methods for performing surgical procedures and assessments
US8000782B2 (en) 2001-09-25 2011-08-16 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8005535B2 (en) 2001-09-25 2011-08-23 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8768450B2 (en) 2001-09-25 2014-07-01 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US7522953B2 (en) 2001-09-25 2009-04-21 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8265744B2 (en) 2001-09-25 2012-09-11 Nuvasive, Inc. Systems and methods for performing surgical procedures and assessments
US8244343B2 (en) 2001-09-25 2012-08-14 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US8977352B2 (en) 2001-09-25 2015-03-10 Nuvasive, Inc. Systems and methods for performing surgical procedures and assessments
US8738123B2 (en) 2001-09-25 2014-05-27 Nuvasive, Inc. System and methods for performing surgical procedures and assessments
US20030093006A1 (en) * 2001-11-06 2003-05-15 Neurometrix, Inc. Method and apparatus for the detection of neuromuscular disease using disease specific evoked neuromuscular response analysis
US7452335B2 (en) * 2001-11-06 2008-11-18 Neurometrix, Inc. Method and apparatus for the detection of neuromuscular disease using disease specific evoked neuromuscular response analysis
US9826968B2 (en) 2002-06-26 2017-11-28 Nuvasive, Inc. Surgical access system and related methods
US8192356B2 (en) 2002-06-26 2012-06-05 Nuvasive, Inc. Surgical access system and related methods
US8187179B2 (en) 2002-06-26 2012-05-29 Nuvasive, Inc. Surgical access system and related methods
US8915846B2 (en) 2002-06-26 2014-12-23 Nuvasive, Inc. Surgical access system and related methods
US8672840B2 (en) 2002-06-26 2014-03-18 Nuvasive, Inc. Surgical access system and related methods
US7582058B1 (en) * 2002-06-26 2009-09-01 Nuvasive, Inc. Surgical access system and related methods
US7935051B2 (en) 2002-06-26 2011-05-03 Nuvasive, Inc. Surgical access system and related methods
US8182423B2 (en) 2002-06-26 2012-05-22 Nuvasive, Inc. Surgical access system and related methods
US9848861B2 (en) 2002-06-26 2017-12-26 Nuvasive, Inc. Surgical access system and related methods
US9750490B2 (en) 2002-06-26 2017-09-05 Nuvasive, Inc. Surgical access system and related methods
US9833227B2 (en) 2002-06-26 2017-12-05 Nuvasive, Inc. Surgical access system and related methods
US8708899B2 (en) 2002-06-26 2014-04-29 Nuvasive, Inc. Surgical access system and related methods
US9119583B2 (en) 2002-07-29 2015-09-01 Forschungzentrum Julich Gmbh Method for modulation of neuronal activity in the brain by means of sensory stimulation and detection of brain activity
WO2004016165A1 (en) * 2002-07-29 2004-02-26 Forschungszentrum Jülich GmbH Device for modulation of neuronal activity in the brain by means of sensory stimulation and detection of brain activity
US8543219B2 (en) 2002-07-29 2013-09-24 Forschungszentrum Julich Gmbh Device for modulation of neuronal activity in the brain by means of sensory stimulation and detection of brain activity
US20060047324A1 (en) * 2002-07-29 2006-03-02 Peter Tass Device for modulation of neuronal activity in the brain by means of sensory stimulation and detection of brain activity
WO2004032739A1 (en) * 2002-10-08 2004-04-22 Cognis France S.A. Analysis of a skin reactivity and hypersensitivity
US9572562B2 (en) 2002-10-08 2017-02-21 Nuvasive, Inc. Surgical access system and related methods
US8137284B2 (en) 2002-10-08 2012-03-20 Nuvasive, Inc. Surgical access system and related methods
US9204871B2 (en) 2002-10-08 2015-12-08 Nuvasive, Inc. Surgical access system and related methods
US8512235B2 (en) 2002-10-08 2013-08-20 Nuvasive, Inc. Surgical access system and related methods
US20060224077A1 (en) * 2002-10-08 2006-10-05 Gilles Pauly Analysis of a skin reactivity and hypersensitivity
US8679006B2 (en) 2002-10-08 2014-03-25 Nuvasive, Inc. Surgical access system and related methods
US8192357B2 (en) 2002-10-08 2012-06-05 Nuvasive, Inc. Surgical access system and related methods
US8663100B2 (en) 2002-10-08 2014-03-04 Nuvasive, Inc. Surgical access system and related methods
US8956283B2 (en) 2002-10-08 2015-02-17 Nuvasive, Inc. Surgical access system and related methods
FR2845265A1 (en) * 2002-10-08 2004-04-09 Cognis France Sa The apparatus to test skin reactions and/or hypersensitivity uses electrodes at the skin, together with a separate reference electrode, to register the neural electrical activity when under stress or attack
US9820729B2 (en) 2002-10-08 2017-11-21 Nuvasive, Inc. Surgical access system and related methods
US20080058606A1 (en) * 2002-10-08 2008-03-06 Nuvasive, Inc. Surgical access system and related methods
US7664544B2 (en) 2002-10-30 2010-02-16 Nuvasive, Inc. System and methods for performing percutaneous pedicle integrity assessments
US20040111042A1 (en) * 2002-12-09 2004-06-10 Imre Szabo Bioelectric telemetering system and method
US20040111043A1 (en) * 2002-12-09 2004-06-10 Bio-Signal Group Corp. Bioelectric telemetering system and method for digital cable eliminator
US9854985B2 (en) 2002-12-09 2018-01-02 Bio-Signal Group Corp. Brain signal telemetry and seizure prediction
US20080077039A1 (en) * 2002-12-09 2008-03-27 Bio-Signal Group Corp. Brain signal telemetry and seizure prediction
US8147421B2 (en) 2003-01-15 2012-04-03 Nuvasive, Inc. System and methods for determining nerve direction to a surgical instrument
US8172750B2 (en) 2003-01-16 2012-05-08 Nuvasive, Inc. Surgical access system and related methods
US9301743B2 (en) 2003-01-16 2016-04-05 Nuvasive, Inc. Surgical access system and related methods
US8747307B2 (en) 2003-01-16 2014-06-10 Nuvasive, Inc. Surgical access system and related methods
US20080097164A1 (en) * 2003-01-16 2008-04-24 Nuvasive, Inc. Surgical access system and related methods
US8114019B2 (en) 2003-01-16 2012-02-14 Nuvasive, Inc. Surgical access system and related methods
US8753270B2 (en) 2003-01-16 2014-06-17 Nuvasive, Inc. Surgical access system and related methods
US7691057B2 (en) 2003-01-16 2010-04-06 Nuvasive, Inc. Surgical access system and related methods
US8133173B2 (en) 2003-01-16 2012-03-13 Nuvasive, Inc. Surgical access system and related methods
US8403841B2 (en) 2003-01-16 2013-03-26 Nuvasive, Inc. Surgical access system and related methods
US8602982B2 (en) 2003-01-16 2013-12-10 Nuvasive, Inc. Surgical access system and related methods
US8523768B2 (en) 2003-01-16 2013-09-03 Nuvasive, Inc. Surgical access system and related methods
US9795371B2 (en) 2003-01-16 2017-10-24 Nuvasive, Inc. Surgical access system and related methods
US8439832B2 (en) 2003-01-16 2013-05-14 Nuvasive, Inc. Surgical access system and related methods
US8562521B2 (en) 2003-01-16 2013-10-22 Nuvasive, Inc. Surgical access system and related methods
US8343046B2 (en) 2003-01-16 2013-01-01 Nuvasive, Inc. Surgical access system and related methods
US20040230549A1 (en) * 2003-02-03 2004-11-18 Unique Logic And Technology, Inc. Systems and methods for behavioral modification and behavioral task training integrated with biofeedback and cognitive skills training
US20040158166A1 (en) * 2003-02-10 2004-08-12 Levengood William C. Method and apparatus for detecting, recording and analyzing spontaneously generated transient electric charge pulses in living organisms
US8696559B2 (en) 2003-02-27 2014-04-15 Nuvasive, Inc. Surgical access system and related methods
US8303498B2 (en) 2003-02-27 2012-11-06 Nuvasive, Inc. Surgical access system and related methods
US20090124860A1 (en) * 2003-02-27 2009-05-14 Nuvasive, Inc. Surgical access system and related methods
US9468405B2 (en) 2003-02-27 2016-10-18 Nuvasive, Inc. Surgical access system and related methods
US7892173B2 (en) 2003-02-27 2011-02-22 Nuvasive, Inc. Surgical access system and related methods
US7819801B2 (en) 2003-02-27 2010-10-26 Nuvasive, Inc. Surgical access system and related methods
US8550994B2 (en) 2003-02-27 2013-10-08 Nuvasive, Inc. Surgical access system and related methods
US20040225228A1 (en) * 2003-05-08 2004-11-11 Ferree Bret A. Neurophysiological apparatus and procedures
US9131947B2 (en) 2003-05-08 2015-09-15 Nuvasive, Inc. Neurophysiological apparatus and procedures
US20040254494A1 (en) * 2003-06-11 2004-12-16 Spokoyny Eleonora S. Method and appartaus for use in nerve conduction studies
US20060025703A1 (en) * 2003-08-05 2006-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US20100249644A1 (en) * 2003-08-05 2010-09-30 Patrick Miles System and Methods for Performing Dynamic Pedicle Integrity Assessements
US8255044B2 (en) 2003-08-05 2012-08-28 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US7657308B2 (en) 2003-08-05 2010-02-02 Nuvasive, Inc. System and methods for performing dynamic pedicle integrity assessments
US20050049519A1 (en) * 2003-08-25 2005-03-03 Ezenwa Bertram N. Apparatus and method for analyzing nerve conduction
US7179231B2 (en) * 2003-08-25 2007-02-20 Wisys Technology Foundation, Inc., Apparatus and method for analyzing nerve conduction
US9974531B2 (en) 2003-09-25 2018-05-22 Nuvasive, Inc. Surgical access system and related methods
US9610071B2 (en) 2003-09-25 2017-04-04 Nuvasive, Inc. Surgical access system and related methods
US9788822B2 (en) 2003-09-25 2017-10-17 Nuvasive, Inc. Surgical access system and related methods
US8821396B1 (en) 2003-09-25 2014-09-02 Nuvasive, Inc. Surgical access system and related methods
US8591432B2 (en) 2003-09-25 2013-11-26 Nuvasive, Inc. Surgical access system and related methods
US20060069315A1 (en) * 2003-09-25 2006-03-30 Patrick Miles Surgical access system and related methods
US9265493B2 (en) 2003-09-25 2016-02-23 Nuvasive, Inc. Surgical access system and related methods
US8942801B2 (en) 2003-09-25 2015-01-27 Nuvasive, Inc. Surgical access system and related methods
US8355780B2 (en) 2003-09-25 2013-01-15 Nuvasive, Inc. Surgical access system and related methods
US8500634B2 (en) 2003-09-25 2013-08-06 Nuvasive, Inc. Surgical access system and related methods
US7207949B2 (en) 2003-09-25 2007-04-24 Nuvasive, Inc. Surgical access system and related methods
US8945004B2 (en) 2003-09-25 2015-02-03 Nuvasive, Inc. Surgical access system and related methods
US8016767B2 (en) 2003-09-25 2011-09-13 Nuvasive, Inc. Surgical access system and related methods
US9314152B2 (en) 2003-09-25 2016-04-19 Nuvasive, Inc. Surgical access system and related methods
US8764649B2 (en) 2003-09-25 2014-07-01 Nuvasive, Inc. Surgical access system and related methods
US8388527B2 (en) 2003-09-25 2013-03-05 Nuvasive, Inc. Surgical access system and related method
US8628469B2 (en) 2003-09-25 2014-01-14 Nuvasive, Inc. Surgical access system and related methods
US8753271B1 (en) 2003-09-25 2014-06-17 Nuvasive, Inc. Surgical access system and related methods
US8303515B2 (en) 2003-09-25 2012-11-06 Nuvasive, Inc. Surgical access system and related methods
US8556808B2 (en) 2003-09-25 2013-10-15 Nuvasive, Inc. Surgical access system and related methods
US7905840B2 (en) 2003-10-17 2011-03-15 Nuvasive, Inc. Surgical access system and related methods
US7193611B2 (en) * 2003-12-12 2007-03-20 Yu-Yu Chen Computer cursor pointing device with electric stimulator
US20050128187A1 (en) * 2003-12-12 2005-06-16 Yu-Yu Chen Computer cursor pointing device with electric stimulator
US8326410B2 (en) 2004-02-17 2012-12-04 Neurometrix, Inc. Method for automated analysis of submaximal F-waves
US20060217631A1 (en) * 2004-02-17 2006-09-28 Xuan Kong Method for automated analysis of submaximal F-waves
US20060020222A1 (en) * 2004-03-09 2006-01-26 Gozani Shai N Method for automated detection of A-waves
WO2005086930A2 (en) * 2004-03-09 2005-09-22 Neurometrix, Inc. Method for automated detection of a-waves
US7749171B2 (en) 2004-03-09 2010-07-06 Neurometrix, Inc. Method for automated detection of A-waves
WO2005086930A3 (en) * 2004-03-09 2007-02-08 Neurometrix Inc Method for automated detection of a-waves
US8235909B2 (en) 2004-05-12 2012-08-07 Guided Therapy Systems, L.L.C. Method and system for controlled scanning, imaging and/or therapy
US20050278001A1 (en) * 2004-06-15 2005-12-15 Li Qin Interferential and neuromuscular electrical stimulation system and apparatus
US7613518B2 (en) * 2004-06-15 2009-11-03 Encore Medical Asset Corporation Interferential and neuromuscular electrical stimulation system and apparatus
US20060025702A1 (en) * 2004-07-29 2006-02-02 Medtronic Xomed, Inc. Stimulator handpiece for an evoked potential monitoring system
US9259164B2 (en) 2004-08-30 2016-02-16 Neuronetrix, Inc. Controller for neuromuscular testing
US20080312551A1 (en) * 2004-08-30 2008-12-18 Fadem Kalford C Controller for Neuromuscular Testing
US9114247B2 (en) 2004-09-16 2015-08-25 Guided Therapy Systems, Llc Method and system for ultrasound treatment with a multi-directional transducer
US8708935B2 (en) 2004-09-16 2014-04-29 Guided Therapy Systems, Llc System and method for variable depth ultrasound treatment
US9011336B2 (en) 2004-09-16 2015-04-21 Guided Therapy Systems, Llc Method and system for combined energy therapy profile
US9895560B2 (en) 2004-09-24 2018-02-20 Guided Therapy Systems, Llc Methods for rejuvenating skin by heating tissue for cosmetic treatment of the face and body
US9095697B2 (en) 2004-09-24 2015-08-04 Guided Therapy Systems, Llc Methods for preheating tissue for cosmetic treatment of the face and body
US9974982B2 (en) 2004-10-06 2018-05-22 Guided Therapy Systems, Llc System and method for noninvasive skin tightening
US9522290B2 (en) 2004-10-06 2016-12-20 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US8535228B2 (en) 2004-10-06 2013-09-17 Guided Therapy Systems, Llc Method and system for noninvasive face lifts and deep tissue tightening
US8523775B2 (en) 2004-10-06 2013-09-03 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US8333700B1 (en) 2004-10-06 2012-12-18 Guided Therapy Systems, L.L.C. Methods for treatment of hyperhidrosis
US9713731B2 (en) 2004-10-06 2017-07-25 Guided Therapy Systems, Llc Energy based fat reduction
US9707412B2 (en) 2004-10-06 2017-07-18 Guided Therapy Systems, Llc System and method for fat and cellulite reduction
US9700340B2 (en) 2004-10-06 2017-07-11 Guided Therapy Systems, Llc System and method for ultra-high frequency ultrasound treatment
US9694212B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, Llc Method and system for ultrasound treatment of skin
US9694211B2 (en) 2004-10-06 2017-07-04 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9827450B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US9440096B2 (en) 2004-10-06 2016-09-13 Guided Therapy Systems, Llc Method and system for treating stretch marks
US9427600B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US9427601B2 (en) 2004-10-06 2016-08-30 Guided Therapy Systems, Llc Methods for face and neck lifts
US9421029B2 (en) 2004-10-06 2016-08-23 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US9320537B2 (en) 2004-10-06 2016-04-26 Guided Therapy Systems, Llc Methods for noninvasive skin tightening
US9283410B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, L.L.C. System and method for fat and cellulite reduction
US8506486B2 (en) 2004-10-06 2013-08-13 Guided Therapy Systems, Llc Ultrasound treatment of sub-dermal tissue for cosmetic effects
US8636665B2 (en) 2004-10-06 2014-01-28 Guided Therapy Systems, Llc Method and system for ultrasound treatment of fat
US8641622B2 (en) 2004-10-06 2014-02-04 Guided Therapy Systems, Llc Method and system for treating photoaged tissue
US9827449B2 (en) 2004-10-06 2017-11-28 Guided Therapy Systems, L.L.C. Systems for treating skin laxity
US8663112B2 (en) 2004-10-06 2014-03-04 Guided Therapy Systems, Llc Methods and systems for fat reduction and/or cellulite treatment
US9833640B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Method and system for ultrasound treatment of skin
US8460193B2 (en) 2004-10-06 2013-06-11 Guided Therapy Systems Llc System and method for ultra-high frequency ultrasound treatment
US8672848B2 (en) 2004-10-06 2014-03-18 Guided Therapy Systems, Llc Method and system for treating cellulite
US9039619B2 (en) 2004-10-06 2015-05-26 Guided Therapy Systems, L.L.C. Methods for treating skin laxity
US8690778B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Energy-based tissue tightening
US8690779B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive aesthetic treatment for tightening tissue
US8690780B2 (en) 2004-10-06 2014-04-08 Guided Therapy Systems, Llc Noninvasive tissue tightening for cosmetic effects
US9283409B2 (en) 2004-10-06 2016-03-15 Guided Therapy Systems, Llc Energy based fat reduction
US8444562B2 (en) 2004-10-06 2013-05-21 Guided Therapy Systems, Llc System and method for treating muscle, tendon, ligament and cartilage tissue
US9833639B2 (en) 2004-10-06 2017-12-05 Guided Therapy Systems, L.L.C. Energy based fat reduction
US8932224B2 (en) 2004-10-06 2015-01-13 Guided Therapy Systems, Llc Energy based hyperhidrosis treatment
US8920324B2 (en) 2004-10-06 2014-12-30 Guided Therapy Systems, Llc Energy based fat reduction
US8915854B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method for fat and cellulite reduction
US8915870B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Method and system for treating stretch marks
US8282554B2 (en) 2004-10-06 2012-10-09 Guided Therapy Systems, Llc Methods for treatment of sweat glands
US8366622B2 (en) 2004-10-06 2013-02-05 Guided Therapy Systems, Llc Treatment of sub-dermal regions for cosmetic effects
US8915853B2 (en) 2004-10-06 2014-12-23 Guided Therapy Systems, Llc Methods for face and neck lifts
US9533175B2 (en) 2004-10-06 2017-01-03 Guided Therapy Systems, Llc Energy based fat reduction
US9622732B2 (en) 2004-10-08 2017-04-18 Nuvasive, Inc. Surgical access system and related methods
US9327116B2 (en) 2004-11-16 2016-05-03 Cardiola Ltd. Wireless cardioresonance stimulation
US8954154B2 (en) 2004-11-16 2015-02-10 Cardiola Ltd. Wireless cardioresonance stimulation
US8812118B2 (en) 2004-11-16 2014-08-19 Cardiola Ltd. Wireless cardioresonance stimulation
US20080215114A1 (en) * 2004-11-16 2008-09-04 Cardiola Ltd. Apparatus And Method For The Cardio-Synchronized Stimulation Of Skeletal Or Smooth Muscles
WO2006053596A1 (en) * 2004-11-16 2006-05-26 Cardiola Ltd. Apparatus and method for the cardio-synchronized stimulation of skeletal or smooth muscles
CN101084039B (en) 2004-11-16 2010-10-27 卡迪欧拉有限公司 Apparatus for the cardio-synchronized stimulation of skeletal or smooth muscles
US8577471B2 (en) 2004-11-16 2013-11-05 Cardiola Ltd. Apparatus and method for the cardio-synchronized stimulation of skeletal or smooth muscles
US7520864B2 (en) * 2004-12-28 2009-04-21 Industrial Technology Research Institute Muscle stretch sensor
US20060149167A1 (en) * 2004-12-28 2006-07-06 Syh-Shiuh Yeh Methods and devices of multi-functional operating system for care-taking machine
US20090177297A1 (en) * 2004-12-28 2009-07-09 Industrial Technology Research Institute Methods and devices of multi-functional operating system for care-taking machine
US7963931B2 (en) 2004-12-28 2011-06-21 Industrial Technology Research Institute Methods and devices of multi-functional operating system for care-taking machine
US20090177109A1 (en) * 2004-12-28 2009-07-09 Industrial Technology Research Institute Methods and devices of multi-functional operating system for care-taking machine
US7963930B2 (en) 2004-12-28 2011-06-21 Industrial Technology Research Institute Methods and devices of multi-functional operating system for care-taking machine
US9808619B2 (en) 2005-01-28 2017-11-07 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
US20060217768A1 (en) * 2005-01-28 2006-09-28 Felix Buhlmann Independent protection system for an electrical muscle stimulation apparatus and method of using same
US8140165B2 (en) 2005-01-28 2012-03-20 Encore Medical Asset Corporation Independent protection system for an electrical muscle stimulation apparatus and method of using same
US7785253B1 (en) 2005-01-31 2010-08-31 Nuvasive, Inc. Surgical access system and related methods
US7643884B2 (en) 2005-01-31 2010-01-05 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
US8425430B2 (en) 2005-01-31 2013-04-23 Warsaw Orthopedic, Inc. Electrically insulated surgical needle assembly
US20060173374A1 (en) * 2005-01-31 2006-08-03 Neubardt Seth L Electrically insulated surgical probing tool
US20060173521A1 (en) * 2005-01-31 2006-08-03 Pond John D Jr Electrically insulated surgical needle assembly
US8568331B2 (en) 2005-02-02 2013-10-29 Nuvasive, Inc. System and methods for monitoring during anterior surgery
US8092455B2 (en) 2005-02-07 2012-01-10 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US8652140B2 (en) 2005-02-07 2014-02-18 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US20060178594A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Apparatus and method for locating defects in bone tissue
US20060178593A1 (en) * 2005-02-07 2006-08-10 Neubardt Seth L Device and method for operating a tool relative to bone tissue and detecting neural elements
US9681880B2 (en) 2005-02-07 2017-06-20 Warsaw Orthopedic, Inc. Device and method for operating a tool relative to bone tissue and detecting neural elements
US7896815B2 (en) 2005-03-01 2011-03-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20070191915A1 (en) * 2005-03-01 2007-08-16 Ndi Medical, Inc. Systems and methods for intra-operative stimulation
US7878981B2 (en) 2005-03-01 2011-02-01 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation
US20060200219A1 (en) * 2005-03-01 2006-09-07 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US20110060238A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative physiological functional stimulation
US20110054346A1 (en) * 2005-03-01 2011-03-03 Checkpoint Surgical, Llc Systems and methods for Intra-operative semi-quantitative threshold neural response testing related applications
US20110060242A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative stimulation within a surgical field
US20110060243A1 (en) * 2005-03-01 2011-03-10 Checkpoint Surgical, Llc Systems and methods for intra-operative regional neural stimulation
US20060200023A1 (en) * 2005-03-04 2006-09-07 Sdgi Holdings, Inc. Instruments and methods for nerve monitoring in spinal surgical procedures
US8958883B2 (en) 2005-04-19 2015-02-17 Pierre-Yves Mueller Electrical stimulation device and method for therapeutic treatment and pain management
US20100042180A1 (en) * 2005-04-19 2010-02-18 Compex Technologies, Inc Electrical stimulation device and method for therapeutic treatment and pain management
US9669212B2 (en) 2005-04-19 2017-06-06 Djo, Llc Electrical stimulation device and method for therapeutic treatment and pain management
WO2006116480A3 (en) * 2005-04-25 2007-06-21 Guided Therapy Systems Llc Method and system for enhancing computer peripheral saftey
US20060282691A1 (en) * 2005-04-25 2006-12-14 Guided Therapy Systems, Llc Method and system for enhancing computer peripheral safety
WO2006116480A2 (en) * 2005-04-25 2006-11-02 Guided Therapy Systems, L.L.C. Method and system for enhancing computer peripheral saftey
US7571336B2 (en) 2005-04-25 2009-08-04 Guided Therapy Systems, L.L.C. Method and system for enhancing safety with medical peripheral device by monitoring if host computer is AC powered
US8166332B2 (en) 2005-04-25 2012-04-24 Ardent Sound, Inc. Treatment system for enhancing safety of computer peripheral for use with medical devices by isolating host AC power
US8868958B2 (en) 2005-04-25 2014-10-21 Ardent Sound, Inc Method and system for enhancing computer peripheral safety
US20100011236A1 (en) * 2005-04-25 2010-01-14 Guided Therapy Systems, L.L.C. Method and system for enhancing computer peripheral safety
EP2533130A1 (en) * 2005-04-25 2012-12-12 Ardent Sound, Inc. Method and system for enhancing computer peripheral saftey
US8740783B2 (en) 2005-07-20 2014-06-03 Nuvasive, Inc. System and methods for performing neurophysiologic assessments with pressure monitoring
US8328851B2 (en) 2005-07-28 2012-12-11 Nuvasive, Inc. Total disc replacement system and related methods
US9610171B2 (en) 2005-07-28 2017-04-04 Nuvasive, Inc. Total disc replacement system and related methods
US8870960B2 (en) 2005-07-28 2014-10-28 Nuvasive, Inc. Total disc replacement system and related methods
US9168149B2 (en) 2005-07-28 2015-10-27 NaVasive, Inc. Total disc replacement system and related methods
WO2007022524A3 (en) * 2005-08-19 2007-11-22 Neuronetrix Inc Controller for neuromuscular testing
US8500653B2 (en) 2005-09-22 2013-08-06 Nuvasive, Inc. Neurophysiology monitoring system configured for rapid stimulation threshold acquisition
US8206312B2 (en) 2005-09-22 2012-06-26 Nuvasive, Inc. Multi-channel stimulation threshold detection algorithm for use in neurophysiology monitoring
US8568317B1 (en) 2005-09-27 2013-10-29 Nuvasive, Inc. System and methods for nerve monitoring
US8313430B1 (en) 2006-01-11 2012-11-20 Nuvasive, Inc. Surgical access system and related methods
US8827900B1 (en) 2006-01-11 2014-09-09 Nuvasive, Inc. Surgical access system and related methods
CN101528123B (en) 2006-01-23 2012-03-14 赤克邦外科有限公司 Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
EP1993440A2 (en) * 2006-01-23 2008-11-26 Ndi Medical, Llc Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
WO2007117344A3 (en) * 2006-01-23 2008-11-13 Ndi Medical Llc Differentiating and/or identifying tissue regions innervated by targeted nerves
EP1993440A4 (en) * 2006-01-23 2010-02-24 Systems and methods for differentiating and/or identifying tissue regions innervated by targeted nerves for diagnostic and/or therapeutic purposes
US20090247835A1 (en) * 2006-02-22 2009-10-01 Brainscope Oy Method and a device for adapting eeg measurement signals
WO2007096452A1 (en) * 2006-02-22 2007-08-30 Brainscope Oy A method and a device for adapting eeg measurement signals
WO2008012398A1 (en) * 2006-07-25 2008-01-31 Mediracer Ltd. Method and equipment for controlling the measurement of nerve response wirelessly
US9566454B2 (en) 2006-09-18 2017-02-14 Guided Therapy Systems, Llc Method and sysem for non-ablative acne treatment and prevention
US8374673B2 (en) 2007-01-25 2013-02-12 Warsaw Orthopedic, Inc. Integrated surgical navigational and neuromonitoring system having automated surgical assistance and control
US7987001B2 (en) 2007-01-25 2011-07-26 Warsaw Orthopedic, Inc. Surgical navigational and neuromonitoring instrument
US9352151B2 (en) 2007-02-13 2016-05-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US20080193905A1 (en) * 2007-02-13 2008-08-14 The Hong Kong Polytechnic University Automated testing for palpating diabetic foot patient
US8620438B1 (en) 2007-02-13 2013-12-31 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US9017266B2 (en) * 2007-02-13 2015-04-28 The Hong Kong Polytechnic University Automated testing for palpating diabetic foot patient
US9669211B2 (en) 2007-02-13 2017-06-06 Encore Medical Asset Corporation Method and apparatus for applying neuromuscular electrical stimulation
US9295396B2 (en) 2007-04-03 2016-03-29 Nuvasive, Inc. Neurophysiologic monitoring system
US8255045B2 (en) * 2007-04-03 2012-08-28 Nuvasive, Inc. Neurophysiologic monitoring system
US9216276B2 (en) 2007-05-07 2015-12-22 Guided Therapy Systems, Llc Methods and systems for modulating medicants using acoustic energy
US8764687B2 (en) 2007-05-07 2014-07-01 Guided Therapy Systems, Llc Methods and systems for coupling and focusing acoustic energy using a coupler member
US20090131813A1 (en) * 2007-06-29 2009-05-21 Cryan Marc P Method and apparatus for augmenting nerve stimulation and response detection
US8103241B2 (en) * 2007-12-07 2012-01-24 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US20090149131A1 (en) * 2007-12-07 2009-06-11 Roche Diagnostics Operations, Inc. Method and system for wireless device communication
US20090299439A1 (en) * 2008-06-02 2009-12-03 Warsaw Orthopedic, Inc. Method, system and tool for surgical procedures
US20100024630A1 (en) * 2008-07-29 2010-02-04 Teie David Ernest Process of and apparatus for music arrangements adapted from animal noises to form species-specific music
US8119897B2 (en) * 2008-07-29 2012-02-21 Teie David Ernest Process of and apparatus for music arrangements adapted from animal noises to form species-specific music
US8920500B1 (en) 2009-04-16 2014-12-30 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US9351845B1 (en) 2009-04-16 2016-05-31 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9192482B1 (en) 2009-04-16 2015-11-24 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US8287597B1 (en) 2009-04-16 2012-10-16 Nuvasive, Inc. Method and apparatus for performing spine surgery
US9757246B1 (en) 2009-04-16 2017-09-12 Nuvasive, Inc. Methods and apparatus for performing spine surgery
US8715186B2 (en) 2009-11-24 2014-05-06 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9039617B2 (en) 2009-11-24 2015-05-26 Guided Therapy Systems, Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
US9345910B2 (en) 2009-11-24 2016-05-24 Guided Therapy Systems Llc Methods and systems for generating thermal bubbles for improved ultrasound imaging and therapy
CN101862189A (en) * 2010-06-13 2010-10-20 天津大学 Myoelectricity functional electric stimulation interference filtering method
US9149658B2 (en) 2010-08-02 2015-10-06 Guided Therapy Systems, Llc Systems and methods for ultrasound treatment
US9504446B2 (en) 2010-08-02 2016-11-29 Guided Therapy Systems, Llc Systems and methods for coupling an ultrasound source to tissue
US9392953B1 (en) 2010-09-17 2016-07-19 Nuvasive, Inc. Neurophysiologic monitoring
US9730634B2 (en) 2010-10-27 2017-08-15 Cadwell Labs Apparatus, system, and method for mapping the location of a nerve
US9155503B2 (en) 2010-10-27 2015-10-13 Cadwell Labs Apparatus, system, and method for mapping the location of a nerve
US8857438B2 (en) 2010-11-08 2014-10-14 Ulthera, Inc. Devices and methods for acoustic shielding
WO2013155280A1 (en) * 2010-11-15 2013-10-17 Heck Sandy L Electrodes adapted for transmitting or measuring voltages through hair
US9949840B1 (en) 2011-04-01 2018-04-24 William D. Smith Systems and methods for performing spine surgery
US8790406B1 (en) 2011-04-01 2014-07-29 William D. Smith Systems and methods for performing spine surgery
US8858471B2 (en) 2011-07-10 2014-10-14 Guided Therapy Systems, Llc Methods and systems for ultrasound treatment
US9452302B2 (en) 2011-07-10 2016-09-27 Guided Therapy Systems, Llc Systems and methods for accelerating healing of implanted material and/or native tissue
US9011337B2 (en) 2011-07-11 2015-04-21 Guided Therapy Systems, Llc Systems and methods for monitoring and controlling ultrasound power output and stability
US9655744B1 (en) 2011-10-31 2017-05-23 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9198765B1 (en) 2011-10-31 2015-12-01 Nuvasive, Inc. Expandable spinal fusion implants and related methods
US9263663B2 (en) 2012-04-13 2016-02-16 Ardent Sound, Inc. Method of making thick film transducer arrays
US9510802B2 (en) 2012-09-21 2016-12-06 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9802063B2 (en) 2012-09-21 2017-10-31 Guided Therapy Systems, Llc Reflective ultrasound technology for dermatological treatments
US9757067B1 (en) 2012-11-09 2017-09-12 Nuvasive, Inc. Systems and methods for performing neurophysiologic monitoring during spine surgery
US9295401B2 (en) 2012-11-27 2016-03-29 Cadwell Laboratories, Inc. Neuromonitoring systems and methods
US9757072B1 (en) 2013-02-11 2017-09-12 Nuvasive, Inc. Waveform marker placement algorithm for use in neurophysiologic monitoring
EP2801389A1 (en) * 2013-05-08 2014-11-12 Consejo Superior De Investigaciones Cientificas (Csic) Method and neuroprosthetic device for monitoring and suppression of pathological tremors through neurostimulation of the afferent pathways
US9802041B2 (en) 2014-06-02 2017-10-31 Cala Health, Inc. Systems for peripheral nerve stimulation to treat tremor
CN104382580A (en) * 2014-11-10 2015-03-04 黄炳刚 Soft tissue ache detecting and treating device
CN105726119A (en) * 2016-01-26 2016-07-06 清华大学 Liquid metal bath pool type electrode electrotherapy device

Similar Documents

Publication Publication Date Title
Uttal et al. SYSTEMATICS OF THE EVOKED SOMATOSENSORY CORTICAL POTENTIAL: A PSYCHOPHYSICAL‐ELECTROPHYSIOLOGICAL COMPARISON
Weiss The locus of reaction time change with set, motivation and age
Geisler et al. The surface EEG in relation to its sources
Wikström et al. Effects of interstimulus interval on somatosensory evoked magnetic fields (SEFs): a hypothesis concerning SEF generation at the primary sensorimotor cortex
Soderberg et al. Electromyography in biomechanics
Nordin et al. Ectopic sensory discharges and paresthesiae in patients with disorders of peripheral nerves, dorsal roots and dorsal columns
Taheri et al. A dry electrode for EEG recording
US6146335A (en) Apparatus for methods for the assessment of neuromuscular function of the lower extremity
US5327902A (en) Apparatus for use in nerve conduction studies
US4632122A (en) Method and apparatus for conducting brain function diagnostic test
US6248064B1 (en) Tele-diagnostic device
US5024235A (en) Electroencephalic neurofeedback apparatus and method for bioelectrical frequency inhibition and facilitation
Lin et al. Noninvasive neural prostheses using mobile and wireless EEG
US6132387A (en) Neuromuscular electrode
US6381481B1 (en) Portable EEG electrode locator headgear
US5730146A (en) Transmitting, analyzing and reporting EEG data
US6132386A (en) Methods for the assessment of neuromuscular function by F-wave latency
US7216001B2 (en) Apparatus for intraoperative neural monitoring
US6334068B1 (en) Intraoperative neuroelectrophysiological monitor
US5513651A (en) Integrated movement analyzing system
Türker Electromyography: some methodological problems and issues
US6083156A (en) Portable integrated physiological monitoring system
US4396019A (en) Vaginal myograph method and apparatus
US6745062B1 (en) Emg electrode apparatus and positioning system
Mavoori et al. An autonomous implantable computer for neural recording and stimulation in unrestrained primates

Legal Events

Date Code Title Description
REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
FP Expired due to failure to pay maintenance fee

Effective date: 20000730