WO2021228128A1 - Wearable device for providing electronic pulses and controlling method thereof - Google Patents

Wearable device for providing electronic pulses and controlling method thereof Download PDF

Info

Publication number
WO2021228128A1
WO2021228128A1 PCT/CN2021/093289 CN2021093289W WO2021228128A1 WO 2021228128 A1 WO2021228128 A1 WO 2021228128A1 CN 2021093289 W CN2021093289 W CN 2021093289W WO 2021228128 A1 WO2021228128 A1 WO 2021228128A1
Authority
WO
WIPO (PCT)
Prior art keywords
wearable device
physiological information
output mode
output
information
Prior art date
Application number
PCT/CN2021/093289
Other languages
French (fr)
Inventor
Michael Chao KUAN
Original Assignee
Shanghai Boltkey Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010398612.6A external-priority patent/CN111529923A/en
Priority claimed from CN202020780049.4U external-priority patent/CN212730713U/en
Application filed by Shanghai Boltkey Technology Co., Ltd. filed Critical Shanghai Boltkey Technology Co., Ltd.
Publication of WO2021228128A1 publication Critical patent/WO2021228128A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36021External stimulators, e.g. with patch electrodes for treatment of pain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4836Diagnosis combined with treatment in closed-loop systems or methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4854Diagnosis based on concepts of traditional oriental medicine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6824Arm or wrist
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/002Using electric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0472Structure-related aspects
    • A61N1/0484Garment electrodes worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/021Measuring pressure in heart or blood vessels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02438Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/08Detecting, measuring or recording devices for evaluating the respiratory organs
    • A61B5/0816Measuring devices for examining respiratory frequency
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4806Sleep evaluation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/681Wristwatch-type devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0072Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with application of electrical currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M21/02Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis for inducing sleep or relaxation, e.g. by direct nerve stimulation, hypnosis, analgesia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3553Range remote, e.g. between patient's home and doctor's office
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3561Range local, e.g. within room or hospital
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • A61M2205/505Touch-screens; Virtual keyboard or keypads; Virtual buttons; Soft keys; Mouse touches
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/52General characteristics of the apparatus with microprocessors or computers with memories providing a history of measured variating parameters of apparatus or patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2209/00Ancillary equipment
    • A61M2209/08Supports for equipment
    • A61M2209/088Supports for equipment on the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/04Heartbeat characteristics, e.g. ECG, blood pressure modulation
    • A61M2230/06Heartbeat rate only
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/30Blood pressure
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/40Respiratory characteristics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/63Motion, e.g. physical activity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/65Impedance, e.g. conductivity, capacity

Definitions

  • the present disclosure generally relates to wearable devices, and more particularly, to wearable devices for providing electronic pulses and controlling methods of the wearable devices.
  • Transcutaneous electrical acupoint stimulation and transcutaneous electrical nerve stimulation (TENS) are two method for providing pain relief and relaxation, by stimulating specific tissues, acupoints, and nerves using electronic pulses.
  • Conventional specific therapeutics practiced by medical institutions and provided by electronic apparatus for acupuncture and moxibustion are designed to provide some physiotherapy for recovery or daily health care. They may provide stimulation, vibration, and massage functions for different portions of the body, acupoints, and nerves through electronic acupuncture, ultrasonic or laser therapy.
  • these conventional therapeutics have a large size, which is not friendly for portability. Therefore, smaller, more portable therapeutics are in demand.
  • an exemplary wearable device for providing electronic pulse includes a collection module, configured to collect physiological information; a control module, coupled to the collection module, configured to control an output of the electronic pulse by selecting an output mode according to the collected physiological information; and an electrode provided on a side of the wearable device for contacting with a body of a wearer of the wearable device, the electrode being coupled to the control module and configured to output the electronic pulse; wherein the output mode includes one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
  • an exemplary method for controlling a wearable device for providing electronic pulses includes: collecting physiological information using one or more sensors; controlling an output of the electronic pulse by selecting an output mode according to the collected physiological information; and outputting the electronic pulse by an electrode provided on a side of the wearable device for contacting a body of a wearer of the wearable device, wherein the output mode determines one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
  • FIG. 1 is a schematic diagram illustrating an exemplary wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 2 is a block diagram illustrating an exemplary wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating another partitioned exemplary electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 5 is a flow diagram illustrating an exemplary control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 6 is a flow diagram illustrating another exemplary control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 1 is a schematic diagram illustrating an exemplary wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 2 is a block diagram illustrating the exemplary wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure.
  • the wearable device 100 includes a collection module 110, a control module 120 and an electrode unit 130.
  • the collection module 110 e.g., a data collector
  • the collection module 110 includes, but is not limited to, one or more acceleration sensors, pressure sensors, heart rate sensors, etc. (not shown) .
  • the collection module 110 is configured as a physiological information collector to collect physiological information of a wearer of the wearable device 100, including clinical indicators, behavior indicators, and psychosocial indicators, etc.
  • Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc.
  • Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc.
  • Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc.
  • the collection module 110 may sort the physiological information to different types of indicators.
  • the control module 120 e.g., a controller
  • the control module 120 may include a microprocessor and/or other integrated circuits, etc., configured to select a corresponding output mode and control an output of electronic pulses by electrode unit 130 (e.g., an electrode) according to physiological information collected by collection module 110.
  • the output mode determines one or more of a frequency, a pulse width, an intensity, and a duration of the electronic pulse. For example, according to collected stress and anxiety symptoms, or according to collected heart rate and blood pressure, when blood pressure is high, a relaxation mode may be selected to help relax and improve sleep of the wearer.
  • the output mode can be automatically matched and selected according to a preset list of collected physiological information, or it can be set manually. For example, when learning, a focus mode may be selected to improve concentration.
  • the control module 120 can also generate a corresponding output mode according to the collected physiological information collected by the collection module 110.
  • the electrode unit 130 is arranged on the side of the wearable device 100 that is in contact with the human body, more particularly in contact with the wearer’s skin.
  • the electrode unit 130 is connected to the control module 120, and configured to output electronic pulses according to the selected output mode under control by the control module 120.
  • the electrode unit 130 can be an electrode patch, which is flat and thin.
  • the output mode can be adjusted according to different scenarios. For example, the output mode can be adjusted for different scenarios such as daily health care, pain relief, elimination of muscle spasm, relief of muscle fatigue, and muscle paralysis/atrophy caused by motor neuron damage. According to the low resistance characteristic of acupoints and the phenomenon of propagated sensation along meridians, the corresponding acupoints are stimulated to assist in determining whether the wearable device is worn in a correct location or not.
  • the wearable device is a smart band or a smart watch
  • the electrode unit is attached to an acupoint of the hand Jueyin pericardium meridian on an inner side of the human wrist-the Neiguan (the acupoint that is located in the contact area between the electrode unit and the skin on the inner side of the wrist) .
  • Outputting electronic pulses at this acupoint can help improve insomnia, relieve stomach pain, vomiting and other uncomfortable reactions.
  • the wearable device for providing electronic pulses can collect human physiological information through the collection module 110, control the electrode unit 130 to output electronic pulses by selecting an appropriate output mode according to the collected human physiological information, and stimulate corresponding acupoints of the human body to perform TENS/TEAS health care, which is portable and easy to operate.
  • the collection module 110 can also collect and monitor physiological information in real time.
  • the output mode is selected and enabled, i.e., the control module 120 controls the electrode unit 130 to output electronic pulses having characterstics determined according to the collected information, or manually determined
  • the collection module 110 is triggered to perform real-time collection and monitoring, such as heart rate monitoring.
  • real-time monitored heart rate exceeds a certain threshold
  • an alert is sent to the wearer or the outputting of electronic pulses is stopped. Therefore, safety in the use of the wearable device for providing electronic pulses can be effectively ensured.
  • the real-time collection and monitoring of the collection module 110 can still be activated. In this case, the collection module 110 can continuously collect and monitor physiological information, and store related information, to provide more reliable data information for subsequent output mode selection.
  • the electrode unit 130 can assist in collecting physiological information.
  • the electrode unit 130 can apply a weak current to the skin of the human body that it contacts, and measure such indicators as skin resistance at the corresponding position of the human body through the applied current. Since the skin resistance is closely related to the degree of perspiration and mental stress, the wearer’s emotion and/or mental status can be monitored in real time through the measurement of the skin resistance, provided to the control module 120 as auxiliary physiological information, and used together with the physiological information (heart rate, blood pressure, etc. ) collected by the collection module 110 for reference by the control module 120 to select an appropriate output mode more accurately.
  • FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device for providing electronic pulses, according to some embodiments of the present disclosure.
  • the electrode unit 130 can include a plurality of partitions 131, 132, and 133, and each partition can be controlled separately and independently to output pulses.
  • the output mode further includes activation information for each of the partitions.
  • the activation information may include one or more of activation status, activation duration, and activation sequence. According to different output modes, it is possible to select some partitions or a combination of different partitions to output electronic pulses. For example, in a first time period, the partitions 131 and 133 are activated to output electronic pulses, and the partition 132 is not activated to output electronic pulses.
  • the partitions 132 and 133 are activated to output electronic pulses, and the partition 131 stops outputting electronic pulses, and so on. Therefore, when acupoints are dense or the contact area of the electrode unit is large, the stimulation effect can be more accurately and effectively achieved.
  • FIG. 4 is a schematic diagram illustrating another exemplary partitioned electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • the partitions of the electrode unit 130 are arranged in an array, divided into i rows and n columns. By dividing the corresponding partitions in an array, the control of the output can be more precise.
  • the electrode unit 130 is not limited to one whole unit, but may also be a plurality of electrode units, such that the control of the corresponding partitions may also be the control of the plurality of electrode units.
  • the wearable device 100 for providing electronic pulses may further include a communication module 140 (e.g., a transceiver) , which is coupled between the collection module 110 and the control module 120.
  • the communication module 140 is configured to send the physiological information collected by the collection module 110 to a server, for example, a remote server (not shown) , and send the information received from the server to the control module 120.
  • the server may perform big data analysis on the collected physiological information.
  • the wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure can be connected to a server, so that the physiological information collected by the collection module 110 can be sent to the server, thereby expanding the analysis capability of the wearable device 100.
  • the server can perform big data analysis based on the received physiological information, calculate and recommend an appropriate output mode according to a certain algorithm, and send the result to the control module, thereby making a selection of the output mode more accurate.
  • the wearable device can rely on a support function of the server. Combining with the physiological information collected and monitoring by the collection module 110 in real time, the wearer’s personal health information can be customized and a personalized output mode can be generated by the server. Therefore, the usefulness of the wearable device 100 is greatly improved.
  • the communication module 140 can also be configured to connect to a mobile terminal (for example, a smart phone) , and receive information from the mobile terminal (for example, through an application installed on the mobile terminal) and send the information to the control module 120. Furthermore, the mobile terminal (for example, through an application installed on the mobile terminal) can connect to a server, send the information received from the communication module 140 to the server, and send the information received from the server to the communication module 140.
  • a mobile terminal for example, a smart phone
  • the mobile terminal for example, through an application installed on the mobile terminal
  • the mobile terminal can connect to a server, send the information received from the communication module 140 to the server, and send the information received from the server to the communication module 140.
  • the communication module 140 is also used for determining a position of the wearable device 100.
  • the positioning may be achieved through long-range radio (LORA) .
  • LORA long-range radio
  • the wearable device 100 is lost, determining a position through LORA may help to find the wearable device 100.
  • the power consumption of LORA is lower and the positioning is more accurate, thereby prolonging the endurance of the wearable device 100, and reducing the cost.
  • the communication module 140 can also be connected to other wearable devices for communication, in a contact or non-contact way.
  • connection may be a physical connection via a line, or a connection via wireless communication (e.g., WIFI, Bluetooth etc. ) .
  • the wearer wears other wearable devices (e.g., a smart helmet) in addition to the wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure, and the other wearable devices can also collect certain physiological information, then the physiological information collected by the other wearable devices can be received through the communication module 140 and provided to the control module 120, thereby making the selection of the output mode more accurate.
  • the wearable device 100 for providing electronic pulses according the present disclosure can not only be used independently, but also can be used in combination with other wearable devices. Therefore, the extensibility is improved and the output becomes more accurate and effective.
  • FIG. 5 is a flow diagram illustrating an exemplary control method 500 of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • the control method comprises the following steps.
  • physiological information is collected.
  • the physiological information includes clinical indicators, behavior indicators, and psychosocial indicators, etc.
  • Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc.
  • Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc.
  • Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc.
  • an output of the electronic pulses is controlled by selecting a corresponding output mode according to the collected physiological information, for example, according to the collected stress and anxiety symptoms, or according to the collected heart rate and blood pressure.
  • the relaxation mode may be selected to help relax the wearer and improve sleep.
  • the output mode can be automatically matched and selected according to a preset list, or it can be set manually. For example, when learning, a focus mode can be selected to improve concentration.
  • the output mode is determined by one or more of the frequency, pulse width, intensity, and duration of the electronic pulses.
  • step S550 electronic pulses are output to stimulate the acupoints according to the output mode. Therefore, an appropriate acupoint stimulation is realized.
  • the control method for wearable device 100 for providing electronic pulses can select different output modes according to different situations, and stimulate corresponding acupoints of the human body to perform TENS/TEAS health care. This control method can be used for wearable device 100, which is convenient to carry and easy to operate.
  • collecting physiological information includes collecting and monitoring physiological information in real time.
  • the physiological information is collected and monitored in real time, such as heart rate monitoring.
  • heart rate monitoring when the real-time monitored heart rate exceeds a certain threshold, an alert is sent to the wearer or the outputting of electronic pulses is stopped. Therefore, safety in the use of the wearable device for providing electronic pulses can be effectively ensured.
  • the physiological information can also be collected and monitored in real time, and in this case, the physiological information is collected and monitored continuously, and related information is stored to provide more reliable data information for subsequent output mode selection.
  • the output mode further includes the activation information for the partitions of the electrode unit 130, and step S530 further includes a step of activating the corresponding partitions of the electrode unit 130.
  • the electrode unit 130 may include a plurality of partitions, and each partition can be controlled separately and independently to output pulses. According to different output modes, it is possible to select some partitions or a combination of different partitions to output electronic pulses, and the output mode may further include an activation sequence of different partitions. Therefore, when the acupoints are dense or the contact area of the electrode unit 130 is large, the stimulation effect can be more accurately and effectively achieved.
  • FIG. 6 is a flow diagram illustrating another control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
  • the method can also include the following steps.
  • the collected physiological information is sent to a server, which can be a remote server.
  • information from the server is received for selecting an output mode.
  • the output of the electronic pulse is controlled by selecting a corresponding output mode.
  • the information received from the server is the result of big data analysis.
  • the server can perform big data analysis based on the received physiological information, and calculate and recommend an appropriate output mode according to a certain algorithm, thereby making the selection of the output mode more accurate.
  • the wearable device can rely on the support function of the server, combined with the physiological information collected and monitored in real time, to customize the wearer’s personal health information and generate a personalized output mode, which greatly improves the applicability of the wearable device 100.
  • control method for a wearable device for providing electronic pulses achieves positioning through long-distance radio (LORA) .
  • LORA long-distance radio
  • the wearable devices described herein include, but are not limited to, wristband-type wearable devices (e.g., smart watches, smart bends) , smart helmets, smart glasses, etc., in which the electrode unit can be arranged on any surface where the wearable device contacts the skin. Further, the location of the electrode unit is not limited to the inside of the dial plate of smart watch, and can also be arranged on the strap, etc.
  • wristband-type wearable devices e.g., smart watches, smart bends
  • smart helmets e.g., smart glasses, etc.
  • the electrode unit can be arranged on any surface where the wearable device contacts the skin.
  • the location of the electrode unit is not limited to the inside of the dial plate of smart watch, and can also be arranged on the strap, etc.
  • the term “or” encompasses all possible combinations, except where infeasible. For example, if it is stated that a component may include A or B, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or A and B. As a second example, if it is stated that a component may include A, B, or C, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C.

Abstract

A wearable device for providing electronic pulses and a method for controlling the wearable device are provided. The wearable device includes a collection module, configured to collect physiological information; a control module, coupled to the collection module, configured to control an output of the electronic pulse by selecting an output mode according to the collected physiological information; and an electrode provided on a side of the wearable device for contacting with a body of a wearer of the wearable device, the electrode being coupled to the control module and configured to output the electronic pulse; wherein the output mode includes one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.

Description

WEARABLE DEVICE FOR PROVIDING ELECTRONIC PULSES AND CONTROLLING METHOD THEREOF
CROSS-REFERENCE TO RELATED APPLICATIONS
This disclosure claims the benefits of priority to Chinese Application No. 202010398612.6, filed on May 12, 2020, and Chinese Application No. 202020780049.4, filed on May 12, 2020, both of which are incorporated herein by reference in their entireties.
TECHNICAL FIELD
The present disclosure generally relates to wearable devices, and more particularly, to wearable devices for providing electronic pulses and controlling methods of the wearable devices.
BACKGROUND
Transcutaneous electrical acupoint stimulation (TEAS) and transcutaneous electrical nerve stimulation (TENS) are two method for providing pain relief and relaxation, by stimulating specific tissues, acupoints, and nerves using electronic pulses. Conventional specific therapeutics practiced by medical institutions and provided by electronic apparatus for acupuncture and moxibustion (a type of traditional Chinese medicine) are designed to provide some physiotherapy for recovery or daily health care. They may provide stimulation, vibration, and massage functions for different portions of the body, acupoints, and nerves through electronic acupuncture, ultrasonic or laser therapy. Usually, these conventional therapeutics have a large size, which is not friendly for portability. Therefore, smaller, more portable therapeutics are in demand.
SUMMARY
In some embodiments, an exemplary wearable device for providing electronic pulse is provided. The device includes a collection module, configured to collect physiological information; a control module, coupled to the collection module, configured to  control an output of the electronic pulse by selecting an output mode according to the collected physiological information; and an electrode provided on a side of the wearable device for contacting with a body of a wearer of the wearable device, the electrode being coupled to the control module and configured to output the electronic pulse; wherein the output mode includes one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
In some embodiments, an exemplary method for controlling a wearable device for providing electronic pulses is provided. The method includes: collecting physiological information using one or more sensors; controlling an output of the electronic pulse by selecting an output mode according to the collected physiological information; and outputting the electronic pulse by an electrode provided on a side of the wearable device for contacting a body of a wearer of the wearable device, wherein the output mode determines one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
Additional features and advantages of the present disclosure will be set forth in part in the following detailed description, and in part will be obvious from the description, or may be learned by practice of the present disclosure. The features and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the disclosed embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments and various aspects of the present disclosure are illustrated in the following detailed description and the accompanying figures. Various features shown in the figures are not drawn to scale. In the drawings:
FIG. 1 is a schematic diagram illustrating an exemplary wearable device for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 2 is a block diagram illustrating an exemplary wearable device for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 4 is a schematic diagram illustrating another partitioned exemplary electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 5 is a flow diagram illustrating an exemplary control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 6 is a flow diagram illustrating another exemplary control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The embodiments set forth in the following description of exemplary embodiments do not represent all embodiments consistent with the invention. Instead, they are merely examples of devices, systems and methods consistent with aspects related to the invention as recited in the appended claims.
FIG. 1 is a schematic diagram illustrating an exemplary wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure. FIG. 2 is a block diagram illustrating the exemplary wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure. As shown in FIG. 1 and FIG. 2, the wearable device 100 includes a collection module 110, a control module 120 and an electrode unit 130. The collection module 110 (e.g., a data collector) includes, but is not limited to, one or more acceleration sensors, pressure sensors, heart rate sensors, etc. (not shown) . Accordingly, the collection module 110 is configured as a physiological information collector to collect physiological information of a wearer of the wearable device 100, including clinical indicators, behavior indicators, and psychosocial indicators, etc. Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc. Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc. Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc. In some embodiments, the collection module 110 may sort the physiological information to different types of indicators. The control module 120 (e.g., a controller) is coupled to the collection module 110. The control module 120 may include a microprocessor and/or other integrated circuits, etc., configured to select a corresponding output mode and control an output of electronic pulses by electrode unit 130 (e.g., an electrode) according to physiological information collected by collection module 110. The output mode determines one or more of a frequency, a pulse width, an intensity, and a duration of the electronic pulse. For example, according to collected stress and anxiety symptoms, or according to collected heart rate and blood pressure, when blood pressure is high, a relaxation mode may be selected to help relax and improve sleep of the wearer. The output mode can be automatically matched and selected according to a preset list of collected physiological information, or it can be set  manually. For example, when learning, a focus mode may be selected to improve concentration. Further, the control module 120 can also generate a corresponding output mode according to the collected physiological information collected by the collection module 110. The electrode unit 130 is arranged on the side of the wearable device 100 that is in contact with the human body, more particularly in contact with the wearer’s skin. The electrode unit 130 is connected to the control module 120, and configured to output electronic pulses according to the selected output mode under control by the control module 120. In some embodiments, the electrode unit 130 can be an electrode patch, which is flat and thin.
Since electrical stimulation can excite nerve fibers, the excitement can be transmitted to innervate muscles, causing muscle contraction, such that peripheral electrical stimulation can regulate the release of central neuropeptides. As there are differences in threshold stimuli that cause nerve fibers and tissues to excite, the output mode can be adjusted according to different scenarios. For example, the output mode can be adjusted for different scenarios such as daily health care, pain relief, elimination of muscle spasm, relief of muscle fatigue, and muscle paralysis/atrophy caused by motor neuron damage. According to the low resistance characteristic of acupoints and the phenomenon of propagated sensation along meridians, the corresponding acupoints are stimulated to assist in determining whether the wearable device is worn in a correct location or not. For example, in some embodiments, the wearable device is a smart band or a smart watch, and the electrode unit is attached to an acupoint of the hand Jueyin pericardium meridian on an inner side of the human wrist-the Neiguan (the acupoint that is located in the contact area between the electrode unit and the skin on the inner side of the wrist) . Outputting electronic pulses at this acupoint can help improve insomnia, relieve stomach pain, vomiting and other uncomfortable reactions.
The wearable device for providing electronic pulses according to some embodiments of the present disclosure can collect human physiological information through  the collection module 110, control the electrode unit 130 to output electronic pulses by selecting an appropriate output mode according to the collected human physiological information, and stimulate corresponding acupoints of the human body to perform TENS/TEAS health care, which is portable and easy to operate.
In some embodiments, the collection module 110 can also collect and monitor physiological information in real time. When the output mode is selected and enabled, i.e., the control module 120 controls the electrode unit 130 to output electronic pulses having characterstics determined according to the collected information, or manually determined, the collection module 110 is triggered to perform real-time collection and monitoring, such as heart rate monitoring. Furthermore, when the real-time monitored heart rate exceeds a certain threshold, an alert is sent to the wearer or the outputting of electronic pulses is stopped. Therefore, safety in the use of the wearable device for providing electronic pulses can be effectively ensured. In some embodiments, even if the output mode is not selected and activated, that is, in case of no electronic pulse output, the real-time collection and monitoring of the collection module 110 can still be activated. In this case, the collection module 110 can continuously collect and monitor physiological information, and store related information, to provide more reliable data information for subsequent output mode selection.
In some embodiments, the electrode unit 130 can assist in collecting physiological information. For example, the electrode unit 130 can apply a weak current to the skin of the human body that it contacts, and measure such indicators as skin resistance at the corresponding position of the human body through the applied current. Since the skin resistance is closely related to the degree of perspiration and mental stress, the wearer’s emotion and/or mental status can be monitored in real time through the measurement of the skin resistance, provided to the control module 120 as auxiliary physiological information, and used together with the physiological information (heart rate, blood pressure, etc. )  collected by the collection module 110 for reference by the control module 120 to select an appropriate output mode more accurately.
FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device for providing electronic pulses, according to some embodiments of the present disclosure. As shown in FIG. 3, the electrode unit 130 can include a plurality of  partitions  131, 132, and 133, and each partition can be controlled separately and independently to output pulses. The output mode further includes activation information for each of the partitions. The activation information may include one or more of activation status, activation duration, and activation sequence. According to different output modes, it is possible to select some partitions or a combination of different partitions to output electronic pulses. For example, in a first time period, the  partitions  131 and 133 are activated to output electronic pulses, and the partition 132 is not activated to output electronic pulses. In a second time period, the  partitions  132 and 133 are activated to output electronic pulses, and the partition 131 stops outputting electronic pulses, and so on. Therefore, when acupoints are dense or the contact area of the electrode unit is large, the stimulation effect can be more accurately and effectively achieved.
FIG. 4 is a schematic diagram illustrating another exemplary partitioned electrode unit of a wearable device for providing electronic pulses according to some embodiments of the present disclosure. As shown in FIG. 4, the partitions of the electrode unit 130 are arranged in an array, divided into i rows and n columns. By dividing the corresponding partitions in an array, the control of the output can be more precise. In some embodiments, the electrode unit 130 is not limited to one whole unit, but may also be a plurality of electrode units, such that the control of the corresponding partitions may also be the control of the plurality of electrode units.
Referring again to FIG. 2, in some embodiments, the wearable device 100 for providing electronic pulses may further include a communication module 140 (e.g., a transceiver) , which is coupled between the collection module 110 and the control module 120. The communication module 140 is configured to send the physiological information collected by the collection module 110 to a server, for example, a remote server (not shown) , and send the information received from the server to the control module 120. The server may perform big data analysis on the collected physiological information. With the communication module 140, the wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure can be connected to a server, so that the physiological information collected by the collection module 110 can be sent to the server, thereby expanding the analysis capability of the wearable device 100. For example, the server can perform big data analysis based on the received physiological information, calculate and recommend an appropriate output mode according to a certain algorithm, and send the result to the control module, thereby making a selection of the output mode more accurate. Furthermore, via the communication module 140, the wearable device can rely on a support function of the server. Combining with the physiological information collected and monitoring by the collection module 110 in real time, the wearer’s personal health information can be customized and a personalized output mode can be generated by the server. Therefore, the usefulness of the wearable device 100 is greatly improved.
In some embodiments, the communication module 140 can also be configured to connect to a mobile terminal (for example, a smart phone) , and receive information from the mobile terminal (for example, through an application installed on the mobile terminal) and send the information to the control module 120. Furthermore, the mobile terminal (for example, through an application installed on the mobile terminal) can connect to a server,  send the information received from the communication module 140 to the server, and send the information received from the server to the communication module 140.
In some embodiments, the communication module 140 is also used for determining a position of the wearable device 100. In some embodiments, the positioning may be achieved through long-range radio (LORA) . For example, when the wearable device 100 is lost, determining a position through LORA may help to find the wearable device 100. Compared with traditional GPS positioning, the power consumption of LORA is lower and the positioning is more accurate, thereby prolonging the endurance of the wearable device 100, and reducing the cost.
In some embodiments, the communication module 140 can also be connected to other wearable devices for communication, in a contact or non-contact way. For example, connection may be a physical connection via a line, or a connection via wireless communication (e.g., WIFI, Bluetooth etc. ) . In such case, if the wearer wears other wearable devices (e.g., a smart helmet) in addition to the wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure, and the other wearable devices can also collect certain physiological information, then the physiological information collected by the other wearable devices can be received through the communication module 140 and provided to the control module 120, thereby making the selection of the output mode more accurate. In this way, the wearable device 100 for providing electronic pulses according the present disclosure can not only be used independently, but also can be used in combination with other wearable devices. Therefore, the extensibility is improved and the output becomes more accurate and effective.
FIG. 5 is a flow diagram illustrating an exemplary control method 500 of a wearable device for providing electronic pulses according to some embodiments of the present disclosure. The control method comprises the following steps.
At step S510, physiological information is collected. The physiological information includes clinical indicators, behavior indicators, and psychosocial indicators, etc. Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc. Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc. Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc.
At step S530, an output of the electronic pulses is controlled by selecting a corresponding output mode according to the collected physiological information, for example, according to the collected stress and anxiety symptoms, or according to the collected heart rate and blood pressure. When blood pressure is high, the relaxation mode may be selected to help relax the wearer and improve sleep. The output mode can be automatically matched and selected according to a preset list, or it can be set manually. For example, when learning, a focus mode can be selected to improve concentration. The output mode is determined by one or more of the frequency, pulse width, intensity, and duration of the electronic pulses.
At step S550, electronic pulses are output to stimulate the acupoints according to the output mode. Therefore, an appropriate acupoint stimulation is realized.
As explained above, since electrical stimulation can excite nerve fibers, the excitement can be transmitted to innervate muscles, causing muscle contraction. Therefore, peripheral electrical stimulation can regulate the release of central neuropeptides. There are differences in threshold stimuli that cause nerve fibers and tissues to excite, so the output  mode of wearable device 100 can be adjusted according to different scenarios. Such scenarios include, for example, daily health care, pain relief, elimination of muscle spasm, relief of muscle fatigue, and muscle paralysis/atrophy caused by motor neuron damage. The control method for wearable device 100 for providing electronic pulses according to some embodiments of the present disclosure can select different output modes according to different situations, and stimulate corresponding acupoints of the human body to perform TENS/TEAS health care. This control method can be used for wearable device 100, which is convenient to carry and easy to operate.
In some embodiments, collecting physiological information includes collecting and monitoring physiological information in real time. When the output mode is selected and enabled, the physiological information is collected and monitored in real time, such as heart rate monitoring. Furthermore, when the real-time monitored heart rate exceeds a certain threshold, an alert is sent to the wearer or the outputting of electronic pulses is stopped. Therefore, safety in the use of the wearable device for providing electronic pulses can be effectively ensured. In some embodiments, even if the output mode is not selected and activated, that is, in case of no electronic pulse output, the physiological information can also be collected and monitored in real time, and in this case, the physiological information is collected and monitored continuously, and related information is stored to provide more reliable data information for subsequent output mode selection.
In some embodiments, the output mode further includes the activation information for the partitions of the electrode unit 130, and step S530 further includes a step of activating the corresponding partitions of the electrode unit 130. In some embodiments, the electrode unit 130 may include a plurality of partitions, and each partition can be controlled separately and independently to output pulses. According to different output modes, it is possible to select some partitions or a combination of different partitions to output electronic  pulses, and the output mode may further include an activation sequence of different partitions. Therefore, when the acupoints are dense or the contact area of the electrode unit 130 is large, the stimulation effect can be more accurately and effectively achieved.
FIG. 6 is a flow diagram illustrating another control method of a wearable device for providing electronic pulses according to some embodiments of the present disclosure. As shown in FIG. 6, in some embodiments, following the step S510, the method can also include the following steps. At step S521, the collected physiological information is sent to a server, which can be a remote server. At step S523, information from the server is received for selecting an output mode. Then the output of the electronic pulse is controlled by selecting a corresponding output mode. In some embodiment, the information received from the server is the result of big data analysis. By sending the collected physiological information to a server, the analysis capabilities of the wearable device 100 can be expanded. For example, the server can perform big data analysis based on the received physiological information, and calculate and recommend an appropriate output mode according to a certain algorithm, thereby making the selection of the output mode more accurate. Furthermore, by sending the collected physiological information to a server, the wearable device can rely on the support function of the server, combined with the physiological information collected and monitored in real time, to customize the wearer’s personal health information and generate a personalized output mode, which greatly improves the applicability of the wearable device 100.
In some embodiments, the control method for a wearable device for providing electronic pulses according to some embodiments of the present disclosure achieves positioning through long-distance radio (LORA) . Compared with traditional GPS positioning, the power consumption is lower and the positioning is more accurate, thereby prolonging the endurance of the wearable device 100, and reducing the cost.
The wearable devices described herein include, but are not limited to, wristband-type wearable devices (e.g., smart watches, smart bends) , smart helmets, smart glasses, etc., in which the electrode unit can be arranged on any surface where the wearable device contacts the skin. Further, the location of the electrode unit is not limited to the inside of the dial plate of smart watch, and can also be arranged on the strap, etc.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification and practice of the disclosed embodiments. In addition, while certain components have been described as being coupled to one another, such components may be integrated with one another or distributed in any suitable fashion.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments) , adaptations or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as nonexclusive. Further, the steps of disclosed methods can be modified in any manner, including reordering steps and/or inserting or deleting steps.
The features and advantages of the present disclosure are apparent from the detailed specification, and thus, it is intended that the appended claims cover all systems and methods falling within the true spirit and scope of the present disclosure. As used herein, the indefinite articles “a” and “an” mean “one or more. ” Further, since numerous modifications and variations will readily occur from studying the present disclosure, it is not desired to limit the present disclosure to the exact reconstruction and operation illustrated and described, and  accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the present disclosure.
As used herein, unless specifically stated otherwise, the term “or” encompasses all possible combinations, except where infeasible. For example, if it is stated that a component may include A or B, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or A and B. As a second example, if it is stated that a component may include A, B, or C, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C.
Other embodiments will be apparent from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.

Claims (20)

  1. A wearable device for providing an electronic pulse, comprising:
    a collection module, configured to collect physiological information;
    a control module, coupled to the collection module of a wearer of the wearable device, configured to control an output of the electronic pulse by selecting an output mode according to the collected physiological information; and
    an electrode provided on a side of the wearable device for contacting with a body of the wearer of the wearable device, the electrode being coupled to the control module and configured to output the electronic pulse;
    wherein the output mode comprises one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
  2. The wearable device of claim 1, wherein the control module is further configured to generate the output mode according to the collected physiological information.
  3. The wearable device of claim 1 or 2, wherein the collection module is further configured to monitor and collect the physiological information in real time.
  4. The wearable device of claim 3, wherein the control module is further configured to send an alert to a wearer in response to the physiological information monitored in real time exceeding a preset value.
  5. The wearable device of any one of claims 1 to 4, wherein the electrode is further configured to assist in collecting physiological information.
  6. The wearable device of any one of claims 1 to 5, wherein the electrode comprises a plurality of partitions, the plurality of partitions are controlled separately and independently by the control module, and the output mode further comprises partition activation information.
  7. The wearable device of claim 6, wherein the plurality partitions are arranged in an array.
  8. The wearable device of any one of claims 1 to 7, further comprising a communication module connected to the collection module and the control module, the communication module being configured to send the collected physiological information to an external server and send information received from the server to the control module.
  9. The wearable device of claim 8, wherein the communication module is further configured to determine a position of the wearable device.
  10. The wearable device of claim 9, wherein the communication module determines the position of the wearable device by long distance radio (LORA) .
  11. The wearable device of any one of claims 8 to 10, wherein the communication module is further configured to communicate with a second wearable device.
  12. The wearable device of any one of claims 1 to 11, wherein the wearable device is a wrist wearable device.
  13. A method for controlling a wearable device for providing an electronic pulse, comprising:
    collecting physiological information, using one or more sensors of a wearer of the wearable device;
    controlling an output of the electronic pulse by selecting an output mode according to the collected physiological information; and
    outputting the electronic pulse by an electrode provided on a side of the wearable device contacting a body of the wearer of the wearable device, wherein the output mode determines one or more of a frequency, a pulse width, an intensity and a duration of the electronic pulse.
  14. The method of claim 13, wherein the electrode comprises partitions separately activatable to independently output electronic pulses, the output mode further comprising partition activation information, and controlling the output of the electronic pulse based on the selected output mode further comprising:
    separately activating one or more of the partitions to output electronic pulses.
  15. The method of claim 13 or 14, wherein the output mode is selected automatically according to the collected physiological information.
  16. The method of any one of claims 13 to 15, further comprising:
    monitoring the physiological information in real time.
  17. The method of claim 16, further comprising:
    sending an alert in response to the physiological information monitored exceeding a preset value.
  18. The method of any one of claims 13 to 17, further comprising:
    sending the physiological information collected to a server; and
    receiving information from the server for selecting the output mode.
  19. The method of any one of claims 13 to 18, further comprising:
    receiving information from a second device for selecting the output mode.
  20. The method of any one of claims 13 to 19, further comprising:
    Determining a position of the wearable device by long distance radio (LORA) .
PCT/CN2021/093289 2020-05-12 2021-05-12 Wearable device for providing electronic pulses and controlling method thereof WO2021228128A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010398612.6A CN111529923A (en) 2020-05-12 2020-05-12 Wearable device providing electronic pulses and control method thereof
CN202020780049.4U CN212730713U (en) 2020-05-12 2020-05-12 Wearable device providing electronic pulses
CN202010398612.6 2020-05-12
CN202020780049.4 2020-05-12

Publications (1)

Publication Number Publication Date
WO2021228128A1 true WO2021228128A1 (en) 2021-11-18

Family

ID=78525270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093289 WO2021228128A1 (en) 2020-05-12 2021-05-12 Wearable device for providing electronic pulses and controlling method thereof

Country Status (1)

Country Link
WO (1) WO2021228128A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160089076A1 (en) * 2014-09-25 2016-03-31 Fluiditech Ip Limited Wearable device having active feedback characteristics for physiological nursing, and system and method thereof
CN107376118A (en) * 2017-07-25 2017-11-24 深圳市科迈爱康科技有限公司 A kind of electric pulse wearable device
CN108392734A (en) * 2018-01-30 2018-08-14 深圳市前海未来无限投资管理有限公司 A kind of electro photoluminescence health-care method, device and wearable device
CN109064712A (en) * 2018-09-07 2018-12-21 重庆医科大学 A kind of monitoring warning device and method for early warning for the monitoring of the elderly's sleep heart rate
CN111529923A (en) * 2020-05-12 2020-08-14 上海雷栓信息科技有限公司 Wearable device providing electronic pulses and control method thereof
CN212730713U (en) * 2020-05-12 2021-03-19 上海雷栓信息科技有限公司 Wearable device providing electronic pulses

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160089076A1 (en) * 2014-09-25 2016-03-31 Fluiditech Ip Limited Wearable device having active feedback characteristics for physiological nursing, and system and method thereof
CN107376118A (en) * 2017-07-25 2017-11-24 深圳市科迈爱康科技有限公司 A kind of electric pulse wearable device
CN108392734A (en) * 2018-01-30 2018-08-14 深圳市前海未来无限投资管理有限公司 A kind of electro photoluminescence health-care method, device and wearable device
CN109064712A (en) * 2018-09-07 2018-12-21 重庆医科大学 A kind of monitoring warning device and method for early warning for the monitoring of the elderly's sleep heart rate
CN111529923A (en) * 2020-05-12 2020-08-14 上海雷栓信息科技有限公司 Wearable device providing electronic pulses and control method thereof
CN212730713U (en) * 2020-05-12 2021-03-19 上海雷栓信息科技有限公司 Wearable device providing electronic pulses

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596785B2 (en) 2015-09-23 2023-03-07 Cala Health, Inc. Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US11918806B2 (en) 2016-01-21 2024-03-05 Cala Health, Inc. Systems, methods and devices for peripheral neuromodulation of the leg
US11857778B2 (en) 2018-01-17 2024-01-02 Cala Health, Inc. Systems and methods for treating inflammatory bowel disease through peripheral nerve stimulation
US11890468B1 (en) 2019-10-03 2024-02-06 Cala Health, Inc. Neurostimulation systems with event pattern detection and classification

Similar Documents

Publication Publication Date Title
WO2021228128A1 (en) Wearable device for providing electronic pulses and controlling method thereof
US11596785B2 (en) Systems and methods for peripheral nerve stimulation in the finger or hand to treat hand tremors
US20190001129A1 (en) Multi-modal stimulation for treating tremor
US20220233860A1 (en) Wearable peripheral nerve stimulation for the treatment of diseases utilizing rhythmic biological processes
EP3813647A1 (en) Multi-modal stimulation for treating tremor
US8825153B2 (en) Implantable system with inputs
US8968172B2 (en) Handheld cell excitation terminal capable of dynamic optimization of therapeutic effect and remote therapeutic system
CN112915380A (en) System and method for peripheral nerve stimulation to treat tremor with a detachable treatment and monitoring unit
CN105451649A (en) Patient state determination based on one or more spectral characteristics of a bioelectrical brain signal
CN111603673A (en) Adjusting method of neck massager and neck massager
US20170296429A1 (en) System and method for reducing chronic and acute stress
US20150025590A1 (en) Physical health cap application system
KR100509887B1 (en) System for stimulating a spots on the body suitable for acupuncture
CN212730713U (en) Wearable device providing electronic pulses
CN105592789B (en) Method and apparatus for the test of autonomic nerves system sensitive spot
CN111529923A (en) Wearable device providing electronic pulses and control method thereof
US11491081B2 (en) Systems and methods for treating nausea and vomiting
US20210187301A1 (en) Implantable medical device control system and control method therefor
KR102512499B1 (en) Wireless Earphone with Vagus Nerve Stimulation Function
CN212631443U (en) System for providing electronic pulse output mode
WO2021228126A1 (en) System and method for providing electronic pulse output modes
CN111494792A (en) System and method for providing electronic pulse output mode
US20230364427A1 (en) Whole health monitoring via neurostimulation system
WO2021016246A1 (en) Wireless auricular point stimulation
KR20230151366A (en) A Personal Customized Type of a System for Applying an Electrical Stimulus Based on a Health Data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804763

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804763

Country of ref document: EP

Kind code of ref document: A1