WO2021228126A1 - System and method for providing electronic pulse output modes - Google Patents

System and method for providing electronic pulse output modes Download PDF

Info

Publication number
WO2021228126A1
WO2021228126A1 PCT/CN2021/093284 CN2021093284W WO2021228126A1 WO 2021228126 A1 WO2021228126 A1 WO 2021228126A1 CN 2021093284 W CN2021093284 W CN 2021093284W WO 2021228126 A1 WO2021228126 A1 WO 2021228126A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse output
electronic pulse
physiological information
current
electronic
Prior art date
Application number
PCT/CN2021/093284
Other languages
French (fr)
Inventor
Michael Chao KUAN
Original Assignee
Shanghai Boltkey Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202020782049.8U external-priority patent/CN212631443U/en
Priority claimed from CN202010399360.9A external-priority patent/CN111494792A/en
Application filed by Shanghai Boltkey Technology Co., Ltd. filed Critical Shanghai Boltkey Technology Co., Ltd.
Publication of WO2021228126A1 publication Critical patent/WO2021228126A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H39/00Devices for locating or stimulating specific reflex points of the body for physical therapy, e.g. acupuncture
    • A61H39/002Using electric currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/3603Control systems
    • A61N1/36031Control systems using physiological parameters for adjustment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/16Physical interface with patient
    • A61H2201/1602Physical interface with patient kind of interface, e.g. head rest, knee support or lumbar support
    • A61H2201/165Wearable interfaces
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5023Interfaces to the user
    • A61H2201/5043Displays
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5071Pressure sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/50Control means thereof
    • A61H2201/5058Sensors or detectors
    • A61H2201/5084Acceleration sensors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/30Blood pressure
    • A61H2230/305Blood pressure used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/40Respiratory characteristics
    • A61H2230/405Respiratory characteristics used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2230/00Measuring physical parameters of the user
    • A61H2230/65Impedance, e.g. skin conductivity; capacitance, e.g. galvanic skin response [GSR]
    • A61H2230/655Impedance, e.g. skin conductivity; capacitance, e.g. galvanic skin response [GSR] used as a control parameter for the apparatus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0456Specially adapted for transcutaneous electrical nerve stimulation [TENS]

Definitions

  • the present disclosure generally relates to wearable devices, and more particularly, to systems and methods for providing electronic pulse output modes for the wearable devices.
  • Specific therapeutics practiced by medical institutions and provided by electronic apparatus for acupuncture and moxibustion are designed to provide some physiotherapy for recovery or daily health care. They may provide stimulation, vibration, and massage functions for different parts of the body, acupoints, and nerves through electronic acupuncture, ultrasonic or laser therapy. Thereby, such therapeutics have become increasing common in daily life.
  • these conventional therapeutics are large in size and can only provide inherent functions, but cannot provide flexible physiotherapy options. With improvements in living conditions, personalized and user-friendly apparatuses are in demand.
  • an exemplary system for providing electronic pulse output modes for wearable devices comprises one or more wearable devices configured to collect physiological information; and a server communicatively connectable with the one or more wearable devices, the server comprising: a data processing module, configured to performing a big data analysis on the physiological information collected by the one or more wearable devices; and a mode generation module, configured to generate an electronic pulse output mode for a current one of the wearable devices based on a result of the big data analysis according to the physiological information collected by the current wearable device.
  • an exemplary method for providing electronic pulse output modes for wearable devices used for the above system.
  • the method includes: acquiring one or more items of physiological information; performing a big data analysis on the one or more items of physiological information; and generating an electronic pulse output mode for current physiological information based on a result of the big data analysis performed on the physiological information.
  • FIG. 1 is a schematic block diagram illustrating an exemplary system for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • FIG. 2 is a schematic block diagram illustrating an exemplary wearable device of a system for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device of a system for providing electronic pulses according to some embodiments of the present disclosure.
  • FIG. 4 is a flow diagram illustrating an exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • FIG. 5 is a flow diagram illustrating another exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • FIG. 1 is a schematic block diagram illustrating an exemplary system 100 for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • the system 100 includes one or more wearable devices 110a, 110b, 110c, and a server 120, which can be a remote server.
  • Each of the wearable devices 110a, 110b, 110c (for example, smart bands) , can be worn by different persons.
  • the wearable devices 110a, 110b, 110c can be configured to collect physiological information of the different wearers, including clinical indicators, behavior indicators, and psychosocial indicators.
  • Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc.
  • Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc.
  • Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc.
  • the server 120 is in communication with each of the wearable devices 110a, 110b, and 110c.
  • the server 120 includes a data processing module 121 (e.g., a processor) and a mode generation module 122 (e.g., a mode generator) .
  • the data processing module 121 is configured to summarize the physiological information collected by all the wearable devices 110a, 110b, and 110c and perform big data analysis.
  • the mode generation module 122 is configured to generate at least one electronic pulse output mode for controlling a current one of the wearable devices according to the physiological information collected by the current wearable device (e.g., the wearable device 110a) , in combination with the results of the big data analysis.
  • the electronic pulse output mode is determined by one or more of a frequency, a pulse width, an intensity, and duration of electronic pulses.
  • the wearer can select a current mode to be output from the one or more electronic pulse output modes provided for output. In other embodiments, the wearable device can automatically select a default electronic pulse output mode for output. Further, the electronic pulse output mode generated by the mode generation module 122 may be different for each of the different wearable devices.
  • the wearable devices 110a, 110b, and 110c may be different types of wearable devices worn on the same wearer. For example, the wearable device 110a may be a smart bend, the wearable device 110b may be smart glasses, and the wearable device 110c may be a smart helmet. Therefore, the physiological information of the same wearer can be simultaneously collected through different types of wearable devices worn on different parts of the same wearer, which can improve the comprehensiveness of the wearer’s collected physiological information, and further improve the accuracy of data analysis.
  • the server 120 can summarize the physiological information collected by multiple wearable devices, enough data samples for big data analysis can be provided.
  • the data processing module 121 uses algorithms to analyze and research the collected data. Then an evaluation of group health status and an evaluation and forecasting of disease risks can be further carried out.
  • the mode generation module 122 can generate electronic pulse output modes for the specific wearable device, that is, it can provide personalized electronic pulse output solutions. Therefore, more flexible and effective treatment plans for different wearers are provided. Since the server 120 can communicate with multiple wearable devices, the system for providing electronic pulse output modes can further build a horizontally expanding ecosystem.
  • the system 100 for providing electronic pulse output modes further includes a display unit 130.
  • the display unit 130 is connected to the server 120, and is configured to visually display the big data analysis and collected physiological information.
  • the connection between the server 120 and display unit 130 can be a wire connection or a wireless connection.
  • the display unit 130 can display to the wearer the one or more generated electronic pulse output modes from which to choose.
  • the display unit 130 may be a smart terminal, for example, a smart phone.
  • the display unit 130 may be integrated in a wearable device. Therefore, it is convenient for wearers to intuitively understand relevant big data analysis information, as well as relevant physiological information, health status, etc.
  • the system 100 for providing electronic pulse output modes further includes a resource library module 140 (e.g., a data center) , which is connected to the server 120.
  • the mode generation module 122 generates electronic pulse output modes for the current wearable device according to the physiological information collected by the current wearable device in combination with the results of the big data analysis and the information in the resource library module 140.
  • the resource library module 140 includes a database 141 and/or an information input unit 142.
  • the database 141 may be a private database or connected with a related professional database, which is configured to provide existing related professional data.
  • the database 141 can be updated, and thus the resource library module 140 is updatable, thereby helping the generation of electronic pulse output modes keep pace with updated information.
  • the information input module 142 can be configured to receive manual input from external devices (e.g., a smart phone) .
  • the information input module 142 can be a keyboard.
  • professionals such as doctors
  • the mode generation module 122 can generate more targeted and reliable electronic pulse output modes by combining the big data analysis and professional judgments of professionals.
  • the system 100 for providing electronic pulse output modes further includes a development platform 150, which is connected to the server 120, and configured to develop electronic pulse output modes. That is, professionals can design and develop TENS (Transcutaneous electrical acupoint stimulation) /TEAS (Transcutaneous electrical nerve stimulation) electronic pulse output modes (e.g., health care solutions) , suitable for various scenarios through the development platform 150, such as a relaxation mode, a sleep mode, a reading mode, and so on.
  • the mode generation module 122 is configured to select an appropriate electronic pulse output mode from the electronic pulse output modes provided by the development platform 150 according to the physiological information collected by the current wearable device in combination with the results of the big data analysis. With the development platform 150, the system 100 can be available for professionals to provide more electronic pulse output modes, and enrich the output content of the system 100 for providing electronic pulse output modes.
  • the development platform 150 is configured to publish the developed electronic pulse output modes for wearers to subscribe to.
  • the mode generation module 122 can select an appropriate electronic pulse output mode from the electronic pulse output modes subscribed to by the wearer according to the physiological information collected by the current wearable device in combination with the results of big data analysis. In this way, professionals publish electronic pulse output modes developed according to different scenarios on the development platform, and wearers choose and subscribe to their preferred electronic pulse output modes from the development platform, thus forming a closed ecological chain of platform-content-user-terminal.
  • the one or more electronic pulse output modes generated for the current wearable device can be manually set or modified, such that the wearer can set output mode according to his/her own preference, making the setting more flexible and customized.
  • FIG. 2 is a schematic block diagram illustrating an exemplary wearable device 110 of the system 100 for providing electronic pulse output modes, according to some embodiments of the present disclosure.
  • Any of the wearable devices 110a, 110b, 110c can be provided as the wearable device 110.
  • the wearable device 110 can output electronic pulses according to the electronic pulse output mode acquired from the server 120.
  • the wearable device 110 includes a control module 111 (e.g., a controller) , a communication module 112 (e.g., a transceiver) , and an electrode unit 113 (e.g., an electrode) .
  • the wearable device 110 collects physiological information of the wearer, including the above-described clinical indicators, behavior indicators, and psychosocial indicators, etc.
  • the wearable device 110 can include, but is not limited to, one or more acceleration sensors, pressure sensors, heart rate sensors, etc. (not shown) . Accordingly, the wearable device can serve as a physiological information collector to collect physiological information of a wearer of the wearable device 110, including clinical indicators, behavior indicators, and psychosocial indicators, etc.
  • the control module 111 is configured to control the output of electronic pulses.
  • the communication module 112 is connected to the control module 111.
  • the communication module 112 is configured to send the collected physiological information to the server 120, acquire the electronic pulse output mode from the server 120, and then send the output mode to the control module 111.
  • the electrode unit 113 is arranged on a side of the wearable device 110 that is in contact with the human body, and contacts the skin of the wearer.
  • the electrode unit 113 is configured to output electronic pulses, under control of the control module 111, according to the selected electronic pulse output mode.
  • the electrode unit 113 can be an electrode patch, which is flat and thin.
  • the wearable device 110 may be a smart watch, and the electrode unit 113 may be arranged on an inner side of the watch or on an inner side of a watch strap for holding the watch on the wearer’s wrist, which is not particularly limited.
  • the electrode unit 113 can further configured to collect the physiological information of the wearer.
  • the system for providing electronic pulse output modes equipped with the wearable device can conveniently collect physiological information of the human body and output electronic pulses through the electrode unit to stimulate the corresponding acupoints of the human body and realize functions such as health care and treatment.
  • FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device of a system for providing electronic pulses according to some embodiments of the present disclosure.
  • the electrode unit 113 includes a plurality of partitions 113a, 113b, and 113c, each partition being separately controllable by the control module 111 to output electronic pulses.
  • the output mode further includes activation information for each of the partitions.
  • the activation information may include one or more of activation status, activation duration, and activation sequence. Based on different output modes, it is possible to select some partitions or a combination of different partitions to output electronic pulses.
  • the partitions 113a and 113c are activated to output electronic pulses, and the partition 113b is not activated to output electronic pulses; in a second time period, the partitions 113b and 113c are activated to output electronic pulses, and the partition 113a stops outputting electronic pulses, and so on. Therefore, when the acupoints are dense or the electrode unit has a large contact area, the stimulation effect can be more accurately and effectively achieved.
  • control module 111 is also configured to select a current electronic pulse output mode from the one or more electronic pulse output modes for the current wearable device, and the electrode unit 113 is controlled by the control module 111 to output the electronic pulses according to the selected current electronic pulse output mode.
  • the wearable devices described herein include, but are not limited to, wristband-type wearable devices (such as smart watches, smart bands) , smart helmets, smart glasses, etc., in which the electrode unit can be arranged on any surface where the wearable device contacts the skin.
  • the location of the electrode unit is not limited to the inside of the dial plate of smart watch, and can be arranged on the strap, etc., and there is no particular limitation on the location.
  • FIG. 4 is a flow diagram illustrating an exemplary method 400 for providing electronic pulse output modes according to some embodiments of the present disclosure. As shown in FIG. 4, the method 400 comprises the following steps.
  • the physiological information includes the above-described clinical indicators, behavior indicators, and psychosocial indicators, etc.
  • Such physiological information can be acquired by wearable devices, such as the wearable device 110 (for example, smart bands, smart glasses, etc. ) .
  • a big data analysis is performed on the one or more items of physiological information. All the collected physiological information is summarized for big data analysis, and algorithms can be configured to process and analyze the big data.
  • a server communicated with the wearable devices can perform the big data analysis.
  • one or more electronic pulse output modes are generated for the current physiological information according to the current physiological information in combination with the results of the big data analysis.
  • the electronic pulse output mode is determined by the frequency, pulse width, intensity, and duration of electronic pulses and any combination thereof. This step can be remotely performed by the server 120.
  • the above-described method 400 for providing electronic pulse output modes can collect and summarize multiple items of physiological information to provide enough data samples for big data analysis, and use algorithms to analyze and research the collected data.
  • the method 400 can generate electronic pulse output modes for the specific individual, that is, it can provide personalized electronic pulse output solutions to stimulate and treat the wearer of the wearable device 110, so as to provide more flexible and effective treatment plans for different wearers.
  • the method 400 can further include a step to display the result of the big data analysis.
  • FIG. 5 is a flow diagram illustrating an exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure.
  • the step S500 includes the following steps.
  • one or more electronic pulse output modes are developed. For example, professionals may develop a relax mode for relaxing, a focus mode for improving concentration or a relief mode for pain relief according to some combination of physiological information. These electronic pulse output modes can be developed on a development platform and can be stored in the platform.
  • a corresponding electronic pulse output mode from the developed electronic pulse output modes is selected according to the current physiological information. Therefore, based on the current physiological information, an appropriate electronic pulse output mode is selected from the electronic pulse output modes developed on the platform, which is more reliable, as the electronic pulse output modes are developed and confirmed by the professionals.
  • the method further comprises a step S520 for publishing the developed electronic pulse output modes for wearers to subscribe to. Then the wearers may subscribe to their favorite electronic pulse output modes based on their own preference.
  • the method further comprises a step of acquiring information from a resource library module. Then the step S500 may further comprise a step of generating an electronic pulse output mode for current physiological information based on a result of the big data analysis and the information acquired from the resource library module 140 according to the current physiological information.
  • the resource library module 140 includes the database 141 which, as described above, may be a private database or connected with a related professional database, which is configured to provide existing related professional data. The database 141 can be updated, and thus the resource library module 140 is also updatable, thereby helping the generation of electronic pulse output modes keep pace with the updated information.
  • the resource library module 140 includes the information input unit 142 for receiving manual input from external devices (e.g., a smart phone) .
  • external devices e.g., a smart phone
  • professionals such as doctors
  • more targeted and reliable electronic pulse output modes can be generated by combining the big data analysis and professional judgments of professionals.
  • the method further includes a step of outputting electronic pulses according to the electronic pulse output mode. This step can be performed by the wearable devices which are configured to collect physiological information, or by other wearable devices separately.
  • the term “or” encompasses all possible combinations, except where infeasible. For example, if it is stated that a component may include A or B, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or A and B. As a second example, if it is stated that a component may include A, B, or C, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Rehabilitation Therapy (AREA)
  • Biophysics (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Physiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

A system and method for providing electronic pulses output modes for wearable devices are provided. The system includes one or more wearable devices configured to collect physiological information; and a server communicatively connectable with the one or more wearable devices, the server including: a data processing module, configured to performing a big data analysis on the physiological information collected by the one or more wearable devices; and a mode generation module, configured to generate an electronic pulse output mode for a current one of the wearable devices based on a result of the big data analysis according to the physiological information collected by the current wearable device.

Description

SYSTEM AND METHOD FOR PROVIDING ELECTRONIC PULSE OUTPUT MODES
CROSS-REFERENCE TO RELATED APPLICATIONS
This disclosure claims the benefits of priority to Chinese Application No. 202010399360.9, filed on May 12, 2020, and Chinese Application No. 202020782049.8, filed on May 12, 2020, both of which are incorporated herein by reference in their entireties.
TECHNICAL FIELD
The present disclosure generally relates to wearable devices, and more particularly, to systems and methods for providing electronic pulse output modes for the wearable devices.
BACKGROUND
Specific therapeutics practiced by medical institutions and provided by electronic apparatus for acupuncture and moxibustion are designed to provide some physiotherapy for recovery or daily health care. They may provide stimulation, vibration, and massage functions for different parts of the body, acupoints, and nerves through electronic acupuncture, ultrasonic or laser therapy. Thereby, such therapeutics have become increasing common in daily life. However, these conventional therapeutics are large in size and can only provide inherent functions, but cannot provide flexible physiotherapy options. With improvements in living conditions, personalized and user-friendly apparatuses are in demand.
SUMMARY
In some embodiments, an exemplary system for providing electronic pulse output modes for wearable devices comprises one or more wearable devices configured to collect physiological information; and a server communicatively connectable with the one or  more wearable devices, the server comprising: a data processing module, configured to performing a big data analysis on the physiological information collected by the one or more wearable devices; and a mode generation module, configured to generate an electronic pulse output mode for a current one of the wearable devices based on a result of the big data analysis according to the physiological information collected by the current wearable device.
In some embodiments, an exemplary method for providing electronic pulse output modes for wearable devices, used for the above system is provided. The method includes: acquiring one or more items of physiological information; performing a big data analysis on the one or more items of physiological information; and generating an electronic pulse output mode for current physiological information based on a result of the big data analysis performed on the physiological information.
Additional features and advantages of the present disclosure will be set forth in part in the following detailed description, and in part will be obvious from the description, or may be learned by practice of the present disclosure. The features and advantages of the present disclosure will be realized and attained by means of the elements and combinations particularly pointed out in the appended claims.
It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only, and are not restrictive of the disclosed embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments and various aspects of the present disclosure are illustrated in the following detailed description and the accompanying figures. Various features shown in the figures are not drawn to scale. In the drawings:
FIG. 1 is a schematic block diagram illustrating an exemplary system for providing electronic pulse output modes according to some embodiments of the present disclosure.
FIG. 2 is a schematic block diagram illustrating an exemplary wearable device of a system for providing electronic pulse output modes according to some embodiments of the present disclosure.
FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device of a system for providing electronic pulses according to some embodiments of the present disclosure.
FIG. 4 is a flow diagram illustrating an exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure.
FIG. 5 is a flow diagram illustrating another exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure.
DETAILED DESCRIPTION
Reference will now be made in detail to exemplary embodiments, examples of which are illustrated in the accompanying drawings. The following description refers to the accompanying drawings in which the same numbers in different drawings represent the same or similar elements unless otherwise represented. The embodiments set forth in the following description of exemplary embodiments do not represent all embodiments consistent with the invention. Instead, they are merely examples of devices, systems and methods consistent with aspects related to the invention as recited in the appended claims.
FIG. 1 is a schematic block diagram illustrating an exemplary system 100 for providing electronic pulse output modes according to some embodiments of the present disclosure. As shown in FIG. 1, the system 100 includes one or more  wearable devices  110a,  110b, 110c, and a server 120, which can be a remote server. Each of the  wearable devices  110a, 110b, 110c (for example, smart bands) , can be worn by different persons. The  wearable devices  110a, 110b, 110c can be configured to collect physiological information of the different wearers, including clinical indicators, behavior indicators, and psychosocial indicators. Clinical indicators include, but are not limited to, one or more of heart rate, heart rate variability, respiration, blood pressure, etc. Behavior indicators include, but are not limited to, one or more of sleep stage and quality, exercise type and duration, etc. Psychosocial indicators include, but are not limited to, one or more of mood, stress, anxiety symptoms, etc. The server 120 is in communication with each of the  wearable devices  110a, 110b, and 110c. The server 120 includes a data processing module 121 (e.g., a processor) and a mode generation module 122 (e.g., a mode generator) . The data processing module 121 is configured to summarize the physiological information collected by all the  wearable devices  110a, 110b, and 110c and perform big data analysis. The mode generation module 122 is configured to generate at least one electronic pulse output mode for controlling a current one of the wearable devices according to the physiological information collected by the current wearable device (e.g., the wearable device 110a) , in combination with the results of the big data analysis. The electronic pulse output mode is determined by one or more of a frequency, a pulse width, an intensity, and duration of electronic pulses.
In some embodiments, the wearer can select a current mode to be output from the one or more electronic pulse output modes provided for output. In other embodiments, the wearable device can automatically select a default electronic pulse output mode for output. Further, the electronic pulse output mode generated by the mode generation module 122 may be different for each of the different wearable devices. In addition, the  wearable devices  110a, 110b, and 110c may be different types of wearable devices worn on the same wearer. For example, the wearable device 110a may be a smart bend, the wearable device 110b may  be smart glasses, and the wearable device 110c may be a smart helmet. Therefore, the physiological information of the same wearer can be simultaneously collected through different types of wearable devices worn on different parts of the same wearer, which can improve the comprehensiveness of the wearer’s collected physiological information, and further improve the accuracy of data analysis.
Since the server 120 can summarize the physiological information collected by multiple wearable devices, enough data samples for big data analysis can be provided. The data processing module 121 uses algorithms to analyze and research the collected data. Then an evaluation of group health status and an evaluation and forecasting of disease risks can be further carried out. By combining the results of big data analysis and the wearer’s physiological information collected by a specific wearable device, the mode generation module 122 can generate electronic pulse output modes for the specific wearable device, that is, it can provide personalized electronic pulse output solutions. Therefore, more flexible and effective treatment plans for different wearers are provided. Since the server 120 can communicate with multiple wearable devices, the system for providing electronic pulse output modes can further build a horizontally expanding ecosystem.
In some embodiments, the system 100 for providing electronic pulse output modes further includes a display unit 130. The display unit 130 is connected to the server 120, and is configured to visually display the big data analysis and collected physiological information. The connection between the server 120 and display unit 130 can be a wire connection or a wireless connection. In some embodiments, the display unit 130 can display to the wearer the one or more generated electronic pulse output modes from which to choose. In some embodiments, the display unit 130 may be a smart terminal, for example, a smart phone. In some embodiments, the display unit 130 may be integrated in a wearable device.  Therefore, it is convenient for wearers to intuitively understand relevant big data analysis information, as well as relevant physiological information, health status, etc.
In some embodiments, the system 100 for providing electronic pulse output modes further includes a resource library module 140 (e.g., a data center) , which is connected to the server 120. The mode generation module 122 generates electronic pulse output modes for the current wearable device according to the physiological information collected by the current wearable device in combination with the results of the big data analysis and the information in the resource library module 140. By using the information in the resource library module 140 as a supplement to the big data analysis results, the electronic pulse output modes generated for the current wearable device will be more accurate and precise. In some embodiments, the resource library module 140 includes a database 141 and/or an information input unit 142. The database 141 may be a private database or connected with a related professional database, which is configured to provide existing related professional data. The database 141 can be updated, and thus the resource library module 140 is updatable, thereby helping the generation of electronic pulse output modes keep pace with updated information. The information input module 142 can be configured to receive manual input from external devices (e.g., a smart phone) . In some embodiments, the information input module 142 can be a keyboard. For example, professionals (such as doctors) can input relevant professional opinions based on clinical experience or personal judgment on the physiological information collected from the current wearer. Then the mode generation module 122 can generate more targeted and reliable electronic pulse output modes by combining the big data analysis and professional judgments of professionals.
In some embodiments, the system 100 for providing electronic pulse output modes further includes a development platform 150, which is connected to the server 120, and configured to develop electronic pulse output modes. That is, professionals can design  and develop TENS (Transcutaneous electrical acupoint stimulation) /TEAS (Transcutaneous electrical nerve stimulation) electronic pulse output modes (e.g., health care solutions) , suitable for various scenarios through the development platform 150, such as a relaxation mode, a sleep mode, a reading mode, and so on. The mode generation module 122 is configured to select an appropriate electronic pulse output mode from the electronic pulse output modes provided by the development platform 150 according to the physiological information collected by the current wearable device in combination with the results of the big data analysis. With the development platform 150, the system 100 can be available for professionals to provide more electronic pulse output modes, and enrich the output content of the system 100 for providing electronic pulse output modes.
In some embodiments, the development platform 150 is configured to publish the developed electronic pulse output modes for wearers to subscribe to. The mode generation module 122 can select an appropriate electronic pulse output mode from the electronic pulse output modes subscribed to by the wearer according to the physiological information collected by the current wearable device in combination with the results of big data analysis. In this way, professionals publish electronic pulse output modes developed according to different scenarios on the development platform, and wearers choose and subscribe to their preferred electronic pulse output modes from the development platform, thus forming a closed ecological chain of platform-content-user-terminal.
In some embodiments, the one or more electronic pulse output modes generated for the current wearable device can be manually set or modified, such that the wearer can set output mode according to his/her own preference, making the setting more flexible and customized.
FIG. 2 is a schematic block diagram illustrating an exemplary wearable device 110 of the system 100 for providing electronic pulse output modes, according to some embodiments of the present disclosure. Any of the  wearable devices  110a, 110b, 110c can be provided as the wearable device 110. In some embodiments, the wearable device 110 can output electronic pulses according to the electronic pulse output mode acquired from the server 120. As shown in FIG. 2, the wearable device 110 includes a control module 111 (e.g., a controller) , a communication module 112 (e.g., a transceiver) , and an electrode unit 113 (e.g., an electrode) . The wearable device 110 collects physiological information of the wearer, including the above-described clinical indicators, behavior indicators, and psychosocial indicators, etc. For example, the wearable device 110 can include, but is not limited to, one or more acceleration sensors, pressure sensors, heart rate sensors, etc. (not shown) . Accordingly, the wearable device can serve as a physiological information collector to collect physiological information of a wearer of the wearable device 110, including clinical indicators, behavior indicators, and psychosocial indicators, etc. The control module 111 is configured to control the output of electronic pulses. The communication module 112 is connected to the control module 111. The communication module 112 is configured to send the collected physiological information to the server 120, acquire the electronic pulse output mode from the server 120, and then send the output mode to the control module 111. The electrode unit 113 is arranged on a side of the wearable device 110 that is in contact with the human body, and contacts the skin of the wearer. The electrode unit 113 is configured to output electronic pulses, under control of the control module 111, according to the selected electronic pulse output mode. In some embodiments, the electrode unit 113 can be an electrode patch, which is flat and thin. In some embodiments, the wearable device 110 may be a smart watch, and the electrode unit 113 may be arranged on an inner side of the watch or on an inner side of a watch strap for holding the watch on the wearer’s wrist, which is not  particularly limited. In some embodiments, the electrode unit 113 can further configured to collect the physiological information of the wearer. The system for providing electronic pulse output modes equipped with the wearable device can conveniently collect physiological information of the human body and output electronic pulses through the electrode unit to stimulate the corresponding acupoints of the human body and realize functions such as health care and treatment.
FIG. 3 is a schematic diagram illustrating an exemplary partitioned electrode unit of a wearable device of a system for providing electronic pulses according to some embodiments of the present disclosure. As shown in FIG. 3, the electrode unit 113 includes a plurality of  partitions  113a, 113b, and 113c, each partition being separately controllable by the control module 111 to output electronic pulses. The output mode further includes activation information for each of the partitions. The activation information may include one or more of activation status, activation duration, and activation sequence. Based on different output modes, it is possible to select some partitions or a combination of different partitions to output electronic pulses. For example, in a first time period, the  partitions  113a and 113c are activated to output electronic pulses, and the partition 113b is not activated to output electronic pulses; in a second time period, the  partitions  113b and 113c are activated to output electronic pulses, and the partition 113a stops outputting electronic pulses, and so on. Therefore, when the acupoints are dense or the electrode unit has a large contact area, the stimulation effect can be more accurately and effectively achieved.
In some embodiments, the control module 111 is also configured to select a current electronic pulse output mode from the one or more electronic pulse output modes for the current wearable device, and the electrode unit 113 is controlled by the control module 111 to output the electronic pulses according to the selected current electronic pulse output mode.
The wearable devices described herein include, but are not limited to, wristband-type wearable devices (such as smart watches, smart bands) , smart helmets, smart glasses, etc., in which the electrode unit can be arranged on any surface where the wearable device contacts the skin. The location of the electrode unit is not limited to the inside of the dial plate of smart watch, and can be arranged on the strap, etc., and there is no particular limitation on the location.
FIG. 4 is a flow diagram illustrating an exemplary method 400 for providing electronic pulse output modes according to some embodiments of the present disclosure. As shown in FIG. 4, the method 400 comprises the following steps.
At step S100, one or more items of physiological information are acquired. The physiological information includes the above-described clinical indicators, behavior indicators, and psychosocial indicators, etc. Such physiological information can be acquired by wearable devices, such as the wearable device 110 (for example, smart bands, smart glasses, etc. ) .
At step S300, a big data analysis is performed on the one or more items of physiological information. All the collected physiological information is summarized for big data analysis, and algorithms can be configured to process and analyze the big data. In some embodiment, a server communicated with the wearable devices can perform the big data analysis.
At step S500, one or more electronic pulse output modes are generated for the current physiological information according to the current physiological information in combination with the results of the big data analysis. The electronic pulse output mode is determined by the frequency, pulse width, intensity, and duration of electronic pulses and any combination thereof. This step can be remotely performed by the server 120.
The above-described method 400 for providing electronic pulse output modes can collect and summarize multiple items of physiological information to provide enough data samples for big data analysis, and use algorithms to analyze and research the collected data. In combination with the results of big data analysis and a specific individual's physiological information, the method 400 can generate electronic pulse output modes for the specific individual, that is, it can provide personalized electronic pulse output solutions to stimulate and treat the wearer of the wearable device 110, so as to provide more flexible and effective treatment plans for different wearers.
In some embodiments, the method 400 can further include a step to display the result of the big data analysis.
FIG. 5 is a flow diagram illustrating an exemplary method for providing electronic pulse output modes according to some embodiments of the present disclosure. As shown in FIG. 5, in some embodiments, the step S500 (as shown in FIG. 4) includes the following steps. At step S510, one or more electronic pulse output modes are developed. For example, professionals may develop a relax mode for relaxing, a focus mode for improving concentration or a relief mode for pain relief according to some combination of physiological information. These electronic pulse output modes can be developed on a development platform and can be stored in the platform. At step S530, a corresponding electronic pulse output mode from the developed electronic pulse output modes is selected according to the current physiological information. Therefore, based on the current physiological information, an appropriate electronic pulse output mode is selected from the electronic pulse output modes developed on the platform, which is more reliable, as the electronic pulse output modes are developed and confirmed by the professionals.
In some embodiments, after the step S510, the method further comprises a step S520 for publishing the developed electronic pulse output modes for wearers to subscribe to.  Then the wearers may subscribe to their favorite electronic pulse output modes based on their own preference.
In some embodiments, the method further comprises a step of acquiring information from a resource library module. Then the step S500 may further comprise a step of generating an electronic pulse output mode for current physiological information based on a result of the big data analysis and the information acquired from the resource library module 140 according to the current physiological information. In some embodiments, the resource library module 140 includes the database 141 which, as described above, may be a private database or connected with a related professional database, which is configured to provide existing related professional data. The database 141 can be updated, and thus the resource library module 140 is also updatable, thereby helping the generation of electronic pulse output modes keep pace with the updated information. In some embodiments, the resource library module 140 includes the information input unit 142 for receiving manual input from external devices (e.g., a smart phone) . For example, professionals (such as doctors) can input relevant professional opinions based on the clinical experience or personal judgment on the physiological information collected from the current wearer. Then at step S500, more targeted and reliable electronic pulse output modes can be generated by combining the big data analysis and professional judgments of professionals.
In some embodiments, the method further includes a step of outputting electronic pulses according to the electronic pulse output mode. This step can be performed by the wearable devices which are configured to collect physiological information, or by other wearable devices separately.
The foregoing description has been presented for purposes of illustration. It is not exhaustive and is not limited to precise forms or embodiments disclosed. Modifications and adaptations of the embodiments will be apparent from consideration of the specification  and practice of the disclosed embodiments. In addition, while certain components have been described as being coupled to one another, such components may be integrated with one another or distributed in any suitable fashion.
Moreover, while illustrative embodiments have been described herein, the scope includes any and all embodiments having equivalent elements, modifications, omissions, combinations (e.g., of aspects across various embodiments) , adaptations or alterations based on the present disclosure. The elements in the claims are to be interpreted broadly based on the language employed in the claims and not limited to examples described in the present specification or during the prosecution of the application, which examples are to be construed as nonexclusive. Further, the steps of disclosed methods can be modified in any manner, including reordering steps and/or inserting or deleting steps.
The features and advantages of the present disclosure are apparent from the detailed specification, and thus, it is intended that the appended claims cover all systems and methods falling within the true spirit and scope of the present disclosure. As used herein, the indefinite articles “a” and “an” mean “one or more. ” Further, since numerous modifications and variations will readily occur from studying the present disclosure, it is not desired to limit the present disclosure to the exact reconstruction and operation illustrated and described, and accordingly, all suitable modifications and equivalents may be resorted to, falling within the scope of the present disclosure.
As used herein, unless specifically stated otherwise, the term “or” encompasses all possible combinations, except where infeasible. For example, if it is stated that a component may include A or B, then, unless specifically stated otherwise or infeasible, the component may include A, or B, or A and B. As a second example, if it is stated that a component may include A, B, or C, then, unless specifically stated otherwise or infeasible,  the component may include A, or B, or C, or A and B, or A and C, or B and C, or A and B and C.
Other embodiments will be apparent from consideration of the specification and practice of the embodiments disclosed herein. It is intended that the specification and examples be considered as example only, with a true scope and spirit of the disclosed embodiments being indicated by the following claims.

Claims (20)

  1. A system for providing an electronic pulse output mode for wearable devices, comprising:
    one or more wearable devices configured to collect physiological information; and
    a server communicatively connectable with the one or more wearable devices, the server comprising:
    a data processing module, configured to performing a big data analysis on the physiological information collected by the one or more wearable devices; and
    a mode generation module, configured to generate an electronic pulse output mode for a current one of the wearable devices based on a result of the big data analysis according to the physiological information collected by the current wearable device.
  2. The system of claim 1, further comprising
    a display unit connected to the server and configured to display the result of the big data analysis.
  3. The system of claim 1 or 2, the system further comprising a resource library module connected to the server, wherein the mode generation module is further configured to generate the electronic pulse output mode for the current wearable device based on a result of the big data analysis and information from the resource library module according to the physiological information collected by the current wearable device.
  4. The system of claim 3, wherein the resource library module further comprises a database configured to provide prior resources.
  5. The system of claim 3 or 4, wherein the resource library module further comprises an information input unit configured to receive information input externally.
  6. The system of any one of claims 1 to 5, the system further comprising a development platform connected to the server and configured to develop the electronic pulse output modes; and
    wherein the mode generation module is further configured to select a corresponding electronic pulse output mode from the electronic pulse output modes provided by the development platform for the current wearable device based on an analyzed result by the data processing module according to the physiological information collected by the current wearable device.
  7. The system of claim 6, wherein the development platform is further configured to publish the electronic pulse output modes for a wearer to subscribe to.
  8. The system of any one of claims 1 to 7, wherein the output mode comprises one or more of a frequency, a pulse width, an intensity, and a duration of the electronic pulse.
  9. The system of any one of claims 1 to 8, wherein the one or more generated electronic pulse output modes can be modified manually.
  10. The system of any one of claims 1 to 9, wherein the wearable device is further configured to output an electronic pulse according to the electronic pulse output mode, the wearable device comprising:
    a control module configured to control an output of the electronic pulses;
    a communication module connected to the control module and configured to send the physiological information collected to the server, acquire the electronic pulse output mode from the server, and send the electronic pulse output mode to the control module; and
    an electrode unit provided on a side of the wearable device contacting with a body of a wearer of the wearable device and configured to output the electronic pulses.
  11. The system of claim 10, wherein the electrode unit comprises a plurality of partitions, the plurality of partitions being independently controllable by the control module, and the electronic pulse output mode further comprising a partition activation information.
  12. A method for providing electronic pulse output modes for wearable devices, for use in a system according to any one of claims 1 to 11, comprising:
    acquiring one or more items of physiological information;
    performing a big data analysis on the one or more items of physiological information; and
    generating an electronic pulse output mode for current physiological information based on a result of the big data analysis performed on the physiological information.
  13. The method of claim 12, further comprising
    displaying the result of the big data analysis.
  14. The method of claim 12 or 13, wherein generating an electronic pulses output mode for current physiological information further comprises:
    developing one or more electronic pulse output modes; and
    selecting one of the electronic pulse output modes from the developed electronic pulse output modes according to the current physiological information.
  15. The method of claim 14, further comprising
    publishing the developed electronic pulse output modes for a wearer to subscribe to.
  16. The method of any one of claims 12 to 15, wherein the output mode comprises one or more of a frequency, a pulse width, an intensity, and a duration of the electronic pulse.
  17. The method of any one of claims 12 to 16, further comprising acquiring information from a resource library module, wherein the generating of electronic pulse output modes for current physiological information based on a result of the big data analysis according to the current physiological information collected further comprises generating an  electronic pulse output mode for current physiological information based on a result of the big data analysis and the information acquired from the resource library module according to the current physiological information.
  18. The method of claim 17, wherein acquiring information from a resource library module further comprises:
    acquiring information from a database, wherein the database provides prior resources.
  19. The method of claim 17 or 18, wherein acquiring information from a resource library module further comprises:
    receiving information input externally.
  20. The method of any one of claims 12 to 19, further comprising
    outputting electronic pulses according to the electronic pulse output mode.
PCT/CN2021/093284 2020-05-12 2021-05-12 System and method for providing electronic pulse output modes WO2021228126A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010399360.9 2020-05-12
CN202020782049.8 2020-05-12
CN202020782049.8U CN212631443U (en) 2020-05-12 2020-05-12 System for providing electronic pulse output mode
CN202010399360.9A CN111494792A (en) 2020-05-12 2020-05-12 System and method for providing electronic pulse output mode

Publications (1)

Publication Number Publication Date
WO2021228126A1 true WO2021228126A1 (en) 2021-11-18

Family

ID=78525261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/093284 WO2021228126A1 (en) 2020-05-12 2021-05-12 System and method for providing electronic pulse output modes

Country Status (1)

Country Link
WO (1) WO2021228126A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106859955A (en) * 2017-02-14 2017-06-20 包磊 Acupuncture analog signal output method and device
CN108744271A (en) * 2018-04-02 2018-11-06 郑明德 Block chain artificial intelligence electrical acupuncture treats bracelet
CN109078261A (en) * 2018-04-02 2018-12-25 郑明德 Big data sleep therapy bracelet
US20190387198A1 (en) * 2015-03-09 2019-12-19 Mutualink, Inc. System for biosensor-triggered collaboration
CN111494792A (en) * 2020-05-12 2020-08-07 上海雷栓信息科技有限公司 System and method for providing electronic pulse output mode
CN111529923A (en) * 2020-05-12 2020-08-14 上海雷栓信息科技有限公司 Wearable device providing electronic pulses and control method thereof
CN212631443U (en) * 2020-05-12 2021-03-02 上海雷栓信息科技有限公司 System for providing electronic pulse output mode
CN212730713U (en) * 2020-05-12 2021-03-19 上海雷栓信息科技有限公司 Wearable device providing electronic pulses

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190387198A1 (en) * 2015-03-09 2019-12-19 Mutualink, Inc. System for biosensor-triggered collaboration
CN106859955A (en) * 2017-02-14 2017-06-20 包磊 Acupuncture analog signal output method and device
CN108744271A (en) * 2018-04-02 2018-11-06 郑明德 Block chain artificial intelligence electrical acupuncture treats bracelet
CN109078261A (en) * 2018-04-02 2018-12-25 郑明德 Big data sleep therapy bracelet
CN111494792A (en) * 2020-05-12 2020-08-07 上海雷栓信息科技有限公司 System and method for providing electronic pulse output mode
CN111529923A (en) * 2020-05-12 2020-08-14 上海雷栓信息科技有限公司 Wearable device providing electronic pulses and control method thereof
CN212631443U (en) * 2020-05-12 2021-03-02 上海雷栓信息科技有限公司 System for providing electronic pulse output mode
CN212730713U (en) * 2020-05-12 2021-03-19 上海雷栓信息科技有限公司 Wearable device providing electronic pulses

Similar Documents

Publication Publication Date Title
US11577043B2 (en) Brain stimulation system, method and apparatus based on artificial intelligence and storage medium
CN110167630B (en) Multifunctional closed-loop nerve feedback stimulation equipment and method thereof
EP3352843B1 (en) Device for peripheral nerve stimulation in the finger to treat hand tremors
US9662502B2 (en) Method and system for tuning of movement disorder therapy devices
JP2022517752A (en) Wave generation system and method for percutaneous vibration
WO2021228128A1 (en) Wearable device for providing electronic pulses and controlling method thereof
CN108135537A (en) For treating the systems, devices and methods of osteoarthritis
US11543879B2 (en) System for communicating sensory information with an interactive system and methods thereof
US20210353957A1 (en) Method and apparatus for wearable device with eeg and biometric sensors
CN110325237A (en) With the system and method for neuromodulation enhancing study
KR20200031483A (en) Schedule Recommendation System and Device Using Sleep Assist Device
Glaros et al. Wearable devices in healthcare
WO2021228126A1 (en) System and method for providing electronic pulse output modes
CN212631443U (en) System for providing electronic pulse output mode
WO2020180958A1 (en) Dynamically controlling self-directed magnetic stimulation
US11759637B2 (en) Systems, methods and devices for electrical stimulation therapy
CN111494792A (en) System and method for providing electronic pulse output mode
US11918810B1 (en) Method and system for tuning of movement disorder therapy devices
US20220280105A1 (en) System and method for personalized biofeedback from a wearable device
Alzahmi et al. Electroencephalography-Neurofeedback for Decoding and Modulating Human Emotions
KR102552957B1 (en) Growth plate stimulation and management system applied biological signal and deep learning algorithm
Sano et al. Mobile sensing of alertness, sleep and circadian rhythm: Hardware & software platforms
Brennan et al. Biofeedback in breast cancer rehabilitation: applying the who icf core set to identify opportunities and recommendations
Rana et al. Brainwave sensed chromo therapy based meditation hub
CN117936058A (en) Configuration information acquisition device, terminal device, medical system, and storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21803949

Country of ref document: EP

Kind code of ref document: A1