ES2584245T3 - Composición que comprende péptidos asociados a tumores y una vacuna para el tratamiento del glioblastoma y de otros tipos de cáncer - Google Patents

Composición que comprende péptidos asociados a tumores y una vacuna para el tratamiento del glioblastoma y de otros tipos de cáncer Download PDF

Info

Publication number
ES2584245T3
ES2584245T3 ES09778750.1T ES09778750T ES2584245T3 ES 2584245 T3 ES2584245 T3 ES 2584245T3 ES 09778750 T ES09778750 T ES 09778750T ES 2584245 T3 ES2584245 T3 ES 2584245T3
Authority
ES
Spain
Prior art keywords
cells
peptide
cell
tumor
expression
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
ES09778750.1T
Other languages
English (en)
Inventor
Oliver Schoor
Norbert Hilf
Toni Weinschenk
Claudia Trautwein
Steffen Walter
Harpreet Singh
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Immatics Biotechnologies GmbH
Original Assignee
Immatics Biotechnologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Immatics Biotechnologies GmbH filed Critical Immatics Biotechnologies GmbH
Application granted granted Critical
Publication of ES2584245T3 publication Critical patent/ES2584245T3/es
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/06Linear peptides containing only normal peptide links having 5 to 11 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/14Blood; Artificial blood
    • A61K35/17Lymphocytes; B-cells; T-cells; Natural killer cells; Interferon-activated or cytokine-activated lymphocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/461Cellular immunotherapy characterised by the cell type used
    • A61K39/4611T-cells, e.g. tumor infiltrating lymphocytes [TIL], lymphokine-activated killer cells [LAK] or regulatory T cells [Treg]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/46Cellular immunotherapy
    • A61K39/464Cellular immunotherapy characterised by the antigen targeted or presented
    • A61K39/4643Vertebrate antigens
    • A61K39/4644Cancer antigens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M5/00Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
    • A61M5/002Packages specially adapted therefor, e.g. for syringes or needles, kits for diabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/04Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/08Drugs for disorders of the urinary system of the prostate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P15/00Drugs for genital or sexual disorders; Contraceptives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/02Antineoplastic agents specific for leukemia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • A61P37/04Immunostimulants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/705Receptors; Cell surface antigens; Cell surface determinants
    • C07K14/70503Immunoglobulin superfamily
    • C07K14/70539MHC-molecules, e.g. HLA-molecules
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0636T lymphocytes
    • C12N5/0638Cytotoxic T lymphocytes [CTL] or lymphokine activated killer cells [LAK]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0639Dendritic cells, e.g. Langherhans cells in the epidermis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • G01N33/57484Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites
    • G01N33/57492Immunoassay; Biospecific binding assay; Materials therefor for cancer involving compounds serving as markers for tumor, cancer, neoplasia, e.g. cellular determinants, receptors, heat shock/stress proteins, A-protein, oligosaccharides, metabolites involving compounds localized on the membrane of tumor or cancer cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5154Antigen presenting cells [APCs], e.g. dendritic cells or macrophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/515Animal cells
    • A61K2039/5158Antigen-pulsed cells, e.g. T-cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/51Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
    • A61K2039/53DNA (RNA) vaccination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55516Proteins; Peptides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55522Cytokines; Lymphokines; Interferons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55511Organic adjuvants
    • A61K2039/55561CpG containing adjuvants; Oligonucleotide containing adjuvants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/555Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
    • A61K2039/55588Adjuvants of undefined constitution
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/57Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2
    • A61K2039/572Medicinal preparations containing antigens or antibodies characterised by the type of response, e.g. Th1, Th2 cytotoxic response
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/605MHC molecules or ligands thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6031Proteins
    • A61K2039/6081Albumin; Keyhole limpet haemocyanin [KLH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/60Medicinal preparations containing antigens or antibodies characteristics by the carrier linked to the antigen
    • A61K2039/6093Synthetic polymers, e.g. polyethyleneglycol [PEG], Polymers or copolymers of (D) glutamate and (D) lysine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide
    • C07K2319/40Fusion polypeptide containing a tag for immunodetection, or an epitope for immunisation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/50Cell markers; Cell surface determinants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Abstract

Péptido consistente en una secuencia seleccionada del grupo de las SEQ ID N.º 4 y SEQ ID N.º 5.

Description

imagen1
imagen2
imagen3
imagen4
imagen5
oligopéptidos suelen tener una longitud inferior a unos 30 aminoácidos y mayor de 14, aproximadamente.
El término «polipéptido» designa una serie de residuos de aminoácidos conectados entre sí típicamente por enlaces peptídicos entre los grupos aminoalfa y carbonilo de los aminoácidos adyacentes. La longitud del polipéptido no es crucial, siempre que se mantengan los epítopos correctos. En contraste con los términos
5 «péptido» y «oligopéptido», el término «polipéptido» se refiere a las moléculas de más de unos 30 residuos de aminoácidos de longitud.
Un péptido, oligopéptido, proteína o polinucleótido que codifica dicha molécula es «inmunogénico» (y, por lo tanto, un «inmunógeno» en la presente invención), si es capaz de inducir una respuesta inmunitaria. En el caso de la presente invención, la inmunogenicidad se define más específicamente como la capacidad para desatar
10 una respuesta por parte de los linfocitos T. Por lo tanto, un «inmunógeno» sería una molécula que es capaz de inducir una respuesta inmunitaria y, en el caso de la presente invención, una molécula capaz de inducir una respuesta de los linfocitos T.
Un «epítopo» de un linfocito T requiere un péptido corto que esté unido a un receptor MHC de clase I o clase II, formando un complejo ternario (cadena alfa de MHC de clase I, beta-2-microglobulina y péptido) que puede ser 15 reconocido por un linfocito T que lleve un receptor de linfocito T que coincida y que se una al complejo MHC/péptido con la afinidad adecuada. Los péptidos que se unen a moléculas MHC de clase I suelen tener una longitud de entre 8 y 14 aminoácidos, y más habitualmente de 9 aminoácidos. Los epítopos de linfocitos T que se unen a moléculas MHC de clase II suelen tener una longitud de entre 12 y 30 aminoácidos. En el caso de los péptidos que se unen a moléculas MHC de clase II, el mismo péptido y el epítopo del linfocito T correspondiente 20 pueden compartir un segmento central común pero en cambio diferir en la longitud total como consecuencia de secuencias de flanqueo de diferentes longitudes en dirección ascendente del extremo amino de la secuencia central y descendente con respecto a su terminal carboxílico, respectivamente. Los receptores MHC de clase II presentan una conformación más abierta; de la misma manera, los péptidos unidos a receptores MHC de clase II no se enclavan completamente en la estructura de la hendidura de unión al péptido de la molécula MHC de clase
25 II, como ocurre con la hendidura de unión del péptido de la molécula MHC de clase I. Es de notar que éste no es el caso para el péptido con arreglo a la SEQ ID N.º 1, puesto que pequeñas variaciones en la longitud del péptido ocasionan un gran descenso de la actividad (véase más abajo).
En el ser humano hay tres locus genéticos diferentes que codifican las moléculas MHC de clase I (las moléculas MHC del ser humano también se denominan antígenos leucocitarios humanos [HLA]): HLA-A, HLA-B y HLA-C.
30 HLA-A*01, HLA-A*02 y HLA-A*11 son ejemplos de distintos alelos MHC de clase I que se pueden expresar a partir de estos locus.
Tres locus diferentes del genoma humano albergan los genes MHC de clase II: HLA-DR, HLA-DQ y HLA-DP. Los receptores MHC de clase II son heterodímeros que constan de una cadena alfa y una beta, las cuales se enclavan en la membrana celular a través de una región transmembrana. HLA-DRB1*04 y HLA-DRB1*07 son
35 dos ejemplos de diferentes alelos beta MHC de clase II que se sabe que están codificados en estos locus. Los alelos de clase II son muy polimorfos: por ejemplo, se han descrito varios cientos de alelos HLA-DRB1 distintos. Por tanto, a efectos terapéuticos y de diagnóstico sería muy deseable contar con un péptido que se uniese, con la afinidad adecuada, a varios receptores HLA de clase II distintos. Un péptido que se une a varias moléculas HLA de clase II distintas recibe el nombre de ligando promiscuo.
40 En la presente memoria, la referencia a una secuencia de ADN incluye tanto ADN monocatenario como bicatenario. Por lo tanto, la secuencia específica, a menos que el contexto indique otra cosa, se refiere al ADN monocatenario de dicha secuencia, a la doble cadena formada por dicha secuencia con su complementaria (ADN bicatenario) y a la cadena complementaria de dicha secuencia. El término «región codificante» hace referencia a la porción de un gen que, o bien de forma natural o normal, codifica el producto de expresión de dicho gen en su
45 ambiente genómico natural, por ejemplo, la región que codifica in vivo el producto de expresión natural del gen.
La región codificante puede formar parte de un gen normal, mutado o alterado, o incluso puede provenir de una secuencia de ADN, o gen, sintetizada íntegramente en el laboratorio con métodos bien conocidos para los expertos en la síntesis de ADN.
El término «secuencia nucleotídica» hace referencia a un heteropolímero de desoxirribonucleótidos.
50 La secuencia nucleotídica que codifica un péptido, oligopéptido o polipéptido en particular puede ser natural o estar construida de forma sintética. Generalmente los segmentos de ADN que codifican los péptidos, polipéptidos y proteínas se ensamblan con fragmentos de ADNc y oligonucleótidos cortos de enlace, o con una serie de oligonucleótidos, quedan como resultado un gen sintético capaz de expresarse en una unidad transcripcional recombinante que comprende elementos reguladores procedentes de un operón microbiano o vírico.
55 El término «producto de expresión» define el polipéptido o la proteína que es el producto natural de la traducción del gen y cualquier secuencia de ácidos nucleicos que codifiquen los equivalentes resultantes de la degeneración del código genético y, por tanto, que codifican el mismo aminoácido o aminoácidos.
imagen6
se refieren a los productos generados por el tratamiento de dichos polinucleótidos con cualquiera de las endonucleasas habituales.
Conforme a la presente invención, el término «identidad porcentual» o «porcentaje idéntico», al referirse a una secuencia, significa que una secuencia se compara con una secuencia reivindicada o descrita después de 5 alinear la secuencia que se va a comparar (la «secuencia comparada») con la secuencia descrita o reivindicada (la «secuencia de referencia»). La identidad porcentual se determina entonces con la siguiente fórmula:
Identidad porcentual = 100 [I -(C/R)]
donde C es el número de diferencias entre la secuencia de referencia y la secuencia comparada presentes en el tramo de alineación entre la secuencia de referencia y la secuencia comparada, donde:
10 (i) cada base o aminoácido de la secuencia de referencia que no tiene una base o aminoácido alineados en la secuencia comparada y
(ii) cada hueco (gap) de la secuencia de referencia y
(iii) cada base o aminoácido alineado de la secuencia de referencia que difiere de una base o aminoácido alineado de la secuencia comparada, constituye una diferencia;
15 y R es el número de bases o aminoácidos de la secuencia de referencia presentes en el tramo de alineación con la secuencia comparada, y cualquier hueco creado en la secuencia de referencia también se contabiliza como una base o un aminoácido.
Si existe una alineación entre la secuencia comparada y la secuencia de referencia para la que la identidad porcentual, calculada como se ha especificado arriba, es aproximadamente igual o mayor que una identidad
20 porcentual mínima especificada, entonces la secuencia comparada guarda la identidad porcentual mínima especificada con la secuencia de referencia, aunque puedan existir alineaciones en las que la identidad porcentual calculada arriba resulte menor que la identidad porcentual especificada.
Los péptidos originales descritos aquí se pueden modificar mediante la sustitución de uno o más residuos en sitios diferentes, posiblemente selectivos, dentro de la cadena peptídica, si no se especifica de otra manera. 25 Dichas sustituciones pueden ser de naturaleza conservadora como, por ejemplo, si un aminoácido es reemplazado por un aminoácido de estructura y características similares, como en el caso de un aminoácido hidrofóbico que es sustituido por otro aminoácido hidrofóbico. Aún más conservador sería el reemplazo de aminoácidos de tamaño y naturaleza química igual o similar como, por ejemplo, el reemplazo de una leucina por una isoleucina. En diversos estudios de variaciones de secuencias en familias de proteínas homólogas naturales,
30 determinadas sustituciones de aminoácidos se toleran con más frecuencia que otras, y éstas muestran a menudo una correlación con similitudes de tamaño, carga, polaridad e hidrofobicidad entre el aminoácido original y su reemplazo, siendo ésta la base para la definición de las «sustituciones conservadoras».
Las sustituciones conservadoras se definen como intercambios dentro de uno de los cinco grupos siguientes: Grupo 1: residuos alifáticos pequeños, no polares o ligeramente polares (Ala, Ser, Thr, Pro y Gly);
35 Grupo 2: residuos polares cargados negativamente y sus amidas (Asp, Asn, Glu y Gln); Grupo 3: residuos polares cargados positivamente (His, Arg y Lys); Grupo 4: residuos alifáticos grandes no polares (Met, Leu, Ile, Val y Cys); y Grupo 5: residuos grandes aromáticos (Phe, Tyr y Trp).
Las sustituciones menos conservadoras pueden implicar el reemplazo de un aminoácido por otro con características similares pero diferenciado de alguna manera en el tamaño, como en el reemplazo de una alanina
40 por un residuo de isoleucina. Los reemplazos muy poco o nada conservadores pueden implicar la sustitución de un aminoácido ácido por otro polar, o incluso por uno de carácter básico. Estas sustituciones «radicales» no se pueden descartar, sin embargo, como potencialmente inefectivas, ya que los efectos químicos no son totalmente predecibles y las sustituciones radicales bien pueden provocar efectos inesperados imposibles de predecir de otra forma a partir de principios químicos simples.
45 Naturalmente, dichas sustituciones pueden implicar otras estructuras distintas de los aminoácidos L habituales. De esta forma, aminoácidos D podrían sustituir a los aminoácidos L que habitualmente se encuentran en los péptidos antigénicos de la invención y, aún así, quedar englobados en la descripción del presente documento. Además, los aminoácidos que poseen grupos R no estándar (es decir, grupos R distintos de los presentes en los 20 aminoácidos comunes de las proteínas naturales) también pueden ser utilizados como sustitutos para
50 producir polipéptidos inmunógenos e inmunogénicos.
Si se descubre que las sustituciones en más de una posición resultan en un péptido con actividad antigénica sustancialmente equivalente o mayor, como se define más abajo, entonces las combinaciones de dichas sustituciones se probarán para determinar si las sustituciones combinadas provocan efectos aditivos o sinérgicos en la antigenicidad del péptido. Como máximo, se sustituirán hasta 4 posiciones simultáneamente dentro del
55 péptido.
El término «respuesta de linfocitos T» define la proliferación y la activación específicas de las funciones efectoras inducidas por un péptido in vitro o in vivo. En el caso de los linfocitos T citotóxicos (CTL) restringidos a MHC de clase I, las funciones efectoras pueden consistir en la lisis de células diana presentadoras naturales de péptido o bien sensibilizadas de manera repetida con un péptido o con un precursor del mismo; la secreción de citocinas, 5 preferiblemente de interferón gamma, TNF-alfa o IL-2 inducida por péptido; la secreción de moléculas efectoras, preferiblemente granzimas o perforinas inducidas por péptido; o la desgranulación. En lo que respecta a los linfocitos T cooperadores restringidos a las MHC de clase II, las funciones efectoras pueden consistir en la secreción inducida por el péptido de citocinas, preferiblemente de IFN-gamma, TNF-alfa, IL-4, IL-5, IL-10 o IL-2,
o la desgranulación inducida por el péptido. Las posibles funciones efectoras de los CTL y de los linfocitos T cooperadores no se limitan a esta lista.
Preferiblemente, cuando los CTL específicos para un péptido de las SEQ ID N.º 1 a 30 se prueben para comprobar su respuesta a los péptidos sustituidos, la concentración de péptido a la cual los péptidos sustituidos consiguen la mitad del aumento máximo de la lisis respecto al valor de fondo es como máximo de alrededor de 1 mM, preferiblemente como máximo de alrededor de 1 µM, más preferiblemente como máximo de alrededor de 1
15 nM, y aún más preferentemente como máximo de alrededor de 100 pM, y lo más preferentemente como máximo de alrededor de 10 pM. También se prefiere que el péptido sustituido sea reconocido por los CTL de más de un individuo, de al menos dos, y más preferiblemente de tres individuos.
La estimulación de una respuesta inmunitaria depende de la presencia de antígenos que sean reconocidos como extraños por el sistema inmunitario del hospedador. El descubrimiento de la existencia de antígenos asociados a tumores ha abierto la posibilidad de utilizar el sistema inmunitario del hospedador para desencadenar una respuesta inmunitaria que es específica contra los antígenos expresados en la superficie de células tumorales y que a través de este mecanismo de acción sea capaz de inducir la regresión, paralice o frene el crecimiento del tumor. Actualmente se están explorando diversos mecanismos para aprovechar las defensas humorales y celulares del sistema inmunitario en la inmunoterapia contra el cáncer.
25 Ciertos elementos de la respuesta inmunitaria celular son capaces de reconocer específicamente y de destruir las células tumorales. El aislamiento de linfocitos T citotóxicos (CTL) entre las células infiltradas en los tumores o en la sangre periférica hace pensar en que tales células desempeñan un papel importante en las defensas inmunitarias naturales contra el cáncer (Cheever et al., 1993; Zeh, III et al., 1999). A partir del análisis de 415 especímenes de pacientes aquejados de cáncer colorrectal, Galon et al. fueron capaces de demostrar que el tipo, la densidad y la localización de las células inmunitarias en el tejido tumoral son realmente mejores predictores de la supervivencia del paciente que la ampliamente utilizada estadificación TNM de los tumores (Galon et al., 2006).
Las moléculas MHC de clase I presentan péptidos procedentes de la proteólisis de proteínas endógenas, DRiP y péptidos grandes. Las moléculas de MHC de clase II, presentes mayoritariamente en las células presentadoras
35 de antígeno (APC) especializadas, presentan predominantemente péptidos de proteínas exógenas o transmembrana que son captadas por las APC mediante endocitosis y después son procesadas por las mismas (Cresswell, 1994). Los complejos constituidos por péptidos y moléculas MHC de clase I son reconocidos por los linfocitos T CD8-positivos portadores del receptor de linfocito T (TCR) adecuado, mientras que los complejos formados por péptidos y moléculas MHC de clase II son reconocidos por los linfocitos T colaboradores CD4positivos portadores del TCR apropiado. Es bien sabido que el TCR, el péptido y el MHC están presentes en una relación estequiométrica de 1:1:1.
Los linfocitos T cooperadores CD4-positivos desempeñan un papel importante en la inducción y el mantenimiento de respuestas eficaces por parte de los linfocitos T citotóxicos CD8-positivos (Wang and Livingstone, 2003; Sun and Bevan, 2003; Shedlock and Shen, 2003). Inicialmente, la sensibilización y la expansión de los CTL en los 45 ganglios linfáticos está sustentada por los linfocitos T CD4+ (Schoenberger et al., 1998). Así pues, un mecanismo podría ser el direccionamiento de los linfocitos CD8+ vírgenes hacia el lugar donde tiene lugar la interacción funcional entre los linfocitos T CD4+ y las APC (Castellino et al., 2006). Por último, la generación de los linfocitos CD8+ de memoria funcionales depende casi siempre de la asistencia de los linfocitos T CD4+ (Sun and Bevan, 2003; Janssen et al., 2003). Por todas esas razones, la identificación de epítopos derivados de antígenos asociados a tumor (TAA) que sean reconocidos por los linfocitos T CD4-positivos reviste suma importancia para el desarrollo de medicamentos que estimulen una respuesta inmunitaria antitumoral (Kobayashi et al., 2002; Qin et al., 2003; Gnjatic et al., 2003). Los linfocitos T cooperadores generan en el seno del tumor un entorno de citocinas que es propicio para los CTL (Qin and Blankenstein, 2000; Mortara et al., 2006) y que atrae a las células efectoras, como, por ejemplo, los propios CTL, células NK, macrófagos y granulocitos (Marzo et al., 2000;
55 Hwang et al., 2007).
En ausencia de inflamación, la expresión de las moléculas MHC de clase II se circunscribe principalmente a las células del sistema inmunitario, en concreto a las células presentadoras de antígeno (APC) especializadas, como, por ejemplo, monocitos, células derivadas de monocitos, macrófagos y células dendríticas. En pacientes con cáncer se ha descubierto con sorpresa que las células tumorales expresan moléculas MHC de clase II (Dengjel et al., 2006).
imagen7
presente únicamente en un tipo de tumor, sino que lo esté también en altas concentraciones (número de copias del péptido por célula). Los antígenos específicos de tumor y asociados a tumor proceden a menudo de proteínas que intervienen directamente en la transformación de una célula normal en una tumoral a causa de su función, por ejemplo, porque intervienen en el control del ciclo celular o en la supresión de la apoptosis. Además,
5 también las dianas ulteriores de las proteínas que son las causantes directas de la transformación pueden estar reguladas al alza y, por tanto, estar asociadas indirectamente al tumor. Tales antígenos asociados indirectamente a los tumores también pueden ser las dianas para una estrategia de vacunación (Singh-Jasuja et al., 2004). En ambos casos es esencial que la secuencia de aminoácidos del antígeno contenga epítopos, puesto que el péptido («péptido inmunogénico») derivado de un antígeno asociado a tumor debe desencadenar una respuesta de los linfocitos T en condiciones in vitro o in vivo.
Básicamente, cualquier péptido capaz de unirse a una molécula de MHC puede actuar como un epítopo de linfocito T. Un prerrequisito para la inducción de una respuesta de linfocitos T in vitro o in vivo es la presencia de un linfocito T dotado del correspondiente TCR y la ausencia de tolerancia inmunitaria hacia ese epítopo en particular.
15 Por consiguiente, los TAA son el punto de partida para el desarrollo de una vacuna antitumoral. Los métodos para identificar y caracterizar los TAA están basados, entre otros, en el uso de CTL que pueden aislarse de pacientes o de individuos sanos, o en la generación de perfiles de transcripción diferenciales o patrones de expresión peptídica diferenciales entre los tumores y los tejidos normales (Lemmel et al., 2004; Weinschenk et al., 2002).
No obstante, la identificación de genes sobreexpresados o expresados selectivamente en tejidos tumorales o en estirpes de células tumorales humanas no aporta información precisa acerca del uso de los antígenos transcritos de esos genes en la inmunoterapia. Ello se explica porque solo una subpoblación individual de epítopos de esos antígenos resulta adecuada para aplicaciones de ese tipo, puesto que ha de haber un linfocito T con el TCR correspondiente y la inmunotolerancia hacia ese epítopo concreto ha de ser mínima o nula. Por tanto, es
25 importante seleccionar sólo aquellos péptidos derivados de proteínas sobreexpresadas o selectivamente expresadas que sean presentados ligados a moléculas de MHC y que sean diana de linfocitos T funcionales. Un linfocito T funcional se define como un linfocito T que tras la estimulación con un antígeno específico puede sufrir una expansión clonal y ser capaz de ejecutar funciones efectoras («linfocito T efector»).
Los linfocitos T cooperadores desempeñan un papel importante en la coordinación de la función efectora de los CTL en la inmunidad antitumoral. Los epítopos reconocidos por los linfocitos T cooperadores que desencadenan una respuesta de los linfocitos T cooperadores del tipo TH1 apoyan las funciones efectoras de los linfocitos T citotóxicos CD8-positivos, que incluyen funciones citotóxicas dirigidas contra las células tumorales que muestran en su superficie complejos de MHC/péptido asociado a tumor. De esta forma, los epítopos de los péptidos asociados a tumores que son reconocidos por los linfocitos T cooperadores, solos o en combinación con otros
35 péptidos asociados a tumores, pueden servir como principios activos farmacéuticos en composiciones vacunales destinadas a estimular respuestas inmunitarias antitumorales.
Dado que ambos tipos de respuesta, la dependiente de CD8 y la de CD4, contribuyen conjunta y sinérgicamente al efecto antitumoral, la identificación y caracterización de los antígenos asociados a tumor reconocidos por los CTL CD8+ (ligando: moléculas de MHC de clase I + epítopo peptídico) o por los linfocitos T cooperadores CD4positivos (ligando: moléculas de MHC de clase II + epítopo peptídico) es importante para el desarrollo de vacunas antitumorales.
A la luz de los efectos secundarios graves y los gastos que supone el tratamiento contra el cáncer es evidente la urgente necesidad de mejora de los métodos pronósticos y diagnósticos. Así pues, existe la necesidad de descubrir otros factores que puedan servir como biomarcadores para el cáncer en general y el glioblastoma en
45 particular. Existe igualmente la necesidad de identificar factores que puedan ser utilizados en el tratamiento contra el cáncer en general y contra el glioblastoma en particular.
Y es más, no existe ninguna pauta terapéutica pensada para los pacientes con cáncer de próstata que presentan recidiva bioquímica después de la prostatectomía radical, normalmente causada por tumor residual in situ que no ha sido extirpado en presencia de crecimiento localmente avanzado del tumor. Sería deseable contar con nuevas estrategias terapéuticas de menor morbilidad y similar eficacia terapéutica a las estrategias terapéuticas disponibles en estos momentos.
La presente invención proporciona péptidos que son útiles para el tratamiento del glioblastoma, el cáncer de próstata y otros tumores que sobreexpresan el CSP y/u otros péptidos de la invención. De los péptidos descritos en la presente memoria se ha demostrado, en parte directamente con técnicas de espectrometría de masas, que 55 son presentados de forma natural por moléculas HLA en muestras de glioblastoma humano primario (véanse el ejemplo 1 y la figura 1), o en el caso de la SEQ ID N.º 26 predicha conforme al algoritmo de predicción SYFPEITHI (Rammensee et al., 1995) son ligandos promiscuos de los alelos HLA-DR HLA-DRB1*01, DRB1*03, DRB1*04, DRB1*11 y DRB1*15. A tenor de los datos anteriores y de las frecuencias de dichos alelos DRB1 frecuentes, se puede suponer que el 92% de las personas de raza blanca A*02-positivas expresan como mínimo
imagen8
como por ejemplo, la vacunación con proteínas, ácidos nucleicos, materiales autólogos, o la transferencia de linfocitos de donantes. En el ámbito de la terapia génica, las respuestas de los linfocitos contra los péptidos pueden tenerse en cuenta para la evaluación de efectos secundarios. El control regular de las respuestas de los linfocitos también puede ser una herramienta valiosa para el seguimiento en trasplantes, por ejemplo, con el fin
5 de detectar enfermedades del injerto contra el hospedador y del hospedador contra el injerto.
Los péptidos pueden usarse para generar y desarrollar anticuerpos específicos contra complejos MHC/péptido. Estos pueden ser utilizados como terapia, dirigiendo toxinas o sustancias radiactivas contra el tejido enfermo. Otra aplicación de estos anticuerpos consistiría en dirigir radionúclidos contra el tejido enfermo en aplicaciones de diagnóstico por la imagen como la TEP. Este uso puede ayudar a detectar metástasis pequeñas o determinar
10 el tamaño y la ubicación precisa de los tejidos enfermos.
Además, se pueden utilizar para verificar el diagnóstico histopatológico de cáncer basado en una muestra de biopsia.
La Tabla 1 muestra los péptidos, en parte acordes con la presente invención, sus respectivas SEQ ID N.º, los alelos HLA a los que se unen cada uno de ellos y las proteínas originarias de las que pueden surgir tales
15 péptidos. Reviste especial interés que el péptido conforme a la SEQ ID N.º 1 se una tanto a HLA-DR como a HLA-A*02, con lo que puede desencadenar dos respuestas distintas.
Tabla 1: Péptidos descritos correspondientes a las SEQ ID N.º 4 y 5 de la invención
SEQ ID N.º
Código del péptido Secuencia Alelos HLA Proteína(s) originaria(s)
1
NLGN4X-001 NLDTLMTYV HLA-A*02 NLGN4X
2
SLCO1C1-001 YLIAGIISL HLA-A*02 SLCO1C1
3
ACS-001 KIMERIQEV HLA-A*02 ACSBG1
4
BCA-001 FLGDPPEKL HLA-A*02 BCAN
5
BCA-002 ALWAWPSEL HLA-A*02 BCAN
6
CHI3L1-010 TLYGMLNTL HLA-A*02 CHI3L1
7
CLIP2-001 SLNELRVLL HLA-A*02 CLIP2
8
DTNA-001 KLQDEAYQV HLA-A*02 DTNA
9
EGFR-007 ALAVLSNYDA HLA-A*02 EGFR
10
FABP7-001 LTFGDVVAV HLA-A*02 FABP7
11
GFAP-001 NLAQDLATV HLA-A*02 GFAP
12
GPR56-002 FLLSEPVAL HLA-A*02 GPR56
13
GRI-001 NILEQIVSV HLA-A*02 GRIA4
14
IGF2BP3-001 KIQEILTQV HLA-A*02 IGF2BP3
15
MLC-001 SVVEVIAGI HLA-A*02 MLC1
16
NES-001 GLQSQIAQV HLA-A*02 NES
17
NES-002 SLQENLESL HLA-A*02 NES
18
NES-003 FLFPGTENQEL HLA-A*02 NES
19
NES-004 NLAEELEGV HLA-A*02 NES
20
NR2E1-001 KIISEIQAL HLA-A*02 NR2E1
21
NRCAM-001 GLWHHQTEV HLA-A*02 NRCAM
22
PDPN-001 TLVGIIVGV HLA-A*02 PDPN
(continaución)
SEQ ID N.º
Código del péptido Secuencia Alelos HLA Proteína(s) originaria(s)
23
TNC-001 AMTQLLAGV HLA-A*02 TNC
24
TNC-002 QLLAGVFLA HLA-A*02 TNC
25
CSP-001 TMLARLASA HLA-A*02 CSPG4
26
BIR-002 TLGEFLKLDRERAKN HLA-DR y HLA-A*02 BIRC5/Survivina
27
BIR-002a TLGEFLKLDRERAKD HLA-DR BIRC5/Survivina
28
BIR-002b FTELTLGEF HLA-A1 BIRC5/Survivina
29
BIR-002c LMLGEFLKL HLA-A2 BIRC5/Survivina
30
BIR-002d EPDLAQCFY HLA-B35 BIRC5/Survivina
Proteoglucano de sulfato de condroitina 4 (CSPG4)
El CSPG4 (proteoglucano sulfato de condroitina) es un proteoglucano integral de membrana presente en los
5 pericitos nacientes que cumple un papel funcional en la neovascularización (Ozerdem, 2006). Durante la embriogenia, el proteoglucano CSPG4 se expresa en los capilares inmaduros, pero a medida que estos vasos maduran la expresión se pierde. Es conocido por ser un marcador superficial de progresión precoz del melanoma, implicado en la estimulación de la proliferación, la migración y la invasión de las células tumorales. El CSPG4 se expresa intensamente en >90% de las lesiones de melanoma humano. Aunque el CSPG4 no es
10 estrictamente específico de tumor, las respuestas de los linfocitos T CD4+ reactivos a tumores en pacientes con melanoma y en individuos sanos reconocen el CSPG4693-709 en células de melanoma que expresan el HLA-DR11 en ausencia de autoinmunidad (Erfurt et al., 2007).
La expresión del CSPG4 potencia la diseminación de las células mediada por integrinas, la fosforilación de FAK (cinasa de adhesión focal) y la activación de ERK1/2 (cinasa regulada por señal extracelular) (Yang et al., 2004). 15 Asimismo, existen cada vez más indicios procedentes de datos in vitro de que el CSPG4 desempeña un importante papel en la angiogenia tumoral. Así, en los tumores positivos para CSPG4 se ha observado una tasa de neovascularización y volúmenes vasculares notablemente elevados, y se ha comprobado que el CSPG4 secuestra la angiostatina, cosa que normalmente inhibe la proliferación de las células endoteliales y la angiogenia. Los vasos inmaduros también contienen pericitos positivos para CSPG4, lo cual apunta a la
20 intervención de esta población celular en la modulación de la proliferación de las células endoteliales por medio del bloqueo de los efectos inhibitorios de la angiostatina durante el desarrollo de los vasos (Chekenya et al., 2002b).
La expresión de CSPG4 también ha sido descrita en otros tejidos normales aparte de los pericitos activados, tales como las células endoteliales, condrocitos, miocitos lisos, ciertos queratinocitos basales de la epidermis, así
25 como en células del folículo piloso (Campoli et al., 2004).
En el curso de la angiogenia y como respuesta a patologías del SNC, las células de alta motilidad que expresan el CSPG4 sufren rápidos cambios morfológicos y son reclutadas en puntos donde está teniendo lugar crecimiento y reparación vascular. El CSPG4 se sobreexpresa tanto en las células tumorales como en los pericitos de los vasos sanguíneos de tumores cerebrales malignos (Chekenya and Pilkington, 2002). Con la 30 implantación de células procedentes de una estirpe celular humana de glioma positiva para CSPG4 en cerebros de ratas atímicas inmunodeficientes se pudo demostrar que estos tumores presentan una densidad microvascular superior a la de las ratas control, lo cual implica que la expresión del CSPG4 regula tanto la función como la estructura de la vasculatura tumoral derivada del hospedador (Brekke et al., 2006). En un experimento de xenoinjerto consistente en implantar material biópsico de glioblastoma a ratas atímicas, el 35 CSPG4 se identificó como asociado principalmente a los vasos sanguíneos tanto en los pericitos como en los componentes de la membrana basal de la vasculatura tumoral y su expresión también estuvo asociada con zonas de elevada proliferación celular (Chekenya et al., 2002a). Además, la expresión del CSPG4 corrió paralela a la progresión del tumor en un modelo de implantación de glioma (Wiranowska et al., 2006). La progresión maligna se mantiene por la intercomunicación entre el tumor y su estroma, por la cual el estroma activado nutre a 40 las células neoplásicas proliferativas e invasivas, aportando nueva vasculatura, componentes de la matriz extracelular y factores de crecimiento estimuladores. En ese contexto, el CSPG4 desempeña un papel importante en la activación del tumor-estroma a través de alteraciones en la adhesión, migración y proliferación
celulares y en la morfogenia vascular (Chekenya and Immervoll, 2007).
El CSPG4 se expresa diferencialmente en los gliomas humanos, con mayor expresión en los gliomas de alto grado que en los de bajo (Chekenya et al., 1999). La elevada expresión del CSPG4 aparece correlacionada con la multirresistencia farmacológica mediada por el aumento de la activación de la vía de señalización de la 31
5 integrina/PI3K y sus dianas ulteriores, que promueve la supervivencia de la célula (Chekenya et al., 2008).
CSP-001 ha sido hallado en los siguientes órganos y tejidos y tipos de cáncer:
Cerebro: -glioblastoma;-glioblastoma secundario (derivado de astrocitoma) Colon: -adenocarcinoma (excluido el tipo mucinoso), primario; Recto: -adenocarcinoma, metástasis
10 Estómago: -adenocarcinoma (excluido el tipo con células en anillo de sello), primario Riñón: -carcinoma de células renales, estirpe celular;-carcinoma de células renales, tipo de células claras, metástasis, todos los focos secundarios;-carcinoma de células renales, tipo de células claras, primario; carcinoma de células renales, primario Pulmón: -adenocarcinoma, primario:-carcinoma adenoescamoso, primario; -cáncer primario;-carcinoma
15 microcítico, primario; -carcinoma epidermoide, primario; Páncreas: -adenocarcinoma, primario; -tumor de células de los islotes, maligno, metástasis Próstata: -adenocarcinoma, primario Piel: -melanoma maligno metastásico, metástasis ganglionar
Por consiguiente, se prefiere en particular una composición farmacéutica que comprende un péptido acorde con 20 la SEQ ID N.º 1 para el tratamiento de:
Cerebro: -glioblastoma; -glioblastoma secundario (derivado de astrocitoma) Colon: -adenocarcinoma (excluido el tipo mucinoso), primario; Recto: -adenocarcinoma, metástasis Estómago: -adenocarcinoma (excluido el tipo con células en anillo de sello), primario
25 Riñón: -carcinoma de células renales, estirpe celular; carcinoma de células renales, tipo de células claras, metástasis, todos los focos secundarios; carcinoma de células renales, tipo de células claras, primario; carcinoma de células renales, primario Pulmón:-adenocarcinoma, primario; estadio I,-carcinoma adenoescamoso, primario; -cáncer primario;carcinoma microcítico, primario; -carcinoma epidermoide, primario;
30 Páncreas: -adenocarcinoma, primario; -tumor de células de los islotes, maligno, metástasis Próstata: -adenocarcinoma, primario Piel: -melanoma maligno metastásico, metástasis ganglionar
Acil-CoA sintetasa, miembro 1 de la familia bubblegum (ACSBG1)
La proteína codificada por este gen posee actividad sintetasa de grupos acilo de cadena larga y coenzima A. Se
35 cree que juega un papel central en el cerebro en la activación del metabolismo de los ácidos grasos de cadena muy larga y de la mielinogenia. La activación de los ácidos grasos mediante la tioesterificación para formar acetil-CoA es un requisito necesario en la mayoría de las reacciones en que intervienen esta clase de moléculas. Aún no se han descrito en la bibliografía funciones que sean específicas del cáncer ni su sobreexpresión. El patrón de expresión de la proteína ACSBG1 en el cerebro, las glándulas suprarrenales, los testículos y los ovarios, así
40 como su función, apuntan a su implicación en la patología bioquímica de la adrenoleucodistrofia ligada al cromosoma X (XALD). XALD es un trastorno neurodegenerativo grave, a menudo mortal, que se caracteriza por la acumulación en el plasma y en los tejidos de altos niveles de ácidos grasos saturados de cadena muy larga (Asheuer et al., 2005; Pei et al., 2003).
Brevicán (BCAN)
45 El brevicán es una proteína de la matriz extracelular que se expresa con profusión desde el nacimiento hasta los 8 años de edad y que llegada la veintena es regulada a la baja hasta alcanzar niveles bajos que se mantienen en la corteza cerebral adulta normal. La isoforma con GPI se expresa en niveles uniformemente bajos a lo largo del desarrollo (Gary et al., 2000). Los gliomas malignos invaden agresivamente el cerebro normal circundante, fenómeno que podría ser facilitado por proteínas extracelulares específicas de tejido o de tumor. Así pues, la
50 matriz extracelular puede modular, en parte, la permisividad del tejido al movimiento celular. En consecuencia, la capacidad de los gliomas para modificar la matriz extracelular del SNC podría potenciar la invasividad de dichas células. Una molécula de la matriz extracelular que sufre una drástica regulación al alza en los gliomas es el BCAN, un proteoglucano de sulfato de condroitina propio del cerebro. La expresión del BCAN también aparece regulada al alza durante los períodos de elevada motilidad de las células gliales, que tienen lugar durante el
55 desarrollo y a consecuencia de lesiones cerebrales. En el glioma se puede detectar un incremento de la expresión de en torno a siete veces con respecto a los niveles normales (Gary et al., 2000; Gary et al., 1998). Además de la regulación al alza del BCAN en el glioma, es posible que el procesamiento proteolítico de la proteína entera también contribuya a la invasión (Gary et al., 1998; Nutt et al., 2001). El procesamiento por medio
imagen9
imagen10
imagen11
imagen12
imagen13
imagen14
Los citoblastos adultos que expresan la nestina también se encuentran en la región periluminal de la hipófisis anterior madura y, por medio de técnicas de mapeo del destino genético, se ha demostrado que sirven para generar subgrupos de los seis tipos de células endocrinas terminalmente diferenciadas que concurren en la glándula hipofisaria. Dichos citoblastos, si bien no desempeñan ningún papel relevante en la organogenia, sufren
5 una expansión posnatal y comienzan a engendrar una progenie diferenciada, que coloniza el órgano que inicialmente consistía enteramente en células diferenciadas derivadas de precursores embrionarios (Gleiberman et al., 2008).
Subfamilia 2 del receptor nuclear, grupo E, miembro 1 (NR2E1)
El NR2E1 (TLX) es un factor de transcripción esencial para la proliferación y la autorrenovación de los
10 neurocitoblastos mediante el reclutamiento de las histona desacetilasas (HDAC) hacia los genes diana situados corriente abajo con el fin de reprimir su transcripción, lo que a su vez regula la proliferación de los neurocitoblastos. El reclutamiento de las HDAC conduce a la represión de la transcripción de los genes diana TLX, el inhibidor de la cinasa dependiente de ciclina p21(CIP1/WAF1)(p21) y el gen oncosupresor PTEN (Sun et al., 2007). La subfamilia TLX/HOX11 de genes homeobox divergentes interviene en diversos aspectos de la
15 embriogenia y, en el caso de TLX1/HOX11 y de TLX3/HOX11L2, destacan notablemente como oncogenes en la leucemia linfoblástica aguda de linfocitos T (Dixon et al., 2007). El NR2E1 dirige un programa de desarrollo fundamental de la organización retiniana y controla la generación del número apropiado de progenies retinianas y el desarrollo de los gliocitos durante el prolongado período de la retinogenia (Miyawaki et al., 2004). No se ha hallado información específica referente al glioblastoma.
20 Molécula de adhesión celular neuronal (NRCAM)
La NRCAM humana (Molécula de adhesión celular relacionada con la neuroglía) aparece sobreexpresada en el tejido de glioblastoma multiforme (GMT) con respecto al tejido cerebral normal. La NRCAM es descrita como una proteína transmembrana de tipo I de un solo paso que interacciona con la anquirina. La neutralización con hNRCAM antisentido causó la reducción de la expresión de la hNRCAM natural, cambios en la morfología 25 celular, redujo el ritmo de proliferación celular y prolongó el ciclo celular. Además, la sobreexpresión de las hNRCAM antisentido en dichas células provocó un acusado descenso del número de colonias en agar blando y de la invasión a través del gel de la matriz extracelular en condiciones in vitro. La inyección subcutánea a ratones atímicos de células de glioblastoma que sobreexpresaban las hNRCAM antisentido causó la completa inhibición de la formación de tumores en contraste con las células transfectadas únicamente con el vector. La inoculación 30 en el seno del tumor de un plásmido que expresaba hNRCAM antisentido también ralentizó el crecimiento tumoral en ratones atímicos en condiciones in vivo (Sehgal et al., 1999). El análisis por RT-PCR específico del gen indicó que la hNRCAM aparece sobreexpresada en los tejidos tumorales de glioblastoma, gliomas y astrocitomas de alto grado en comparación con el tejido cerebral normal (Sehgal et al., 1998). La NRCAM, una molécula de adhesión intercelular perteneciente a la familia de las moléculas de adhesión celular similares a las 35 inmunoglobulinas, conocida por su función en el crecimiento y la orientación de las ramificaciones neuronales, ha sido identificada recientemente como un gen diana de la señalización de la beta-catenina en células y tejidos de melanoma y de carcinoma de colon humanos. La transducción de la NRCAM en fibroblastos a través de retrovirus estimula la motilidad celular y la oncogenia (Conacci-Sorrell et al., 2005). El fomento de la transcripción de la NRCAM a través de la beta-catenina o de la plakoglobina desempeña un papel en la oncogenia del
40 melanoma y del cáncer de colon, probablemente al promover el crecimiento y la motilidad de las células (Conacci-Sorrell et al., 2002). Otras dianas de la vía de señalización de la beta-catenina también aparecen reguladas al alza, como es el caso de MYC (Liu et al., 2008). La NRCAM aparece sobreexpresada en los carcinomas papilares de tiroides humanos a nivel del ARNm y de la proteína, en cualquiera de los estadios tumorales (Gorka et al., 2007).
45 La sobreexpresión del ARNm de la NRCAM en los tumores está relacionada con altos índices de proliferación y se asoció a un desenlace negativo en ependimomas (Zangen et al., 2007).
Podoplanina (PDPN)
La PDPN es una glucoproteína integral de membrana de tipo I similar a la mucina que presenta una distribución diversa en los tejidos humanos. Interviene en la migración, la invasión y la metástasis de las células cancerosas, 50 así como en la progresión maligna y está implicada en la agregación plaquetaria. CLEC-2 es el primer receptor fisiopatológico de la podoplanina descubierto (Kato et al., 2008). Se estudió una serie de 115 glioblastomas mediante técnicas de inmunohistoquímica con un anticuerpo anti-PDPN. El 47% de ellos expresaban la PDPN en células de la superficie, sobre todo alrededor de las zonas necróticas y en las células endoteliales en proliferación. Asimismo, la expresión del ARNm y de la proteína de la PDPN resultaron notablemente superiores 55 en el glioblastoma que en los astrocitomas anaplásicos, lo cual parece indicar que la expresión de dicha proteína podría estar relacionada con la malignidad de los astrocitos (Mishima et al., 2006). En otros análisis, la PDPN también ha sido hallada expresada en el 82,9% de una serie de glioblastomas (29/35) (Shibahara et al., 2006). En otro estudio que investigó la expresión de la PDPN y la actividad estimuladora de la agregación plaquetaria por parte de estirpes celulares de glioblastoma, la estirpe LN319 expresó con profusión la PDPN y fomentó la 60 agregación. El NZ-1, un anticuerpo anti-PDPN altamente reactivo, neutralizó la agregación plaquetaria facilitada
por la LN319, lo cual apunta a que la PDPN sería el principal determinante de la agregación estimulada por la misma (Kato et al., 2006). Los niveles de expresión génica de la PDPN fueron notablemente mayores en los glioblastomas que en la sustancia blanca no neoplásica, extremo confirmado por técnicas inmunohistoquímicas (Scrideli et al., 2008). La PDPN se expresa específicamente en las células endoteliales linfáticas pero no en las 5 del endotelio vascular sanguíneo en cultivo y en la linfangiogenia tumoral. Si bien la PDPN parece estar básicamente ausente en la epidermis humana normal, su expresión resultó muy intensa en 22 de 28 carcinomas espinocelulares, lo cual parece indicar su implicación en la progresión tumoral (Schacht et al., 2005). La PDPN aparece regulada al alza en el frente invasor de ciertos carcinomas humanos. El análisis de la expresión de la PDPN en células de cáncer de mama humano cultivadas, en un modelo murino de carcinogenia de las células beta pancreáticas, y en biopsias tumorales humanas indica que la PDPN promueve la invasión de las células tumorales en condiciones in vitro e in vivo. La PDPN induce la migración colectiva de las células por medio de la formación de filopodios a través de la regulación a la baja de las actividades de las GTPasas pequeñas de la familia Rho. En conclusión, la PDPN estimula una vía alternativa de invasión de las células tumorales en ausencia de la transición epitelio-mesenquimática (Wicki et al., 2006). El nivel de expresión de la PDPN apareció
15 potenciado en una mayoría de pacientes con tumores colorrectales (Kato et al., 2003). Al TGF-beta se le atribuye la función de regulador fisiológico de la PDPN en células tumorales (Suzuki et al., 2008). La PDPN es expresada por células cancerosas procedentes del esófago, el pulmón, el hígado, el colon y la mama, así como de las células endoteliales linfáticas (Kono et al., 2007).
Tenascina C (hexabraquión) (TNC)
La expresión de la glucoproteína de la matriz extracelular TNC en el glioblastoma pero no en el cerebro normal y su relación con las membranas basales del endotelio que prolifera en el marco del glioblastoma ya sugirieron en 1983 que la TNC podría servir como marcador de los gliomas (Bourdon et al., 1983). Durante la progresión tumoral, la matriz extracelular de los tejidos tumorales se remodela hasta convertirse en un entorno más propicio para la progresión del tumor, proceso en el que la angiogenia es un paso esencial (Carnemolla et al., 1999). 25 Además, la TNC aparece sobreexpresada en vasos tumorales que muestran un elevado índice proliferativo, lo cual indica su implicación en la angiogenia neoplásica (Kim et al., 2000). En los tumores, la hipoxia puede estimular la expresión de la TNC (Lal et al., 2001). La estimulación de la TNC está mediada por el TGF-beta1, que proporciona el mecanismo para la invasión del parénquima sano por parte de los gliomas de alto grado (Hau et al., 2006). Asimismo, la sobreexpresión de la TNC es consecuencia de la activación específica del promotor del gen de la tenascina C por parte de la gastrina, que es conocida por modular notablemente la migración de las células del glioblastoma humano (Kucharczak et al., 2001). La TNC regula a la baja la tropomiosina-1 y por ello desestabiliza las fibras de estrés de actina. Además, causa la regulación a la baja del inhibidor de la ruta de Wnt Dickkopf1. Dado que el descenso de la expresión de la tropomiosina-1 y el aumento de la vía de señalización de las Wnt están vinculados estrechamente con la transformación y la oncogenia, la TNC modula específicamente
35 estas vías de señalización potenciando la proliferación de las células de glioma (Ruiz et al., 2004).
En los tejidos de glioblastoma se observa la tinción perivascular de la TNC alrededor de los vasos sanguíneos que irrigan el tumor, mientras que ésta es menos frecuente en los gliomas de grado II y III de la OMS, lo cual indica que la intensidad de la tinción de la TNC está relacionada con el grado del tumor y que a mayor intensidad, peor pronóstico (Herold-Mende et al., 2002; Zukiel et al., 2006). La expresión máxima de la TNC se observa en el tejido conectivo que rodea los tumores (Chiquet-Ehrismann and Tucker, 2004). La TNC también contribuye a generar un nicho de citoblastos en la zona subventricular (ZSV), interviniendo en la orquestación de la señalización de los factores de crecimiento para acelerar el desarrollo de los neurocitoblastos. La TNC es esencial para la expresión oportuna del EGFR en los neurocitoblastos y potencia la señalización del FGF2. El efecto predominante de la TNC sobre las células situadas en la ZSV consiste en la regulación de la progresión
45 del desarrollo (Garcion et al., 2004). La TNC es el inductor más potente de la migración dirigida de los neurocitoblastos humanos (haptotaxia). La matriz extracelular producida por el tumor ofrece, pues, un entorno permisivo para el tropismo de los neurocitoblastos en células tumorales diseminadas (Ziu et al., 2006).
La vía de la TNC también desempeña un papel destacado en el crecimiento y la metástasis de los tumores mamarios. Así pues, el bloqueo de la señalización o la reducción de la expresión de la TNC en células MDA-MB435 derivó en una alteración sustancial de la migración celular y en la proliferación celular independiente de la fijación. Ratones a los que se inyectaron clones de células MDA-MB-435 que presentaban una expresión reducida de la TNC manifestaron un descenso sustancial del crecimiento del tumor primario, así como de las recidivas tumorales tras la extirpación quirúrgica de dicho tumor y un descenso de la incidencia de las metástasis pulmonares (Calvo et al., 2008).
55 Survivina (BIRC5)
La expresión de BIRC5 (survivina), un miembro de la familia de proteínas inhibidoras de la apoptosis (IAP), es elevada en tejidos fetales y en diversos cánceres humanos mientras que su expresión está enormemente reducida en los tejidos diferenciados normales del adulto, sobre todo en aquellos cuyo índice de proliferación es bajo. La survivina parece ser capaz de regular tanto la proliferación celular como la muerte celular apoptósica. Aunque la survivina se localiza normalmente en la región citoplasmática de la célula, donde está asociada con un mal pronóstico en el cáncer, también se ha descrito en el núcleo, localización donde indica un pronóstico
imagen15
marcador para distinguir el glioblastoma de otras formas de cáncer.
En consecuencia, se describen métodos para identificar un animal, preferentemente un ser humano, que es probable que padezca un glioblastoma. En una forma de realización, la probabilidad determinada varía entre el 80% y el 100%. Tal método comprende la determinación del nivel de al menos una de las proteínas BCA, CLIP2,
5 DTNA, NLGNAX, NR2E1, NRCAM y PDPN en una muestra tumoral del sujeto animal. En una forma de realización, la muestra se obtiene por cirugía radical. En otra forma de realización, la muestra se obtiene mediante biopsia por punción.
Cuando el nivel determinado de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN indica que están regulados al alza en el 20% o más de las células respecto al determinado en células epiteliales benignas del
10 mismo individuo, se considera que el sujeto animal probablemente tenga un glioblastoma.
Cuantas más proteínas del grupo estén reguladas al alza, a saber, BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN, más alta será la probabilidad de que el sujeto animal esté afectado por un glioblastoma.
En una forma de realización, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa in situ. En una forma de realización, la determinación del nivel de BCA, CLIP2, DTNA,
15 NLGNAX, NR2E1, NRCAM o PDPN se efectúa in vitro. En otra forma más de realización, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa in vivo. En una forma de realización, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se lleva a cabo con microscopía con captura por láser combinada con electroinmunotransferencia (Western blot).
En una forma de realización concreta, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, 20 NRCAM o PDPN se efectúa con un anticuerpo específico contra BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM
o PDPN. En otra forma de realización concreta, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa con una PCR con un cebador específico para un ARNm que codifica BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN. En otra forma más de realización concreta, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa con una sonda nucleotídica 25 específica para un ARNm que codifica BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN. En una forma de realización, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa con hibridación de ARN (Northern blot). En otra forma de realización, la determinación del nivel de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN se efectúa con un ensayo de protección frente a ribonucleasas. En otras formas de realización, pruebas inmunológicas tales como el enzimoinmunoanálisis de adsorción (ELISA), el 30 radioinmunoensayo (RIA) o la inmunoelectrotransferencia pueden ser utilizadas para detectar polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN en una muestra de líquido corporal (sangre, suero, esputo, orina o líquido peritoneal, etc.). Biopsias, muestras de tejido y muestras de células (como de los ovarios, ganglios linfáticos, raspados de células epiteliales de la superficie del ovario, biopsias de pulmón, biopsias de hígado, y cualquier muestra de líquido que contenga células (como líquido peritoneal, esputo y derrame pleural) 35 pueden ser analizadas por disgregación y/o solubilización de la muestra de tejido o células y sometiéndola a un inmunoensayo para la detección de polipéptidos, como ELISA, RIA o inmunoelectrotransferencia (Western blot). Esas muestras de células o tejidos también pueden ser analizadas con métodos basados en ácidos nucleicos, como, por ejemplo, amplificación por reacción en cadena de la polimerasa con transcripción inversa (RT-PCR), hibridación Northern, transferencias puntual o por ranuras. Para visualizar la distribución de las células tumorales 40 en una muestra de tejido y detectar un polipéptido o un ARNm que sean marcadores del glioblastoma pueden emplearse pruebas diagnósticas que conservan la estructura tisular de la muestra, como, por ejemplo, tinción inmunohistológica, hibridación de ARN in situ o RT-PCR in situ. Para la localización in vivo de masas tumorales es posible utilizar pruebas de diagnóstico por la imagen como la resonancia magnética (RM) mediante la introducción en el sujeto de un anticuerpo que se una específicamente a polipéptidos de BCA, CLIP2, DTNA,
45 NLGNAX, NR2E1, NRCAM o PDPN (concretamente a un polipéptido localizado en la superficie celular), en que el anticuerpo esté conjugado o acoplado de otro modo a un marcador paramagnético (u otra molécula detectable adecuada, dependiendo del método de diagnóstico por la imagen usado); otra alternativa consiste en localizar un anticuerpo específico de marcador tumoral desprovisto de marcaje con un anticuerpo secundario que lleve acoplada una molécula detectable.
50 Asimismo, se describen proteínas o péptidos quiméricos o de fusión que comprenden los polipéptidos BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y/o PDPN, y fragmentos de los mismos, incluidos fragmentos funcionales, proteolíticos y antigénicos.
El compañero de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD4+. Los epítopos que estimulan a los CD4+ son bien conocidos en la técnica e incluyen los
55 identificados en el toxoide tetánico. En una forma de realización el péptido forma parte de una proteína de fusión, que en concreto comprende aminoácidos del extremo N-terminal de la cadena invariable (Ii) asociada al antígeno HLA-DR. Se describe una proteína humana truncada o una proteína de fusión de un fragmento de proteína y otra porción polipeptídica siempre que la porción humana incluya una o más secuencias de aminoácidos como las descritas.
También se describen anticuerpos contra los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN, contra las proteínas quiméricas o de fusión que comprenden los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN, así como contra los fragmentos de los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN, incluidos fragmentos proteolíticos y antigénicos, y contra las proteínas o
5 péptidos quiméricos o de fusión que comprendan tales fragmentos. Además, también se describen métodos para usar tales anticuerpos para el pronóstico del cáncer, en particular del glioblastoma.
Los anticuerpos de la presente invención pueden ser anticuerpos policlonales, anticuerpos monoclonales y/o anticuerpos quiméricos. También se describen estirpes de células inmortales que producen un anticuerpo monoclonal de la presente invención.
10 Cualquier persona con aptitudes ordinarias en la técnica entenderá que en determinadas circunstancias la expresión elevada de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN como gen marcador de tumor indicará un pronóstico peor para el sujeto con glioblastoma. Por ejemplo, niveles relativamente altos de expresión de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN pueden indicar un tumor primario relativamente grande, una carga tumoral mayor (p. ej., más metástasis), o un fenotipo tumoral relativamente más maligno.
15 Cuanto mayor sea la sobreexpresión de las diferentes proteínas del grupo que comprende BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN, peor será el pronóstico para el paciente.
Los métodos de diagnóstico y pronóstico descritos implican el uso de métodos conocidos, p. ej., métodos a base de anticuerpos para detectar polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN y métodos basados en la hibridación y/o la amplificación de ácidos nucleicos para detectar el ARNm de BCA, CLIP2, DTNA,
20 NLGNAX, NR2E1, NRCAM y/o PDPN.
Además, como la destrucción rápida de las células tumorales provoca a menudo la generación de autoanticuerpos, los marcadores tumorales de glioblastoma de la invención pueden ser usados en ensayos serológicos (p. ej., en una prueba de ELISA con el suero del sujeto) para detectar autoanticuerpos contra BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN en un sujeto. Los niveles de autoanticuerpos específicos
25 contra los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN que sean al menos unas 3 veces mayores (y preferiblemente al menos 5 o 7 veces mayores, o lo más preferiblemente al menos 10 o 20 veces mayores) que una muestra de control serán indicativos de glioblastoma.
Los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN localizados en la superficie celular, en el interior de la célula o secretados pueden ser empleados para el análisis de biopsias, p. ej., muestras de 30 tejido o de células (incluidas células obtenidas de muestras de líquido como el líquido de la cavidad peritoneal) para identificar una biopsia tisular o celular como portadora de células de glioblastoma. La biopsia puede ser analizada como un tejido intacto o como una muestra celular íntegra, o la muestra de tejido o de células puede ser disgregada y/o solubilizada si el tipo de prueba diagnóstica así lo exige. Por ejemplo, las biopsias o las muestras pueden ser sometidas a un análisis del tejido entero o de las células íntegras para determinar los 35 niveles de polipéptidos o de ARNm de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN in situ, p. ej., mediante inmunohistoquímica, hibridación de ARNm in situ o RT-PCR in situ. La persona versada en la técnica sabrá cómo procesar los tejidos o células para el análisis de los niveles de polipéptidos o de ARNm con métodos inmunológicos como ELISA, inmunotransferencia, o métodos equivalentes, o análisis de los niveles de ARNm mediante métodos analíticos basados en ácidos nucleicos tales como RT-PCR, hibridación Northern, o
40 transferencia puntual o por ranuras.
Equipos para medir los niveles de expresión de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN
Se describen equipos para detectar el aumento del nivel de expresión de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN como genes marcadores del glioblastoma en un sujeto. Un equipo para detectar un polipéptido marcador del glioblastoma contiene preferentemente un anticuerpo que se una específicamente a un polipéptido
45 marcador de glioblastoma seleccionado. Un equipo para detectar el ARNm de un marcador de glioblastoma contiene preferentemente uno o más ácidos nucleicos (p. ej., uno o más cebadores o sondas oligonucleotídicos, sondas de ADN, sondas de ARN, o moldes para generar sondas de ARN) que se hibriden específicamente con el ARNm de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN.
En concreto, el equipo con anticuerpo puede ser utilizado para detectar la presencia y/o medir el nivel de un
50 polipéptido de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y/o PDPN que es reconocido específicamente por el anticuerpo o un fragmento inmunorreactivo del mismo. El equipo puede incluir un anticuerpo reactivo con el antígeno y un reactivo para detectar una reacción del anticuerpo con el antígeno. Tal equipo puede ser un kit de ELISA y puede contener un control (p. ej., una cantidad especificada de un polipéptido marcador de glioblastoma en concreto), anticuerpos primarios y secundarios si procede, y cualquier otro reactivo necesario como moléculas
55 detectables, sustratos enzimáticos y reactivos colorimétricos como los antes descritos. Alternativamente, el equipo de diagnóstico puede ser un kit de inmunotransferencia que en general comprende los componentes y reactivos descritos en la presente memoria.
Se puede usar un equipo de ácidos nucleicos para detectar y/o medir el nivel de expresión de BCA, CLIP2,
DTNA, NLGNAX, NR2E1, NRCAM y PDPN mediante la detección y/o la medición de la cantidad de ARNm de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN presente en una muestra, como una biopsia de tejido o de células. Por ejemplo, un equipo de RT-PCR para la detección de la expresión elevada de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN contiene preferentemente suficientes cebadores oligonucleotídicos para 5 llevar a cabo la transcripción inversa del ARNm del marcador de glioblastoma en ADNc y la amplificación con PCR de dicho ADNc, y preferentemente también contendrá moldes y cebadores de PCR de control para llevar a cabo los pertinentes controles negativo y positivo, así como controles internos para la cuantificación. Una persona con conocimientos ordinarios de la técnica sabrá seleccionar los cebadores adecuados para llevar a cabo las reacciones de transcripción inversa y PCR, así como las reacciones de control pertinentes. Se pueden encontrar indicaciones, por ejemplo, en F. Ausubel et al., Current Protocols in Molecular Biology, John Wiley & Sons, New York, N. Y., 1997. En la técnica se conocen muchas variaciones de la RT-PCR. La administración dirigida de inmunotoxinas contra BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN puede servir como dianas terapéuticas para el tratamiento o la prevención del glioblastoma. Por ejemplo, una molécula de anticuerpo que se una específicamente a polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y
15 PDPN localizados en la superficie puede ser conjugada con un radioisótopo u otro compuesto tóxico. Los conjugados de anticuerpo se administran al sujeto de modo que la unión del anticuerpo a su polipéptido afín del glioblastoma se traduce en la administración dirigida del compuesto terapéutico en las células de glioblastoma, tratando así un cáncer de ovario.
La fracción terapéutica puede ser una toxina, radioisótopo, fármaco, sustancia química, o una proteína (véase p. ej., Bera et al. "Pharmacokinetics and antitumor activity of a bivalent disulfide-stabilized Fv immunotoxin with improved antigen binding to erbB2" Cancer Res. 59:4018-4022 (1999)). Por ejemplo, el anticuerpo puede estar ligado o conjugado a una toxina bacteriana (p. ej., toxina diftérica, exotoxina A de Pseudomonas, toxina colérica)
o toxina vegetal (p. ej., toxina del ricino) para la administración dirigida de la toxina en una célula que exprese BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN. Esta inmunotoxina puede ser administrada a una célula
25 y tras su unión al polipéptido marcador del glioblastoma localizado en la superficie celular, la toxina conjugada con el anticuerpo específico del marcador de glioblastoma entrará en contacto con la célula.
Existe otro aspecto más de la presente invención que se refiere a un anticuerpo que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I que forma un complejo con un antígeno restringido por HLA (en lo sucesivo también denominado como «anticuerpo específico de complejo»). Se describe un método para producir un anticuerpo recombinante que se une específicamente a un complejo mayor de histocompatibilidad humano (MHC) de clase I o II que está formando un complejo con un antígeno restringido por HLA, comprendiendo dicho método: La inmunización de un mamífero no humano genéticamente modificado que comprenda células que expresen dicho complejo mayor de histocompatibilidad humano (MHC) de clase I o II con una forma soluble de una molécula MHC de clase I o II unida a dicho antígeno restringido por HLA; el 35 aislamiento de moléculas de ARNm a partir de células productoras de anticuerpos de dicho mamífero no humano; la producción de una fagoteca que contenga moléculas proteicas codificadas por dichas moléculas de ARNm; y el aislamiento de al menos un fago de dicha fagoteca, en que al menos ese fago presente dicho anticuerpo capaz de unirse específicamente al citado complejo mayor de histocompatibilidad humano (MHC) de clase I o II unido con dicho antígeno restringido por HLA. Métodos pertinentes para la producción de tales anticuerpos y de complejos mayores de histocompatibilidad de clase I monocatenarios, así como de otras herramientas para la producción estos anticuerpos se revelan en WO 03/068201, WO 2004/084798, WO 01/72768, WO 03/070752, y en Cohen CJ, Denkberg G, Lev A, Epel M, Reiter Y. Recombinant antibodies with MHC-restricted, peptide-specific, T-cell receptor-like specificity: new tools to study antigen presentation and TCRpeptide-MHC interactions. J Mol Recognit. 2003 Sep-Oct;16(5):324-32. ; Denkberg G, Lev A, Eisenbach L,
45 Benhar I, Reiter Y. Selective targeting of melanoma and APCs using a recombinant antibody with TCR-like specificity directed toward a melanoma differentiation antigen. J Immunol. 2003 Sep 1;171(5):2197-207; y en Cohen CJ, Sarig O, Yamano Y, Tomaru U, Jacobson S, Reiter Y. Direct phenotypic analysis of human MHC class I antigen presentation: visualization, quantitation, and in situ detection of human viral epitopes using peptidespecific, MHC-restricted human recombinant antibodies. J Immunol. 2003 Apr 15; 170(8):4349-61, que a efectos de la presente invención se incorporan explícitamente como referencia en su integridad.
Preferiblemente el anticuerpo se une al complejo con una afinidad de unión inferior a 20 nanomolar, preferentemente a 10 nanomolar, lo cual se considera «específico» en el contexto de la presente invención.
El término «anticuerpo» se utiliza en la presente memoria en sentido amplio e incluye tanto anticuerpos policlonales como monoclonales. Además de las moléculas de inmunoglobulina intactas, el término
55 «anticuerpos» también incluye fragmentos o polímeros de esas moléculas de inmunoglobulina y versiones humanizadas de moléculas de inmunoglobulina, siempre que posean alguna de las propiedades deseadas (p. ej., ser un anticuerpo específico de complejo como el susodicho, administración de una toxina contra una célula cancerosa que exprese un gen marcador de glioblastoma con un nivel elevado, y/o inhibición de la actividad de un polipéptido marcador del cáncer, como la survivina) descritas en la presente memoria.
Además, con cualquier polipéptido de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN para el cual exista un ligando específico (p. ej., un ligando que se una a una proteína localizada en la superficie de la célula), este ligando se podrá usar en lugar de un anticuerpo para dirigir un compuesto tóxico contra la células de
imagen16
imagen17
Puesto que los marcadores tumorales del glioblastoma BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN y otros de la invención se expresan con profusión en las células del glioblastoma, pero en cambio lo hacen extremadamente poco en las células normales, la inhibición de la expresión de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN o de la actividad de sus polipéptidos puede formar parte de una estrategia terapéutica
5 para tratar o prevenir el glioblastoma.
El principio de la terapia antisentido se basa en la hipótesis de que es posible suprimir la expresión génica de secuencias específicas (ya sea por vía transcripcional o traduccional) mediante la hibridación en el interior de la célula del ADN genómico o del ARNm con una molécula antisentido complementaria a ellos. La formación de ese ácido nucleico bicatenario híbrido trastoca la transcripción del ADN genómico que codifica el antígeno tumoral
10 que constituye la diana, o altera el procesamiento/transporte/traducción y/o la estabilidad del ARNm del antígeno tumoral diana.
Los ácidos nucleicos antisentido se pueden hacer llegar a las células con diversas estrategias. Por ejemplo, a un sujeto se le pueden administrar directamente oligonucleótidos antisentido o ARN antisentido (p. ej., por inyección intravenosa) de tal forma que puedan ser absorbidos por las células tumorales. Otra alternativa consiste en la
15 introducción en células in vivo de vectores virales o plasmídicos que codifiquen ARN antisentido (o fragmentos de ARN). Los efectos antisentido también se pueden inducir con secuencias codificantes, pero la magnitud de los cambios fenotípicos es muy variable. Los cambios fenotípicos inducidos por la terapia antisentido se valoran en función de los cambios en, p. ej., las concentraciones del ARNm diana, concentraciones de la proteína diana y/o niveles de actividad de dicha proteína.
20 En un ejemplo concreto, la inhibición de la función del marcador/diana del glioblastoma con terapia génica antisentido se puede lograr con la administración directa de ARN antisentido del marcador del glioblastoma a un sujeto. El ARN antisentido del marcador tumoral se puede producir y aislar con una técnica estándar, pero se produce más fácilmente con la transcripción in vitro utilizando un ADNc antisentido del marcador tumoral controlado con un promotor eficiente (p. ej., el promotor de T7). La administración a células del ARN antisentido
25 del marcador tumoral se puede efectuar con cualquiera de los métodos de administración directa de ácidos nucleicos descritos a continuación.
Un estrategia alternativa para inhibir la función de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN con terapia génica implica la expresión intracelular de un anticuerpo anti-BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN o de una porción de un anticuerpo anti-BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o 30 PDPN. Por ejemplo, el gen (o fragmento de gen) que codifica un anticuerpo monoclonal que se une específicamente a un polipéptido de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN y que inhibe su actividad biológica se sitúa bajo el control transcripcional de una secuencia reguladora específica (p. ej., específica de tejido o de tumor), dentro de un vector de expresión de ácidos nucleicos. A continuación el vector se administra al sujeto de tal modo que es captado por las células del glioblastomas u otras células, que después
35 segregarán el anticuerpo anti-BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN y de ese modo bloquearán la actividad biológica del polipéptido de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN. Preferentemente, los polipéptidos de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN estarán presentes en la superficie externa de las células de glioblastoma.
En los métodos susodichos, que incluyen la administración y la absorción de ADN exógeno por las células del
40 sujeto (transducción o transfección génica), los ácidos nucleicos de la presente invención pueden estar en forma de ADN desnudo o pueden estar incorporados en un vector para suministrar los ácidos nucleicos a las células e inhibir la expresión de la proteína marcadora del glioblastoma. El vector puede estar disponible en una preparación comercial, como un vector adenovírico (Quantum Biotechnologies Inc., Laval, Quebec, Canadá). La liberación del ácido nucleico o del vector en las células se puede materializar a través de varios mecanismos.
45 Como ejemplo, puede ser a través de liposomas con preparaciones comerciales de liposomas como LIPOFECTIN, LIPOFECTAMINE (GIBCO-25 BRL, Inc., Gaithersburg, Maryland, EE. UU.), SUPERFECT (Qiagen, Inc. Hilden, Alemania) y TRANSFECTAM (Promega Biotec, Inc., Madison, Wisconsin, EE. UU.), así como otros liposomas desarrollados según los procedimientos habituales en la técnica. Asimismo, el ácido nucleico o el vector de esta invención se pueden suministrar in vivo mediante electroporación, una tecnología
50 que ofrece Genetronics, Inc. (San Diego, California, EE. UU.) o mediante un aparato de SONOPORATION (ImaRx Pharmaceutical Corp., Tucson, Arizona, EE. UU.).
Como ejemplo, el vector puede ser un sistema viral, como un sistema de vector retrovírico que puede encapsidar un genoma retrovírico recombinante. El retrovirus recombinante infecta las células y con ello inocula un ácido nucleico antisentido que inhibe la expresión de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM o PDPN. El 55 método exacto para introducir el ácido nucleico alterado en células de mamífero no se limita al uso de vectores retrovíricos. Existen otras técnicas comunes para llevar a cabo este procedimiento, tales como vectores adenovíricos, vectores víricos adenoasociados (AAV), vectores lentivíricos o vectores retrovíricos seudotipados. También se pueden utilizar técnicas de transducción física, como liposomas y a través de receptores y otros mecanismos de endocitosis. La presente invención se puede utilizar en conjunción con cualquiera de estos y de
60 otros métodos usuales de transferencia génica.
imagen18
(continuación)
Posición
1 2 3 4 5 6 7 8 9
SEQ ID 25
Variantes L
L
L
E
K
I
A G I I A E
L
Y P K Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
ACS-001
Código del péptido K I M E R I Q E V
SEQ ID 3
Variantes M L
L
L
K
I
A G I A
L
Y P K L Y
F
F
T Y T H
P
N
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
BCA-001
Código del péptido F L G D P P E K L
SEQ ID 4
Variantes M
E
I
A G I I A E
L
Y P K L Y
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
(continuación)
Posición
1 2 3 4 5 6 7 8 9
Posición
1 2 3 4 5 6 7 8 9
BCA-002
Código del péptido A L W A W P S E L
SEQ ID 5
Variantes M
E
K
I
A G I I A
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
CHI3L1010
Código del péptido T L Y G M L N T L
SEQ ID 6
Variantes M
E
K
I
A I I A E
L
P K Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
CLIP2-001
Código del péptido S L N E L R V L L
SEQ ID 7
Variantes M
K
I
A G I I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
(continuación)
Posición
1 2 3 4 5 6 7 8 9
Posición
1 2 3 4 5 6 7 8 9
SLCO1C1001
Código del péptido Y L I A G I I S L
SEQ ID 2
Variantes M
E
K
I
A G I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
S
V
V
R
Posición
1 2 3 4 5 6 7 8 9
DTNA-001
Código del péptido K L Q D E A Y Q V
SEQ ID 8
Variantes M L
L
E
K
I
A G I I A E
L
Y P K
L
F
F
T Y T H
P
N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9 10
EGFR-007
Código del péptido A L A V L S N Y D A
SEQ ID 9
Variantes M L
L
E
K
I
A G I I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
(continuación)
Posición
1 2 3 4 5 6 7 8 9
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
FABP7001
Código del péptido L T F G D V V A V
SEQ ID 10
Variantes M L
L
L
E
K
I
A I I A E
Y
P K L
Y
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
GFAP-001
Código del péptido N L A Q D L A T V
SEQ ID 11
Variantes M L
L
E
K
I
G I I E
L
Y P K Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
GPR56002
Código del péptido F L L S E P V A L
SEQ ID 12
Variantes M
E
K
I
A G I I A E
L
Y P K L Y
(continuación)
Posición
1 2 3 4 5 6 7 8 9
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
GRI-001
Código del péptido N I L E Q I V S V
SEQ ID 13
Variantes M L
L
L
E
K
I
A G I I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
IGF2BP3001
Código del péptido K I Q E I L T Q V
SEQ ID 14
Variantes M L
L
L
K
I
A G I A E
L
Y P K Y
F
F
T Y T H
P
N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
MLC-001
Código del péptido S V V E V I A G I
SEQ ID 15
Variantes M L
L
L
(continuación)
Posición
1 2 3 4 5 6 7 8 9
K
I
A G I E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S
V
R
Posición
1 2 3 4 5 6 7 8 9
NES-001
Código del péptido G L Q S Q I A Q V
SEQ ID 16
Variantes M L
L
E
K
I
A G I E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
NES-002
Código del péptido S L Q E N L E S L
SEQ ID 17
Variantes M
K
I
A G I I A E
L
Y P K Y
F
F
T Y T H
K
P
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9 10 11 12
(continuación)
Posición
1 2 3 4 5 6 7 8 9
NES-003
Código del péptido F L F P G T E N Q
SEQ ID 18
Variantes M L
L
E
K
I
A G I I A E
L
Y K L Y
T
Y H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
NES-004
Código del péptido N L A E E L E G V
SEQ ID 19
Variantes M L
L
K
I
G I I A E
L
Y P K Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
NLGN4X001
Código del péptido N L D T L M T Y V
SEQ ID 1
Variantes M L
L
E
K
I
A G I I A E
L
Y P K L Y
F
F
Y T H
K
P N
M
M
F
(continuación)
Posición
1 2 3 4 5 6 7 8 9
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
NR2E1001
Código del péptido K I I S E I Q A L
SEQ ID 20
Variantes M
L
E
K
I
A G I A E
L
Y P K L Y
F
F
T Y T H
P
N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
NRCAM001
Código del péptido G L W H H Q T E V
SEQ ID 21
Variantes M L
L
E
K
I
A G I I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
PDPN-001
Código del péptido T L V G I I V G V
SEQ ID 22
Variantes M L
L
E
K
I
A A E
(continuación)
Posición
1 2 3 4 5 6 7 8 9
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
TNC-001
Código del péptido A M T Q L L A G V
SEQ ID 23
Variantes L
L
L
E
K
I
A G I I E
L
Y P K Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Posición
1 2 3 4 5 6 7 8 9
TNC-002
Código del péptido Q L L A G V F L A
SEQ ID 24
Variantes M L
L
E
K
I
A G I I A E
L
Y P K L Y
F
F
T Y T H
K
P N
M
M
F
Y
S V
V
R
Es sabido que los péptidos que son presentados por MHC de clase II están compuestos por una «secuencia central» dotada de un secuencia de aminoácidos que se ajusta a cierto motivo específico del alelo de HLA y, opcionalmente, de extensiones N-y/o C-terminales que no interfieren con la función de la secuencia central (es decir, que se consideran irrelevantes para la interacción del péptido y todos o una parte de los clones de
linfocitos T que reconocen la contrapartida natural). Las extensiones N y/o C-terminales pueden, por ejemplo, tener entre 1 y 10 aminoácidos de longitud, respectivamente. Estos péptidos se pueden utilizar directamente para cargar las moléculas MHC de clase II o bien la secuencia se puede clonar en vectores de acuerdo con la descripción ofrecida abajo en la presente memoria. Dado que estos péptidos constituyen el producto final del 5 procesamiento de péptidos más grandes en el interior de la célula, también pueden utilizarse péptidos más largos. Los péptidos descritos pueden tener cualquier tamaño, pero normalmente suelen tener un peso molecular inferior a 100. 000, preferiblemente inferior a 50. 000, más preferiblemente inferior a 10. 000 y normalmente unos
5. 000. En cuanto al número de residuos de aminoácidos, los péptidos descritos pueden tener menos de 1. 000 residuos, preferiblemente menos de 500 residuos, más preferiblemente menos de 100, más preferiblemente menos de 100 y lo más preferiblemente entre 30 y 8 residuos.
También pueden resultar adecuados péptidos más largos, ya que péptidos 9-ámeros o 10-ámeros como los descritos en la Tabla 2 anterior son preferidos para los péptidos de MHC de clase I, mientras que para los péptidos de MHC de clase II se prefieren 12-ámeros a 15-ámeros.
En el caso de los péptidos restringidos a MHC de clase II, la molécula MHC puede presentar varios péptidos
15 distintos dotados de la misma secuencia central. Como la interacción con el linfocito T reconocedor (cooperador) depende de la secuencia central de 9 a 11 aminoácidos, el mismo clon de linfocito T (cooperador) puede reconocer varias variantes de longitud. Así pues para la carga directa de moléculas MHC de clase II se pueden usar diversas variantes de longitud de una secuencia de unión central sin necesidad de ningún procesamiento adicional ni recortes en los extremos N y C-terminal. En consecuencia, las variantes naturales o artificiales que estimulan la reacción cruzada de los linfocitos T con un péptido de la invención son a menudo variantes de longitud.
Si un péptido más largo de aproximadamente 12 residuos de aminoácidos se utiliza directamente para unirse a una molécula MHC de clase II, es preferible que los residuos que flanquean la región de unión a HLA central sean residuos que no afecten sustancialmente a la capacidad del péptido para unirse específicamente a la 25 hendidura de unión de la molécula MHC de clase II o presentar el péptido al linfocito T (cooperador). No obstante, como se ha indicado arriba, se apreciará que es posible usar péptidos más grandes, p. ej., los codificados por un polinucleótido, ya que estos péptidos más grandes pueden ser fragmentados por células presentadoras de antígeno adecuadas. No obstante, en algunos casos se ha demostrado que las regiones que flanquean la secuencia central pueden influir en la unión del péptido a la molécula MHC de clase II o en la interacción del complejo dimérico MHC:péptido con el TCR en ambas direcciones en comparación con un péptido de referencia dotado de la misma secuencia central. Las estructuras terciarias intramoleculares del péptido (p. ej., bucles) normalmente reducen la afinidad hacia el MHC o el TCR. Las interacciones intermoleculares de las regiones flanqueantes con otras partes del MHC o del TCR aparte de la misma hendidura de unión al péptido pueden estabilizar la interacción. Esos cambios de afinidad pueden ser determinantes para
35 que el péptido de MHC de clase II estimule de forma efectiva la respuesta de los linfocitos T (cooperadores).
También es posible que los epítopos de MHC de clase I, aunque suelen tener entre 8 y 10 aminoácidos de longitud, sean generados por el procesamiento de péptidos o proteínas más largos que incluyen el epítopo real. Se prefiere que los residuos que flanquean el epítopo de interés sean residuos que no afecten sustancialmente a la digestión proteolítica necesaria para exponer el epítopo durante el procesamiento.
Por consiguiente, se describen péptidos dotados de una secuencia central seleccionada del grupo consistente en las SEQ ID N.º 1 a la SEQ ID N.º 30 con extensiones de 1 a 10 aminoácidos en el extremo C-terminal y/o el extremo N-terminal, más preferentemente que el número total de esos aminoácidos flanqueantes sea de 1 a 12, más preferentemente 1 a 10, más preferentemente 1 a 8, más preferentemente 1 a 6, más preferentemente 1 a 4 y aún más preferentemente 1 a 2, en que dichos aminoácidos flanqueantes se pueden distribuir en cualquier
45 proporción entre los extremos C-terminal y N-terminal (por ejemplo, se pueden añadir todos los aminoácidos flanqueantes a uno solo de los extremos, o se pueden repartir por igual entre ambos extremos o en cualquier otra proporción), siempre que el péptido siga siendo capaz de unirse a una molécula de HLA del mismo modo en que lo hacen los péptidos de cualquiera de las SEQ ID N.º 1 a SED ID N.º 30.
Los aminoácidos flanqueantes también pueden reducir la velocidad de degradación del péptido in vivo de modo que la cantidad real de péptido disponible para los CTL sea superior en comparación con el péptido carente de aminoácidos flanqueantes, actuando así como un profármaco.
Por supuesto, el péptido conforme a la presente invención tendrá la capacidad para unirse a una molécula del complejo mayor de histocompatibilidad humano (MHC) de clase I o II. La unión de un péptido o una variante a un complejo MHC puede ser analizada mediante métodos conocidos en la técnica, como, por ejemplo, los descritos
55 en la bibliografía para diferentes alelos de MHC de clase II (p. ej. (Vogt et al., 1994; Malcherek et al., 1994; Manici et al., 1999; Hammer et al., 1995; Tompkins et al., 1993; Boyton et al., 1998)).
En una forma de realización de la presente invención, el péptido es parte de una proteína de fusión que comprende, por ejemplo, los 80 aminoácidos N-terminales de la cadena invariable asociada al antígeno HLA-DR (p33, en lo sucesivo “Ii”) tal y como aparece en el NCBI, número de acceso de GenBank X00497 (Strubin, M. et
al. 1984).
Además, el péptido puede incluir enlaces no peptídicos.
En un enlace peptídico inverso los residuos de aminoácido no están unidos por enlaces peptídicos (-CO-NH-) sino que el enlace peptídico está invertido. Estos peptidomiméticos retro-inversos pueden sintetizarse con 5 métodos conocidos en la técnica, como, por ejemplo, los descritos por Meziere et al. (1997) J. Immunol. 159, 3230-3237, y que se incorporan en la presente memoria como referencia. Esta estrategia implica la síntesis de seudopéptidos que contengan cambios en la estructura principal, pero no en la orientación de las cadenas laterales. Meziere y cols. (1997) demuestran que estos seudopéptidos resultan útiles para la unión al MHC y las respuestas de los linfocitos T cooperadores. Los péptidos retro-inversos, que contienen enlaces NH-CO en lugar
10 de enlaces peptídicos CO-NH, son mucho más resistentes a la proteólisis.
Enlaces no peptídicos son, por ejemplo: -CH2-NH, -CH2S-, -CH2CH2-, -CH=CH-, -COCH2-, -CH(OH)CH2-y -CH2SO-. La patente de Estados Unidos 4. 897. 445 proporciona un método para la síntesis en fase sólida de enlaces no peptídicos (-CH2-NH) en cadenas polipeptídicas que implica la obtención de polipéptidos con procedimientos estándar y la síntesis del enlace no peptídico mediante la reacción de un aminoaldehído y un
15 aminoácido en presencia de NaCNBH3.
Péptidos que comprenden las secuencias descritas arriba pueden ser sintetizados con otros grupos químicos añadidos en los extremos amino y/o carboxi, con el fin de mejorar la estabilidad, la biodisponibilidad y/o la afinidad de los péptidos. Por ejemplo, grupos hidrofóbicos como los grupos carbobenzoxilo, dansilo, o tbutiloxicarbonilo pueden añadirse a los extremos amino de los péptidos. De manera similar, se puede colocar un
20 grupo acetilo o un grupo 9-fluorenilmetoxi-carbonilo en los extremos amino de los péptidos. Asimismo, p. ej., el grupo hidrofóbico t-butiloxicarbonilo, o un grupo amido pueden ser añadidos en los extremos carboxi de los péptidos.
Adicionalmente, los péptidos de la invención pueden ser sintetizados para alterar su configuración estérica. Por ejemplo, puede utilizarse el D-isómero de uno o más de los residuos de aminoácidos del péptido en lugar del L
25 isómero habitual. Y aún más, al menos uno de los residuos de aminoácidos de los péptidos de la invención puede ser sustituido por uno de los consabidos residuos de aminoácidos no naturales. Alteraciones como éstas pueden servir para aumentar la estabilidad, la biodisponibilidad y/o la capacidad de unión de los péptidos de la invención.
De manera similar, un péptido de la invención puede ser modificado químicamente mediante la reacción con
30 aminoácidos específicos antes o después de la síntesis del péptido. Ejemplos de tales modificaciones son bien conocidos en la técnica y aparecen resumidos, por ejemplo, en R. Lundblad, Chemical Reagents for Protein Modification, 3rd ed. CRC Press, 2005, que se incorpora en la presente memoria como referencia. La modificación química de aminoácidos incluye, sin ánimo limitativo, la modificación por acilación, amidinación, piridoxilación de lisina, alquilación reductora, trinitrobencilación de grupos amino con ácido 2,4,6
35 trinitrobencenosulfónico (TNBS), transformación de grupos carboxilo en grupos amida y oxidación del grupo sulfhidrilo con ácido perfórmico para convertir la cisteína en ácido cisteico, formación de derivados mercuriales, formación de disulfuros mixtos con otros compuestos tiol, reacción con maleimida, carboximetilación con ácido yodoacético o yodoacetamida y carbamoilación con cianato a pH alcalino, aunque sin limitación a ello. A este respecto, se remite a las personas versadas en la técnica al Capítulo 15 de Current Protocols In Protein Science,
40 Eds. Coligan et al. (John Wiley & Sons NY 1995-2000), donde hallarán una metodología más extensa relacionada con la modificación química de proteínas.
La modificación de proteínas y péptidos terapéuticos con PEG se asocia a menudo con una prolongación de la semivida en circulación, mientras que la unión por entrecruzamiento de proteínas con glutaraldehído, diacrilato de polietilenglicol y formaldehído se emplea en la preparación de hidrogeles. La modificación química de
45 alérgenos con fines de inmunoterapia se consigue a menudo mediante la carbamilación con cianato potásico.
Un péptido que incluye enlaces no peptídicos es una forma de realización preferida de la invención. En general, los péptidos (al menos aquellos que contienen enlaces peptídicos entre los residuos de aminoácidos) pueden ser sintetizados utilizando la síntesis de péptidos en fase sólida por el método de Fmoc-poliamida, como muestra Lu et al. (1981) y las referencias que aparecen en el mismo. La protección provisional del grupo N-amino se 50 consigue con el grupo 9-fluorenilmetiloxicarbonilo (Fmoc). La escisión repetida de este grupo protector muy sensible al pH básico se lleva a cabo con piperidina al 20% en N,N-dimetilformamida. Los grupos funcionales de las cadenas laterales se podrían proteger si se transformaran en éteres de butilo (en el caso de la serina, treonina y tirosina), ésteres de butilo (en el caso del ácido glutámico y aspártico), derivados butiloxicarbonílicos (en el caso de la lisina y la histidina), derivados tritilados (en el de la cisteína) y derivados 4-metoxi-2,3,655 trimetilbencenosulfonílicos (en el de la arginina). Cuando los residuos C-terminales son glutamina o asparragina se utiliza el grupo 4,4'-dimetoxibencidrilo para proteger los grupos funcionales amido de la cadena lateral. El soporte en fase sólida se basa en un polímero de polidimetil-acrilamida constituido por los tres monómeros dimetilacrilamida (monómero estructural), bisacriloiletilendiamina (entrelazante) y acriloilsarcosina metiléster (funcionalizador). El agente escindible que mantiene unido el péptido a la resina es un derivado del ácido 4
hidroximetilfenoxiacético, sensible a pH ácido. Todos los derivados de aminoácidos se añaden en forma de derivados anhídridos simétricos preformados, salvo la asparragina y la glutamina, que se añaden utilizando un procedimiento de acoplamiento inverso con N,N-diciclohexil-carbodiimida/1-hidroxibenzotriazol. Todas las reacciones de acoplamiento y desprotección se controlan con procedimientos de ensayo con ninhidrina, ácido
5 trinitrobencenosulfónico o isotina. Una vez completada la síntesis, los péptidos se separan del soporte de resina y al mismo tiempo se eliminan los grupos protectores de las cadenas laterales mediante el tratamiento con ácido trifluoroacético al 95% con una mezcla de capturadores (scavengers) al 50%. Los capturadores utilizados normalmente son etanditiol, fenol, anisol y agua, dependiendo de la elección exacta de los aminoácidos constituyentes del péptido que se está sintetizando. La síntesis de péptidos también es posible combinando metodologías de fase sólida y de fase en solución (véase, por ejemplo, Bruckdorfer et al., 2004, y las referencias citadas en la misma).
El ácido trifluoroacético se elimina por evaporación en vacío y se procede a la trituración con dietiléter para obtener el péptido bruto. Todos los capturadores (scavengers) se eliminan con un procedimiento de extracción simple que con la liofilización de la fase acuosa proporciona el péptido bruto exento de ellos. Los reactivos para
15 la síntesis de péptidos se pueden conseguir en general, por ejemplo, de Calbiochem-Novabiochem (UK) Ltd, Nottingham NG7 2QJ, Reino Unido.
La purificación puede llevarse a cabo mediante una sola o una combinación de técnicas como la recristalización, cromatografía por exclusión de tamaño, cromatografía de intercambio iónico, cromatografía por interacción hidrofóbica, y (normalmente) cromatografía de líquidos de alto rendimiento con fase inversa utilizando, p. ej., la separación con gradiente de acetonitrilo/agua.
El análisis de los péptidos puede efectuarse utilizando cromatografía en capa fina, electroforesis, en particular electroforesis capilar, extracción en fase sólida (CSPE), cromatografía de líquidos de alto rendimiento con fase inversa, análisis de aminoácidos tras hidrólisis ácida y análisis con espectrometría de masas por bombardeo con átomos rápidos (FAB), así como análisis con espectrometría de masas MALDI y ESI-Q-TOF.
25 Otro aspecto de la invención proporciona un ácido nucleico (por ejemplo, un polinucleótido) que codifica un péptido de la invención. El polinucleótido puede ser, por ejemplo, ADN, ADNc, APN, ARN o combinaciones de los mismos, monocatenarios y/o bicatenarios, o formas nativas o estabilizadas de polinucleótidos, como por ejemplo, polinucleótidos con un esqueleto de fosforotioato, y que puede contener intrones siempre que codifique el péptido. Por supuesto, sólo los péptidos que contengan residuos de aminoácidos naturales unidos por enlaces peptídicos naturales pueden ser codificados por un polinucleótido. Otro aspecto más de la invención proporciona un vector de expresión capaz de expresar un péptido conforme a la invención.
Se han desarrollado diversos métodos para unir polinucleótidos, especialmente ADN, a vectores, por ejemplo, a través de extremos cohesivos complementarios. Por ejemplo, al segmento de ADN se le pueden añadir prolongaciones de homopolímeros complementarios para insertarlo en el vector de ADN. El vector y el segmento
35 de ADN se unen a continuación por medio de puentes de hidrógeno entre las colas homopoliméricas complementarias para formar moléculas de ADN recombinante.
Otro método alternativo para unir el segmento de ADN a los vectores son los ligadores sintéticos que contienen uno o más sitios de restricción. Existen ligadores sintéticos comerciales que contienen diversas dianas para las endonucleasas de restricción que facilitan varios proveedores como International Biotechnologies Inc. New Haven, Connecticut, EE. UU.
Un método deseable para modificar el ADN que codifica el péptido de la invención emplea la reacción en cadena de la polimerasa tal y como exponen Saiki et al., (1988). Este método puede ser utilizado para introducir el ADN en un vector adecuado, por ejemplo, diseñando las dianas de restricción adecuadas, o puede ser empleado para modificar el ADN de otros modos útiles conocidos en la técnica. Si se opta por vectores virales, son preferibles
45 los vectores poxvíricos o adenovíricos.
El ADN (o ARN en el caso de los vectores retrovíricos) se puede expresar en un hospedador adecuado para producir un polipéptido que comprenda el péptido o variante de la invención. Así pues, el ADN que codifica el péptido o variante de la invención puede ser utilizado conforme a técnicas conocidas, modificado adecuadamente siguiendo las enseñanzas contenidas en la presente memoria para construir un vector de expresión que se emplee para transformar una célula hospedadora a fin de que exprese y produzca el polipéptido de la invención. Tales técnicas incluyen las descritas en las patentes de EE. UU. N.º 4. 440. 859, 4.
530. 901, 4. 582. 800, 4. 677. 063, 4. 678. 751, 4. 704. 362, 4. 710. 463, 4. 757. 006, 4. 766. 075 y 4. 810. 648.
El ADN (o ARN en el caso de los vectores retrovíricos) que codifica el péptido que constituye el compuesto de la invención se puede unir con una amplia variedad de secuencias de ADN distintas para introducirlo en un
55 hospedador adecuado. El ADN acompañante dependerá de la naturaleza del hospedador, el modo de introducir el ADN en su interior y de si se pretende que se integre o que se mantenga como un episoma.
En general, el ADN se inserta en un vector de expresión, como un plásmido, con la orientación apropiada y el marco de lectura correcto para asegurar la expresión. Si es necesario, el ADN se puede enlazar con secuencias
nucleotídicas de control que regulan la transcripción o la traducción y que son reconocidas por el hospedador deseado, aunque en general tales controles ya suelen estar incluidos en el propio vector de expresión. A continuación, el vector se introduce en el hospedador mediante técnicas estándar. En general, el vector no consigue transformar todos los hospedadores, lo que hará necesario seleccionar las células hospedadoras que
5 hayan quedado transformadas. Una técnica de selección consiste en incorporar en el vector de expresión una secuencia de ADN con los elementos de control necesarios que codifique un rasgo seleccionable en la célula transformada, como, por ejemplo, de resistencia a antibióticos.
Otra alternativa consiste en incorporar el gen de ese rasgo seleccionable en otro vector con el que se cotransforma la célula hospedadora.
10 Las células hospedadoras que hayan sido transformadas con el ADN recombinante de la invención se cultivarán durante el tiempo suficiente y en las condiciones apropiadas que las personas versadas en la técnica conocen a la vista de las enseñanzas reveladas en la presente memoria para que el polipéptido pueda expresarse y, finalmente, ser recuperado.
Son muchos los sistemas de expresión conocidos, como bacterias (E. coli, Bacillus subtilis, etc.), levaduras
15 (Saccharomyces cerevisiae, etc.), hongos filamentosos (género Aspergillus, etc.), células vegetales, animales o de insectos. Preferiblemente el sistema consistirá en células de mamífero, como las células CHO disponibles de la ATCC Cell Biology Collection.
Un típico vector plasmídico de expresión constitutiva para células de mamífero comprende el promotor del CMV
o del SV40 con una cola poli-A adecuada y un marcador de resistencia como la neomicina. Un ejemplo es el
20 pSVL que ofrece Pharmacia, Piscataway, NJ, EE. UU. Un ejemplo de vector de expresión inducible para mamífero es el pMSG, también suministrado por Pharmacia. Otros vectores plasmídicos de levadura son pRS403-406 y pRS413-416, en general proveídos por Stratagene Cloning Systems, La Jolla, CA 92037, EE. UU. Los plásmidos pRS403, pRS404, pRS405 y pRS406 son plásmidos integrativos de levadura (YIp) que incorporan los marcadores seleccionables de levadura HIS3, TRP1, LEU2 y URA3. Los plásmidos pRS413-416 son
25 plásmidos centroméricos de levadura (Ycp). Los vectores dotados del promotor del CMV (por ejemplo, de Sigma-Aldrich) proporcionan una expresión transitoria o estable, expresión en el citoplasma o secreción, y marcaje de los extremos N-terminal o C-terminal en varias combinaciones de FLAG, 3xFLAG, c-myc o MAT. Estas proteínas de fusión permiten la detección, la purificación y el análisis de la proteína recombinante. Las fusiones con doble etiqueta aportan flexibilidad a la detección.
30 La potente región reguladora del promotor del citomegalovirus (CMV) humano ofrece niveles de expresión constitutiva de la proteína muy elevados, de hasta 1 mg/l en células COS. En estirpes celulares menos potentes los niveles de proteínas suelen rondar ~0,1 mg/l. La presencia del origen de replicación del SV40 genera niveles elevados de replicación del ADN en células COS que toleran la replicación del SV40. Los vectores de CMV, por ejemplo, pueden contener el origen pMB1 (derivado del pBR322) para la replicación en células bacterianas, el
35 gen de la b-lactamasa para la selección por resistencia a la ampicilina, hGH poliA, y el origen f1. Los vectores que contienen la secuencia líder de la preprotripsina (PPT) pueden canalizar la secreción de las proteínas de fusión FLAG hacia el medio de cultivo, donde se pueden purificar por medio de anticuerpos ANTI-FLAG, resinas y placas. En la técnica se conocen otros vectores y sistemas de expresión aptos para el uso con una variedad de células hospedadoras.
40 La presente invención también se refiere a una célula hospedadora transformada con un vector polinucleotídico de la presente invención. La célula hospedadora puede ser procariota o eucariota. Las células bacterianas pueden ser las células hospedadoras procariotas más adecuadas en determinadas circunstancias; normalmente son cepas de E. coli, como, por ejemplo, las cepas DH5 disponibles de Bethesda Research Laboratories Inc., Bethesda, Maryland, EE. UU., y RR1 disponibles de la American Type Culture Collection (ATCC) de Rockville,
45 Maryland, EE. UU. (N.º ATCC 31343). Las células hospedadoras eucariotas preferidas son células de levadura, de insecto y de mamífero, preferiblemente células de vertebrado como estirpes celulares de colon y de fibroblastos de ratón, rata, mono o ser humano. Las células hospedadoras de levadura incluyen YPH499, YPH500 y YPH501, que en general están disponibles de Stratagene Cloning Systems, La Jolla, CA 92037, EE. UU. Las células hospedadoras de mamífero preferidas incluyen las células de ovario de hámster chino (CHO)
50 disponibles de la ATCC como CCL61, las células embrionarias de ratón suizo NIH/3T3 disponibles de la ATCC como CRL 1658, las células COS-1 de riñón de mono disponibles de la ATCC como CRL 1650 y las células 293, que son células renales embrionarias humanas. Las células de insecto preferidas son las células Sf9 que se pueden transfectar con vectores de expresión baculovíricos. Se puede encontrar una revisión general referente a la elección de las células hospedadoras más adecuadas, por ejemplo, en el manual de Paulina Balbás y Argelia
55 Lorence “Methods in Molecular Biology Recombinant Gene Expression, Reviews and Protocols” Part One, Second Edition, ISBN 978-1-58829-262-9, y otra bibliografía conocida por las personas versadas en la materia.
La transformación de las células hospedadoras adecuadas con el constructo de ADN de la presente invención se consuma con métodos consabidos que normalmente dependen del tipo de vector utilizado. En lo referente a la transformación de células hospedadoras procariotas, véanse, por ejemplo, Cohen et al. (1972) Proc. Natl. Acad. 60 Sci. USA 69, 2110, y Sambrook et al. (1989) Molecular Cloning, A Laboratory Manual, Cold Spring Harbor
Laboratory, Cold Spring Harbor, NY, EE. UU. La transformación de células de levadura aparece descrita en Sherman et al. (1986) Methods In Yeast Genetics, A Laboratory Manual, Cold Spring Harbor, NY, EE. UU. El método de Beggs (1978) Nature 275,104-109 también resulta útil. En lo que concierne a los reactivos adecuados para transfectar las células de vertebrados, por ejemplo, el fosfato de calcio y el DEAE-dextrano o las
5 formulaciones con liposomas, se pueden adquirir de Stratagene Cloning Systems, o Life Technologies Inc., Gaithersburg, MD 20877, EE. UU. La electroporación también es útil para la transformación y/o la transfección de las células y es perfectamente conocida su aplicación en la transformación de células de levadura, bacteria, insecto y vertebrado.
Las células transformadas con éxito, es decir, las que contengan un constructo de ADN de la presente invención,
10 se pueden identificar con técnicas bien conocidas como la PCR. Otra alternativa consiste en detectar la presencia de la proteína en el sobrenadante por medio de anticuerpos.
Se apreciará que ciertas células hospedadoras de la invención son útiles para la preparación de péptidos de la invención, por ejemplo, las células bacterianas, de levadura e insecto. Con todo, para ciertos métodos terapéuticos pueden ser útiles otras células hospedadoras. Por ejemplo, se pueden utilizar células presentadoras
15 de antígeno como las células dendríticas para expresar los péptidos de la invención de tal forma que puedan ser cargados en las moléculas MHC oportunas. Así pues, la presente invención proporciona una célula hospedadora que comprende un ácido nucleico o un vector de expresión conforme a la invención.
En una forma de realización preferida la célula hospedadora es una célula presentadora de antígeno, en particular una célula dendrítica. Las APC cargadas con una proteína de fusión recombinante que contiene
20 fosfatasa ácida prostática (PAP) son en la actualidad objeto de investigación como tratamiento contra el cáncer de próstata (Sipuleucel–T) (Small EJ et al. 2006; Rini et al. 2006).
Otro aspecto de la invención proporciona un método para la producción de un péptido, comprendiendo dicho método el cultivo de una célula hospedadora y el aislamiento del péptido a partir de dicha célula o de su medio de cultivo.
25 En otra forma de realización el péptido, el ácido nucleico o el vector de expresión de la invención se emplean en medicina. Por ejemplo, el péptido puede ser preparado para la inyección por vía intravenosa (i. v.), subcutánea
(s. c.), intradérmica (i. d.), intraperitoneal (i. p.) o intramuscular (i. m.). Los métodos preferidos para la inyección del péptido incluyen s. c., i. d., i. p., i. m. e i. v. Los métodos preferidos para la inyección del ADN incluyen i. d., i. m., s. c., i. p. e i. v. Según el péptido o ADN de que se trate se pueden administrar dosis de, por ejemplo, entre
30 50 µg y 1,5 mg, preferiblemente de 125 µg a 500 µg de péptido o ADN. Dosis en esos intervalos se han empleado en ensayos anteriores (Brunsvig et al. 2006; Staehler et al. 2007).
Otro aspecto de la presente invención incluye un método in vitro para producir linfocitos T activados, comprendiendo dicho método la puesta en contacto en condiciones in vitro de linfocitos T con moléculas MHC humanas de clase I o II cargadas con antígeno expresadas en la superficie de una célula presentadora de
35 antígeno adecuada por tiempo suficiente para activar los linfocitos T de una manera específica de antígeno, siendo el antígeno un péptido conforme a la invención. Preferentemente se emplea una cantidad suficiente del antígeno con una célula presentadora de antígeno.
Cuando se esté utilizando como antígeno un epítopo de MHC de clase II, los linfocitos T serán linfocitos cooperadores CD4-positivos, preferiblemente del tipo TH1. Las moléculas MHC de clase II se pueden expresar en 40 la superficie de cualquier célula adecuada. Preferiblemente la célula no debe expresar de forma natural moléculas MHC de clase II (de ser así, la célula tendrá que ser transfectada para que exprese dicha molécula). Si, en cambio, la célula expresa de forma natural moléculas MHC de clase II es preferible que sea defectuosa en los mecanismos de procesamiento o presentación de antígenos. De ese modo será posible que la célula que expresa la molécula MHC de clase II quede completamente cargada con el antígeno peptídico escogido antes de
45 activar el linfocito T.
La célula presentadora de antígeno (o célula estimuladora) normalmente posee moléculas MHC de clase II en su superficie y es preferible que sea básicamente incapaz de cargar dicha molécula de MHC de clase II con el antígeno seleccionado. La molécula MHC de clase II puede cargarse fácilmente in vitro con el antígeno seleccionado.
50 Preferiblemente, la célula de mamífero carece del transportador de péptidos TAP o bien este se presenta en un nivel reducido o funciona defectuosamente. Las células adecuadas que carecen del transportador de péptidos TAP incluyen las células T2, RMA-S y de Drosophila. TAP es el transportador relacionado con el procesamiento de los antígenos.
La estirpe celular humana deficiente en carga de péptidos T2 está disponible en la American Type Culture
55 Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, EE. UU. con el N.º de catálogo CRL 1992; la estirpe de células de Drosophila “Schneider line 2” está disponible en la ATCC con el N.º de catálogo CRL 19863; la estirpe de células de ratón RMA-S está descrita en Karre et al. 1985.
imagen19
que el nivel del polipéptido es como mínimo 1,2 veces mayor que el nivel en el tejido normal; preferiblemente como mínimo 2 veces mayor, y más preferiblemente como mínimo 5 o 10 veces mayor que el del tejido normal.
Los linfocitos T se pueden obtener por métodos conocidos en la materia, como, por ejemplo, los antes descritos.
Los protocolos para la llamada transferencia de linfocitos T a un receptor son perfectamente conocidos en la 5 materia y se pueden encontrar, por ejemplo, en (Rosenberg et al., 1987; Rosenberg et al., 1988; Dudley et al., 2002; Yee et al., 2002; Dudley et al., 2005); revisados en (Gattinoni et al., 2006) y (Morgan et al., 2006).
Cualquier molécula de la invención, ya sea péptido, ácido nucleico, vector de expresión, célula, CTL activado o el ácido nucleico que lo codifique, es útil para el tratamiento de trastornos caracterizados por células que eluden la respuesta inmunitaria. Por consiguiente, cualquier molécula de la presente invención puede ser utilizada como
10 medicamento o en la fabricación de un medicamento. La molécula puede ser utilizada sola o combinada con otra molécula o moléculas de la invención o con cualquier o cualesquier moléculas conocidas.
Preferiblemente, el medicamento de la presente invención es una vacuna. La vacuna puede administrarse directamente al paciente, en el órgano afectado o por vía sistémica de forma i. d., i. m, s. c., i. p. e i. v., o aplicarse ex vivo a células derivadas del paciente o a una línea celular humana que después se administra al 15 paciente, o utilizarse in vitro para seleccionar una subpoblación de células inmunitarias derivadas del paciente que después se le vuelven a administrar. Si el ácido nucleico se administra a células in vitro, puede ser útil que estas células sean transfectadas para que expresen simultáneamente citocinas inmunoestimuladoras, como la interleucina-2. El péptido puede ser sustancialmente puro, o combinarse con un adyuvante inmunoestimulador (véase abajo) o utilizarse en combinación con citocinas inmunoestimuladoras, o bien administrarse mediante otro 20 sistema de liberación adecuado, como, por ejemplo, liposomas. El péptido también se puede conjugar con un portador adecuado como la hemocianina de lapa californiana (KLH) o el manano (véanse WO 95/18145 y Longenecker et al. (1993)). El péptido también se puede etiquetar, o formar proteínas de fusión, o ser una molécula híbrida. Se espera que los péptidos cuya secuencia se ofrece en la presente invención estimulen a los linfocitos T CD4 o CD8. No obstante, la estimulación de los CTL CD8 es más eficiente si cuentan con la ayuda de
25 los linfocitos T cooperadores CD4. Así pues, los epítopos de MHC de clase I que estimulan a los CTL CD8, el compañero de fusión o las secciones de una molécula híbrida adecuada proporcionan epítopos que estimulan a los linfocitos T CD4-positivos. Los epítopos estimuladores de los CD4 y los CD8 son bien conocidos en la técnica e incluyen los identificados en la presente invención.
En un aspecto, la vacuna comprende al menos un péptido dotado de la secuencia de aminoácidos expuesta en
30 las SEQ ID N.º 4 o 5 y al menos otro péptido adicional, preferiblemente dos a 50, más preferiblemente dos a 25, incluso más preferiblemente dos a 15 y lo más preferiblemente dos, tres, cuatro, cinco, seis, siete, ocho, nueve, diez, once, doce o trece péptidos. Los péptidos pueden derivar de uno o más TAA específicos y se pueden unir a moléculas MHC de clase I y/o II.
El polinucleótido puede ser sustancialmente puro, o estar contenido en un vector o en un sistema de liberación
35 adecuado. El ácido nucleico puede ser ADN, ADNc, APN, ARN o una combinación de los mismos. Los métodos para diseñar e introducir ese ácido nucleico son bien conocidos por los expertos en la materia. Se puede consultar una revisión general, por ejemplo, en Pascolo S. 2006; Stan R. 2006, o A Mahdavi 2006. Las vacunas polinucleotídicas son fáciles de preparar, pero el mecanismo por el cual tales vectores inducen la respuesta inmunitaria no se conoce con exactitud. Los vectores y sistemas de liberación adecuados incluyen los de ADN
40 y/o ARN viral, como los sistemas basados en adenovirus, virus vacunal, retrovirus, herpesvirus, virus adenoasociados o híbridos que contienen elementos de varios virus. Los sistemas de liberación no virales incluyen lípidos catiónicos y polímeros catiónicos que son bien conocidos como técnicas para la introducción de ADN. Los métodos de introducción físicos, como la «pistola génica», también pueden utilizarse. El péptido o péptidos codificados por el ácido nucleico pueden ser una proteína de fusión, por ejemplo, con un epítopo que estimule los
45 linfocitos T para el respectivo CDR opuesto tal y como se ha indicado antes.
El medicamento de la invención también puede incluir uno o varios adyuvantes. Los adyuvantes son sustancias que potencian o estimulan de forma inespecífica la respuesta inmunitaria (p. ej., respuestas inmunitarias mediadas por CTL y linfocitos T cooperadores (TH) contra un antígeno, y podrían ser considerados útiles en el medicamento de la presente invención. Entre los adyuvantes adecuados se incluyen, entre otros: 1018 ISS, sales 50 de aluminio, Amplivax, AS15, BCG, CP-870,893, CpG7909, CyaA, dSLIM, ligandos de flagelina o TLR5 derivados de flagelina, ligando de FLT3, GM-CSF, IC30, IC31, imiquimod (ALDARA), resiquimod, ImuFact IMP321, interleucinas como IL-2, IL-13, IL-21, interferón alfa o beta o derivados pegilados de los mismos, IS Patch, ISS, ISCOMATRIX, ISCOMs, JuvImmune, LipoVac, MALP2, MF59, lípido monofosforilo A, Montanide IMS 1312, Montanide ISA 206, Montanide ISA 50V, Montanide ISA-51, emulsiones de agua en aceite y de aceite en 55 agua, OK-432, OM-174, OM-197-MP-EC, ONTAK, OspA, sistema de vectores PepTel®, micropartículas de dextrano y PLG, resiquimod, SRL172, virosomas y otras partículas similares a virus, YF-17D, VEGF trap, R848, beta-glucano, Pam3Cys, estimulón QS21 de Aquila, que deriva de la saponina, extractos de micobacterias y miméticos sintéticos de la pared bacteriana, y otros adyuvantes patentados como Detox de Ribi, Quil o Superfos. Se prefieren los adyuvantes como el adyuvante de Freund o el GM-CSF. Con anterioridad se han descrito varios 60 adyuvantes inmunológicos (p. ej., MF59) específicos para las células dendríticas, así como la preparación de los
imagen20
(a) un envase que contiene una composición farmacéutica que contiene un péptido conforme a la presente invención, el ácido nucleico o el vector de expresión conformes a la presente invención, una célula conforme a la presente invención, o un linfocito T citotóxico activado conforme a la presente invención, en forma de solución o liofilizado;(b) un segundo envase que contiene un diluyente o una solución de reconstitución para
5 la formulación liofilizada; y (c) opcionalmente, instrucciones para (I) el uso de la solución o (II) la reconstitución y/o el uso de la formulación liofilizada.
El equipo puede comprender, además, uno o más de los siguientes componentes: (III) un tampón, (IV) un diluyente, (V) un filtro, (VI) una aguja, o (V) una jeringa. El envase es preferiblemente un frasco, un vial, una jeringa o un tubo de ensayo; puede ser un envase multiusos. Se prefiere que la composición farmacéutica esté
10 liofilizada.
Los equipos de la presente invención comprenden, preferiblemente, una formulación liofilizada de la presente invención en un envase adecuado e instrucciones para su reconstitución y/o uso. Los envases adecuados incluyen, por ejemplo, frascos, viales (p. ej., viales con doble cámara), jeringas (como jeringas con doble cámara) y tubos de ensayo. El envase puede estar formado por materiales diversos como vidrio o plástico.
15 Preferiblemente el kit y/o envase contienen o van acompañados de instrucciones de reconstitución y/o uso. Por ejemplo, el prospecto puede indicar que la formulación liofilizada debe reconstituirse para obtener ciertas concentraciones de péptidos como las descritas en páginas precedentes. La etiqueta puede indicar, además, que la formulación puede administrarse o está destinada a la administración subcutánea.
El envase que contiene la formulación puede ser un vial multiuso que permita varias administraciones (p. ej., de 2
20 a 6 administraciones) de la formulación reconstituida. El equipo puede comprender, además, un segundo envase que contenga un diluyente adecuado (p. ej., una solución de bicarbonato sódico).
Después de mezclar el diluyente y la formulación liofilizada, la concentración final del péptido en la formulación reconstituida es preferiblemente como mínimo de 0,15 mg/ml/péptido (=75 µg) y preferiblemente como máximo de 3 mg/ml/péptido (=1500 µg). El equipo puede incluir, además, otros materiales deseables desde el punto de
25 vista comercial y del usuario, tales como otros tampones, diluyentes, filtros, agujas, jeringas y prospectos con instrucciones de uso.
Los equipos de la presente invención pueden tener un solo envase que contenga la formulación de las composiciones farmacéuticas acordes con la presente invención, acompañado o no de otros componentes (p. ej., otros compuestos o composiciones farmacéuticas de estos otros compuestos) o pueden contar con un envase
30 distinto para cada componente.
Preferiblemente, los equipos de la invención incluyen una formulación de la invención acondicionada para ser utilizada y administrada conjuntamente con un segundo compuesto (como adyuvantes (p. ej., GM-CSF), un agente de quimioterapia, un producto natural, una hormona o un antagonista, un inhibidor o agente antiangiogenia, un inductor de la apoptosis o un quelante) o una composición farmacéutica de los mismos. Los
35 componentes del equipo pueden estar preagrupados o cada componente puede estar en un envase separado antes de la administración al paciente. Los componentes del equipo pueden proporcionarse en una o varias soluciones líquidas, preferiblemente en una solución acuosa y, con mayor preferencia, en una solución acuosa estéril. Los componentes del equipo también pueden facilitarse en forma de sólidos, y pueden convertirse en líquidos añadiendo los disolventes adecuados, que preferiblemente se proporcionan en otro envase distinto.
40 El envase de un equipo terapéutico puede ser un vial, tubo de ensayo, matraz, frasco, jeringa, o cualquier otro medio para contener un sólido o líquido. Si hay más de un componente, normalmente el equipo contendrá un segundo vial u otro envase para permitir la dosificación por separado. El equipo también puede contener otro envase para un líquido farmacéuticamente aceptable. Preferiblemente el equipo terapéutico contendrá un aparato (p. ej., una o varias agujas, jeringas, cuentagotas, pipeta, etc.) para permitir la administración de los
45 agentes de la invención que son componentes del presente equipo.
La presente formulación puede ser toda aquella que sea adecuada para la administración de los péptidos a través de cualquier vía aceptable como la oral (entérica), nasal, oftálmica, subcutánea, intradérmica, intramuscular, intravenosa o transdérmica. Se prefiere la administración subcutánea y, con mayor preferencia, la intradérmica. Se puede utilizar una bomba de infusión para la administración.
50 Puesto que los péptidos derivados de BCA, CLIP2, DTNA, NLGNAX, NR2E1, NRCAM y PDPN se aislaron del glioblastoma, el medicamento de la invención debe utilizarse preferentemente para tratar ese tipo de cáncer.
A continuación se describirá la presente invención con los ejemplos y figuras siguientes que muestran las formas de realización preferidas de la misma a título ilustrativo, sin que con ello se pretenda limitar la invención.
Figura 1: Ejemplo de espectro de masas de IGF2BP3-001 que demuestra su presentación en la muestra GB6010
55 de tumor primario. Se llevó a cabo una cromatografía de líquidos acoplada a espectrometría de masas nanoESI con una mezcla de péptidos eluida de la muestra de glioblastoma GB6010. El cromatograma de masas de m/z 536,3238 ± 0,001 Da, z = 2 muestra un pico de péptido en el tiempo de retención 49,89 min. B). El pico detectado
imagen21
No todos los péptidos identificados como presentes en la superficie de las células tumorales a través de las moléculas MHC son adecuados para la inmunoterapia, porque la mayoría de ellos proceden de proteínas celulares normales que se expresan en multitud de tipos de células. Muy pocos de esos péptidos están asociados a tumores y probablemente sean capaces de estimular los linfocitos T con una alta especificidad de
5 reconocimiento contra el tumor del cual derivan. A fin de descubrirlos y de minimizar el riesgo de que la vacuna genere autoinmunidad los inventores se centraron en los péptidos derivados de proteínas que aparecen sobreexpresadas en las células tumorales en comparación con la mayoría de los tejidos normales.
El péptido ideal sería el derivado de una proteína que sea exclusiva del tumor y no esté presente en ningún otro tejido. Para identificar los péptidos que derivaban de genes dotados con un perfil de expresión similar al ideal los
10 péptidos identificados se asignaron a las proteínas y después a los genes originarios y se generaron los perfiles de expresión de dichos genes.
Fuentes de ARN y preparación
Las muestras de tejido extirpado fueron facilitadas por dos centros clínicos (véase Ejemplo 1); todos los pacientes otorgaron su consentimiento informado por escrito. Las muestras de tejido tumoral se congelaron
15 rápidamente en nitrógeno líquido inmediatamente después de la operación y se homogeneizaron a mano en un mortero con nitrógeno líquido. El ARN total se preparó a partir de estas muestras con TRIzol (Invitrogen, Karlsruhe, Alemania) y después se purificó con RNeasy (QIAGEN, Hilden, Alemania); ambos métodos se efectuaron siguiendo las instrucciones del fabricante.
El ARN total procedente de tejidos humanos sanos se obtuvo por canales comerciales (Ambion, Huntingdon,
20 Reino Unido; Clontech, Heidelberg, Alemania; Stratagene, Ámsterdam, Holanda; BioChain, Hayward, California, EE. UU.). El ARN de varios individuos (de 2 a 123 individuos) se mezcló de tal modo que el ARN de cada uno de ellos estuviera representado en la misma proporción. Cuatro voluntarios sanos donaron sangre de la que se extrajeron los leucocitos.
La calidad y la cantidad de las muestras de ARN se valoraron con un Agilent 2100 Bioanalyzer (Agilent, 25 Waldbronn, Alemania) y con el RNA6000 Pico Lab Chip Kit (Agilent)
Experimentos con micromatrices
El análisis de la expresión génica de todas las muestras de ARN de tejido tumoral y normal se efectuó con micromatrices oligonucleotídicas Affymetrix Human Genome (HG) U133A o HG-U133 Plus 2.0 (Affymetrix, Santa Clara, California, EE. UU.). Todos los pasos se llevaron a cabo siguiendo el manual de Affymetrix. En resumen, a 30 partir de 5–8 µg de ARN total se sintetizó ADNc bicatenario con SuperScript RTII (Invitrogen) y el cebador oligo-dT-T7 (MWG Biotech, Ebersberg, Alemania) siguiendo las indicaciones del manual. La transcripción in vitro se llevó a cabo con el BioArray High Yield RNA Transcript Labelling Kit (ENZO Diagnostics, Inc., Farmingdale, NY, EE. UU.) en el caso de las matrices U133A, y con el GeneChip IVT Labelling Kit (Affymetrix) en el de las matrices U133 Plus 2.0, y después se procedió a la fragmentación del ARNc, a su hibridación y tinción con estreptavidina35 ficoeritrina y un anticuerpo anti-estreptavidina biotinilado (Molecular Probes, Leiden, Holanda). Las imágenes se analizaron con el Agilent 2500A GeneArray Scanner (U133A) o con el Affymetrix Gene-Chip Scanner 3000 (U133 Plus 2.0), y los datos se analizaron con el software GCOS (Affymetrix), aplicando los ajustes preprogramados en todos los parámetros. Para la normalización se utilizaron 100 genes constitutivos (housekeeping) suministrados por Affymetrix. Los valores de expresión relativa se calcularon a partir de los ratios logarítmicos de señal dados
40 por el software y la muestra normal de riñón se ajustó de forma arbitraria en 1,0.
Los perfiles de expresión de los genes originarios que aparecen altamente sobreexpresados en el glioblastoma se muestran en la Fig. 2.
Ejemplo 3:
Inmunogenicidad in vitro de los péptidos presentados por MHC de clase I de IMA950
45 Para obtener información relativa a la inmunogenicidad de los TUMAP de la presente invención, llevamos a cabo análisis con una conocida plataforma de estimulación in vitro descrita por (Walter S., Herrgen L., Schoor O., Jung G., Wernet D., Buhring H. J., Rammensee H. G., and Stevanovic S.; 2003, Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres, J. Immunol., 171, 4974-4978). De este modo pudimos descubrir la inmunogenicidad notablemente elevada de 13 TUMAP restringidos por HLA
50 A*201 de la invención (detección en ≥ 50% de los CTL específicos de TUMAP de donantes analizados), lo cual demuestra que dichos péptidos son epítopos de linfocitos T contra los que existen linfocitos T precursores CD8+ en el ser humano (Tabla 3).
Sensibilización in vitro de linfocitos T CD8+
Para llevar a cabo las estimulaciones in vitro con células presentadoras de antígeno artificiales (aAPC) cargadas 55 con un complejo péptido-MHC (pMHC) y anticuerpo anti-CD28, primero aislamos células mononucleares de
imagen22
imagen23
receptor in astrocytic tumours is specifically associated with glioblastoma multiforme. Virchows Arch. A Pathol. Anat. Histopathol. 420, 321-325.
Al-Joudi FS, Iskandar ZA, Imran AK (2007). Survivin expression correlates with unfavourable prognoses in invasive ductal carcinoma of the breast. Med J Malaysia 62, 6-8.
5 Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L, Guha A, Rak J (2008). Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol.
Altman JD, Moss PA, Goulder PJ, Barouch DH, Heyzer-Williams MG, Bell JI, McMichael AJ, Davis MM (1996). Phenotypic analysis of antigen-specific T lymphocytes. Science 274, 94-96.
Amoh Y, Yang M, Li L, Reynoso J, Bouvet M, Moossa AR, Katsuoka K, Hoffman RM (2005). Nestin-linked green 10 fluorescent protein transgenic nude mouse for imaging human tumor angiogenesis. Cancer Res. 65, 5352-5357.
Angileri FF, Aguennouz M, Conti A, La TD, Cardali S, Crupi R, Tomasello C, Germano A, Vita G, Tomasello F (2008). Nuclear factor-kappaB activation and differential expression of survivin and Bcl-2 in human grade 2-4 astrocytomas. Cancer.
Appay V, Speiser DE, Rufer N, Reynard S, Barbey C, Cerottini JC, Leyvraz S, Pinilla C, Romero P (2006). 15 Decreased specific CD8+ T cell cross-reactivity of antigen recognition following vaccination with Melan-A peptide. Eur. J Immunol. 36, 1805-1814.
Arnold SE, Trojanowski JQ (1996). Human fetal hippocampal development: II. The neuronal cytoskeleton. J Comp Neurol. 367, 293-307.
ARONSON SM, ARONSON BE (1965). CENTRAL NERVOUS SYSTEM IN DIABETES MELLITUS: LOWERED 20 FREQUENCY OF CERTAIN INTRACRANIAL NEOPLASMS. Arch. Neurol. 12, 390-398.
Asheuer M, Bieche I, Laurendeau I, Moser A, Hainque B, Vidaud M, Aubourg P (2005). Decreased expression of ABCD4 and BG1 genes early in the pathogenesis of X-linked adrenoleukodystrophy. Hum. Mol. Genet. 14, 12931303.
Asklund T, Appelskog IB, Ammerpohl O, Ekstrom TJ, Almqvist PM (2004). Histone deacetylase inhibitor 425 phenylbutyrate modulates glial fibrillary acidic protein and connexin 43 expression, and enhances gap-junction communication, in human glioblastoma cells. Eur. J Cancer 40, 1073-1081.
Barker FG, Simmons ML, Chang SM, Prados MD, Larson DA, Sneed PK, Wara WM, Berger MS, Chen P, Israel MA, Aldape KD (2001). EGFR overexpression and radiation response in glioblastoma multiforme. Int. J Radiat. Oncol Biol. Phys. 51, 410-418.
30 Bertelli E, Regoli M, Fonzi L, Occhini R, Mannucci S, Ermini L, Toti P (2007). Nestin expression in adult and developing human kidney. J Histochem. Cytochem. 55, 411-421.
Blum R, Jacob-Hirsch J, Rechavi G, Kloog Y (2006). Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis. Mol. Cancer Ther. 5, 23372347.
35 Bourdon MA, Wikstrand CJ, Furthmayr H, Matthews TJ, Bigner DD (1983). Human glioma-mesenchymal extracellular matrix antigen defined by monoclonal antibody. Cancer Res. 43, 2796-2805.
Bowen AR, Hanks AN, Murphy KJ, Florell SR, Grossman D (2004). Proliferation, apoptosis, and survivin expression in keratinocytic neoplasms and hyperplasias. Am J Dermatopathol. 26, 177-181.
Boyton RJ, Lohmann T, Londei M, Kalbacher H, Halder T, Frater AJ, Douek DC, Leslie DG, Flavell RA, Altmann
40 DM (1998). Glutamic acid decarboxylase T lymphocyte responses associated with susceptibility or resistance to type I diabetes: analysis in disease discordant human twins, non-obese diabetic mice and HLA-DQ transgenic mice. Int. Immunol. 10, 1765-1776.
Brekke C, Lundervold A, Enger PO, Brekken C, Stalsett E, Pedersen TB, Haraldseth O, Kruger PG, Bjerkvig R, Chekenya M (2006). NG2 expression regulates vascular morphology and function in human brain tumours. 45 Neuroimage. 29, 965-976.
Brenner AV, Linet MS, Fine HA, Shapiro WR, Selker RG, Black PM, Inskip PD (2002). History of allergies and autoimmune diseases and risk of brain tumors in adults. Int. J Cancer 99, 252-259.
Brommeland T, Rosengren L, Fridlund S, Hennig R, Isaksen V (2007). Serum levels of glial fibrillary acidic protein correlate to tumour volume of high-grade gliomas. Acta Neurol. Scand. 116, 380-384.
50 Bronger H, Konig J, Kopplow K, Steiner HH, Ahmadi R, Herold-Mende C, Keppler D, Nies AT (2005). ABCC drug
efflux pumps and organic anion uptake transporters in human gliomas and the blood-tumor barrier. Cancer Res. 65, 11419-11428.
Brychtova S, Fiuraskova M, Hlobilkova A, Brychta T, Hirnak J (2007). Nestin expression in cutaneous melanomas and melanocytic nevi. J Cutan. Pathol. 34, 370-375.
5 Buchner A, Castro M, Hennig A, Popp T, Assmann G, Hofstetter A, Stief C, Zimmermann W (2007). [Transcriptome analyses in renal cell carcinoma. Combination of laser microdissection and microarrays]. Urologe A 46, 1170-1175.
Calvo A, Catena R, Noble MS, Carbott D, Gil-Bazo I, Gonzalez-Moreno O, Huh JI, Sharp R, Qiu TH, Anver MR, Merlino G, Dickson RB, Johnson MD, Green JE (2008). Identification of VEGF-regulated genes associated with
10 increased lung metastatic potential: functional involvement of tenascin-C in tumor growth and lung metastasis. Oncogene.
Campoli MR, Chang CC, Kageshita T, Wang X, McCarthy JB, Ferrone S (2004). Human high molecular weightmelanoma-associated antigen (HMW-MAA): a melanoma cell surface chondroitin sulfate proteoglycan (MSCP) with biological and clinical significance. Crit Rev. Immunol. 24, 267-296.
15 Carnemolla B, Castellani P, Ponassi M, Borsi L, Urbini S, Nicolo G, Dorcaratto A, Viale G, Winter G, Neri D, Zardi L (1999). Identification of a glioblastoma-associated tenascin-C isoform by a high affinity recombinant antibody. Am J Pathol. 154, 1345-1352.
Carriere C, Seeley ES, Goetze T, Longnecker DS, Korc M (2007). The Nestin progenitor lineage is the compartment of origin for pancreatic intraepithelial neoplasia. Proc Natl. Acad. Sci. U. S. A 104, 4437-4442.
20 Casati C, Dalerba P, Rivoltini L, Gallino G, Deho P, Rini F, Belli F, Mezzanzanica D, Costa A, Andreola S, Leo E, Parmiani G, Castelli C (2003). The apoptosis inhibitor protein survivin induces tumor-specific CD8+ and CD4+ T cells in colorectal cancer patients. Cancer Res. 63, 4507-4515.
Castellino F, Huang AY, tan-Bonnet G, Stoll S, Scheinecker C, Germain RN (2006). Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 440, 890-895.
25 Chakravarti A, Noll E, Black PM, Finkelstein DF, Finkelstein DM, Dyson NJ, Loeffler JS (2002). Quantitatively determined survivin expression levels are of prognostic value in human gliomas. J Clin Oncol 20, 1063-1068.
Cheever MA, Chen W, Disis ML, Takahashi M, Peace DJ (1993). T-cell immunity to oncogenic proteins including mutated ras and chimeric bcr-abl. Ann N. Y. Acad. Sci. 690, 101-112.
Chekenya M, Enger PO, Thorsen F, Tysnes BB, Al-Sarraj S, Read TA, Furmanek T, Mahesparan R, Levine JM,
30 Butt AM, Pilkington GJ, Bjerkvig R (2002a). The glial precursor proteoglycan, NG2, is expressed on tumour neovasculature by vascular pericytes in human malignant brain tumours. Neuropathol. Appl. Neurobiol. 28, 367
380.
Chekenya M, Hjelstuen M, Enger PO, Thorsen F, Jacob AL, Probst B, Haraldseth O, Pilkington G, Butt A, Levine JM, Bjerkvig R (2002b). NG2 proteoglycan promotes angiogenesis-dependent tumor growth in CNS by
35 sequestering angiostatin. FASEB J 16, 586-588.
Chekenya M, Immervoll H (2007). NG2/HMP proteoglycan as a cancer therapeutic target. Methods Mol. Biol. 361, 93-117.
Chekenya M, Krakstad C, Svendsen A, Netland IA, Staalesen V, Tysnes BB, Selheim F, Wang J, Sakariassen PO, Sandal T, Lonning PE, Flatmark T, Enger PO, Bjerkvig R, Sioud M, Stallcup WB (2008). The progenitor cell
40 marker NG2/MPG promotes chemoresistance by activation of integrin-dependent PI3K/Akt signaling. Oncogene.
Chekenya M, Pilkington GJ (2002). NG2 precursor cells in neoplasia: functional, histogenesis and therapeutic implications for malignant brain tumours. J Neurocytol. 31, 507-521.
Chekenya M, Rooprai HK, Davies D, Levine JM, Butt AM, Pilkington GJ (1999). The NG2 chondroitin sulfate proteoglycan: role in malignant progression of human brain tumours. Int J Dev. Neurosci. 17, 421-435.
45 Chiquet-Ehrismann R, Tucker RP (2004). Connective tissues: signalling by tenascins. Int. J Biochem. Cell Biol. 36, 1085-1089.
Chu C, Li JY, Boado RJ, Pardridge WM (2008). Blood-brain barrier genomics and cloning of a novel organic anion transporter. J Cereb. Blood Flow Metab 28, 291-301.
Colin C, Baeza N, Bartoli C, Fina F, Eudes N, Nanni I, Martin PM, Ouafik L, Figarella-Branger D (2006). 50 Identification of genes differentially expressed in glioblastoma versus pilocytic astrocytoma using Suppression
imagen24
imagen25
clear cell renal cell carcinoma. Cancer 112, 1471-1479.
Hormigo A, Gu B, Karimi S, Riedel E, Panageas KS, Edgar MA, Tanwar MK, Rao JS, Fleisher M, DeAngelis LM, Holland EC (2006). YKL-40 and matrix metalloproteinase-9 as potential serum biomarkers for patients with highgrade gliomas. Clin Cancer Res. 12, 5698-5704.
5 Huang J, Hu J, Bian X, Chen K, Gong W, Dunlop NM, Howard OM, Wang JM (2007). Transactivation of the epidermal growth factor receptor by formylpeptide receptor exacerbates the malignant behavior of human glioblastoma cells. Cancer Res. 67, 5906-5913.
Huang Y, Fan J, Yang J, Zhu GZ (2008). Characterization of GPR56 protein and its suppressed expression in human pancreatic cancer cells. Mol. Cell Biochem. 308, 133-139.
10 Huncharek M, Kupelnick B (2000). Epidermal growth factor receptor gene amplification as a prognostic marker in glioblastoma multiforme: results of a meta-analysis. Oncol Res. 12, 107-112.
Hwang ML, Lukens JR, Bullock TN (2007). Cognate memory CD4+ T cells generated with dendritic cell priming influence the expansion, trafficking, and differentiation of secondary CD8+ T cells and enhance tumor control. J Immunol. 179, 5829-5838.
15 Iguchi T, Sakata K, Yoshizaki K, Tago K, Mizuno N, Itoh H (2008). Orphan G protein-coupled receptor GPR56 regulates neural progenitor cell migration via a Galpha 12/13 and Rho pathway. J Biol. Chem.
Ilja Boor PK, de GK, Mejaski-Bosnjak V, Brenner C, van der Knaap MS, Scheper GC, Pronk JC (2006). Megalencephalic leukoencephalopathy with subcortical cysts: an update and extended mutation analysis of MLC1. Hum. Mutat. 27, 505-512.
20 Ishiuchi S, Tsuzuki K, Yoshida Y, Yamada N, Hagimura N, Okado H, Miwa A, Kurihara H, Nakazato Y, Tamura M, Sasaki T, Ozawa S (2002). Blockage of Ca(2+)-permeable AMPA receptors suppresses migration and induces apoptosis in human glioblastoma cells. Nat. Med 8, 971-978.
Ishizaki M, Ishiwata T, Adachi A, Tamura N, Ghazizadeh M, Kitamura H, Sugisaki Y, Yamanaka N, Naito Z, Fukuda Y (2006). Expression of nestin in rat and human glomerular podocytes. J Submicrosc. Cytol. Pathol. 38,
25 193-200.
Janssen EM, Lemmens EE, Wolfe T, Christen U, von Herrath MG, Schoenberger SP (2003). CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature 421, 852-856.
Jaworski DM, Kelly GM, Piepmeier JM, Hockfield S (1996). BEHAB (brain enriched hyaluronan binding) is expressed in surgical samples of glioma and in intracranial grafts of invasive glioma cell lines. Cancer Res. 56,
30 2293-2298.
Jiang Z, Chu PG, Woda BA, Rock KL, Liu Q, Hsieh CC, Li C, Chen W, Duan HO, McDougal S, Wu CL (2006). Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 7, 556-564.
Jiang Z, Lohse CM, Chu PG, Wu CL, Woda BA, Rock KL, Kwon ED (2008). Oncofetal protein IMP3: a novel
35 molecular marker that predicts metastasis of papillary and chromophobe renal cell carcinomas. Cancer 112, 2676-2682.
Johansen JS, Jensen BV, Roslind A, Nielsen D, Price PA (2006). Serum YKL-40, a new prognostic biomarker in cancer patients? Cancer Epidemiol. Biomarkers Prev. 15, 194-202.
Johansen JS, Jensen BV, Roslind A, Price PA (2007). Is YKL-40 a new therapeutic target in cancer? Expert. 40 Opin. Ther. Targets. 11, 219-234.
Jung CS, Foerch C, Schanzer A, Heck A, Plate KH, Seifert V, Steinmetz H, Raabe A, Sitzer M (2007). Serum GFAP is a diagnostic marker for glioblastoma multiforme. Brain 130, 3336-3341.
Jung G, Ledbetter JA, Muller-Eberhard HJ (1987). Induction of cytotoxicity in resting human T lymphocytes bound to tumor cells by antibody heteroconjugates. Proc Natl Acad Sci U S A 84, 4611-4615.
45 Junker N, Johansen JS, Hansen LT, Lund EL, Kristjansen PE (2005). Regulation of YKL-40 expression during genotoxic or microenvironmental stress in human glioblastoma cells. Cancer Sci. 96, 183-190.
Kajiwara Y, Yamasaki F, Hama S, Yahara K, Yoshioka H, Sugiyama K, Arita K, Kurisu K (2003). Expression of survivin in astrocytic tumors: correlation with malignant grade and prognosis. Cancer 97, 1077-1083.
Kaloshi G, Mokhtari K, Carpentier C, Taillibert S, Lejeune J, Marie Y, Delattre JY, Godbout R, Sanson M (2007). 50 FABP7 expression in glioblastomas: relation to prognosis, invasion and EGFR status. J Neurooncol. 84, 245-248.
Kato Y, Fujita N, Kunita A, Sato S, Kaneko M, Osawa M, Tsuruo T (2003). Molecular identification of Aggrus/T1alpha as a platelet aggregation-inducing factor expressed in colorectal tumors. J Biol. Chem. 278, 51599-51605.
Kato Y, Kaneko MK, Kunita A, Ito H, Kameyama A, Ogasawara S, Matsuura N, Hasegawa Y, Suzuki-Inoue K, 5 Inoue O, Ozaki Y, Narimatsu H (2008). Molecular analysis of the pathophysiological binding of the platelet aggregation-inducing factor podoplanin to the C-type lectin-like receptor CLEC-2. Cancer Sci. 99, 54-61.
Kato Y, Kaneko MK, Kuno A, Uchiyama N, Amano K, Chiba Y, Hasegawa Y, Hirabayashi J, Narimatsu H, Mishima K, Osawa M (2006). Inhibition of tumor cell-induced platelet aggregation using a novel anti-podoplanin antibody reacting with its platelet-aggregation-stimulating domain. Biochem. Biophys. Res. Commun. 349, 1301
10 1307.
Ke N, Sundaram R, Liu G, Chionis J, Fan W, Rogers C, Awad T, Grifman M, Yu D, Wong-Staal F, Li QX (2007). Orphan G protein-coupled receptor GPR56 plays a role in cell transformation and tumorigenesis involving the cell adhesion pathway. Mol. Cancer Ther. 6, 1840-1850.
Kennedy RC, Shearer MH, Watts AM, Bright RK (2003). CD4+ T lymphocytes play a critical role in antibody 15 production and tumor immunity against simian virus 40 large tumor antigen. Cancer Res. 63, 1040-1045.
Kim CH, Bak KH, Kim YS, Kim JM, Ko Y, Oh SJ, Kim KM, Hong EK (2000). Expression of tenascin-C in astrocytic tumors: its relevance to proliferation and angiogenesis. Surg Neurol. 54, 235-240.
Kim SH, Das K, Noreen S, Coffman F, Hameed M (2007). Prognostic implications of immunohistochemically detected YKL-40 expression in breast cancer. World J Surg Oncol 5, 17.
20 Kleeberger W, Bova GS, Nielsen ME, Herawi M, Chuang AY, Epstein JI, Berman DM (2007). Roles for the stem cell associated intermediate filament Nestin in prostate cancer migration and metastasis. Cancer Res. 67, 91999206.
Klein T, Ling Z, Heimberg H, Madsen OD, Heller RS, Serup P (2003). Nestin is expressed in vascular endothelial cells in the adult human pancreas. J Histochem. Cytochem. 51, 697-706.
25 Klein WM, Wu BP, Zhao S, Wu H, Klein-Szanto AJ, Tahan SR (2007). Increased expression of stem cell markers in malignant melanoma. Mod. Pathol. 20, 102-107.
Kobayashi H, Omiya R, Ruiz M, Huarte E, Sarobe P, Lasarte JJ, Herraiz M, Sangro B, Prieto J, Borras-Cuesta F, Celis E (2002). Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res. 8, 3219-3225.
30 Kono T, Shimoda M, Takahashi M, Matsumoto K, Yoshimoto T, Mizutani M, Tabata C, Okoshi K, Wada H, Kubo H (2007). Immunohistochemical detection of the lymphatic marker podoplanin in diverse types of human cancer cells using a novel antibody. Int J Oncol 31, 501-508.
Kosari F, Parker AS, Kube DM, Lohse CM, Leibovich BC, Blute ML, Cheville JC, Vasmatzis G (2005). Clear cell renal cell carcinoma: gene expression analyses identify a potential signature for tumor aggressiveness. Clin
35 Cancer Res. 11, 5128-5139.
Kroes RA, Dawson G, Moskal JR (2007). Focused microarray analysis of glyco-gene expression in human glioblastomas. J Neurochem. 103 Suppl 1, 14-24.
Krona A, Aman P, Orndal C, Josefsson A (2007). Oncostatin M-induced genes in human astrocytomas. Int. J Oncol 31, 1457-1463.
40 Kucharczak J, Pannequin J, Camby I, Decaestecker C, Kiss R, Martinez J (2001). Gastrin induces overexpression of genes involved in human U373 glioblastoma cell migration. Oncogene 20, 7021-7028.
Kucur M, Isman FK, Balci C, Onal B, Hacibekiroglu M, Ozkan F, Ozkan A (2008). Serum YKL-40 levels and chitotriosidase activity as potential biomarkers in primary prostate cancer and benign prostatic hyperplasia. Urol. Oncol 26, 47-52.
45 Kurihara H, Zama A, Tamura M, Takeda J, Sasaki T, Takeuchi T (2000). Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator. Gene Ther. 7, 686-693.
Lal A, Peters H, St CB, Haroon ZA, Dewhirst MW, Strausberg RL, Kaanders JH, van der Kogel AJ, Riggins GJ (2001). Transcriptional response to hypoxia in human tumors. J Natl. Cancer Inst. 93, 1337-1343.
Lemmel C, Weik S, Eberle U, Dengjel J, Kratt T, Becker HD, Rammensee HG, Stevanovic S (2004). Differential 50 quantitative analysis of MHC ligands by mass spectrometry using stable isotope labeling. Nat. Biotechnol. 22,
450-454.
Lendahl U, Zimmerman LB, McKay RD (1990). CNS stem cells express a new class of intermediate filament protein. Cell 60, 585-595.
Li JY, Wang H, May S, Song X, Fueyo J, Fuller GN, Wang H (2008a). Constitutive activation of c-Jun N-terminal 5 kinase correlates with histologic grade and EGFR expression in diffuse gliomas. J Neurooncol. 88, 11-17.
Li L, Xu H, Spaulding BO, Cheng L, Simon R, Yao JL, di Sant'agnese PA, Bourne PA, Huang J (2008b). Expression of RNA-binding protein IMP3 (KOC) in benign urothelium and urothelial tumors. Hum. Pathol.
Liang ML, Ma J, Ho M, Solomon L, Bouffet E, Rutka JT, Hawkins C (2008). Tyrosine kinase expression in pediatric high grade astrocytoma. J Neurooncol. 87, 247-253.
10 Liang Y, Bollen AW, Aldape KD, Gupta N (2006). Nuclear FABP7 immunoreactivity is preferentially expressed in infiltrative glioma and is associated with poor prognosis in EGFR-overexpressing glioblastoma. BMC. Cancer 6,
97.
Liang Y, Diehn M, Watson N, Bollen AW, Aldape KD, Nicholas MK, Lamborn KR, Berger MS, Botstein D, Brown PO, Israel MA (2005). Gene expression profiling reveals molecularly and clinically distinct subtypes of 15 glioblastoma multiforme. Proc. Natl. Acad. Sci. U. S. A 102, 5814-5819.
Liao B, Hu Y, Herrick DJ, Brewer G (2005). The RNA-binding protein IMP-3 is a translational activator of insulinlike growth factor II leader-3 mRNA during proliferation of human K562 leukemia cells. J Biol. Chem. 280, 1851718524.
Littaua RA, Takeda A, Cruz J, Ennis FA (1992). Vaccinia virus-specific human CD4+ cytotoxic T-lymphocyte 20 clones. J Virol. 66, 2274-2280.
Liu M, Parker RM, Darby K, Eyre HJ, Copeland NG, Crawford J, Gilbert DJ, Sutherland GR, Jenkins NA, Herzog H (1999). GPR56, a novel secretin-like human G-protein-coupled receptor gene. Genomics 55, 296-305.
Liu S, Ginestier C, Charafe-Jauffret E, Foco H, Kleer CG, Merajver SD, Dontu G, Wicha MS (2008). BRCA1 regulates human mammary stem/progenitor cell fate. Proc Natl. Acad. Sci. U. S. A 105, 1680-1685.
25 Liu W, Putnam AL, Xu-Yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St Groth BF, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006a). CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4(+) T reg cells. J Exp. Med 203, 1701-1711.
Liu X, Chen N, Wang X, He Y, Chen X, Huang Y, Yin W, Zhou Q (2006b). Apoptosis and proliferation markers in diffusely infiltrating astrocytomas: profiling of 17 molecules. J Neuropathol. Exp. Neurol. 65, 905-913.
30 Lo ML, Staibano S, Pannone G, Mignogna MD, Mariggio A, Salvatore G, Chieffi P, Tramontano D, De RG, Altieri DC (2001). Expression of the apoptosis inhibitor survivin in aggressive squamous cell carcinoma. Exp. Mol. Pathol. 70, 249-254.
Lubensky IA, Vortmeyer AO, Kim S, Lonser RR, Park DM, Ikejiri B, Li J, Okamoto H, Walbridge S, Ryschkewitsch C, Major E, Oldfield EH, Zhuang Z (2006). Identification of tumor precursor cells in the brains of primates with 35 radiation-induced de novo glioblastoma multiforme. Cell Cycle 5, 452-456.
Mach B, Steimle V, Martinez-Soria E, Reith W (1996). Regulation of MHC class II genes: lessons from a disease. Annu. Rev. Immunol. 14, 301-331.
Maderna E, Salmaggi A, Calatozzolo C, Limido L, Pollo B (2007). Nestin, PDGFRbeta, CXCL12 and VEGF in Glioma Patients: Different Profiles of (Pro-Angiogenic) Molecule Expression Are Related with Tumor Grade and 40 May Provide Prognostic Information. Cancer Biol. Ther. 6.
Mahlamaki EH, Barlund M, Tanner M, Gorunova L, Hoglund M, Karhu R, Kallioniemi A (2002). Frequent amplification of 8q24, 11q, 17q, and 20q-specific genes in pancreatic cancer. Genes Chromosomes. Cancer 35, 353-358.
Malcherek G, Gnau V, Stevanovic S, Rammensee HG, Jung G, Melms A (1994). Analysis of allele-specific 45 contact sites of natural HLA-DR17 ligands. J Immunol. 153, 1141-1149.
Manici S, Sturniolo T, Imro MA, Hammer J, Sinigaglia F, Noppen C, Spagnoli G, Mazzi B, Bellone M, Dellabona P, Protti MP (1999). Melanoma cells present a MAGE-3 epitope to CD4(+) cytotoxic T cells in association with histocompatibility leukocyte antigen DR11. J Exp. Med 189, 871-876.
Mao Y, Zhou L, Zhu W, Wang X, Yang G, Xie L, Mao X, Jin K (2007). Proliferative status of tumor stem cells may 50 be correlated with malignancy grade of human astrocytomas. Front Biosci. 12, 2252-2259.
Marzo AL, Kinnear BF, Lake RA, Frelinger JJ, Collins EJ, Robinson BW, Scott B (2000). Tumor-specific CD4+ T cells have a major "post-licensing" role in CTL mediated anti-tumor immunity. J Immunol. 165, 6047-6055.
Mellai M, Caldera V, Patrucco A, Annovazzi L, Schiffer D (2008). Survivin expression in glioblastomas correlates with proliferation, but not with apoptosis. Anticancer Res. 28, 109-118.
Mishima K, Kato Y, Kaneko MK, Nishikawa R, Hirose T, Matsutani M (2006). Increased expression of podoplanin in malignant astrocytic tumors as a novel molecular marker of malignant progression. Acta Neuropathol. 111, 483
488.
Mita R, Coles JE, Glubrecht DD, Sung R, Sun X, Godbout R (2007). B-FABP-expressing radial glial cells: the malignant glioma cell of origin? Neoplasia. 9, 734-744.
Miyawaki T, Uemura A, Dezawa M, Yu RT, Ide C, Nishikawa S, Honda Y, Tanabe Y, Tanabe T (2004). Tlx, an orphan nuclear receptor, regulates cell numbers and astrocyte development in the developing retina. J Neurosci. 24, 8124-8134.
Mizukami Y, Kono K, Daigo Y, Takano A, Tsunoda T, Kawaguchi Y, Nakamura Y, Fujii H (2008). Detection of novel cancer-testis antigen-specific T-cell responses in TIL, regional lymph nodes, and PBL in patients with esophageal squamous cell carcinoma. Cancer Sci.
Mokhtari K, Paris S, guirre-Cruz L, Privat N, Criniere E, Marie Y, Hauw JJ, Kujas M, Rowitch D, Hoang-Xuan K, Delattre JY, Sanson M (2005). Olig2 expression, GFAP, p53 and 1p loss analysis contribute to glioma subclassification. Neuropathol. Appl. Neurobiol. 31, 62-69.
Mokry J, Cizkova D, Filip S, Ehrmann J, Osterreicher J, Kolar Z, English D (2004). Nestin expression by newly formed human blood vessels. Stem Cells Dev. 13, 658-664.
Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A, de Vries CR, Rogers-Freezer LJ, Mavroukakis SA, Rosenberg SA (2006). Cancer Regression in Patients After Transfer of Genetically Engineered Lymphocytes. Science.
Mortara L, Castellani P, Meazza R, Tosi G, De Lerma BA, Procopio FA, Comes A, Zardi L, Ferrini S, Accolla RS (2006). CIITA-induced MHC class II expression in mammary adenocarcinoma leads to a Th1 polarization of the tumor microenvironment, tumor rejection, and specific antitumor memory. Clin Cancer Res. 12, 3435-3443.
Novellino L, Castelli C, Parmiani G (2005). A listing of human tumor antigens recognized by T cells: March 2004 update. Cancer Immunol. Immunother. 54, 187-207.
Nutt CL, Betensky RA, Brower MA, Batchelor TT, Louis DN, Stemmer-Rachamimov AO (2005). YKL-40 is a differential diagnostic marker for histologic subtypes of high-grade gliomas. Clin Cancer Res. 11, 2258-2264.
Nutt CL, Matthews RT, Hockfield S (2001). Glial tumor invasion: a role for the upregulation and cleavage of BEHAB/brevican. Neuroscientist. 7, 113-122.
O'Driscoll L, Linehan R, Clynes M (2003). Survivin: role in normal cells and in pathological conditions. Curr. Cancer Drug Targets. 3, 131-152.
Ohike N, Sato M, Hisayuki T, Imataka H, Sato S, Wada Y, Saito K, Takahashi M, Tajiri T, Kunimura T, Morohoshi T (2007). Immunohistochemical analysis of nestin and c-kit and their significance in pancreatic tumors. Pathol. Int. 57, 589-593.
Okada Y, Ohno C, Ueki K, Ogino M, Kawamoto S, Kim P (2007). Comparison of numerical change of epidermal growth factor receptor gene among pre-and postradiation glioma, and gliosis, and its clinical use. Brain Tumor Pathol. 24, 15-18.
Ozerdem U (2006). Targeting of pericytes diminishes neovascularization and lymphangiogenesis in prostate cancer. Prostate 66, 294-304.
Pei Z, Oey NA, Zuidervaart MM, Jia Z, Li Y, Steinberg SJ, Smith KD, Watkins PA (2003). The acyl-CoA synthetase "bubblegum" (lipidosin): further characterization and role in neuronal fatty acid beta-oxidation. J Biol. Chem. 278, 47070-47078.
Pelloski CE, Lin E, Zhang L, Yung WK, Colman H, Liu JL, Woo SY, Heimberger AB, Suki D, Prados M, Chang S, Barker FG, III, Fuller GN, Aldape KD (2006). Prognostic associations of activated mitogen-activated protein kinase and Akt pathways in glioblastoma. Clin Cancer Res. 12, 3935-3941.
Pelloski CE, Mahajan A, Maor M, Chang EL, Woo S, Gilbert M, Colman H, Yang H, Ledoux A, Blair H, Passe S, Jenkins RB, Aldape KD (2005). YKL-40 expression is associated with poorer response to radiation and shorter overall survival in glioblastoma. Clin Cancer Res. 11, 3326-3334.
Penar PL, Khoshyomn S, Bhushan A, Tritton TR (1997). Inhibition of epidermal growth factor receptor-associated tyrosine kinase blocks glioblastoma invasion of the brain. Neurosurgery 40, 141-151.
Penna A, Fowler P, Bertoletti A, Guilhot S, Moss B, Margolskee RF, Cavalli A, Valli A, Fiaccadori F, Chisari FV, . (1992). Hepatitis B virus (HBV)-specific cytotoxic T-cell (CTL) response in humans: characterization of HLA class II-restricted CTLs that recognize endogenously synthesized HBV envelope antigens. J Virol. 66, 1193-1198.
Peris L, Thery M, Faure J, Saoudi Y, Lafanechere L, Chilton JK, Gordon-Weeks P, Galjart N, Bornens M, Wordeman L, Wehland J, Andrieux A, Job D (2006). Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J Cell Biol. 174, 839-849.
Perry J, Ho M, Viero S, Zheng K, Jacobs R, Thorner PS (2007). The intermediate filament nestin is highly expressed in normal human podocytes and podocytes in glomerular disease. Pediatr. Dev. Pathol. 10, 369-382.
Piesche M, Hildebrandt Y, Zettl F, Chapuy B, Schmitz M, Wulf G, Trumper L, Schroers R (2007). Identification of a promiscuous HLA DR-restricted T-cell epitope derived from the inhibitor of apoptosis protein survivin. Hum. Immunol. 68, 572-576.
Pizzagalli F, Hagenbuch B, Stieger B, Klenk U, Folkers G, Meier PJ (2002). Identification of a novel human organic anion transporting polypeptide as a high affinity thyroxine transporter. Mol. Endocrinol. 16, 2283-2296.
Pryor JG, Bourne PA, Yang Q, Spaulding BO, Scott GA, Xu H (2008). IMP-3 is a novel progression marker in malignant melanoma. Mod. Pathol. 21, 431-437.
Purow B, Sundaresan TK, Burdick MJ, Kefas B, Comeau L, Hawkinson M, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA (2008). Notch-1 Regulates Transcription of the Epidermal Growth Factor Receptor Through p53. Carcinogenesis.
Qin Z, Blankenstein T (2000). CD4+ T cell--mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells. Immunity. 12, 677-686.
Qin Z, Schwartzkopff J, Pradera F, Kammertoens T, Seliger B, Pircher H, Blankenstein T (2003). A critical requirement of interferon gamma-mediated angiostasis for tumor rejection by CD8+ T cells. Cancer Res. 63, 4095-4100.
Quaranta M, Divella R, Daniele A, Di TS, Venneri MT, Lolli I, Troccoli G (2007). Epidermal growth factor receptor serum levels and prognostic value in malignant gliomas. Tumori 93, 275-280.
Rammensee HG, Bachmann J, Emmerich NP, Bachor OA, Stevanovic S (1999). SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50, 213-219.
Rammensee,H.G., Bachmann,J., and Stevanovic,S. (1997). MHC Ligands and Peptide Motifs. Springer-Verlag, Heidelberg, Germany).
Rammensee HG, Friede T, Stevanoviic S (1995). MHC ligands and peptide motifs: first listing. Immunogenetics 41, 178-228.
Reyaz N, Tayyab M, Khan SA, Siddique T (2005). Correlation of glial fibrillary acidic protein (GFAP) with grading of the neuroglial tumours. J Coll. Physicians Surg. Pak. 15, 472-475.
Ringsholt M, Hogdall EV, Johansen JS, Price PA, Christensen LH (2007). YKL-40 protein expression in normal adult human tissues--an immunohistochemical study. J Mol. Histol. 38, 33-43.
Rosenberg SA, Lotze MT, Muul LM, Chang AE, Avis FP, Leitman S, Linehan WM, Robertson CN, Lee RE, Rubin JT, . (1987). A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N. Engl. J. Med. 316, 889-897.
Rosenberg SA, Packard BS, Aebersold PM, Solomon D, Topalian SL, Toy ST, Simon P, Lotze MT, Yang JC, Seipp CA, . (1988). Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N. Engl. J Med 319, 1676-1680.
Roslind A, Johansen JS, Christensen IJ, Kiss K, Balslev E, Nielsen DL, Bentzen J, Price PA, Andersen E (2008). High serum levels of YKL-40 in patients with squamous cell carcinoma of the head and neck are associated with short survival. Int. J Cancer 122, 857-863.
Ruiz C, Huang W, Hegi ME, Lange K, Hamou MF, Fluri E, Oakeley EJ, Chiquet-Ehrismann R, Orend G (2004). Growth promoting signaling by tenascin-C [corrected]. Cancer Res. 64, 7377-7385.
imagen26
Shashidhar S, Lorente G, Nagavarapu U, Nelson A, Kuo J, Cummins J, Nikolich K, Urfer R, Foehr ED (2005). GPR56 is a GPCR that is overexpressed in gliomas and functions in tumor cell adhesion. Oncogene 24, 16731682.
Shedlock DJ, Shen H (2003). Requirement for CD4 T cell help in generating functional CD8 T cell memory. Science 300, 337-339.
Shibahara J, Kashima T, Kikuchi Y, Kunita A, Fukayama M (2006). Podoplanin is expressed in subsets of tumors of the central nervous system. Virchows Arch. 448, 493-499.
Shih AH, Holland EC (2006). Notch signaling enhances nestin expression in gliomas. Neoplasia. 8, 1072-1082.
Shiras A, Chettiar ST, Shepal V, Rajendran G, Prasad GR, Shastry P (2007). Spontaneous transformation of human adult nontumorigenic stem cells to cancer stem cells is driven by genomic instability in a human model of glioblastoma. Stem Cells 25, 1478-1489.
Shostak K, Labunskyy V, Dmitrenko V, Malisheva T, Shamayev M, Rozumenko V, Zozulya Y, Zehetner G, Kavsan V (2003). HC gp-39 gene is upregulated in glioblastomas. Cancer Lett. 198, 203-210.
Singh SK, Clarke ID, Hide T, Dirks PB (2004a). Cancer stem cells in nervous system tumors. Oncogene 23, 7267-7273.
Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003). Identification of a cancer stem cell in human brain tumors. Cancer Res. 63, 5821-5828.
Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB (2004b). Identification of human brain tumour initiating cells. Nature 432, 396-401.
Singh-Jasuja H, Emmerich NP, Rammensee HG (2004). The Tubingen approach: identification, selection, and validation of tumor-associated HLA peptides for cancer therapy. Cancer Immunol. Immunother. 53, 187-195.
Sitnikova L, Mendese G, Liu Q, Woda BA, Lu D, Dresser K, Mohanty S, Rock KL, Jiang Z (2008). IMP3 predicts aggressive superficial urothelial carcinoma of the bladder. Clin Cancer Res. 14, 1701-1706.
Sjo A, Magnusson KE, Peterson KH (2005). Association of alpha-dystrobrevin with reorganizing tight junctions. J Membr. Biol. 203, 21-30.
Span PN, Sweep FC, Wiegerinck ET, Tjan-Heijnen VC, Manders P, Beex LV, de Kok JB (2004). Survivin is an independent prognostic marker for risk stratification of breast cancer patients. Clin Chem. 50, 1986-1993.
Standifer NE, Ouyang Q, Panagiotopoulos C, Verchere CB, Tan R, Greenbaum CJ, Pihoker C, Nepom GT (2006). Identification of Novel HLA-A*0201-Restricted Epitopes in Recent-Onset Type 1 Diabetic Subjects and Antibody-Positive Relatives. Diabetes 55, 3061-3067.
Strojnik T, Rosland GV, Sakariassen PO, Kavalar R, Lah T (2007). Neural stem cell markers, nestin and musashi proteins, in the progression of human glioma: correlation of nestin with prognosis of patient survival. Surg Neurol. 68, 133-143.
Su W, Chen J, Yang H, You L, Xu L, Wang X, Li R, Gao L, Gu Y, Lin S, Xu H, Breyer MD, Hao CM (2007). Expression of nestin in the podocytes of normal and diseased human kidneys. Am J Physiol Regul. Integr. Comp Physiol 292, R1761-R1767.
Sugawara K, Kurihara H, Negishi M, Saito N, Nakazato Y, Sasaki T, Takeuchi T (2002). Nestin as a marker for proliferative endothelium in gliomas. Lab Invest 82, 345-351.
Sun G, Yu RT, Evans RM, Shi Y (2007). Orphan nuclear receptor TLX recruits histone deacetylases to repress transcription and regulate neural stem cell proliferation. Proc Natl. Acad. Sci. U. S. A 104, 15282-15287.
Sun JC, Bevan MJ (2003). Defective CD8 T cell memory following acute infection without CD4 T cell help. Science 300, 339-342.
Suzuki H, Kato Y, Kaneko MK, Okita Y, Narimatsu H, Kato M (2008). Induction of podoplanin by transforming growth factor-beta in human fibrosarcoma. FEBS Lett. 582, 341-345.
Suzuki T, Maruno M, Wada K, Kagawa N, Fujimoto Y, Hashimoto N, Izumoto S, Yoshimine T (2004). Genetic analysis of human glioblastomas using a genomic microarray system. Brain Tumor Pathol. 21, 27-34.
Takano T, Becker LE (1997). Developmental change of the nestin-immunoreactive midline raphe glial structure in human brainstem and spinal cord. Dev. Neurosci. 19, 202-209.
Tan HY, Liu J, Wu SM, Luo HS (2005). Expression of a novel apoptosis inhibitor-survivin in colorectal carcinoma. World J Gastroenterol. 11, 4689-4692.
Tanwar MK, Gilbert MR, Holland EC (2002). Gene expression microarray analysis reveals YKL-40 to be a potential serum marker for malignant character in human glioma. Cancer Res. 62, 4364-4368.
Teranishi N, Naito Z, Ishiwata T, Tanaka N, Furukawa K, Seya T, Shinji S, Tajiri T (2007). Identification of neovasculature using nestin in colorectal cancer. Int. J Oncol 30, 593-603.
Teratani T, Domoto T, Kuriki K, Kageyama T, Takayama T, Ishikawa A, Ozono S, Nozawa R (2007). Detection of transcript for brain-type fatty Acid-binding protein in tumor and urine of patients with renal cell carcinoma. Urology 69, 236-240.
Thompson DM, Gill GN (1985). The EGF receptor: structure, regulation and potential role in malignancy. Cancer Surv. 4, 767-788.
Tohyama T, Lee VM, Rorke LB, Marvin M, McKay RD, Trojanowski JQ (1992). Nestin expression in embryonic human neuroepithelium and in human neuroepithelial tumor cells. Lab Invest 66, 303-313.
Tompkins SM, Rota PA, Moore JC, Jensen PE (1993). A europium fluoroimmunoassay for measuring binding of antigen to class II MHC glycoproteins. J Immunol. Methods 163, 209-216.
Toti P, Regoli M, Nesi G, Occhini R, Bartolommei S, Fonzi L, Bertelli E (2005). Nestin expression in normal adrenal gland and adrenocortical tumors. Histol. Histopathol. 20, 1115-1120.
Tsujimura T, Makiishi-Shimobayashi C, Lundkvist J, Lendahl U, Nakasho K, Sugihara A, Iwasaki T, Mano M, Yamada N, Yamashita K, Toyosaka A, Terada N (2001). Expression of the intermediate filament nestin in gastrointestinal stromal tumors and interstitial cells of Cajal. Am J Pathol. 158, 817-823.
Uematsu M, Ohsawa I, Aokage T, Nishimaki K, Matsumoto K, Takahashi H, Asoh S, Teramoto A, Ohta S (2005). Prognostic significance of the immunohistochemical index of survivin in glioma: a comparative study with the MIB1 index. J Neurooncol. 72, 231-238.
van Bilsen JH, van DH, Lard LR, van d, V, Elferink DG, Bakker AM, Miltenburg AM, Huizinga TW, de Vries RR, Toes RE (2004). Functional regulatory immune responses against human cartilage glycoprotein-39 in health vs. proinflammatory responses in rheumatoid arthritis. Proc. Natl. Acad. Sci. U. S. A 101, 17180-17185.
van der Bruggen P, Traversari C, Chomez P, Lurquin C, De PE, Van den EB, Knuth A, Boon T (1991). A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254, 1643-1647.
Vanderwinden JM, Gillard K, De Laet MH, Messam CA, Schiffmann SN (2002). Distribution of the intermediate filament nestin in the muscularis propria of the human gastrointestinal tract. Cell Tissue Res. 309, 261-268.
Veerkamp JH, Zimmerman AW (2001). Fatty acid-binding proteins of nervous tissue. J Mol. Neurosci. 16, 133
142.
Veselska R, Kuglik P, Cejpek P, Svachova H, Neradil J, Loja T, Relichova J (2006). Nestin expression in the cell lines derived from glioblastoma multiforme. BMC. Cancer 6, 32.
Viapiano MS, Bi WL, Piepmeier J, Hockfield S, Matthews RT (2005). Novel tumor-specific isoforms of BEHAB/brevican identified in human malignant gliomas. Cancer Res. 65, 6726-6733.
Viapiano MS, Hockfield S, Matthews RT (2008). BEHAB/brevican requires ADAMTS-mediated proteolytic cleavage to promote glioma invasion. J Neurooncol.
Vigneron N, Stroobant V, Chapiro J, Ooms A, Degiovanni G, Morel S, van der BP, Boon T, Van Den Eynde BJ (2004). An antigenic peptide produced by peptide splicing in the proteasome. Science 304, 587-590.
Vogt AB, Kropshofer H, Kalbacher H, Kalbus M, Rammensee HG, Coligan JE, Martin R (1994). Ligand motifs of HLA-DRB5*0101 and DRB1*1501 molecules delineated from self-peptides. J Immunol. 153, 1665-1673.
Walter S, Herrgen L, Schoor O, Jung G, Wernet D, Buhring HJ, Rammensee HG, Stevanovic S (2003). Cutting edge: predetermined avidity of human CD8 T cells expanded on calibrated MHC/anti-CD28-coated microspheres.
J. Immunol. 171, 4974-4978.
Wang JC, Livingstone AM (2003). Cutting edge: CD4+ T cell help can be essential for primary CD8+ T cell responses in vivo. J Immunol. 171, 6339-6343.
Wei LC, Shi M, Cao R, Chen LW, Chan YS (2008). Nestin small interfering RNA (siRNA) reduces cell growth in cultured astrocytoma cells. Brain Res. 1196, 103-112.
Weinschenk T, Gouttefangeas C, Schirle M, Obermayr F, Walter S, Schoor O, Kurek R, Loeser W, Bichler KH, Wernet D, Stevanovic S, Rammensee HG (2002). Integrated functional genomics approach for the design of patient-individual antitumor vaccines. Cancer Res. 62, 5818-5827.
Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006). Tumor invasion in the absence of epithelial-mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9, 261
272.
Winer S, Tsui H, Lau A, Song A, Li X, Cheung RK, Sampson A, Afifiyan F, Elford A, Jackowski G, Becker DJ, Santamaria P, Ohashi P, Dosch HM (2003). Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat. Med 9, 198-205.
Wiranowska M, Ladd S, Smith SR, Gottschall PE (2006). CD44 adhesion molecule and neuro-glial proteoglycan NG2 as invasive markers of glioma. Brain Cell Biol. 35, 159-172.
Xie D, Zeng YX, Wang HJ, Wen JM, Tao Y, Sham JS, Guan XY (2006). Expression of cytoplasmic and nuclear Survivin in primary and secondary human glioblastoma. Br. J Cancer 94, 108-114.
Xu L, Begum S, Hearn JD, Hynes RO (2006). GPR56, an atypical G protein-coupled receptor, binds tissue transglutaminase, TG2, and inhibits melanoma tumor growth and metastasis. Proc Natl. Acad. Sci. U. S. A 103, 9023-9028.
Xu L, Hynes RO (2007). GPR56 and TG2: possible roles in suppression of tumor growth by the microenvironment. Cell Cycle 6, 160-165.
Yamashita S, Masuda Y, Kurizaki T, Haga Y, Murayama T, Ikei S, Kamei M, Takeno S, Kawahara K (2007). Survivin expression predicts early recurrence in early-stage breast cancer. Anticancer Res. 27, 2803-2808.
Yang J, Price MA, Neudauer CL, Wilson C, Ferrone S, Xia H, Iida J, Simpson MA, McCarthy JB (2004). Melanoma chondroitin sulfate proteoglycan enhances FAK and ERK activation by distinct mechanisms. J Cell Biol. 165, 881-891.
Yantiss RK, Cosar E, Fischer AH (2008). Use of IMP3 in identification of carcinoma in fine needle aspiration biopsies of pancreas. Acta Cytol. 52, 133-138.
Yantiss RK, Woda BA, Fanger GR, Kalos M, Whalen GF, Tada H, Andersen DK, Rock KL, Dresser K (2005). KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol. 29, 188-195.
Yee C, Thompson JA, Byrd D, Riddell SR, Roche P, Celis E, Greenberg PD (2002). Adoptive T cell therapy using antigen-specific CD8+ T cell clones for the treatment of patients with metastatic melanoma: in vivo persistence, migration, and antitumor effect of transferred T cells. Proc. Natl. Acad. Sci. U. S. A 99, 16168-16173.
yuso-Sacido A, Graham C, Greenfield JP, Boockvar JA (2006). The duality of epidermal growth factor receptor (EGFR) signaling and neural stem cell phenotype: cell enhancer or cell transformer? Curr. Stem Cell Res. Ther. 1, 387-394.
Zangen I, Kneitz S, Monoranu CM, Rutkowski S, Hinkes B, Vince GH, Huang B, Roggendorf W (2007). Ependymoma gene expression profiles associated with histological subtype, proliferation, and patient survival. Acta Neuropathol. 113, 325-337.
Zaremba S, Barzaga E, Zhu M, Soares N, Tsang KY, Schlom J (1997). Identification of an enhancer agonist cytotoxic T lymphocyte peptide from human carcinoembryonic antigen. Cancer Res. 57, 4570-4577.
Zawrocki A, Biernat W (2005). Epidermal growth factor receptor in glioblastoma. Folia Neuropathol. 43, 123-132.
Zeh HJ, III, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC (1999). High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol. 162, 989-994.
Zhen HN, Zhang X, Hu PZ, Yang TT, Fei Z, Zhang JN, Fu LA, He XS, Ma FC, Wang XL (2005). Survivin expression and its relation with proliferation, apoptosis, and angiogenesis in brain gliomas. Cancer 104, 27752783.
Zheng W, Yi X, Fadare O, Liang SX, Martel M, Schwartz PE, Jiang Z (2008). The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma. Am J Surg Pathol. 32, 304-315.
Zhou R, Skalli O (2000). TGF-alpha differentially regulates GFAP, vimentin, and nestin gene expression in U-373 MG glioblastoma cells: correlation with cell shape and motility. Exp. Cell Res. 254, 269-278.
Zimmerman L, Parr B, Lendahl U, Cunningham M, McKay R, Gavin B, Mann J, Vassileva G, McMahon A (1994).

Claims (1)

  1. imagen1
ES09778750.1T 2008-10-01 2009-09-28 Composición que comprende péptidos asociados a tumores y una vacuna para el tratamiento del glioblastoma y de otros tipos de cáncer Active ES2584245T3 (es)

Applications Claiming Priority (7)

Application Number Priority Date Filing Date Title
EP20080017305 EP2172211B1 (en) 2008-10-01 2008-10-01 Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
EP08017305 2008-10-01
EP08017921 2008-10-13
EP08017921.1A EP2172212B1 (en) 2008-10-01 2008-10-13 Novel immunotherapy against several tumors including neuronal and brain tumors
US10592808P 2008-10-16 2008-10-16
US105928P 2008-10-16
PCT/EP2009/006980 WO2010037514A2 (en) 2008-10-01 2009-09-28 Novel immunotherapy against several tumors including neuronal and brain tumors

Publications (1)

Publication Number Publication Date
ES2584245T3 true ES2584245T3 (es) 2016-09-26

Family

ID=40342382

Family Applications (12)

Application Number Title Priority Date Filing Date
ES08017305.7T Active ES2536465T3 (es) 2008-10-01 2008-10-01 Composición de péptidos tumor-asociados y relacionados con la vacuna contra el cáncer para el tratamiento de glioblastoma (GBM) y otros cánceres
ES08017921.1T Active ES2607460T3 (es) 2008-10-01 2008-10-13 Nueva inmunoterapia contra varios tumores incluidos tumores neuronales y cerebrales
ES16179241T Active ES2708654T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra varios tumores incluyendo tumores cerebrales y neuronales
ES16179192T Active ES2819244T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES09778749.3T Active ES2612466T3 (es) 2008-10-01 2009-09-28 Composición de péptidos asociados a tumores y vacuna contra el cáncer relacionada con ellos para el tratamiento del glioblastoma (GBM) y de otros tipos de cáncer
ES16179214T Active ES2788129T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179169T Active ES2770090T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179163T Active ES2802226T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16165070T Active ES2710608T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179226T Active ES2802227T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179174T Active ES2804723T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES09778750.1T Active ES2584245T3 (es) 2008-10-01 2009-09-28 Composición que comprende péptidos asociados a tumores y una vacuna para el tratamiento del glioblastoma y de otros tipos de cáncer

Family Applications Before (11)

Application Number Title Priority Date Filing Date
ES08017305.7T Active ES2536465T3 (es) 2008-10-01 2008-10-01 Composición de péptidos tumor-asociados y relacionados con la vacuna contra el cáncer para el tratamiento de glioblastoma (GBM) y otros cánceres
ES08017921.1T Active ES2607460T3 (es) 2008-10-01 2008-10-13 Nueva inmunoterapia contra varios tumores incluidos tumores neuronales y cerebrales
ES16179241T Active ES2708654T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra varios tumores incluyendo tumores cerebrales y neuronales
ES16179192T Active ES2819244T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES09778749.3T Active ES2612466T3 (es) 2008-10-01 2009-09-28 Composición de péptidos asociados a tumores y vacuna contra el cáncer relacionada con ellos para el tratamiento del glioblastoma (GBM) y de otros tipos de cáncer
ES16179214T Active ES2788129T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179169T Active ES2770090T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179163T Active ES2802226T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16165070T Active ES2710608T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179226T Active ES2802227T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales
ES16179174T Active ES2804723T3 (es) 2008-10-01 2009-09-28 Inmunoterapia novedosa contra diversos tumores, entre ellos tumores cerebrales y neuronales

Country Status (25)

Country Link
US (19) US8318677B2 (es)
EP (12) EP2172211B1 (es)
JP (10) JP5855940B2 (es)
KR (6) KR102392070B1 (es)
CN (3) CN106986919A (es)
AU (2) AU2009300088B2 (es)
BR (2) BRPI0920791B8 (es)
CA (9) CA2936868C (es)
CY (11) CY1116302T1 (es)
DK (12) DK2172211T3 (es)
EA (3) EA023378B1 (es)
ES (12) ES2536465T3 (es)
HK (2) HK1159526A1 (es)
HR (12) HRP20201025T8 (es)
HU (11) HUE031030T2 (es)
LT (10) LT2172212T (es)
MX (3) MX338294B (es)
NZ (4) NZ603016A (es)
PL (12) PL2172211T3 (es)
PT (12) PT2172211E (es)
RS (12) RS53782B1 (es)
SI (12) SI2172211T1 (es)
TR (2) TR201900809T4 (es)
UA (3) UA103202C2 (es)
WO (2) WO2010037514A2 (es)

Families Citing this family (100)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8435507B2 (en) 2004-08-19 2013-05-07 University Of Maryland Prostate-specific antigen-derived MHC class II restricted peptides and their use in vaccines to treat or prevent prostate cancer
US7612162B2 (en) 2004-09-21 2009-11-03 University Of Pittsburgh - Of The Commonwealth System Of Higher Education Peptide analogs capable of enhancing stimulation of a glioma-specific CTL response
WO2009015843A1 (en) * 2007-07-27 2009-02-05 Immatics Biotechnologies Gmbh Novel immunotherapy against neuronal and brain tumors
ES2342506T3 (es) * 2008-04-30 2010-07-07 Immatics Biotechnologies Gmbh Novedosas formulaciones para vacunas de peptidos asociados a tumores, unidos a moleculas del antigeno de leucocito humano (hla) de clase i o ii.
SI2119726T2 (en) 2008-05-14 2018-03-30 Immatics Biotechnologies Gmbh New and powerful Class II MHC peptides derived from survivin and neurocane
EP2172211B1 (en) 2008-10-01 2014-12-03 Immatics Biotechnologies GmbH Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
TW201124530A (en) * 2009-12-01 2011-07-16 Oncotherapy Science Inc IMP-3 oligopeptides and vaccines including the same
SE535982C2 (sv) * 2009-12-15 2013-03-19 Theravac Pharmaceuticals Ab Ett nytt vaccin som angriper tumörkärl som ett effektivt redskap i tumörterapi
GB201004551D0 (en) * 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
AU2015200751B2 (en) * 2010-03-19 2016-11-10 Immatics Biotechnologies Gmbh Novel immunotherapy against several tumors including gastrointestinal and gastric cancer
ES2722799T3 (es) * 2010-08-24 2019-08-16 Univ Pittsburgh Commonwealth Sys Higher Education Vacunas contra el cáncer de cerebro basadas en el péptido alfa 2 del receptor de interleuquina-13
US20140017266A1 (en) * 2010-12-03 2014-01-16 The Government Of The United States, As Represented By The Secretary Of Hhs, Nih Anti-podoplanin antibodies and methods of use
AU2011344652B2 (en) * 2010-12-14 2015-11-19 Immatics Biotechnologies Gmbh HLA-binding peptides derived from prostate-associated antigenic molecules and methods of use thereof
US20140154269A1 (en) * 2011-04-26 2014-06-05 The Methodist Hospital Research Institute Targeted nanovectors and their use for treatment of brain tumors
JP2014526517A (ja) * 2011-09-14 2014-10-06 ノースウェスタン ユニバーシティ 血液脳関門を通過することができるナノ抱合体
GB201120779D0 (en) * 2011-12-02 2012-01-11 Immodulon Therapeutics Ltd Cancer therapy
KR20150018765A (ko) 2012-01-20 2015-02-24 데니스 브라운 다형교모세포종 및 수모세포종을 비롯한 신생종양 질환 및 암 줄기세포의 치료를 위한 디안히드로갈락티톨 및 유사체를 비롯한 치환된 헥시톨의 용도
US10704021B2 (en) 2012-03-15 2020-07-07 Flodesign Sonics, Inc. Acoustic perfusion devices
CN103372217B (zh) * 2012-04-28 2014-12-10 中国科学院深圳先进技术研究院 聚合物纳米载体制剂及其制备方法和应用
US10485858B2 (en) 2012-05-16 2019-11-26 Stemline Therapeutics, Inc. Cancer stem cell targeted cancer vaccines
CN112587658A (zh) * 2012-07-18 2021-04-02 博笛生物科技有限公司 癌症的靶向免疫治疗
PT3456339T (pt) 2013-08-05 2021-12-09 Immatics Biotechnologies Gmbh Nova imunoterapia contra vários tumores, tais como cancro do pulmão, incluindo cpnpc
TWI777194B (zh) * 2013-08-05 2022-09-11 德商伊瑪提克斯生物科技有限公司 新穎肽類,細胞及其用於治療多種腫瘤的用途,其製造方法及包含其等之醫藥組成物(一)
MX2019013161A (es) * 2013-11-04 2020-02-03 Immatics Biotechnologies Gmbh Inmunoterapia personalizada contra diversos tumores cerebrales y neuronales.
GB201319446D0 (en) 2013-11-04 2013-12-18 Immatics Biotechnologies Gmbh Personalized immunotherapy against several neuronal and brain tumors
CN104698059B (zh) * 2013-12-04 2017-07-21 苏州中赢医疗科技有限公司 一种脑胶质瘤肿瘤标志物及其应用
CA2935960C (en) 2014-01-08 2023-01-10 Bart Lipkens Acoustophoresis device with dual acoustophoretic chamber
KR101503341B1 (ko) 2014-03-12 2015-03-18 국립암센터 자가암항원 특이적 cd8+ t 세포의 분리 및 증식방법
DK3689899T3 (da) 2014-04-25 2021-11-22 2Seventy Bio Inc Kimære mnd-promotor-antigenreceptorer
WO2015182668A1 (ja) * 2014-05-28 2015-12-03 学校法人東京女子医科大学 膠芽腫の予測方法
JP2015227292A (ja) * 2014-05-30 2015-12-17 国立大学法人高知大学 膵がん細胞浸潤転移抑制ワクチン
CN111394317A (zh) 2014-06-06 2020-07-10 蓝鸟生物公司 改善的t细胞组合物
JP6366379B2 (ja) * 2014-06-20 2018-08-01 キヤノン株式会社 被検体情報取得装置
AU2014410466B2 (en) * 2014-11-06 2019-09-12 Ose Immunotherapeutics Therapeutic multi-peptides T specific immune therapy for treatment of brain metastasis
EA036379B1 (ru) 2014-12-12 2020-11-02 Блубёрд Био, Инк. Химерные антигенные рецепторы к bcma
SI3626731T1 (sl) * 2014-12-23 2021-12-31 Immatics Biotechnologies Gmbh Novi peptidi in kombinacija peptidov za uporabo v imunoterapiji proti hepatocelularnem karcinomu (HCC) in drugim oblikam raka
GB201501017D0 (en) * 2014-12-23 2015-03-04 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against hepatocellular carcinoma (HCC) and other cancers
GB201423361D0 (en) * 2014-12-30 2015-02-11 Immatics Biotechnologies Gmbh Method for the absolute Quantification of naturally processed HLA-Restricted cancer peptides
US11708572B2 (en) 2015-04-29 2023-07-25 Flodesign Sonics, Inc. Acoustic cell separation techniques and processes
US11377651B2 (en) 2016-10-19 2022-07-05 Flodesign Sonics, Inc. Cell therapy processes utilizing acoustophoresis
GB201507719D0 (en) * 2015-05-06 2015-06-17 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides and scaffolds thereof for use in immunotherapy against colorectal carcinoma (CRC) and other cancers
CR20230131A (es) * 2015-05-06 2023-06-23 Immatics Biotechnologies Gmbh NUEVOS PÉPTIDOS Y NUEVAS COMBINACIONES DE PÉPTIDOS Y DE SOPORTES PARA LA INMUNOTERAPIA CONTRA EL CARCINOMA COLORRECTAL Y OTROS TIPOS DE CÁNCER (Divisional Exp. 2017-0497)
NL2014935B1 (en) 2015-06-08 2017-02-03 Applied Immune Tech Ltd T cell receptor like antibodies having fine specificity.
EP3650043A3 (en) 2015-06-09 2020-07-29 The Board of Regents of the University of Oklahoma Compositions and treatments for haemophilus influenzae
MX2017016931A (es) 2015-06-24 2018-09-26 Immodulon Therapeutics Ltd Inhibidor del punto de regulacion y un mycobaterium de celula entera para uso en la terapia del cancer.
GB201511546D0 (en) 2015-07-01 2015-08-12 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
MY191654A (en) 2015-07-01 2022-07-05 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against ovarian cancer and other cancers
PE20231014A1 (es) * 2015-07-06 2023-07-05 Immatics Biotechnologies Gmbh Nuevos peptidos y combinacion de peptidos para usar en inmunoterapia contra el cancer esofagico y otros canceres
MY189596A (en) * 2015-07-15 2022-02-18 Immatics Biotechnologies Gmbh A novel peptides for use in immunotherapy against epithelial ovarian cancer and other cancers
GB201513921D0 (en) 2015-08-05 2015-09-23 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against prostate cancer and other cancers
TWI782433B (zh) 2015-08-28 2022-11-01 德商英麥提克生物技術股份有限公司 用於多種癌症之免疫治療的新穎胜肽、胜肽的組合物及支架
GB201515321D0 (en) * 2015-08-28 2015-10-14 Immatics Biotechnologies Gmbh Novel peptides, combination of peptides and scaffolds for use in immunotherapeutic treatment of various cancers
WO2017040885A1 (en) 2015-09-03 2017-03-09 The Board Of Regents Of The University Of Oklahoma Peptide inhibitors of clostridium difficile tcdb toxin
WO2017099712A1 (en) 2015-12-07 2017-06-15 Bluebird Bio, Inc. Improved t cell compositions
GB201521746D0 (en) * 2015-12-10 2016-01-27 Immatics Biotechnologies Gmbh Novel peptides and combination of peptides for use in immunotherapy against CLL and other cancers
KR20180107102A (ko) 2015-12-16 2018-10-01 그릿스톤 온콜로지, 인코포레이티드 신생항원 동정, 제조, 및 용도
WO2017123996A1 (en) 2016-01-15 2017-07-20 City Of Hope Targeting glioblastoma stem cells through the tlx-tet3 axis
GB201603568D0 (en) * 2016-03-01 2016-04-13 Immatics Biotechnologies Gmbh Efficient treatment options including peptides and combination of peptide and cell based medicaments for use in immunotherapy against urinary bladder cancer
CN109620949A (zh) * 2016-03-13 2019-04-16 曹帅 一种用于治疗骨癌的药物组合物
GB201604494D0 (en) 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Transfected T-Cells and T-Cell receptors for use in immunotherapy against cancers
GB201604490D0 (en) * 2016-03-16 2016-04-27 Immatics Biotechnologies Gmbh Peptides combination of peptides for use in immunotherapy against cancers
HUE060725T2 (hu) 2016-03-16 2023-04-28 Immatics Biotechnologies Gmbh Transzfektált T-sejtek és T-sejt receptorok daganatok ellen alkalmazott immunterápiában történõ használatra
PE20181896A1 (es) * 2016-04-06 2018-12-11 Immatics Biotechnologies Gmbh Nuevos peptidos y nuevas combinaciones de peptidos para el uso en la inmunoterapia contra la leucemia mieloide agua (lma) y otros tipos de cancer
US11214789B2 (en) 2016-05-03 2022-01-04 Flodesign Sonics, Inc. Concentration and washing of particles with acoustics
WO2017194170A1 (en) * 2016-05-13 2017-11-16 Biontech Rna Pharmaceuticals Gmbh Methods for predicting the usefulness of proteins or protein fragments for immunotherapy
KR101881300B1 (ko) 2016-06-30 2018-07-25 영남대학교 산학협력단 아조피라졸 화합물 및 은 촉매 반응을 이용한 이의 신규한 합성방법
CN110022889A (zh) * 2016-10-03 2019-07-16 渥太华医院研究所 用于提高溶瘤rna病毒的生长、传播和溶瘤与免疫治疗效果的组合物和方法
KR102639592B1 (ko) 2016-12-08 2024-02-21 이매틱스 바이오테크놀로지스 게엠베하 짝짓기가 향상된 t 세포 수용체
DE102016123893A1 (de) 2016-12-08 2018-06-14 Immatics Biotechnologies Gmbh T-Zellrezeptoren mit verbesserter Bindung
MX2019004692A (es) 2017-01-06 2019-11-08 Eutilex Co Ltd Anticuerpos 4-1bb anti-humano y usos de los mismos.
GB201702863D0 (en) * 2017-02-22 2017-04-05 Evox Therapeutics Ltd Improved loading of EVs with therapeutic proteins
US20180248175A1 (en) * 2017-02-28 2018-08-30 Lyten, Inc. Mixed allotrope particulate carbon films and carbon fiber mats
TW201907937A (zh) * 2017-05-08 2019-03-01 美商葛利史東腫瘤科技公司 阿爾法病毒新抗原載體
CN107034305A (zh) * 2017-06-19 2017-08-11 上海市第十人民医院 恶性胶质瘤的一种诊断标志物
CN107058596A (zh) * 2017-06-19 2017-08-18 上海市第十人民医院 一种与恶性胶质瘤诊断相关的标志物及其应用
CA3078744A1 (en) 2017-10-10 2019-04-18 Gritstone Oncology, Inc. Neoantigen identification using hotspots
CN111630602A (zh) 2017-11-22 2020-09-04 磨石肿瘤生物技术公司 减少新抗原的接合表位呈递
AU2018385759B2 (en) 2017-12-14 2021-10-21 Flodesign Sonics, Inc. Acoustic transducer driver and controller
EP3724327A4 (en) * 2017-12-14 2022-01-12 EZY Biotech LLC SUBJECT-SPECIFIC TUMOR-INHIBITING CELLS AND THEIR USE
PL3773689T3 (pl) * 2018-04-11 2023-03-13 Enterome S.A. Peptydy antygenowe do zapobiegania i leczenia raka
CN108715832B (zh) * 2018-06-01 2020-11-10 段海峰 一种抑制肿瘤生长的间充质干细胞及制备方法和应用
WO2020110154A1 (en) * 2018-11-30 2020-06-04 Bharat Biotech International Limited A chimeric therapeutic vaccine
RU2706554C1 (ru) * 2018-12-13 2019-11-19 Российская Федерация, от имени которой выступает ФОНД ПЕРСПЕКТИВНЫХ ИССЛЕДОВАНИЙ Способ создания противоинфекционной иммунологической защиты к Salmonella typhimurium и Listeria monocytogenes с помощью трансгенеза Т-лимфоцитов
CN109796536B (zh) * 2019-02-22 2021-09-17 上海尚泰生物技术有限公司 一种靶向胶质母细胞瘤多种抗原表位的ctl的制备方法
GB2617512B (en) * 2019-04-05 2023-12-27 Earli Inc Improved methods and compositions for synthetic biomarkers
JP7150289B2 (ja) 2019-05-28 2022-10-11 ペイジ.エーアイ インコーポレイテッド デジタル病理学のための処理された画像に関するスライドを調製するために画像を処理するためのシステムおよび方法
CN110579457B (zh) * 2019-09-20 2021-11-02 郑州大学第一附属医院 波形蛋白特异响应性荧光探针及其制备方法和应用
CN112824427B (zh) * 2019-11-18 2022-06-24 杨小骏 一种抑制胶质瘤的短肽及其应用
CN113318225B (zh) * 2020-02-28 2024-01-19 无锡派列博生物医药科技有限公司 肿瘤免疫增强剂及其制法和应用
CN113621025A (zh) * 2020-03-18 2021-11-09 北京鼎成肽源生物技术有限公司 一种乳腺癌靶标抗原、乳腺癌靶标抗原刺激培养的ctl细胞及其应用
US11913023B2 (en) 2020-03-31 2024-02-27 Walking Fish Therapeutics, Inc. Modified B cells and methods of use thereof
KR20230006821A (ko) * 2020-03-31 2023-01-11 워킹 피쉬 테라퓨틱스 변형 b 세포 및 이의 사용 방법
IL300026A (en) 2020-08-06 2023-03-01 Gritstone Bio Inc Multiepitope vaccine cassettes
KR20220022021A (ko) 2020-08-14 2022-02-23 서울대학교산학협력단 B형 간염 바이러스 유래 폴리펩티드를 포함하는 암의 예방 또는 치료용 약학적 조성물
EP4203994A1 (en) * 2020-08-28 2023-07-05 Torigen Pharmaceuticals, Inc. Immune memory enhanced preparations and uses thereof
US11421015B2 (en) 2020-12-07 2022-08-23 Think Therapeutics, Inc. Method of compact peptide vaccines using residue optimization
US11058751B1 (en) 2020-11-20 2021-07-13 Think Therapeutics, Inc. Compositions for optimized RAS peptide vaccines
US11464842B1 (en) 2021-04-28 2022-10-11 Think Therapeutics, Inc. Compositions and method for optimized peptide vaccines using residue optimization
WO2023192820A2 (en) * 2022-03-30 2023-10-05 Iogenetics, Llc Tumor-associated antigens in brain tumors
PL441229A1 (pl) * 2022-05-19 2023-11-20 Instytut Biologii Doświadczalnej im. Marcelego Nenckiego Polska Akademia Nauk Zaprojektowane, syntetyczne peptydy, zawierające je kompozycje i sposoby ich zastosowania w leczeniu glejaków złośliwych

Family Cites Families (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4440859A (en) 1977-05-27 1984-04-03 The Regents Of The University Of California Method for producing recombinant bacterial plasmids containing the coding sequences of higher organisms
US4704362A (en) 1977-11-08 1987-11-03 Genentech, Inc. Recombinant cloning vehicle microbial polypeptide expression
IE53176B1 (en) 1978-12-22 1988-08-17 Biogen Nv Recombinant dna molecules and their method of production
US4530901A (en) 1980-01-08 1985-07-23 Biogen N.V. Recombinant DNA molecules and their use in producing human interferon-like polypeptides
US4342566A (en) 1980-02-22 1982-08-03 Scripps Clinic & Research Foundation Solid phase anti-C3 assay for detection of immune complexes
US4678751A (en) 1981-09-25 1987-07-07 Genentech, Inc. Hybrid human leukocyte interferons
US4766075A (en) 1982-07-14 1988-08-23 Genentech, Inc. Human tissue plasminogen activator
US4582800A (en) 1982-07-12 1986-04-15 Hoffmann-La Roche Inc. Novel vectors and method for controlling interferon expression
US4816567A (en) 1983-04-08 1989-03-28 Genentech, Inc. Recombinant immunoglobin preparations
US4757006A (en) 1983-10-28 1988-07-12 Genetics Institute, Inc. Human factor VIII:C gene and recombinant methods for production
US4677063A (en) 1985-05-02 1987-06-30 Cetus Corporation Human tumor necrosis factor
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
US4897445A (en) 1986-06-27 1990-01-30 The Administrators Of The Tulane Educational Fund Method for synthesizing a peptide containing a non-peptide bond
US5338839A (en) * 1988-04-12 1994-08-16 Massachusetts Institute Of Technology DNA encoding nestin protein
GB2267257A (en) 1992-05-14 1993-12-01 Ford Motor Co A vehicle load compartment liner.
KR100235089B1 (en) 1992-05-14 1999-12-15 Mitsui Chemicals Inc Ptp or blister packaging articles and packaging material therefor
DE69420137T2 (de) 1993-06-03 1999-12-23 Therapeutic Antibodies Inc Herstellung von antikörperfragmenten
AUPM322393A0 (en) 1993-12-24 1994-01-27 Austin Research Institute, The Mucin carbohydrate compounds and their use in immunotherapy
PT879282E (pt) 1996-01-17 2003-11-28 Imp College Innovations Ltd Imunoterapia utilizando linfocitos t citotoxicos (ctl)
US5849589A (en) 1996-03-11 1998-12-15 Duke University Culturing monocytes with IL-4, TNF-α and GM-CSF TO induce differentiation to dendric cells
TW575583B (en) * 1996-04-24 2004-02-11 Akzo Nobel Nv Novel peptides suitable for use in antigen specific immunosuppressive therapy
WO1998003197A1 (en) * 1996-07-22 1998-01-29 The Rockefeller University Env-glycoprotein vaccine for protection of htlv-i and -ii infection
WO1998031797A1 (en) 1997-01-15 1998-07-23 Zymogenetics, Inc. Zppar6, human tailless nuclear hormone receptor (tlx receptor)
JPH11507845A (ja) * 1997-02-13 1999-07-13 スミスクライン・ビーチャム・パブリック・リミテッド・カンパニー 神経細胞付着分子スプライシング変種
US6406705B1 (en) 1997-03-10 2002-06-18 University Of Iowa Research Foundation Use of nucleic acids containing unmethylated CpG dinucleotide as an adjuvant
US6682928B2 (en) * 1997-12-02 2004-01-27 Medarex, Inc. Cells expressing anti-Fc receptor binding components
US7258860B2 (en) * 1998-03-18 2007-08-21 Corixa Corporation Compositions and methods for the therapy and diagnosis of lung cancer
WO1999055380A1 (en) * 1998-04-27 1999-11-04 Pacific Northwest Cancer Foundation Nr-CAM GENE, NUCLEIC ACIDS AND NUCLEIC ACID PRODUCTS FOR THERAPEUTIC AND DIAGNOSTIC USES FOR TUMORS
US6960651B2 (en) * 1999-06-29 2005-11-01 Millennium Pharmaceuticals, Inc. TANGO 332 polypeptides
CA2395872A1 (en) * 2000-01-31 2001-08-02 Human Genome Sciences, Inc. Nucleic acids, proteins, and antibodies
US20020168711A1 (en) * 2000-01-31 2002-11-14 Rosen Craig A. Nucleic acids, proteins, and antibodies
AU785493B2 (en) 2000-03-27 2008-01-03 Technion Research & Development Foundation Ltd. Single chain class I major histo-compatibility complexes, constructs encoding same and methods of generating same
US20040191260A1 (en) 2003-03-26 2004-09-30 Technion Research & Development Foundation Ltd. Compositions capable of specifically binding particular human antigen presenting molecule/pathogen-derived antigen complexes and uses thereof
WO2002020036A1 (de) * 2000-09-06 2002-03-14 Mueller Friederike Arzneimittel mit einer für das rna-bindende koc-protein kodierenden dna-sequenz, einem koc-protein oder einer dna-sequenz des koc-promotors
US7919467B2 (en) * 2000-12-04 2011-04-05 Immunotope, Inc. Cytotoxic T-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
EP1356048A2 (en) * 2000-12-04 2003-10-29 Argonex Pharmaceuticals Cytotoxic t-lymphocyte-inducing immunogens for prevention, treatment, and diagnosis of cancer
EP1379879A2 (en) * 2000-12-08 2004-01-14 Oxford GlycoSciences (UK) Limited Diagnosis and treatment of alzheimer's disease
US20030109434A1 (en) * 2001-03-19 2003-06-12 Corixa Corporation Compositions and methods for the therapy and diagnosis of kidney cancer
CA2364106A1 (fr) * 2001-11-30 2003-05-30 Christopher Gillberg Polynucleotide et proteine impliques dans la synaptogenese, variants de ceux-ci, et leurs applications therapeutiques et diagnostiques
US6589642B1 (en) 2001-12-21 2003-07-08 Kloeckner Pentaplast Of America, Inc. Three part high moisture barrier for packages
US7892559B2 (en) 2002-01-30 2011-02-22 Survac Aps Survivin-derived peptides and use thereof
US6992176B2 (en) 2002-02-13 2006-01-31 Technion Research & Development Foundation Ltd. Antibody having a T-cell receptor-like specificity, yet higher affinity, and the use of same in the detection and treatment of cancer, viral infection and autoimmune disease
WO2003070752A2 (en) 2002-02-20 2003-08-28 Dyax Corporation Mhc-peptide complex binding ligands
AU2003258134A1 (en) * 2002-08-09 2004-02-25 Applera Corporation Lung cancer target proteins and use thereof
JP4721633B2 (ja) * 2002-10-11 2011-07-13 財団法人癌研究会 血小板凝集促進活性を有する物質
AU2003298984A1 (en) * 2002-12-27 2004-08-23 Shenzhen Tsinghua Yuanxing Bio-Pharm Science And Technology Co., Ltd. Method of preparing a vaccine and anti-tumor vaccines
US7273980B2 (en) 2004-01-13 2007-09-25 Wardle Scott A Position and velocity transducer using a phonograph disc and turntable
EP1712620A4 (en) * 2004-01-23 2008-05-28 Greenpeptide Co Ltd PEPTIDE FROM EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR)
DE102004026135A1 (de) * 2004-05-25 2006-01-05 Immatics Biotechnologies Gmbh An MHC-Moleküle bindende Tumor-assoziierte Peptide
WO2006026569A2 (en) * 2004-08-27 2006-03-09 Northeastern University Comprehensive characterization of complex proteins at trace levels
EP1642905B1 (en) * 2004-10-02 2009-01-21 Immatics Biotechnologies GmbH Immunogenic T-helper epitopes from human tumour antigens and immunotherapeutic methods using said epitopes
CA2600898C (en) * 2004-12-07 2016-08-23 Toray Industries, Inc. Novel cancer antigen peptide and the use thereof
KR100809410B1 (ko) * 2005-07-06 2008-03-05 주식회사 브레인가드 줄기세포 분화 유도용 조성물 및 그의 용도
DK1760089T3 (da) * 2005-09-05 2009-11-16 Immatics Biotechnologies Gmbh Tumor-associeret peptides bindende til human leukocyte antigen (HLA) class I eller II molecules og relateret anti-cancer vaccine
DE602005020047D1 (de) 2005-09-05 2010-04-29 Immatics Biotechnologies Gmbh Tumor-assoziierte Peptide, welche an unterschiedliche menschliche Leukozytenantigene der Klasse II binden
AU2006304605A1 (en) 2005-10-17 2007-04-26 Institute For Systems Biology Tissue-and serum-derived glycoproteins and methods of their use
US20070248628A1 (en) * 2005-12-06 2007-10-25 Keller Lorraine H Immunogens in cancer stem cells
WO2007072494A1 (en) 2005-12-23 2007-06-28 Naik Praful Ramchandra Metallized packaging blister container
EP2089423B1 (en) * 2006-09-21 2016-10-26 Vaxil Biotherapeutics Ltd. Antigen specific multi epitope vaccines
CA2700573C (en) * 2006-09-26 2016-11-22 Cedars-Sinai Medical Center Cancer stem cell antigen vaccines and methods
EP2164859A4 (en) * 2007-03-06 2012-06-06 Iterative Therapeutics Inc METHODS AND COMPOSITIONS USING POLYMERIC IMMUNOGLOBULIN HYBRID PROTEINS
EP2280731A1 (en) * 2008-04-09 2011-02-09 Technion Research and Development Foundation, Ltd. Anti human immunodeficiency antibodies and uses thereof
KR101184869B1 (ko) * 2008-04-24 2012-09-20 이매틱스 바이오테크놀로지스 게엠베하 백신을 위한 인간 조직 적합성 항원(hla) 종류 i 또는 ii 분자에 결합하는 종양 관련 펩티드의 신규한 제형
ES2342506T3 (es) * 2008-04-30 2010-07-07 Immatics Biotechnologies Gmbh Novedosas formulaciones para vacunas de peptidos asociados a tumores, unidos a moleculas del antigeno de leucocito humano (hla) de clase i o ii.
EP2172211B1 (en) 2008-10-01 2014-12-03 Immatics Biotechnologies GmbH Composition of tumor-associated peptides and related anti-cancer vaccine for the treatment of glioblastoma (GBM) and other cancers
GB201004551D0 (en) 2010-03-19 2010-05-05 Immatics Biotechnologies Gmbh NOvel immunotherapy against several tumors including gastrointestinal and gastric cancer
GB201021289D0 (en) 2010-12-15 2011-01-26 Immatics Biotechnologies Gmbh Novel biomarkers for a prediction of the outcome of an immunotherapy against cancer
CN114057895A (zh) * 2014-05-28 2022-02-18 诺诺公司 TAT-NR2B9c的氯盐
EA201892333A1 (ru) * 2016-04-21 2019-03-29 Имматикс Байотекнолоджиз Гмбх Иммунотерапия меланомы и других видов рака
CN111315769A (zh) * 2017-09-06 2020-06-19 加州理工学院 信号传导和抗原呈递双功能受体(sabr)

Also Published As

Publication number Publication date
DK3106175T3 (da) 2020-06-22
RS60338B1 (sr) 2020-07-31
HRP20200110T1 (hr) 2020-05-15
JP2017018101A (ja) 2017-01-26
PT3132801T (pt) 2020-02-04
US8119139B2 (en) 2012-02-21
PL3120868T3 (pl) 2020-08-24
CA2739384C (en) 2017-05-02
RS60006B1 (sr) 2020-04-30
RS60656B1 (sr) 2020-09-30
CA2936924A1 (en) 2010-04-08
PL2331118T3 (pl) 2017-05-31
EP2172212A3 (en) 2010-04-14
RS55531B1 (sr) 2017-05-31
MX2011003539A (es) 2011-06-20
US20190010190A1 (en) 2019-01-10
PL3132801T3 (pl) 2020-06-15
CY1121258T1 (el) 2020-05-29
US20120141517A1 (en) 2012-06-07
DK3069728T3 (en) 2019-02-25
US11208434B2 (en) 2021-12-28
PT3124043T (pt) 2020-05-12
EA023378B1 (ru) 2016-05-31
EA201100587A1 (ru) 2011-10-31
US20160376314A1 (en) 2016-12-29
PL2172211T3 (pl) 2015-05-29
ES2536465T3 (es) 2015-05-25
US20160376313A1 (en) 2016-12-29
CA2936869A1 (en) 2010-04-08
US20160376315A1 (en) 2016-12-29
DK2331118T5 (en) 2017-06-19
HUE031030T2 (en) 2017-06-28
PT3120870T (pt) 2020-07-01
JP5753783B2 (ja) 2015-07-22
DK3132801T3 (da) 2020-02-10
DK2172212T3 (da) 2016-12-19
JP2017000148A (ja) 2017-01-05
HUE050428T2 (hu) 2020-12-28
EP3120869A1 (en) 2017-01-25
RS55543B1 (sr) 2017-05-31
HUE042115T2 (hu) 2019-06-28
SI2341927T1 (sl) 2016-08-31
UA125277C2 (uk) 2022-02-16
DK3120869T3 (da) 2020-08-10
CY1118702T1 (el) 2017-07-12
HRP20182151T1 (hr) 2019-02-08
LT3132801T (lt) 2020-02-10
PT3120868T (pt) 2020-07-16
CY1122913T1 (el) 2021-10-29
SI2331118T1 (sl) 2017-01-31
EP3120870A1 (en) 2017-01-25
EP2341927B1 (en) 2016-05-04
EP2331118A1 (en) 2011-06-15
BRPI0920791B8 (pt) 2022-02-15
HRP20201228T1 (hr) 2021-02-05
PL3120870T3 (pl) 2020-07-27
JP2017023136A (ja) 2017-02-02
KR20200085381A (ko) 2020-07-14
CA2739384A1 (en) 2010-04-08
CA2936924C (en) 2019-07-16
LT3120870T (lt) 2020-08-10
SI2172211T1 (sl) 2015-03-31
BRPI0920759A2 (pt) 2016-03-08
EP2172211A1 (en) 2010-04-07
US20130309193A1 (en) 2013-11-21
US10047123B2 (en) 2018-08-14
US20210261614A1 (en) 2021-08-26
WO2010037513A1 (en) 2010-04-08
KR20110074894A (ko) 2011-07-04
EP3106175A1 (en) 2016-12-21
CA2936870C (en) 2019-11-26
SI3111952T1 (sl) 2019-01-31
PL3124043T3 (pl) 2020-07-27
CY1121098T1 (el) 2019-12-11
CN102170901B (zh) 2015-01-07
CY1116302T1 (el) 2017-02-08
HUE047365T2 (hu) 2020-04-28
US10046037B2 (en) 2018-08-14
SI3120870T1 (sl) 2020-08-31
CA2936868A1 (en) 2010-04-08
HK1159526A1 (zh) 2012-08-03
EP2341927A2 (en) 2011-07-13
DK3124043T3 (da) 2020-05-04
NZ624533A (en) 2015-09-25
BRPI0920791A2 (pt) 2019-12-10
HUE041446T2 (hu) 2019-05-28
US20150125478A1 (en) 2015-05-07
HRP20160915T1 (hr) 2016-10-07
UA110599C2 (uk) 2016-01-25
WO2010037514A2 (en) 2010-04-08
JP6150859B2 (ja) 2017-06-21
US20170326217A1 (en) 2017-11-16
CA2936869C (en) 2019-08-06
MX338294B (es) 2016-04-11
MX2011003540A (es) 2011-06-20
AU2009300087A1 (en) 2010-04-08
TR201900809T4 (tr) 2019-02-21
NZ603016A (en) 2014-05-30
KR20110082155A (ko) 2011-07-18
US11136352B2 (en) 2021-10-05
HRP20201015T1 (hr) 2020-10-16
PT2341927T (pt) 2016-08-02
JP6214066B2 (ja) 2017-10-18
KR101756488B1 (ko) 2017-07-11
US9993540B2 (en) 2018-06-12
SI2172212T1 (sl) 2016-12-30
EP2172212A2 (en) 2010-04-07
PT2172212T (pt) 2016-12-22
EA201401104A1 (ru) 2015-05-29
US8961985B2 (en) 2015-02-24
HRP20190202T1 (hr) 2019-03-22
CA2936920C (en) 2019-12-03
RS55043B1 (sr) 2016-12-30
EP3124043B1 (en) 2020-04-29
US8318677B2 (en) 2012-11-27
US20160355550A1 (en) 2016-12-08
HRP20161504T1 (hr) 2016-12-30
EP3120868A1 (en) 2017-01-25
US8895514B2 (en) 2014-11-25
HRP20150223T1 (hr) 2015-06-05
SI3069728T1 (sl) 2019-03-29
ES2612466T3 (es) 2017-05-17
HUE029360T2 (en) 2017-02-28
KR20220058655A (ko) 2022-05-09
RS58443B1 (sr) 2019-04-30
EP3120868B1 (en) 2020-04-08
CY1123089T1 (el) 2021-10-29
EP2172211B1 (en) 2014-12-03
KR101687840B1 (ko) 2016-12-19
EP3111952A1 (en) 2017-01-04
EP3120870B1 (en) 2020-04-01
CA2936887C (en) 2019-11-12
PL3069728T3 (pl) 2019-05-31
PL3120869T3 (pl) 2021-01-25
EP2331118B1 (en) 2016-10-26
TR201900852T4 (tr) 2019-02-21
CA2936868C (en) 2019-10-22
US10100085B2 (en) 2018-10-16
US20110002963A1 (en) 2011-01-06
DK2172211T3 (en) 2015-02-16
HUE049364T2 (hu) 2020-09-28
CN102170901A (zh) 2011-08-31
LT3120869T (lt) 2020-11-10
KR102392070B1 (ko) 2022-04-29
PT3120869T (pt) 2020-09-22
EP2172212B1 (en) 2016-10-05
JP6294914B2 (ja) 2018-03-14
LT3069728T (lt) 2019-02-11
US20130004456A1 (en) 2013-01-03
DK3120868T3 (da) 2020-06-22
ES2708654T3 (es) 2019-04-10
JP6367266B2 (ja) 2018-08-01
EA023013B1 (ru) 2016-04-29
EP3132801B1 (en) 2019-10-30
JP5855940B2 (ja) 2016-02-09
PL2341927T3 (pl) 2016-11-30
RS60386B1 (sr) 2020-07-31
EP3069728B1 (en) 2018-11-14
LT2331118T (lt) 2016-12-27
HRP20201015T8 (hr) 2022-01-21
PT3069728T (pt) 2019-02-13
US10047124B2 (en) 2018-08-14
CA2739387A1 (en) 2010-04-08
EP3120869B1 (en) 2020-07-22
HUE030296T2 (en) 2017-04-28
CA2936870A1 (en) 2010-04-08
JP2017029135A (ja) 2017-02-09
CY1123113T1 (el) 2021-10-29
KR101883426B1 (ko) 2018-07-31
US20160376317A1 (en) 2016-12-29
HUE051030T2 (hu) 2021-01-28
JP2014239681A (ja) 2014-12-25
DK2341927T3 (en) 2016-08-15
EP3106175B1 (en) 2020-04-01
ES2770090T3 (es) 2020-06-30
KR20160103558A (ko) 2016-09-01
CN102170900B (zh) 2016-10-26
PT2331118T (pt) 2017-02-06
CN106986919A (zh) 2017-07-28
US20100158931A1 (en) 2010-06-24
LT3111952T (lt) 2018-12-27
KR20180088494A (ko) 2018-08-03
US20210238227A1 (en) 2021-08-05
WO2010037514A3 (en) 2010-06-03
UA103202C2 (ru) 2013-09-25
US10919931B2 (en) 2021-02-16
RS60385B1 (sr) 2020-07-31
PT3111952T (pt) 2019-02-05
SI3124043T1 (sl) 2020-07-31
CA2936982A1 (en) 2010-04-08
HUE049366T2 (hu) 2020-09-28
JP2012504563A (ja) 2012-02-23
KR102133402B1 (ko) 2020-07-14
DK2331118T3 (da) 2017-01-09
HRP20170115T1 (hr) 2017-03-24
AU2009300088B2 (en) 2014-09-04
JP5883476B2 (ja) 2016-03-15
CY1123526T1 (el) 2022-03-24
PL2172212T3 (pl) 2017-04-28
CN102170900A (zh) 2011-08-31
PL3106175T3 (pl) 2020-08-24
US20160376316A1 (en) 2016-12-29
US10906936B2 (en) 2021-02-02
EP3111952B1 (en) 2018-10-31
SI3132801T1 (sl) 2020-03-31
EA201100586A1 (ru) 2011-10-31
ES2802226T3 (es) 2021-01-18
EA032437B1 (ru) 2019-05-31
US8653035B2 (en) 2014-02-18
PT2172211E (pt) 2015-03-09
LT2172212T (lt) 2016-11-10
US10227381B2 (en) 2019-03-12
ES2788129T8 (es) 2020-11-04
EP3124043A1 (en) 2017-02-01
DK3120870T3 (da) 2020-06-22
US20210253637A1 (en) 2021-08-19
RS60381B1 (sr) 2020-07-31
PL3111952T3 (pl) 2019-04-30
LT3106175T (lt) 2020-08-10
CY1123098T1 (el) 2021-10-29
JP6294913B2 (ja) 2018-03-14
JP2016145210A (ja) 2016-08-12
SI3120868T1 (sl) 2020-08-31
ES2788129T3 (es) 2020-10-20
HRP20201025T1 (hr) 2020-12-25
US20210347822A1 (en) 2021-11-11
JP2016047825A (ja) 2016-04-07
CA2739387C (en) 2019-10-29
ES2607460T3 (es) 2017-03-31
ES2710608T3 (es) 2019-04-26
HRP20150223T8 (hr) 2015-07-03
RS53782B1 (en) 2015-06-30
EP3069728A1 (en) 2016-09-21
JP6297632B2 (ja) 2018-03-20
HRP20200988T1 (hr) 2020-10-16
NZ591882A (en) 2012-12-21
HUE049367T2 (hu) 2020-09-28
ES2802227T3 (es) 2021-01-18
ES2819244T3 (es) 2021-04-15
CA2936887A1 (en) 2010-04-08
JP2017018102A (ja) 2017-01-26
PT3106175T (pt) 2020-07-01
AU2009300088A1 (en) 2010-04-08
AU2009300087B2 (en) 2014-09-04
HK1161106A1 (en) 2012-08-24
NZ591855A (en) 2012-11-30
BRPI0920791B1 (pt) 2022-01-18
US10941181B2 (en) 2021-03-09
CA2936982C (en) 2019-12-03
RS58229B1 (sr) 2019-03-29
SI3106175T1 (sl) 2020-08-31
DK3111952T3 (en) 2019-01-28
EP3132801A1 (en) 2017-02-22
HRP20201025T8 (hr) 2022-01-07
ES2804723T3 (es) 2021-02-09
HRP20200722T1 (hr) 2020-10-16
JP2012504393A (ja) 2012-02-23
SI3120869T1 (sl) 2020-10-30
LT3124043T (lt) 2020-07-10
US20160376312A1 (en) 2016-12-29
CY1119744T1 (el) 2018-06-27
CY1122677T1 (el) 2021-03-12
LT3120868T (lt) 2020-08-10
CA2936920A1 (en) 2010-04-08

Similar Documents

Publication Publication Date Title
ES2584245T3 (es) Composición que comprende péptidos asociados a tumores y una vacuna para el tratamiento del glioblastoma y de otros tipos de cáncer
AU2016204710B2 (en) Novel immunotherapy against several tumors including neuronal and brain tumors
SCHOOR et al. Patent 2739387 Summary